1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.value.ValueClass;
  29 import jdk.internal.vm.annotation.AOTRuntimeSetup;
  30 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  31 import jdk.internal.vm.annotation.ForceInline;
  32 import jdk.internal.vm.annotation.IntrinsicCandidate;
  33 import sun.nio.Cleaner;
  34 import sun.nio.ch.DirectBuffer;
  35 
  36 import java.lang.reflect.Field;
  37 import java.security.ProtectionDomain;
  38 
  39 import static jdk.internal.misc.UnsafeConstants.*;
  40 
  41 /**
  42  * A collection of methods for performing low-level, unsafe operations.
  43  * Although the class and all methods are public, use of this class is
  44  * limited because only trusted code can obtain instances of it.
  45  *
  46  * <em>Note:</em> It is the responsibility of the caller to make sure
  47  * arguments are checked before methods of this class are
  48  * called. While some rudimentary checks are performed on the input,
  49  * the checks are best effort and when performance is an overriding
  50  * priority, as when methods of this class are optimized by the
  51  * runtime compiler, some or all checks (if any) may be elided. Hence,
  52  * the caller must not rely on the checks and corresponding
  53  * exceptions!
  54  *
  55  * @author John R. Rose
  56  * @see #getUnsafe
  57  */
  58 @AOTSafeClassInitializer
  59 public final class Unsafe {
  60 
  61     private static native void registerNatives();
  62     static {
  63         runtimeSetup();
  64     }
  65 
  66     /// BASE_OFFSET, INDEX_SCALE, and ADDRESS_SIZE fields are equivalent if the
  67     /// AOT initialized heap is reused, so just register natives
  68     @AOTRuntimeSetup
  69     private static void runtimeSetup() {
  70         registerNatives();
  71     }
  72 
  73     private Unsafe() {}
  74 
  75     private static final Unsafe theUnsafe = new Unsafe();
  76 
  77     /**
  78      * Provides the caller with the capability of performing unsafe
  79      * operations.
  80      *
  81      * <p>The returned {@code Unsafe} object should be carefully guarded
  82      * by the caller, since it can be used to read and write data at arbitrary
  83      * memory addresses.  It must never be passed to untrusted code.
  84      *
  85      * <p>Most methods in this class are very low-level, and correspond to a
  86      * small number of hardware instructions (on typical machines).  Compilers
  87      * are encouraged to optimize these methods accordingly.
  88      *
  89      * <p>Here is a suggested idiom for using unsafe operations:
  90      *
  91      * <pre> {@code
  92      * class MyTrustedClass {
  93      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  94      *   ...
  95      *   private long myCountAddress = ...;
  96      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  97      * }}</pre>
  98      *
  99      * (It may assist compilers to make the local variable {@code final}.)
 100      */
 101     public static Unsafe getUnsafe() {
 102         return theUnsafe;
 103     }
 104 
 105     //--- peek and poke operations
 106     // (compilers should optimize these to memory ops)
 107 
 108     // These work on object fields in the Java heap.
 109     // They will not work on elements of packed arrays.
 110 
 111     /**
 112      * Fetches a value from a given Java variable.
 113      * More specifically, fetches a field or array element within the given
 114      * object {@code o} at the given offset, or (if {@code o} is null)
 115      * from the memory address whose numerical value is the given offset.
 116      * <p>
 117      * The results are undefined unless one of the following cases is true:
 118      * <ul>
 119      * <li>The offset was obtained from {@link #objectFieldOffset} on
 120      * the {@link java.lang.reflect.Field} of some Java field and the object
 121      * referred to by {@code o} is of a class compatible with that
 122      * field's class.
 123      *
 124      * <li>The offset and object reference {@code o} (either null or
 125      * non-null) were both obtained via {@link #staticFieldOffset}
 126      * and {@link #staticFieldBase} (respectively) from the
 127      * reflective {@link Field} representation of some Java field.
 128      *
 129      * <li>The object referred to by {@code o} is an array, and the offset
 130      * is an integer of the form {@code B+N*S}, where {@code N} is
 131      * a valid index into the array, and {@code B} and {@code S} are
 132      * the values obtained by {@link #arrayBaseOffset} and {@link
 133      * #arrayIndexScale} (respectively) from the array's class.  The value
 134      * referred to is the {@code N}<em>th</em> element of the array.
 135      *
 136      * </ul>
 137      * <p>
 138      * If one of the above cases is true, the call references a specific Java
 139      * variable (field or array element).  However, the results are undefined
 140      * if that variable is not in fact of the type returned by this method.
 141      * <p>
 142      * This method refers to a variable by means of two parameters, and so
 143      * it provides (in effect) a <em>double-register</em> addressing mode
 144      * for Java variables.  When the object reference is null, this method
 145      * uses its offset as an absolute address.  This is similar in operation
 146      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 147      * <em>single-register</em> addressing mode for non-Java variables.
 148      * However, because Java variables may have a different layout in memory
 149      * from non-Java variables, programmers should not assume that these
 150      * two addressing modes are ever equivalent.  Also, programmers should
 151      * remember that offsets from the double-register addressing mode cannot
 152      * be portably confused with longs used in the single-register addressing
 153      * mode.
 154      *
 155      * @param o Java heap object in which the variable resides, if any, else
 156      *        null
 157      * @param offset indication of where the variable resides in a Java heap
 158      *        object, if any, else a memory address locating the variable
 159      *        statically
 160      * @return the value fetched from the indicated Java variable
 161      * @throws RuntimeException No defined exceptions are thrown, not even
 162      *         {@link NullPointerException}
 163      */
 164     @IntrinsicCandidate
 165     public native int getInt(Object o, long offset);
 166 
 167     /**
 168      * Stores a value into a given Java variable.
 169      * <p>
 170      * The first two parameters are interpreted exactly as with
 171      * {@link #getInt(Object, long)} to refer to a specific
 172      * Java variable (field or array element).  The given value
 173      * is stored into that variable.
 174      * <p>
 175      * The variable must be of the same type as the method
 176      * parameter {@code x}.
 177      *
 178      * @param o Java heap object in which the variable resides, if any, else
 179      *        null
 180      * @param offset indication of where the variable resides in a Java heap
 181      *        object, if any, else a memory address locating the variable
 182      *        statically
 183      * @param x the value to store into the indicated Java variable
 184      * @throws RuntimeException No defined exceptions are thrown, not even
 185      *         {@link NullPointerException}
 186      */
 187     @IntrinsicCandidate
 188     public native void putInt(Object o, long offset, int x);
 189 
 190 
 191     /**
 192      * Returns true if the given field is flattened.
 193      */
 194     public boolean isFlatField(Field f) {
 195         if (f == null) {
 196             throw new NullPointerException();
 197         }
 198         return isFlatField0(f);
 199     }
 200 
 201     private native boolean isFlatField0(Object o);
 202 
 203     /* Returns true if the given field has a null marker
 204      * <p>
 205      * Nullable flat fields are stored in a flattened representation
 206      * and have an associated null marker to indicate if the the field value is
 207      * null or the one stored with the flat representation
 208      */
 209 
 210     public boolean hasNullMarker(Field f) {
 211         if (f == null) {
 212             throw new NullPointerException();
 213         }
 214         return hasNullMarker0(f);
 215     }
 216 
 217     private native boolean hasNullMarker0(Object o);
 218 
 219     /* Returns the offset of the null marker of the field,
 220     * or -1 if the field doesn't have a null marker
 221     */
 222 
 223     public int nullMarkerOffset(Field f) {
 224         if (f == null) {
 225             throw new NullPointerException();
 226         }
 227         return nullMarkerOffset0(f);
 228     }
 229 
 230     private native int nullMarkerOffset0(Object o);
 231 
 232     public static final int NON_FLAT_LAYOUT = 0;
 233 
 234     /* Reports the kind of layout used for an element in the storage
 235      * allocation of the given array. Do not expect to perform any logic
 236      * or layout control with this value, it is just an opaque token
 237      * used for performance reasons.
 238      *
 239      * A layout of 0 indicates this array is not flat.
 240      */
 241     public int arrayLayout(Object[] array) {
 242         if (array == null) {
 243             throw new NullPointerException();
 244         }
 245         return arrayLayout0(array);
 246     }
 247 
 248     private native int arrayLayout0(Object[] array);
 249 
 250 
 251     /* Reports the kind of layout used for a given field in the storage
 252      * allocation of its class.  Do not expect to perform any logic
 253      * or layout control with this value, it is just an opaque token
 254      * used for performance reasons.
 255      *
 256      * A layout of 0 indicates this field is not flat.
 257      */
 258     public int fieldLayout(Field f) {
 259         if (f == null) {
 260             throw new NullPointerException();
 261         }
 262         return fieldLayout0(f);
 263     }
 264 
 265     private native int fieldLayout0(Object o);
 266 
 267     public native Object[] newSpecialArray(Class<?> componentType,
 268                                                   int length, int layoutKind);
 269 
 270     /**
 271      * Fetches a reference value from a given Java variable.
 272      * This method can return a reference to either an object or value
 273      * or a null reference.
 274      *
 275      * @see #getInt(Object, long)
 276      */
 277     @IntrinsicCandidate
 278     public native Object getReference(Object o, long offset);
 279 
 280     /**
 281      * Stores a reference value into a given Java variable.
 282      * This method can store a reference to either an object or value
 283      * or a null reference.
 284      * <p>
 285      * Unless the reference {@code x} being stored is either null
 286      * or matches the field type, the results are undefined.
 287      * If the reference {@code o} is non-null, card marks or
 288      * other store barriers for that object (if the VM requires them)
 289      * are updated.
 290      * @see #putInt(Object, long, int)
 291      */
 292     @IntrinsicCandidate
 293     public native void putReference(Object o, long offset, Object x);
 294 
 295     /**
 296      * Fetches a value of type {@code <V>} from a given Java variable.
 297      * More specifically, fetches a field or array element within the given
 298      * {@code o} object at the given offset, or (if {@code o} is null)
 299      * from the memory address whose numerical value is the given offset.
 300      *
 301      * @param o Java heap object in which the variable resides, if any, else
 302      *        null
 303      * @param offset indication of where the variable resides in a Java heap
 304      *        object, if any, else a memory address locating the variable
 305      *        statically
 306      * @param valueType value type
 307      * @param <V> the type of a value
 308      * @return the value fetched from the indicated Java variable
 309      * @throws RuntimeException No defined exceptions are thrown, not even
 310      *         {@link NullPointerException}
 311      */
 312     @IntrinsicCandidate
 313     public native <V> V getValue(Object o, long offset, Class<?> valueType);
 314 
 315     /**
 316      * Fetches a value of type {@code <V>} from a given Java variable.
 317      * More specifically, fetches a field or array element within the given
 318      * {@code o} object at the given offset, or (if {@code o} is null)
 319      * from the memory address whose numerical value is the given offset.
 320      *
 321      * @param o Java heap object in which the variable resides, if any, else
 322      *        null
 323      * @param offset indication of where the variable resides in a Java heap
 324      *        object, if any, else a memory address locating the variable
 325      *        statically
 326      * @param layoutKind opaque value used by the VM to know the layout
 327      *        the field or array element. This value must be retrieved with
 328      *        {@link #fieldLayout} or {@link #arrayLayout}.
 329      * @param valueType value type
 330      * @param <V> the type of a value
 331      * @return the value fetched from the indicated Java variable
 332      * @throws RuntimeException No defined exceptions are thrown, not even
 333      *         {@link NullPointerException}
 334      */
 335     @IntrinsicCandidate
 336     public native <V> V getFlatValue(Object o, long offset, int layoutKind, Class<?> valueType);
 337 
 338 
 339     /**
 340      * Stores the given value into a given Java variable.
 341      *
 342      * Unless the reference {@code o} being stored is either null
 343      * or matches the field type, the results are undefined.
 344      *
 345      * @param o Java heap object in which the variable resides, if any, else
 346      *        null
 347      * @param offset indication of where the variable resides in a Java heap
 348      *        object, if any, else a memory address locating the variable
 349      *        statically
 350      * @param valueType value type
 351      * @param v the value to store into the indicated Java variable
 352      * @param <V> the type of a value
 353      * @throws RuntimeException No defined exceptions are thrown, not even
 354      *         {@link NullPointerException}
 355      */
 356     @IntrinsicCandidate
 357     public native <V> void putValue(Object o, long offset, Class<?> valueType, V v);
 358 
 359     /**
 360      * Stores the given value into a given Java variable.
 361      *
 362      * Unless the reference {@code o} being stored is either null
 363      * or matches the field type, the results are undefined.
 364      *
 365      * @param o Java heap object in which the variable resides, if any, else
 366      *        null
 367      * @param offset indication of where the variable resides in a Java heap
 368      *        object, if any, else a memory address locating the variable
 369      *        statically
 370      * @param layoutKind opaque value used by the VM to know the layout
 371      *        the field or array element. This value must be retrieved with
 372      *        {@link #fieldLayout} or {@link #arrayLayout}.
 373      * @param valueType value type
 374      * @param v the value to store into the indicated Java variable
 375      * @param <V> the type of a value
 376      * @throws RuntimeException No defined exceptions are thrown, not even
 377      *         {@link NullPointerException}
 378      */
 379     @IntrinsicCandidate
 380     public native <V> void putFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, V v);
 381 
 382     /**
 383      * Returns an object instance with a private buffered value whose layout
 384      * and contents is exactly the given value instance.  The return object
 385      * is in the larval state that can be updated using the unsafe put operation.
 386      *
 387      * @param value a value instance
 388      * @param <V> the type of the given value instance
 389      */
 390     @IntrinsicCandidate
 391     public native <V> V makePrivateBuffer(V value);
 392 
 393     /**
 394      * Exits the larval state and returns a value instance.
 395      *
 396      * @param value a value instance
 397      * @param <V> the type of the given value instance
 398      */
 399     @IntrinsicCandidate
 400     public native <V> V finishPrivateBuffer(V value);
 401 
 402     /**
 403      * Returns the header size of the given value type.
 404      *
 405      * @param valueType value type
 406      * @return the header size of the value type
 407      */
 408     public native <V> long valueHeaderSize(Class<V> valueType);
 409 
 410     /** @see #getInt(Object, long) */
 411     @IntrinsicCandidate
 412     public native boolean getBoolean(Object o, long offset);
 413 
 414     /** @see #putInt(Object, long, int) */
 415     @IntrinsicCandidate
 416     public native void    putBoolean(Object o, long offset, boolean x);
 417 
 418     /** @see #getInt(Object, long) */
 419     @IntrinsicCandidate
 420     public native byte    getByte(Object o, long offset);
 421 
 422     /** @see #putInt(Object, long, int) */
 423     @IntrinsicCandidate
 424     public native void    putByte(Object o, long offset, byte x);
 425 
 426     /** @see #getInt(Object, long) */
 427     @IntrinsicCandidate
 428     public native short   getShort(Object o, long offset);
 429 
 430     /** @see #putInt(Object, long, int) */
 431     @IntrinsicCandidate
 432     public native void    putShort(Object o, long offset, short x);
 433 
 434     /** @see #getInt(Object, long) */
 435     @IntrinsicCandidate
 436     public native char    getChar(Object o, long offset);
 437 
 438     /** @see #putInt(Object, long, int) */
 439     @IntrinsicCandidate
 440     public native void    putChar(Object o, long offset, char x);
 441 
 442     /** @see #getInt(Object, long) */
 443     @IntrinsicCandidate
 444     public native long    getLong(Object o, long offset);
 445 
 446     /** @see #putInt(Object, long, int) */
 447     @IntrinsicCandidate
 448     public native void    putLong(Object o, long offset, long x);
 449 
 450     /** @see #getInt(Object, long) */
 451     @IntrinsicCandidate
 452     public native float   getFloat(Object o, long offset);
 453 
 454     /** @see #putInt(Object, long, int) */
 455     @IntrinsicCandidate
 456     public native void    putFloat(Object o, long offset, float x);
 457 
 458     /** @see #getInt(Object, long) */
 459     @IntrinsicCandidate
 460     public native double  getDouble(Object o, long offset);
 461 
 462     /** @see #putInt(Object, long, int) */
 463     @IntrinsicCandidate
 464     public native void    putDouble(Object o, long offset, double x);
 465 
 466     /**
 467      * Fetches a native pointer from a given memory address.  If the address is
 468      * zero, or does not point into a block obtained from {@link
 469      * #allocateMemory}, the results are undefined.
 470      *
 471      * <p>If the native pointer is less than 64 bits wide, it is extended as
 472      * an unsigned number to a Java long.  The pointer may be indexed by any
 473      * given byte offset, simply by adding that offset (as a simple integer) to
 474      * the long representing the pointer.  The number of bytes actually read
 475      * from the target address may be determined by consulting {@link
 476      * #addressSize}.
 477      *
 478      * @see #allocateMemory
 479      * @see #getInt(Object, long)
 480      */
 481     @ForceInline
 482     public long getAddress(Object o, long offset) {
 483         if (ADDRESS_SIZE == 4) {
 484             return Integer.toUnsignedLong(getInt(o, offset));
 485         } else {
 486             return getLong(o, offset);
 487         }
 488     }
 489 
 490     /**
 491      * Stores a native pointer into a given memory address.  If the address is
 492      * zero, or does not point into a block obtained from {@link
 493      * #allocateMemory}, the results are undefined.
 494      *
 495      * <p>The number of bytes actually written at the target address may be
 496      * determined by consulting {@link #addressSize}.
 497      *
 498      * @see #allocateMemory
 499      * @see #putInt(Object, long, int)
 500      */
 501     @ForceInline
 502     public void putAddress(Object o, long offset, long x) {
 503         if (ADDRESS_SIZE == 4) {
 504             putInt(o, offset, (int)x);
 505         } else {
 506             putLong(o, offset, x);
 507         }
 508     }
 509 
 510     // These read VM internal data.
 511 
 512     /**
 513      * Fetches an uncompressed reference value from a given native variable
 514      * ignoring the VM's compressed references mode.
