1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.vm.annotation.AOTRuntimeSetup;
  29 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import jdk.internal.vm.annotation.IntrinsicCandidate;
  32 import sun.nio.Cleaner;
  33 import sun.nio.ch.DirectBuffer;
  34 
  35 import java.lang.reflect.Field;
  36 import java.security.ProtectionDomain;
  37 
  38 import static jdk.internal.misc.UnsafeConstants.*;
  39 
  40 /**
  41  * A collection of methods for performing low-level, unsafe operations.
  42  * Although the class and all methods are public, use of this class is
  43  * limited because only trusted code can obtain instances of it.
  44  *
  45  * <em>Note:</em> It is the responsibility of the caller to make sure
  46  * arguments are checked before methods of this class are
  47  * called. While some rudimentary checks are performed on the input,
  48  * the checks are best effort and when performance is an overriding
  49  * priority, as when methods of this class are optimized by the
  50  * runtime compiler, some or all checks (if any) may be elided. Hence,
  51  * the caller must not rely on the checks and corresponding
  52  * exceptions!
  53  *
  54  * @author John R. Rose
  55  * @see #getUnsafe
  56  */
  57 @AOTSafeClassInitializer
  58 public final class Unsafe {
  59 
  60     private static native void registerNatives();
  61     static {
  62         runtimeSetup();
  63     }
  64 
  65     /// BASE_OFFSET, INDEX_SCALE, and ADDRESS_SIZE fields are equivalent if the
  66     /// AOT initialized heap is reused, so just register natives
  67     @AOTRuntimeSetup
  68     private static void runtimeSetup() {
  69         registerNatives();
  70     }
  71 
  72     private Unsafe() {}
  73 
  74     private static final Unsafe theUnsafe = new Unsafe();
  75 
  76     /**
  77      * Provides the caller with the capability of performing unsafe
  78      * operations.
  79      *
  80      * <p>The returned {@code Unsafe} object should be carefully guarded
  81      * by the caller, since it can be used to read and write data at arbitrary
  82      * memory addresses.  It must never be passed to untrusted code.
  83      *
  84      * <p>Most methods in this class are very low-level, and correspond to a
  85      * small number of hardware instructions (on typical machines).  Compilers
  86      * are encouraged to optimize these methods accordingly.
  87      *
  88      * <p>Here is a suggested idiom for using unsafe operations:
  89      *
  90      * <pre> {@code
  91      * class MyTrustedClass {
  92      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  93      *   ...
  94      *   private long myCountAddress = ...;
  95      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  96      * }}</pre>
  97      *
  98      * (It may assist compilers to make the local variable {@code final}.)
  99      */
 100     public static Unsafe getUnsafe() {
 101         return theUnsafe;
 102     }
 103 
 104     //--- peek and poke operations
 105     // (compilers should optimize these to memory ops)
 106 
 107     // These work on object fields in the Java heap.
 108     // They will not work on elements of packed arrays.
 109 
 110     /**
 111      * Fetches a value from a given Java variable.
 112      * More specifically, fetches a field or array element within the given
 113      * object {@code o} at the given offset, or (if {@code o} is null)
 114      * from the memory address whose numerical value is the given offset.
 115      * <p>
 116      * The results are undefined unless one of the following cases is true:
 117      * <ul>
 118      * <li>The offset was obtained from {@link #objectFieldOffset} on
 119      * the {@link java.lang.reflect.Field} of some Java field and the object
 120      * referred to by {@code o} is of a class compatible with that
 121      * field's class.
 122      *
 123      * <li>The offset and object reference {@code o} (either null or
 124      * non-null) were both obtained via {@link #staticFieldOffset}
 125      * and {@link #staticFieldBase} (respectively) from the
 126      * reflective {@link Field} representation of some Java field.
 127      *
 128      * <li>The object referred to by {@code o} is an array, and the offset
 129      * is an integer of the form {@code B+N*S}, where {@code N} is
 130      * a valid index into the array, and {@code B} and {@code S} are
 131      * the values obtained by {@link #arrayBaseOffset} and {@link
 132      * #arrayIndexScale} (respectively) from the array's class.  The value
 133      * referred to is the {@code N}<em>th</em> element of the array.
 134      *
 135      * </ul>
 136      * <p>
 137      * If one of the above cases is true, the call references a specific Java
 138      * variable (field or array element).  However, the results are undefined
 139      * if that variable is not in fact of the type returned by this method.
 140      * <p>
 141      * This method refers to a variable by means of two parameters, and so
 142      * it provides (in effect) a <em>double-register</em> addressing mode
 143      * for Java variables.  When the object reference is null, this method
 144      * uses its offset as an absolute address.  This is similar in operation
 145      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 146      * <em>single-register</em> addressing mode for non-Java variables.
 147      * However, because Java variables may have a different layout in memory
 148      * from non-Java variables, programmers should not assume that these
 149      * two addressing modes are ever equivalent.  Also, programmers should
 150      * remember that offsets from the double-register addressing mode cannot
 151      * be portably confused with longs used in the single-register addressing
 152      * mode.
 153      *
 154      * @param o Java heap object in which the variable resides, if any, else
 155      *        null
 156      * @param offset indication of where the variable resides in a Java heap
 157      *        object, if any, else a memory address locating the variable
 158      *        statically
 159      * @return the value fetched from the indicated Java variable
 160      * @throws RuntimeException No defined exceptions are thrown, not even
 161      *         {@link NullPointerException}
 162      */
 163     @IntrinsicCandidate
 164     public native int getInt(Object o, long offset);
 165 
 166     /**
 167      * Stores a value into a given Java variable.
 168      * <p>
 169      * The first two parameters are interpreted exactly as with
 170      * {@link #getInt(Object, long)} to refer to a specific
 171      * Java variable (field or array element).  The given value
 172      * is stored into that variable.
 173      * <p>
 174      * The variable must be of the same type as the method
 175      * parameter {@code x}.
 176      *
 177      * @param o Java heap object in which the variable resides, if any, else
 178      *        null
 179      * @param offset indication of where the variable resides in a Java heap
 180      *        object, if any, else a memory address locating the variable
 181      *        statically
 182      * @param x the value to store into the indicated Java variable
 183      * @throws RuntimeException No defined exceptions are thrown, not even
 184      *         {@link NullPointerException}
 185      */
 186     @IntrinsicCandidate
 187     public native void putInt(Object o, long offset, int x);
 188 
 189     /**
 190      * Fetches a reference value from a given Java variable.
 191      * @see #getInt(Object, long)
 192      */
 193     @IntrinsicCandidate
 194     public native Object getReference(Object o, long offset);
 195 
 196     /**
 197      * Stores a reference value into a given Java variable.
 198      * <p>
 199      * Unless the reference {@code x} being stored is either null
 200      * or matches the field type, the results are undefined.
 201      * If the reference {@code o} is non-null, card marks or
 202      * other store barriers for that object (if the VM requires them)
 203      * are updated.
 204      * @see #putInt(Object, long, int)
 205      */
 206     @IntrinsicCandidate
 207     public native void putReference(Object o, long offset, Object x);
 208 
 209     /** @see #getInt(Object, long) */
 210     @IntrinsicCandidate
 211     public native boolean getBoolean(Object o, long offset);
 212 
 213     /** @see #putInt(Object, long, int) */
 214     @IntrinsicCandidate
 215     public native void    putBoolean(Object o, long offset, boolean x);
 216 
 217     /** @see #getInt(Object, long) */
 218     @IntrinsicCandidate
 219     public native byte    getByte(Object o, long offset);
 220 
 221     /** @see #putInt(Object, long, int) */
 222     @IntrinsicCandidate
 223     public native void    putByte(Object o, long offset, byte x);
 224 
 225     /** @see #getInt(Object, long) */
 226     @IntrinsicCandidate
 227     public native short   getShort(Object o, long offset);
 228 
 229     /** @see #putInt(Object, long, int) */
 230     @IntrinsicCandidate
 231     public native void    putShort(Object o, long offset, short x);
 232 
 233     /** @see #getInt(Object, long) */
 234     @IntrinsicCandidate
 235     public native char    getChar(Object o, long offset);
 236 
 237     /** @see #putInt(Object, long, int) */
 238     @IntrinsicCandidate
 239     public native void    putChar(Object o, long offset, char x);
 240 
 241     /** @see #getInt(Object, long) */
 242     @IntrinsicCandidate
 243     public native long    getLong(Object o, long offset);
 244 
 245     /** @see #putInt(Object, long, int) */
 246     @IntrinsicCandidate
 247     public native void    putLong(Object o, long offset, long x);
 248 
 249     /** @see #getInt(Object, long) */
 250     @IntrinsicCandidate
 251     public native float   getFloat(Object o, long offset);
 252 
 253     /** @see #putInt(Object, long, int) */
 254     @IntrinsicCandidate
 255     public native void    putFloat(Object o, long offset, float x);
 256 
 257     /** @see #getInt(Object, long) */
 258     @IntrinsicCandidate
 259     public native double  getDouble(Object o, long offset);
 260 
 261     /** @see #putInt(Object, long, int) */
 262     @IntrinsicCandidate
 263     public native void    putDouble(Object o, long offset, double x);
 264 
 265     /**
 266      * Fetches a native pointer from a given memory address.  If the address is
 267      * zero, or does not point into a block obtained from {@link
 268      * #allocateMemory}, the results are undefined.
 269      *
 270      * <p>If the native pointer is less than 64 bits wide, it is extended as
 271      * an unsigned number to a Java long.  The pointer may be indexed by any
 272      * given byte offset, simply by adding that offset (as a simple integer) to
 273      * the long representing the pointer.  The number of bytes actually read
 274      * from the target address may be determined by consulting {@link
 275      * #addressSize}.
 276      *
 277      * @see #allocateMemory
 278      * @see #getInt(Object, long)
 279      */
 280     @ForceInline
 281     public long getAddress(Object o, long offset) {
 282         if (ADDRESS_SIZE == 4) {
 283             return Integer.toUnsignedLong(getInt(o, offset));
 284         } else {
 285             return getLong(o, offset);
 286         }
 287     }
 288 
 289     /**
 290      * Stores a native pointer into a given memory address.  If the address is
 291      * zero, or does not point into a block obtained from {@link
 292      * #allocateMemory}, the results are undefined.
 293      *
 294      * <p>The number of bytes actually written at the target address may be
 295      * determined by consulting {@link #addressSize}.
 296      *
 297      * @see #allocateMemory
 298      * @see #putInt(Object, long, int)
 299      */
 300     @ForceInline
 301     public void putAddress(Object o, long offset, long x) {
 302         if (ADDRESS_SIZE == 4) {
 303             putInt(o, offset, (int)x);
 304         } else {
 305             putLong(o, offset, x);
 306         }
 307     }
 308 
 309     // These read VM internal data.
 310 
 311     /**
 312      * Fetches an uncompressed reference value from a given native variable
 313      * ignoring the VM's compressed references mode.
 314      *
 315      * @param address a memory address locating the variable
 316      * @return the value fetched from the indicated native variable
 317      */
 318     public native Object getUncompressedObject(long address);
 319 
 320     // These work on values in the C heap.
 321 
 322     /**
 323      * Fetches a value from a given memory address.  If the address is zero, or
 324      * does not point into a block obtained from {@link #allocateMemory}, the
 325      * results are undefined.
 326      *
 327      * @see #allocateMemory
 328      */
 329     @ForceInline
 330     public byte getByte(long address) {
 331         return getByte(null, address);
 332     }
 333 
 334     /**
 335      * Stores a value into a given memory address.  If the address is zero, or
 336      * does not point into a block obtained from {@link #allocateMemory}, the
 337      * results are undefined.
 338      *
 339      * @see #getByte(long)
 340      */
 341     @ForceInline
 342     public void putByte(long address, byte x) {
 343         putByte(null, address, x);
 344     }
 345 
 346     /** @see #getByte(long) */
 347     @ForceInline
 348     public short getShort(long address) {
 349         return getShort(null, address);
 350     }
 351 
 352     /** @see #putByte(long, byte) */
 353     @ForceInline
 354     public void putShort(long address, short x) {
 355         putShort(null, address, x);
 356     }
 357 
 358     /** @see #getByte(long) */
 359     @ForceInline
 360     public char getChar(long address) {
 361         return getChar(null, address);
 362     }
 363 
 364     /** @see #putByte(long, byte) */
 365     @ForceInline
 366     public void putChar(long address, char x) {
 367         putChar(null, address, x);
 368     }
 369 
 370     /** @see #getByte(long) */
 371     @ForceInline
 372     public int getInt(long address) {
 373         return getInt(null, address);
 374     }
 375 
 376     /** @see #putByte(long, byte) */
 377     @ForceInline
 378     public void putInt(long address, int x) {
 379         putInt(null, address, x);
 380     }
 381 
 382     /** @see #getByte(long) */
 383     @ForceInline
 384     public long getLong(long address) {
 385         return getLong(null, address);
 386     }
 387 
 388     /** @see #putByte(long, byte) */
 389     @ForceInline
 390     public void putLong(long address, long x) {
 391         putLong(null, address, x);
 392     }
 393 
 394     /** @see #getByte(long) */
 395     @ForceInline
 396     public float getFloat(long address) {
 397         return getFloat(null, address);
 398     }
 399 
 400     /** @see #putByte(long, byte) */
 401     @ForceInline
 402     public void putFloat(long address, float x) {
 403         putFloat(null, address, x);
 404     }
 405 
 406     /** @see #getByte(long) */
 407     @ForceInline
 408     public double getDouble(long address) {
 409         return getDouble(null, address);
 410     }
 411 
 412     /** @see #putByte(long, byte) */
 413     @ForceInline
 414     public void putDouble(long address, double x) {
 415         putDouble(null, address, x);
 416     }
 417 
 418     /** @see #getAddress(Object, long) */
 419     @ForceInline
 420     public long getAddress(long address) {
 421         return getAddress(null, address);
 422     }
 423 
 424     /** @see #putAddress(Object, long, long) */
 425     @ForceInline
 426     public void putAddress(long address, long x) {
 427         putAddress(null, address, x);
 428     }
 429 
 430 
 431 
 432     //--- helper methods for validating various types of objects/values
 433 
 434     /**
 435      * Create an exception reflecting that some of the input was invalid
 436      *
 437      * <em>Note:</em> It is the responsibility of the caller to make
 438      * sure arguments are checked before the methods are called. While
 439      * some rudimentary checks are performed on the input, the checks
 440      * are best effort and when performance is an overriding priority,
 441      * as when methods of this class are optimized by the runtime
 442      * compiler, some or all checks (if any) may be elided. Hence, the
 443      * caller must not rely on the checks and corresponding
 444      * exceptions!
