1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.ref.Cleaner;
  29 import jdk.internal.value.ValueClass;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import jdk.internal.vm.annotation.IntrinsicCandidate;
  32 import sun.nio.ch.DirectBuffer;
  33 
  34 import java.lang.reflect.Field;
  35 import java.security.ProtectionDomain;
  36 
  37 import static jdk.internal.misc.UnsafeConstants.*;
  38 
  39 /**
  40  * A collection of methods for performing low-level, unsafe operations.
  41  * Although the class and all methods are public, use of this class is
  42  * limited because only trusted code can obtain instances of it.
  43  *
  44  * <em>Note:</em> It is the responsibility of the caller to make sure
  45  * arguments are checked before methods of this class are
  46  * called. While some rudimentary checks are performed on the input,
  47  * the checks are best effort and when performance is an overriding
  48  * priority, as when methods of this class are optimized by the
  49  * runtime compiler, some or all checks (if any) may be elided. Hence,
  50  * the caller must not rely on the checks and corresponding
  51  * exceptions!
  52  *
  53  * @author John R. Rose
  54  * @see #getUnsafe
  55  */
  56 
  57 public final class Unsafe {
  58 
  59     private static native void registerNatives();
  60     static {
  61         runtimeSetup();
  62     }
  63 
  64     // Called from JVM when loading an AOT cache
  65     private static void runtimeSetup() {
  66         registerNatives();
  67     }
  68 
  69     private Unsafe() {}
  70 
  71     private static final Unsafe theUnsafe = new Unsafe();
  72 
  73     /**
  74      * Provides the caller with the capability of performing unsafe
  75      * operations.
  76      *
  77      * <p>The returned {@code Unsafe} object should be carefully guarded
  78      * by the caller, since it can be used to read and write data at arbitrary
  79      * memory addresses.  It must never be passed to untrusted code.
  80      *
  81      * <p>Most methods in this class are very low-level, and correspond to a
  82      * small number of hardware instructions (on typical machines).  Compilers
  83      * are encouraged to optimize these methods accordingly.
  84      *
  85      * <p>Here is a suggested idiom for using unsafe operations:
  86      *
  87      * <pre> {@code
  88      * class MyTrustedClass {
  89      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  90      *   ...
  91      *   private long myCountAddress = ...;
  92      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  93      * }}</pre>
  94      *
  95      * (It may assist compilers to make the local variable {@code final}.)
  96      */
  97     public static Unsafe getUnsafe() {
  98         return theUnsafe;
  99     }
 100 
 101     //--- peek and poke operations
 102     // (compilers should optimize these to memory ops)
 103 
 104     // These work on object fields in the Java heap.
 105     // They will not work on elements of packed arrays.
 106 
 107     /**
 108      * Fetches a value from a given Java variable.
 109      * More specifically, fetches a field or array element within the given
 110      * object {@code o} at the given offset, or (if {@code o} is null)
 111      * from the memory address whose numerical value is the given offset.
 112      * <p>
 113      * The results are undefined unless one of the following cases is true:
 114      * <ul>
 115      * <li>The offset was obtained from {@link #objectFieldOffset} on
 116      * the {@link java.lang.reflect.Field} of some Java field and the object
 117      * referred to by {@code o} is of a class compatible with that
 118      * field's class.
 119      *
 120      * <li>The offset and object reference {@code o} (either null or
 121      * non-null) were both obtained via {@link #staticFieldOffset}
 122      * and {@link #staticFieldBase} (respectively) from the
 123      * reflective {@link Field} representation of some Java field.
 124      *
 125      * <li>The object referred to by {@code o} is an array, and the offset
 126      * is an integer of the form {@code B+N*S}, where {@code N} is
 127      * a valid index into the array, and {@code B} and {@code S} are
 128      * the values obtained by {@link #arrayBaseOffset} and {@link
 129      * #arrayIndexScale} (respectively) from the array's class.  The value
 130      * referred to is the {@code N}<em>th</em> element of the array.
 131      *
 132      * </ul>
 133      * <p>
 134      * If one of the above cases is true, the call references a specific Java
 135      * variable (field or array element).  However, the results are undefined
 136      * if that variable is not in fact of the type returned by this method.
 137      * <p>
 138      * This method refers to a variable by means of two parameters, and so
 139      * it provides (in effect) a <em>double-register</em> addressing mode
 140      * for Java variables.  When the object reference is null, this method
 141      * uses its offset as an absolute address.  This is similar in operation
 142      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 143      * <em>single-register</em> addressing mode for non-Java variables.
 144      * However, because Java variables may have a different layout in memory
 145      * from non-Java variables, programmers should not assume that these
 146      * two addressing modes are ever equivalent.  Also, programmers should
 147      * remember that offsets from the double-register addressing mode cannot
 148      * be portably confused with longs used in the single-register addressing
 149      * mode.
 150      *
 151      * @param o Java heap object in which the variable resides, if any, else
 152      *        null
 153      * @param offset indication of where the variable resides in a Java heap
 154      *        object, if any, else a memory address locating the variable
 155      *        statically
 156      * @return the value fetched from the indicated Java variable
 157      * @throws RuntimeException No defined exceptions are thrown, not even
 158      *         {@link NullPointerException}
 159      */
 160     @IntrinsicCandidate
 161     public native int getInt(Object o, long offset);
 162 
 163     /**
 164      * Stores a value into a given Java variable.
 165      * <p>
 166      * The first two parameters are interpreted exactly as with
 167      * {@link #getInt(Object, long)} to refer to a specific
 168      * Java variable (field or array element).  The given value
 169      * is stored into that variable.
 170      * <p>
 171      * The variable must be of the same type as the method
 172      * parameter {@code x}.
 173      *
 174      * @param o Java heap object in which the variable resides, if any, else
 175      *        null
 176      * @param offset indication of where the variable resides in a Java heap
 177      *        object, if any, else a memory address locating the variable
 178      *        statically
 179      * @param x the value to store into the indicated Java variable
 180      * @throws RuntimeException No defined exceptions are thrown, not even
 181      *         {@link NullPointerException}
 182      */
 183     @IntrinsicCandidate
 184     public native void putInt(Object o, long offset, int x);
 185 
 186 
 187     /**
 188      * Returns true if the given field is flattened.
 189      */
 190     public boolean isFlatField(Field f) {
 191         if (f == null) {
 192             throw new NullPointerException();
 193         }
 194         return isFlatField0(f);
 195     }
 196 
 197     private native boolean isFlatField0(Object o);
 198 
 199     /* Returns true if the given field has a null marker
 200      * <p>
 201      * Nullable flat fields are stored in a flattened representation
 202      * and have an associated null marker to indicate if the the field value is
 203      * null or the one stored with the flat representation
 204      */
 205 
 206     public boolean hasNullMarker(Field f) {
 207         if (f == null) {
 208             throw new NullPointerException();
 209         }
 210         return hasNullMarker0(f);
 211     }
 212 
 213     private native boolean hasNullMarker0(Object o);
 214 
 215     /* Returns the offset of the null marker of the field,
 216     * or -1 if the field doesn't have a null marker
 217     */
 218 
 219     public int nullMarkerOffset(Field f) {
 220         if (f == null) {
 221             throw new NullPointerException();
 222         }
 223         return nullMarkerOffset0(f);
 224     }
 225 
 226     private native int nullMarkerOffset0(Object o);
 227 
 228     public static final int NON_FLAT_LAYOUT = 0;
 229 
 230     /* Reports the kind of layout used for an element in the storage
 231      * allocation of the given array. Do not expect to perform any logic
 232      * or layout control with this value, it is just an opaque token
 233      * used for performance reasons.
 234      *
 235      * A layout of 0 indicates this array is not flat.
 236      */
 237     public int arrayLayout(Class<?> arrayClass) {
 238         if (arrayClass == null) {
 239             throw new NullPointerException();
 240         }
 241         return arrayLayout0(arrayClass);
 242     }
 243 
 244     private native int arrayLayout0(Object o);
 245 
 246 
 247     /* Reports the kind of layout used for a given field in the storage
 248      * allocation of its class.  Do not expect to perform any logic
 249      * or layout control with this value, it is just an opaque token
 250      * used for performance reasons.
 251      *
 252      * A layout of 0 indicates this field is not flat.
 253      */
 254     public int fieldLayout(Field f) {
 255         if (f == null) {
 256             throw new NullPointerException();
 257         }
 258         return fieldLayout0(f);
 259     }
 260 
 261     private native int fieldLayout0(Object o);
 262 
 263     public native Object[] newSpecialArray(Class<?> componentType,
 264                                                   int length, int layoutKind);
 265 
 266     /**
 267      * Returns true if the given class is a flattened array.
 268      */
 269     @IntrinsicCandidate
 270     public native boolean isFlatArray(Class<?> arrayClass);
 271 
 272     /**
 273      * Fetches a reference value from a given Java variable.
 274      * This method can return a reference to either an object or value
 275      * or a null reference.
 276      *
 277      * @see #getInt(Object, long)
 278      */
 279     @IntrinsicCandidate
 280     public native Object getReference(Object o, long offset);
 281 
 282     /**
 283      * Stores a reference value into a given Java variable.
 284      * This method can store a reference to either an object or value
 285      * or a null reference.
 286      * <p>
 287      * Unless the reference {@code x} being stored is either null
 288      * or matches the field type, the results are undefined.
 289      * If the reference {@code o} is non-null, card marks or
 290      * other store barriers for that object (if the VM requires them)
 291      * are updated.
 292      * @see #putInt(Object, long, int)
 293      */
 294     @IntrinsicCandidate
 295     public native void putReference(Object o, long offset, Object x);
 296 
 297     /**
 298      * Fetches a value of type {@code <V>} from a given Java variable.
 299      * More specifically, fetches a field or array element within the given
 300      * {@code o} object at the given offset, or (if {@code o} is null)
 301      * from the memory address whose numerical value is the given offset.
 302      *
 303      * @param o Java heap object in which the variable resides, if any, else
 304      *        null
 305      * @param offset indication of where the variable resides in a Java heap
 306      *        object, if any, else a memory address locating the variable
 307      *        statically
 308      * @param valueType value type
 309      * @param <V> the type of a value
 310      * @return the value fetched from the indicated Java variable
 311      * @throws RuntimeException No defined exceptions are thrown, not even
 312      *         {@link NullPointerException}
 313      */
 314     @IntrinsicCandidate
 315     public native <V> V getValue(Object o, long offset, Class<?> valueType);
 316 
 317     /**
 318      * Fetches a value of type {@code <V>} from a given Java variable.
 319      * More specifically, fetches a field or array element within the given
 320      * {@code o} object at the given offset, or (if {@code o} is null)
 321      * from the memory address whose numerical value is the given offset.
 322      *
 323      * @param o Java heap object in which the variable resides, if any, else
 324      *        null
 325      * @param offset indication of where the variable resides in a Java heap
 326      *        object, if any, else a memory address locating the variable
 327      *        statically
 328      * @param layoutKind opaque value used by the VM to know the layout
 329      *        the field or array element. This value must be retrieved with
 330      *        {@link #fieldLayout} or {@link #arrayLayout}.
 331      * @param valueType value type
 332      * @param <V> the type of a value
 333      * @return the value fetched from the indicated Java variable
 334      * @throws RuntimeException No defined exceptions are thrown, not even
 335      *         {@link NullPointerException}
 336      */
 337     public native <V> V getFlatValue(Object o, long offset, int layoutKind, Class<?> valueType);
 338 
 339 
 340     /**
 341      * Stores the given value into a given Java variable.
 342      *
 343      * Unless the reference {@code o} being stored is either null
 344      * or matches the field type, the results are undefined.
 345      *
 346      * @param o Java heap object in which the variable resides, if any, else
 347      *        null
 348      * @param offset indication of where the variable resides in a Java heap
 349      *        object, if any, else a memory address locating the variable
 350      *        statically
 351      * @param valueType value type
 352      * @param v the value to store into the indicated Java variable
 353      * @param <V> the type of a value
 354      * @throws RuntimeException No defined exceptions are thrown, not even
 355      *         {@link NullPointerException}
 356      */
 357     @IntrinsicCandidate
 358     public native <V> void putValue(Object o, long offset, Class<?> valueType, V v);
 359 
 360     /**
 361      * Stores the given value into a given Java variable.
 362      *
 363      * Unless the reference {@code o} being stored is either null
 364      * or matches the field type, the results are undefined.
 365      *
 366      * @param o Java heap object in which the variable resides, if any, else
 367      *        null
 368      * @param offset indication of where the variable resides in a Java heap
 369      *        object, if any, else a memory address locating the variable
 370      *        statically
 371      * @param layoutKind opaque value used by the VM to know the layout
 372      *        the field or array element. This value must be retrieved with
 373      *        {@link #fieldLayout} or {@link #arrayLayout}.
 374      * @param valueType value type
 375      * @param v the value to store into the indicated Java variable
 376      * @param <V> the type of a value
 377      * @throws RuntimeException No defined exceptions are thrown, not even
 378      *         {@link NullPointerException}
 379      */
 380     public native <V> void putFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, V v);
 381 
 382     /**
 383      * Returns an object instance with a private buffered value whose layout
 384      * and contents is exactly the given value instance.  The return object
 385      * is in the larval state that can be updated using the unsafe put operation.
 386      *
 387      * @param value a value instance
 388      * @param <V> the type of the given value instance
 389      */
 390     @IntrinsicCandidate
 391     public native <V> V makePrivateBuffer(V value);
 392 
 393     /**
 394      * Exits the larval state and returns a value instance.
 395      *
 396      * @param value a value instance
 397      * @param <V> the type of the given value instance
 398      */
 399     @IntrinsicCandidate
 400     public native <V> V finishPrivateBuffer(V value);
 401 
 402     /**
 403      * Returns the header size of the given value type.
 404      *
 405      * @param valueType value type
 406      * @return the header size of the value type
 407      */
 408     public native <V> long valueHeaderSize(Class<V> valueType);
 409 
 410     /** @see #getInt(Object, long) */
 411     @IntrinsicCandidate
 412     public native boolean getBoolean(Object o, long offset);
 413 
 414     /** @see #putInt(Object, long, int) */
 415     @IntrinsicCandidate
 416     public native void    putBoolean(Object o, long offset, boolean x);
 417 
 418     /** @see #getInt(Object, long) */
 419     @IntrinsicCandidate
 420     public native byte    getByte(Object o, long offset);
 421 
 422     /** @see #putInt(Object, long, int) */
 423     @IntrinsicCandidate
 424     public native void    putByte(Object o, long offset, byte x);
 425 
 426     /** @see #getInt(Object, long) */
 427     @IntrinsicCandidate
 428     public native short   getShort(Object o, long offset);
 429 
 430     /** @see #putInt(Object, long, int) */
 431     @IntrinsicCandidate
 432     public native void    putShort(Object o, long offset, short x);
 433 
 434     /** @see #getInt(Object, long) */
 435     @IntrinsicCandidate
 436     public native char    getChar(Object o, long offset);
 437 
 438     /** @see #putInt(Object, long, int) */
 439     @IntrinsicCandidate
 440     public native void    putChar(Object o, long offset, char x);
 441 
 442     /** @see #getInt(Object, long) */
 443     @IntrinsicCandidate
 444     public native long    getLong(Object o, long offset);
 445 
 446     /** @see #putInt(Object, long, int) */
 447     @IntrinsicCandidate
 448     public native void    putLong(Object o, long offset, long x);
 449 
 450     /** @see #getInt(Object, long) */
 451     @IntrinsicCandidate
 452     public native float   getFloat(Object o, long offset);
 453 
 454     /** @see #putInt(Object, long, int) */
 455     @IntrinsicCandidate
 456     public native void    putFloat(Object o, long offset, float x);
 457 
 458     /** @see #getInt(Object, long) */
 459     @IntrinsicCandidate
 460     public native double  getDouble(Object o, long offset);
 461 
 462     /** @see #putInt(Object, long, int) */
 463     @IntrinsicCandidate
 464     public native void    putDouble(Object o, long offset, double x);
 465 
 466     /**
 467      * Fetches a native pointer from a given memory address.  If the address is
 468      * zero, or does not point into a block obtained from {@link
 469      * #allocateMemory}, the results are undefined.
 470      *
 471      * <p>If the native pointer is less than 64 bits wide, it is extended as
 472      * an unsigned number to a Java long.  The pointer may be indexed by any
 473      * given byte offset, simply by adding that offset (as a simple integer) to
 474      * the long representing the pointer.  The number of bytes actually read
 475      * from the target address may be determined by consulting {@link
 476      * #addressSize}.
 477      *
 478      * @see #allocateMemory
 479      * @see #getInt(Object, long)
 480      */
 481     @ForceInline
 482     public long getAddress(Object o, long offset) {
 483         if (ADDRESS_SIZE == 4) {
 484             return Integer.toUnsignedLong(getInt(o, offset));
 485         } else {
 486             return getLong(o, offset);
 487         }
 488     }
 489 
 490     /**
 491      * Stores a native pointer into a given memory address.  If the address is
 492      * zero, or does not point into a block obtained from {@link
 493      * #allocateMemory}, the results are undefined.
 494      *
 495      * <p>The number of bytes actually written at the target address may be
 496      * determined by consulting {@link #addressSize}.
 497      *
 498      * @see #allocateMemory
 499      * @see #putInt(Object, long, int)
 500      */
 501     @ForceInline
 502     public void putAddress(Object o, long offset, long x) {
 503         if (ADDRESS_SIZE == 4) {
 504             putInt(o, offset, (int)x);
 505         } else {
 506             putLong(o, offset, x);
 507         }
 508     }
 509 
 510     // These read VM internal data.