 515      *
 516      * @param address a memory address locating the variable
 517      * @return the value fetched from the indicated native variable
 518      */
 519     public native Object getUncompressedObject(long address);
 520 
 521     // These work on values in the C heap.
 522 
 523     /**
 524      * Fetches a value from a given memory address.  If the address is zero, or
 525      * does not point into a block obtained from {@link #allocateMemory}, the
 526      * results are undefined.
 527      *
 528      * @see #allocateMemory
 529      */
 530     @ForceInline
 531     public byte getByte(long address) {
 532         return getByte(null, address);
 533     }
 534 
 535     /**
 536      * Stores a value into a given memory address.  If the address is zero, or
 537      * does not point into a block obtained from {@link #allocateMemory}, the
 538      * results are undefined.
 539      *
 540      * @see #getByte(long)
 541      */
 542     @ForceInline
 543     public void putByte(long address, byte x) {
 544         putByte(null, address, x);
 545     }
 546 
 547     /** @see #getByte(long) */
 548     @ForceInline
 549     public short getShort(long address) {
 550         return getShort(null, address);
 551     }
 552 
 553     /** @see #putByte(long, byte) */
 554     @ForceInline
 555     public void putShort(long address, short x) {
 556         putShort(null, address, x);
 557     }
 558 
 559     /** @see #getByte(long) */
 560     @ForceInline
 561     public char getChar(long address) {
 562         return getChar(null, address);
 563     }
 564 
 565     /** @see #putByte(long, byte) */
 566     @ForceInline
 567     public void putChar(long address, char x) {
 568         putChar(null, address, x);
 569     }
 570 
 571     /** @see #getByte(long) */
 572     @ForceInline
 573     public int getInt(long address) {
 574         return getInt(null, address);
 575     }
 576 
 577     /** @see #putByte(long, byte) */
 578     @ForceInline
 579     public void putInt(long address, int x) {
 580         putInt(null, address, x);
 581     }
 582 
 583     /** @see #getByte(long) */
 584     @ForceInline
 585     public long getLong(long address) {
 586         return getLong(null, address);
 587     }
 588 
 589     /** @see #putByte(long, byte) */
 590     @ForceInline
 591     public void putLong(long address, long x) {
 592         putLong(null, address, x);
 593     }
 594 
 595     /** @see #getByte(long) */
 596     @ForceInline
 597     public float getFloat(long address) {
 598         return getFloat(null, address);
 599     }
 600 
 601     /** @see #putByte(long, byte) */
 602     @ForceInline
 603     public void putFloat(long address, float x) {
 604         putFloat(null, address, x);
 605     }
 606 
 607     /** @see #getByte(long) */
 608     @ForceInline
 609     public double getDouble(long address) {
 610         return getDouble(null, address);
 611     }
 612 
 613     /** @see #putByte(long, byte) */
 614     @ForceInline
 615     public void putDouble(long address, double x) {
 616         putDouble(null, address, x);
 617     }
 618 
 619     /** @see #getAddress(Object, long) */
 620     @ForceInline
 621     public long getAddress(long address) {
 622         return getAddress(null, address);
 623     }
 624 
 625     /** @see #putAddress(Object, long, long) */
 626     @ForceInline
 627     public void putAddress(long address, long x) {
 628         putAddress(null, address, x);
 629     }
 630 
 631 
 632 
 633     //--- helper methods for validating various types of objects/values
 634 
 635     /**
 636      * Create an exception reflecting that some of the input was invalid
 637      *
 638      * <em>Note:</em> It is the responsibility of the caller to make
 639      * sure arguments are checked before the methods are called. While
 640      * some rudimentary checks are performed on the input, the checks
 641      * are best effort and when performance is an overriding priority,
 642      * as when methods of this class are optimized by the runtime
 643      * compiler, some or all checks (if any) may be elided. Hence, the
 644      * caller must not rely on the checks and corresponding
 645      * exceptions!
 646      *
 647      * @return an exception object
 648      */
 649     private RuntimeException invalidInput() {
 650         return new IllegalArgumentException();
 651     }
 652 
 653     /**
 654      * Check if a value is 32-bit clean (32 MSB are all zero)
 655      *
 656      * @param value the 64-bit value to check
 657      *
 658      * @return true if the value is 32-bit clean
 659      */
 660     private boolean is32BitClean(long value) {
 661         return value >>> 32 == 0;
 662     }
 663 
 664     /**
 665      * Check the validity of a size (the equivalent of a size_t)
 666      *
 667      * @throws RuntimeException if the size is invalid
 668      *         (<em>Note:</em> after optimization, invalid inputs may
 669      *         go undetected, which will lead to unpredictable
 670      *         behavior)
 671      */
 672     private void checkSize(long size) {
 673         if (ADDRESS_SIZE == 4) {
 674             // Note: this will also check for negative sizes
 675             if (!is32BitClean(size)) {
 676                 throw invalidInput();
 677             }
 678         } else if (size < 0) {
 679             throw invalidInput();
 680         }
 681     }
 682 
 683     /**
 684      * Check the validity of a native address (the equivalent of void*)
 685      *
 686      * @throws RuntimeException if the address is invalid
 687      *         (<em>Note:</em> after optimization, invalid inputs may
 688      *         go undetected, which will lead to unpredictable
 689      *         behavior)
 690      */
 691     private void checkNativeAddress(long address) {
 692         if (ADDRESS_SIZE == 4) {
 693             // Accept both zero and sign extended pointers. A valid
 694             // pointer will, after the +1 below, either have produced
 695             // the value 0x0 or 0x1. Masking off the low bit allows
 696             // for testing against 0.
 697             if ((((address >> 32) + 1) & ~1) != 0) {
 698                 throw invalidInput();
 699             }
 700         }
 701     }
 702 
 703     /**
 704      * Check the validity of an offset, relative to a base object
 705      *
 706      * @param o the base object
 707      * @param offset the offset to check
 708      *
 709      * @throws RuntimeException if the size is invalid
 710      *         (<em>Note:</em> after optimization, invalid inputs may
 711      *         go undetected, which will lead to unpredictable
 712      *         behavior)
 713      */
 714     private void checkOffset(Object o, long offset) {
 715         if (ADDRESS_SIZE == 4) {
 716             // Note: this will also check for negative offsets
 717             if (!is32BitClean(offset)) {
 718                 throw invalidInput();
 719             }
 720         } else if (offset < 0) {
 721             throw invalidInput();
 722         }
 723     }
 724 
 725     /**
 726      * Check the validity of a double-register pointer
 727      *
 728      * Note: This code deliberately does *not* check for NPE for (at
 729      * least) three reasons:
 730      *
 731      * 1) NPE is not just NULL/0 - there is a range of values all
 732      * resulting in an NPE, which is not trivial to check for
 733      *
 734      * 2) It is the responsibility of the callers of Unsafe methods
 735      * to verify the input, so throwing an exception here is not really
 736      * useful - passing in a NULL pointer is a critical error and the
 737      * must not expect an exception to be thrown anyway.
 738      *
 739      * 3) the actual operations will detect NULL pointers anyway by
 740      * means of traps and signals (like SIGSEGV).
 741      *
 742      * @param o Java heap object, or null
 743      * @param offset indication of where the variable resides in a Java heap
 744      *        object, if any, else a memory address locating the variable
 745      *        statically
 746      *
 747      * @throws RuntimeException if the pointer is invalid
 748      *         (<em>Note:</em> after optimization, invalid inputs may
 749      *         go undetected, which will lead to unpredictable
 750      *         behavior)
 751      */
 752     private void checkPointer(Object o, long offset) {
 753         if (o == null) {
 754             checkNativeAddress(offset);
 755         } else {
 756             checkOffset(o, offset);
 757         }
 758     }
 759 
 760     /**
 761      * Check if a type is a primitive array type
 762      *
 763      * @param c the type to check
 764      *
 765      * @return true if the type is a primitive array type
 766      */
 767     private void checkPrimitiveArray(Class<?> c) {
 768         Class<?> componentType = c.getComponentType();
 769         if (componentType == null || !componentType.isPrimitive()) {
 770             throw invalidInput();
 771         }
 772     }
 773 
 774     /**
 775      * Check that a pointer is a valid primitive array type pointer
 776      *
 777      * Note: pointers off-heap are considered to be primitive arrays
 778      *
 779      * @throws RuntimeException if the pointer is invalid
 780      *         (<em>Note:</em> after optimization, invalid inputs may
 781      *         go undetected, which will lead to unpredictable
 782      *         behavior)
 783      */
 784     private void checkPrimitivePointer(Object o, long offset) {
 785         checkPointer(o, offset);
 786 
 787         if (o != null) {
 788             // If on heap, it must be a primitive array
 789             checkPrimitiveArray(o.getClass());
 790         }
 791     }
 792 
 793 
 794     //--- wrappers for malloc, realloc, free:
 795 
 796     /**
 797      * Round up allocation size to a multiple of HeapWordSize.
 798      */
 799     private long alignToHeapWordSize(long bytes) {
 800         if (bytes >= 0) {
 801             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 802         } else {
 803             throw invalidInput();
 804         }
 805     }
 806 
 807     /**
 808      * Allocates a new block of native memory, of the given size in bytes.  The
 809      * contents of the memory are uninitialized; they will generally be
 810      * garbage.  The resulting native pointer will be zero if and only if the
 811      * requested size is zero.  The resulting native pointer will be aligned for
 812      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 813      * or resize it with {@link #reallocateMemory}.
 814      *
 815      * <em>Note:</em> It is the responsibility of the caller to make
 816      * sure arguments are checked before the methods are called. While
 817      * some rudimentary checks are performed on the input, the checks
 818      * are best effort and when performance is an overriding priority,
 819      * as when methods of this class are optimized by the runtime
 820      * compiler, some or all checks (if any) may be elided. Hence, the
 821      * caller must not rely on the checks and corresponding
 822      * exceptions!
 823      *
 824      * @throws RuntimeException if the size is negative or too large
 825      *         for the native size_t type
 826      *
 827      * @throws OutOfMemoryError if the allocation is refused by the system
 828      *
 829      * @see #getByte(long)
 830      * @see #putByte(long, byte)
 831      */
 832     public long allocateMemory(long bytes) {
 833         bytes = alignToHeapWordSize(bytes);
 834 
 835         allocateMemoryChecks(bytes);
 836 
 837         if (bytes == 0) {
 838             return 0;
 839         }
 840 
 841         long p = allocateMemory0(bytes);
 842         if (p == 0) {
 843             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 844         }
 845 
 846         return p;
 847     }
 848 
 849     /**
 850      * Validate the arguments to allocateMemory
 851      *
 852      * @throws RuntimeException if the arguments are invalid
 853      *         (<em>Note:</em> after optimization, invalid inputs may
 854      *         go undetected, which will lead to unpredictable
 855      *         behavior)
 856      */
 857     private void allocateMemoryChecks(long bytes) {
 858         checkSize(bytes);
 859     }
 860 
 861     /**
 862      * Resizes a new block of native memory, to the given size in bytes.  The
 863      * contents of the new block past the size of the old block are
 864      * uninitialized; they will generally be garbage.  The resulting native
 865      * pointer will be zero if and only if the requested size is zero.  The
 866      * resulting native pointer will be aligned for all value types.  Dispose
 867      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 868      * #reallocateMemory}.  The address passed to this method may be null, in
 869      * which case an allocation will be performed.
 870      *
 871      * <em>Note:</em> It is the responsibility of the caller to make
 872      * sure arguments are checked before the methods are called. While
 873      * some rudimentary checks are performed on the input, the checks
 874      * are best effort and when performance is an overriding priority,
 875      * as when methods of this class are optimized by the runtime
 876      * compiler, some or all checks (if any) may be elided. Hence, the
 877      * caller must not rely on the checks and corresponding
 878      * exceptions!
 879      *
 880      * @throws RuntimeException if the size is negative or too large
 881      *         for the native size_t type
 882      *
 883      * @throws OutOfMemoryError if the allocation is refused by the system
 884      *
 885      * @see #allocateMemory
 886      */
 887     public long reallocateMemory(long address, long bytes) {
 888         bytes = alignToHeapWordSize(bytes);
 889 
 890         reallocateMemoryChecks(address, bytes);
 891 
 892         if (bytes == 0) {
 893             freeMemory(address);
 894             return 0;
 895         }
 896 
 897         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 898         if (p == 0) {
 899             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 900         }
 901 
 902         return p;
 903     }
 904 
 905     /**
 906      * Validate the arguments to reallocateMemory
 907      *
 908      * @throws RuntimeException if the arguments are invalid
 909      *         (<em>Note:</em> after optimization, invalid inputs may
 910      *         go undetected, which will lead to unpredictable
 911      *         behavior)
 912      */
 913     private void reallocateMemoryChecks(long address, long bytes) {
 914         checkPointer(null, address);
 915         checkSize(bytes);
 916     }
 917 
 918     /**
 919      * Sets all bytes in a given block of memory to a fixed value
 920      * (usually zero).
 921      *
 922      * <p>This method determines a block's base address by means of two parameters,
 923      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 924      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 925      * the offset supplies an absolute base address.
 926      *
 927      * <p>The stores are in coherent (atomic) units of a size determined
 928      * by the address and length parameters.  If the effective address and
 929      * length are all even modulo 8, the stores take place in 'long' units.
 930      * If the effective address and length are (resp.) even modulo 4 or 2,
 931      * the stores take place in units of 'int' or 'short'.
 932      *
 933      * <em>Note:</em> It is the responsibility of the caller to make
 934      * sure arguments are checked before the methods are called. While
 935      * some rudimentary checks are performed on the input, the checks
 936      * are best effort and when performance is an overriding priority,
 937      * as when methods of this class are optimized by the runtime
 938      * compiler, some or all checks (if any) may be elided. Hence, the
 939      * caller must not rely on the checks and corresponding
 940      * exceptions!
 941      *
 942      * @throws RuntimeException if any of the arguments is invalid
 943      *
 944      * @since 1.7
 945      */
 946     public void setMemory(Object o, long offset, long bytes, byte value) {
 947         setMemoryChecks(o, offset, bytes, value);
 948 
 949         if (bytes == 0) {
 950             return;
 951         }
 952 
 953         setMemory0(o, offset, bytes, value);
 954     }
 955 
 956     /**
 957      * Sets all bytes in a given block of memory to a fixed value
 958      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 959      * as discussed in {@link #getInt(Object,long)}.
 960      *
 961      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 962      */
 963     public void setMemory(long address, long bytes, byte value) {
 964         setMemory(null, address, bytes, value);
 965     }
 966 
 967     /**
 968      * Validate the arguments to setMemory
 969      *
 970      * @throws RuntimeException if the arguments are invalid
 971      *         (<em>Note:</em> after optimization, invalid inputs may
 972      *         go undetected, which will lead to unpredictable
 973      *         behavior)
 974      */
 975     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 976         checkPrimitivePointer(o, offset);
 977         checkSize(bytes);
 978     }
 979 
 980     /**
 981      * Sets all bytes in a given block of memory to a copy of another
 982      * block.
 983      *
 984      * <p>This method determines each block's base address by means of two parameters,
 985      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 986      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 987      * the offset supplies an absolute base address.
 988      *
 989      * <p>The transfers are in coherent (atomic) units of a size determined
 990      * by the address and length parameters.  If the effective addresses and
 991      * length are all even modulo 8, the transfer takes place in 'long' units.
 992      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 993      * the transfer takes place in units of 'int' or 'short'.
 994      *
 995      * <em>Note:</em> It is the responsibility of the caller to make
 996      * sure arguments are checked before the methods are called. While
 997      * some rudimentary checks are performed on the input, the checks
 998      * are best effort and when performance is an overriding priority,
 999      * as when methods of this class are optimized by the runtime
1000      * compiler, some or all checks (if any) may be elided. Hence, the
1001      * caller must not rely on the checks and corresponding
1002      * exceptions!
1003      *
1004      * @throws RuntimeException if any of the arguments is invalid
1005      *
1006      * @since 1.7
1007      */
1008     public void copyMemory(Object srcBase, long srcOffset,
1009                            Object destBase, long destOffset,
1010                            long bytes) {
1011         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
1012 
1013         if (bytes == 0) {
1014             return;
1015         }
1016 
1017         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
1018     }
1019 
1020     /**
1021      * Sets all bytes in a given block of memory to a copy of another
1022      * block.  This provides a <em>single-register</em> addressing mode,
1023      * as discussed in {@link #getInt(Object,long)}.
1024      *
1025      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
1026      */
1027     public void copyMemory(long srcAddress, long destAddress, long bytes) {
1028         copyMemory(null, srcAddress, null, destAddress, bytes);
1029     }
1030 
1031     /**
1032      * Validate the arguments to copyMemory
1033      *
1034      * @throws RuntimeException if any of the arguments is invalid
1035      *         (<em>Note:</em> after optimization, invalid inputs may
1036      *         go undetected, which will lead to unpredictable
1037      *         behavior)
1038      */
1039     private void copyMemoryChecks(Object srcBase, long srcOffset,
1040                                   Object destBase, long destOffset,
1041                                   long bytes) {
1042         checkSize(bytes);
1043         checkPrimitivePointer(srcBase, srcOffset);
1044         checkPrimitivePointer(destBase, destOffset);
1045     }
1046 
1047     /**
1048      * Copies all elements from one block of memory to another block,
1049      * *unconditionally* byte swapping the elements on the fly.
1050      *
1051      * <p>This method determines each block's base address by means of two parameters,
1052      * and so it provides (in effect) a <em>double-register</em> addressing mode,
1053      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
1054      * the offset supplies an absolute base address.
1055      *
1056      * <em>Note:</em> It is the responsibility of the caller to make
1057      * sure arguments are checked before the methods are called. While
1058      * some rudimentary checks are performed on the input, the checks
1059      * are best effort and when performance is an overriding priority,
1060      * as when methods of this class are optimized by the runtime
1061      * compiler, some or all checks (if any) may be elided. Hence, the
1062      * caller must not rely on the checks and corresponding
1063      * exceptions!