 445      *
 446      * @return an exception object
 447      */
 448     private RuntimeException invalidInput() {
 449         return new IllegalArgumentException();
 450     }
 451 
 452     /**
 453      * Check if a value is 32-bit clean (32 MSB are all zero)
 454      *
 455      * @param value the 64-bit value to check
 456      *
 457      * @return true if the value is 32-bit clean
 458      */
 459     private boolean is32BitClean(long value) {
 460         return value >>> 32 == 0;
 461     }
 462 
 463     /**
 464      * Check the validity of a size (the equivalent of a size_t)
 465      *
 466      * @throws RuntimeException if the size is invalid
 467      *         (<em>Note:</em> after optimization, invalid inputs may
 468      *         go undetected, which will lead to unpredictable
 469      *         behavior)
 470      */
 471     private void checkSize(long size) {
 472         if (ADDRESS_SIZE == 4) {
 473             // Note: this will also check for negative sizes
 474             if (!is32BitClean(size)) {
 475                 throw invalidInput();
 476             }
 477         } else if (size < 0) {
 478             throw invalidInput();
 479         }
 480     }
 481 
 482     /**
 483      * Check the validity of a native address (the equivalent of void*)
 484      *
 485      * @throws RuntimeException if the address is invalid
 486      *         (<em>Note:</em> after optimization, invalid inputs may
 487      *         go undetected, which will lead to unpredictable
 488      *         behavior)
 489      */
 490     private void checkNativeAddress(long address) {
 491         if (ADDRESS_SIZE == 4) {
 492             // Accept both zero and sign extended pointers. A valid
 493             // pointer will, after the +1 below, either have produced
 494             // the value 0x0 or 0x1. Masking off the low bit allows
 495             // for testing against 0.
 496             if ((((address >> 32) + 1) & ~1) != 0) {
 497                 throw invalidInput();
 498             }
 499         }
 500     }
 501 
 502     /**
 503      * Check the validity of an offset, relative to a base object
 504      *
 505      * @param o the base object
 506      * @param offset the offset to check
 507      *
 508      * @throws RuntimeException if the size is invalid
 509      *         (<em>Note:</em> after optimization, invalid inputs may
 510      *         go undetected, which will lead to unpredictable
 511      *         behavior)
 512      */
 513     private void checkOffset(Object o, long offset) {
 514         if (ADDRESS_SIZE == 4) {
 515             // Note: this will also check for negative offsets
 516             if (!is32BitClean(offset)) {
 517                 throw invalidInput();
 518             }
 519         } else if (offset < 0) {
 520             throw invalidInput();
 521         }
 522     }
 523 
 524     /**
 525      * Check the validity of a double-register pointer
 526      *
 527      * Note: This code deliberately does *not* check for NPE for (at
 528      * least) three reasons:
 529      *
 530      * 1) NPE is not just NULL/0 - there is a range of values all
 531      * resulting in an NPE, which is not trivial to check for
 532      *
 533      * 2) It is the responsibility of the callers of Unsafe methods
 534      * to verify the input, so throwing an exception here is not really
 535      * useful - passing in a NULL pointer is a critical error and the
 536      * must not expect an exception to be thrown anyway.
 537      *
 538      * 3) the actual operations will detect NULL pointers anyway by
 539      * means of traps and signals (like SIGSEGV).
 540      *
 541      * @param o Java heap object, or null
 542      * @param offset indication of where the variable resides in a Java heap
 543      *        object, if any, else a memory address locating the variable
 544      *        statically
 545      *
 546      * @throws RuntimeException if the pointer is invalid
 547      *         (<em>Note:</em> after optimization, invalid inputs may
 548      *         go undetected, which will lead to unpredictable
 549      *         behavior)
 550      */
 551     private void checkPointer(Object o, long offset) {
 552         if (o == null) {
 553             checkNativeAddress(offset);
 554         } else {
 555             checkOffset(o, offset);
 556         }
 557     }
 558 
 559     /**
 560      * Check if a type is a primitive array type
 561      *
 562      * @param c the type to check
 563      *
 564      * @return true if the type is a primitive array type
 565      */
 566     private void checkPrimitiveArray(Class<?> c) {
 567         Class<?> componentType = c.getComponentType();
 568         if (componentType == null || !componentType.isPrimitive()) {
 569             throw invalidInput();
 570         }
 571     }
 572 
 573     /**
 574      * Check that a pointer is a valid primitive array type pointer
 575      *
 576      * Note: pointers off-heap are considered to be primitive arrays
 577      *
 578      * @throws RuntimeException if the pointer is invalid
 579      *         (<em>Note:</em> after optimization, invalid inputs may
 580      *         go undetected, which will lead to unpredictable
 581      *         behavior)
 582      */
 583     private void checkPrimitivePointer(Object o, long offset) {
 584         checkPointer(o, offset);
 585 
 586         if (o != null) {
 587             // If on heap, it must be a primitive array
 588             checkPrimitiveArray(o.getClass());
 589         }
 590     }
 591 
 592 
 593     //--- wrappers for malloc, realloc, free:
 594 
 595     /**
 596      * Round up allocation size to a multiple of HeapWordSize.
 597      */
 598     private long alignToHeapWordSize(long bytes) {
 599         if (bytes >= 0) {
 600             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 601         } else {
 602             throw invalidInput();
 603         }
 604     }
 605 
 606     /**
 607      * Allocates a new block of native memory, of the given size in bytes.  The
 608      * contents of the memory are uninitialized; they will generally be
 609      * garbage.  The resulting native pointer will be zero if and only if the
 610      * requested size is zero.  The resulting native pointer will be aligned for
 611      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 612      * or resize it with {@link #reallocateMemory}.
 613      *
 614      * <em>Note:</em> It is the responsibility of the caller to make
 615      * sure arguments are checked before the methods are called. While
 616      * some rudimentary checks are performed on the input, the checks
 617      * are best effort and when performance is an overriding priority,
 618      * as when methods of this class are optimized by the runtime
 619      * compiler, some or all checks (if any) may be elided. Hence, the
 620      * caller must not rely on the checks and corresponding
 621      * exceptions!
 622      *
 623      * @throws RuntimeException if the size is negative or too large
 624      *         for the native size_t type
 625      *
 626      * @throws OutOfMemoryError if the allocation is refused by the system
 627      *
 628      * @see #getByte(long)
 629      * @see #putByte(long, byte)
 630      */
 631     public long allocateMemory(long bytes) {
 632         bytes = alignToHeapWordSize(bytes);
 633 
 634         allocateMemoryChecks(bytes);
 635 
 636         if (bytes == 0) {
 637             return 0;
 638         }
 639 
 640         long p = allocateMemory0(bytes);
 641         if (p == 0) {
 642             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 643         }
 644 
 645         return p;
 646     }
 647 
 648     /**
 649      * Validate the arguments to allocateMemory
 650      *
 651      * @throws RuntimeException if the arguments are invalid
 652      *         (<em>Note:</em> after optimization, invalid inputs may
 653      *         go undetected, which will lead to unpredictable
 654      *         behavior)
 655      */
 656     private void allocateMemoryChecks(long bytes) {
 657         checkSize(bytes);
 658     }
 659 
 660     /**
 661      * Resizes a new block of native memory, to the given size in bytes.  The
 662      * contents of the new block past the size of the old block are
 663      * uninitialized; they will generally be garbage.  The resulting native
 664      * pointer will be zero if and only if the requested size is zero.  The
 665      * resulting native pointer will be aligned for all value types.  Dispose
 666      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 667      * #reallocateMemory}.  The address passed to this method may be null, in
 668      * which case an allocation will be performed.
 669      *
 670      * <em>Note:</em> It is the responsibility of the caller to make
 671      * sure arguments are checked before the methods are called. While
 672      * some rudimentary checks are performed on the input, the checks
 673      * are best effort and when performance is an overriding priority,
 674      * as when methods of this class are optimized by the runtime
 675      * compiler, some or all checks (if any) may be elided. Hence, the
 676      * caller must not rely on the checks and corresponding
 677      * exceptions!
 678      *
 679      * @throws RuntimeException if the size is negative or too large
 680      *         for the native size_t type
 681      *
 682      * @throws OutOfMemoryError if the allocation is refused by the system
 683      *
 684      * @see #allocateMemory
 685      */
 686     public long reallocateMemory(long address, long bytes) {
 687         bytes = alignToHeapWordSize(bytes);
 688 
 689         reallocateMemoryChecks(address, bytes);
 690 
 691         if (bytes == 0) {
 692             freeMemory(address);
 693             return 0;
 694         }
 695 
 696         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 697         if (p == 0) {
 698             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 699         }
 700 
 701         return p;
 702     }
 703 
 704     /**
 705      * Validate the arguments to reallocateMemory
 706      *
 707      * @throws RuntimeException if the arguments are invalid
 708      *         (<em>Note:</em> after optimization, invalid inputs may
 709      *         go undetected, which will lead to unpredictable
 710      *         behavior)
 711      */
 712     private void reallocateMemoryChecks(long address, long bytes) {
 713         checkPointer(null, address);
 714         checkSize(bytes);
 715     }
 716 
 717     /**
 718      * Sets all bytes in a given block of memory to a fixed value
 719      * (usually zero).
 720      *
 721      * <p>This method determines a block's base address by means of two parameters,
 722      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 723      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 724      * the offset supplies an absolute base address.
 725      *
 726      * <p>The stores are in coherent (atomic) units of a size determined
 727      * by the address and length parameters.  If the effective address and
 728      * length are all even modulo 8, the stores take place in 'long' units.
 729      * If the effective address and length are (resp.) even modulo 4 or 2,
 730      * the stores take place in units of 'int' or 'short'.
 731      *
 732      * <em>Note:</em> It is the responsibility of the caller to make
 733      * sure arguments are checked before the methods are called. While
 734      * some rudimentary checks are performed on the input, the checks
 735      * are best effort and when performance is an overriding priority,
 736      * as when methods of this class are optimized by the runtime
 737      * compiler, some or all checks (if any) may be elided. Hence, the
 738      * caller must not rely on the checks and corresponding
 739      * exceptions!
 740      *
 741      * @throws RuntimeException if any of the arguments is invalid
 742      *
 743      * @since 1.7
 744      */
 745     public void setMemory(Object o, long offset, long bytes, byte value) {
 746         setMemoryChecks(o, offset, bytes, value);
 747 
 748         if (bytes == 0) {
 749             return;
 750         }
 751 
 752         setMemory0(o, offset, bytes, value);
 753     }
 754 
 755     /**
 756      * Sets all bytes in a given block of memory to a fixed value
 757      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 758      * as discussed in {@link #getInt(Object,long)}.
 759      *
 760      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 761      */
 762     public void setMemory(long address, long bytes, byte value) {
 763         setMemory(null, address, bytes, value);
 764     }
 765 
 766     /**
 767      * Validate the arguments to setMemory
 768      *
 769      * @throws RuntimeException if the arguments are invalid
 770      *         (<em>Note:</em> after optimization, invalid inputs may
 771      *         go undetected, which will lead to unpredictable
 772      *         behavior)
 773      */
 774     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 775         checkPrimitivePointer(o, offset);
 776         checkSize(bytes);
 777     }
 778 
 779     /**
 780      * Sets all bytes in a given block of memory to a copy of another
 781      * block.
 782      *
 783      * <p>This method determines each block's base address by means of two parameters,
 784      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 785      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 786      * the offset supplies an absolute base address.
 787      *
 788      * <p>The transfers are in coherent (atomic) units of a size determined
 789      * by the address and length parameters.  If the effective addresses and
 790      * length are all even modulo 8, the transfer takes place in 'long' units.
 791      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 792      * the transfer takes place in units of 'int' or 'short'.
 793      *
 794      * <em>Note:</em> It is the responsibility of the caller to make
 795      * sure arguments are checked before the methods are called. While
 796      * some rudimentary checks are performed on the input, the checks
 797      * are best effort and when performance is an overriding priority,
 798      * as when methods of this class are optimized by the runtime
 799      * compiler, some or all checks (if any) may be elided. Hence, the
 800      * caller must not rely on the checks and corresponding
 801      * exceptions!
 802      *
 803      * @throws RuntimeException if any of the arguments is invalid
 804      *
 805      * @since 1.7
 806      */
 807     public void copyMemory(Object srcBase, long srcOffset,
 808                            Object destBase, long destOffset,
 809                            long bytes) {
 810         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 811 
 812         if (bytes == 0) {
 813             return;
 814         }
 815 
 816         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 817     }
 818 
 819     /**
 820      * Sets all bytes in a given block of memory to a copy of another
 821      * block.  This provides a <em>single-register</em> addressing mode,
 822      * as discussed in {@link #getInt(Object,long)}.
 823      *
 824      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 825      */
 826     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 827         copyMemory(null, srcAddress, null, destAddress, bytes);
 828     }
 829 
 830     /**
 831      * Validate the arguments to copyMemory
 832      *
 833      * @throws RuntimeException if any of the arguments is invalid
 834      *         (<em>Note:</em> after optimization, invalid inputs may
 835      *         go undetected, which will lead to unpredictable
 836      *         behavior)
 837      */
 838     private void copyMemoryChecks(Object srcBase, long srcOffset,
 839                                   Object destBase, long destOffset,
 840                                   long bytes) {
 841         checkSize(bytes);
 842         checkPrimitivePointer(srcBase, srcOffset);
 843         checkPrimitivePointer(destBase, destOffset);
 844     }
 845 
 846     /**
 847      * Copies all elements from one block of memory to another block,
 848      * *unconditionally* byte swapping the elements on the fly.
 849      *
 850      * <p>This method determines each block's base address by means of two parameters,
 851      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 852      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 853      * the offset supplies an absolute base address.
 854      *
 855      * <em>Note:</em> It is the responsibility of the caller to make
 856      * sure arguments are checked before the methods are called. While
 857      * some rudimentary checks are performed on the input, the checks
 858      * are best effort and when performance is an overriding priority,
 859      * as when methods of this class are optimized by the runtime
 860      * compiler, some or all checks (if any) may be elided. Hence, the
 861      * caller must not rely on the checks and corresponding
 862      * exceptions!
 863      *
 864      * @throws RuntimeException if any of the arguments is invalid
 865      *
 866      * @since 9
 867      */
 868     public void copySwapMemory(Object srcBase, long srcOffset,
 869                                Object destBase, long destOffset,
 870                                long bytes, long elemSize) {
 871         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 872 
 873         if (bytes == 0) {
 874             return;
 875         }
 876 
 877         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 878     }
 879 
 880     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 881                                       Object destBase, long destOffset,
 882                                       long bytes, long elemSize) {
 883         checkSize(bytes);
 884 
 885         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 886             throw invalidInput();
 887         }
 888         if (bytes % elemSize != 0) {
 889             throw invalidInput();
 890         }
 891 
 892         checkPrimitivePointer(srcBase, srcOffset);
 893         checkPrimitivePointer(destBase, destOffset);
 894     }
 895 
 896     /**
 897      * Copies all elements from one block of memory to another block, byte swapping the
 898      * elements on the fly.
 899      *
 900      * This provides a <em>single-register</em> addressing mode, as
 901      * discussed in {@link #getInt(Object,long)}.
 902      *
 903      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 904      */
 905     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 906         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 907     }
 908 
 909     /**
 910      * Disposes of a block of native memory, as obtained from {@link
 911      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 912      * this method may be null, in which case no action is taken.
 913      *
 914      * <em>Note:</em> It is the responsibility of the caller to make
 915      * sure arguments are checked before the methods are called. While
 916      * some rudimentary checks are performed on the input, the checks
 917      * are best effort and when performance is an overriding priority,
 918      * as when methods of this class are optimized by the runtime
 919      * compiler, some or all checks (if any) may be elided. Hence, the
 920      * caller must not rely on the checks and corresponding
 921      * exceptions!