 511 
 512     /**
 513      * Fetches an uncompressed reference value from a given native variable
 514      * ignoring the VM's compressed references mode.
 515      *
 516      * @param address a memory address locating the variable
 517      * @return the value fetched from the indicated native variable
 518      */
 519     public native Object getUncompressedObject(long address);
 520 
 521     // These work on values in the C heap.
 522 
 523     /**
 524      * Fetches a value from a given memory address.  If the address is zero, or
 525      * does not point into a block obtained from {@link #allocateMemory}, the
 526      * results are undefined.
 527      *
 528      * @see #allocateMemory
 529      */
 530     @ForceInline
 531     public byte getByte(long address) {
 532         return getByte(null, address);
 533     }
 534 
 535     /**
 536      * Stores a value into a given memory address.  If the address is zero, or
 537      * does not point into a block obtained from {@link #allocateMemory}, the
 538      * results are undefined.
 539      *
 540      * @see #getByte(long)
 541      */
 542     @ForceInline
 543     public void putByte(long address, byte x) {
 544         putByte(null, address, x);
 545     }
 546 
 547     /** @see #getByte(long) */
 548     @ForceInline
 549     public short getShort(long address) {
 550         return getShort(null, address);
 551     }
 552 
 553     /** @see #putByte(long, byte) */
 554     @ForceInline
 555     public void putShort(long address, short x) {
 556         putShort(null, address, x);
 557     }
 558 
 559     /** @see #getByte(long) */
 560     @ForceInline
 561     public char getChar(long address) {
 562         return getChar(null, address);
 563     }
 564 
 565     /** @see #putByte(long, byte) */
 566     @ForceInline
 567     public void putChar(long address, char x) {
 568         putChar(null, address, x);
 569     }
 570 
 571     /** @see #getByte(long) */
 572     @ForceInline
 573     public int getInt(long address) {
 574         return getInt(null, address);
 575     }
 576 
 577     /** @see #putByte(long, byte) */
 578     @ForceInline
 579     public void putInt(long address, int x) {
 580         putInt(null, address, x);
 581     }
 582 
 583     /** @see #getByte(long) */
 584     @ForceInline
 585     public long getLong(long address) {
 586         return getLong(null, address);
 587     }
 588 
 589     /** @see #putByte(long, byte) */
 590     @ForceInline
 591     public void putLong(long address, long x) {
 592         putLong(null, address, x);
 593     }
 594 
 595     /** @see #getByte(long) */
 596     @ForceInline
 597     public float getFloat(long address) {
 598         return getFloat(null, address);
 599     }
 600 
 601     /** @see #putByte(long, byte) */
 602     @ForceInline
 603     public void putFloat(long address, float x) {
 604         putFloat(null, address, x);
 605     }
 606 
 607     /** @see #getByte(long) */
 608     @ForceInline
 609     public double getDouble(long address) {
 610         return getDouble(null, address);
 611     }
 612 
 613     /** @see #putByte(long, byte) */
 614     @ForceInline
 615     public void putDouble(long address, double x) {
 616         putDouble(null, address, x);
 617     }
 618 
 619     /** @see #getAddress(Object, long) */
 620     @ForceInline
 621     public long getAddress(long address) {
 622         return getAddress(null, address);
 623     }
 624 
 625     /** @see #putAddress(Object, long, long) */
 626     @ForceInline
 627     public void putAddress(long address, long x) {
 628         putAddress(null, address, x);
 629     }
 630 
 631 
 632 
 633     //--- helper methods for validating various types of objects/values
 634 
 635     /**
 636      * Create an exception reflecting that some of the input was invalid
 637      *
 638      * <em>Note:</em> It is the responsibility of the caller to make
 639      * sure arguments are checked before the methods are called. While
 640      * some rudimentary checks are performed on the input, the checks
 641      * are best effort and when performance is an overriding priority,
 642      * as when methods of this class are optimized by the runtime
 643      * compiler, some or all checks (if any) may be elided. Hence, the
 644      * caller must not rely on the checks and corresponding
 645      * exceptions!
 646      *
 647      * @return an exception object
 648      */
 649     private RuntimeException invalidInput() {
 650         return new IllegalArgumentException();
 651     }
 652 
 653     /**
 654      * Check if a value is 32-bit clean (32 MSB are all zero)
 655      *
 656      * @param value the 64-bit value to check
 657      *
 658      * @return true if the value is 32-bit clean
 659      */
 660     private boolean is32BitClean(long value) {
 661         return value >>> 32 == 0;
 662     }
 663 
 664     /**
 665      * Check the validity of a size (the equivalent of a size_t)
 666      *
 667      * @throws RuntimeException if the size is invalid
 668      *         (<em>Note:</em> after optimization, invalid inputs may
 669      *         go undetected, which will lead to unpredictable
 670      *         behavior)
 671      */
 672     private void checkSize(long size) {
 673         if (ADDRESS_SIZE == 4) {
 674             // Note: this will also check for negative sizes
 675             if (!is32BitClean(size)) {
 676                 throw invalidInput();
 677             }
 678         } else if (size < 0) {
 679             throw invalidInput();
 680         }
 681     }
 682 
 683     /**
 684      * Check the validity of a native address (the equivalent of void*)
 685      *
 686      * @throws RuntimeException if the address is invalid
 687      *         (<em>Note:</em> after optimization, invalid inputs may
 688      *         go undetected, which will lead to unpredictable
 689      *         behavior)
 690      */
 691     private void checkNativeAddress(long address) {
 692         if (ADDRESS_SIZE == 4) {
 693             // Accept both zero and sign extended pointers. A valid
 694             // pointer will, after the +1 below, either have produced
 695             // the value 0x0 or 0x1. Masking off the low bit allows
 696             // for testing against 0.
 697             if ((((address >> 32) + 1) & ~1) != 0) {
 698                 throw invalidInput();
 699             }
 700         }
 701     }
 702 
 703     /**
 704      * Check the validity of an offset, relative to a base object
 705      *
 706      * @param o the base object
 707      * @param offset the offset to check
 708      *
 709      * @throws RuntimeException if the size is invalid
 710      *         (<em>Note:</em> after optimization, invalid inputs may
 711      *         go undetected, which will lead to unpredictable
 712      *         behavior)
 713      */
 714     private void checkOffset(Object o, long offset) {
 715         if (ADDRESS_SIZE == 4) {
 716             // Note: this will also check for negative offsets
 717             if (!is32BitClean(offset)) {
 718                 throw invalidInput();
 719             }
 720         } else if (offset < 0) {
 721             throw invalidInput();
 722         }
 723     }
 724 
 725     /**
 726      * Check the validity of a double-register pointer
 727      *
 728      * Note: This code deliberately does *not* check for NPE for (at
 729      * least) three reasons:
 730      *
 731      * 1) NPE is not just NULL/0 - there is a range of values all
 732      * resulting in an NPE, which is not trivial to check for
 733      *
 734      * 2) It is the responsibility of the callers of Unsafe methods
 735      * to verify the input, so throwing an exception here is not really
 736      * useful - passing in a NULL pointer is a critical error and the
 737      * must not expect an exception to be thrown anyway.
 738      *
 739      * 3) the actual operations will detect NULL pointers anyway by
 740      * means of traps and signals (like SIGSEGV).
 741      *
 742      * @param o Java heap object, or null
 743      * @param offset indication of where the variable resides in a Java heap
 744      *        object, if any, else a memory address locating the variable
 745      *        statically
 746      *
 747      * @throws RuntimeException if the pointer is invalid
 748      *         (<em>Note:</em> after optimization, invalid inputs may
 749      *         go undetected, which will lead to unpredictable
 750      *         behavior)
 751      */
 752     private void checkPointer(Object o, long offset) {
 753         if (o == null) {
 754             checkNativeAddress(offset);
 755         } else {
 756             checkOffset(o, offset);
 757         }
 758     }
 759 
 760     /**
 761      * Check if a type is a primitive array type
 762      *
 763      * @param c the type to check
 764      *
 765      * @return true if the type is a primitive array type
 766      */
 767     private void checkPrimitiveArray(Class<?> c) {
 768         Class<?> componentType = c.getComponentType();
 769         if (componentType == null || !componentType.isPrimitive()) {
 770             throw invalidInput();
 771         }
 772     }
 773 
 774     /**
 775      * Check that a pointer is a valid primitive array type pointer
 776      *
 777      * Note: pointers off-heap are considered to be primitive arrays
 778      *
 779      * @throws RuntimeException if the pointer is invalid
 780      *         (<em>Note:</em> after optimization, invalid inputs may
 781      *         go undetected, which will lead to unpredictable
 782      *         behavior)
 783      */
 784     private void checkPrimitivePointer(Object o, long offset) {
 785         checkPointer(o, offset);
 786 
 787         if (o != null) {
 788             // If on heap, it must be a primitive array
 789             checkPrimitiveArray(o.getClass());
 790         }
 791     }
 792 
 793 
 794     //--- wrappers for malloc, realloc, free:
 795 
 796     /**
 797      * Round up allocation size to a multiple of HeapWordSize.
 798      */
 799     private long alignToHeapWordSize(long bytes) {
 800         if (bytes >= 0) {
 801             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 802         } else {
 803             throw invalidInput();
 804         }
 805     }
 806 
 807     /**
 808      * Allocates a new block of native memory, of the given size in bytes.  The
 809      * contents of the memory are uninitialized; they will generally be
 810      * garbage.  The resulting native pointer will be zero if and only if the
 811      * requested size is zero.  The resulting native pointer will be aligned for
 812      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 813      * or resize it with {@link #reallocateMemory}.
 814      *
 815      * <em>Note:</em> It is the responsibility of the caller to make
 816      * sure arguments are checked before the methods are called. While
 817      * some rudimentary checks are performed on the input, the checks
 818      * are best effort and when performance is an overriding priority,
 819      * as when methods of this class are optimized by the runtime
 820      * compiler, some or all checks (if any) may be elided. Hence, the
 821      * caller must not rely on the checks and corresponding
 822      * exceptions!
 823      *
 824      * @throws RuntimeException if the size is negative or too large
 825      *         for the native size_t type
 826      *
 827      * @throws OutOfMemoryError if the allocation is refused by the system
 828      *
 829      * @see #getByte(long)
 830      * @see #putByte(long, byte)
 831      */
 832     public long allocateMemory(long bytes) {
 833         bytes = alignToHeapWordSize(bytes);
 834 
 835         allocateMemoryChecks(bytes);
 836 
 837         if (bytes == 0) {
 838             return 0;
 839         }
 840 
 841         long p = allocateMemory0(bytes);
 842         if (p == 0) {
 843             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 844         }
 845 
 846         return p;
 847     }
 848 
 849     /**
 850      * Validate the arguments to allocateMemory
 851      *
 852      * @throws RuntimeException if the arguments are invalid
 853      *         (<em>Note:</em> after optimization, invalid inputs may
 854      *         go undetected, which will lead to unpredictable
 855      *         behavior)
 856      */
 857     private void allocateMemoryChecks(long bytes) {
 858         checkSize(bytes);
 859     }
 860 
 861     /**
 862      * Resizes a new block of native memory, to the given size in bytes.  The
 863      * contents of the new block past the size of the old block are
 864      * uninitialized; they will generally be garbage.  The resulting native
 865      * pointer will be zero if and only if the requested size is zero.  The
 866      * resulting native pointer will be aligned for all value types.  Dispose
 867      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 868      * #reallocateMemory}.  The address passed to this method may be null, in
 869      * which case an allocation will be performed.
 870      *
 871      * <em>Note:</em> It is the responsibility of the caller to make
 872      * sure arguments are checked before the methods are called. While
 873      * some rudimentary checks are performed on the input, the checks
 874      * are best effort and when performance is an overriding priority,
 875      * as when methods of this class are optimized by the runtime
 876      * compiler, some or all checks (if any) may be elided. Hence, the
 877      * caller must not rely on the checks and corresponding
 878      * exceptions!
 879      *
 880      * @throws RuntimeException if the size is negative or too large
 881      *         for the native size_t type
 882      *
 883      * @throws OutOfMemoryError if the allocation is refused by the system
 884      *
 885      * @see #allocateMemory
 886      */
 887     public long reallocateMemory(long address, long bytes) {
 888         bytes = alignToHeapWordSize(bytes);
 889 
 890         reallocateMemoryChecks(address, bytes);
 891 
 892         if (bytes == 0) {
 893             freeMemory(address);
 894             return 0;
 895         }
 896 
 897         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 898         if (p == 0) {
 899             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 900         }
 901 
 902         return p;
 903     }
 904 
 905     /**
 906      * Validate the arguments to reallocateMemory
 907      *
 908      * @throws RuntimeException if the arguments are invalid
 909      *         (<em>Note:</em> after optimization, invalid inputs may
 910      *         go undetected, which will lead to unpredictable
 911      *         behavior)
 912      */
 913     private void reallocateMemoryChecks(long address, long bytes) {
 914         checkPointer(null, address);
 915         checkSize(bytes);
 916     }
 917 
 918     /**
 919      * Sets all bytes in a given block of memory to a fixed value
 920      * (usually zero).
 921      *
 922      * <p>This method determines a block's base address by means of two parameters,
 923      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 924      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 925      * the offset supplies an absolute base address.
 926      *
 927      * <p>The stores are in coherent (atomic) units of a size determined
 928      * by the address and length parameters.  If the effective address and
 929      * length are all even modulo 8, the stores take place in 'long' units.
 930      * If the effective address and length are (resp.) even modulo 4 or 2,
 931      * the stores take place in units of 'int' or 'short'.
 932      *
 933      * <em>Note:</em> It is the responsibility of the caller to make
 934      * sure arguments are checked before the methods are called. While
 935      * some rudimentary checks are performed on the input, the checks
 936      * are best effort and when performance is an overriding priority,
 937      * as when methods of this class are optimized by the runtime
 938      * compiler, some or all checks (if any) may be elided. Hence, the
 939      * caller must not rely on the checks and corresponding
 940      * exceptions!
 941      *
 942      * @throws RuntimeException if any of the arguments is invalid
 943      *
 944      * @since 1.7
 945      */
 946     public void setMemory(Object o, long offset, long bytes, byte value) {
 947         setMemoryChecks(o, offset, bytes, value);
 948 
 949         if (bytes == 0) {
 950             return;
 951         }
 952 
 953         setMemory0(o, offset, bytes, value);
 954     }
 955 
 956     /**
 957      * Sets all bytes in a given block of memory to a fixed value
 958      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 959      * as discussed in {@link #getInt(Object,long)}.
 960      *
 961      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 962      */
 963     public void setMemory(long address, long bytes, byte value) {
 964         setMemory(null, address, bytes, value);
 965     }
 966 
 967     /**
 968      * Validate the arguments to setMemory
 969      *
 970      * @throws RuntimeException if the arguments are invalid
 971      *         (<em>Note:</em> after optimization, invalid inputs may
 972      *         go undetected, which will lead to unpredictable
 973      *         behavior)
 974      */
 975     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 976         checkPrimitivePointer(o, offset);
 977         checkSize(bytes);
 978     }
 979 
 980     /**
 981      * Sets all bytes in a given block of memory to a copy of another
 982      * block.
 983      *
 984      * <p>This method determines each block's base address by means of two parameters,
 985      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 986      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 987      * the offset supplies an absolute base address.
 988      *
 989      * <p>The transfers are in coherent (atomic) units of a size determined
 990      * by the address and length parameters.  If the effective addresses and
 991      * length are all even modulo 8, the transfer takes place in 'long' units.
 992      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 993      * the transfer takes place in units of 'int' or 'short'.
 994      *
 995      * <em>Note:</em> It is the responsibility of the caller to make
 996      * sure arguments are checked before the methods are called. While
 997      * some rudimentary checks are performed on the input, the checks
 998      * are best effort and when performance is an overriding priority,
 999      * as when methods of this class are optimized by the runtime
1000      * compiler, some or all checks (if any) may be elided. Hence, the
1001      * caller must not rely on the checks and corresponding
1002      * exceptions!
1003      *
1004      * @throws RuntimeException if any of the arguments is invalid
1005      *
1006      * @since 1.7
1007      */
1008     public void copyMemory(Object srcBase, long srcOffset,
1009                            Object destBase, long destOffset,
1010                            long bytes) {
1011         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
1012 
1013         if (bytes == 0) {
1014             return;
1015         }
1016 
1017         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
1018     }
1019 
1020     /**
1021      * Sets all bytes in a given block of memory to a copy of another
1022      * block.  This provides a <em>single-register</em> addressing mode,
1023      * as discussed in {@link #getInt(Object,long)}.
1024      *
1025      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
1026      */
1027     public void copyMemory(long srcAddress, long destAddress, long bytes) {
1028         copyMemory(null, srcAddress, null, destAddress, bytes);
1029     }
1030 
1031     /**
1032      * Validate the arguments to copyMemory
1033      *
1034      * @throws RuntimeException if any of the arguments is invalid
1035      *         (<em>Note:</em> after optimization, invalid inputs may
1036      *         go undetected, which will lead to unpredictable
1037      *         behavior)
1038      */
1039     private void copyMemoryChecks(Object srcBase, long srcOffset,
1040                                   Object destBase, long destOffset,
1041                                   long bytes) {
1042         checkSize(bytes);
1043         checkPrimitivePointer(srcBase, srcOffset);
1044         checkPrimitivePointer(destBase, destOffset);
1045     }
1046 
1047     /**
1048      * Copies all elements from one block of memory to another block,
1049      * *unconditionally* byte swapping the elements on the fly.
1050      *
1051      * <p>This method determines each block's base address by means of two parameters,
1052      * and so it provides (in effect) a <em>double-register</em> addressing mode,
1053      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
1054      * the offset supplies an absolute base address.