1064      *
1065      * @throws RuntimeException if any of the arguments is invalid
1066      *
1067      * @since 9
1068      */
1069     public void copySwapMemory(Object srcBase, long srcOffset,
1070                                Object destBase, long destOffset,
1071                                long bytes, long elemSize) {
1072         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1073 
1074         if (bytes == 0) {
1075             return;
1076         }
1077 
1078         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1079     }
1080 
1081     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
1082                                       Object destBase, long destOffset,
1083                                       long bytes, long elemSize) {
1084         checkSize(bytes);
1085 
1086         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
1087             throw invalidInput();
1088         }
1089         if (bytes % elemSize != 0) {
1090             throw invalidInput();
1091         }
1092 
1093         checkPrimitivePointer(srcBase, srcOffset);
1094         checkPrimitivePointer(destBase, destOffset);
1095     }
1096 
1097     /**
1098      * Copies all elements from one block of memory to another block, byte swapping the
1099      * elements on the fly.
1100      *
1101      * This provides a <em>single-register</em> addressing mode, as
1102      * discussed in {@link #getInt(Object,long)}.
1103      *
1104      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
1105      */
1106     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
1107         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
1108     }
1109 
1110     /**
1111      * Disposes of a block of native memory, as obtained from {@link
1112      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
1113      * this method may be null, in which case no action is taken.
1114      *
1115      * <em>Note:</em> It is the responsibility of the caller to make
1116      * sure arguments are checked before the methods are called. While
1117      * some rudimentary checks are performed on the input, the checks
1118      * are best effort and when performance is an overriding priority,
1119      * as when methods of this class are optimized by the runtime
1120      * compiler, some or all checks (if any) may be elided. Hence, the
1121      * caller must not rely on the checks and corresponding
1122      * exceptions!
1123      *
1124      * @throws RuntimeException if any of the arguments is invalid
1125      *
1126      * @see #allocateMemory
1127      */
1128     public void freeMemory(long address) {
1129         freeMemoryChecks(address);
1130 
1131         if (address == 0) {
1132             return;
1133         }
1134 
1135         freeMemory0(address);
1136     }
1137 
1138     /**
1139      * Validate the arguments to freeMemory
1140      *
1141      * @throws RuntimeException if the arguments are invalid
1142      *         (<em>Note:</em> after optimization, invalid inputs may
1143      *         go undetected, which will lead to unpredictable
1144      *         behavior)
1145      */
1146     private void freeMemoryChecks(long address) {
1147         checkPointer(null, address);
1148     }
1149 
1150     /**
1151      * Ensure writeback of a specified virtual memory address range
1152      * from cache to physical memory. All bytes in the address range
1153      * are guaranteed to have been written back to physical memory on
1154      * return from this call i.e. subsequently executed store
1155      * instructions are guaranteed not to be visible before the
1156      * writeback is completed.
1157      *
1158      * @param address
1159      *        the lowest byte address that must be guaranteed written
1160      *        back to memory. bytes at lower addresses may also be
1161      *        written back.
1162      *
1163      * @param length
1164      *        the length in bytes of the region starting at address
1165      *        that must be guaranteed written back to memory.
1166      *
1167      * @throws RuntimeException if memory writeback is not supported
1168      *         on the current hardware of if the arguments are invalid.
1169      *         (<em>Note:</em> after optimization, invalid inputs may
1170      *         go undetected, which will lead to unpredictable
1171      *         behavior)
1172      *
1173      * @since 14
1174      */
1175 
1176     public void writebackMemory(long address, long length) {
1177         checkWritebackEnabled();
1178         checkWritebackMemory(address, length);
1179 
1180         // perform any required pre-writeback barrier
1181         writebackPreSync0();
1182 
1183         // write back one cache line at a time
1184         long line = dataCacheLineAlignDown(address);
1185         long end = address + length;
1186         while (line < end) {
1187             writeback0(line);
1188             line += dataCacheLineFlushSize();
1189         }
1190 
1191         // perform any required post-writeback barrier
1192         writebackPostSync0();
1193     }
1194 
1195     /**
1196      * Validate the arguments to writebackMemory
1197      *
1198      * @throws RuntimeException if the arguments are invalid
1199      *         (<em>Note:</em> after optimization, invalid inputs may
1200      *         go undetected, which will lead to unpredictable
1201      *         behavior)
1202      */
1203     private void checkWritebackMemory(long address, long length) {
1204         checkNativeAddress(address);
1205         checkSize(length);
1206     }
1207 
1208     /**
1209      * Validate that the current hardware supports memory writeback.
1210      * (<em>Note:</em> this is a belt and braces check.  Clients are
1211      * expected to test whether writeback is enabled by calling
1212      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1213      * calling method {@link writeback #writeback} if it is disabled).
1214      *
1215      *
1216      * @throws RuntimeException if memory writeback is not supported
1217      */
1218     private void checkWritebackEnabled() {
1219         if (!isWritebackEnabled()) {
1220             throw new RuntimeException("writebackMemory not enabled!");
1221         }
1222     }
1223 
1224     /**
1225      * force writeback of an individual cache line.
1226      *
1227      * @param address
1228      *        the start address of the cache line to be written back
1229      */
1230     @IntrinsicCandidate
1231     private native void writeback0(long address);
1232 
1233      /**
1234       * Serialize writeback operations relative to preceding memory writes.
1235       */
1236     @IntrinsicCandidate
1237     private native void writebackPreSync0();
1238 
1239      /**
1240       * Serialize writeback operations relative to following memory writes.
1241       */
1242     @IntrinsicCandidate
1243     private native void writebackPostSync0();
1244 
1245     //--- random queries
1246 
1247     /**
1248      * This constant differs from all results that will ever be returned from
1249      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1250      * or {@link #arrayBaseOffset}.
1251      * <p>
1252      * The static type is @code long} to emphasize that long arithmetic should
1253      * always be used for offset calculations to avoid overflows.
1254      */
1255     public static final long INVALID_FIELD_OFFSET = -1;
1256 
1257     /**
1258      * Reports the location of a given field in the storage allocation of its
1259      * class.  Do not expect to perform any sort of arithmetic on this offset;
1260      * it is just a cookie which is passed to the unsafe heap memory accessors.
1261      *
1262      * <p>Any given field will always have the same offset and base, and no
1263      * two distinct fields of the same class will ever have the same offset
1264      * and base.
1265      *
1266      * <p>As of 1.4.1, offsets for fields are represented as long values,
1267      * although the Sun JVM does not use the most significant 32 bits.
1268      * However, JVM implementations which store static fields at absolute
1269      * addresses can use long offsets and null base pointers to express
1270      * the field locations in a form usable by {@link #getInt(Object,long)}.
1271      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1272      * must preserve all bits of static field offsets.
1273      *
1274      * @throws NullPointerException if the field is {@code null}
1275      * @throws IllegalArgumentException if the field is static
1276      * @see #getInt(Object, long)
1277      */
1278     public long objectFieldOffset(Field f) {
1279         if (f == null) {
1280             throw new NullPointerException();
1281         }
1282 
1283         return objectFieldOffset0(f);
1284     }
1285 
1286     /**
1287      * (For compile-time known instance fields in JDK code only) Reports the
1288      * location of the field with a given name in the storage allocation of its
1289      * class.
1290      * <p>
1291      * This API is used to avoid creating reflective Objects in Java code at
1292      * startup.  This should not be used to find fields in non-trusted code.
1293      * Use the {@link #objectFieldOffset(Field) Field}-accepting version for
1294      * arbitrary fields instead.
1295      *
1296      * @throws NullPointerException if any parameter is {@code null}.
1297      * @throws InternalError if the presumably known field couldn't be found
1298      *
1299      * @see #objectFieldOffset(Field)
1300      */
1301     public long objectFieldOffset(Class<?> c, String name) {
1302         if (c == null || name == null) {
1303             throw new NullPointerException();
1304         }
1305 
1306         long result = knownObjectFieldOffset0(c, name);
1307         if (result < 0) {
1308             String type = switch ((int) result) {
1309                 case -2 -> "a static field";
1310                 case -1 -> "not found";
1311                 default -> "unknown";
1312             };
1313             throw new InternalError("Field %s.%s %s".formatted(c.getTypeName(), name, type));
1314         }
1315         return result;
1316     }
1317 
1318     /**
1319      * Reports the location of a given static field, in conjunction with {@link
1320      * #staticFieldBase}.
1321      * <p>Do not expect to perform any sort of arithmetic on this offset;
1322      * it is just a cookie which is passed to the unsafe heap memory accessors.
1323      *
1324      * <p>Any given field will always have the same offset, and no two distinct
1325      * fields of the same class will ever have the same offset.
1326      *
1327      * <p>As of 1.4.1, offsets for fields are represented as long values,
1328      * although the Sun JVM does not use the most significant 32 bits.
1329      * It is hard to imagine a JVM technology which needs more than
1330      * a few bits to encode an offset within a non-array object,
1331      * However, for consistency with other methods in this class,
1332      * this method reports its result as a long value.
1333      *
1334      * @throws NullPointerException if the field is {@code null}
1335      * @throws IllegalArgumentException if the field is not static
1336      * @see #getInt(Object, long)
1337      */
1338     public long staticFieldOffset(Field f) {
1339         if (f == null) {
1340             throw new NullPointerException();
1341         }
1342 
1343         return staticFieldOffset0(f);
1344     }
1345 
1346     /**
1347      * Reports the location of a given static field, in conjunction with {@link
1348      * #staticFieldOffset}.
1349      * <p>Fetch the base "Object", if any, with which static fields of the
1350      * given class can be accessed via methods like {@link #getInt(Object,
1351      * long)}.  This value may be null.  This value may refer to an object
1352      * which is a "cookie", not guaranteed to be a real Object, and it should
1353      * not be used in any way except as argument to the get and put routines in
1354      * this class.
1355      *
1356      * @throws NullPointerException if the field is {@code null}
1357      * @throws IllegalArgumentException if the field is not static
1358      */
1359     public Object staticFieldBase(Field f) {
1360         if (f == null) {
1361             throw new NullPointerException();
1362         }
1363 
1364         return staticFieldBase0(f);
1365     }
1366 
1367     /**
1368      * Detects if the given class may need to be initialized. This is often
1369      * needed in conjunction with obtaining the static field base of a
1370      * class.
1371      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1372      */
1373     public boolean shouldBeInitialized(Class<?> c) {
1374         if (c == null) {
1375             throw new NullPointerException();
1376         }
1377 
1378         return shouldBeInitialized0(c);
1379     }
1380 
1381     /**
1382      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1383      * This is often needed in conjunction with obtaining the static field base
1384      * of a class.
1385      *
1386      * The call returns when either class {@code c} is fully initialized or
1387      * class {@code c} is being initialized and the call is performed from
1388      * the initializing thread. In the latter case a subsequent call to
1389      * {@link #shouldBeInitialized} will return {@code true}.
1390      */
1391     public void ensureClassInitialized(Class<?> c) {
1392         if (c == null) {
1393             throw new NullPointerException();
1394         }
1395 
1396         ensureClassInitialized0(c);
1397     }
1398 
1399     /**
1400      * The reading or writing of strict static fields may require
1401      * special processing.  Notify the VM that such an event is about
1402      * to happen.  The VM may respond by throwing an exception, in the
1403      * case of a read of an uninitialized field.  If the VM allows the
1404      * method to return normally, no further calls are needed, with
1405      * the same arguments.
1406      */
1407     public void notifyStrictStaticAccess(Class<?> c, long staticFieldOffset, boolean writing) {
1408         if (c == null) {
1409             throw new NullPointerException();
1410         }
1411         notifyStrictStaticAccess0(c, staticFieldOffset, writing);
1412     }
1413 
1414     /**
1415      * Reports the offset of the first element in the storage allocation of a
1416      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1417      * for the same class, you may use that scale factor, together with this
1418      * base offset, to form new offsets to access elements of arrays of the
1419      * given class.
1420      * <p>
1421      * The return value is in the range of a {@code int}.  The return type is
1422      * {@code long} to emphasize that long arithmetic should always be used
1423      * for offset calculations to avoid overflows.
1424      *
1425      * @see #getInt(Object, long)
1426      * @see #putInt(Object, long, int)
1427      */
1428     public long arrayBaseOffset(Class<?> arrayClass) {
1429         if (arrayClass == null) {
1430             throw new NullPointerException();
1431         }
1432 
1433         return arrayBaseOffset0(arrayClass);
1434     }
1435 
1436     public long arrayBaseOffset(Object[] array) {
1437         if (array == null) {
1438             throw new NullPointerException();
1439         }
1440 
1441         return arrayBaseOffset1(array);
1442     }
1443 
1444     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1445     public static final long ARRAY_BOOLEAN_BASE_OFFSET
1446             = theUnsafe.arrayBaseOffset(boolean[].class);
1447 
1448     /** The value of {@code arrayBaseOffset(byte[].class)} */
1449     public static final long ARRAY_BYTE_BASE_OFFSET
1450             = theUnsafe.arrayBaseOffset(byte[].class);
1451 
1452     /** The value of {@code arrayBaseOffset(short[].class)} */
1453     public static final long ARRAY_SHORT_BASE_OFFSET
1454             = theUnsafe.arrayBaseOffset(short[].class);
1455 
1456     /** The value of {@code arrayBaseOffset(char[].class)} */
1457     public static final long ARRAY_CHAR_BASE_OFFSET
1458             = theUnsafe.arrayBaseOffset(char[].class);
1459 
1460     /** The value of {@code arrayBaseOffset(int[].class)} */
1461     public static final long ARRAY_INT_BASE_OFFSET
1462             = theUnsafe.arrayBaseOffset(int[].class);
1463 
1464     /** The value of {@code arrayBaseOffset(long[].class)} */
1465     public static final long ARRAY_LONG_BASE_OFFSET
1466             = theUnsafe.arrayBaseOffset(long[].class);
1467 
1468     /** The value of {@code arrayBaseOffset(float[].class)} */
1469     public static final long ARRAY_FLOAT_BASE_OFFSET
1470             = theUnsafe.arrayBaseOffset(float[].class);
1471 
1472     /** The value of {@code arrayBaseOffset(double[].class)} */
1473     public static final long ARRAY_DOUBLE_BASE_OFFSET
1474             = theUnsafe.arrayBaseOffset(double[].class);
1475 
1476     /** The value of {@code arrayBaseOffset(Object[].class)} */
1477     public static final long ARRAY_OBJECT_BASE_OFFSET
1478             = theUnsafe.arrayBaseOffset(Object[].class);
1479 
1480     /**
1481      * Reports the scale factor for addressing elements in the storage
1482      * allocation of a given array class.  However, arrays of "narrow" types
1483      * will generally not work properly with accessors like {@link
1484      * #getByte(Object, long)}, so the scale factor for such classes is reported
1485      * as zero.
1486      * <p>
1487      * The computation of the actual memory offset should always use {@code
1488      * long} arithmetic to avoid overflows.
1489      *
1490      * @see #arrayBaseOffset
1491      * @see #getInt(Object, long)
1492      * @see #putInt(Object, long, int)
1493      */
1494     public int arrayIndexScale(Class<?> arrayClass) {
1495         if (arrayClass == null) {
1496             throw new NullPointerException();
1497         }
1498 
1499         return arrayIndexScale0(arrayClass);
1500     }
1501 
1502     public int arrayIndexScale(Object[] array) {
1503         if (array == null) {
1504             throw new NullPointerException();
1505         }
1506 
1507         return arrayIndexScale1(array);
1508     }
1509 
1510     /**
1511      * Return the size of the object in the heap.
1512      * @param o an object
1513      * @return the objects's size
1514      * @since Valhalla
1515      */
1516     public long getObjectSize(Object o) {
1517         if (o == null)
1518             throw new NullPointerException();
1519         return getObjectSize0(o);
1520     }
1521 
1522     /** The value of {@code arrayIndexScale(boolean[].class)} */
1523     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1524             = theUnsafe.arrayIndexScale(boolean[].class);
1525 
1526     /** The value of {@code arrayIndexScale(byte[].class)} */
1527     public static final int ARRAY_BYTE_INDEX_SCALE
1528             = theUnsafe.arrayIndexScale(byte[].class);
1529 
1530     /** The value of {@code arrayIndexScale(short[].class)} */
1531     public static final int ARRAY_SHORT_INDEX_SCALE
1532             = theUnsafe.arrayIndexScale(short[].class);
1533 
1534     /** The value of {@code arrayIndexScale(char[].class)} */
1535     public static final int ARRAY_CHAR_INDEX_SCALE
1536             = theUnsafe.arrayIndexScale(char[].class);
1537 
1538     /** The value of {@code arrayIndexScale(int[].class)} */
1539     public static final int ARRAY_INT_INDEX_SCALE
1540             = theUnsafe.arrayIndexScale(int[].class);
1541 
1542     /** The value of {@code arrayIndexScale(long[].class)} */
1543     public static final int ARRAY_LONG_INDEX_SCALE
1544             = theUnsafe.arrayIndexScale(long[].class);
1545 
1546     /** The value of {@code arrayIndexScale(float[].class)} */
1547     public static final int ARRAY_FLOAT_INDEX_SCALE
1548             = theUnsafe.arrayIndexScale(float[].class);
1549 
1550     /** The value of {@code arrayIndexScale(double[].class)} */
1551     public static final int ARRAY_DOUBLE_INDEX_SCALE
1552             = theUnsafe.arrayIndexScale(double[].class);
1553 
1554     /** The value of {@code arrayIndexScale(Object[].class)} */
1555     public static final int ARRAY_OBJECT_INDEX_SCALE
1556             = theUnsafe.arrayIndexScale(Object[].class);
1557 
1558     /**
1559      * Reports the size in bytes of a native pointer, as stored via {@link
1560      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1561      * other primitive types (as stored in native memory blocks) is determined
1562      * fully by their information content.