 922      *
 923      * @throws RuntimeException if any of the arguments is invalid
 924      *
 925      * @see #allocateMemory
 926      */
 927     public void freeMemory(long address) {
 928         freeMemoryChecks(address);
 929 
 930         if (address == 0) {
 931             return;
 932         }
 933 
 934         freeMemory0(address);
 935     }
 936 
 937     /**
 938      * Validate the arguments to freeMemory
 939      *
 940      * @throws RuntimeException if the arguments are invalid
 941      *         (<em>Note:</em> after optimization, invalid inputs may
 942      *         go undetected, which will lead to unpredictable
 943      *         behavior)
 944      */
 945     private void freeMemoryChecks(long address) {
 946         checkPointer(null, address);
 947     }
 948 
 949     /**
 950      * Ensure writeback of a specified virtual memory address range
 951      * from cache to physical memory. All bytes in the address range
 952      * are guaranteed to have been written back to physical memory on
 953      * return from this call i.e. subsequently executed store
 954      * instructions are guaranteed not to be visible before the
 955      * writeback is completed.
 956      *
 957      * @param address
 958      *        the lowest byte address that must be guaranteed written
 959      *        back to memory. bytes at lower addresses may also be
 960      *        written back.
 961      *
 962      * @param length
 963      *        the length in bytes of the region starting at address
 964      *        that must be guaranteed written back to memory.
 965      *
 966      * @throws RuntimeException if memory writeback is not supported
 967      *         on the current hardware of if the arguments are invalid.
 968      *         (<em>Note:</em> after optimization, invalid inputs may
 969      *         go undetected, which will lead to unpredictable
 970      *         behavior)
 971      *
 972      * @since 14
 973      */
 974 
 975     public void writebackMemory(long address, long length) {
 976         checkWritebackEnabled();
 977         checkWritebackMemory(address, length);
 978 
 979         // perform any required pre-writeback barrier
 980         writebackPreSync0();
 981 
 982         // write back one cache line at a time
 983         long line = dataCacheLineAlignDown(address);
 984         long end = address + length;
 985         while (line < end) {
 986             writeback0(line);
 987             line += dataCacheLineFlushSize();
 988         }
 989 
 990         // perform any required post-writeback barrier
 991         writebackPostSync0();
 992     }
 993 
 994     /**
 995      * Validate the arguments to writebackMemory
 996      *
 997      * @throws RuntimeException if the arguments are invalid
 998      *         (<em>Note:</em> after optimization, invalid inputs may
 999      *         go undetected, which will lead to unpredictable
1000      *         behavior)
1001      */
1002     private void checkWritebackMemory(long address, long length) {
1003         checkNativeAddress(address);
1004         checkSize(length);
1005     }
1006 
1007     /**
1008      * Validate that the current hardware supports memory writeback.
1009      * (<em>Note:</em> this is a belt and braces check.  Clients are
1010      * expected to test whether writeback is enabled by calling
1011      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1012      * calling method {@link writeback #writeback} if it is disabled).
1013      *
1014      *
1015      * @throws RuntimeException if memory writeback is not supported
1016      */
1017     private void checkWritebackEnabled() {
1018         if (!isWritebackEnabled()) {
1019             throw new RuntimeException("writebackMemory not enabled!");
1020         }
1021     }
1022 
1023     /**
1024      * force writeback of an individual cache line.
1025      *
1026      * @param address
1027      *        the start address of the cache line to be written back
1028      */
1029     @IntrinsicCandidate
1030     private native void writeback0(long address);
1031 
1032      /**
1033       * Serialize writeback operations relative to preceding memory writes.
1034       */
1035     @IntrinsicCandidate
1036     private native void writebackPreSync0();
1037 
1038      /**
1039       * Serialize writeback operations relative to following memory writes.
1040       */
1041     @IntrinsicCandidate
1042     private native void writebackPostSync0();
1043 
1044     //--- random queries
1045 
1046     /**
1047      * This constant differs from all results that will ever be returned from
1048      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1049      * or {@link #arrayBaseOffset}.
1050      * <p>
1051      * The static type is @code long} to emphasize that long arithmetic should
1052      * always be used for offset calculations to avoid overflows.
1053      */
1054     public static final long INVALID_FIELD_OFFSET = -1;
1055 
1056     /**
1057      * Reports the location of a given field in the storage allocation of its
1058      * class.  Do not expect to perform any sort of arithmetic on this offset;
1059      * it is just a cookie which is passed to the unsafe heap memory accessors.
1060      *
1061      * <p>Any given field will always have the same offset and base, and no
1062      * two distinct fields of the same class will ever have the same offset
1063      * and base.
1064      *
1065      * <p>As of 1.4.1, offsets for fields are represented as long values,
1066      * although the Sun JVM does not use the most significant 32 bits.
1067      * However, JVM implementations which store static fields at absolute
1068      * addresses can use long offsets and null base pointers to express
1069      * the field locations in a form usable by {@link #getInt(Object,long)}.
1070      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1071      * must preserve all bits of static field offsets.
1072      *
1073      * @throws NullPointerException if the field is {@code null}
1074      * @throws IllegalArgumentException if the field is static
1075      * @see #getInt(Object, long)
1076      */
1077     public long objectFieldOffset(Field f) {
1078         if (f == null) {
1079             throw new NullPointerException();
1080         }
1081 
1082         return objectFieldOffset0(f);
1083     }
1084 
1085     /**
1086      * (For compile-time known instance fields in JDK code only) Reports the
1087      * location of the field with a given name in the storage allocation of its
1088      * class.
1089      * <p>
1090      * This API is used to avoid creating reflective Objects in Java code at
1091      * startup.  This should not be used to find fields in non-trusted code.
1092      * Use the {@link #objectFieldOffset(Field) Field}-accepting version for
1093      * arbitrary fields instead.
1094      *
1095      * @throws NullPointerException if any parameter is {@code null}.
1096      * @throws InternalError if the presumably known field couldn't be found
1097      *
1098      * @see #objectFieldOffset(Field)
1099      */
1100     public long objectFieldOffset(Class<?> c, String name) {
1101         if (c == null || name == null) {
1102             throw new NullPointerException();
1103         }
1104 
1105         long result = knownObjectFieldOffset0(c, name);
1106         if (result < 0) {
1107             String type = switch ((int) result) {
1108                 case -2 -> "a static field";
1109                 case -1 -> "not found";
1110                 default -> "unknown";
1111             };
1112             throw new InternalError("Field %s.%s %s".formatted(c.getTypeName(), name, type));
1113         }
1114         return result;
1115     }
1116 
1117     /**
1118      * Reports the location of a given static field, in conjunction with {@link
1119      * #staticFieldBase}.
1120      * <p>Do not expect to perform any sort of arithmetic on this offset;
1121      * it is just a cookie which is passed to the unsafe heap memory accessors.
1122      *
1123      * <p>Any given field will always have the same offset, and no two distinct
1124      * fields of the same class will ever have the same offset.
1125      *
1126      * <p>As of 1.4.1, offsets for fields are represented as long values,
1127      * although the Sun JVM does not use the most significant 32 bits.
1128      * It is hard to imagine a JVM technology which needs more than
1129      * a few bits to encode an offset within a non-array object,
1130      * However, for consistency with other methods in this class,
1131      * this method reports its result as a long value.
1132      *
1133      * @throws NullPointerException if the field is {@code null}
1134      * @throws IllegalArgumentException if the field is not static
1135      * @see #getInt(Object, long)
1136      */
1137     public long staticFieldOffset(Field f) {
1138         if (f == null) {
1139             throw new NullPointerException();
1140         }
1141 
1142         return staticFieldOffset0(f);
1143     }
1144 
1145     /**
1146      * Reports the location of a given static field, in conjunction with {@link
1147      * #staticFieldOffset}.
1148      * <p>Fetch the base "Object", if any, with which static fields of the
1149      * given class can be accessed via methods like {@link #getInt(Object,
1150      * long)}.  This value may be null.  This value may refer to an object
1151      * which is a "cookie", not guaranteed to be a real Object, and it should
1152      * not be used in any way except as argument to the get and put routines in
1153      * this class.
1154      *
1155      * @throws NullPointerException if the field is {@code null}
1156      * @throws IllegalArgumentException if the field is not static
1157      */
1158     public Object staticFieldBase(Field f) {
1159         if (f == null) {
1160             throw new NullPointerException();
1161         }
1162 
1163         return staticFieldBase0(f);
1164     }
1165 
1166     /**
1167      * Detects if the given class may need to be initialized. This is often
1168      * needed in conjunction with obtaining the static field base of a
1169      * class.
1170      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1171      */
1172     public boolean shouldBeInitialized(Class<?> c) {
1173         if (c == null) {
1174             throw new NullPointerException();
1175         }
1176 
1177         return shouldBeInitialized0(c);
1178     }
1179 
1180     /**
1181      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1182      * This is often needed in conjunction with obtaining the static field base
1183      * of a class.
1184      *
1185      * The call returns when either class {@code c} is fully initialized or
1186      * class {@code c} is being initialized and the call is performed from
1187      * the initializing thread. In the latter case a subsequent call to
1188      * {@link #shouldBeInitialized} will return {@code true}.
1189      */
1190     public void ensureClassInitialized(Class<?> c) {
1191         if (c == null) {
1192             throw new NullPointerException();
1193         }
1194 
1195         ensureClassInitialized0(c);
1196     }
1197 
1198     /**
1199      * Reports the offset of the first element in the storage allocation of a
1200      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1201      * for the same class, you may use that scale factor, together with this
1202      * base offset, to form new offsets to access elements of arrays of the
1203      * given class.
1204      * <p>
1205      * The return value is in the range of a {@code int}.  The return type is
1206      * {@code long} to emphasize that long arithmetic should always be used
1207      * for offset calculations to avoid overflows.
1208      *
1209      * @see #getInt(Object, long)
1210      * @see #putInt(Object, long, int)
1211      */
1212     public long arrayBaseOffset(Class<?> arrayClass) {
1213         if (arrayClass == null) {
1214             throw new NullPointerException();
1215         }
1216 
1217         return arrayBaseOffset0(arrayClass);
1218     }
1219 
1220 
1221     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1222     public static final long ARRAY_BOOLEAN_BASE_OFFSET
1223             = theUnsafe.arrayBaseOffset(boolean[].class);
1224 
1225     /** The value of {@code arrayBaseOffset(byte[].class)} */
1226     public static final long ARRAY_BYTE_BASE_OFFSET
1227             = theUnsafe.arrayBaseOffset(byte[].class);
1228 
1229     /** The value of {@code arrayBaseOffset(short[].class)} */
1230     public static final long ARRAY_SHORT_BASE_OFFSET
1231             = theUnsafe.arrayBaseOffset(short[].class);
1232 
1233     /** The value of {@code arrayBaseOffset(char[].class)} */
1234     public static final long ARRAY_CHAR_BASE_OFFSET
1235             = theUnsafe.arrayBaseOffset(char[].class);
1236 
1237     /** The value of {@code arrayBaseOffset(int[].class)} */
1238     public static final long ARRAY_INT_BASE_OFFSET
1239             = theUnsafe.arrayBaseOffset(int[].class);
1240 
1241     /** The value of {@code arrayBaseOffset(long[].class)} */
1242     public static final long ARRAY_LONG_BASE_OFFSET
1243             = theUnsafe.arrayBaseOffset(long[].class);
1244 
1245     /** The value of {@code arrayBaseOffset(float[].class)} */
1246     public static final long ARRAY_FLOAT_BASE_OFFSET
1247             = theUnsafe.arrayBaseOffset(float[].class);
1248 
1249     /** The value of {@code arrayBaseOffset(double[].class)} */
1250     public static final long ARRAY_DOUBLE_BASE_OFFSET
1251             = theUnsafe.arrayBaseOffset(double[].class);
1252 
1253     /** The value of {@code arrayBaseOffset(Object[].class)} */
1254     public static final long ARRAY_OBJECT_BASE_OFFSET
1255             = theUnsafe.arrayBaseOffset(Object[].class);
1256 
1257     /**
1258      * Reports the scale factor for addressing elements in the storage
1259      * allocation of a given array class.  However, arrays of "narrow" types
1260      * will generally not work properly with accessors like {@link
1261      * #getByte(Object, long)}, so the scale factor for such classes is reported
1262      * as zero.
1263      * <p>
1264      * The computation of the actual memory offset should always use {@code
1265      * long} arithmetic to avoid overflows.
1266      *
1267      * @see #arrayBaseOffset
1268      * @see #getInt(Object, long)
1269      * @see #putInt(Object, long, int)
1270      */
1271     public int arrayIndexScale(Class<?> arrayClass) {
1272         if (arrayClass == null) {
1273             throw new NullPointerException();
1274         }
1275 
1276         return arrayIndexScale0(arrayClass);
1277     }
1278 
1279 
1280     /** The value of {@code arrayIndexScale(boolean[].class)} */
1281     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1282             = theUnsafe.arrayIndexScale(boolean[].class);
1283 
1284     /** The value of {@code arrayIndexScale(byte[].class)} */
1285     public static final int ARRAY_BYTE_INDEX_SCALE
1286             = theUnsafe.arrayIndexScale(byte[].class);
1287 
1288     /** The value of {@code arrayIndexScale(short[].class)} */
1289     public static final int ARRAY_SHORT_INDEX_SCALE
1290             = theUnsafe.arrayIndexScale(short[].class);
1291 
1292     /** The value of {@code arrayIndexScale(char[].class)} */
1293     public static final int ARRAY_CHAR_INDEX_SCALE
1294             = theUnsafe.arrayIndexScale(char[].class);
1295 
1296     /** The value of {@code arrayIndexScale(int[].class)} */
1297     public static final int ARRAY_INT_INDEX_SCALE
1298             = theUnsafe.arrayIndexScale(int[].class);
1299 
1300     /** The value of {@code arrayIndexScale(long[].class)} */
1301     public static final int ARRAY_LONG_INDEX_SCALE
1302             = theUnsafe.arrayIndexScale(long[].class);
1303 
1304     /** The value of {@code arrayIndexScale(float[].class)} */
1305     public static final int ARRAY_FLOAT_INDEX_SCALE
1306             = theUnsafe.arrayIndexScale(float[].class);
1307 
1308     /** The value of {@code arrayIndexScale(double[].class)} */
1309     public static final int ARRAY_DOUBLE_INDEX_SCALE
1310             = theUnsafe.arrayIndexScale(double[].class);
1311 
1312     /** The value of {@code arrayIndexScale(Object[].class)} */
1313     public static final int ARRAY_OBJECT_INDEX_SCALE
1314             = theUnsafe.arrayIndexScale(Object[].class);
1315 
1316     /**
1317      * Reports the size in bytes of a native pointer, as stored via {@link
1318      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1319      * other primitive types (as stored in native memory blocks) is determined
1320      * fully by their information content.
1321      */
1322     public int addressSize() {
1323         return ADDRESS_SIZE;
1324     }
1325 
1326     /** The value of {@code addressSize()} */
1327     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1328 
1329     /**
1330      * Reports the size in bytes of a native memory page (whatever that is).
1331      * This value will always be a power of two.
1332      */
1333     public int pageSize() { return PAGE_SIZE; }
1334 
1335     /**
1336      * Reports the size in bytes of a data cache line written back by
1337      * the hardware cache line flush operation available to the JVM or
1338      * 0 if data cache line flushing is not enabled.
1339      */
1340     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1341 
1342     /**
1343      * Rounds down address to a data cache line boundary as
1344      * determined by {@link #dataCacheLineFlushSize}
1345      * @return the rounded down address
1346      */
1347     public long dataCacheLineAlignDown(long address) {
1348         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1349     }
1350 
1351     /**
1352      * Returns true if data cache line writeback
1353      */
1354     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1355 
1356     //--- random trusted operations from JNI:
1357 
1358     /**
1359      * Tells the VM to define a class, without security checks.  By default, the
1360      * class loader and protection domain come from the caller's class.