1055      *
1056      * <em>Note:</em> It is the responsibility of the caller to make
1057      * sure arguments are checked before the methods are called. While
1058      * some rudimentary checks are performed on the input, the checks
1059      * are best effort and when performance is an overriding priority,
1060      * as when methods of this class are optimized by the runtime
1061      * compiler, some or all checks (if any) may be elided. Hence, the
1062      * caller must not rely on the checks and corresponding
1063      * exceptions!
1064      *
1065      * @throws RuntimeException if any of the arguments is invalid
1066      *
1067      * @since 9
1068      */
1069     public void copySwapMemory(Object srcBase, long srcOffset,
1070                                Object destBase, long destOffset,
1071                                long bytes, long elemSize) {
1072         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1073 
1074         if (bytes == 0) {
1075             return;
1076         }
1077 
1078         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1079     }
1080 
1081     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
1082                                       Object destBase, long destOffset,
1083                                       long bytes, long elemSize) {
1084         checkSize(bytes);
1085 
1086         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
1087             throw invalidInput();
1088         }
1089         if (bytes % elemSize != 0) {
1090             throw invalidInput();
1091         }
1092 
1093         checkPrimitivePointer(srcBase, srcOffset);
1094         checkPrimitivePointer(destBase, destOffset);
1095     }
1096 
1097     /**
1098      * Copies all elements from one block of memory to another block, byte swapping the
1099      * elements on the fly.
1100      *
1101      * This provides a <em>single-register</em> addressing mode, as
1102      * discussed in {@link #getInt(Object,long)}.
1103      *
1104      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
1105      */
1106     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
1107         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
1108     }
1109 
1110     /**
1111      * Disposes of a block of native memory, as obtained from {@link
1112      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
1113      * this method may be null, in which case no action is taken.
1114      *
1115      * <em>Note:</em> It is the responsibility of the caller to make
1116      * sure arguments are checked before the methods are called. While
1117      * some rudimentary checks are performed on the input, the checks
1118      * are best effort and when performance is an overriding priority,
1119      * as when methods of this class are optimized by the runtime
1120      * compiler, some or all checks (if any) may be elided. Hence, the
1121      * caller must not rely on the checks and corresponding
1122      * exceptions!
1123      *
1124      * @throws RuntimeException if any of the arguments is invalid
1125      *
1126      * @see #allocateMemory
1127      */
1128     public void freeMemory(long address) {
1129         freeMemoryChecks(address);
1130 
1131         if (address == 0) {
1132             return;
1133         }
1134 
1135         freeMemory0(address);
1136     }
1137 
1138     /**
1139      * Validate the arguments to freeMemory
1140      *
1141      * @throws RuntimeException if the arguments are invalid
1142      *         (<em>Note:</em> after optimization, invalid inputs may
1143      *         go undetected, which will lead to unpredictable
1144      *         behavior)
1145      */
1146     private void freeMemoryChecks(long address) {
1147         checkPointer(null, address);
1148     }
1149 
1150     /**
1151      * Ensure writeback of a specified virtual memory address range
1152      * from cache to physical memory. All bytes in the address range
1153      * are guaranteed to have been written back to physical memory on
1154      * return from this call i.e. subsequently executed store
1155      * instructions are guaranteed not to be visible before the
1156      * writeback is completed.
1157      *
1158      * @param address
1159      *        the lowest byte address that must be guaranteed written
1160      *        back to memory. bytes at lower addresses may also be
1161      *        written back.
1162      *
1163      * @param length
1164      *        the length in bytes of the region starting at address
1165      *        that must be guaranteed written back to memory.
1166      *
1167      * @throws RuntimeException if memory writeback is not supported
1168      *         on the current hardware of if the arguments are invalid.
1169      *         (<em>Note:</em> after optimization, invalid inputs may
1170      *         go undetected, which will lead to unpredictable
1171      *         behavior)
1172      *
1173      * @since 14
1174      */
1175 
1176     public void writebackMemory(long address, long length) {
1177         checkWritebackEnabled();
1178         checkWritebackMemory(address, length);
1179 
1180         // perform any required pre-writeback barrier
1181         writebackPreSync0();
1182 
1183         // write back one cache line at a time
1184         long line = dataCacheLineAlignDown(address);
1185         long end = address + length;
1186         while (line < end) {
1187             writeback0(line);
1188             line += dataCacheLineFlushSize();
1189         }
1190 
1191         // perform any required post-writeback barrier
1192         writebackPostSync0();
1193     }
1194 
1195     /**
1196      * Validate the arguments to writebackMemory
1197      *
1198      * @throws RuntimeException if the arguments are invalid
1199      *         (<em>Note:</em> after optimization, invalid inputs may
1200      *         go undetected, which will lead to unpredictable
1201      *         behavior)
1202      */
1203     private void checkWritebackMemory(long address, long length) {
1204         checkNativeAddress(address);
1205         checkSize(length);
1206     }
1207 
1208     /**
1209      * Validate that the current hardware supports memory writeback.
1210      * (<em>Note:</em> this is a belt and braces check.  Clients are
1211      * expected to test whether writeback is enabled by calling
1212      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1213      * calling method {@link writeback #writeback} if it is disabled).
1214      *
1215      *
1216      * @throws RuntimeException if memory writeback is not supported
1217      */
1218     private void checkWritebackEnabled() {
1219         if (!isWritebackEnabled()) {
1220             throw new RuntimeException("writebackMemory not enabled!");
1221         }
1222     }
1223 
1224     /**
1225      * force writeback of an individual cache line.
1226      *
1227      * @param address
1228      *        the start address of the cache line to be written back
1229      */
1230     @IntrinsicCandidate
1231     private native void writeback0(long address);
1232 
1233      /**
1234       * Serialize writeback operations relative to preceding memory writes.
1235       */
1236     @IntrinsicCandidate
1237     private native void writebackPreSync0();
1238 
1239      /**
1240       * Serialize writeback operations relative to following memory writes.
1241       */
1242     @IntrinsicCandidate
1243     private native void writebackPostSync0();
1244 
1245     //--- random queries
1246 
1247     /**
1248      * This constant differs from all results that will ever be returned from
1249      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1250      * or {@link #arrayBaseOffset}.
1251      * <p>
1252      * The static type is @code long} to emphasize that long arithmetic should
1253      * always be used for offset calculations to avoid overflows.
1254      */
1255     public static final long INVALID_FIELD_OFFSET = -1;
1256 
1257     /**
1258      * Reports the location of a given field in the storage allocation of its
1259      * class.  Do not expect to perform any sort of arithmetic on this offset;
1260      * it is just a cookie which is passed to the unsafe heap memory accessors.
1261      *
1262      * <p>Any given field will always have the same offset and base, and no
1263      * two distinct fields of the same class will ever have the same offset
1264      * and base.
1265      *
1266      * <p>As of 1.4.1, offsets for fields are represented as long values,
1267      * although the Sun JVM does not use the most significant 32 bits.
1268      * However, JVM implementations which store static fields at absolute
1269      * addresses can use long offsets and null base pointers to express
1270      * the field locations in a form usable by {@link #getInt(Object,long)}.
1271      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1272      * must preserve all bits of static field offsets.
1273      * @see #getInt(Object, long)
1274      */
1275     public long objectFieldOffset(Field f) {
1276         if (f == null) {
1277             throw new NullPointerException();
1278         }
1279 
1280         return objectFieldOffset0(f);
1281     }
1282 
1283     /**
1284      * Reports the location of the field with a given name in the storage
1285      * allocation of its class.
1286      *
1287      * @throws NullPointerException if any parameter is {@code null}.
1288      * @throws InternalError if there is no field named {@code name} declared
1289      *         in class {@code c}, i.e., if {@code c.getDeclaredField(name)}
1290      *         would throw {@code java.lang.NoSuchFieldException}.
1291      *
1292      * @see #objectFieldOffset(Field)
1293      */
1294     public long objectFieldOffset(Class<?> c, String name) {
1295         if (c == null || name == null) {
1296             throw new NullPointerException();
1297         }
1298 
1299         return objectFieldOffset1(c, name);
1300     }
1301 
1302     /**
1303      * Reports the location of a given static field, in conjunction with {@link
1304      * #staticFieldBase}.
1305      * <p>Do not expect to perform any sort of arithmetic on this offset;
1306      * it is just a cookie which is passed to the unsafe heap memory accessors.
1307      *
1308      * <p>Any given field will always have the same offset, and no two distinct
1309      * fields of the same class will ever have the same offset.
1310      *
1311      * <p>As of 1.4.1, offsets for fields are represented as long values,
1312      * although the Sun JVM does not use the most significant 32 bits.
1313      * It is hard to imagine a JVM technology which needs more than
1314      * a few bits to encode an offset within a non-array object,
1315      * However, for consistency with other methods in this class,
1316      * this method reports its result as a long value.
1317      * @see #getInt(Object, long)
1318      */
1319     public long staticFieldOffset(Field f) {
1320         if (f == null) {
1321             throw new NullPointerException();
1322         }
1323 
1324         return staticFieldOffset0(f);
1325     }
1326 
1327     /**
1328      * Reports the location of a given static field, in conjunction with {@link
1329      * #staticFieldOffset}.
1330      * <p>Fetch the base "Object", if any, with which static fields of the
1331      * given class can be accessed via methods like {@link #getInt(Object,
1332      * long)}.  This value may be null.  This value may refer to an object
1333      * which is a "cookie", not guaranteed to be a real Object, and it should
1334      * not be used in any way except as argument to the get and put routines in
1335      * this class.
1336      */
1337     public Object staticFieldBase(Field f) {
1338         if (f == null) {
1339             throw new NullPointerException();
1340         }
1341 
1342         return staticFieldBase0(f);
1343     }
1344 
1345     /**
1346      * Detects if the given class may need to be initialized. This is often
1347      * needed in conjunction with obtaining the static field base of a
1348      * class.
1349      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1350      */
1351     public boolean shouldBeInitialized(Class<?> c) {
1352         if (c == null) {
1353             throw new NullPointerException();
1354         }
1355 
1356         return shouldBeInitialized0(c);
1357     }
1358 
1359     /**
1360      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1361      * This is often needed in conjunction with obtaining the static field base
1362      * of a class.
1363      *
1364      * The call returns when either class {@code c} is fully initialized or
1365      * class {@code c} is being initialized and the call is performed from
1366      * the initializing thread. In the latter case a subsequent call to
1367      * {@link #shouldBeInitialized} will return {@code true}.
1368      */
1369     public void ensureClassInitialized(Class<?> c) {
1370         if (c == null) {
1371             throw new NullPointerException();
1372         }
1373 
1374         ensureClassInitialized0(c);
1375     }
1376 
1377     /**
1378      * Reports the offset of the first element in the storage allocation of a
1379      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1380      * for the same class, you may use that scale factor, together with this
1381      * base offset, to form new offsets to access elements of arrays of the
1382      * given class.
1383      * <p>
1384      * The return value is in the range of a {@code int}.  The return type is
1385      * {@code long} to emphasize that long arithmetic should always be used
1386      * for offset calculations to avoid overflows.
1387      *
1388      * @see #getInt(Object, long)
1389      * @see #putInt(Object, long, int)
1390      */
1391     public long arrayBaseOffset(Class<?> arrayClass) {
1392         if (arrayClass == null) {
1393             throw new NullPointerException();
1394         }
1395 
1396         return arrayBaseOffset0(arrayClass);
1397     }
1398 
1399 
1400     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1401     public static final long ARRAY_BOOLEAN_BASE_OFFSET
1402             = theUnsafe.arrayBaseOffset(boolean[].class);
1403 
1404     /** The value of {@code arrayBaseOffset(byte[].class)} */
1405     public static final long ARRAY_BYTE_BASE_OFFSET
1406             = theUnsafe.arrayBaseOffset(byte[].class);
1407 
1408     /** The value of {@code arrayBaseOffset(short[].class)} */
1409     public static final long ARRAY_SHORT_BASE_OFFSET
1410             = theUnsafe.arrayBaseOffset(short[].class);
1411 
1412     /** The value of {@code arrayBaseOffset(char[].class)} */
1413     public static final long ARRAY_CHAR_BASE_OFFSET
1414             = theUnsafe.arrayBaseOffset(char[].class);
1415 
1416     /** The value of {@code arrayBaseOffset(int[].class)} */
1417     public static final long ARRAY_INT_BASE_OFFSET
1418             = theUnsafe.arrayBaseOffset(int[].class);
1419 
1420     /** The value of {@code arrayBaseOffset(long[].class)} */
1421     public static final long ARRAY_LONG_BASE_OFFSET
1422             = theUnsafe.arrayBaseOffset(long[].class);
1423 
1424     /** The value of {@code arrayBaseOffset(float[].class)} */
1425     public static final long ARRAY_FLOAT_BASE_OFFSET
1426             = theUnsafe.arrayBaseOffset(float[].class);
1427 
1428     /** The value of {@code arrayBaseOffset(double[].class)} */
1429     public static final long ARRAY_DOUBLE_BASE_OFFSET
1430             = theUnsafe.arrayBaseOffset(double[].class);
1431 
1432     /** The value of {@code arrayBaseOffset(Object[].class)} */
1433     public static final long ARRAY_OBJECT_BASE_OFFSET
1434             = theUnsafe.arrayBaseOffset(Object[].class);
1435 
1436     /**
1437      * Reports the scale factor for addressing elements in the storage
1438      * allocation of a given array class.  However, arrays of "narrow" types
1439      * will generally not work properly with accessors like {@link
1440      * #getByte(Object, long)}, so the scale factor for such classes is reported
1441      * as zero.
1442      * <p>
1443      * The computation of the actual memory offset should always use {@code
1444      * long} arithmetic to avoid overflows.
1445      *
1446      * @see #arrayBaseOffset
1447      * @see #getInt(Object, long)
1448      * @see #putInt(Object, long, int)
1449      */
1450     public int arrayIndexScale(Class<?> arrayClass) {
1451         if (arrayClass == null) {
1452             throw new NullPointerException();
1453         }
1454 
1455         return arrayIndexScale0(arrayClass);
1456     }
1457 
1458     /**
1459      * Return the size of the object in the heap.
1460      * @param o an object
1461      * @return the objects's size
1462      * @since Valhalla
1463      */
1464     public long getObjectSize(Object o) {
1465         if (o == null)
1466             throw new NullPointerException();
1467         return getObjectSize0(o);
1468     }
1469 
1470     /** The value of {@code arrayIndexScale(boolean[].class)} */
1471     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1472             = theUnsafe.arrayIndexScale(boolean[].class);
1473 
1474     /** The value of {@code arrayIndexScale(byte[].class)} */
1475     public static final int ARRAY_BYTE_INDEX_SCALE
1476             = theUnsafe.arrayIndexScale(byte[].class);
1477 
1478     /** The value of {@code arrayIndexScale(short[].class)} */
1479     public static final int ARRAY_SHORT_INDEX_SCALE
1480             = theUnsafe.arrayIndexScale(short[].class);
1481 
1482     /** The value of {@code arrayIndexScale(char[].class)} */
1483     public static final int ARRAY_CHAR_INDEX_SCALE
1484             = theUnsafe.arrayIndexScale(char[].class);
1485 
1486     /** The value of {@code arrayIndexScale(int[].class)} */
1487     public static final int ARRAY_INT_INDEX_SCALE
1488             = theUnsafe.arrayIndexScale(int[].class);
1489 
1490     /** The value of {@code arrayIndexScale(long[].class)} */
1491     public static final int ARRAY_LONG_INDEX_SCALE
1492             = theUnsafe.arrayIndexScale(long[].class);
1493 
1494     /** The value of {@code arrayIndexScale(float[].class)} */
1495     public static final int ARRAY_FLOAT_INDEX_SCALE
1496             = theUnsafe.arrayIndexScale(float[].class);
1497 
1498     /** The value of {@code arrayIndexScale(double[].class)} */
1499     public static final int ARRAY_DOUBLE_INDEX_SCALE
1500             = theUnsafe.arrayIndexScale(double[].class);
1501 
1502     /** The value of {@code arrayIndexScale(Object[].class)} */
1503     public static final int ARRAY_OBJECT_INDEX_SCALE
1504             = theUnsafe.arrayIndexScale(Object[].class);
1505 
1506     /**
1507      * Reports the size in bytes of a native pointer, as stored via {@link
1508      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1509      * other primitive types (as stored in native memory blocks) is determined
1510      * fully by their information content.
1511      */
1512     public int addressSize() {
1513         return ADDRESS_SIZE;
1514     }
1515 
1516     /** The value of {@code addressSize()} */
1517     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1518 
1519     /**
1520      * Reports the size in bytes of a native memory page (whatever that is).
1521      * This value will always be a power of two.
1522      */
1523     public int pageSize() { return PAGE_SIZE; }
1524 
1525     /**
1526      * Reports the size in bytes of a data cache line written back by
1527      * the hardware cache line flush operation available to the JVM or
1528      * 0 if data cache line flushing is not enabled.
1529      */
1530     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1531 
1532     /**
1533      * Rounds down address to a data cache line boundary as
1534      * determined by {@link #dataCacheLineFlushSize}
1535      * @return the rounded down address
1536      */
1537     public long dataCacheLineAlignDown(long address) {
1538         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1539     }
1540 
1541     /**
1542      * Returns true if data cache line writeback
1543      */
1544     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1545 
1546     //--- random trusted operations from JNI:
1547 
1548     /**
1549      * Tells the VM to define a class, without security checks.  By default, the
1550      * class loader and protection domain come from the caller's class.