1563      */
1564     public int addressSize() {
1565         return ADDRESS_SIZE;
1566     }
1567 
1568     /** The value of {@code addressSize()} */
1569     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1570 
1571     /**
1572      * Reports the size in bytes of a native memory page (whatever that is).
1573      * This value will always be a power of two.
1574      */
1575     public int pageSize() { return PAGE_SIZE; }
1576 
1577     /**
1578      * Reports the size in bytes of a data cache line written back by
1579      * the hardware cache line flush operation available to the JVM or
1580      * 0 if data cache line flushing is not enabled.
1581      */
1582     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1583 
1584     /**
1585      * Rounds down address to a data cache line boundary as
1586      * determined by {@link #dataCacheLineFlushSize}
1587      * @return the rounded down address
1588      */
1589     public long dataCacheLineAlignDown(long address) {
1590         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1591     }
1592 
1593     /**
1594      * Returns true if data cache line writeback
1595      */
1596     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1597 
1598     //--- random trusted operations from JNI:
1599 
1600     /**
1601      * Tells the VM to define a class, without security checks.  By default, the
1602      * class loader and protection domain come from the caller's class.
1603      */
1604     public Class<?> defineClass(String name, byte[] b, int off, int len,
1605                                 ClassLoader loader,
1606                                 ProtectionDomain protectionDomain) {
1607         if (b == null) {
1608             throw new NullPointerException();
1609         }
1610         if (len < 0) {
1611             throw new ArrayIndexOutOfBoundsException();
1612         }
1613 
1614         return defineClass0(name, b, off, len, loader, protectionDomain);
1615     }
1616 
1617     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1618                                         ClassLoader loader,
1619                                         ProtectionDomain protectionDomain);
1620 
1621     /**
1622      * Allocates an instance but does not run any constructor.
1623      * Initializes the class if it has not yet been.
1624      */
1625     @IntrinsicCandidate
1626     public native Object allocateInstance(Class<?> cls)
1627         throws InstantiationException;
1628 
1629     /**
1630      * Allocates an array of a given type, but does not do zeroing.
1631      * <p>
1632      * This method should only be used in the very rare cases where a high-performance code
1633      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1634      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1635      * <p>
1636      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1637      * before allowing untrusted code, or code in other threads, to observe the reference
1638      * to the newly allocated array. In addition, the publication of the array reference must be
1639      * safe according to the Java Memory Model requirements.
1640      * <p>
1641      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1642      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1643      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1644      * or issuing a {@link #storeFence} before publishing the reference.
1645      * <p>
1646      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1647      * elements that could break heap integrity.
1648      *
1649      * @param componentType array component type to allocate
1650      * @param length array size to allocate
1651      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1652      *                                  or the length is negative
1653      */
1654     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1655        if (componentType == null) {
1656            throw new IllegalArgumentException("Component type is null");
1657        }
1658        if (!componentType.isPrimitive()) {
1659            throw new IllegalArgumentException("Component type is not primitive");
1660        }
1661        if (length < 0) {
1662            throw new IllegalArgumentException("Negative length");
1663        }
1664        return allocateUninitializedArray0(componentType, length);
1665     }
1666 
1667     @IntrinsicCandidate
1668     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1669        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1670        // return the zeroed arrays.
1671        if (componentType == byte.class)    return new byte[length];
1672        if (componentType == boolean.class) return new boolean[length];
1673        if (componentType == short.class)   return new short[length];
1674        if (componentType == char.class)    return new char[length];
1675        if (componentType == int.class)     return new int[length];
1676        if (componentType == float.class)   return new float[length];
1677        if (componentType == long.class)    return new long[length];
1678        if (componentType == double.class)  return new double[length];
1679        return null;
1680     }
1681 
1682     /** Throws the exception without telling the verifier. */
1683     public native void throwException(Throwable ee);
1684 
1685     /**
1686      * Atomically updates Java variable to {@code x} if it is currently
1687      * holding {@code expected}.
1688      *
1689      * <p>This operation has memory semantics of a {@code volatile} read
1690      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1691      *
1692      * @return {@code true} if successful
1693      */
1694     @IntrinsicCandidate
1695     public final native boolean compareAndSetReference(Object o, long offset,
1696                                                        Object expected,
1697                                                        Object x);
1698 
1699     private final boolean isValueObject(Object o) {
1700         return o != null && o.getClass().isValue();
1701     }
1702 
1703     /*
1704      * For value type, CAS should do substitutability test as opposed
1705      * to two pointers comparison.
1706      */
1707     @ForceInline
1708     public final <V> boolean compareAndSetReference(Object o, long offset,
1709                                                     Class<?> type,
1710                                                     V expected,
1711                                                     V x) {
1712         if (type.isValue() || isValueObject(expected)) {
1713             while (true) {
1714                 Object witness = getReferenceVolatile(o, offset);
1715                 if (witness != expected) {
1716                     return false;
1717                 }
1718                 if (compareAndSetReference(o, offset, witness, x)) {
1719                     return true;
1720                 }
1721             }
1722         } else {
1723             return compareAndSetReference(o, offset, expected, x);
1724         }
1725     }
1726 
1727     @ForceInline
1728     public final <V> boolean compareAndSetFlatValue(Object o, long offset,
1729                                                 int layout,
1730                                                 Class<?> valueType,
1731                                                 V expected,
1732                                                 V x) {
1733         while (true) {
1734             Object witness = getFlatValueVolatile(o, offset, layout, valueType);
1735             if (witness != expected) {
1736                 return false;
1737             }
1738             if (compareAndSetFlatValueAsBytes(o, offset, layout, valueType, witness, x)) {
1739                 return true;
1740             }
1741         }
1742     }
1743 
1744     @IntrinsicCandidate
1745     public final native Object compareAndExchangeReference(Object o, long offset,
1746                                                            Object expected,
1747                                                            Object x);
1748 
1749     @ForceInline
1750     public final <V> Object compareAndExchangeReference(Object o, long offset,
1751                                                         Class<?> valueType,
1752                                                         V expected,
1753                                                         V x) {
1754         if (valueType.isValue() || isValueObject(expected)) {
1755             while (true) {
1756                 Object witness = getReferenceVolatile(o, offset);
1757                 if (witness != expected) {
1758                     return witness;
1759                 }
1760                 if (compareAndSetReference(o, offset, witness, x)) {
1761                     return witness;
1762                 }
1763             }
1764         } else {
1765             return compareAndExchangeReference(o, offset, expected, x);
1766         }
1767     }
1768 
1769     @ForceInline
1770     public final <V> Object compareAndExchangeFlatValue(Object o, long offset,
1771                                                     int layout,
1772                                                     Class<?> valueType,
1773                                                     V expected,
1774                                                     V x) {
1775         while (true) {
1776             Object witness = getFlatValueVolatile(o, offset, layout, valueType);
1777             if (witness != expected) {
1778                 return witness;
1779             }
1780             if (compareAndSetFlatValueAsBytes(o, offset, layout, valueType, witness, x)) {
1781                 return witness;
1782             }
1783         }
1784     }
1785 
1786     @IntrinsicCandidate
1787     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1788                                                            Object expected,
1789                                                            Object x) {
1790         return compareAndExchangeReference(o, offset, expected, x);
1791     }
1792 
1793     public final <V> Object compareAndExchangeReferenceAcquire(Object o, long offset,
1794                                                                Class<?> valueType,
1795                                                                V expected,
1796                                                                V x) {
1797         return compareAndExchangeReference(o, offset, valueType, expected, x);
1798     }
1799 
1800     @ForceInline
1801     public final <V> Object compareAndExchangeFlatValueAcquire(Object o, long offset,
1802                                                            int layout,
1803                                                            Class<?> valueType,
1804                                                            V expected,
1805                                                            V x) {
1806         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1807     }
1808 
1809     @IntrinsicCandidate
1810     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1811                                                            Object expected,
1812                                                            Object x) {
1813         return compareAndExchangeReference(o, offset, expected, x);
1814     }
1815 
1816     public final <V> Object compareAndExchangeReferenceRelease(Object o, long offset,
1817                                                                Class<?> valueType,
1818                                                                V expected,
1819                                                                V x) {
1820         return compareAndExchangeReference(o, offset, valueType, expected, x);
1821     }
1822 
1823     @ForceInline
1824     public final <V> Object compareAndExchangeFlatValueRelease(Object o, long offset,
1825                                                            int layout,
1826                                                            Class<?> valueType,
1827                                                            V expected,
1828                                                            V x) {
1829         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1830     }
1831 
1832     @IntrinsicCandidate
1833     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1834                                                          Object expected,
1835                                                          Object x) {
1836         return compareAndSetReference(o, offset, expected, x);
1837     }
1838 
1839     public final <V> boolean weakCompareAndSetReferencePlain(Object o, long offset,
1840                                                              Class<?> valueType,
1841                                                              V expected,
1842                                                              V x) {
1843         if (valueType.isValue() || isValueObject(expected)) {
1844             return compareAndSetReference(o, offset, valueType, expected, x);
1845         } else {
1846             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1847         }
1848     }
1849 
1850     @ForceInline
1851     public final <V> boolean weakCompareAndSetFlatValuePlain(Object o, long offset,
1852                                                          int layout,
1853                                                          Class<?> valueType,
1854                                                          V expected,
1855                                                          V x) {
1856         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1857     }
1858 
1859     @IntrinsicCandidate
1860     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1861                                                            Object expected,
1862                                                            Object x) {
1863         return compareAndSetReference(o, offset, expected, x);
1864     }
1865 
1866     public final <V> boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1867                                                                Class<?> valueType,
1868                                                                V expected,
1869                                                                V x) {
1870         if (valueType.isValue() || isValueObject(expected)) {
1871             return compareAndSetReference(o, offset, valueType, expected, x);
1872         } else {
1873             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1874         }
1875     }
1876 
1877     @ForceInline
1878     public final <V> boolean weakCompareAndSetFlatValueAcquire(Object o, long offset,
1879                                                            int layout,
1880                                                            Class<?> valueType,
1881                                                            V expected,
1882                                                            V x) {
1883         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1884     }
1885 
1886     @IntrinsicCandidate
1887     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1888                                                            Object expected,
1889                                                            Object x) {
1890         return compareAndSetReference(o, offset, expected, x);
1891     }
1892 
1893     public final <V> boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1894                                                                Class<?> valueType,
1895                                                                V expected,
1896                                                                V x) {
1897         if (valueType.isValue() || isValueObject(expected)) {
1898             return compareAndSetReference(o, offset, valueType, expected, x);
1899         } else {
1900             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1901         }
1902     }
1903 
1904     @ForceInline
1905     public final <V> boolean weakCompareAndSetFlatValueRelease(Object o, long offset,
1906                                                            int layout,
1907                                                            Class<?> valueType,
1908                                                            V expected,
1909                                                            V x) {
1910         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1911     }
1912 
1913     @IntrinsicCandidate
1914     public final boolean weakCompareAndSetReference(Object o, long offset,
1915                                                     Object expected,
1916                                                     Object x) {
1917         return compareAndSetReference(o, offset, expected, x);
1918     }
1919 
1920     public final <V> boolean weakCompareAndSetReference(Object o, long offset,
1921                                                         Class<?> valueType,
1922                                                         V expected,
1923                                                         V x) {
1924         if (valueType.isValue() || isValueObject(expected)) {
1925             return compareAndSetReference(o, offset, valueType, expected, x);
1926         } else {
1927             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1928         }
1929     }
1930 
1931     @ForceInline
1932     public final <V> boolean weakCompareAndSetFlatValue(Object o, long offset,
1933                                                     int layout,
1934                                                     Class<?> valueType,
1935                                                     V expected,
1936                                                     V x) {
1937         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1938     }
1939 
1940     /**
1941      * Atomically updates Java variable to {@code x} if it is currently
1942      * holding {@code expected}.
1943      *
1944      * <p>This operation has memory semantics of a {@code volatile} read
1945      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1946      *
1947      * @return {@code true} if successful
1948      */
1949     @IntrinsicCandidate
1950     public final native boolean compareAndSetInt(Object o, long offset,
1951                                                  int expected,
1952                                                  int x);
1953 
1954     @IntrinsicCandidate
1955     public final native int compareAndExchangeInt(Object o, long offset,
1956                                                   int expected,
1957                                                   int x);
1958 
1959     @IntrinsicCandidate
1960     public final int compareAndExchangeIntAcquire(Object o, long offset,
1961                                                          int expected,
1962                                                          int x) {
1963         return compareAndExchangeInt(o, offset, expected, x);
1964     }
1965 
1966     @IntrinsicCandidate
1967     public final int compareAndExchangeIntRelease(Object o, long offset,
1968                                                          int expected,
1969                                                          int x) {
1970         return compareAndExchangeInt(o, offset, expected, x);
1971     }
1972 
1973     @IntrinsicCandidate
1974     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1975                                                    int expected,
1976                                                    int x) {
1977         return compareAndSetInt(o, offset, expected, x);
1978     }
1979 
1980     @IntrinsicCandidate
1981     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1982                                                      int expected,
1983                                                      int x) {
1984         return compareAndSetInt(o, offset, expected, x);
1985     }
1986 
1987     @IntrinsicCandidate
1988     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1989                                                      int expected,
1990                                                      int x) {
1991         return compareAndSetInt(o, offset, expected, x);
1992     }
1993 
1994     @IntrinsicCandidate
1995     public final boolean weakCompareAndSetInt(Object o, long offset,
1996                                               int expected,
1997                                               int x) {
1998         return compareAndSetInt(o, offset, expected, x);
1999     }
2000 
2001     @IntrinsicCandidate
2002     public final byte compareAndExchangeByte(Object o, long offset,
2003                                              byte expected,
2004                                              byte x) {
2005         long wordOffset = offset & ~3;
2006         int shift = (int) (offset & 3) << 3;
2007         if (BIG_ENDIAN) {
2008             shift = 24 - shift;
2009         }
2010         int mask           = 0xFF << shift;
2011         int maskedExpected = (expected & 0xFF) << shift;
2012         int maskedX        = (x & 0xFF) << shift;
2013         int fullWord;
2014         do {
2015             fullWord = getIntVolatile(o, wordOffset);
2016             if ((fullWord & mask) != maskedExpected)
2017                 return (byte) ((fullWord & mask) >> shift);
2018         } while (!weakCompareAndSetInt(o, wordOffset,
2019                                                 fullWord, (fullWord & ~mask) | maskedX));
2020         return expected;
2021     }
2022 
2023     @IntrinsicCandidate
2024     public final boolean compareAndSetByte(Object o, long offset,
2025                                            byte expected,
2026                                            byte x) {
2027         return compareAndExchangeByte(o, offset, expected, x) == expected;
2028     }
2029 
2030     @IntrinsicCandidate
2031     public final boolean weakCompareAndSetByte(Object o, long offset,
2032                                                byte expected,
2033                                                byte x) {
2034         return compareAndSetByte(o, offset, expected, x);
2035     }
2036 
2037     @IntrinsicCandidate
2038     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
2039                                                       byte expected,
2040                                                       byte x) {
2041         return weakCompareAndSetByte(o, offset, expected, x);
2042     }
2043 
2044     @IntrinsicCandidate
2045     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
2046                                                       byte expected,
2047                                                       byte x) {
2048         return weakCompareAndSetByte(o, offset, expected, x);
2049     }
2050 
2051     @IntrinsicCandidate
2052     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
2053                                                     byte expected,
2054                                                     byte x) {
2055         return weakCompareAndSetByte(o, offset, expected, x);
2056     }
2057 
2058     @IntrinsicCandidate
2059     public final byte compareAndExchangeByteAcquire(Object o, long offset,
2060                                                     byte expected,
2061                                                     byte x) {
2062         return compareAndExchangeByte(o, offset, expected, x);
2063     }
2064 
2065     @IntrinsicCandidate
2066     public final byte compareAndExchangeByteRelease(Object o, long offset,
2067                                                     byte expected,
2068                                                     byte x) {
2069         return compareAndExchangeByte(o, offset, expected, x);
2070     }
2071 
2072     @IntrinsicCandidate
2073     public final short compareAndExchangeShort(Object o, long offset,
2074                                                short expected,
2075                                                short x) {
2076         if ((offset & 3) == 3) {
2077             throw new IllegalArgumentException("Update spans the word, not supported");
2078         }
2079         long wordOffset = offset & ~3;
2080         int shift = (int) (offset & 3) << 3;
2081         if (BIG_ENDIAN) {
2082             shift = 16 - shift;
2083         }
2084         int mask           = 0xFFFF << shift;
2085         int maskedExpected = (expected & 0xFFFF) << shift;
2086         int maskedX        = (x & 0xFFFF) << shift;
2087         int fullWord;
2088         do {
2089             fullWord = getIntVolatile(o, wordOffset);
2090             if ((fullWord & mask) != maskedExpected) {
2091                 return (short) ((fullWord & mask) >> shift);
2092             }
2093         } while (!weakCompareAndSetInt(o, wordOffset,
2094                                                 fullWord, (fullWord & ~mask) | maskedX));
2095         return expected;
2096     }
2097 
2098     @IntrinsicCandidate
2099     public final boolean compareAndSetShort(Object o, long offset,
2100                                             short expected,
2101                                             short x) {
2102         return compareAndExchangeShort(o, offset, expected, x) == expected;
2103     }
2104 
2105     @IntrinsicCandidate
2106     public final boolean weakCompareAndSetShort(Object o, long offset,
2107                                                 short expected,
2108                                                 short x) {
2109         return compareAndSetShort(o, offset, expected, x);
2110     }
2111 
2112     @IntrinsicCandidate
2113     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
2114                                                        short expected,
2115                                                        short x) {
2116         return weakCompareAndSetShort(o, offset, expected, x);
2117     }
2118 
2119     @IntrinsicCandidate
2120     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
2121                                                        short expected,
2122                                                        short x) {
2123         return weakCompareAndSetShort(o, offset, expected, x);
2124     }
2125 
2126     @IntrinsicCandidate
2127     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
2128                                                      short expected,
2129                                                      short x) {
2130         return weakCompareAndSetShort(o, offset, expected, x);
2131     }
2132 
2133 
2134     @IntrinsicCandidate
2135     public final short compareAndExchangeShortAcquire(Object o, long offset,
2136                                                      short expected,
2137                                                      short x) {
2138         return compareAndExchangeShort(o, offset, expected, x);
2139     }
2140 
2141     @IntrinsicCandidate
2142     public final short compareAndExchangeShortRelease(Object o, long offset,
2143                                                     short expected,
2144                                                     short x) {
2145         return compareAndExchangeShort(o, offset, expected, x);
2146     }
2147 
2148     @ForceInline
2149     private char s2c(short s) {
2150         return (char) s;
2151     }
2152 
2153     @ForceInline
2154     private short c2s(char s) {
2155         return (short) s;
2156     }
2157 
2158     @ForceInline
2159     public final boolean compareAndSetChar(Object o, long offset,
2160                                            char expected,
2161                                            char x) {
2162         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
2163     }
2164 
2165     @ForceInline
2166     public final char compareAndExchangeChar(Object o, long offset,
2167                                              char expected,
2168                                              char x) {
2169         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
2170     }
2171 
2172     @ForceInline
2173     public final char compareAndExchangeCharAcquire(Object o, long offset,
2174                                             char expected,
2175                                             char x) {
2176         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
2177     }
2178 
2179     @ForceInline
2180     public final char compareAndExchangeCharRelease(Object o, long offset,
2181                                             char expected,
2182                                             char x) {
2183         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
2184     }
2185 
2186     @ForceInline
2187     public final boolean weakCompareAndSetChar(Object o, long offset,
2188                                                char expected,
2189                                                char x) {
2190         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
2191     }
2192 
2193     @ForceInline
2194     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
2195                                                       char expected,
2196                                                       char x) {
2197         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
2198     }
2199 
2200     @ForceInline
2201     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
2202                                                       char expected,
2203                                                       char x) {
2204         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
2205     }
2206 
2207     @ForceInline
2208     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
2209                                                     char expected,
2210                                                     char x) {
2211         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
2212     }
2213 
2214     /**
2215      * The JVM converts integral values to boolean values using two
2216      * different conventions, byte testing against zero and truncation
2217      * to least-significant bit.