1361      */
1362     public Class<?> defineClass(String name, byte[] b, int off, int len,
1363                                 ClassLoader loader,
1364                                 ProtectionDomain protectionDomain) {
1365         if (b == null) {
1366             throw new NullPointerException();
1367         }
1368         if (len < 0) {
1369             throw new ArrayIndexOutOfBoundsException();
1370         }
1371 
1372         return defineClass0(name, b, off, len, loader, protectionDomain);
1373     }
1374 
1375     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1376                                         ClassLoader loader,
1377                                         ProtectionDomain protectionDomain);
1378 
1379     /**
1380      * Allocates an instance but does not run any constructor.
1381      * Initializes the class if it has not yet been.
1382      */
1383     @IntrinsicCandidate
1384     public native Object allocateInstance(Class<?> cls)
1385         throws InstantiationException;
1386 
1387     /**
1388      * Allocates an array of a given type, but does not do zeroing.
1389      * <p>
1390      * This method should only be used in the very rare cases where a high-performance code
1391      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1392      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1393      * <p>
1394      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1395      * before allowing untrusted code, or code in other threads, to observe the reference
1396      * to the newly allocated array. In addition, the publication of the array reference must be
1397      * safe according to the Java Memory Model requirements.
1398      * <p>
1399      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1400      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1401      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1402      * or issuing a {@link #storeFence} before publishing the reference.
1403      * <p>
1404      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1405      * elements that could break heap integrity.
1406      *
1407      * @param componentType array component type to allocate
1408      * @param length array size to allocate
1409      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1410      *                                  or the length is negative
1411      */
1412     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1413        if (componentType == null) {
1414            throw new IllegalArgumentException("Component type is null");
1415        }
1416        if (!componentType.isPrimitive()) {
1417            throw new IllegalArgumentException("Component type is not primitive");
1418        }
1419        if (length < 0) {
1420            throw new IllegalArgumentException("Negative length");
1421        }
1422        return allocateUninitializedArray0(componentType, length);
1423     }
1424 
1425     @IntrinsicCandidate
1426     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1427        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1428        // return the zeroed arrays.
1429        if (componentType == byte.class)    return new byte[length];
1430        if (componentType == boolean.class) return new boolean[length];
1431        if (componentType == short.class)   return new short[length];
1432        if (componentType == char.class)    return new char[length];
1433        if (componentType == int.class)     return new int[length];
1434        if (componentType == float.class)   return new float[length];
1435        if (componentType == long.class)    return new long[length];
1436        if (componentType == double.class)  return new double[length];
1437        return null;
1438     }
1439 
1440     /** Throws the exception without telling the verifier. */
1441     public native void throwException(Throwable ee);
1442 
1443     /**
1444      * Atomically updates Java variable to {@code x} if it is currently
1445      * holding {@code expected}.
1446      *
1447      * <p>This operation has memory semantics of a {@code volatile} read
1448      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1449      *
1450      * @return {@code true} if successful
1451      */
1452     @IntrinsicCandidate
1453     public final native boolean compareAndSetReference(Object o, long offset,
1454                                                        Object expected,
1455                                                        Object x);
1456 
1457     @IntrinsicCandidate
1458     public final native Object compareAndExchangeReference(Object o, long offset,
1459                                                            Object expected,
1460                                                            Object x);
1461 
1462     @IntrinsicCandidate
1463     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1464                                                            Object expected,
1465                                                            Object x) {
1466         return compareAndExchangeReference(o, offset, expected, x);
1467     }
1468 
1469     @IntrinsicCandidate
1470     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1471                                                            Object expected,
1472                                                            Object x) {
1473         return compareAndExchangeReference(o, offset, expected, x);
1474     }
1475 
1476     @IntrinsicCandidate
1477     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1478                                                          Object expected,
1479                                                          Object x) {
1480         return compareAndSetReference(o, offset, expected, x);
1481     }
1482 
1483     @IntrinsicCandidate
1484     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1485                                                            Object expected,
1486                                                            Object x) {
1487         return compareAndSetReference(o, offset, expected, x);
1488     }
1489 
1490     @IntrinsicCandidate
1491     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1492                                                            Object expected,
1493                                                            Object x) {
1494         return compareAndSetReference(o, offset, expected, x);
1495     }
1496 
1497     @IntrinsicCandidate
1498     public final boolean weakCompareAndSetReference(Object o, long offset,
1499                                                     Object expected,
1500                                                     Object x) {
1501         return compareAndSetReference(o, offset, expected, x);
1502     }
1503 
1504     /**
1505      * Atomically updates Java variable to {@code x} if it is currently
1506      * holding {@code expected}.
1507      *
1508      * <p>This operation has memory semantics of a {@code volatile} read
1509      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1510      *
1511      * @return {@code true} if successful
1512      */
1513     @IntrinsicCandidate
1514     public final native boolean compareAndSetInt(Object o, long offset,
1515                                                  int expected,
1516                                                  int x);
1517 
1518     @IntrinsicCandidate
1519     public final native int compareAndExchangeInt(Object o, long offset,
1520                                                   int expected,
1521                                                   int x);
1522 
1523     @IntrinsicCandidate
1524     public final int compareAndExchangeIntAcquire(Object o, long offset,
1525                                                          int expected,
1526                                                          int x) {
1527         return compareAndExchangeInt(o, offset, expected, x);
1528     }
1529 
1530     @IntrinsicCandidate
1531     public final int compareAndExchangeIntRelease(Object o, long offset,
1532                                                          int expected,
1533                                                          int x) {
1534         return compareAndExchangeInt(o, offset, expected, x);
1535     }
1536 
1537     @IntrinsicCandidate
1538     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1539                                                    int expected,
1540                                                    int x) {
1541         return compareAndSetInt(o, offset, expected, x);
1542     }
1543 
1544     @IntrinsicCandidate
1545     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1546                                                      int expected,
1547                                                      int x) {
1548         return compareAndSetInt(o, offset, expected, x);
1549     }
1550 
1551     @IntrinsicCandidate
1552     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1553                                                      int expected,
1554                                                      int x) {
1555         return compareAndSetInt(o, offset, expected, x);
1556     }
1557 
1558     @IntrinsicCandidate
1559     public final boolean weakCompareAndSetInt(Object o, long offset,
1560                                               int expected,
1561                                               int x) {
1562         return compareAndSetInt(o, offset, expected, x);
1563     }
1564 
1565     @IntrinsicCandidate
1566     public final byte compareAndExchangeByte(Object o, long offset,
1567                                              byte expected,
1568                                              byte x) {
1569         long wordOffset = offset & ~3;
1570         int shift = (int) (offset & 3) << 3;
1571         if (BIG_ENDIAN) {
1572             shift = 24 - shift;
1573         }
1574         int mask           = 0xFF << shift;
1575         int maskedExpected = (expected & 0xFF) << shift;
1576         int maskedX        = (x & 0xFF) << shift;
1577         int fullWord;
1578         do {
1579             fullWord = getIntVolatile(o, wordOffset);
1580             if ((fullWord & mask) != maskedExpected)
1581                 return (byte) ((fullWord & mask) >> shift);
1582         } while (!weakCompareAndSetInt(o, wordOffset,
1583                                                 fullWord, (fullWord & ~mask) | maskedX));
1584         return expected;
1585     }
1586 
1587     @IntrinsicCandidate
1588     public final boolean compareAndSetByte(Object o, long offset,
1589                                            byte expected,
1590                                            byte x) {
1591         return compareAndExchangeByte(o, offset, expected, x) == expected;
1592     }
1593 
1594     @IntrinsicCandidate
1595     public final boolean weakCompareAndSetByte(Object o, long offset,
1596                                                byte expected,
1597                                                byte x) {
1598         return compareAndSetByte(o, offset, expected, x);
1599     }
1600 
1601     @IntrinsicCandidate
1602     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
1603                                                       byte expected,
1604                                                       byte x) {
1605         return weakCompareAndSetByte(o, offset, expected, x);
1606     }
1607 
1608     @IntrinsicCandidate
1609     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
1610                                                       byte expected,
1611                                                       byte x) {
1612         return weakCompareAndSetByte(o, offset, expected, x);
1613     }
1614 
1615     @IntrinsicCandidate
1616     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
1617                                                     byte expected,
1618                                                     byte x) {
1619         return weakCompareAndSetByte(o, offset, expected, x);
1620     }
1621 
1622     @IntrinsicCandidate
1623     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1624                                                     byte expected,
1625                                                     byte x) {
1626         return compareAndExchangeByte(o, offset, expected, x);
1627     }
1628 
1629     @IntrinsicCandidate
1630     public final byte compareAndExchangeByteRelease(Object o, long offset,
1631                                                     byte expected,
1632                                                     byte x) {
1633         return compareAndExchangeByte(o, offset, expected, x);
1634     }
1635 
1636     @IntrinsicCandidate
1637     public final short compareAndExchangeShort(Object o, long offset,
1638                                                short expected,
1639                                                short x) {
1640         if ((offset & 3) == 3) {
1641             throw new IllegalArgumentException("Update spans the word, not supported");
1642         }
1643         long wordOffset = offset & ~3;
1644         int shift = (int) (offset & 3) << 3;
1645         if (BIG_ENDIAN) {
1646             shift = 16 - shift;
1647         }
1648         int mask           = 0xFFFF << shift;
1649         int maskedExpected = (expected & 0xFFFF) << shift;
1650         int maskedX        = (x & 0xFFFF) << shift;
1651         int fullWord;
1652         do {
1653             fullWord = getIntVolatile(o, wordOffset);
1654             if ((fullWord & mask) != maskedExpected) {
1655                 return (short) ((fullWord & mask) >> shift);
1656             }
1657         } while (!weakCompareAndSetInt(o, wordOffset,
1658                                                 fullWord, (fullWord & ~mask) | maskedX));
1659         return expected;
1660     }
1661 
1662     @IntrinsicCandidate
1663     public final boolean compareAndSetShort(Object o, long offset,
1664                                             short expected,
1665                                             short x) {
1666         return compareAndExchangeShort(o, offset, expected, x) == expected;
1667     }
1668 
1669     @IntrinsicCandidate
1670     public final boolean weakCompareAndSetShort(Object o, long offset,
1671                                                 short expected,
1672                                                 short x) {
1673         return compareAndSetShort(o, offset, expected, x);
1674     }
1675 
1676     @IntrinsicCandidate
1677     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
1678                                                        short expected,
1679                                                        short x) {
1680         return weakCompareAndSetShort(o, offset, expected, x);
1681     }
1682 
1683     @IntrinsicCandidate
1684     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
1685                                                        short expected,
1686                                                        short x) {
1687         return weakCompareAndSetShort(o, offset, expected, x);
1688     }
1689 
1690     @IntrinsicCandidate
1691     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
1692                                                      short expected,
1693                                                      short x) {
1694         return weakCompareAndSetShort(o, offset, expected, x);
1695     }
1696 
1697 
1698     @IntrinsicCandidate
1699     public final short compareAndExchangeShortAcquire(Object o, long offset,
1700                                                      short expected,
1701                                                      short x) {
1702         return compareAndExchangeShort(o, offset, expected, x);
1703     }
1704 
1705     @IntrinsicCandidate
1706     public final short compareAndExchangeShortRelease(Object o, long offset,
1707                                                     short expected,
1708                                                     short x) {
1709         return compareAndExchangeShort(o, offset, expected, x);
1710     }
1711 
1712     @ForceInline
1713     private char s2c(short s) {
1714         return (char) s;
1715     }
1716 
1717     @ForceInline
1718     private short c2s(char s) {
1719         return (short) s;
1720     }
1721 
1722     @ForceInline
1723     public final boolean compareAndSetChar(Object o, long offset,
1724                                            char expected,
1725                                            char x) {
1726         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
1727     }
1728 
1729     @ForceInline
1730     public final char compareAndExchangeChar(Object o, long offset,
1731                                              char expected,
1732                                              char x) {
1733         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
1734     }
1735 
1736     @ForceInline
1737     public final char compareAndExchangeCharAcquire(Object o, long offset,
1738                                             char expected,
1739                                             char x) {
1740         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1741     }
1742 
1743     @ForceInline
1744     public final char compareAndExchangeCharRelease(Object o, long offset,
1745                                             char expected,
1746                                             char x) {
1747         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1748     }
1749 
1750     @ForceInline
1751     public final boolean weakCompareAndSetChar(Object o, long offset,
1752                                                char expected,
1753                                                char x) {
1754         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
1755     }
1756 
1757     @ForceInline
1758     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
1759                                                       char expected,
1760                                                       char x) {
1761         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
1762     }
1763 
1764     @ForceInline
1765     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
1766                                                       char expected,
1767                                                       char x) {
1768         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
1769     }
1770 
1771     @ForceInline
1772     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
1773                                                     char expected,
1774                                                     char x) {
1775         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
1776     }
1777 
1778     /**
1779      * The JVM converts integral values to boolean values using two
1780      * different conventions, byte testing against zero and truncation
1781      * to least-significant bit.
1782      *
1783      * <p>The JNI documents specify that, at least for returning
1784      * values from native methods, a Java boolean value is converted
1785      * to the value-set 0..1 by first truncating to a byte (0..255 or
1786      * maybe -128..127) and then testing against zero. Thus, Java
1787      * booleans in non-Java data structures are by convention
1788      * represented as 8-bit containers containing either zero (for
1789      * false) or any non-zero value (for true).
1790      *
1791      * <p>Java booleans in the heap are also stored in bytes, but are
1792      * strongly normalized to the value-set 0..1 (i.e., they are
1793      * truncated to the least-significant bit).
1794      *
1795      * <p>The main reason for having different conventions for
1796      * conversion is performance: Truncation to the least-significant
1797      * bit can be usually implemented with fewer (machine)
1798      * instructions than byte testing against zero.
1799      *
1800      * <p>A number of Unsafe methods load boolean values from the heap
1801      * as bytes. Unsafe converts those values according to the JNI
1802      * rules (i.e, using the "testing against zero" convention). The
1803      * method {@code byte2bool} implements that conversion.
1804      *
1805      * @param b the byte to be converted to boolean
1806      * @return the result of the conversion
1807      */
1808     @ForceInline
1809     private boolean byte2bool(byte b) {
1810         return b != 0;
1811     }
1812 
1813     /**
1814      * Convert a boolean value to a byte. The return value is strongly
1815      * normalized to the value-set 0..1 (i.e., the value is truncated
1816      * to the least-significant bit). See {@link #byte2bool(byte)} for
1817      * more details on conversion conventions.
1818      *
1819      * @param b the boolean to be converted to byte (and then normalized)
1820      * @return the result of the conversion
1821      */
1822     @ForceInline
1823     private byte bool2byte(boolean b) {
1824         return b ? (byte)1 : (byte)0;
1825     }
1826 
1827     @ForceInline
1828     public final boolean compareAndSetBoolean(Object o, long offset,
1829                                               boolean expected,
1830                                               boolean x) {
1831         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1832     }
1833 
1834     @ForceInline
1835     public final boolean compareAndExchangeBoolean(Object o, long offset,
1836                                                    boolean expected,
1837                                                    boolean x) {
1838         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
1839     }
1840 
1841     @ForceInline
1842     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1843                                                     boolean expected,
1844                                                     boolean x) {
1845         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1846     }
1847 
1848     @ForceInline
1849     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1850                                                        boolean expected,
1851                                                        boolean x) {
1852         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1853     }
1854 
1855     @ForceInline
1856     public final boolean weakCompareAndSetBoolean(Object o, long offset,
1857                                                   boolean expected,
1858                                                   boolean x) {
1859         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1860     }
1861 
1862     @ForceInline
1863     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
1864                                                          boolean expected,
1865                                                          boolean x) {
1866         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1867     }
1868 
1869     @ForceInline
1870     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
1871                                                          boolean expected,
1872                                                          boolean x) {
1873         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1874     }
1875 
1876     @ForceInline
1877     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
1878                                                        boolean expected,
1879                                                        boolean x) {
1880         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
1881     }
1882 
1883     /**
1884      * Atomically updates Java variable to {@code x} if it is currently
1885      * holding {@code expected}.