1551      */
1552     public Class<?> defineClass(String name, byte[] b, int off, int len,
1553                                 ClassLoader loader,
1554                                 ProtectionDomain protectionDomain) {
1555         if (b == null) {
1556             throw new NullPointerException();
1557         }
1558         if (len < 0) {
1559             throw new ArrayIndexOutOfBoundsException();
1560         }
1561 
1562         return defineClass0(name, b, off, len, loader, protectionDomain);
1563     }
1564 
1565     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1566                                         ClassLoader loader,
1567                                         ProtectionDomain protectionDomain);
1568 
1569     /**
1570      * Allocates an instance but does not run any constructor.
1571      * Initializes the class if it has not yet been.
1572      */
1573     @IntrinsicCandidate
1574     public native Object allocateInstance(Class<?> cls)
1575         throws InstantiationException;
1576 
1577     /**
1578      * Allocates an array of a given type, but does not do zeroing.
1579      * <p>
1580      * This method should only be used in the very rare cases where a high-performance code
1581      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1582      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1583      * <p>
1584      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1585      * before allowing untrusted code, or code in other threads, to observe the reference
1586      * to the newly allocated array. In addition, the publication of the array reference must be
1587      * safe according to the Java Memory Model requirements.
1588      * <p>
1589      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1590      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1591      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1592      * or issuing a {@link #storeFence} before publishing the reference.
1593      * <p>
1594      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1595      * elements that could break heap integrity.
1596      *
1597      * @param componentType array component type to allocate
1598      * @param length array size to allocate
1599      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1600      *                                  or the length is negative
1601      */
1602     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1603        if (componentType == null) {
1604            throw new IllegalArgumentException("Component type is null");
1605        }
1606        if (!componentType.isPrimitive()) {
1607            throw new IllegalArgumentException("Component type is not primitive");
1608        }
1609        if (length < 0) {
1610            throw new IllegalArgumentException("Negative length");
1611        }
1612        return allocateUninitializedArray0(componentType, length);
1613     }
1614 
1615     @IntrinsicCandidate
1616     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1617        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1618        // return the zeroed arrays.
1619        if (componentType == byte.class)    return new byte[length];
1620        if (componentType == boolean.class) return new boolean[length];
1621        if (componentType == short.class)   return new short[length];
1622        if (componentType == char.class)    return new char[length];
1623        if (componentType == int.class)     return new int[length];
1624        if (componentType == float.class)   return new float[length];
1625        if (componentType == long.class)    return new long[length];
1626        if (componentType == double.class)  return new double[length];
1627        return null;
1628     }
1629 
1630     /** Throws the exception without telling the verifier. */
1631     public native void throwException(Throwable ee);
1632 
1633     /**
1634      * Atomically updates Java variable to {@code x} if it is currently
1635      * holding {@code expected}.
1636      *
1637      * <p>This operation has memory semantics of a {@code volatile} read
1638      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1639      *
1640      * @return {@code true} if successful
1641      */
1642     @IntrinsicCandidate
1643     public final native boolean compareAndSetReference(Object o, long offset,
1644                                                        Object expected,
1645                                                        Object x);
1646 
1647     private final boolean isValueObject(Object o) {
1648         return o != null && o.getClass().isValue();
1649     }
1650 
1651     /*
1652      * For value type, CAS should do substitutability test as opposed
1653      * to two pointers comparison.
1654      */
1655     @ForceInline
1656     public final <V> boolean compareAndSetReference(Object o, long offset,
1657                                                     Class<?> type,
1658                                                     V expected,
1659                                                     V x) {
1660         if (type.isValue() || isValueObject(expected)) {
1661             while (true) {
1662                 Object witness = getReferenceVolatile(o, offset);
1663                 if (witness != expected) {
1664                     return false;
1665                 }
1666                 if (compareAndSetReference(o, offset, witness, x)) {
1667                     return true;
1668                 }
1669             }
1670         } else {
1671             return compareAndSetReference(o, offset, expected, x);
1672         }
1673     }
1674 
1675     @ForceInline
1676     public final <V> boolean compareAndSetFlatValue(Object o, long offset,
1677                                                 int layout,
1678                                                 Class<?> valueType,
1679                                                 V expected,
1680                                                 V x) {
1681         while (true) {
1682             Object witness = getFlatValueVolatile(o, offset, layout, valueType);
1683             if (witness != expected) {
1684                 return false;
1685             }
1686             if (compareAndSetFlatValueAsBytes(o, offset, layout, valueType, witness, x)) {
1687                 return true;
1688             }
1689         }
1690     }
1691 
1692     @IntrinsicCandidate
1693     public final native Object compareAndExchangeReference(Object o, long offset,
1694                                                            Object expected,
1695                                                            Object x);
1696 
1697     @ForceInline
1698     public final <V> Object compareAndExchangeReference(Object o, long offset,
1699                                                         Class<?> valueType,
1700                                                         V expected,
1701                                                         V x) {
1702         if (valueType.isValue() || isValueObject(expected)) {
1703             while (true) {
1704                 Object witness = getReferenceVolatile(o, offset);
1705                 if (witness != expected) {
1706                     return witness;
1707                 }
1708                 if (compareAndSetReference(o, offset, witness, x)) {
1709                     return witness;
1710                 }
1711             }
1712         } else {
1713             return compareAndExchangeReference(o, offset, expected, x);
1714         }
1715     }
1716 
1717     @ForceInline
1718     public final <V> Object compareAndExchangeFlatValue(Object o, long offset,
1719                                                     int layout,
1720                                                     Class<?> valueType,
1721                                                     V expected,
1722                                                     V x) {
1723         while (true) {
1724             Object witness = getFlatValueVolatile(o, offset, layout, valueType);
1725             if (witness != expected) {
1726                 return witness;
1727             }
1728             if (compareAndSetFlatValueAsBytes(o, offset, layout, valueType, witness, x)) {
1729                 return witness;
1730             }
1731         }
1732     }
1733 
1734     @IntrinsicCandidate
1735     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1736                                                            Object expected,
1737                                                            Object x) {
1738         return compareAndExchangeReference(o, offset, expected, x);
1739     }
1740 
1741     public final <V> Object compareAndExchangeReferenceAcquire(Object o, long offset,
1742                                                                Class<?> valueType,
1743                                                                V expected,
1744                                                                V x) {
1745         return compareAndExchangeReference(o, offset, valueType, expected, x);
1746     }
1747 
1748     @ForceInline
1749     public final <V> Object compareAndExchangeFlatValueAcquire(Object o, long offset,
1750                                                            int layout,
1751                                                            Class<?> valueType,
1752                                                            V expected,
1753                                                            V x) {
1754         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1755     }
1756 
1757     @IntrinsicCandidate
1758     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1759                                                            Object expected,
1760                                                            Object x) {
1761         return compareAndExchangeReference(o, offset, expected, x);
1762     }
1763 
1764     public final <V> Object compareAndExchangeReferenceRelease(Object o, long offset,
1765                                                                Class<?> valueType,
1766                                                                V expected,
1767                                                                V x) {
1768         return compareAndExchangeReference(o, offset, valueType, expected, x);
1769     }
1770 
1771     @ForceInline
1772     public final <V> Object compareAndExchangeFlatValueRelease(Object o, long offset,
1773                                                            int layout,
1774                                                            Class<?> valueType,
1775                                                            V expected,
1776                                                            V x) {
1777         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1778     }
1779 
1780     @IntrinsicCandidate
1781     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1782                                                          Object expected,
1783                                                          Object x) {
1784         return compareAndSetReference(o, offset, expected, x);
1785     }
1786 
1787     public final <V> boolean weakCompareAndSetReferencePlain(Object o, long offset,
1788                                                              Class<?> valueType,
1789                                                              V expected,
1790                                                              V x) {
1791         if (valueType.isValue() || isValueObject(expected)) {
1792             return compareAndSetReference(o, offset, valueType, expected, x);
1793         } else {
1794             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1795         }
1796     }
1797 
1798     @ForceInline
1799     public final <V> boolean weakCompareAndSetFlatValuePlain(Object o, long offset,
1800                                                          int layout,
1801                                                          Class<?> valueType,
1802                                                          V expected,
1803                                                          V x) {
1804         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1805     }
1806 
1807     @IntrinsicCandidate
1808     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1809                                                            Object expected,
1810                                                            Object x) {
1811         return compareAndSetReference(o, offset, expected, x);
1812     }
1813 
1814     public final <V> boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1815                                                                Class<?> valueType,
1816                                                                V expected,
1817                                                                V x) {
1818         if (valueType.isValue() || isValueObject(expected)) {
1819             return compareAndSetReference(o, offset, valueType, expected, x);
1820         } else {
1821             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1822         }
1823     }
1824 
1825     @ForceInline
1826     public final <V> boolean weakCompareAndSetFlatValueAcquire(Object o, long offset,
1827                                                            int layout,
1828                                                            Class<?> valueType,
1829                                                            V expected,
1830                                                            V x) {
1831         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1832     }
1833 
1834     @IntrinsicCandidate
1835     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1836                                                            Object expected,
1837                                                            Object x) {
1838         return compareAndSetReference(o, offset, expected, x);
1839     }
1840 
1841     public final <V> boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1842                                                                Class<?> valueType,
1843                                                                V expected,
1844                                                                V x) {
1845         if (valueType.isValue() || isValueObject(expected)) {
1846             return compareAndSetReference(o, offset, valueType, expected, x);
1847         } else {
1848             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1849         }
1850     }
1851 
1852     @ForceInline
1853     public final <V> boolean weakCompareAndSetFlatValueRelease(Object o, long offset,
1854                                                            int layout,
1855                                                            Class<?> valueType,
1856                                                            V expected,
1857                                                            V x) {
1858         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1859     }
1860 
1861     @IntrinsicCandidate
1862     public final boolean weakCompareAndSetReference(Object o, long offset,
1863                                                     Object expected,
1864                                                     Object x) {
1865         return compareAndSetReference(o, offset, expected, x);
1866     }
1867 
1868     public final <V> boolean weakCompareAndSetReference(Object o, long offset,
1869                                                         Class<?> valueType,
1870                                                         V expected,
1871                                                         V x) {
1872         if (valueType.isValue() || isValueObject(expected)) {
1873             return compareAndSetReference(o, offset, valueType, expected, x);
1874         } else {
1875             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1876         }
1877     }
1878 
1879     @ForceInline
1880     public final <V> boolean weakCompareAndSetFlatValue(Object o, long offset,
1881                                                     int layout,
1882                                                     Class<?> valueType,
1883                                                     V expected,
1884                                                     V x) {
1885         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1886     }
1887 
1888     /**
1889      * Atomically updates Java variable to {@code x} if it is currently
1890      * holding {@code expected}.
1891      *
1892      * <p>This operation has memory semantics of a {@code volatile} read
1893      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1894      *
1895      * @return {@code true} if successful
1896      */
1897     @IntrinsicCandidate
1898     public final native boolean compareAndSetInt(Object o, long offset,
1899                                                  int expected,
1900                                                  int x);
1901 
1902     @IntrinsicCandidate
1903     public final native int compareAndExchangeInt(Object o, long offset,
1904                                                   int expected,
1905                                                   int x);
1906 
1907     @IntrinsicCandidate
1908     public final int compareAndExchangeIntAcquire(Object o, long offset,
1909                                                          int expected,
1910                                                          int x) {
1911         return compareAndExchangeInt(o, offset, expected, x);
1912     }
1913 
1914     @IntrinsicCandidate
1915     public final int compareAndExchangeIntRelease(Object o, long offset,
1916                                                          int expected,
1917                                                          int x) {
1918         return compareAndExchangeInt(o, offset, expected, x);
1919     }
1920 
1921     @IntrinsicCandidate
1922     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1923                                                    int expected,
1924                                                    int x) {
1925         return compareAndSetInt(o, offset, expected, x);
1926     }
1927 
1928     @IntrinsicCandidate
1929     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1930                                                      int expected,
1931                                                      int x) {
1932         return compareAndSetInt(o, offset, expected, x);
1933     }
1934 
1935     @IntrinsicCandidate
1936     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1937                                                      int expected,
1938                                                      int x) {
1939         return compareAndSetInt(o, offset, expected, x);
1940     }
1941 
1942     @IntrinsicCandidate
1943     public final boolean weakCompareAndSetInt(Object o, long offset,
1944                                               int expected,
1945                                               int x) {
1946         return compareAndSetInt(o, offset, expected, x);
1947     }
1948 
1949     @IntrinsicCandidate
1950     public final byte compareAndExchangeByte(Object o, long offset,
1951                                              byte expected,
1952                                              byte x) {
1953         long wordOffset = offset & ~3;
1954         int shift = (int) (offset & 3) << 3;
1955         if (BIG_ENDIAN) {
1956             shift = 24 - shift;
1957         }
1958         int mask           = 0xFF << shift;
1959         int maskedExpected = (expected & 0xFF) << shift;
1960         int maskedX        = (x & 0xFF) << shift;
1961         int fullWord;
1962         do {
1963             fullWord = getIntVolatile(o, wordOffset);
1964             if ((fullWord & mask) != maskedExpected)
1965                 return (byte) ((fullWord & mask) >> shift);
1966         } while (!weakCompareAndSetInt(o, wordOffset,
1967                                                 fullWord, (fullWord & ~mask) | maskedX));
1968         return expected;
1969     }
1970 
1971     @IntrinsicCandidate
1972     public final boolean compareAndSetByte(Object o, long offset,
1973                                            byte expected,
1974                                            byte x) {
1975         return compareAndExchangeByte(o, offset, expected, x) == expected;
1976     }
1977 
1978     @IntrinsicCandidate
1979     public final boolean weakCompareAndSetByte(Object o, long offset,
1980                                                byte expected,
1981                                                byte x) {
1982         return compareAndSetByte(o, offset, expected, x);
1983     }
1984 
1985     @IntrinsicCandidate
1986     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
1987                                                       byte expected,
1988                                                       byte x) {
1989         return weakCompareAndSetByte(o, offset, expected, x);
1990     }
1991 
1992     @IntrinsicCandidate
1993     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
1994                                                       byte expected,
1995                                                       byte x) {
1996         return weakCompareAndSetByte(o, offset, expected, x);
1997     }
1998 
1999     @IntrinsicCandidate
2000     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
2001                                                     byte expected,
2002                                                     byte x) {
2003         return weakCompareAndSetByte(o, offset, expected, x);
2004     }
2005 
2006     @IntrinsicCandidate
2007     public final byte compareAndExchangeByteAcquire(Object o, long offset,
2008                                                     byte expected,
2009                                                     byte x) {
2010         return compareAndExchangeByte(o, offset, expected, x);
2011     }
2012 
2013     @IntrinsicCandidate
2014     public final byte compareAndExchangeByteRelease(Object o, long offset,
2015                                                     byte expected,
2016                                                     byte x) {
2017         return compareAndExchangeByte(o, offset, expected, x);
2018     }
2019 
2020     @IntrinsicCandidate
2021     public final short compareAndExchangeShort(Object o, long offset,
2022                                                short expected,
2023                                                short x) {
2024         if ((offset & 3) == 3) {
2025             throw new IllegalArgumentException("Update spans the word, not supported");
2026         }
2027         long wordOffset = offset & ~3;
2028         int shift = (int) (offset & 3) << 3;
2029         if (BIG_ENDIAN) {
2030             shift = 16 - shift;
2031         }
2032         int mask           = 0xFFFF << shift;
2033         int maskedExpected = (expected & 0xFFFF) << shift;
2034         int maskedX        = (x & 0xFFFF) << shift;
2035         int fullWord;
2036         do {
2037             fullWord = getIntVolatile(o, wordOffset);
2038             if ((fullWord & mask) != maskedExpected) {
2039                 return (short) ((fullWord & mask) >> shift);
2040             }
2041         } while (!weakCompareAndSetInt(o, wordOffset,
2042                                                 fullWord, (fullWord & ~mask) | maskedX));
2043         return expected;
2044     }
2045 
2046     @IntrinsicCandidate
2047     public final boolean compareAndSetShort(Object o, long offset,
2048                                             short expected,
2049                                             short x) {
2050         return compareAndExchangeShort(o, offset, expected, x) == expected;
2051     }
2052 
2053     @IntrinsicCandidate
2054     public final boolean weakCompareAndSetShort(Object o, long offset,
2055                                                 short expected,
2056                                                 short x) {
2057         return compareAndSetShort(o, offset, expected, x);
2058     }
2059 
2060     @IntrinsicCandidate
2061     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
2062                                                        short expected,
2063                                                        short x) {
2064         return weakCompareAndSetShort(o, offset, expected, x);
2065     }
2066 
2067     @IntrinsicCandidate
2068     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
2069                                                        short expected,
2070                                                        short x) {
2071         return weakCompareAndSetShort(o, offset, expected, x);
2072     }
2073 
2074     @IntrinsicCandidate
2075     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
2076                                                      short expected,
2077                                                      short x) {
2078         return weakCompareAndSetShort(o, offset, expected, x);
2079     }
2080 
2081 
2082     @IntrinsicCandidate
2083     public final short compareAndExchangeShortAcquire(Object o, long offset,
2084                                                      short expected,
2085                                                      short x) {
2086         return compareAndExchangeShort(o, offset, expected, x);
2087     }
2088 
2089     @IntrinsicCandidate
2090     public final short compareAndExchangeShortRelease(Object o, long offset,
2091                                                     short expected,
2092                                                     short x) {
2093         return compareAndExchangeShort(o, offset, expected, x);
2094     }
2095 
2096     @ForceInline
2097     private char s2c(short s) {
2098         return (char) s;
2099     }
2100 
2101     @ForceInline
2102     private short c2s(char s) {
2103         return (short) s;
2104     }
2105 
2106     @ForceInline
2107     public final boolean compareAndSetChar(Object o, long offset,
2108                                            char expected,
2109                                            char x) {
2110         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
2111     }
2112 
2113     @ForceInline
2114     public final char compareAndExchangeChar(Object o, long offset,
2115                                              char expected,
2116                                              char x) {
2117         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
2118     }
2119 
2120     @ForceInline
2121     public final char compareAndExchangeCharAcquire(Object o, long offset,
2122                                             char expected,
2123                                             char x) {
2124         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
2125     }
2126 
2127     @ForceInline
2128     public final char compareAndExchangeCharRelease(Object o, long offset,
2129                                             char expected,
2130                                             char x) {
2131         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
2132     }
2133 
2134     @ForceInline
2135     public final boolean weakCompareAndSetChar(Object o, long offset,
2136                                                char expected,
2137                                                char x) {
2138         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
2139     }
2140 
2141     @ForceInline
2142     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
2143                                                       char expected,
2144                                                       char x) {
2145         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
2146     }
2147 
2148     @ForceInline
2149     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
2150                                                       char expected,
2151                                                       char x) {
2152         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
2153     }
2154 
2155     @ForceInline
2156     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
2157                                                     char expected,
2158                                                     char x) {
2159         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
2160     }
2161 
2162     /**
2163      * The JVM converts integral values to boolean values using two
2164      * different conventions, byte testing against zero and truncation
2165      * to least-significant bit.