2218      *
2219      * <p>The JNI documents specify that, at least for returning
2220      * values from native methods, a Java boolean value is converted
2221      * to the value-set 0..1 by first truncating to a byte (0..255 or
2222      * maybe -128..127) and then testing against zero. Thus, Java
2223      * booleans in non-Java data structures are by convention
2224      * represented as 8-bit containers containing either zero (for
2225      * false) or any non-zero value (for true).
2226      *
2227      * <p>Java booleans in the heap are also stored in bytes, but are
2228      * strongly normalized to the value-set 0..1 (i.e., they are
2229      * truncated to the least-significant bit).
2230      *
2231      * <p>The main reason for having different conventions for
2232      * conversion is performance: Truncation to the least-significant
2233      * bit can be usually implemented with fewer (machine)
2234      * instructions than byte testing against zero.
2235      *
2236      * <p>A number of Unsafe methods load boolean values from the heap
2237      * as bytes. Unsafe converts those values according to the JNI
2238      * rules (i.e, using the "testing against zero" convention). The
2239      * method {@code byte2bool} implements that conversion.
2240      *
2241      * @param b the byte to be converted to boolean
2242      * @return the result of the conversion
2243      */
2244     @ForceInline
2245     private boolean byte2bool(byte b) {
2246         return b != 0;
2247     }
2248 
2249     /**
2250      * Convert a boolean value to a byte. The return value is strongly
2251      * normalized to the value-set 0..1 (i.e., the value is truncated
2252      * to the least-significant bit). See {@link #byte2bool(byte)} for
2253      * more details on conversion conventions.
2254      *
2255      * @param b the boolean to be converted to byte (and then normalized)
2256      * @return the result of the conversion
2257      */
2258     @ForceInline
2259     private byte bool2byte(boolean b) {
2260         return b ? (byte)1 : (byte)0;
2261     }
2262 
2263     @ForceInline
2264     public final boolean compareAndSetBoolean(Object o, long offset,
2265                                               boolean expected,
2266                                               boolean x) {
2267         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2268     }
2269 
2270     @ForceInline
2271     public final boolean compareAndExchangeBoolean(Object o, long offset,
2272                                                    boolean expected,
2273                                                    boolean x) {
2274         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
2275     }
2276 
2277     @ForceInline
2278     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
2279                                                     boolean expected,
2280                                                     boolean x) {
2281         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
2282     }
2283 
2284     @ForceInline
2285     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
2286                                                        boolean expected,
2287                                                        boolean x) {
2288         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
2289     }
2290 
2291     @ForceInline
2292     public final boolean weakCompareAndSetBoolean(Object o, long offset,
2293                                                   boolean expected,
2294                                                   boolean x) {
2295         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2296     }
2297 
2298     @ForceInline
2299     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
2300                                                          boolean expected,
2301                                                          boolean x) {
2302         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
2303     }
2304 
2305     @ForceInline
2306     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
2307                                                          boolean expected,
2308                                                          boolean x) {
2309         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
2310     }
2311 
2312     @ForceInline
2313     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
2314                                                        boolean expected,
2315                                                        boolean x) {
2316         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
2317     }
2318 
2319     /**
2320      * Atomically updates Java variable to {@code x} if it is currently
2321      * holding {@code expected}.
2322      *
2323      * <p>This operation has memory semantics of a {@code volatile} read
2324      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2325      *
2326      * @return {@code true} if successful
2327      */
2328     @ForceInline
2329     public final boolean compareAndSetFloat(Object o, long offset,
2330                                             float expected,
2331                                             float x) {
2332         return compareAndSetInt(o, offset,
2333                                  Float.floatToRawIntBits(expected),
2334                                  Float.floatToRawIntBits(x));
2335     }
2336 
2337     @ForceInline
2338     public final float compareAndExchangeFloat(Object o, long offset,
2339                                                float expected,
2340                                                float x) {
2341         int w = compareAndExchangeInt(o, offset,
2342                                       Float.floatToRawIntBits(expected),
2343                                       Float.floatToRawIntBits(x));
2344         return Float.intBitsToFloat(w);
2345     }
2346 
2347     @ForceInline
2348     public final float compareAndExchangeFloatAcquire(Object o, long offset,
2349                                                   float expected,
2350                                                   float x) {
2351         int w = compareAndExchangeIntAcquire(o, offset,
2352                                              Float.floatToRawIntBits(expected),
2353                                              Float.floatToRawIntBits(x));
2354         return Float.intBitsToFloat(w);
2355     }
2356 
2357     @ForceInline
2358     public final float compareAndExchangeFloatRelease(Object o, long offset,
2359                                                   float expected,
2360                                                   float x) {
2361         int w = compareAndExchangeIntRelease(o, offset,
2362                                              Float.floatToRawIntBits(expected),
2363                                              Float.floatToRawIntBits(x));
2364         return Float.intBitsToFloat(w);
2365     }
2366 
2367     @ForceInline
2368     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
2369                                                      float expected,
2370                                                      float x) {
2371         return weakCompareAndSetIntPlain(o, offset,
2372                                      Float.floatToRawIntBits(expected),
2373                                      Float.floatToRawIntBits(x));
2374     }
2375 
2376     @ForceInline
2377     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
2378                                                        float expected,
2379                                                        float x) {
2380         return weakCompareAndSetIntAcquire(o, offset,
2381                                             Float.floatToRawIntBits(expected),
2382                                             Float.floatToRawIntBits(x));
2383     }
2384 
2385     @ForceInline
2386     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
2387                                                        float expected,
2388                                                        float x) {
2389         return weakCompareAndSetIntRelease(o, offset,
2390                                             Float.floatToRawIntBits(expected),
2391                                             Float.floatToRawIntBits(x));
2392     }
2393 
2394     @ForceInline
2395     public final boolean weakCompareAndSetFloat(Object o, long offset,
2396                                                 float expected,
2397                                                 float x) {
2398         return weakCompareAndSetInt(o, offset,
2399                                              Float.floatToRawIntBits(expected),
2400                                              Float.floatToRawIntBits(x));
2401     }
2402 
2403     /**
2404      * Atomically updates Java variable to {@code x} if it is currently
2405      * holding {@code expected}.
2406      *
2407      * <p>This operation has memory semantics of a {@code volatile} read
2408      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2409      *
2410      * @return {@code true} if successful
2411      */
2412     @ForceInline
2413     public final boolean compareAndSetDouble(Object o, long offset,
2414                                              double expected,
2415                                              double x) {
2416         return compareAndSetLong(o, offset,
2417                                  Double.doubleToRawLongBits(expected),
2418                                  Double.doubleToRawLongBits(x));
2419     }
2420 
2421     @ForceInline
2422     public final double compareAndExchangeDouble(Object o, long offset,
2423                                                  double expected,
2424                                                  double x) {
2425         long w = compareAndExchangeLong(o, offset,
2426                                         Double.doubleToRawLongBits(expected),
2427                                         Double.doubleToRawLongBits(x));
2428         return Double.longBitsToDouble(w);
2429     }
2430 
2431     @ForceInline
2432     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
2433                                                         double expected,
2434                                                         double x) {
2435         long w = compareAndExchangeLongAcquire(o, offset,
2436                                                Double.doubleToRawLongBits(expected),
2437                                                Double.doubleToRawLongBits(x));
2438         return Double.longBitsToDouble(w);
2439     }
2440 
2441     @ForceInline
2442     public final double compareAndExchangeDoubleRelease(Object o, long offset,
2443                                                         double expected,
2444                                                         double x) {
2445         long w = compareAndExchangeLongRelease(o, offset,
2446                                                Double.doubleToRawLongBits(expected),
2447                                                Double.doubleToRawLongBits(x));
2448         return Double.longBitsToDouble(w);
2449     }
2450 
2451     @ForceInline
2452     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
2453                                                       double expected,
2454                                                       double x) {
2455         return weakCompareAndSetLongPlain(o, offset,
2456                                      Double.doubleToRawLongBits(expected),
2457                                      Double.doubleToRawLongBits(x));
2458     }
2459 
2460     @ForceInline
2461     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2462                                                         double expected,
2463                                                         double x) {
2464         return weakCompareAndSetLongAcquire(o, offset,
2465                                              Double.doubleToRawLongBits(expected),
2466                                              Double.doubleToRawLongBits(x));
2467     }
2468 
2469     @ForceInline
2470     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2471                                                         double expected,
2472                                                         double x) {
2473         return weakCompareAndSetLongRelease(o, offset,
2474                                              Double.doubleToRawLongBits(expected),
2475                                              Double.doubleToRawLongBits(x));
2476     }
2477 
2478     @ForceInline
2479     public final boolean weakCompareAndSetDouble(Object o, long offset,
2480                                                  double expected,
2481                                                  double x) {
2482         return weakCompareAndSetLong(o, offset,
2483                                               Double.doubleToRawLongBits(expected),
2484                                               Double.doubleToRawLongBits(x));
2485     }
2486 
2487     /**
2488      * Atomically updates Java variable to {@code x} if it is currently
2489      * holding {@code expected}.
2490      *
2491      * <p>This operation has memory semantics of a {@code volatile} read
2492      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2493      *
2494      * @return {@code true} if successful
2495      */
2496     @IntrinsicCandidate
2497     public final native boolean compareAndSetLong(Object o, long offset,
2498                                                   long expected,
2499                                                   long x);
2500 
2501     @IntrinsicCandidate
2502     public final native long compareAndExchangeLong(Object o, long offset,
2503                                                     long expected,
2504                                                     long x);
2505 
2506     @IntrinsicCandidate
2507     public final long compareAndExchangeLongAcquire(Object o, long offset,
2508                                                            long expected,
2509                                                            long x) {
2510         return compareAndExchangeLong(o, offset, expected, x);
2511     }
2512 
2513     @IntrinsicCandidate
2514     public final long compareAndExchangeLongRelease(Object o, long offset,
2515                                                            long expected,
2516                                                            long x) {
2517         return compareAndExchangeLong(o, offset, expected, x);
2518     }
2519 
2520     @IntrinsicCandidate
2521     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2522                                                     long expected,
2523                                                     long x) {
2524         return compareAndSetLong(o, offset, expected, x);
2525     }
2526 
2527     @IntrinsicCandidate
2528     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2529                                                       long expected,
2530                                                       long x) {
2531         return compareAndSetLong(o, offset, expected, x);
2532     }
2533 
2534     @IntrinsicCandidate
2535     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2536                                                       long expected,
2537                                                       long x) {
2538         return compareAndSetLong(o, offset, expected, x);
2539     }
2540 
2541     @IntrinsicCandidate
2542     public final boolean weakCompareAndSetLong(Object o, long offset,
2543                                                long expected,
2544                                                long x) {
2545         return compareAndSetLong(o, offset, expected, x);
2546     }
2547 
2548     /**
2549      * Fetches a reference value from a given Java variable, with volatile
2550      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2551      */
2552     @IntrinsicCandidate
2553     public native Object getReferenceVolatile(Object o, long offset);
2554 
2555     @ForceInline
2556     public final <V> Object getFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType) {
2557         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2558         Object res = getFlatValue(o, offset, layout, valueType);
2559         fullFence();
2560         return res;
2561     }
2562 
2563     /**
2564      * Stores a reference value into a given Java variable, with
2565      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2566      */
2567     @IntrinsicCandidate
2568     public native void putReferenceVolatile(Object o, long offset, Object x);
2569 
2570     @ForceInline
2571     public final <V> void putFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType, V x) {
2572         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2573         putFlatValueRelease(o, offset, layout, valueType, x);
2574         fullFence();
2575     }
2576 
2577     /** Volatile version of {@link #getInt(Object, long)}  */
2578     @IntrinsicCandidate
2579     public native int     getIntVolatile(Object o, long offset);
2580 
2581     /** Volatile version of {@link #putInt(Object, long, int)}  */
2582     @IntrinsicCandidate
2583     public native void    putIntVolatile(Object o, long offset, int x);
2584 
2585     /** Volatile version of {@link #getBoolean(Object, long)}  */
2586     @IntrinsicCandidate
2587     public native boolean getBooleanVolatile(Object o, long offset);
2588 
2589     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2590     @IntrinsicCandidate
2591     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2592 
2593     /** Volatile version of {@link #getByte(Object, long)}  */
2594     @IntrinsicCandidate
2595     public native byte    getByteVolatile(Object o, long offset);
2596 
2597     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2598     @IntrinsicCandidate
2599     public native void    putByteVolatile(Object o, long offset, byte x);
2600 
2601     /** Volatile version of {@link #getShort(Object, long)}  */
2602     @IntrinsicCandidate
2603     public native short   getShortVolatile(Object o, long offset);
2604 
2605     /** Volatile version of {@link #putShort(Object, long, short)}  */
2606     @IntrinsicCandidate
2607     public native void    putShortVolatile(Object o, long offset, short x);
2608 
2609     /** Volatile version of {@link #getChar(Object, long)}  */
2610     @IntrinsicCandidate
2611     public native char    getCharVolatile(Object o, long offset);
2612 
2613     /** Volatile version of {@link #putChar(Object, long, char)}  */
2614     @IntrinsicCandidate
2615     public native void    putCharVolatile(Object o, long offset, char x);
2616 
2617     /** Volatile version of {@link #getLong(Object, long)}  */
2618     @IntrinsicCandidate
2619     public native long    getLongVolatile(Object o, long offset);
2620 
2621     /** Volatile version of {@link #putLong(Object, long, long)}  */
2622     @IntrinsicCandidate
2623     public native void    putLongVolatile(Object o, long offset, long x);
2624 
2625     /** Volatile version of {@link #getFloat(Object, long)}  */
2626     @IntrinsicCandidate
2627     public native float   getFloatVolatile(Object o, long offset);
2628 
2629     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2630     @IntrinsicCandidate
2631     public native void    putFloatVolatile(Object o, long offset, float x);
2632 
2633     /** Volatile version of {@link #getDouble(Object, long)}  */
2634     @IntrinsicCandidate
2635     public native double  getDoubleVolatile(Object o, long offset);
2636 
2637     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2638     @IntrinsicCandidate
2639     public native void    putDoubleVolatile(Object o, long offset, double x);
2640 
2641 
2642 
2643     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2644     @IntrinsicCandidate
2645     public final Object getReferenceAcquire(Object o, long offset) {
2646         return getReferenceVolatile(o, offset);
2647     }
2648 
2649     @ForceInline
2650     public final <V> Object getFlatValueAcquire(Object o, long offset, int layout, Class<?> valueType) {
2651         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2652         Object res = getFlatValue(o, offset, layout, valueType);
2653         loadFence();
2654         return res;
2655     }
2656 
2657     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2658     @IntrinsicCandidate
2659     public final boolean getBooleanAcquire(Object o, long offset) {
2660         return getBooleanVolatile(o, offset);
2661     }
2662 
2663     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2664     @IntrinsicCandidate
2665     public final byte getByteAcquire(Object o, long offset) {
2666         return getByteVolatile(o, offset);
2667     }
2668 
2669     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2670     @IntrinsicCandidate
2671     public final short getShortAcquire(Object o, long offset) {
2672         return getShortVolatile(o, offset);
2673     }
2674 
2675     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2676     @IntrinsicCandidate
2677     public final char getCharAcquire(Object o, long offset) {
2678         return getCharVolatile(o, offset);
2679     }
2680 
2681     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2682     @IntrinsicCandidate
2683     public final int getIntAcquire(Object o, long offset) {
2684         return getIntVolatile(o, offset);
2685     }
2686 
2687     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2688     @IntrinsicCandidate
2689     public final float getFloatAcquire(Object o, long offset) {
2690         return getFloatVolatile(o, offset);
2691     }
2692 
2693     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2694     @IntrinsicCandidate
2695     public final long getLongAcquire(Object o, long offset) {
2696         return getLongVolatile(o, offset);
2697     }
2698 
2699     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2700     @IntrinsicCandidate
2701     public final double getDoubleAcquire(Object o, long offset) {
2702         return getDoubleVolatile(o, offset);
2703     }
2704 
2705     /*
2706      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2707      * that do not guarantee immediate visibility of the store to
2708      * other threads. This method is generally only useful if the
2709      * underlying field is a Java volatile (or if an array cell, one
2710      * that is otherwise only accessed using volatile accesses).