1886      *
1887      * <p>This operation has memory semantics of a {@code volatile} read
1888      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1889      *
1890      * @return {@code true} if successful
1891      */
1892     @ForceInline
1893     public final boolean compareAndSetFloat(Object o, long offset,
1894                                             float expected,
1895                                             float x) {
1896         return compareAndSetInt(o, offset,
1897                                  Float.floatToRawIntBits(expected),
1898                                  Float.floatToRawIntBits(x));
1899     }
1900 
1901     @ForceInline
1902     public final float compareAndExchangeFloat(Object o, long offset,
1903                                                float expected,
1904                                                float x) {
1905         int w = compareAndExchangeInt(o, offset,
1906                                       Float.floatToRawIntBits(expected),
1907                                       Float.floatToRawIntBits(x));
1908         return Float.intBitsToFloat(w);
1909     }
1910 
1911     @ForceInline
1912     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1913                                                   float expected,
1914                                                   float x) {
1915         int w = compareAndExchangeIntAcquire(o, offset,
1916                                              Float.floatToRawIntBits(expected),
1917                                              Float.floatToRawIntBits(x));
1918         return Float.intBitsToFloat(w);
1919     }
1920 
1921     @ForceInline
1922     public final float compareAndExchangeFloatRelease(Object o, long offset,
1923                                                   float expected,
1924                                                   float x) {
1925         int w = compareAndExchangeIntRelease(o, offset,
1926                                              Float.floatToRawIntBits(expected),
1927                                              Float.floatToRawIntBits(x));
1928         return Float.intBitsToFloat(w);
1929     }
1930 
1931     @ForceInline
1932     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
1933                                                      float expected,
1934                                                      float x) {
1935         return weakCompareAndSetIntPlain(o, offset,
1936                                      Float.floatToRawIntBits(expected),
1937                                      Float.floatToRawIntBits(x));
1938     }
1939 
1940     @ForceInline
1941     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
1942                                                        float expected,
1943                                                        float x) {
1944         return weakCompareAndSetIntAcquire(o, offset,
1945                                             Float.floatToRawIntBits(expected),
1946                                             Float.floatToRawIntBits(x));
1947     }
1948 
1949     @ForceInline
1950     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
1951                                                        float expected,
1952                                                        float x) {
1953         return weakCompareAndSetIntRelease(o, offset,
1954                                             Float.floatToRawIntBits(expected),
1955                                             Float.floatToRawIntBits(x));
1956     }
1957 
1958     @ForceInline
1959     public final boolean weakCompareAndSetFloat(Object o, long offset,
1960                                                 float expected,
1961                                                 float x) {
1962         return weakCompareAndSetInt(o, offset,
1963                                              Float.floatToRawIntBits(expected),
1964                                              Float.floatToRawIntBits(x));
1965     }
1966 
1967     /**
1968      * Atomically updates Java variable to {@code x} if it is currently
1969      * holding {@code expected}.
1970      *
1971      * <p>This operation has memory semantics of a {@code volatile} read
1972      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1973      *
1974      * @return {@code true} if successful
1975      */
1976     @ForceInline
1977     public final boolean compareAndSetDouble(Object o, long offset,
1978                                              double expected,
1979                                              double x) {
1980         return compareAndSetLong(o, offset,
1981                                  Double.doubleToRawLongBits(expected),
1982                                  Double.doubleToRawLongBits(x));
1983     }
1984 
1985     @ForceInline
1986     public final double compareAndExchangeDouble(Object o, long offset,
1987                                                  double expected,
1988                                                  double x) {
1989         long w = compareAndExchangeLong(o, offset,
1990                                         Double.doubleToRawLongBits(expected),
1991                                         Double.doubleToRawLongBits(x));
1992         return Double.longBitsToDouble(w);
1993     }
1994 
1995     @ForceInline
1996     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1997                                                         double expected,
1998                                                         double x) {
1999         long w = compareAndExchangeLongAcquire(o, offset,
2000                                                Double.doubleToRawLongBits(expected),
2001                                                Double.doubleToRawLongBits(x));
2002         return Double.longBitsToDouble(w);
2003     }
2004 
2005     @ForceInline
2006     public final double compareAndExchangeDoubleRelease(Object o, long offset,
2007                                                         double expected,
2008                                                         double x) {
2009         long w = compareAndExchangeLongRelease(o, offset,
2010                                                Double.doubleToRawLongBits(expected),
2011                                                Double.doubleToRawLongBits(x));
2012         return Double.longBitsToDouble(w);
2013     }
2014 
2015     @ForceInline
2016     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
2017                                                       double expected,
2018                                                       double x) {
2019         return weakCompareAndSetLongPlain(o, offset,
2020                                      Double.doubleToRawLongBits(expected),
2021                                      Double.doubleToRawLongBits(x));
2022     }
2023 
2024     @ForceInline
2025     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2026                                                         double expected,
2027                                                         double x) {
2028         return weakCompareAndSetLongAcquire(o, offset,
2029                                              Double.doubleToRawLongBits(expected),
2030                                              Double.doubleToRawLongBits(x));
2031     }
2032 
2033     @ForceInline
2034     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2035                                                         double expected,
2036                                                         double x) {
2037         return weakCompareAndSetLongRelease(o, offset,
2038                                              Double.doubleToRawLongBits(expected),
2039                                              Double.doubleToRawLongBits(x));
2040     }
2041 
2042     @ForceInline
2043     public final boolean weakCompareAndSetDouble(Object o, long offset,
2044                                                  double expected,
2045                                                  double x) {
2046         return weakCompareAndSetLong(o, offset,
2047                                               Double.doubleToRawLongBits(expected),
2048                                               Double.doubleToRawLongBits(x));
2049     }
2050 
2051     /**
2052      * Atomically updates Java variable to {@code x} if it is currently
2053      * holding {@code expected}.
2054      *
2055      * <p>This operation has memory semantics of a {@code volatile} read
2056      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2057      *
2058      * @return {@code true} if successful
2059      */
2060     @IntrinsicCandidate
2061     public final native boolean compareAndSetLong(Object o, long offset,
2062                                                   long expected,
2063                                                   long x);
2064 
2065     @IntrinsicCandidate
2066     public final native long compareAndExchangeLong(Object o, long offset,
2067                                                     long expected,
2068                                                     long x);
2069 
2070     @IntrinsicCandidate
2071     public final long compareAndExchangeLongAcquire(Object o, long offset,
2072                                                            long expected,
2073                                                            long x) {
2074         return compareAndExchangeLong(o, offset, expected, x);
2075     }
2076 
2077     @IntrinsicCandidate
2078     public final long compareAndExchangeLongRelease(Object o, long offset,
2079                                                            long expected,
2080                                                            long x) {
2081         return compareAndExchangeLong(o, offset, expected, x);
2082     }
2083 
2084     @IntrinsicCandidate
2085     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2086                                                     long expected,
2087                                                     long x) {
2088         return compareAndSetLong(o, offset, expected, x);
2089     }
2090 
2091     @IntrinsicCandidate
2092     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2093                                                       long expected,
2094                                                       long x) {
2095         return compareAndSetLong(o, offset, expected, x);
2096     }
2097 
2098     @IntrinsicCandidate
2099     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2100                                                       long expected,
2101                                                       long x) {
2102         return compareAndSetLong(o, offset, expected, x);
2103     }
2104 
2105     @IntrinsicCandidate
2106     public final boolean weakCompareAndSetLong(Object o, long offset,
2107                                                long expected,
2108                                                long x) {
2109         return compareAndSetLong(o, offset, expected, x);
2110     }
2111 
2112     /**
2113      * Fetches a reference value from a given Java variable, with volatile
2114      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2115      */
2116     @IntrinsicCandidate
2117     public native Object getReferenceVolatile(Object o, long offset);
2118 
2119     /**
2120      * Stores a reference value into a given Java variable, with
2121      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2122      */
2123     @IntrinsicCandidate
2124     public native void putReferenceVolatile(Object o, long offset, Object x);
2125 
2126     /** Volatile version of {@link #getInt(Object, long)}  */
2127     @IntrinsicCandidate
2128     public native int     getIntVolatile(Object o, long offset);
2129 
2130     /** Volatile version of {@link #putInt(Object, long, int)}  */
2131     @IntrinsicCandidate
2132     public native void    putIntVolatile(Object o, long offset, int x);
2133 
2134     /** Volatile version of {@link #getBoolean(Object, long)}  */
2135     @IntrinsicCandidate
2136     public native boolean getBooleanVolatile(Object o, long offset);
2137 
2138     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2139     @IntrinsicCandidate
2140     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2141 
2142     /** Volatile version of {@link #getByte(Object, long)}  */
2143     @IntrinsicCandidate
2144     public native byte    getByteVolatile(Object o, long offset);
2145 
2146     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2147     @IntrinsicCandidate
2148     public native void    putByteVolatile(Object o, long offset, byte x);
2149 
2150     /** Volatile version of {@link #getShort(Object, long)}  */
2151     @IntrinsicCandidate
2152     public native short   getShortVolatile(Object o, long offset);
2153 
2154     /** Volatile version of {@link #putShort(Object, long, short)}  */
2155     @IntrinsicCandidate
2156     public native void    putShortVolatile(Object o, long offset, short x);
2157 
2158     /** Volatile version of {@link #getChar(Object, long)}  */
2159     @IntrinsicCandidate
2160     public native char    getCharVolatile(Object o, long offset);
2161 
2162     /** Volatile version of {@link #putChar(Object, long, char)}  */
2163     @IntrinsicCandidate
2164     public native void    putCharVolatile(Object o, long offset, char x);
2165 
2166     /** Volatile version of {@link #getLong(Object, long)}  */
2167     @IntrinsicCandidate
2168     public native long    getLongVolatile(Object o, long offset);
2169 
2170     /** Volatile version of {@link #putLong(Object, long, long)}  */
2171     @IntrinsicCandidate
2172     public native void    putLongVolatile(Object o, long offset, long x);
2173 
2174     /** Volatile version of {@link #getFloat(Object, long)}  */
2175     @IntrinsicCandidate
2176     public native float   getFloatVolatile(Object o, long offset);
2177 
2178     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2179     @IntrinsicCandidate
2180     public native void    putFloatVolatile(Object o, long offset, float x);
2181 
2182     /** Volatile version of {@link #getDouble(Object, long)}  */
2183     @IntrinsicCandidate
2184     public native double  getDoubleVolatile(Object o, long offset);
2185 
2186     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2187     @IntrinsicCandidate
2188     public native void    putDoubleVolatile(Object o, long offset, double x);
2189 
2190 
2191 
2192     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2193     @IntrinsicCandidate
2194     public final Object getReferenceAcquire(Object o, long offset) {
2195         return getReferenceVolatile(o, offset);
2196     }
2197 
2198     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2199     @IntrinsicCandidate
2200     public final boolean getBooleanAcquire(Object o, long offset) {
2201         return getBooleanVolatile(o, offset);
2202     }
2203 
2204     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2205     @IntrinsicCandidate
2206     public final byte getByteAcquire(Object o, long offset) {
2207         return getByteVolatile(o, offset);
2208     }
2209 
2210     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2211     @IntrinsicCandidate
2212     public final short getShortAcquire(Object o, long offset) {
2213         return getShortVolatile(o, offset);
2214     }
2215 
2216     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2217     @IntrinsicCandidate
2218     public final char getCharAcquire(Object o, long offset) {
2219         return getCharVolatile(o, offset);
2220     }
2221 
2222     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2223     @IntrinsicCandidate
2224     public final int getIntAcquire(Object o, long offset) {
2225         return getIntVolatile(o, offset);
2226     }
2227 
2228     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2229     @IntrinsicCandidate
2230     public final float getFloatAcquire(Object o, long offset) {
2231         return getFloatVolatile(o, offset);
2232     }
2233 
2234     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2235     @IntrinsicCandidate
2236     public final long getLongAcquire(Object o, long offset) {
2237         return getLongVolatile(o, offset);
2238     }
2239 
2240     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2241     @IntrinsicCandidate
2242     public final double getDoubleAcquire(Object o, long offset) {
2243         return getDoubleVolatile(o, offset);
2244     }
2245 
2246     /*
2247      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2248      * that do not guarantee immediate visibility of the store to
2249      * other threads. This method is generally only useful if the
2250      * underlying field is a Java volatile (or if an array cell, one
2251      * that is otherwise only accessed using volatile accesses).