2166      *
2167      * <p>The JNI documents specify that, at least for returning
2168      * values from native methods, a Java boolean value is converted
2169      * to the value-set 0..1 by first truncating to a byte (0..255 or
2170      * maybe -128..127) and then testing against zero. Thus, Java
2171      * booleans in non-Java data structures are by convention
2172      * represented as 8-bit containers containing either zero (for
2173      * false) or any non-zero value (for true).
2174      *
2175      * <p>Java booleans in the heap are also stored in bytes, but are
2176      * strongly normalized to the value-set 0..1 (i.e., they are
2177      * truncated to the least-significant bit).
2178      *
2179      * <p>The main reason for having different conventions for
2180      * conversion is performance: Truncation to the least-significant
2181      * bit can be usually implemented with fewer (machine)
2182      * instructions than byte testing against zero.
2183      *
2184      * <p>A number of Unsafe methods load boolean values from the heap
2185      * as bytes. Unsafe converts those values according to the JNI
2186      * rules (i.e, using the "testing against zero" convention). The
2187      * method {@code byte2bool} implements that conversion.
2188      *
2189      * @param b the byte to be converted to boolean
2190      * @return the result of the conversion
2191      */
2192     @ForceInline
2193     private boolean byte2bool(byte b) {
2194         return b != 0;
2195     }
2196 
2197     /**
2198      * Convert a boolean value to a byte. The return value is strongly
2199      * normalized to the value-set 0..1 (i.e., the value is truncated
2200      * to the least-significant bit). See {@link #byte2bool(byte)} for
2201      * more details on conversion conventions.
2202      *
2203      * @param b the boolean to be converted to byte (and then normalized)
2204      * @return the result of the conversion
2205      */
2206     @ForceInline
2207     private byte bool2byte(boolean b) {
2208         return b ? (byte)1 : (byte)0;
2209     }
2210 
2211     @ForceInline
2212     public final boolean compareAndSetBoolean(Object o, long offset,
2213                                               boolean expected,
2214                                               boolean x) {
2215         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2216     }
2217 
2218     @ForceInline
2219     public final boolean compareAndExchangeBoolean(Object o, long offset,
2220                                                    boolean expected,
2221                                                    boolean x) {
2222         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
2223     }
2224 
2225     @ForceInline
2226     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
2227                                                     boolean expected,
2228                                                     boolean x) {
2229         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
2230     }
2231 
2232     @ForceInline
2233     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
2234                                                        boolean expected,
2235                                                        boolean x) {
2236         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
2237     }
2238 
2239     @ForceInline
2240     public final boolean weakCompareAndSetBoolean(Object o, long offset,
2241                                                   boolean expected,
2242                                                   boolean x) {
2243         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2244     }
2245 
2246     @ForceInline
2247     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
2248                                                          boolean expected,
2249                                                          boolean x) {
2250         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
2251     }
2252 
2253     @ForceInline
2254     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
2255                                                          boolean expected,
2256                                                          boolean x) {
2257         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
2258     }
2259 
2260     @ForceInline
2261     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
2262                                                        boolean expected,
2263                                                        boolean x) {
2264         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
2265     }
2266 
2267     /**
2268      * Atomically updates Java variable to {@code x} if it is currently
2269      * holding {@code expected}.
2270      *
2271      * <p>This operation has memory semantics of a {@code volatile} read
2272      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2273      *
2274      * @return {@code true} if successful
2275      */
2276     @ForceInline
2277     public final boolean compareAndSetFloat(Object o, long offset,
2278                                             float expected,
2279                                             float x) {
2280         return compareAndSetInt(o, offset,
2281                                  Float.floatToRawIntBits(expected),
2282                                  Float.floatToRawIntBits(x));
2283     }
2284 
2285     @ForceInline
2286     public final float compareAndExchangeFloat(Object o, long offset,
2287                                                float expected,
2288                                                float x) {
2289         int w = compareAndExchangeInt(o, offset,
2290                                       Float.floatToRawIntBits(expected),
2291                                       Float.floatToRawIntBits(x));
2292         return Float.intBitsToFloat(w);
2293     }
2294 
2295     @ForceInline
2296     public final float compareAndExchangeFloatAcquire(Object o, long offset,
2297                                                   float expected,
2298                                                   float x) {
2299         int w = compareAndExchangeIntAcquire(o, offset,
2300                                              Float.floatToRawIntBits(expected),
2301                                              Float.floatToRawIntBits(x));
2302         return Float.intBitsToFloat(w);
2303     }
2304 
2305     @ForceInline
2306     public final float compareAndExchangeFloatRelease(Object o, long offset,
2307                                                   float expected,
2308                                                   float x) {
2309         int w = compareAndExchangeIntRelease(o, offset,
2310                                              Float.floatToRawIntBits(expected),
2311                                              Float.floatToRawIntBits(x));
2312         return Float.intBitsToFloat(w);
2313     }
2314 
2315     @ForceInline
2316     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
2317                                                      float expected,
2318                                                      float x) {
2319         return weakCompareAndSetIntPlain(o, offset,
2320                                      Float.floatToRawIntBits(expected),
2321                                      Float.floatToRawIntBits(x));
2322     }
2323 
2324     @ForceInline
2325     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
2326                                                        float expected,
2327                                                        float x) {
2328         return weakCompareAndSetIntAcquire(o, offset,
2329                                             Float.floatToRawIntBits(expected),
2330                                             Float.floatToRawIntBits(x));
2331     }
2332 
2333     @ForceInline
2334     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
2335                                                        float expected,
2336                                                        float x) {
2337         return weakCompareAndSetIntRelease(o, offset,
2338                                             Float.floatToRawIntBits(expected),
2339                                             Float.floatToRawIntBits(x));
2340     }
2341 
2342     @ForceInline
2343     public final boolean weakCompareAndSetFloat(Object o, long offset,
2344                                                 float expected,
2345                                                 float x) {
2346         return weakCompareAndSetInt(o, offset,
2347                                              Float.floatToRawIntBits(expected),
2348                                              Float.floatToRawIntBits(x));
2349     }
2350 
2351     /**
2352      * Atomically updates Java variable to {@code x} if it is currently
2353      * holding {@code expected}.
2354      *
2355      * <p>This operation has memory semantics of a {@code volatile} read
2356      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2357      *
2358      * @return {@code true} if successful
2359      */
2360     @ForceInline
2361     public final boolean compareAndSetDouble(Object o, long offset,
2362                                              double expected,
2363                                              double x) {
2364         return compareAndSetLong(o, offset,
2365                                  Double.doubleToRawLongBits(expected),
2366                                  Double.doubleToRawLongBits(x));
2367     }
2368 
2369     @ForceInline
2370     public final double compareAndExchangeDouble(Object o, long offset,
2371                                                  double expected,
2372                                                  double x) {
2373         long w = compareAndExchangeLong(o, offset,
2374                                         Double.doubleToRawLongBits(expected),
2375                                         Double.doubleToRawLongBits(x));
2376         return Double.longBitsToDouble(w);
2377     }
2378 
2379     @ForceInline
2380     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
2381                                                         double expected,
2382                                                         double x) {
2383         long w = compareAndExchangeLongAcquire(o, offset,
2384                                                Double.doubleToRawLongBits(expected),
2385                                                Double.doubleToRawLongBits(x));
2386         return Double.longBitsToDouble(w);
2387     }
2388 
2389     @ForceInline
2390     public final double compareAndExchangeDoubleRelease(Object o, long offset,
2391                                                         double expected,
2392                                                         double x) {
2393         long w = compareAndExchangeLongRelease(o, offset,
2394                                                Double.doubleToRawLongBits(expected),
2395                                                Double.doubleToRawLongBits(x));
2396         return Double.longBitsToDouble(w);
2397     }
2398 
2399     @ForceInline
2400     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
2401                                                       double expected,
2402                                                       double x) {
2403         return weakCompareAndSetLongPlain(o, offset,
2404                                      Double.doubleToRawLongBits(expected),
2405                                      Double.doubleToRawLongBits(x));
2406     }
2407 
2408     @ForceInline
2409     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2410                                                         double expected,
2411                                                         double x) {
2412         return weakCompareAndSetLongAcquire(o, offset,
2413                                              Double.doubleToRawLongBits(expected),
2414                                              Double.doubleToRawLongBits(x));
2415     }
2416 
2417     @ForceInline
2418     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2419                                                         double expected,
2420                                                         double x) {
2421         return weakCompareAndSetLongRelease(o, offset,
2422                                              Double.doubleToRawLongBits(expected),
2423                                              Double.doubleToRawLongBits(x));
2424     }
2425 
2426     @ForceInline
2427     public final boolean weakCompareAndSetDouble(Object o, long offset,
2428                                                  double expected,
2429                                                  double x) {
2430         return weakCompareAndSetLong(o, offset,
2431                                               Double.doubleToRawLongBits(expected),
2432                                               Double.doubleToRawLongBits(x));
2433     }
2434 
2435     /**
2436      * Atomically updates Java variable to {@code x} if it is currently
2437      * holding {@code expected}.
2438      *
2439      * <p>This operation has memory semantics of a {@code volatile} read
2440      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2441      *
2442      * @return {@code true} if successful
2443      */
2444     @IntrinsicCandidate
2445     public final native boolean compareAndSetLong(Object o, long offset,
2446                                                   long expected,
2447                                                   long x);
2448 
2449     @IntrinsicCandidate
2450     public final native long compareAndExchangeLong(Object o, long offset,
2451                                                     long expected,
2452                                                     long x);
2453 
2454     @IntrinsicCandidate
2455     public final long compareAndExchangeLongAcquire(Object o, long offset,
2456                                                            long expected,
2457                                                            long x) {
2458         return compareAndExchangeLong(o, offset, expected, x);
2459     }
2460 
2461     @IntrinsicCandidate
2462     public final long compareAndExchangeLongRelease(Object o, long offset,
2463                                                            long expected,
2464                                                            long x) {
2465         return compareAndExchangeLong(o, offset, expected, x);
2466     }
2467 
2468     @IntrinsicCandidate
2469     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2470                                                     long expected,
2471                                                     long x) {
2472         return compareAndSetLong(o, offset, expected, x);
2473     }
2474 
2475     @IntrinsicCandidate
2476     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2477                                                       long expected,
2478                                                       long x) {
2479         return compareAndSetLong(o, offset, expected, x);
2480     }
2481 
2482     @IntrinsicCandidate
2483     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2484                                                       long expected,
2485                                                       long x) {
2486         return compareAndSetLong(o, offset, expected, x);
2487     }
2488 
2489     @IntrinsicCandidate
2490     public final boolean weakCompareAndSetLong(Object o, long offset,
2491                                                long expected,
2492                                                long x) {
2493         return compareAndSetLong(o, offset, expected, x);
2494     }
2495 
2496     /**
2497      * Fetches a reference value from a given Java variable, with volatile
2498      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2499      */
2500     @IntrinsicCandidate
2501     public native Object getReferenceVolatile(Object o, long offset);
2502 
2503     @ForceInline
2504     public final <V> Object getFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType) {
2505         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2506         Object res = getFlatValue(o, offset, layout, valueType);
2507         fullFence();
2508         return res;
2509     }
2510 
2511     /**
2512      * Stores a reference value into a given Java variable, with
2513      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2514      */
2515     @IntrinsicCandidate
2516     public native void putReferenceVolatile(Object o, long offset, Object x);
2517 
2518     @ForceInline
2519     public final <V> void putFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType, V x) {
2520         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2521         putFlatValueRelease(o, offset, layout, valueType, x);
2522         fullFence();
2523     }
2524 
2525     /** Volatile version of {@link #getInt(Object, long)}  */
2526     @IntrinsicCandidate
2527     public native int     getIntVolatile(Object o, long offset);
2528 
2529     /** Volatile version of {@link #putInt(Object, long, int)}  */
2530     @IntrinsicCandidate
2531     public native void    putIntVolatile(Object o, long offset, int x);
2532 
2533     /** Volatile version of {@link #getBoolean(Object, long)}  */
2534     @IntrinsicCandidate
2535     public native boolean getBooleanVolatile(Object o, long offset);
2536 
2537     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2538     @IntrinsicCandidate
2539     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2540 
2541     /** Volatile version of {@link #getByte(Object, long)}  */
2542     @IntrinsicCandidate
2543     public native byte    getByteVolatile(Object o, long offset);
2544 
2545     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2546     @IntrinsicCandidate
2547     public native void    putByteVolatile(Object o, long offset, byte x);
2548 
2549     /** Volatile version of {@link #getShort(Object, long)}  */
2550     @IntrinsicCandidate
2551     public native short   getShortVolatile(Object o, long offset);
2552 
2553     /** Volatile version of {@link #putShort(Object, long, short)}  */
2554     @IntrinsicCandidate
2555     public native void    putShortVolatile(Object o, long offset, short x);
2556 
2557     /** Volatile version of {@link #getChar(Object, long)}  */
2558     @IntrinsicCandidate
2559     public native char    getCharVolatile(Object o, long offset);
2560 
2561     /** Volatile version of {@link #putChar(Object, long, char)}  */
2562     @IntrinsicCandidate
2563     public native void    putCharVolatile(Object o, long offset, char x);
2564 
2565     /** Volatile version of {@link #getLong(Object, long)}  */
2566     @IntrinsicCandidate
2567     public native long    getLongVolatile(Object o, long offset);
2568 
2569     /** Volatile version of {@link #putLong(Object, long, long)}  */
2570     @IntrinsicCandidate
2571     public native void    putLongVolatile(Object o, long offset, long x);
2572 
2573     /** Volatile version of {@link #getFloat(Object, long)}  */
2574     @IntrinsicCandidate
2575     public native float   getFloatVolatile(Object o, long offset);
2576 
2577     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2578     @IntrinsicCandidate
2579     public native void    putFloatVolatile(Object o, long offset, float x);
2580 
2581     /** Volatile version of {@link #getDouble(Object, long)}  */
2582     @IntrinsicCandidate
2583     public native double  getDoubleVolatile(Object o, long offset);
2584 
2585     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2586     @IntrinsicCandidate
2587     public native void    putDoubleVolatile(Object o, long offset, double x);
2588 
2589 
2590 
2591     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2592     @IntrinsicCandidate
2593     public final Object getReferenceAcquire(Object o, long offset) {
2594         return getReferenceVolatile(o, offset);
2595     }
2596 
2597     @ForceInline
2598     public final <V> Object getFlatValueAcquire(Object o, long offset, int layout, Class<?> valueType) {
2599         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2600         Object res = getFlatValue(o, offset, layout, valueType);
2601         loadFence();
2602         return res;
2603     }
2604 
2605     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2606     @IntrinsicCandidate
2607     public final boolean getBooleanAcquire(Object o, long offset) {
2608         return getBooleanVolatile(o, offset);
2609     }
2610 
2611     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2612     @IntrinsicCandidate
2613     public final byte getByteAcquire(Object o, long offset) {
2614         return getByteVolatile(o, offset);
2615     }
2616 
2617     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2618     @IntrinsicCandidate
2619     public final short getShortAcquire(Object o, long offset) {
2620         return getShortVolatile(o, offset);
2621     }
2622 
2623     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2624     @IntrinsicCandidate
2625     public final char getCharAcquire(Object o, long offset) {
2626         return getCharVolatile(o, offset);
2627     }
2628 
2629     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2630     @IntrinsicCandidate
2631     public final int getIntAcquire(Object o, long offset) {
2632         return getIntVolatile(o, offset);
2633     }
2634 
2635     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2636     @IntrinsicCandidate
2637     public final float getFloatAcquire(Object o, long offset) {
2638         return getFloatVolatile(o, offset);
2639     }
2640 
2641     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2642     @IntrinsicCandidate
2643     public final long getLongAcquire(Object o, long offset) {
2644         return getLongVolatile(o, offset);
2645     }
2646 
2647     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2648     @IntrinsicCandidate
2649     public final double getDoubleAcquire(Object o, long offset) {
2650         return getDoubleVolatile(o, offset);
2651     }
2652 
2653     /*
2654      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2655      * that do not guarantee immediate visibility of the store to
2656      * other threads. This method is generally only useful if the
2657      * underlying field is a Java volatile (or if an array cell, one
2658      * that is otherwise only accessed using volatile accesses).