2711      *
2712      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2713      */
2714 
2715     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2716     @IntrinsicCandidate
2717     public final void putReferenceRelease(Object o, long offset, Object x) {
2718         putReferenceVolatile(o, offset, x);
2719     }
2720 
2721     @ForceInline
2722     public final <V> void putFlatValueRelease(Object o, long offset, int layout, Class<?> valueType, V x) {
2723         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2724         storeFence();
2725         putFlatValue(o, offset, layout, valueType, x);
2726     }
2727 
2728     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2729     @IntrinsicCandidate
2730     public final void putBooleanRelease(Object o, long offset, boolean x) {
2731         putBooleanVolatile(o, offset, x);
2732     }
2733 
2734     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2735     @IntrinsicCandidate
2736     public final void putByteRelease(Object o, long offset, byte x) {
2737         putByteVolatile(o, offset, x);
2738     }
2739 
2740     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2741     @IntrinsicCandidate
2742     public final void putShortRelease(Object o, long offset, short x) {
2743         putShortVolatile(o, offset, x);
2744     }
2745 
2746     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2747     @IntrinsicCandidate
2748     public final void putCharRelease(Object o, long offset, char x) {
2749         putCharVolatile(o, offset, x);
2750     }
2751 
2752     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2753     @IntrinsicCandidate
2754     public final void putIntRelease(Object o, long offset, int x) {
2755         putIntVolatile(o, offset, x);
2756     }
2757 
2758     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2759     @IntrinsicCandidate
2760     public final void putFloatRelease(Object o, long offset, float x) {
2761         putFloatVolatile(o, offset, x);
2762     }
2763 
2764     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2765     @IntrinsicCandidate
2766     public final void putLongRelease(Object o, long offset, long x) {
2767         putLongVolatile(o, offset, x);
2768     }
2769 
2770     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2771     @IntrinsicCandidate
2772     public final void putDoubleRelease(Object o, long offset, double x) {
2773         putDoubleVolatile(o, offset, x);
2774     }
2775 
2776     // ------------------------------ Opaque --------------------------------------
2777 
2778     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2779     @IntrinsicCandidate
2780     public final Object getReferenceOpaque(Object o, long offset) {
2781         return getReferenceVolatile(o, offset);
2782     }
2783 
2784     @ForceInline
2785     public final <V> Object getFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType) {
2786         // this is stronger than opaque semantics
2787         return getFlatValueAcquire(o, offset, layout, valueType);
2788     }
2789 
2790     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2791     @IntrinsicCandidate
2792     public final boolean getBooleanOpaque(Object o, long offset) {
2793         return getBooleanVolatile(o, offset);
2794     }
2795 
2796     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2797     @IntrinsicCandidate
2798     public final byte getByteOpaque(Object o, long offset) {
2799         return getByteVolatile(o, offset);
2800     }
2801 
2802     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2803     @IntrinsicCandidate
2804     public final short getShortOpaque(Object o, long offset) {
2805         return getShortVolatile(o, offset);
2806     }
2807 
2808     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2809     @IntrinsicCandidate
2810     public final char getCharOpaque(Object o, long offset) {
2811         return getCharVolatile(o, offset);
2812     }
2813 
2814     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2815     @IntrinsicCandidate
2816     public final int getIntOpaque(Object o, long offset) {
2817         return getIntVolatile(o, offset);
2818     }
2819 
2820     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2821     @IntrinsicCandidate
2822     public final float getFloatOpaque(Object o, long offset) {
2823         return getFloatVolatile(o, offset);
2824     }
2825 
2826     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2827     @IntrinsicCandidate
2828     public final long getLongOpaque(Object o, long offset) {
2829         return getLongVolatile(o, offset);
2830     }
2831 
2832     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2833     @IntrinsicCandidate
2834     public final double getDoubleOpaque(Object o, long offset) {
2835         return getDoubleVolatile(o, offset);
2836     }
2837 
2838     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2839     @IntrinsicCandidate
2840     public final void putReferenceOpaque(Object o, long offset, Object x) {
2841         putReferenceVolatile(o, offset, x);
2842     }
2843 
2844     @ForceInline
2845     public final <V> void putFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType, V x) {
2846         // this is stronger than opaque semantics
2847         putFlatValueRelease(o, offset, layout, valueType, x);
2848     }
2849 
2850     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2851     @IntrinsicCandidate
2852     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2853         putBooleanVolatile(o, offset, x);
2854     }
2855 
2856     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2857     @IntrinsicCandidate
2858     public final void putByteOpaque(Object o, long offset, byte x) {
2859         putByteVolatile(o, offset, x);
2860     }
2861 
2862     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2863     @IntrinsicCandidate
2864     public final void putShortOpaque(Object o, long offset, short x) {
2865         putShortVolatile(o, offset, x);
2866     }
2867 
2868     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2869     @IntrinsicCandidate
2870     public final void putCharOpaque(Object o, long offset, char x) {
2871         putCharVolatile(o, offset, x);
2872     }
2873 
2874     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2875     @IntrinsicCandidate
2876     public final void putIntOpaque(Object o, long offset, int x) {
2877         putIntVolatile(o, offset, x);
2878     }
2879 
2880     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2881     @IntrinsicCandidate
2882     public final void putFloatOpaque(Object o, long offset, float x) {
2883         putFloatVolatile(o, offset, x);
2884     }
2885 
2886     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2887     @IntrinsicCandidate
2888     public final void putLongOpaque(Object o, long offset, long x) {
2889         putLongVolatile(o, offset, x);
2890     }
2891 
2892     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2893     @IntrinsicCandidate
2894     public final void putDoubleOpaque(Object o, long offset, double x) {
2895         putDoubleVolatile(o, offset, x);
2896     }
2897 
2898     @ForceInline
2899     private boolean compareAndSetFlatValueAsBytes(Object o, long offset, int layout, Class<?> valueType, Object expected, Object x) {
2900         // We turn the payload of an atomic value into a numeric value (of suitable type)
2901         // by storing the value into an array element (of matching layout) and by reading
2902         // back the array element as an integral value. After which we can implement the CAS
2903         // as a plain numeric CAS. Note: this only works if the payload contains no oops
2904         // (see VarHandles::isAtomicFlat).
2905         Object[] expectedArray = newSpecialArray(valueType, 1, layout);
2906         Object xArray = newSpecialArray(valueType, 1, layout);
2907         long base = arrayBaseOffset(expectedArray);
2908         int scale = arrayIndexScale(expectedArray);
2909         putFlatValue(expectedArray, base, layout, valueType, expected);
2910         putFlatValue(xArray, base, layout, valueType, x);
2911         switch (scale) {
2912             case 1: {
2913                 byte expectedByte = getByte(expectedArray, base);
2914                 byte xByte = getByte(xArray, base);
2915                 return compareAndSetByte(o, offset, expectedByte, xByte);
2916             }
2917             case 2: {
2918                 short expectedShort = getShort(expectedArray, base);
2919                 short xShort = getShort(xArray, base);
2920                 return compareAndSetShort(o, offset, expectedShort, xShort);
2921             }
2922             case 4: {
2923                 int expectedInt = getInt(expectedArray, base);
2924                 int xInt = getInt(xArray, base);
2925                 return compareAndSetInt(o, offset, expectedInt, xInt);
2926             }
2927             case 8: {
2928                 long expectedLong = getLong(expectedArray, base);
2929                 long xLong = getLong(xArray, base);
2930                 return compareAndSetLong(o, offset, expectedLong, xLong);
2931             }
2932             default: {
2933                 throw new UnsupportedOperationException();
2934             }
2935         }
2936     }
2937 
2938     /**
2939      * Unblocks the given thread blocked on {@code park}, or, if it is
2940      * not blocked, causes the subsequent call to {@code park} not to
2941      * block.  Note: this operation is "unsafe" solely because the
2942      * caller must somehow ensure that the thread has not been
2943      * destroyed. Nothing special is usually required to ensure this
2944      * when called from Java (in which there will ordinarily be a live
2945      * reference to the thread) but this is not nearly-automatically
2946      * so when calling from native code.
2947      *
2948      * @param thread the thread to unpark.
2949      */
2950     @IntrinsicCandidate
2951     public native void unpark(Object thread);
2952 
2953     /**
2954      * Blocks current thread, returning when a balancing
2955      * {@code unpark} occurs, or a balancing {@code unpark} has
2956      * already occurred, or the thread is interrupted, or, if not
2957      * absolute and time is not zero, the given time nanoseconds have
2958      * elapsed, or if absolute, the given deadline in milliseconds
2959      * since Epoch has passed, or spuriously (i.e., returning for no
2960      * "reason"). Note: This operation is in the Unsafe class only
2961      * because {@code unpark} is, so it would be strange to place it
2962      * elsewhere.
2963      */
2964     @IntrinsicCandidate
2965     public native void park(boolean isAbsolute, long time);
2966 
2967     /**
2968      * Gets the load average in the system run queue assigned
2969      * to the available processors averaged over various periods of time.
2970      * This method retrieves the given {@code nelem} samples and
2971      * assigns to the elements of the given {@code loadavg} array.
2972      * The system imposes a maximum of 3 samples, representing
2973      * averages over the last 1,  5,  and  15 minutes, respectively.
2974      *
2975      * @param loadavg an array of double of size nelems
2976      * @param nelems the number of samples to be retrieved and
2977      *        must be 1 to 3.
2978      *
2979      * @return the number of samples actually retrieved; or -1
2980      *         if the load average is unobtainable.
2981      */
2982     public int getLoadAverage(double[] loadavg, int nelems) {
2983         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2984             throw new ArrayIndexOutOfBoundsException();
2985         }
2986 
2987         return getLoadAverage0(loadavg, nelems);
2988     }
2989 
2990     // The following contain CAS-based Java implementations used on
2991     // platforms not supporting native instructions
2992 
2993     /**
2994      * Atomically adds the given value to the current value of a field
2995      * or array element within the given object {@code o}
2996      * at the given {@code offset}.
2997      *
2998      * @param o object/array to update the field/element in
2999      * @param offset field/element offset
3000      * @param delta the value to add
3001      * @return the previous value
3002      * @since 1.8
3003      */
3004     @IntrinsicCandidate
3005     public final int getAndAddInt(Object o, long offset, int delta) {
3006         int v;
3007         do {
3008             v = getIntVolatile(o, offset);
3009         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
3010         return v;
3011     }
3012 
3013     @ForceInline
3014     public final int getAndAddIntRelease(Object o, long offset, int delta) {
3015         int v;
3016         do {
3017             v = getInt(o, offset);
3018         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
3019         return v;
3020     }
3021 
3022     @ForceInline
3023     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
3024         int v;
3025         do {
3026             v = getIntAcquire(o, offset);
3027         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
3028         return v;
3029     }
3030 
3031     /**
3032      * Atomically adds the given value to the current value of a field
3033      * or array element within the given object {@code o}
3034      * at the given {@code offset}.
3035      *
3036      * @param o object/array to update the field/element in
3037      * @param offset field/element offset
3038      * @param delta the value to add
3039      * @return the previous value
3040      * @since 1.8
3041      */
3042     @IntrinsicCandidate
3043     public final long getAndAddLong(Object o, long offset, long delta) {
3044         long v;
3045         do {
3046             v = getLongVolatile(o, offset);
3047         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
3048         return v;
3049     }
3050 
3051     @ForceInline
3052     public final long getAndAddLongRelease(Object o, long offset, long delta) {
3053         long v;
3054         do {
3055             v = getLong(o, offset);
3056         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
3057         return v;
3058     }
3059 
3060     @ForceInline
3061     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
3062         long v;
3063         do {
3064             v = getLongAcquire(o, offset);
3065         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
3066         return v;
3067     }
3068 
3069     @IntrinsicCandidate
3070     public final byte getAndAddByte(Object o, long offset, byte delta) {
3071         byte v;
3072         do {
3073             v = getByteVolatile(o, offset);
3074         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
3075         return v;
3076     }
3077 
3078     @ForceInline
3079     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
3080         byte v;
3081         do {
3082             v = getByte(o, offset);
3083         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
3084         return v;
3085     }
3086 
3087     @ForceInline
3088     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
3089         byte v;
3090         do {
3091             v = getByteAcquire(o, offset);
3092         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
3093         return v;
3094     }
3095 
3096     @IntrinsicCandidate
3097     public final short getAndAddShort(Object o, long offset, short delta) {
3098         short v;
3099         do {
3100             v = getShortVolatile(o, offset);
3101         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
3102         return v;
3103     }
3104 
3105     @ForceInline
3106     public final short getAndAddShortRelease(Object o, long offset, short delta) {
3107         short v;
3108         do {
3109             v = getShort(o, offset);
3110         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
3111         return v;
3112     }
3113 
3114     @ForceInline
3115     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
3116         short v;
3117         do {
3118             v = getShortAcquire(o, offset);
3119         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
3120         return v;
3121     }
3122 
3123     @ForceInline
3124     public final char getAndAddChar(Object o, long offset, char delta) {
3125         return (char) getAndAddShort(o, offset, (short) delta);
3126     }
3127 
3128     @ForceInline
3129     public final char getAndAddCharRelease(Object o, long offset, char delta) {
3130         return (char) getAndAddShortRelease(o, offset, (short) delta);
3131     }
3132 
3133     @ForceInline
3134     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
3135         return (char) getAndAddShortAcquire(o, offset, (short) delta);
3136     }
3137 
3138     @ForceInline
3139     public final float getAndAddFloat(Object o, long offset, float delta) {
3140         int expectedBits;
3141         float v;
3142         do {
3143             // Load and CAS with the raw bits to avoid issues with NaNs and
3144             // possible bit conversion from signaling NaNs to quiet NaNs that
3145             // may result in the loop not terminating.
3146             expectedBits = getIntVolatile(o, offset);
3147             v = Float.intBitsToFloat(expectedBits);
3148         } while (!weakCompareAndSetInt(o, offset,
3149                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
3150         return v;
3151     }
3152 
3153     @ForceInline
3154     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
3155         int expectedBits;
3156         float v;
3157         do {
3158             // Load and CAS with the raw bits to avoid issues with NaNs and
3159             // possible bit conversion from signaling NaNs to quiet NaNs that
3160             // may result in the loop not terminating.
3161             expectedBits = getInt(o, offset);
3162             v = Float.intBitsToFloat(expectedBits);
3163         } while (!weakCompareAndSetIntRelease(o, offset,
3164                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3165         return v;
3166     }
3167 
3168     @ForceInline
3169     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
3170         int expectedBits;
3171         float v;
3172         do {
3173             // Load and CAS with the raw bits to avoid issues with NaNs and
3174             // possible bit conversion from signaling NaNs to quiet NaNs that
3175             // may result in the loop not terminating.
3176             expectedBits = getIntAcquire(o, offset);
3177             v = Float.intBitsToFloat(expectedBits);
3178         } while (!weakCompareAndSetIntAcquire(o, offset,
3179                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3180         return v;
3181     }
3182 
3183     @ForceInline
3184     public final double getAndAddDouble(Object o, long offset, double delta) {
3185         long expectedBits;
3186         double v;
3187         do {
3188             // Load and CAS with the raw bits to avoid issues with NaNs and
3189             // possible bit conversion from signaling NaNs to quiet NaNs that
3190             // may result in the loop not terminating.
3191             expectedBits = getLongVolatile(o, offset);
3192             v = Double.longBitsToDouble(expectedBits);
3193         } while (!weakCompareAndSetLong(o, offset,
3194                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
3195         return v;
3196     }
3197 
3198     @ForceInline
3199     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
3200         long expectedBits;
3201         double v;
3202         do {
3203             // Load and CAS with the raw bits to avoid issues with NaNs and
3204             // possible bit conversion from signaling NaNs to quiet NaNs that
3205             // may result in the loop not terminating.
3206             expectedBits = getLong(o, offset);
3207             v = Double.longBitsToDouble(expectedBits);
3208         } while (!weakCompareAndSetLongRelease(o, offset,
3209                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3210         return v;
3211     }
3212 
3213     @ForceInline
3214     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
3215         long expectedBits;
3216         double v;
3217         do {
3218             // Load and CAS with the raw bits to avoid issues with NaNs and
3219             // possible bit conversion from signaling NaNs to quiet NaNs that
3220             // may result in the loop not terminating.
3221             expectedBits = getLongAcquire(o, offset);
3222             v = Double.longBitsToDouble(expectedBits);
3223         } while (!weakCompareAndSetLongAcquire(o, offset,
3224                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3225         return v;
3226     }
3227 
3228     /**
3229      * Atomically exchanges the given value with the current value of
3230      * a field or array element within the given object {@code o}
3231      * at the given {@code offset}.
3232      *
3233      * @param o object/array to update the field/element in
3234      * @param offset field/element offset
3235      * @param newValue new value
3236      * @return the previous value
3237      * @since 1.8
3238      */
3239     @IntrinsicCandidate
3240     public final int getAndSetInt(Object o, long offset, int newValue) {
3241         int v;
3242         do {
3243             v = getIntVolatile(o, offset);
3244         } while (!weakCompareAndSetInt(o, offset, v, newValue));
3245         return v;
3246     }
3247 
3248     @ForceInline
3249     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
3250         int v;
3251         do {
3252             v = getInt(o, offset);
3253         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
3254         return v;
3255     }
3256 
3257     @ForceInline
3258     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
3259         int v;
3260         do {
3261             v = getIntAcquire(o, offset);
3262         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
3263         return v;
3264     }
3265 
3266     /**
3267      * Atomically exchanges the given value with the current value of
3268      * a field or array element within the given object {@code o}
3269      * at the given {@code offset}.