2252      *
2253      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2254      */
2255 
2256     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2257     @IntrinsicCandidate
2258     public final void putReferenceRelease(Object o, long offset, Object x) {
2259         putReferenceVolatile(o, offset, x);
2260     }
2261 
2262     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2263     @IntrinsicCandidate
2264     public final void putBooleanRelease(Object o, long offset, boolean x) {
2265         putBooleanVolatile(o, offset, x);
2266     }
2267 
2268     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2269     @IntrinsicCandidate
2270     public final void putByteRelease(Object o, long offset, byte x) {
2271         putByteVolatile(o, offset, x);
2272     }
2273 
2274     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2275     @IntrinsicCandidate
2276     public final void putShortRelease(Object o, long offset, short x) {
2277         putShortVolatile(o, offset, x);
2278     }
2279 
2280     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2281     @IntrinsicCandidate
2282     public final void putCharRelease(Object o, long offset, char x) {
2283         putCharVolatile(o, offset, x);
2284     }
2285 
2286     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2287     @IntrinsicCandidate
2288     public final void putIntRelease(Object o, long offset, int x) {
2289         putIntVolatile(o, offset, x);
2290     }
2291 
2292     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2293     @IntrinsicCandidate
2294     public final void putFloatRelease(Object o, long offset, float x) {
2295         putFloatVolatile(o, offset, x);
2296     }
2297 
2298     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2299     @IntrinsicCandidate
2300     public final void putLongRelease(Object o, long offset, long x) {
2301         putLongVolatile(o, offset, x);
2302     }
2303 
2304     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2305     @IntrinsicCandidate
2306     public final void putDoubleRelease(Object o, long offset, double x) {
2307         putDoubleVolatile(o, offset, x);
2308     }
2309 
2310     // ------------------------------ Opaque --------------------------------------
2311 
2312     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2313     @IntrinsicCandidate
2314     public final Object getReferenceOpaque(Object o, long offset) {
2315         return getReferenceVolatile(o, offset);
2316     }
2317 
2318     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2319     @IntrinsicCandidate
2320     public final boolean getBooleanOpaque(Object o, long offset) {
2321         return getBooleanVolatile(o, offset);
2322     }
2323 
2324     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2325     @IntrinsicCandidate
2326     public final byte getByteOpaque(Object o, long offset) {
2327         return getByteVolatile(o, offset);
2328     }
2329 
2330     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2331     @IntrinsicCandidate
2332     public final short getShortOpaque(Object o, long offset) {
2333         return getShortVolatile(o, offset);
2334     }
2335 
2336     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2337     @IntrinsicCandidate
2338     public final char getCharOpaque(Object o, long offset) {
2339         return getCharVolatile(o, offset);
2340     }
2341 
2342     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2343     @IntrinsicCandidate
2344     public final int getIntOpaque(Object o, long offset) {
2345         return getIntVolatile(o, offset);
2346     }
2347 
2348     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2349     @IntrinsicCandidate
2350     public final float getFloatOpaque(Object o, long offset) {
2351         return getFloatVolatile(o, offset);
2352     }
2353 
2354     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2355     @IntrinsicCandidate
2356     public final long getLongOpaque(Object o, long offset) {
2357         return getLongVolatile(o, offset);
2358     }
2359 
2360     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2361     @IntrinsicCandidate
2362     public final double getDoubleOpaque(Object o, long offset) {
2363         return getDoubleVolatile(o, offset);
2364     }
2365 
2366     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2367     @IntrinsicCandidate
2368     public final void putReferenceOpaque(Object o, long offset, Object x) {
2369         putReferenceVolatile(o, offset, x);
2370     }
2371 
2372     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2373     @IntrinsicCandidate
2374     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2375         putBooleanVolatile(o, offset, x);
2376     }
2377 
2378     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2379     @IntrinsicCandidate
2380     public final void putByteOpaque(Object o, long offset, byte x) {
2381         putByteVolatile(o, offset, x);
2382     }
2383 
2384     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2385     @IntrinsicCandidate
2386     public final void putShortOpaque(Object o, long offset, short x) {
2387         putShortVolatile(o, offset, x);
2388     }
2389 
2390     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2391     @IntrinsicCandidate
2392     public final void putCharOpaque(Object o, long offset, char x) {
2393         putCharVolatile(o, offset, x);
2394     }
2395 
2396     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2397     @IntrinsicCandidate
2398     public final void putIntOpaque(Object o, long offset, int x) {
2399         putIntVolatile(o, offset, x);
2400     }
2401 
2402     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2403     @IntrinsicCandidate
2404     public final void putFloatOpaque(Object o, long offset, float x) {
2405         putFloatVolatile(o, offset, x);
2406     }
2407 
2408     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2409     @IntrinsicCandidate
2410     public final void putLongOpaque(Object o, long offset, long x) {
2411         putLongVolatile(o, offset, x);
2412     }
2413 
2414     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2415     @IntrinsicCandidate
2416     public final void putDoubleOpaque(Object o, long offset, double x) {
2417         putDoubleVolatile(o, offset, x);
2418     }
2419 
2420     /**
2421      * Unblocks the given thread blocked on {@code park}, or, if it is
2422      * not blocked, causes the subsequent call to {@code park} not to
2423      * block.  Note: this operation is "unsafe" solely because the
2424      * caller must somehow ensure that the thread has not been
2425      * destroyed. Nothing special is usually required to ensure this
2426      * when called from Java (in which there will ordinarily be a live
2427      * reference to the thread) but this is not nearly-automatically
2428      * so when calling from native code.
2429      *
2430      * @param thread the thread to unpark.
2431      */
2432     @IntrinsicCandidate
2433     public native void unpark(Object thread);
2434 
2435     /**
2436      * Blocks current thread, returning when a balancing
2437      * {@code unpark} occurs, or a balancing {@code unpark} has
2438      * already occurred, or the thread is interrupted, or, if not
2439      * absolute and time is not zero, the given time nanoseconds have
2440      * elapsed, or if absolute, the given deadline in milliseconds
2441      * since Epoch has passed, or spuriously (i.e., returning for no
2442      * "reason"). Note: This operation is in the Unsafe class only
2443      * because {@code unpark} is, so it would be strange to place it
2444      * elsewhere.
2445      */
2446     @IntrinsicCandidate
2447     public native void park(boolean isAbsolute, long time);
2448 
2449     /**
2450      * Gets the load average in the system run queue assigned
2451      * to the available processors averaged over various periods of time.
2452      * This method retrieves the given {@code nelem} samples and
2453      * assigns to the elements of the given {@code loadavg} array.
2454      * The system imposes a maximum of 3 samples, representing
2455      * averages over the last 1,  5,  and  15 minutes, respectively.
2456      *
2457      * @param loadavg an array of double of size nelems
2458      * @param nelems the number of samples to be retrieved and
2459      *        must be 1 to 3.
2460      *
2461      * @return the number of samples actually retrieved; or -1
2462      *         if the load average is unobtainable.
2463      */
2464     public int getLoadAverage(double[] loadavg, int nelems) {
2465         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2466             throw new ArrayIndexOutOfBoundsException();
2467         }
2468 
2469         return getLoadAverage0(loadavg, nelems);
2470     }
2471 
2472     // The following contain CAS-based Java implementations used on
2473     // platforms not supporting native instructions
2474 
2475     /**
2476      * Atomically adds the given value to the current value of a field
2477      * or array element within the given object {@code o}
2478      * at the given {@code offset}.
2479      *
2480      * @param o object/array to update the field/element in
2481      * @param offset field/element offset
2482      * @param delta the value to add
2483      * @return the previous value
2484      * @since 1.8
2485      */
2486     @IntrinsicCandidate
2487     public final int getAndAddInt(Object o, long offset, int delta) {
2488         int v;
2489         do {
2490             v = getIntVolatile(o, offset);
2491         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
2492         return v;
2493     }
2494 
2495     @ForceInline
2496     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2497         int v;
2498         do {
2499             v = getInt(o, offset);
2500         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
2501         return v;
2502     }
2503 
2504     @ForceInline
2505     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2506         int v;
2507         do {
2508             v = getIntAcquire(o, offset);
2509         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
2510         return v;
2511     }
2512 
2513     /**
2514      * Atomically adds the given value to the current value of a field
2515      * or array element within the given object {@code o}
2516      * at the given {@code offset}.
2517      *
2518      * @param o object/array to update the field/element in
2519      * @param offset field/element offset
2520      * @param delta the value to add
2521      * @return the previous value
2522      * @since 1.8
2523      */
2524     @IntrinsicCandidate
2525     public final long getAndAddLong(Object o, long offset, long delta) {
2526         long v;
2527         do {
2528             v = getLongVolatile(o, offset);
2529         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
2530         return v;
2531     }
2532 
2533     @ForceInline
2534     public final long getAndAddLongRelease(Object o, long offset, long delta) {
2535         long v;
2536         do {
2537             v = getLong(o, offset);
2538         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
2539         return v;
2540     }
2541 
2542     @ForceInline
2543     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
2544         long v;
2545         do {
2546             v = getLongAcquire(o, offset);
2547         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
2548         return v;
2549     }
2550 
2551     @IntrinsicCandidate
2552     public final byte getAndAddByte(Object o, long offset, byte delta) {
2553         byte v;
2554         do {
2555             v = getByteVolatile(o, offset);
2556         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
2557         return v;
2558     }
2559 
2560     @ForceInline
2561     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
2562         byte v;
2563         do {
2564             v = getByte(o, offset);
2565         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
2566         return v;
2567     }
2568 
2569     @ForceInline
2570     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
2571         byte v;
2572         do {
2573             v = getByteAcquire(o, offset);
2574         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
2575         return v;
2576     }
2577 
2578     @IntrinsicCandidate
2579     public final short getAndAddShort(Object o, long offset, short delta) {
2580         short v;
2581         do {
2582             v = getShortVolatile(o, offset);
2583         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
2584         return v;
2585     }
2586 
2587     @ForceInline
2588     public final short getAndAddShortRelease(Object o, long offset, short delta) {
2589         short v;
2590         do {
2591             v = getShort(o, offset);
2592         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
2593         return v;
2594     }
2595 
2596     @ForceInline
2597     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
2598         short v;
2599         do {
2600             v = getShortAcquire(o, offset);
2601         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
2602         return v;
2603     }
2604 
2605     @ForceInline
2606     public final char getAndAddChar(Object o, long offset, char delta) {
2607         return (char) getAndAddShort(o, offset, (short) delta);
2608     }
2609 
2610     @ForceInline
2611     public final char getAndAddCharRelease(Object o, long offset, char delta) {
2612         return (char) getAndAddShortRelease(o, offset, (short) delta);
2613     }
2614 
2615     @ForceInline
2616     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
2617         return (char) getAndAddShortAcquire(o, offset, (short) delta);
2618     }
2619 
2620     @ForceInline
2621     public final float getAndAddFloat(Object o, long offset, float delta) {
2622         int expectedBits;
2623         float v;
2624         do {
2625             // Load and CAS with the raw bits to avoid issues with NaNs and
2626             // possible bit conversion from signaling NaNs to quiet NaNs that
2627             // may result in the loop not terminating.
2628             expectedBits = getIntVolatile(o, offset);
2629             v = Float.intBitsToFloat(expectedBits);
2630         } while (!weakCompareAndSetInt(o, offset,
2631                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2632         return v;
2633     }
2634 
2635     @ForceInline
2636     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
2637         int expectedBits;
2638         float v;
2639         do {
2640             // Load and CAS with the raw bits to avoid issues with NaNs and
2641             // possible bit conversion from signaling NaNs to quiet NaNs that
2642             // may result in the loop not terminating.
2643             expectedBits = getInt(o, offset);
2644             v = Float.intBitsToFloat(expectedBits);
2645         } while (!weakCompareAndSetIntRelease(o, offset,
2646                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2647         return v;
2648     }
2649 
2650     @ForceInline
2651     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
2652         int expectedBits;
2653         float v;
2654         do {
2655             // Load and CAS with the raw bits to avoid issues with NaNs and
2656             // possible bit conversion from signaling NaNs to quiet NaNs that
2657             // may result in the loop not terminating.
2658             expectedBits = getIntAcquire(o, offset);
2659             v = Float.intBitsToFloat(expectedBits);
2660         } while (!weakCompareAndSetIntAcquire(o, offset,
2661                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2662         return v;
2663     }
2664 
2665     @ForceInline
2666     public final double getAndAddDouble(Object o, long offset, double delta) {
2667         long expectedBits;
2668         double v;
2669         do {
2670             // Load and CAS with the raw bits to avoid issues with NaNs and
2671             // possible bit conversion from signaling NaNs to quiet NaNs that
2672             // may result in the loop not terminating.
2673             expectedBits = getLongVolatile(o, offset);
2674             v = Double.longBitsToDouble(expectedBits);
2675         } while (!weakCompareAndSetLong(o, offset,
2676                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2677         return v;
2678     }
2679 
2680     @ForceInline
2681     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
2682         long expectedBits;
2683         double v;
2684         do {
2685             // Load and CAS with the raw bits to avoid issues with NaNs and
2686             // possible bit conversion from signaling NaNs to quiet NaNs that
2687             // may result in the loop not terminating.
2688             expectedBits = getLong(o, offset);
2689             v = Double.longBitsToDouble(expectedBits);
2690         } while (!weakCompareAndSetLongRelease(o, offset,
2691                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2692         return v;
2693     }
2694 
2695     @ForceInline
2696     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
2697         long expectedBits;
2698         double v;
2699         do {
2700             // Load and CAS with the raw bits to avoid issues with NaNs and
2701             // possible bit conversion from signaling NaNs to quiet NaNs that
2702             // may result in the loop not terminating.
2703             expectedBits = getLongAcquire(o, offset);
2704             v = Double.longBitsToDouble(expectedBits);
2705         } while (!weakCompareAndSetLongAcquire(o, offset,
2706                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2707         return v;
2708     }
2709 
2710     /**
2711      * Atomically exchanges the given value with the current value of
2712      * a field or array element within the given object {@code o}
2713      * at the given {@code offset}.
2714      *
2715      * @param o object/array to update the field/element in
2716      * @param offset field/element offset
2717      * @param newValue new value
2718      * @return the previous value
2719      * @since 1.8
2720      */
2721     @IntrinsicCandidate
2722     public final int getAndSetInt(Object o, long offset, int newValue) {
2723         int v;
2724         do {
2725             v = getIntVolatile(o, offset);
2726         } while (!weakCompareAndSetInt(o, offset, v, newValue));
2727         return v;
2728     }
2729 
2730     @ForceInline
2731     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
2732         int v;
2733         do {
2734             v = getInt(o, offset);
2735         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
2736         return v;
2737     }
2738 
2739     @ForceInline
2740     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
2741         int v;
2742         do {
2743             v = getIntAcquire(o, offset);
2744         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
2745         return v;
2746     }
2747 
2748     /**
2749      * Atomically exchanges the given value with the current value of
2750      * a field or array element within the given object {@code o}
2751      * at the given {@code offset}.
2752      *
2753      * @param o object/array to update the field/element in
2754      * @param offset field/element offset
2755      * @param newValue new value
2756      * @return the previous value
2757      * @since 1.8
2758      */
2759     @IntrinsicCandidate
2760     public final long getAndSetLong(Object o, long offset, long newValue) {
2761         long v;
2762         do {
2763             v = getLongVolatile(o, offset);
2764         } while (!weakCompareAndSetLong(o, offset, v, newValue));
2765         return v;
2766     }
2767 
2768     @ForceInline
2769     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
2770         long v;
2771         do {
2772             v = getLong(o, offset);
2773         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
2774         return v;
2775     }
2776 
2777     @ForceInline
2778     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
2779         long v;
2780         do {
2781             v = getLongAcquire(o, offset);
2782         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
2783         return v;
2784     }
2785 
2786     /**
2787      * Atomically exchanges the given reference value with the current
2788      * reference value of a field or array element within the given
2789      * object {@code o} at the given {@code offset}.