2659      *
2660      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2661      */
2662 
2663     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2664     @IntrinsicCandidate
2665     public final void putReferenceRelease(Object o, long offset, Object x) {
2666         putReferenceVolatile(o, offset, x);
2667     }
2668 
2669     @ForceInline
2670     public final <V> void putFlatValueRelease(Object o, long offset, int layout, Class<?> valueType, V x) {
2671         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2672         storeFence();
2673         putFlatValue(o, offset, layout, valueType, x);
2674     }
2675 
2676     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2677     @IntrinsicCandidate
2678     public final void putBooleanRelease(Object o, long offset, boolean x) {
2679         putBooleanVolatile(o, offset, x);
2680     }
2681 
2682     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2683     @IntrinsicCandidate
2684     public final void putByteRelease(Object o, long offset, byte x) {
2685         putByteVolatile(o, offset, x);
2686     }
2687 
2688     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2689     @IntrinsicCandidate
2690     public final void putShortRelease(Object o, long offset, short x) {
2691         putShortVolatile(o, offset, x);
2692     }
2693 
2694     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2695     @IntrinsicCandidate
2696     public final void putCharRelease(Object o, long offset, char x) {
2697         putCharVolatile(o, offset, x);
2698     }
2699 
2700     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2701     @IntrinsicCandidate
2702     public final void putIntRelease(Object o, long offset, int x) {
2703         putIntVolatile(o, offset, x);
2704     }
2705 
2706     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2707     @IntrinsicCandidate
2708     public final void putFloatRelease(Object o, long offset, float x) {
2709         putFloatVolatile(o, offset, x);
2710     }
2711 
2712     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2713     @IntrinsicCandidate
2714     public final void putLongRelease(Object o, long offset, long x) {
2715         putLongVolatile(o, offset, x);
2716     }
2717 
2718     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2719     @IntrinsicCandidate
2720     public final void putDoubleRelease(Object o, long offset, double x) {
2721         putDoubleVolatile(o, offset, x);
2722     }
2723 
2724     // ------------------------------ Opaque --------------------------------------
2725 
2726     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2727     @IntrinsicCandidate
2728     public final Object getReferenceOpaque(Object o, long offset) {
2729         return getReferenceVolatile(o, offset);
2730     }
2731 
2732     @ForceInline
2733     public final <V> Object getFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType) {
2734         // this is stronger than opaque semantics
2735         return getFlatValueAcquire(o, offset, layout, valueType);
2736     }
2737 
2738     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2739     @IntrinsicCandidate
2740     public final boolean getBooleanOpaque(Object o, long offset) {
2741         return getBooleanVolatile(o, offset);
2742     }
2743 
2744     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2745     @IntrinsicCandidate
2746     public final byte getByteOpaque(Object o, long offset) {
2747         return getByteVolatile(o, offset);
2748     }
2749 
2750     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2751     @IntrinsicCandidate
2752     public final short getShortOpaque(Object o, long offset) {
2753         return getShortVolatile(o, offset);
2754     }
2755 
2756     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2757     @IntrinsicCandidate
2758     public final char getCharOpaque(Object o, long offset) {
2759         return getCharVolatile(o, offset);
2760     }
2761 
2762     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2763     @IntrinsicCandidate
2764     public final int getIntOpaque(Object o, long offset) {
2765         return getIntVolatile(o, offset);
2766     }
2767 
2768     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2769     @IntrinsicCandidate
2770     public final float getFloatOpaque(Object o, long offset) {
2771         return getFloatVolatile(o, offset);
2772     }
2773 
2774     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2775     @IntrinsicCandidate
2776     public final long getLongOpaque(Object o, long offset) {
2777         return getLongVolatile(o, offset);
2778     }
2779 
2780     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2781     @IntrinsicCandidate
2782     public final double getDoubleOpaque(Object o, long offset) {
2783         return getDoubleVolatile(o, offset);
2784     }
2785 
2786     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2787     @IntrinsicCandidate
2788     public final void putReferenceOpaque(Object o, long offset, Object x) {
2789         putReferenceVolatile(o, offset, x);
2790     }
2791 
2792     @ForceInline
2793     public final <V> void putFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType, V x) {
2794         // this is stronger than opaque semantics
2795         putFlatValueRelease(o, offset, layout, valueType, x);
2796     }
2797 
2798     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2799     @IntrinsicCandidate
2800     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2801         putBooleanVolatile(o, offset, x);
2802     }
2803 
2804     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2805     @IntrinsicCandidate
2806     public final void putByteOpaque(Object o, long offset, byte x) {
2807         putByteVolatile(o, offset, x);
2808     }
2809 
2810     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2811     @IntrinsicCandidate
2812     public final void putShortOpaque(Object o, long offset, short x) {
2813         putShortVolatile(o, offset, x);
2814     }
2815 
2816     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2817     @IntrinsicCandidate
2818     public final void putCharOpaque(Object o, long offset, char x) {
2819         putCharVolatile(o, offset, x);
2820     }
2821 
2822     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2823     @IntrinsicCandidate
2824     public final void putIntOpaque(Object o, long offset, int x) {
2825         putIntVolatile(o, offset, x);
2826     }
2827 
2828     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2829     @IntrinsicCandidate
2830     public final void putFloatOpaque(Object o, long offset, float x) {
2831         putFloatVolatile(o, offset, x);
2832     }
2833 
2834     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2835     @IntrinsicCandidate
2836     public final void putLongOpaque(Object o, long offset, long x) {
2837         putLongVolatile(o, offset, x);
2838     }
2839 
2840     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2841     @IntrinsicCandidate
2842     public final void putDoubleOpaque(Object o, long offset, double x) {
2843         putDoubleVolatile(o, offset, x);
2844     }
2845 
2846     @ForceInline
2847     private boolean compareAndSetFlatValueAsBytes(Object o, long offset, int layout, Class<?> valueType, Object expected, Object x) {
2848         // We turn the payload of an atomic value into a numeric value (of suitable type)
2849         // by storing the value into an array element (of matching layout) and by reading
2850         // back the array element as an integral value. After which we can implement the CAS
2851         // as a plain numeric CAS. Note: this only works if the payload contains no oops
2852         // (see VarHandles::isAtomicFlat).
2853         Object expectedArray = newSpecialArray(valueType, 1, layout);
2854         Object xArray = newSpecialArray(valueType, 1, layout);
2855         long base = arrayBaseOffset(expectedArray.getClass());
2856         int scale = arrayIndexScale(expectedArray.getClass());
2857         putFlatValue(expectedArray, base, layout, valueType, expected);
2858         putFlatValue(xArray, base, layout, valueType, x);
2859         switch (scale) {
2860             case 1: {
2861                 byte expectedByte = getByte(expectedArray, base);
2862                 byte xByte = getByte(xArray, base);
2863                 return compareAndSetByte(o, offset, expectedByte, xByte);
2864             }
2865             case 2: {
2866                 short expectedShort = getShort(expectedArray, base);
2867                 short xShort = getShort(xArray, base);
2868                 return compareAndSetShort(o, offset, expectedShort, xShort);
2869             }
2870             case 4: {
2871                 int expectedInt = getInt(expectedArray, base);
2872                 int xInt = getInt(xArray, base);
2873                 return compareAndSetInt(o, offset, expectedInt, xInt);
2874             }
2875             case 8: {
2876                 long expectedLong = getLong(expectedArray, base);
2877                 long xLong = getLong(xArray, base);
2878                 return compareAndSetLong(o, offset, expectedLong, xLong);
2879             }
2880             default: {
2881                 throw new UnsupportedOperationException();
2882             }
2883         }
2884     }
2885 
2886     /**
2887      * Unblocks the given thread blocked on {@code park}, or, if it is
2888      * not blocked, causes the subsequent call to {@code park} not to
2889      * block.  Note: this operation is "unsafe" solely because the
2890      * caller must somehow ensure that the thread has not been
2891      * destroyed. Nothing special is usually required to ensure this
2892      * when called from Java (in which there will ordinarily be a live
2893      * reference to the thread) but this is not nearly-automatically
2894      * so when calling from native code.
2895      *
2896      * @param thread the thread to unpark.
2897      */
2898     @IntrinsicCandidate
2899     public native void unpark(Object thread);
2900 
2901     /**
2902      * Blocks current thread, returning when a balancing
2903      * {@code unpark} occurs, or a balancing {@code unpark} has
2904      * already occurred, or the thread is interrupted, or, if not
2905      * absolute and time is not zero, the given time nanoseconds have
2906      * elapsed, or if absolute, the given deadline in milliseconds
2907      * since Epoch has passed, or spuriously (i.e., returning for no
2908      * "reason"). Note: This operation is in the Unsafe class only
2909      * because {@code unpark} is, so it would be strange to place it
2910      * elsewhere.
2911      */
2912     @IntrinsicCandidate
2913     public native void park(boolean isAbsolute, long time);
2914 
2915     /**
2916      * Gets the load average in the system run queue assigned
2917      * to the available processors averaged over various periods of time.
2918      * This method retrieves the given {@code nelem} samples and
2919      * assigns to the elements of the given {@code loadavg} array.
2920      * The system imposes a maximum of 3 samples, representing
2921      * averages over the last 1,  5,  and  15 minutes, respectively.
2922      *
2923      * @param loadavg an array of double of size nelems
2924      * @param nelems the number of samples to be retrieved and
2925      *        must be 1 to 3.
2926      *
2927      * @return the number of samples actually retrieved; or -1
2928      *         if the load average is unobtainable.
2929      */
2930     public int getLoadAverage(double[] loadavg, int nelems) {
2931         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2932             throw new ArrayIndexOutOfBoundsException();
2933         }
2934 
2935         return getLoadAverage0(loadavg, nelems);
2936     }
2937 
2938     // The following contain CAS-based Java implementations used on
2939     // platforms not supporting native instructions
2940 
2941     /**
2942      * Atomically adds the given value to the current value of a field
2943      * or array element within the given object {@code o}
2944      * at the given {@code offset}.
2945      *
2946      * @param o object/array to update the field/element in
2947      * @param offset field/element offset
2948      * @param delta the value to add
2949      * @return the previous value
2950      * @since 1.8
2951      */
2952     @IntrinsicCandidate
2953     public final int getAndAddInt(Object o, long offset, int delta) {
2954         int v;
2955         do {
2956             v = getIntVolatile(o, offset);
2957         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
2958         return v;
2959     }
2960 
2961     @ForceInline
2962     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2963         int v;
2964         do {
2965             v = getInt(o, offset);
2966         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
2967         return v;
2968     }
2969 
2970     @ForceInline
2971     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2972         int v;
2973         do {
2974             v = getIntAcquire(o, offset);
2975         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
2976         return v;
2977     }
2978 
2979     /**
2980      * Atomically adds the given value to the current value of a field
2981      * or array element within the given object {@code o}
2982      * at the given {@code offset}.
2983      *
2984      * @param o object/array to update the field/element in
2985      * @param offset field/element offset
2986      * @param delta the value to add
2987      * @return the previous value
2988      * @since 1.8
2989      */
2990     @IntrinsicCandidate
2991     public final long getAndAddLong(Object o, long offset, long delta) {
2992         long v;
2993         do {
2994             v = getLongVolatile(o, offset);
2995         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
2996         return v;
2997     }
2998 
2999     @ForceInline
3000     public final long getAndAddLongRelease(Object o, long offset, long delta) {
3001         long v;
3002         do {
3003             v = getLong(o, offset);
3004         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
3005         return v;
3006     }
3007 
3008     @ForceInline
3009     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
3010         long v;
3011         do {
3012             v = getLongAcquire(o, offset);
3013         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
3014         return v;
3015     }
3016 
3017     @IntrinsicCandidate
3018     public final byte getAndAddByte(Object o, long offset, byte delta) {
3019         byte v;
3020         do {
3021             v = getByteVolatile(o, offset);
3022         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
3023         return v;
3024     }
3025 
3026     @ForceInline
3027     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
3028         byte v;
3029         do {
3030             v = getByte(o, offset);
3031         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
3032         return v;
3033     }
3034 
3035     @ForceInline
3036     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
3037         byte v;
3038         do {
3039             v = getByteAcquire(o, offset);
3040         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
3041         return v;
3042     }
3043 
3044     @IntrinsicCandidate
3045     public final short getAndAddShort(Object o, long offset, short delta) {
3046         short v;
3047         do {
3048             v = getShortVolatile(o, offset);
3049         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
3050         return v;
3051     }
3052 
3053     @ForceInline
3054     public final short getAndAddShortRelease(Object o, long offset, short delta) {
3055         short v;
3056         do {
3057             v = getShort(o, offset);
3058         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
3059         return v;
3060     }
3061 
3062     @ForceInline
3063     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
3064         short v;
3065         do {
3066             v = getShortAcquire(o, offset);
3067         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
3068         return v;
3069     }
3070 
3071     @ForceInline
3072     public final char getAndAddChar(Object o, long offset, char delta) {
3073         return (char) getAndAddShort(o, offset, (short) delta);
3074     }
3075 
3076     @ForceInline
3077     public final char getAndAddCharRelease(Object o, long offset, char delta) {
3078         return (char) getAndAddShortRelease(o, offset, (short) delta);
3079     }
3080 
3081     @ForceInline
3082     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
3083         return (char) getAndAddShortAcquire(o, offset, (short) delta);
3084     }
3085 
3086     @ForceInline
3087     public final float getAndAddFloat(Object o, long offset, float delta) {
3088         int expectedBits;
3089         float v;
3090         do {
3091             // Load and CAS with the raw bits to avoid issues with NaNs and
3092             // possible bit conversion from signaling NaNs to quiet NaNs that
3093             // may result in the loop not terminating.
3094             expectedBits = getIntVolatile(o, offset);
3095             v = Float.intBitsToFloat(expectedBits);
3096         } while (!weakCompareAndSetInt(o, offset,
3097                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
3098         return v;
3099     }
3100 
3101     @ForceInline
3102     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
3103         int expectedBits;
3104         float v;
3105         do {
3106             // Load and CAS with the raw bits to avoid issues with NaNs and
3107             // possible bit conversion from signaling NaNs to quiet NaNs that
3108             // may result in the loop not terminating.
3109             expectedBits = getInt(o, offset);
3110             v = Float.intBitsToFloat(expectedBits);
3111         } while (!weakCompareAndSetIntRelease(o, offset,
3112                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3113         return v;
3114     }
3115 
3116     @ForceInline
3117     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
3118         int expectedBits;
3119         float v;
3120         do {
3121             // Load and CAS with the raw bits to avoid issues with NaNs and
3122             // possible bit conversion from signaling NaNs to quiet NaNs that
3123             // may result in the loop not terminating.
3124             expectedBits = getIntAcquire(o, offset);
3125             v = Float.intBitsToFloat(expectedBits);
3126         } while (!weakCompareAndSetIntAcquire(o, offset,
3127                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3128         return v;
3129     }
3130 
3131     @ForceInline
3132     public final double getAndAddDouble(Object o, long offset, double delta) {
3133         long expectedBits;
3134         double v;
3135         do {
3136             // Load and CAS with the raw bits to avoid issues with NaNs and
3137             // possible bit conversion from signaling NaNs to quiet NaNs that
3138             // may result in the loop not terminating.
3139             expectedBits = getLongVolatile(o, offset);
3140             v = Double.longBitsToDouble(expectedBits);
3141         } while (!weakCompareAndSetLong(o, offset,
3142                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
3143         return v;
3144     }
3145 
3146     @ForceInline
3147     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
3148         long expectedBits;
3149         double v;
3150         do {
3151             // Load and CAS with the raw bits to avoid issues with NaNs and
3152             // possible bit conversion from signaling NaNs to quiet NaNs that
3153             // may result in the loop not terminating.
3154             expectedBits = getLong(o, offset);
3155             v = Double.longBitsToDouble(expectedBits);
3156         } while (!weakCompareAndSetLongRelease(o, offset,
3157                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3158         return v;
3159     }
3160 
3161     @ForceInline
3162     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
3163         long expectedBits;
3164         double v;
3165         do {
3166             // Load and CAS with the raw bits to avoid issues with NaNs and
3167             // possible bit conversion from signaling NaNs to quiet NaNs that
3168             // may result in the loop not terminating.
3169             expectedBits = getLongAcquire(o, offset);
3170             v = Double.longBitsToDouble(expectedBits);
3171         } while (!weakCompareAndSetLongAcquire(o, offset,
3172                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3173         return v;
3174     }
3175 
3176     /**
3177      * Atomically exchanges the given value with the current value of
3178      * a field or array element within the given object {@code o}
3179      * at the given {@code offset}.
3180      *
3181      * @param o object/array to update the field/element in
3182      * @param offset field/element offset
3183      * @param newValue new value
3184      * @return the previous value
3185      * @since 1.8
3186      */
3187     @IntrinsicCandidate
3188     public final int getAndSetInt(Object o, long offset, int newValue) {
3189         int v;
3190         do {
3191             v = getIntVolatile(o, offset);
3192         } while (!weakCompareAndSetInt(o, offset, v, newValue));
3193         return v;
3194     }
3195 
3196     @ForceInline
3197     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
3198         int v;
3199         do {
3200             v = getInt(o, offset);
3201         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
3202         return v;
3203     }
3204 
3205     @ForceInline
3206     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
3207         int v;
3208         do {
3209             v = getIntAcquire(o, offset);
3210         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
3211         return v;
3212     }
3213 
3214     /**
3215      * Atomically exchanges the given value with the current value of
3216      * a field or array element within the given object {@code o}
3217      * at the given {@code offset}.