3270      *
3271      * @param o object/array to update the field/element in
3272      * @param offset field/element offset
3273      * @param newValue new value
3274      * @return the previous value
3275      * @since 1.8
3276      */
3277     @IntrinsicCandidate
3278     public final long getAndSetLong(Object o, long offset, long newValue) {
3279         long v;
3280         do {
3281             v = getLongVolatile(o, offset);
3282         } while (!weakCompareAndSetLong(o, offset, v, newValue));
3283         return v;
3284     }
3285 
3286     @ForceInline
3287     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
3288         long v;
3289         do {
3290             v = getLong(o, offset);
3291         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
3292         return v;
3293     }
3294 
3295     @ForceInline
3296     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
3297         long v;
3298         do {
3299             v = getLongAcquire(o, offset);
3300         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
3301         return v;
3302     }
3303 
3304     /**
3305      * Atomically exchanges the given reference value with the current
3306      * reference value of a field or array element within the given
3307      * object {@code o} at the given {@code offset}.
3308      *
3309      * @param o object/array to update the field/element in
3310      * @param offset field/element offset
3311      * @param newValue new value
3312      * @return the previous value
3313      * @since 1.8
3314      */
3315     @IntrinsicCandidate
3316     public final Object getAndSetReference(Object o, long offset, Object newValue) {
3317         Object v;
3318         do {
3319             v = getReferenceVolatile(o, offset);
3320         } while (!weakCompareAndSetReference(o, offset, v, newValue));
3321         return v;
3322     }
3323 
3324     @ForceInline
3325     public final Object getAndSetReference(Object o, long offset, Class<?> valueType, Object newValue) {
3326         Object v;
3327         do {
3328             v = getReferenceVolatile(o, offset);
3329         } while (!compareAndSetReference(o, offset, valueType, v, newValue));
3330         return v;
3331     }
3332 
3333     @ForceInline
3334     public Object getAndSetFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, Object newValue) {
3335         Object v;
3336         do {
3337             v = getFlatValueVolatile(o, offset, layoutKind, valueType);
3338         } while (!compareAndSetFlatValue(o, offset, layoutKind, valueType, v, newValue));
3339         return v;
3340     }
3341 
3342     @ForceInline
3343     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
3344         Object v;
3345         do {
3346             v = getReference(o, offset);
3347         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
3348         return v;
3349     }
3350 
3351     @ForceInline
3352     public final Object getAndSetReferenceRelease(Object o, long offset, Class<?> valueType, Object newValue) {
3353         return getAndSetReference(o, offset, valueType, newValue);
3354     }
3355 
3356     @ForceInline
3357     public Object getAndSetFlatValueRelease(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3358         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3359     }
3360 
3361     @ForceInline
3362     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
3363         Object v;
3364         do {
3365             v = getReferenceAcquire(o, offset);
3366         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
3367         return v;
3368     }
3369 
3370     @ForceInline
3371     public final Object getAndSetReferenceAcquire(Object o, long offset, Class<?> valueType, Object newValue) {
3372         return getAndSetReference(o, offset, valueType, newValue);
3373     }
3374 
3375     @ForceInline
3376     public Object getAndSetFlatValueAcquire(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3377         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3378     }
3379 
3380     @IntrinsicCandidate
3381     public final byte getAndSetByte(Object o, long offset, byte newValue) {
3382         byte v;
3383         do {
3384             v = getByteVolatile(o, offset);
3385         } while (!weakCompareAndSetByte(o, offset, v, newValue));
3386         return v;
3387     }
3388 
3389     @ForceInline
3390     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
3391         byte v;
3392         do {
3393             v = getByte(o, offset);
3394         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
3395         return v;
3396     }
3397 
3398     @ForceInline
3399     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
3400         byte v;
3401         do {
3402             v = getByteAcquire(o, offset);
3403         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
3404         return v;
3405     }
3406 
3407     @ForceInline
3408     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
3409         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
3410     }
3411 
3412     @ForceInline
3413     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
3414         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
3415     }
3416 
3417     @ForceInline
3418     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
3419         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
3420     }
3421 
3422     @IntrinsicCandidate
3423     public final short getAndSetShort(Object o, long offset, short newValue) {
3424         short v;
3425         do {
3426             v = getShortVolatile(o, offset);
3427         } while (!weakCompareAndSetShort(o, offset, v, newValue));
3428         return v;
3429     }
3430 
3431     @ForceInline
3432     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
3433         short v;
3434         do {
3435             v = getShort(o, offset);
3436         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
3437         return v;
3438     }
3439 
3440     @ForceInline
3441     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
3442         short v;
3443         do {
3444             v = getShortAcquire(o, offset);
3445         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
3446         return v;
3447     }
3448 
3449     @ForceInline
3450     public final char getAndSetChar(Object o, long offset, char newValue) {
3451         return s2c(getAndSetShort(o, offset, c2s(newValue)));
3452     }
3453 
3454     @ForceInline
3455     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
3456         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
3457     }
3458 
3459     @ForceInline
3460     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
3461         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
3462     }
3463 
3464     @ForceInline
3465     public final float getAndSetFloat(Object o, long offset, float newValue) {
3466         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
3467         return Float.intBitsToFloat(v);
3468     }
3469 
3470     @ForceInline
3471     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
3472         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
3473         return Float.intBitsToFloat(v);
3474     }
3475 
3476     @ForceInline
3477     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
3478         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
3479         return Float.intBitsToFloat(v);
3480     }
3481 
3482     @ForceInline
3483     public final double getAndSetDouble(Object o, long offset, double newValue) {
3484         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
3485         return Double.longBitsToDouble(v);
3486     }
3487 
3488     @ForceInline
3489     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
3490         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
3491         return Double.longBitsToDouble(v);
3492     }
3493 
3494     @ForceInline
3495     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
3496         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
3497         return Double.longBitsToDouble(v);
3498     }
3499 
3500 
3501     // The following contain CAS-based Java implementations used on
3502     // platforms not supporting native instructions
3503 
3504     @ForceInline
3505     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
3506         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
3507     }
3508 
3509     @ForceInline
3510     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
3511         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
3512     }
3513 
3514     @ForceInline
3515     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
3516         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
3517     }
3518 
3519     @ForceInline
3520     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
3521         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
3522     }
3523 
3524     @ForceInline
3525     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
3526         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
3527     }
3528 
3529     @ForceInline
3530     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
3531         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
3532     }
3533 
3534     @ForceInline
3535     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
3536         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
3537     }
3538 
3539     @ForceInline
3540     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
3541         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
3542     }
3543 
3544     @ForceInline
3545     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
3546         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
3547     }
3548 
3549 
3550     @ForceInline
3551     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
3552         byte current;
3553         do {
3554             current = getByteVolatile(o, offset);
3555         } while (!weakCompareAndSetByte(o, offset,
3556                                                   current, (byte) (current | mask)));
3557         return current;
3558     }
3559 
3560     @ForceInline
3561     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
3562         byte current;
3563         do {
3564             current = getByte(o, offset);
3565         } while (!weakCompareAndSetByteRelease(o, offset,
3566                                                  current, (byte) (current | mask)));
3567         return current;
3568     }
3569 
3570     @ForceInline
3571     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
3572         byte current;
3573         do {
3574             // Plain read, the value is a hint, the acquire CAS does the work
3575             current = getByte(o, offset);
3576         } while (!weakCompareAndSetByteAcquire(o, offset,
3577                                                  current, (byte) (current | mask)));
3578         return current;
3579     }
3580 
3581     @ForceInline
3582     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3583         byte current;
3584         do {
3585             current = getByteVolatile(o, offset);
3586         } while (!weakCompareAndSetByte(o, offset,
3587                                                   current, (byte) (current & mask)));
3588         return current;
3589     }
3590 
3591     @ForceInline
3592     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3593         byte current;
3594         do {
3595             current = getByte(o, offset);
3596         } while (!weakCompareAndSetByteRelease(o, offset,
3597                                                  current, (byte) (current & mask)));
3598         return current;
3599     }
3600 
3601     @ForceInline
3602     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3603         byte current;
3604         do {
3605             // Plain read, the value is a hint, the acquire CAS does the work
3606             current = getByte(o, offset);
3607         } while (!weakCompareAndSetByteAcquire(o, offset,
3608                                                  current, (byte) (current & mask)));
3609         return current;
3610     }
3611 
3612     @ForceInline
3613     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3614         byte current;
3615         do {
3616             current = getByteVolatile(o, offset);
3617         } while (!weakCompareAndSetByte(o, offset,
3618                                                   current, (byte) (current ^ mask)));
3619         return current;
3620     }
3621 
3622     @ForceInline
3623     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3624         byte current;
3625         do {
3626             current = getByte(o, offset);
3627         } while (!weakCompareAndSetByteRelease(o, offset,
3628                                                  current, (byte) (current ^ mask)));
3629         return current;
3630     }
3631 
3632     @ForceInline
3633     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3634         byte current;
3635         do {
3636             // Plain read, the value is a hint, the acquire CAS does the work
3637             current = getByte(o, offset);
3638         } while (!weakCompareAndSetByteAcquire(o, offset,
3639                                                  current, (byte) (current ^ mask)));
3640         return current;
3641     }
3642 
3643 
3644     @ForceInline
3645     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3646         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3647     }
3648 
3649     @ForceInline
3650     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3651         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3652     }
3653 
3654     @ForceInline
3655     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3656         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3657     }
3658 
3659     @ForceInline
3660     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3661         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3662     }
3663 
3664     @ForceInline
3665     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3666         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3667     }
3668 
3669     @ForceInline
3670     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3671         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3672     }
3673 
3674     @ForceInline
3675     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3676         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3677     }
3678 
3679     @ForceInline
3680     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3681         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3682     }
3683 
3684     @ForceInline
3685     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3686         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3687     }
3688 
3689 
3690     @ForceInline
3691     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3692         short current;
3693         do {
3694             current = getShortVolatile(o, offset);
3695         } while (!weakCompareAndSetShort(o, offset,
3696                                                 current, (short) (current | mask)));
3697         return current;
3698     }
3699 
3700     @ForceInline
3701     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3702         short current;
3703         do {
3704             current = getShort(o, offset);
3705         } while (!weakCompareAndSetShortRelease(o, offset,
3706                                                current, (short) (current | mask)));
3707         return current;
3708     }
3709 
3710     @ForceInline
3711     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3712         short current;
3713         do {
3714             // Plain read, the value is a hint, the acquire CAS does the work
3715             current = getShort(o, offset);
3716         } while (!weakCompareAndSetShortAcquire(o, offset,
3717                                                current, (short) (current | mask)));
3718         return current;
3719     }
3720 
3721     @ForceInline
3722     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3723         short current;
3724         do {
3725             current = getShortVolatile(o, offset);
3726         } while (!weakCompareAndSetShort(o, offset,
3727                                                 current, (short) (current & mask)));
3728         return current;
3729     }
3730 
3731     @ForceInline
3732     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3733         short current;
3734         do {
3735             current = getShort(o, offset);
3736         } while (!weakCompareAndSetShortRelease(o, offset,
3737                                                current, (short) (current & mask)));
3738         return current;
3739     }
3740 
3741     @ForceInline
3742     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3743         short current;
3744         do {
3745             // Plain read, the value is a hint, the acquire CAS does the work
3746             current = getShort(o, offset);
3747         } while (!weakCompareAndSetShortAcquire(o, offset,
3748                                                current, (short) (current & mask)));
3749         return current;
3750     }
3751 
3752     @ForceInline
3753     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3754         short current;
3755         do {
3756             current = getShortVolatile(o, offset);
3757         } while (!weakCompareAndSetShort(o, offset,
3758                                                 current, (short) (current ^ mask)));
3759         return current;
3760     }
3761 
3762     @ForceInline
3763     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3764         short current;
3765         do {
3766             current = getShort(o, offset);
3767         } while (!weakCompareAndSetShortRelease(o, offset,
3768                                                current, (short) (current ^ mask)));
3769         return current;
3770     }
3771 
3772     @ForceInline
3773     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3774         short current;
3775         do {
3776             // Plain read, the value is a hint, the acquire CAS does the work
3777             current = getShort(o, offset);
3778         } while (!weakCompareAndSetShortAcquire(o, offset,
3779                                                current, (short) (current ^ mask)));
3780         return current;
3781     }
3782 
3783 
3784     @ForceInline
3785     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3786         int current;
3787         do {
3788             current = getIntVolatile(o, offset);
3789         } while (!weakCompareAndSetInt(o, offset,
3790                                                 current, current | mask));
3791         return current;
3792     }
3793 
3794     @ForceInline
3795     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3796         int current;
3797         do {
3798             current = getInt(o, offset);
3799         } while (!weakCompareAndSetIntRelease(o, offset,
3800                                                current, current | mask));
3801         return current;
3802     }
3803 
3804     @ForceInline
3805     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3806         int current;
3807         do {
3808             // Plain read, the value is a hint, the acquire CAS does the work
3809             current = getInt(o, offset);
3810         } while (!weakCompareAndSetIntAcquire(o, offset,
3811                                                current, current | mask));
3812         return current;
3813     }
3814 
3815     /**
3816      * Atomically replaces the current value of a field or array element within
3817      * the given object with the result of bitwise AND between the current value
3818      * and mask.
3819      *
3820      * @param o object/array to update the field/element in
3821      * @param offset field/element offset
3822      * @param mask the mask value
3823      * @return the previous value
3824      * @since 9
3825      */
3826     @ForceInline
3827     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3828         int current;
3829         do {
3830             current = getIntVolatile(o, offset);
3831         } while (!weakCompareAndSetInt(o, offset,
3832                                                 current, current & mask));
3833         return current;
3834     }
3835 
3836     @ForceInline
3837     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3838         int current;
3839         do {
3840             current = getInt(o, offset);
3841         } while (!weakCompareAndSetIntRelease(o, offset,
3842                                                current, current & mask));
3843         return current;
3844     }
3845 
3846     @ForceInline
3847     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3848         int current;
3849         do {
3850             // Plain read, the value is a hint, the acquire CAS does the work
3851             current = getInt(o, offset);
3852         } while (!weakCompareAndSetIntAcquire(o, offset,
3853                                                current, current & mask));
3854         return current;
3855     }
3856 
3857     @ForceInline
3858     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3859         int current;
3860         do {
3861             current = getIntVolatile(o, offset);
3862         } while (!weakCompareAndSetInt(o, offset,
3863                                                 current, current ^ mask));
3864         return current;
3865     }
3866 
3867     @ForceInline
3868     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3869         int current;
3870         do {
3871             current = getInt(o, offset);
3872         } while (!weakCompareAndSetIntRelease(o, offset,
3873                                                current, current ^ mask));
3874         return current;
3875     }
3876 
3877     @ForceInline
3878     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3879         int current;
3880         do {
3881             // Plain read, the value is a hint, the acquire CAS does the work
3882             current = getInt(o, offset);
3883         } while (!weakCompareAndSetIntAcquire(o, offset,
3884                                                current, current ^ mask));
3885         return current;
3886     }
3887 
3888 
3889     @ForceInline
3890     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3891         long current;
3892         do {
3893             current = getLongVolatile(o, offset);
3894         } while (!weakCompareAndSetLong(o, offset,
3895                                                 current, current | mask));
3896         return current;
3897     }
3898 
3899     @ForceInline
3900     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3901         long current;
3902         do {
3903             current = getLong(o, offset);
3904         } while (!weakCompareAndSetLongRelease(o, offset,
3905                                                current, current | mask));
3906         return current;
3907     }
3908 
3909     @ForceInline
3910     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3911         long current;
3912         do {
3913             // Plain read, the value is a hint, the acquire CAS does the work
3914             current = getLong(o, offset);
3915         } while (!weakCompareAndSetLongAcquire(o, offset,
3916                                                current, current | mask));
3917         return current;
3918     }
3919 
3920     @ForceInline
3921     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3922         long current;
3923         do {
3924             current = getLongVolatile(o, offset);
3925         } while (!weakCompareAndSetLong(o, offset,
3926                                                 current, current & mask));
3927         return current;
3928     }
3929 
3930     @ForceInline
3931     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3932         long current;
3933         do {
3934             current = getLong(o, offset);
3935         } while (!weakCompareAndSetLongRelease(o, offset,
3936                                                current, current & mask));
3937         return current;
3938     }
3939 
3940     @ForceInline
3941     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3942         long current;
3943         do {
3944             // Plain read, the value is a hint, the acquire CAS does the work
3945             current = getLong(o, offset);
3946         } while (!weakCompareAndSetLongAcquire(o, offset,
3947                                                current, current & mask));
3948         return current;
3949     }
3950 
3951     @ForceInline
3952     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3953         long current;
3954         do {
3955             current = getLongVolatile(o, offset);
3956         } while (!weakCompareAndSetLong(o, offset,
3957                                                 current, current ^ mask));
3958         return current;
3959     }
3960 
3961     @ForceInline
3962     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3963         long current;
3964         do {
3965             current = getLong(o, offset);
3966         } while (!weakCompareAndSetLongRelease(o, offset,
3967                                                current, current ^ mask));
3968         return current;
3969     }
3970 
3971     @ForceInline
3972     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3973         long current;
3974         do {
3975             // Plain read, the value is a hint, the acquire CAS does the work
3976             current = getLong(o, offset);
3977         } while (!weakCompareAndSetLongAcquire(o, offset,
3978                                                current, current ^ mask));
3979         return current;
3980     }
3981 
3982 
3983 
3984     /**
3985      * Ensures that loads before the fence will not be reordered with loads and
3986      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3987      *
3988      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3989      * (an "acquire fence").
3990      *
3991      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3992      *
3993      * @since 1.8
3994      */
3995     @IntrinsicCandidate
3996     public final void loadFence() {
3997         // If loadFence intrinsic is not available, fall back to full fence.