2790      *
2791      * @param o object/array to update the field/element in
2792      * @param offset field/element offset
2793      * @param newValue new value
2794      * @return the previous value
2795      * @since 1.8
2796      */
2797     @IntrinsicCandidate
2798     public final Object getAndSetReference(Object o, long offset, Object newValue) {
2799         Object v;
2800         do {
2801             v = getReferenceVolatile(o, offset);
2802         } while (!weakCompareAndSetReference(o, offset, v, newValue));
2803         return v;
2804     }
2805 
2806     @ForceInline
2807     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
2808         Object v;
2809         do {
2810             v = getReference(o, offset);
2811         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
2812         return v;
2813     }
2814 
2815     @ForceInline
2816     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
2817         Object v;
2818         do {
2819             v = getReferenceAcquire(o, offset);
2820         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
2821         return v;
2822     }
2823 
2824     @IntrinsicCandidate
2825     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2826         byte v;
2827         do {
2828             v = getByteVolatile(o, offset);
2829         } while (!weakCompareAndSetByte(o, offset, v, newValue));
2830         return v;
2831     }
2832 
2833     @ForceInline
2834     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
2835         byte v;
2836         do {
2837             v = getByte(o, offset);
2838         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
2839         return v;
2840     }
2841 
2842     @ForceInline
2843     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
2844         byte v;
2845         do {
2846             v = getByteAcquire(o, offset);
2847         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
2848         return v;
2849     }
2850 
2851     @ForceInline
2852     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2853         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2854     }
2855 
2856     @ForceInline
2857     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
2858         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
2859     }
2860 
2861     @ForceInline
2862     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
2863         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
2864     }
2865 
2866     @IntrinsicCandidate
2867     public final short getAndSetShort(Object o, long offset, short newValue) {
2868         short v;
2869         do {
2870             v = getShortVolatile(o, offset);
2871         } while (!weakCompareAndSetShort(o, offset, v, newValue));
2872         return v;
2873     }
2874 
2875     @ForceInline
2876     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
2877         short v;
2878         do {
2879             v = getShort(o, offset);
2880         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
2881         return v;
2882     }
2883 
2884     @ForceInline
2885     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
2886         short v;
2887         do {
2888             v = getShortAcquire(o, offset);
2889         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
2890         return v;
2891     }
2892 
2893     @ForceInline
2894     public final char getAndSetChar(Object o, long offset, char newValue) {
2895         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2896     }
2897 
2898     @ForceInline
2899     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
2900         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
2901     }
2902 
2903     @ForceInline
2904     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
2905         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
2906     }
2907 
2908     @ForceInline
2909     public final float getAndSetFloat(Object o, long offset, float newValue) {
2910         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2911         return Float.intBitsToFloat(v);
2912     }
2913 
2914     @ForceInline
2915     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
2916         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
2917         return Float.intBitsToFloat(v);
2918     }
2919 
2920     @ForceInline
2921     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
2922         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
2923         return Float.intBitsToFloat(v);
2924     }
2925 
2926     @ForceInline
2927     public final double getAndSetDouble(Object o, long offset, double newValue) {
2928         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2929         return Double.longBitsToDouble(v);
2930     }
2931 
2932     @ForceInline
2933     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
2934         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
2935         return Double.longBitsToDouble(v);
2936     }
2937 
2938     @ForceInline
2939     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
2940         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
2941         return Double.longBitsToDouble(v);
2942     }
2943 
2944 
2945     // The following contain CAS-based Java implementations used on
2946     // platforms not supporting native instructions
2947 
2948     @ForceInline
2949     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
2950         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
2951     }
2952 
2953     @ForceInline
2954     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
2955         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
2956     }
2957 
2958     @ForceInline
2959     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
2960         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
2961     }
2962 
2963     @ForceInline
2964     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
2965         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
2966     }
2967 
2968     @ForceInline
2969     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
2970         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
2971     }
2972 
2973     @ForceInline
2974     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
2975         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
2976     }
2977 
2978     @ForceInline
2979     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
2980         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
2981     }
2982 
2983     @ForceInline
2984     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
2985         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
2986     }
2987 
2988     @ForceInline
2989     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
2990         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
2991     }
2992 
2993 
2994     @ForceInline
2995     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
2996         byte current;
2997         do {
2998             current = getByteVolatile(o, offset);
2999         } while (!weakCompareAndSetByte(o, offset,
3000                                                   current, (byte) (current | mask)));
3001         return current;
3002     }
3003 
3004     @ForceInline
3005     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
3006         byte current;
3007         do {
3008             current = getByte(o, offset);
3009         } while (!weakCompareAndSetByteRelease(o, offset,
3010                                                  current, (byte) (current | mask)));
3011         return current;
3012     }
3013 
3014     @ForceInline
3015     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
3016         byte current;
3017         do {
3018             // Plain read, the value is a hint, the acquire CAS does the work
3019             current = getByte(o, offset);
3020         } while (!weakCompareAndSetByteAcquire(o, offset,
3021                                                  current, (byte) (current | mask)));
3022         return current;
3023     }
3024 
3025     @ForceInline
3026     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3027         byte current;
3028         do {
3029             current = getByteVolatile(o, offset);
3030         } while (!weakCompareAndSetByte(o, offset,
3031                                                   current, (byte) (current & mask)));
3032         return current;
3033     }
3034 
3035     @ForceInline
3036     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3037         byte current;
3038         do {
3039             current = getByte(o, offset);
3040         } while (!weakCompareAndSetByteRelease(o, offset,
3041                                                  current, (byte) (current & mask)));
3042         return current;
3043     }
3044 
3045     @ForceInline
3046     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3047         byte current;
3048         do {
3049             // Plain read, the value is a hint, the acquire CAS does the work
3050             current = getByte(o, offset);
3051         } while (!weakCompareAndSetByteAcquire(o, offset,
3052                                                  current, (byte) (current & mask)));
3053         return current;
3054     }
3055 
3056     @ForceInline
3057     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3058         byte current;
3059         do {
3060             current = getByteVolatile(o, offset);
3061         } while (!weakCompareAndSetByte(o, offset,
3062                                                   current, (byte) (current ^ mask)));
3063         return current;
3064     }
3065 
3066     @ForceInline
3067     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3068         byte current;
3069         do {
3070             current = getByte(o, offset);
3071         } while (!weakCompareAndSetByteRelease(o, offset,
3072                                                  current, (byte) (current ^ mask)));
3073         return current;
3074     }
3075 
3076     @ForceInline
3077     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3078         byte current;
3079         do {
3080             // Plain read, the value is a hint, the acquire CAS does the work
3081             current = getByte(o, offset);
3082         } while (!weakCompareAndSetByteAcquire(o, offset,
3083                                                  current, (byte) (current ^ mask)));
3084         return current;
3085     }
3086 
3087 
3088     @ForceInline
3089     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3090         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3091     }
3092 
3093     @ForceInline
3094     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3095         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3096     }
3097 
3098     @ForceInline
3099     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3100         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3101     }
3102 
3103     @ForceInline
3104     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3105         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3106     }
3107 
3108     @ForceInline
3109     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3110         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3111     }
3112 
3113     @ForceInline
3114     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3115         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3116     }
3117 
3118     @ForceInline
3119     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3120         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3121     }
3122 
3123     @ForceInline
3124     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3125         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3126     }
3127 
3128     @ForceInline
3129     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3130         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3131     }
3132 
3133 
3134     @ForceInline
3135     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3136         short current;
3137         do {
3138             current = getShortVolatile(o, offset);
3139         } while (!weakCompareAndSetShort(o, offset,
3140                                                 current, (short) (current | mask)));
3141         return current;
3142     }
3143 
3144     @ForceInline
3145     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3146         short current;
3147         do {
3148             current = getShort(o, offset);
3149         } while (!weakCompareAndSetShortRelease(o, offset,
3150                                                current, (short) (current | mask)));
3151         return current;
3152     }
3153 
3154     @ForceInline
3155     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3156         short current;
3157         do {
3158             // Plain read, the value is a hint, the acquire CAS does the work
3159             current = getShort(o, offset);
3160         } while (!weakCompareAndSetShortAcquire(o, offset,
3161                                                current, (short) (current | mask)));
3162         return current;
3163     }
3164 
3165     @ForceInline
3166     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3167         short current;
3168         do {
3169             current = getShortVolatile(o, offset);
3170         } while (!weakCompareAndSetShort(o, offset,
3171                                                 current, (short) (current & mask)));
3172         return current;
3173     }
3174 
3175     @ForceInline
3176     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3177         short current;
3178         do {
3179             current = getShort(o, offset);
3180         } while (!weakCompareAndSetShortRelease(o, offset,
3181                                                current, (short) (current & mask)));
3182         return current;
3183     }
3184 
3185     @ForceInline
3186     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3187         short current;
3188         do {
3189             // Plain read, the value is a hint, the acquire CAS does the work
3190             current = getShort(o, offset);
3191         } while (!weakCompareAndSetShortAcquire(o, offset,
3192                                                current, (short) (current & mask)));
3193         return current;
3194     }
3195 
3196     @ForceInline
3197     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3198         short current;
3199         do {
3200             current = getShortVolatile(o, offset);
3201         } while (!weakCompareAndSetShort(o, offset,
3202                                                 current, (short) (current ^ mask)));
3203         return current;
3204     }
3205 
3206     @ForceInline
3207     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3208         short current;
3209         do {
3210             current = getShort(o, offset);
3211         } while (!weakCompareAndSetShortRelease(o, offset,
3212                                                current, (short) (current ^ mask)));
3213         return current;
3214     }
3215 
3216     @ForceInline
3217     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3218         short current;
3219         do {
3220             // Plain read, the value is a hint, the acquire CAS does the work
3221             current = getShort(o, offset);
3222         } while (!weakCompareAndSetShortAcquire(o, offset,
3223                                                current, (short) (current ^ mask)));
3224         return current;
3225     }
3226 
3227 
3228     @ForceInline
3229     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3230         int current;
3231         do {
3232             current = getIntVolatile(o, offset);
3233         } while (!weakCompareAndSetInt(o, offset,
3234                                                 current, current | mask));
3235         return current;
3236     }
3237 
3238     @ForceInline
3239     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3240         int current;
3241         do {
3242             current = getInt(o, offset);
3243         } while (!weakCompareAndSetIntRelease(o, offset,
3244                                                current, current | mask));
3245         return current;
3246     }
3247 
3248     @ForceInline
3249     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3250         int current;
3251         do {
3252             // Plain read, the value is a hint, the acquire CAS does the work
3253             current = getInt(o, offset);
3254         } while (!weakCompareAndSetIntAcquire(o, offset,
3255                                                current, current | mask));
3256         return current;
3257     }
3258 
3259     /**
3260      * Atomically replaces the current value of a field or array element within
3261      * the given object with the result of bitwise AND between the current value
3262      * and mask.
3263      *
3264      * @param o object/array to update the field/element in
3265      * @param offset field/element offset
3266      * @param mask the mask value
3267      * @return the previous value
3268      * @since 9
3269      */
3270     @ForceInline
3271     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3272         int current;
3273         do {
3274             current = getIntVolatile(o, offset);
3275         } while (!weakCompareAndSetInt(o, offset,
3276                                                 current, current & mask));
3277         return current;
3278     }
3279 
3280     @ForceInline
3281     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3282         int current;
3283         do {
3284             current = getInt(o, offset);
3285         } while (!weakCompareAndSetIntRelease(o, offset,
3286                                                current, current & mask));
3287         return current;
3288     }
3289 
3290     @ForceInline
3291     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3292         int current;
3293         do {
3294             // Plain read, the value is a hint, the acquire CAS does the work
3295             current = getInt(o, offset);
3296         } while (!weakCompareAndSetIntAcquire(o, offset,
3297                                                current, current & mask));
3298         return current;
3299     }
3300 
3301     @ForceInline
3302     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3303         int current;
3304         do {
3305             current = getIntVolatile(o, offset);
3306         } while (!weakCompareAndSetInt(o, offset,
3307                                                 current, current ^ mask));
3308         return current;
3309     }
3310 
3311     @ForceInline
3312     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3313         int current;
3314         do {
3315             current = getInt(o, offset);
3316         } while (!weakCompareAndSetIntRelease(o, offset,
3317                                                current, current ^ mask));
3318         return current;
3319     }
3320 
3321     @ForceInline
3322     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3323         int current;
3324         do {
3325             // Plain read, the value is a hint, the acquire CAS does the work
3326             current = getInt(o, offset);
3327         } while (!weakCompareAndSetIntAcquire(o, offset,
3328                                                current, current ^ mask));
3329         return current;
3330     }
3331 
3332 
3333     @ForceInline
3334     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3335         long current;
3336         do {
3337             current = getLongVolatile(o, offset);
3338         } while (!weakCompareAndSetLong(o, offset,
3339                                                 current, current | mask));
3340         return current;
3341     }
3342 
3343     @ForceInline
3344     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3345         long current;
3346         do {
3347             current = getLong(o, offset);
3348         } while (!weakCompareAndSetLongRelease(o, offset,
3349                                                current, current | mask));
3350         return current;
3351     }
3352 
3353     @ForceInline
3354     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3355         long current;
3356         do {
3357             // Plain read, the value is a hint, the acquire CAS does the work
3358             current = getLong(o, offset);
3359         } while (!weakCompareAndSetLongAcquire(o, offset,
3360                                                current, current | mask));
3361         return current;
3362     }
3363 
3364     @ForceInline
3365     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3366         long current;
3367         do {
3368             current = getLongVolatile(o, offset);
3369         } while (!weakCompareAndSetLong(o, offset,
3370                                                 current, current & mask));
3371         return current;
3372     }
3373 
3374     @ForceInline
3375     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3376         long current;
3377         do {
3378             current = getLong(o, offset);
3379         } while (!weakCompareAndSetLongRelease(o, offset,
3380                                                current, current & mask));
3381         return current;
3382     }
3383 
3384     @ForceInline
3385     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3386         long current;
3387         do {
3388             // Plain read, the value is a hint, the acquire CAS does the work
3389             current = getLong(o, offset);
3390         } while (!weakCompareAndSetLongAcquire(o, offset,
3391                                                current, current & mask));
3392         return current;
3393     }
3394 
3395     @ForceInline
3396     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3397         long current;
3398         do {
3399             current = getLongVolatile(o, offset);
3400         } while (!weakCompareAndSetLong(o, offset,
3401                                                 current, current ^ mask));
3402         return current;
3403     }
3404 
3405     @ForceInline
3406     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3407         long current;
3408         do {
3409             current = getLong(o, offset);
3410         } while (!weakCompareAndSetLongRelease(o, offset,
3411                                                current, current ^ mask));
3412         return current;
3413     }
3414 
3415     @ForceInline
3416     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3417         long current;
3418         do {
3419             // Plain read, the value is a hint, the acquire CAS does the work
3420             current = getLong(o, offset);
3421         } while (!weakCompareAndSetLongAcquire(o, offset,
3422                                                current, current ^ mask));
3423         return current;
3424     }
3425 
3426 
3427 
3428     /**
3429      * Ensures that loads before the fence will not be reordered with loads and
3430      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3431      *
3432      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3433      * (an "acquire fence").
3434      *
3435      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3436      *
3437      * @since 1.8
3438      */
3439     @IntrinsicCandidate
3440     public final void loadFence() {
3441         // If loadFence intrinsic is not available, fall back to full fence.
3442         fullFence();
3443     }
3444 
3445     /**
3446      * Ensures that loads and stores before the fence will not be reordered with
3447      * stores after the fence; a "StoreStore plus LoadStore barrier".
3448      *
3449      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3450      * (a "release fence").
3451      *
3452      * Provides a StoreStore barrier followed by a LoadStore barrier.
3453      *
3454      * @since 1.8
3455      */
3456     @IntrinsicCandidate
3457     public final void storeFence() {
3458         // If storeFence intrinsic is not available, fall back to full fence.
3459         fullFence();
3460     }
3461 
3462     /**
3463      * Ensures that loads and stores before the fence will not be reordered
3464      * with loads and stores after the fence.  Implies the effects of both
3465      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3466      * barrier.
3467      *
3468      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3469      * @since 1.8
3470      */
3471     @IntrinsicCandidate
3472     public native void fullFence();
3473 
3474     /**
3475      * Ensures that loads before the fence will not be reordered with
3476      * loads after the fence.
3477      *
3478      * @implNote
3479      * This method is operationally equivalent to {@link #loadFence()}.
3480      *
3481      * @since 9
3482      */
3483     public final void loadLoadFence() {
3484         loadFence();
3485     }
3486 
3487     /**
3488      * Ensures that stores before the fence will not be reordered with
3489      * stores after the fence.
3490      *
3491      * @since 9
3492      */
3493     @IntrinsicCandidate
3494     public final void storeStoreFence() {
3495         // If storeStoreFence intrinsic is not available, fall back to storeFence.
3496         storeFence();
3497     }
3498 
3499     /**
3500      * Throws IllegalAccessError; for use by the VM for access control
3501      * error support.
3502      * @since 1.8
3503      */
3504     private static void throwIllegalAccessError() {
3505         throw new IllegalAccessError();
3506     }
3507 
3508     /**
3509      * Throws NoSuchMethodError; for use by the VM for redefinition support.
3510      * @since 13
3511      */
3512     private static void throwNoSuchMethodError() {
3513         throw new NoSuchMethodError();
3514     }
3515 
3516     /**
3517      * @return Returns true if the native byte ordering of this
3518      * platform is big-endian, false if it is little-endian.