3218      *
3219      * @param o object/array to update the field/element in
3220      * @param offset field/element offset
3221      * @param newValue new value
3222      * @return the previous value
3223      * @since 1.8
3224      */
3225     @IntrinsicCandidate
3226     public final long getAndSetLong(Object o, long offset, long newValue) {
3227         long v;
3228         do {
3229             v = getLongVolatile(o, offset);
3230         } while (!weakCompareAndSetLong(o, offset, v, newValue));
3231         return v;
3232     }
3233 
3234     @ForceInline
3235     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
3236         long v;
3237         do {
3238             v = getLong(o, offset);
3239         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
3240         return v;
3241     }
3242 
3243     @ForceInline
3244     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
3245         long v;
3246         do {
3247             v = getLongAcquire(o, offset);
3248         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
3249         return v;
3250     }
3251 
3252     /**
3253      * Atomically exchanges the given reference value with the current
3254      * reference value of a field or array element within the given
3255      * object {@code o} at the given {@code offset}.
3256      *
3257      * @param o object/array to update the field/element in
3258      * @param offset field/element offset
3259      * @param newValue new value
3260      * @return the previous value
3261      * @since 1.8
3262      */
3263     @IntrinsicCandidate
3264     public final Object getAndSetReference(Object o, long offset, Object newValue) {
3265         Object v;
3266         do {
3267             v = getReferenceVolatile(o, offset);
3268         } while (!weakCompareAndSetReference(o, offset, v, newValue));
3269         return v;
3270     }
3271 
3272     @ForceInline
3273     public final Object getAndSetReference(Object o, long offset, Class<?> valueType, Object newValue) {
3274         Object v;
3275         do {
3276             v = getReferenceVolatile(o, offset);
3277         } while (!compareAndSetReference(o, offset, valueType, v, newValue));
3278         return v;
3279     }
3280 
3281     @ForceInline
3282     public Object getAndSetFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, Object newValue) {
3283         Object v;
3284         do {
3285             v = getFlatValueVolatile(o, offset, layoutKind, valueType);
3286         } while (!compareAndSetFlatValue(o, offset, layoutKind, valueType, v, newValue));
3287         return v;
3288     }
3289 
3290     @ForceInline
3291     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
3292         Object v;
3293         do {
3294             v = getReference(o, offset);
3295         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
3296         return v;
3297     }
3298 
3299     @ForceInline
3300     public final Object getAndSetReferenceRelease(Object o, long offset, Class<?> valueType, Object newValue) {
3301         return getAndSetReference(o, offset, valueType, newValue);
3302     }
3303 
3304     @ForceInline
3305     public Object getAndSetFlatValueRelease(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3306         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3307     }
3308 
3309     @ForceInline
3310     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
3311         Object v;
3312         do {
3313             v = getReferenceAcquire(o, offset);
3314         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
3315         return v;
3316     }
3317 
3318     @ForceInline
3319     public final Object getAndSetReferenceAcquire(Object o, long offset, Class<?> valueType, Object newValue) {
3320         return getAndSetReference(o, offset, valueType, newValue);
3321     }
3322 
3323     @ForceInline
3324     public Object getAndSetFlatValueAcquire(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3325         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3326     }
3327 
3328     @IntrinsicCandidate
3329     public final byte getAndSetByte(Object o, long offset, byte newValue) {
3330         byte v;
3331         do {
3332             v = getByteVolatile(o, offset);
3333         } while (!weakCompareAndSetByte(o, offset, v, newValue));
3334         return v;
3335     }
3336 
3337     @ForceInline
3338     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
3339         byte v;
3340         do {
3341             v = getByte(o, offset);
3342         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
3343         return v;
3344     }
3345 
3346     @ForceInline
3347     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
3348         byte v;
3349         do {
3350             v = getByteAcquire(o, offset);
3351         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
3352         return v;
3353     }
3354 
3355     @ForceInline
3356     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
3357         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
3358     }
3359 
3360     @ForceInline
3361     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
3362         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
3363     }
3364 
3365     @ForceInline
3366     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
3367         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
3368     }
3369 
3370     @IntrinsicCandidate
3371     public final short getAndSetShort(Object o, long offset, short newValue) {
3372         short v;
3373         do {
3374             v = getShortVolatile(o, offset);
3375         } while (!weakCompareAndSetShort(o, offset, v, newValue));
3376         return v;
3377     }
3378 
3379     @ForceInline
3380     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
3381         short v;
3382         do {
3383             v = getShort(o, offset);
3384         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
3385         return v;
3386     }
3387 
3388     @ForceInline
3389     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
3390         short v;
3391         do {
3392             v = getShortAcquire(o, offset);
3393         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
3394         return v;
3395     }
3396 
3397     @ForceInline
3398     public final char getAndSetChar(Object o, long offset, char newValue) {
3399         return s2c(getAndSetShort(o, offset, c2s(newValue)));
3400     }
3401 
3402     @ForceInline
3403     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
3404         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
3405     }
3406 
3407     @ForceInline
3408     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
3409         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
3410     }
3411 
3412     @ForceInline
3413     public final float getAndSetFloat(Object o, long offset, float newValue) {
3414         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
3415         return Float.intBitsToFloat(v);
3416     }
3417 
3418     @ForceInline
3419     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
3420         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
3421         return Float.intBitsToFloat(v);
3422     }
3423 
3424     @ForceInline
3425     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
3426         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
3427         return Float.intBitsToFloat(v);
3428     }
3429 
3430     @ForceInline
3431     public final double getAndSetDouble(Object o, long offset, double newValue) {
3432         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
3433         return Double.longBitsToDouble(v);
3434     }
3435 
3436     @ForceInline
3437     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
3438         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
3439         return Double.longBitsToDouble(v);
3440     }
3441 
3442     @ForceInline
3443     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
3444         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
3445         return Double.longBitsToDouble(v);
3446     }
3447 
3448 
3449     // The following contain CAS-based Java implementations used on
3450     // platforms not supporting native instructions
3451 
3452     @ForceInline
3453     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
3454         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
3455     }
3456 
3457     @ForceInline
3458     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
3459         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
3460     }
3461 
3462     @ForceInline
3463     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
3464         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
3465     }
3466 
3467     @ForceInline
3468     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
3469         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
3470     }
3471 
3472     @ForceInline
3473     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
3474         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
3475     }
3476 
3477     @ForceInline
3478     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
3479         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
3480     }
3481 
3482     @ForceInline
3483     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
3484         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
3485     }
3486 
3487     @ForceInline
3488     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
3489         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
3490     }
3491 
3492     @ForceInline
3493     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
3494         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
3495     }
3496 
3497 
3498     @ForceInline
3499     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
3500         byte current;
3501         do {
3502             current = getByteVolatile(o, offset);
3503         } while (!weakCompareAndSetByte(o, offset,
3504                                                   current, (byte) (current | mask)));
3505         return current;
3506     }
3507 
3508     @ForceInline
3509     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
3510         byte current;
3511         do {
3512             current = getByte(o, offset);
3513         } while (!weakCompareAndSetByteRelease(o, offset,
3514                                                  current, (byte) (current | mask)));
3515         return current;
3516     }
3517 
3518     @ForceInline
3519     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
3520         byte current;
3521         do {
3522             // Plain read, the value is a hint, the acquire CAS does the work
3523             current = getByte(o, offset);
3524         } while (!weakCompareAndSetByteAcquire(o, offset,
3525                                                  current, (byte) (current | mask)));
3526         return current;
3527     }
3528 
3529     @ForceInline
3530     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3531         byte current;
3532         do {
3533             current = getByteVolatile(o, offset);
3534         } while (!weakCompareAndSetByte(o, offset,
3535                                                   current, (byte) (current & mask)));
3536         return current;
3537     }
3538 
3539     @ForceInline
3540     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3541         byte current;
3542         do {
3543             current = getByte(o, offset);
3544         } while (!weakCompareAndSetByteRelease(o, offset,
3545                                                  current, (byte) (current & mask)));
3546         return current;
3547     }
3548 
3549     @ForceInline
3550     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3551         byte current;
3552         do {
3553             // Plain read, the value is a hint, the acquire CAS does the work
3554             current = getByte(o, offset);
3555         } while (!weakCompareAndSetByteAcquire(o, offset,
3556                                                  current, (byte) (current & mask)));
3557         return current;
3558     }
3559 
3560     @ForceInline
3561     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3562         byte current;
3563         do {
3564             current = getByteVolatile(o, offset);
3565         } while (!weakCompareAndSetByte(o, offset,
3566                                                   current, (byte) (current ^ mask)));
3567         return current;
3568     }
3569 
3570     @ForceInline
3571     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3572         byte current;
3573         do {
3574             current = getByte(o, offset);
3575         } while (!weakCompareAndSetByteRelease(o, offset,
3576                                                  current, (byte) (current ^ mask)));
3577         return current;
3578     }
3579 
3580     @ForceInline
3581     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3582         byte current;
3583         do {
3584             // Plain read, the value is a hint, the acquire CAS does the work
3585             current = getByte(o, offset);
3586         } while (!weakCompareAndSetByteAcquire(o, offset,
3587                                                  current, (byte) (current ^ mask)));
3588         return current;
3589     }
3590 
3591 
3592     @ForceInline
3593     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3594         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3595     }
3596 
3597     @ForceInline
3598     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3599         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3600     }
3601 
3602     @ForceInline
3603     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3604         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3605     }
3606 
3607     @ForceInline
3608     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3609         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3610     }
3611 
3612     @ForceInline
3613     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3614         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3615     }
3616 
3617     @ForceInline
3618     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3619         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3620     }
3621 
3622     @ForceInline
3623     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3624         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3625     }
3626 
3627     @ForceInline
3628     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3629         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3630     }
3631 
3632     @ForceInline
3633     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3634         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3635     }
3636 
3637 
3638     @ForceInline
3639     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3640         short current;
3641         do {
3642             current = getShortVolatile(o, offset);
3643         } while (!weakCompareAndSetShort(o, offset,
3644                                                 current, (short) (current | mask)));
3645         return current;
3646     }
3647 
3648     @ForceInline
3649     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3650         short current;
3651         do {
3652             current = getShort(o, offset);
3653         } while (!weakCompareAndSetShortRelease(o, offset,
3654                                                current, (short) (current | mask)));
3655         return current;
3656     }
3657 
3658     @ForceInline
3659     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3660         short current;
3661         do {
3662             // Plain read, the value is a hint, the acquire CAS does the work
3663             current = getShort(o, offset);
3664         } while (!weakCompareAndSetShortAcquire(o, offset,
3665                                                current, (short) (current | mask)));
3666         return current;
3667     }
3668 
3669     @ForceInline
3670     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3671         short current;
3672         do {
3673             current = getShortVolatile(o, offset);
3674         } while (!weakCompareAndSetShort(o, offset,
3675                                                 current, (short) (current & mask)));
3676         return current;
3677     }
3678 
3679     @ForceInline
3680     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3681         short current;
3682         do {
3683             current = getShort(o, offset);
3684         } while (!weakCompareAndSetShortRelease(o, offset,
3685                                                current, (short) (current & mask)));
3686         return current;
3687     }
3688 
3689     @ForceInline
3690     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3691         short current;
3692         do {
3693             // Plain read, the value is a hint, the acquire CAS does the work
3694             current = getShort(o, offset);
3695         } while (!weakCompareAndSetShortAcquire(o, offset,
3696                                                current, (short) (current & mask)));
3697         return current;
3698     }
3699 
3700     @ForceInline
3701     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3702         short current;
3703         do {
3704             current = getShortVolatile(o, offset);
3705         } while (!weakCompareAndSetShort(o, offset,
3706                                                 current, (short) (current ^ mask)));
3707         return current;
3708     }
3709 
3710     @ForceInline
3711     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3712         short current;
3713         do {
3714             current = getShort(o, offset);
3715         } while (!weakCompareAndSetShortRelease(o, offset,
3716                                                current, (short) (current ^ mask)));
3717         return current;
3718     }
3719 
3720     @ForceInline
3721     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3722         short current;
3723         do {
3724             // Plain read, the value is a hint, the acquire CAS does the work
3725             current = getShort(o, offset);
3726         } while (!weakCompareAndSetShortAcquire(o, offset,
3727                                                current, (short) (current ^ mask)));
3728         return current;
3729     }
3730 
3731 
3732     @ForceInline
3733     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3734         int current;
3735         do {
3736             current = getIntVolatile(o, offset);
3737         } while (!weakCompareAndSetInt(o, offset,
3738                                                 current, current | mask));
3739         return current;
3740     }
3741 
3742     @ForceInline
3743     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3744         int current;
3745         do {
3746             current = getInt(o, offset);
3747         } while (!weakCompareAndSetIntRelease(o, offset,
3748                                                current, current | mask));
3749         return current;
3750     }
3751 
3752     @ForceInline
3753     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3754         int current;
3755         do {
3756             // Plain read, the value is a hint, the acquire CAS does the work
3757             current = getInt(o, offset);
3758         } while (!weakCompareAndSetIntAcquire(o, offset,
3759                                                current, current | mask));
3760         return current;
3761     }
3762 
3763     /**
3764      * Atomically replaces the current value of a field or array element within
3765      * the given object with the result of bitwise AND between the current value
3766      * and mask.
3767      *
3768      * @param o object/array to update the field/element in
3769      * @param offset field/element offset
3770      * @param mask the mask value
3771      * @return the previous value
3772      * @since 9
3773      */
3774     @ForceInline
3775     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3776         int current;
3777         do {
3778             current = getIntVolatile(o, offset);
3779         } while (!weakCompareAndSetInt(o, offset,
3780                                                 current, current & mask));
3781         return current;
3782     }
3783 
3784     @ForceInline
3785     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3786         int current;
3787         do {
3788             current = getInt(o, offset);
3789         } while (!weakCompareAndSetIntRelease(o, offset,
3790                                                current, current & mask));
3791         return current;
3792     }
3793 
3794     @ForceInline
3795     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3796         int current;
3797         do {
3798             // Plain read, the value is a hint, the acquire CAS does the work
3799             current = getInt(o, offset);
3800         } while (!weakCompareAndSetIntAcquire(o, offset,
3801                                                current, current & mask));
3802         return current;
3803     }
3804 
3805     @ForceInline
3806     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3807         int current;
3808         do {
3809             current = getIntVolatile(o, offset);
3810         } while (!weakCompareAndSetInt(o, offset,
3811                                                 current, current ^ mask));
3812         return current;
3813     }
3814 
3815     @ForceInline
3816     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3817         int current;
3818         do {
3819             current = getInt(o, offset);
3820         } while (!weakCompareAndSetIntRelease(o, offset,
3821                                                current, current ^ mask));
3822         return current;
3823     }
3824 
3825     @ForceInline
3826     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3827         int current;
3828         do {
3829             // Plain read, the value is a hint, the acquire CAS does the work
3830             current = getInt(o, offset);
3831         } while (!weakCompareAndSetIntAcquire(o, offset,
3832                                                current, current ^ mask));
3833         return current;
3834     }
3835 
3836 
3837     @ForceInline
3838     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3839         long current;
3840         do {
3841             current = getLongVolatile(o, offset);
3842         } while (!weakCompareAndSetLong(o, offset,
3843                                                 current, current | mask));
3844         return current;
3845     }
3846 
3847     @ForceInline
3848     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3849         long current;
3850         do {
3851             current = getLong(o, offset);
3852         } while (!weakCompareAndSetLongRelease(o, offset,
3853                                                current, current | mask));
3854         return current;
3855     }
3856 
3857     @ForceInline
3858     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3859         long current;
3860         do {
3861             // Plain read, the value is a hint, the acquire CAS does the work
3862             current = getLong(o, offset);
3863         } while (!weakCompareAndSetLongAcquire(o, offset,
3864                                                current, current | mask));
3865         return current;
3866     }
3867 
3868     @ForceInline
3869     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3870         long current;
3871         do {
3872             current = getLongVolatile(o, offset);
3873         } while (!weakCompareAndSetLong(o, offset,
3874                                                 current, current & mask));
3875         return current;
3876     }
3877 
3878     @ForceInline
3879     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3880         long current;
3881         do {
3882             current = getLong(o, offset);
3883         } while (!weakCompareAndSetLongRelease(o, offset,
3884                                                current, current & mask));
3885         return current;
3886     }
3887 
3888     @ForceInline
3889     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3890         long current;
3891         do {
3892             // Plain read, the value is a hint, the acquire CAS does the work
3893             current = getLong(o, offset);
3894         } while (!weakCompareAndSetLongAcquire(o, offset,
3895                                                current, current & mask));
3896         return current;
3897     }
3898 
3899     @ForceInline
3900     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3901         long current;
3902         do {
3903             current = getLongVolatile(o, offset);
3904         } while (!weakCompareAndSetLong(o, offset,
3905                                                 current, current ^ mask));
3906         return current;
3907     }
3908 
3909     @ForceInline
3910     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3911         long current;
3912         do {
3913             current = getLong(o, offset);
3914         } while (!weakCompareAndSetLongRelease(o, offset,
3915                                                current, current ^ mask));
3916         return current;
3917     }
3918 
3919     @ForceInline
3920     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3921         long current;
3922         do {
3923             // Plain read, the value is a hint, the acquire CAS does the work
3924             current = getLong(o, offset);
3925         } while (!weakCompareAndSetLongAcquire(o, offset,
3926                                                current, current ^ mask));
3927         return current;
3928     }
3929 
3930 
3931 
3932     /**
3933      * Ensures that loads before the fence will not be reordered with loads and
3934      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3935      *
3936      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3937      * (an "acquire fence").
3938      *
3939      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3940      *
3941      * @since 1.8
3942      */
3943     @IntrinsicCandidate
3944     public final void loadFence() {
3945         // If loadFence intrinsic is not available, fall back to full fence.