3998         fullFence();
3999     }
4000 
4001     /**
4002      * Ensures that loads and stores before the fence will not be reordered with
4003      * stores after the fence; a "StoreStore plus LoadStore barrier".
4004      *
4005      * Corresponds to C11 atomic_thread_fence(memory_order_release)
4006      * (a "release fence").
4007      *
4008      * Provides a StoreStore barrier followed by a LoadStore barrier.
4009      *
4010      * @since 1.8
4011      */
4012     @IntrinsicCandidate
4013     public final void storeFence() {
4014         // If storeFence intrinsic is not available, fall back to full fence.
4015         fullFence();
4016     }
4017 
4018     /**
4019      * Ensures that loads and stores before the fence will not be reordered
4020      * with loads and stores after the fence.  Implies the effects of both
4021      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
4022      * barrier.
4023      *
4024      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
4025      * @since 1.8
4026      */
4027     @IntrinsicCandidate
4028     public native void fullFence();
4029 
4030     /**
4031      * Ensures that loads before the fence will not be reordered with
4032      * loads after the fence.
4033      *
4034      * @implNote
4035      * This method is operationally equivalent to {@link #loadFence()}.
4036      *
4037      * @since 9
4038      */
4039     public final void loadLoadFence() {
4040         loadFence();
4041     }
4042 
4043     /**
4044      * Ensures that stores before the fence will not be reordered with
4045      * stores after the fence.
4046      *
4047      * @since 9
4048      */
4049     @IntrinsicCandidate
4050     public final void storeStoreFence() {
4051         // If storeStoreFence intrinsic is not available, fall back to storeFence.
4052         storeFence();
4053     }
4054 
4055     /**
4056      * Throws IllegalAccessError; for use by the VM for access control
4057      * error support.
4058      * @since 1.8
4059      */
4060     private static void throwIllegalAccessError() {
4061         throw new IllegalAccessError();
4062     }
4063 
4064     /**
4065      * Throws NoSuchMethodError; for use by the VM for redefinition support.
4066      * @since 13
4067      */
4068     private static void throwNoSuchMethodError() {
4069         throw new NoSuchMethodError();
4070     }
4071 
4072     /**
4073      * @return Returns true if the native byte ordering of this
4074      * platform is big-endian, false if it is little-endian.
4075      */
4076     public final boolean isBigEndian() { return BIG_ENDIAN; }
4077 
4078     /**
4079      * @return Returns true if this platform is capable of performing
4080      * accesses at addresses which are not aligned for the type of the
4081      * primitive type being accessed, false otherwise.
4082      */
4083     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
4084 
4085     /**
4086      * Fetches a value at some byte offset into a given Java object.
4087      * More specifically, fetches a value within the given object
4088      * <code>o</code> at the given offset, or (if <code>o</code> is
4089      * null) from the memory address whose numerical value is the
4090      * given offset.  <p>
4091      *
4092      * The specification of this method is the same as {@link
4093      * #getLong(Object, long)} except that the offset does not need to
4094      * have been obtained from {@link #objectFieldOffset} on the
4095      * {@link java.lang.reflect.Field} of some Java field.  The value
4096      * in memory is raw data, and need not correspond to any Java
4097      * variable.  Unless <code>o</code> is null, the value accessed
4098      * must be entirely within the allocated object.  The endianness
4099      * of the value in memory is the endianness of the native platform.
4100      *
4101      * <p> The read will be atomic with respect to the largest power
4102      * of two that divides the GCD of the offset and the storage size.
4103      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
4104      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4105      * respectively.  There are no other guarantees of atomicity.
4106      * <p>
4107      * 8-byte atomicity is only guaranteed on platforms on which
4108      * support atomic accesses to longs.
4109      *
4110      * @param o Java heap object in which the value resides, if any, else
4111      *        null
4112      * @param offset The offset in bytes from the start of the object
4113      * @return the value fetched from the indicated object
4114      * @throws RuntimeException No defined exceptions are thrown, not even
4115      *         {@link NullPointerException}
4116      * @since 9
4117      */
4118     @IntrinsicCandidate
4119     public final long getLongUnaligned(Object o, long offset) {
4120         if ((offset & 7) == 0) {
4121             return getLong(o, offset);
4122         } else if ((offset & 3) == 0) {
4123             return makeLong(getInt(o, offset),
4124                             getInt(o, offset + 4));
4125         } else if ((offset & 1) == 0) {
4126             return makeLong(getShort(o, offset),
4127                             getShort(o, offset + 2),
4128                             getShort(o, offset + 4),
4129                             getShort(o, offset + 6));
4130         } else {
4131             return makeLong(getByte(o, offset),
4132                             getByte(o, offset + 1),
4133                             getByte(o, offset + 2),
4134                             getByte(o, offset + 3),
4135                             getByte(o, offset + 4),
4136                             getByte(o, offset + 5),
4137                             getByte(o, offset + 6),
4138                             getByte(o, offset + 7));
4139         }
4140     }
4141     /**
4142      * As {@link #getLongUnaligned(Object, long)} but with an
4143      * additional argument which specifies the endianness of the value
4144      * as stored in memory.
4145      *
4146      * @param o Java heap object in which the variable resides
4147      * @param offset The offset in bytes from the start of the object
4148      * @param bigEndian The endianness of the value
4149      * @return the value fetched from the indicated object
4150      * @since 9
4151      */
4152     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
4153         return convEndian(bigEndian, getLongUnaligned(o, offset));
4154     }
4155 
4156     /** @see #getLongUnaligned(Object, long) */
4157     @IntrinsicCandidate
4158     public final int getIntUnaligned(Object o, long offset) {
4159         if ((offset & 3) == 0) {
4160             return getInt(o, offset);
4161         } else if ((offset & 1) == 0) {
4162             return makeInt(getShort(o, offset),
4163                            getShort(o, offset + 2));
4164         } else {
4165             return makeInt(getByte(o, offset),
4166                            getByte(o, offset + 1),
4167                            getByte(o, offset + 2),
4168                            getByte(o, offset + 3));
4169         }
4170     }
4171     /** @see #getLongUnaligned(Object, long, boolean) */
4172     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
4173         return convEndian(bigEndian, getIntUnaligned(o, offset));
4174     }
4175 
4176     /** @see #getLongUnaligned(Object, long) */
4177     @IntrinsicCandidate
4178     public final short getShortUnaligned(Object o, long offset) {
4179         if ((offset & 1) == 0) {
4180             return getShort(o, offset);
4181         } else {
4182             return makeShort(getByte(o, offset),
4183                              getByte(o, offset + 1));
4184         }
4185     }
4186     /** @see #getLongUnaligned(Object, long, boolean) */
4187     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
4188         return convEndian(bigEndian, getShortUnaligned(o, offset));
4189     }
4190 
4191     /** @see #getLongUnaligned(Object, long) */
4192     @IntrinsicCandidate
4193     public final char getCharUnaligned(Object o, long offset) {
4194         if ((offset & 1) == 0) {
4195             return getChar(o, offset);
4196         } else {
4197             return (char)makeShort(getByte(o, offset),
4198                                    getByte(o, offset + 1));
4199         }
4200     }
4201 
4202     /** @see #getLongUnaligned(Object, long, boolean) */
4203     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
4204         return convEndian(bigEndian, getCharUnaligned(o, offset));
4205     }
4206 
4207     /**
4208      * Stores a value at some byte offset into a given Java object.
4209      * <p>
4210      * The specification of this method is the same as {@link
4211      * #getLong(Object, long)} except that the offset does not need to
4212      * have been obtained from {@link #objectFieldOffset} on the
4213      * {@link java.lang.reflect.Field} of some Java field.  The value
4214      * in memory is raw data, and need not correspond to any Java
4215      * variable.  The endianness of the value in memory is the
4216      * endianness of the native platform.
4217      * <p>
4218      * The write will be atomic with respect to the largest power of
4219      * two that divides the GCD of the offset and the storage size.
4220      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
4221      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4222      * respectively.  There are no other guarantees of atomicity.
4223      * <p>
4224      * 8-byte atomicity is only guaranteed on platforms on which
4225      * support atomic accesses to longs.
4226      *
4227      * @param o Java heap object in which the value resides, if any, else
4228      *        null
4229      * @param offset The offset in bytes from the start of the object
4230      * @param x the value to store
4231      * @throws RuntimeException No defined exceptions are thrown, not even
4232      *         {@link NullPointerException}
4233      * @since 9
4234      */
4235     @IntrinsicCandidate
4236     public final void putLongUnaligned(Object o, long offset, long x) {
4237         if ((offset & 7) == 0) {
4238             putLong(o, offset, x);
4239         } else if ((offset & 3) == 0) {
4240             putLongParts(o, offset,
4241                          (int)(x >> 0),
4242                          (int)(x >>> 32));
4243         } else if ((offset & 1) == 0) {
4244             putLongParts(o, offset,
4245                          (short)(x >>> 0),
4246                          (short)(x >>> 16),
4247                          (short)(x >>> 32),
4248                          (short)(x >>> 48));
4249         } else {
4250             putLongParts(o, offset,
4251                          (byte)(x >>> 0),
4252                          (byte)(x >>> 8),
4253                          (byte)(x >>> 16),
4254                          (byte)(x >>> 24),
4255                          (byte)(x >>> 32),
4256                          (byte)(x >>> 40),
4257                          (byte)(x >>> 48),
4258                          (byte)(x >>> 56));
4259         }
4260     }
4261 
4262     /**
4263      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
4264      * argument which specifies the endianness of the value as stored in memory.
4265      * @param o Java heap object in which the value resides
4266      * @param offset The offset in bytes from the start of the object
4267      * @param x the value to store
4268      * @param bigEndian The endianness of the value
4269      * @throws RuntimeException No defined exceptions are thrown, not even
4270      *         {@link NullPointerException}
4271      * @since 9
4272      */
4273     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
4274         putLongUnaligned(o, offset, convEndian(bigEndian, x));
4275     }
4276 
4277     /** @see #putLongUnaligned(Object, long, long) */
4278     @IntrinsicCandidate
4279     public final void putIntUnaligned(Object o, long offset, int x) {
4280         if ((offset & 3) == 0) {
4281             putInt(o, offset, x);
4282         } else if ((offset & 1) == 0) {
4283             putIntParts(o, offset,
4284                         (short)(x >> 0),
4285                         (short)(x >>> 16));
4286         } else {
4287             putIntParts(o, offset,
4288                         (byte)(x >>> 0),
4289                         (byte)(x >>> 8),
4290                         (byte)(x >>> 16),
4291                         (byte)(x >>> 24));
4292         }
4293     }
4294     /** @see #putLongUnaligned(Object, long, long, boolean) */
4295     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
4296         putIntUnaligned(o, offset, convEndian(bigEndian, x));
4297     }
4298 
4299     /** @see #putLongUnaligned(Object, long, long) */
4300     @IntrinsicCandidate
4301     public final void putShortUnaligned(Object o, long offset, short x) {
4302         if ((offset & 1) == 0) {
4303             putShort(o, offset, x);
4304         } else {
4305             putShortParts(o, offset,
4306                           (byte)(x >>> 0),
4307                           (byte)(x >>> 8));
4308         }
4309     }
4310     /** @see #putLongUnaligned(Object, long, long, boolean) */
4311     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
4312         putShortUnaligned(o, offset, convEndian(bigEndian, x));
4313     }
4314 
4315     /** @see #putLongUnaligned(Object, long, long) */
4316     @IntrinsicCandidate
4317     public final void putCharUnaligned(Object o, long offset, char x) {
4318         putShortUnaligned(o, offset, (short)x);
4319     }
4320     /** @see #putLongUnaligned(Object, long, long, boolean) */
4321     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
4322         putCharUnaligned(o, offset, convEndian(bigEndian, x));
4323     }
4324 
4325     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
4326 
4327     // These methods construct integers from bytes.  The byte ordering
4328     // is the native endianness of this platform.
4329     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4330         return ((toUnsignedLong(i0) << pickPos(56, 0))
4331               | (toUnsignedLong(i1) << pickPos(56, 8))
4332               | (toUnsignedLong(i2) << pickPos(56, 16))
4333               | (toUnsignedLong(i3) << pickPos(56, 24))
4334               | (toUnsignedLong(i4) << pickPos(56, 32))
4335               | (toUnsignedLong(i5) << pickPos(56, 40))
4336               | (toUnsignedLong(i6) << pickPos(56, 48))
4337               | (toUnsignedLong(i7) << pickPos(56, 56)));
4338     }
4339     private static long makeLong(short i0, short i1, short i2, short i3) {
4340         return ((toUnsignedLong(i0) << pickPos(48, 0))
4341               | (toUnsignedLong(i1) << pickPos(48, 16))
4342               | (toUnsignedLong(i2) << pickPos(48, 32))
4343               | (toUnsignedLong(i3) << pickPos(48, 48)));
4344     }
4345     private static long makeLong(int i0, int i1) {
4346         return (toUnsignedLong(i0) << pickPos(32, 0))
4347              | (toUnsignedLong(i1) << pickPos(32, 32));
4348     }
4349     private static int makeInt(short i0, short i1) {
4350         return (toUnsignedInt(i0) << pickPos(16, 0))
4351              | (toUnsignedInt(i1) << pickPos(16, 16));
4352     }
4353     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
4354         return ((toUnsignedInt(i0) << pickPos(24, 0))
4355               | (toUnsignedInt(i1) << pickPos(24, 8))
4356               | (toUnsignedInt(i2) << pickPos(24, 16))
4357               | (toUnsignedInt(i3) << pickPos(24, 24)));
4358     }
4359     private static short makeShort(byte i0, byte i1) {
4360         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
4361                      | (toUnsignedInt(i1) << pickPos(8, 8)));
4362     }
4363 
4364     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
4365     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
4366     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
4367 
4368     // These methods write integers to memory from smaller parts
4369     // provided by their caller.  The ordering in which these parts
4370     // are written is the native endianness of this platform.
4371     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4372         putByte(o, offset + 0, pick(i0, i7));
4373         putByte(o, offset + 1, pick(i1, i6));
4374         putByte(o, offset + 2, pick(i2, i5));
4375         putByte(o, offset + 3, pick(i3, i4));
4376         putByte(o, offset + 4, pick(i4, i3));
4377         putByte(o, offset + 5, pick(i5, i2));
4378         putByte(o, offset + 6, pick(i6, i1));
4379         putByte(o, offset + 7, pick(i7, i0));
4380     }
4381     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
4382         putShort(o, offset + 0, pick(i0, i3));
4383         putShort(o, offset + 2, pick(i1, i2));
4384         putShort(o, offset + 4, pick(i2, i1));
4385         putShort(o, offset + 6, pick(i3, i0));
4386     }
4387     private void putLongParts(Object o, long offset, int i0, int i1) {
4388         putInt(o, offset + 0, pick(i0, i1));
4389         putInt(o, offset + 4, pick(i1, i0));
4390     }
4391     private void putIntParts(Object o, long offset, short i0, short i1) {
4392         putShort(o, offset + 0, pick(i0, i1));
4393         putShort(o, offset + 2, pick(i1, i0));
4394     }
4395     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
4396         putByte(o, offset + 0, pick(i0, i3));
4397         putByte(o, offset + 1, pick(i1, i2));
4398         putByte(o, offset + 2, pick(i2, i1));
4399         putByte(o, offset + 3, pick(i3, i0));
4400     }
4401     private void putShortParts(Object o, long offset, byte i0, byte i1) {
4402         putByte(o, offset + 0, pick(i0, i1));
4403         putByte(o, offset + 1, pick(i1, i0));
4404     }
4405 
4406     // Zero-extend an integer
4407     private static int toUnsignedInt(byte n)    { return n & 0xff; }
4408     private static int toUnsignedInt(short n)   { return n & 0xffff; }
4409     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
4410     private static long toUnsignedLong(short n) { return n & 0xffffl; }
4411     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
4412 
4413     // Maybe byte-reverse an integer
4414     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
4415     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
4416     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
4417     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
4418 
4419 
4420 
4421     private native long allocateMemory0(long bytes);
4422     private native long reallocateMemory0(long address, long bytes);
4423     private native void freeMemory0(long address);
4424     @IntrinsicCandidate
4425     private native void setMemory0(Object o, long offset, long bytes, byte value);
4426     @IntrinsicCandidate
4427     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4428     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
4429     private native long objectFieldOffset0(Field f); // throws IAE
4430     private native long knownObjectFieldOffset0(Class<?> c, String name); // error code: -1 not found, -2 static
4431     private native long staticFieldOffset0(Field f); // throws IAE
4432     private native Object staticFieldBase0(Field f); // throws IAE
4433     private native boolean shouldBeInitialized0(Class<?> c);
4434     private native void ensureClassInitialized0(Class<?> c);
4435     private native void notifyStrictStaticAccess0(Class<?> c, long staticFieldOffset, boolean writing);
4436     private native int arrayBaseOffset0(Class<?> arrayClass); // public version returns long to promote correct arithmetic
4437     private native int arrayBaseOffset1(Object[] array);
4438     private native int arrayIndexScale0(Class<?> arrayClass);
4439     private native int arrayIndexScale1(Object[] array);
4440     private native long getObjectSize0(Object o);
4441     private native int getLoadAverage0(double[] loadavg, int nelems);
4442 
4443 
4444     /**
4445      * Invokes the given direct byte buffer's cleaner, if any.
4446      *
4447      * @param directBuffer a direct byte buffer
4448      * @throws NullPointerException     if {@code directBuffer} is null
4449      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
4450      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
4451      *                                  {@link java.nio.Buffer#duplicate duplicate}
4452      */
4453     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
4454         if (!directBuffer.isDirect())
4455             throw new IllegalArgumentException("buffer is non-direct");
4456 
4457         DirectBuffer db = (DirectBuffer) directBuffer;
4458         if (db.attachment() != null)
4459             throw new IllegalArgumentException("duplicate or slice");
4460 
4461         Cleaner cleaner = db.cleaner();
4462         if (cleaner != null) {
4463             cleaner.clean();
4464         }
4465     }
4466 }