3519      */
3520     public final boolean isBigEndian() { return BIG_ENDIAN; }
3521 
3522     /**
3523      * @return Returns true if this platform is capable of performing
3524      * accesses at addresses which are not aligned for the type of the
3525      * primitive type being accessed, false otherwise.
3526      */
3527     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
3528 
3529     /**
3530      * Fetches a value at some byte offset into a given Java object.
3531      * More specifically, fetches a value within the given object
3532      * <code>o</code> at the given offset, or (if <code>o</code> is
3533      * null) from the memory address whose numerical value is the
3534      * given offset.  <p>
3535      *
3536      * The specification of this method is the same as {@link
3537      * #getLong(Object, long)} except that the offset does not need to
3538      * have been obtained from {@link #objectFieldOffset} on the
3539      * {@link java.lang.reflect.Field} of some Java field.  The value
3540      * in memory is raw data, and need not correspond to any Java
3541      * variable.  Unless <code>o</code> is null, the value accessed
3542      * must be entirely within the allocated object.  The endianness
3543      * of the value in memory is the endianness of the native platform.
3544      *
3545      * <p> The read will be atomic with respect to the largest power
3546      * of two that divides the GCD of the offset and the storage size.
3547      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
3548      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3549      * respectively.  There are no other guarantees of atomicity.
3550      * <p>
3551      * 8-byte atomicity is only guaranteed on platforms on which
3552      * support atomic accesses to longs.
3553      *
3554      * @param o Java heap object in which the value resides, if any, else
3555      *        null
3556      * @param offset The offset in bytes from the start of the object
3557      * @return the value fetched from the indicated object
3558      * @throws RuntimeException No defined exceptions are thrown, not even
3559      *         {@link NullPointerException}
3560      * @since 9
3561      */
3562     @IntrinsicCandidate
3563     public final long getLongUnaligned(Object o, long offset) {
3564         if ((offset & 7) == 0) {
3565             return getLong(o, offset);
3566         } else if ((offset & 3) == 0) {
3567             return makeLong(getInt(o, offset),
3568                             getInt(o, offset + 4));
3569         } else if ((offset & 1) == 0) {
3570             return makeLong(getShort(o, offset),
3571                             getShort(o, offset + 2),
3572                             getShort(o, offset + 4),
3573                             getShort(o, offset + 6));
3574         } else {
3575             return makeLong(getByte(o, offset),
3576                             getByte(o, offset + 1),
3577                             getByte(o, offset + 2),
3578                             getByte(o, offset + 3),
3579                             getByte(o, offset + 4),
3580                             getByte(o, offset + 5),
3581                             getByte(o, offset + 6),
3582                             getByte(o, offset + 7));
3583         }
3584     }
3585     /**
3586      * As {@link #getLongUnaligned(Object, long)} but with an
3587      * additional argument which specifies the endianness of the value
3588      * as stored in memory.
3589      *
3590      * @param o Java heap object in which the variable resides
3591      * @param offset The offset in bytes from the start of the object
3592      * @param bigEndian The endianness of the value
3593      * @return the value fetched from the indicated object
3594      * @since 9
3595      */
3596     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
3597         return convEndian(bigEndian, getLongUnaligned(o, offset));
3598     }
3599 
3600     /** @see #getLongUnaligned(Object, long) */
3601     @IntrinsicCandidate
3602     public final int getIntUnaligned(Object o, long offset) {
3603         if ((offset & 3) == 0) {
3604             return getInt(o, offset);
3605         } else if ((offset & 1) == 0) {
3606             return makeInt(getShort(o, offset),
3607                            getShort(o, offset + 2));
3608         } else {
3609             return makeInt(getByte(o, offset),
3610                            getByte(o, offset + 1),
3611                            getByte(o, offset + 2),
3612                            getByte(o, offset + 3));
3613         }
3614     }
3615     /** @see #getLongUnaligned(Object, long, boolean) */
3616     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
3617         return convEndian(bigEndian, getIntUnaligned(o, offset));
3618     }
3619 
3620     /** @see #getLongUnaligned(Object, long) */
3621     @IntrinsicCandidate
3622     public final short getShortUnaligned(Object o, long offset) {
3623         if ((offset & 1) == 0) {
3624             return getShort(o, offset);
3625         } else {
3626             return makeShort(getByte(o, offset),
3627                              getByte(o, offset + 1));
3628         }
3629     }
3630     /** @see #getLongUnaligned(Object, long, boolean) */
3631     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
3632         return convEndian(bigEndian, getShortUnaligned(o, offset));
3633     }
3634 
3635     /** @see #getLongUnaligned(Object, long) */
3636     @IntrinsicCandidate
3637     public final char getCharUnaligned(Object o, long offset) {
3638         if ((offset & 1) == 0) {
3639             return getChar(o, offset);
3640         } else {
3641             return (char)makeShort(getByte(o, offset),
3642                                    getByte(o, offset + 1));
3643         }
3644     }
3645 
3646     /** @see #getLongUnaligned(Object, long, boolean) */
3647     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
3648         return convEndian(bigEndian, getCharUnaligned(o, offset));
3649     }
3650 
3651     /**
3652      * Stores a value at some byte offset into a given Java object.
3653      * <p>
3654      * The specification of this method is the same as {@link
3655      * #getLong(Object, long)} except that the offset does not need to
3656      * have been obtained from {@link #objectFieldOffset} on the
3657      * {@link java.lang.reflect.Field} of some Java field.  The value
3658      * in memory is raw data, and need not correspond to any Java
3659      * variable.  The endianness of the value in memory is the
3660      * endianness of the native platform.
3661      * <p>
3662      * The write will be atomic with respect to the largest power of
3663      * two that divides the GCD of the offset and the storage size.
3664      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
3665      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3666      * respectively.  There are no other guarantees of atomicity.
3667      * <p>
3668      * 8-byte atomicity is only guaranteed on platforms on which
3669      * support atomic accesses to longs.
3670      *
3671      * @param o Java heap object in which the value resides, if any, else
3672      *        null
3673      * @param offset The offset in bytes from the start of the object
3674      * @param x the value to store
3675      * @throws RuntimeException No defined exceptions are thrown, not even
3676      *         {@link NullPointerException}
3677      * @since 9
3678      */
3679     @IntrinsicCandidate
3680     public final void putLongUnaligned(Object o, long offset, long x) {
3681         if ((offset & 7) == 0) {
3682             putLong(o, offset, x);
3683         } else if ((offset & 3) == 0) {
3684             putLongParts(o, offset,
3685                          (int)(x >> 0),
3686                          (int)(x >>> 32));
3687         } else if ((offset & 1) == 0) {
3688             putLongParts(o, offset,
3689                          (short)(x >>> 0),
3690                          (short)(x >>> 16),
3691                          (short)(x >>> 32),
3692                          (short)(x >>> 48));
3693         } else {
3694             putLongParts(o, offset,
3695                          (byte)(x >>> 0),
3696                          (byte)(x >>> 8),
3697                          (byte)(x >>> 16),
3698                          (byte)(x >>> 24),
3699                          (byte)(x >>> 32),
3700                          (byte)(x >>> 40),
3701                          (byte)(x >>> 48),
3702                          (byte)(x >>> 56));
3703         }
3704     }
3705 
3706     /**
3707      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
3708      * argument which specifies the endianness of the value as stored in memory.
3709      * @param o Java heap object in which the value resides
3710      * @param offset The offset in bytes from the start of the object
3711      * @param x the value to store
3712      * @param bigEndian The endianness of the value
3713      * @throws RuntimeException No defined exceptions are thrown, not even
3714      *         {@link NullPointerException}
3715      * @since 9
3716      */
3717     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
3718         putLongUnaligned(o, offset, convEndian(bigEndian, x));
3719     }
3720 
3721     /** @see #putLongUnaligned(Object, long, long) */
3722     @IntrinsicCandidate
3723     public final void putIntUnaligned(Object o, long offset, int x) {
3724         if ((offset & 3) == 0) {
3725             putInt(o, offset, x);
3726         } else if ((offset & 1) == 0) {
3727             putIntParts(o, offset,
3728                         (short)(x >> 0),
3729                         (short)(x >>> 16));
3730         } else {
3731             putIntParts(o, offset,
3732                         (byte)(x >>> 0),
3733                         (byte)(x >>> 8),
3734                         (byte)(x >>> 16),
3735                         (byte)(x >>> 24));
3736         }
3737     }
3738     /** @see #putLongUnaligned(Object, long, long, boolean) */
3739     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
3740         putIntUnaligned(o, offset, convEndian(bigEndian, x));
3741     }
3742 
3743     /** @see #putLongUnaligned(Object, long, long) */
3744     @IntrinsicCandidate
3745     public final void putShortUnaligned(Object o, long offset, short x) {
3746         if ((offset & 1) == 0) {
3747             putShort(o, offset, x);
3748         } else {
3749             putShortParts(o, offset,
3750                           (byte)(x >>> 0),
3751                           (byte)(x >>> 8));
3752         }
3753     }
3754     /** @see #putLongUnaligned(Object, long, long, boolean) */
3755     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
3756         putShortUnaligned(o, offset, convEndian(bigEndian, x));
3757     }
3758 
3759     /** @see #putLongUnaligned(Object, long, long) */
3760     @IntrinsicCandidate
3761     public final void putCharUnaligned(Object o, long offset, char x) {
3762         putShortUnaligned(o, offset, (short)x);
3763     }
3764     /** @see #putLongUnaligned(Object, long, long, boolean) */
3765     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
3766         putCharUnaligned(o, offset, convEndian(bigEndian, x));
3767     }
3768 
3769     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
3770 
3771     // These methods construct integers from bytes.  The byte ordering
3772     // is the native endianness of this platform.
3773     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3774         return ((toUnsignedLong(i0) << pickPos(56, 0))
3775               | (toUnsignedLong(i1) << pickPos(56, 8))
3776               | (toUnsignedLong(i2) << pickPos(56, 16))
3777               | (toUnsignedLong(i3) << pickPos(56, 24))
3778               | (toUnsignedLong(i4) << pickPos(56, 32))
3779               | (toUnsignedLong(i5) << pickPos(56, 40))
3780               | (toUnsignedLong(i6) << pickPos(56, 48))
3781               | (toUnsignedLong(i7) << pickPos(56, 56)));
3782     }
3783     private static long makeLong(short i0, short i1, short i2, short i3) {
3784         return ((toUnsignedLong(i0) << pickPos(48, 0))
3785               | (toUnsignedLong(i1) << pickPos(48, 16))
3786               | (toUnsignedLong(i2) << pickPos(48, 32))
3787               | (toUnsignedLong(i3) << pickPos(48, 48)));
3788     }
3789     private static long makeLong(int i0, int i1) {
3790         return (toUnsignedLong(i0) << pickPos(32, 0))
3791              | (toUnsignedLong(i1) << pickPos(32, 32));
3792     }
3793     private static int makeInt(short i0, short i1) {
3794         return (toUnsignedInt(i0) << pickPos(16, 0))
3795              | (toUnsignedInt(i1) << pickPos(16, 16));
3796     }
3797     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
3798         return ((toUnsignedInt(i0) << pickPos(24, 0))
3799               | (toUnsignedInt(i1) << pickPos(24, 8))
3800               | (toUnsignedInt(i2) << pickPos(24, 16))
3801               | (toUnsignedInt(i3) << pickPos(24, 24)));
3802     }
3803     private static short makeShort(byte i0, byte i1) {
3804         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
3805                      | (toUnsignedInt(i1) << pickPos(8, 8)));
3806     }
3807 
3808     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
3809     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
3810     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
3811 
3812     // These methods write integers to memory from smaller parts
3813     // provided by their caller.  The ordering in which these parts
3814     // are written is the native endianness of this platform.
3815     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3816         putByte(o, offset + 0, pick(i0, i7));
3817         putByte(o, offset + 1, pick(i1, i6));
3818         putByte(o, offset + 2, pick(i2, i5));
3819         putByte(o, offset + 3, pick(i3, i4));
3820         putByte(o, offset + 4, pick(i4, i3));
3821         putByte(o, offset + 5, pick(i5, i2));
3822         putByte(o, offset + 6, pick(i6, i1));
3823         putByte(o, offset + 7, pick(i7, i0));
3824     }
3825     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
3826         putShort(o, offset + 0, pick(i0, i3));
3827         putShort(o, offset + 2, pick(i1, i2));
3828         putShort(o, offset + 4, pick(i2, i1));
3829         putShort(o, offset + 6, pick(i3, i0));
3830     }
3831     private void putLongParts(Object o, long offset, int i0, int i1) {
3832         putInt(o, offset + 0, pick(i0, i1));
3833         putInt(o, offset + 4, pick(i1, i0));
3834     }
3835     private void putIntParts(Object o, long offset, short i0, short i1) {
3836         putShort(o, offset + 0, pick(i0, i1));
3837         putShort(o, offset + 2, pick(i1, i0));
3838     }
3839     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
3840         putByte(o, offset + 0, pick(i0, i3));
3841         putByte(o, offset + 1, pick(i1, i2));
3842         putByte(o, offset + 2, pick(i2, i1));
3843         putByte(o, offset + 3, pick(i3, i0));
3844     }
3845     private void putShortParts(Object o, long offset, byte i0, byte i1) {
3846         putByte(o, offset + 0, pick(i0, i1));
3847         putByte(o, offset + 1, pick(i1, i0));
3848     }
3849 
3850     // Zero-extend an integer
3851     private static int toUnsignedInt(byte n)    { return n & 0xff; }
3852     private static int toUnsignedInt(short n)   { return n & 0xffff; }
3853     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
3854     private static long toUnsignedLong(short n) { return n & 0xffffl; }
3855     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
3856 
3857     // Maybe byte-reverse an integer
3858     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
3859     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
3860     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
3861     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
3862 
3863 
3864 
3865     private native long allocateMemory0(long bytes);
3866     private native long reallocateMemory0(long address, long bytes);
3867     private native void freeMemory0(long address);
3868     @IntrinsicCandidate
3869     private native void setMemory0(Object o, long offset, long bytes, byte value);
3870     @IntrinsicCandidate
3871     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
3872     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
3873     private native long objectFieldOffset0(Field f); // throws IAE
3874     private native long knownObjectFieldOffset0(Class<?> c, String name); // error code: -1 not found, -2 static
3875     private native long staticFieldOffset0(Field f); // throws IAE
3876     private native Object staticFieldBase0(Field f); // throws IAE
3877     private native boolean shouldBeInitialized0(Class<?> c);
3878     private native void ensureClassInitialized0(Class<?> c);
3879     private native int arrayBaseOffset0(Class<?> arrayClass); // public version returns long to promote correct arithmetic
3880     private native int arrayIndexScale0(Class<?> arrayClass);
3881     private native int getLoadAverage0(double[] loadavg, int nelems);
3882 
3883 
3884     /**
3885      * Invokes the given direct byte buffer's cleaner, if any.
3886      *
3887      * @param directBuffer a direct byte buffer
3888      * @throws NullPointerException     if {@code directBuffer} is null
3889      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
3890      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
3891      *                                  {@link java.nio.Buffer#duplicate duplicate}
3892      */
3893     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
3894         if (!directBuffer.isDirect())
3895             throw new IllegalArgumentException("buffer is non-direct");
3896 
3897         DirectBuffer db = (DirectBuffer) directBuffer;
3898         if (db.attachment() != null)
3899             throw new IllegalArgumentException("duplicate or slice");
3900 
3901         Cleaner cleaner = db.cleaner();
3902         if (cleaner != null) {
3903             cleaner.clean();
3904         }
3905     }
3906 }