3946         fullFence();
3947     }
3948 
3949     /**
3950      * Ensures that loads and stores before the fence will not be reordered with
3951      * stores after the fence; a "StoreStore plus LoadStore barrier".
3952      *
3953      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3954      * (a "release fence").
3955      *
3956      * Provides a StoreStore barrier followed by a LoadStore barrier.
3957      *
3958      * @since 1.8
3959      */
3960     @IntrinsicCandidate
3961     public final void storeFence() {
3962         // If storeFence intrinsic is not available, fall back to full fence.
3963         fullFence();
3964     }
3965 
3966     /**
3967      * Ensures that loads and stores before the fence will not be reordered
3968      * with loads and stores after the fence.  Implies the effects of both
3969      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3970      * barrier.
3971      *
3972      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3973      * @since 1.8
3974      */
3975     @IntrinsicCandidate
3976     public native void fullFence();
3977 
3978     /**
3979      * Ensures that loads before the fence will not be reordered with
3980      * loads after the fence.
3981      *
3982      * @implNote
3983      * This method is operationally equivalent to {@link #loadFence()}.
3984      *
3985      * @since 9
3986      */
3987     public final void loadLoadFence() {
3988         loadFence();
3989     }
3990 
3991     /**
3992      * Ensures that stores before the fence will not be reordered with
3993      * stores after the fence.
3994      *
3995      * @since 9
3996      */
3997     @IntrinsicCandidate
3998     public final void storeStoreFence() {
3999         // If storeStoreFence intrinsic is not available, fall back to storeFence.
4000         storeFence();
4001     }
4002 
4003     /**
4004      * Throws IllegalAccessError; for use by the VM for access control
4005      * error support.
4006      * @since 1.8
4007      */
4008     private static void throwIllegalAccessError() {
4009         throw new IllegalAccessError();
4010     }
4011 
4012     /**
4013      * Throws NoSuchMethodError; for use by the VM for redefinition support.
4014      * @since 13
4015      */
4016     private static void throwNoSuchMethodError() {
4017         throw new NoSuchMethodError();
4018     }
4019 
4020     /**
4021      * @return Returns true if the native byte ordering of this
4022      * platform is big-endian, false if it is little-endian.
4023      */
4024     public final boolean isBigEndian() { return BIG_ENDIAN; }
4025 
4026     /**
4027      * @return Returns true if this platform is capable of performing
4028      * accesses at addresses which are not aligned for the type of the
4029      * primitive type being accessed, false otherwise.
4030      */
4031     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
4032 
4033     /**
4034      * Fetches a value at some byte offset into a given Java object.
4035      * More specifically, fetches a value within the given object
4036      * <code>o</code> at the given offset, or (if <code>o</code> is
4037      * null) from the memory address whose numerical value is the
4038      * given offset.  <p>
4039      *
4040      * The specification of this method is the same as {@link
4041      * #getLong(Object, long)} except that the offset does not need to
4042      * have been obtained from {@link #objectFieldOffset} on the
4043      * {@link java.lang.reflect.Field} of some Java field.  The value
4044      * in memory is raw data, and need not correspond to any Java
4045      * variable.  Unless <code>o</code> is null, the value accessed
4046      * must be entirely within the allocated object.  The endianness
4047      * of the value in memory is the endianness of the native platform.
4048      *
4049      * <p> The read will be atomic with respect to the largest power
4050      * of two that divides the GCD of the offset and the storage size.
4051      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
4052      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4053      * respectively.  There are no other guarantees of atomicity.
4054      * <p>
4055      * 8-byte atomicity is only guaranteed on platforms on which
4056      * support atomic accesses to longs.
4057      *
4058      * @param o Java heap object in which the value resides, if any, else
4059      *        null
4060      * @param offset The offset in bytes from the start of the object
4061      * @return the value fetched from the indicated object
4062      * @throws RuntimeException No defined exceptions are thrown, not even
4063      *         {@link NullPointerException}
4064      * @since 9
4065      */
4066     @IntrinsicCandidate
4067     public final long getLongUnaligned(Object o, long offset) {
4068         if ((offset & 7) == 0) {
4069             return getLong(o, offset);
4070         } else if ((offset & 3) == 0) {
4071             return makeLong(getInt(o, offset),
4072                             getInt(o, offset + 4));
4073         } else if ((offset & 1) == 0) {
4074             return makeLong(getShort(o, offset),
4075                             getShort(o, offset + 2),
4076                             getShort(o, offset + 4),
4077                             getShort(o, offset + 6));
4078         } else {
4079             return makeLong(getByte(o, offset),
4080                             getByte(o, offset + 1),
4081                             getByte(o, offset + 2),
4082                             getByte(o, offset + 3),
4083                             getByte(o, offset + 4),
4084                             getByte(o, offset + 5),
4085                             getByte(o, offset + 6),
4086                             getByte(o, offset + 7));
4087         }
4088     }
4089     /**
4090      * As {@link #getLongUnaligned(Object, long)} but with an
4091      * additional argument which specifies the endianness of the value
4092      * as stored in memory.
4093      *
4094      * @param o Java heap object in which the variable resides
4095      * @param offset The offset in bytes from the start of the object
4096      * @param bigEndian The endianness of the value
4097      * @return the value fetched from the indicated object
4098      * @since 9
4099      */
4100     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
4101         return convEndian(bigEndian, getLongUnaligned(o, offset));
4102     }
4103 
4104     /** @see #getLongUnaligned(Object, long) */
4105     @IntrinsicCandidate
4106     public final int getIntUnaligned(Object o, long offset) {
4107         if ((offset & 3) == 0) {
4108             return getInt(o, offset);
4109         } else if ((offset & 1) == 0) {
4110             return makeInt(getShort(o, offset),
4111                            getShort(o, offset + 2));
4112         } else {
4113             return makeInt(getByte(o, offset),
4114                            getByte(o, offset + 1),
4115                            getByte(o, offset + 2),
4116                            getByte(o, offset + 3));
4117         }
4118     }
4119     /** @see #getLongUnaligned(Object, long, boolean) */
4120     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
4121         return convEndian(bigEndian, getIntUnaligned(o, offset));
4122     }
4123 
4124     /** @see #getLongUnaligned(Object, long) */
4125     @IntrinsicCandidate
4126     public final short getShortUnaligned(Object o, long offset) {
4127         if ((offset & 1) == 0) {
4128             return getShort(o, offset);
4129         } else {
4130             return makeShort(getByte(o, offset),
4131                              getByte(o, offset + 1));
4132         }
4133     }
4134     /** @see #getLongUnaligned(Object, long, boolean) */
4135     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
4136         return convEndian(bigEndian, getShortUnaligned(o, offset));
4137     }
4138 
4139     /** @see #getLongUnaligned(Object, long) */
4140     @IntrinsicCandidate
4141     public final char getCharUnaligned(Object o, long offset) {
4142         if ((offset & 1) == 0) {
4143             return getChar(o, offset);
4144         } else {
4145             return (char)makeShort(getByte(o, offset),
4146                                    getByte(o, offset + 1));
4147         }
4148     }
4149 
4150     /** @see #getLongUnaligned(Object, long, boolean) */
4151     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
4152         return convEndian(bigEndian, getCharUnaligned(o, offset));
4153     }
4154 
4155     /**
4156      * Stores a value at some byte offset into a given Java object.
4157      * <p>
4158      * The specification of this method is the same as {@link
4159      * #getLong(Object, long)} except that the offset does not need to
4160      * have been obtained from {@link #objectFieldOffset} on the
4161      * {@link java.lang.reflect.Field} of some Java field.  The value
4162      * in memory is raw data, and need not correspond to any Java
4163      * variable.  The endianness of the value in memory is the
4164      * endianness of the native platform.
4165      * <p>
4166      * The write will be atomic with respect to the largest power of
4167      * two that divides the GCD of the offset and the storage size.
4168      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
4169      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4170      * respectively.  There are no other guarantees of atomicity.
4171      * <p>
4172      * 8-byte atomicity is only guaranteed on platforms on which
4173      * support atomic accesses to longs.
4174      *
4175      * @param o Java heap object in which the value resides, if any, else
4176      *        null
4177      * @param offset The offset in bytes from the start of the object
4178      * @param x the value to store
4179      * @throws RuntimeException No defined exceptions are thrown, not even
4180      *         {@link NullPointerException}
4181      * @since 9
4182      */
4183     @IntrinsicCandidate
4184     public final void putLongUnaligned(Object o, long offset, long x) {
4185         if ((offset & 7) == 0) {
4186             putLong(o, offset, x);
4187         } else if ((offset & 3) == 0) {
4188             putLongParts(o, offset,
4189                          (int)(x >> 0),
4190                          (int)(x >>> 32));
4191         } else if ((offset & 1) == 0) {
4192             putLongParts(o, offset,
4193                          (short)(x >>> 0),
4194                          (short)(x >>> 16),
4195                          (short)(x >>> 32),
4196                          (short)(x >>> 48));
4197         } else {
4198             putLongParts(o, offset,
4199                          (byte)(x >>> 0),
4200                          (byte)(x >>> 8),
4201                          (byte)(x >>> 16),
4202                          (byte)(x >>> 24),
4203                          (byte)(x >>> 32),
4204                          (byte)(x >>> 40),
4205                          (byte)(x >>> 48),
4206                          (byte)(x >>> 56));
4207         }
4208     }
4209 
4210     /**
4211      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
4212      * argument which specifies the endianness of the value as stored in memory.
4213      * @param o Java heap object in which the value resides
4214      * @param offset The offset in bytes from the start of the object
4215      * @param x the value to store
4216      * @param bigEndian The endianness of the value
4217      * @throws RuntimeException No defined exceptions are thrown, not even
4218      *         {@link NullPointerException}
4219      * @since 9
4220      */
4221     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
4222         putLongUnaligned(o, offset, convEndian(bigEndian, x));
4223     }
4224 
4225     /** @see #putLongUnaligned(Object, long, long) */
4226     @IntrinsicCandidate
4227     public final void putIntUnaligned(Object o, long offset, int x) {
4228         if ((offset & 3) == 0) {
4229             putInt(o, offset, x);
4230         } else if ((offset & 1) == 0) {
4231             putIntParts(o, offset,
4232                         (short)(x >> 0),
4233                         (short)(x >>> 16));
4234         } else {
4235             putIntParts(o, offset,
4236                         (byte)(x >>> 0),
4237                         (byte)(x >>> 8),
4238                         (byte)(x >>> 16),
4239                         (byte)(x >>> 24));
4240         }
4241     }
4242     /** @see #putLongUnaligned(Object, long, long, boolean) */
4243     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
4244         putIntUnaligned(o, offset, convEndian(bigEndian, x));
4245     }
4246 
4247     /** @see #putLongUnaligned(Object, long, long) */
4248     @IntrinsicCandidate
4249     public final void putShortUnaligned(Object o, long offset, short x) {
4250         if ((offset & 1) == 0) {
4251             putShort(o, offset, x);
4252         } else {
4253             putShortParts(o, offset,
4254                           (byte)(x >>> 0),
4255                           (byte)(x >>> 8));
4256         }
4257     }
4258     /** @see #putLongUnaligned(Object, long, long, boolean) */
4259     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
4260         putShortUnaligned(o, offset, convEndian(bigEndian, x));
4261     }
4262 
4263     /** @see #putLongUnaligned(Object, long, long) */
4264     @IntrinsicCandidate
4265     public final void putCharUnaligned(Object o, long offset, char x) {
4266         putShortUnaligned(o, offset, (short)x);
4267     }
4268     /** @see #putLongUnaligned(Object, long, long, boolean) */
4269     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
4270         putCharUnaligned(o, offset, convEndian(bigEndian, x));
4271     }
4272 
4273     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
4274 
4275     // These methods construct integers from bytes.  The byte ordering
4276     // is the native endianness of this platform.
4277     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4278         return ((toUnsignedLong(i0) << pickPos(56, 0))
4279               | (toUnsignedLong(i1) << pickPos(56, 8))
4280               | (toUnsignedLong(i2) << pickPos(56, 16))
4281               | (toUnsignedLong(i3) << pickPos(56, 24))
4282               | (toUnsignedLong(i4) << pickPos(56, 32))
4283               | (toUnsignedLong(i5) << pickPos(56, 40))
4284               | (toUnsignedLong(i6) << pickPos(56, 48))
4285               | (toUnsignedLong(i7) << pickPos(56, 56)));
4286     }
4287     private static long makeLong(short i0, short i1, short i2, short i3) {
4288         return ((toUnsignedLong(i0) << pickPos(48, 0))
4289               | (toUnsignedLong(i1) << pickPos(48, 16))
4290               | (toUnsignedLong(i2) << pickPos(48, 32))
4291               | (toUnsignedLong(i3) << pickPos(48, 48)));
4292     }
4293     private static long makeLong(int i0, int i1) {
4294         return (toUnsignedLong(i0) << pickPos(32, 0))
4295              | (toUnsignedLong(i1) << pickPos(32, 32));
4296     }
4297     private static int makeInt(short i0, short i1) {
4298         return (toUnsignedInt(i0) << pickPos(16, 0))
4299              | (toUnsignedInt(i1) << pickPos(16, 16));
4300     }
4301     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
4302         return ((toUnsignedInt(i0) << pickPos(24, 0))
4303               | (toUnsignedInt(i1) << pickPos(24, 8))
4304               | (toUnsignedInt(i2) << pickPos(24, 16))
4305               | (toUnsignedInt(i3) << pickPos(24, 24)));
4306     }
4307     private static short makeShort(byte i0, byte i1) {
4308         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
4309                      | (toUnsignedInt(i1) << pickPos(8, 8)));
4310     }
4311 
4312     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
4313     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
4314     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
4315 
4316     // These methods write integers to memory from smaller parts
4317     // provided by their caller.  The ordering in which these parts
4318     // are written is the native endianness of this platform.
4319     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4320         putByte(o, offset + 0, pick(i0, i7));
4321         putByte(o, offset + 1, pick(i1, i6));
4322         putByte(o, offset + 2, pick(i2, i5));
4323         putByte(o, offset + 3, pick(i3, i4));
4324         putByte(o, offset + 4, pick(i4, i3));
4325         putByte(o, offset + 5, pick(i5, i2));
4326         putByte(o, offset + 6, pick(i6, i1));
4327         putByte(o, offset + 7, pick(i7, i0));
4328     }
4329     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
4330         putShort(o, offset + 0, pick(i0, i3));
4331         putShort(o, offset + 2, pick(i1, i2));
4332         putShort(o, offset + 4, pick(i2, i1));
4333         putShort(o, offset + 6, pick(i3, i0));
4334     }
4335     private void putLongParts(Object o, long offset, int i0, int i1) {
4336         putInt(o, offset + 0, pick(i0, i1));
4337         putInt(o, offset + 4, pick(i1, i0));
4338     }
4339     private void putIntParts(Object o, long offset, short i0, short i1) {
4340         putShort(o, offset + 0, pick(i0, i1));
4341         putShort(o, offset + 2, pick(i1, i0));
4342     }
4343     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
4344         putByte(o, offset + 0, pick(i0, i3));
4345         putByte(o, offset + 1, pick(i1, i2));
4346         putByte(o, offset + 2, pick(i2, i1));
4347         putByte(o, offset + 3, pick(i3, i0));
4348     }
4349     private void putShortParts(Object o, long offset, byte i0, byte i1) {
4350         putByte(o, offset + 0, pick(i0, i1));
4351         putByte(o, offset + 1, pick(i1, i0));
4352     }
4353 
4354     // Zero-extend an integer
4355     private static int toUnsignedInt(byte n)    { return n & 0xff; }
4356     private static int toUnsignedInt(short n)   { return n & 0xffff; }
4357     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
4358     private static long toUnsignedLong(short n) { return n & 0xffffl; }
4359     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
4360 
4361     // Maybe byte-reverse an integer
4362     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
4363     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
4364     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
4365     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
4366 
4367 
4368 
4369     private native long allocateMemory0(long bytes);
4370     private native long reallocateMemory0(long address, long bytes);
4371     private native void freeMemory0(long address);
4372     @IntrinsicCandidate
4373     private native void setMemory0(Object o, long offset, long bytes, byte value);
4374     @IntrinsicCandidate
4375     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4376     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
4377     private native long objectFieldOffset0(Field f);
4378     private native long objectFieldOffset1(Class<?> c, String name);
4379     private native long staticFieldOffset0(Field f);
4380     private native Object staticFieldBase0(Field f);
4381     private native boolean shouldBeInitialized0(Class<?> c);
4382     private native void ensureClassInitialized0(Class<?> c);
4383     private native int arrayBaseOffset0(Class<?> arrayClass); // public version returns long to promote correct arithmetic
4384     private native int arrayIndexScale0(Class<?> arrayClass);
4385     private native long getObjectSize0(Object o);
4386     private native int getLoadAverage0(double[] loadavg, int nelems);
4387 
4388 
4389     /**
4390      * Invokes the given direct byte buffer's cleaner, if any.
4391      *
4392      * @param directBuffer a direct byte buffer
4393      * @throws NullPointerException     if {@code directBuffer} is null
4394      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
4395      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
4396      *                                  {@link java.nio.Buffer#duplicate duplicate}
4397      */
4398     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
4399         if (!directBuffer.isDirect())
4400             throw new IllegalArgumentException("buffer is non-direct");
4401 
4402         DirectBuffer db = (DirectBuffer) directBuffer;
4403         if (db.attachment() != null)
4404             throw new IllegalArgumentException("duplicate or slice");
4405 
4406         Cleaner cleaner = db.cleaner();
4407         if (cleaner != null) {
4408             cleaner.clean();
4409         }
4410     }
4411 }