1 /*
   2  * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.ref.Cleaner;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 import jdk.internal.vm.annotation.IntrinsicCandidate;
  31 import sun.nio.ch.DirectBuffer;
  32 
  33 import java.lang.reflect.Field;
  34 import java.security.ProtectionDomain;
  35 
  36 import static jdk.internal.misc.UnsafeConstants.*;
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * <em>Note:</em> It is the responsibility of the caller to make sure
  44  * arguments are checked before methods of this class are
  45  * called. While some rudimentary checks are performed on the input,
  46  * the checks are best effort and when performance is an overriding
  47  * priority, as when methods of this class are optimized by the
  48  * runtime compiler, some or all checks (if any) may be elided. Hence,
  49  * the caller must not rely on the checks and corresponding
  50  * exceptions!
  51  *
  52  * @author John R. Rose
  53  * @see #getUnsafe
  54  */
  55 
  56 public final class Unsafe {
  57 
  58     private static native void registerNatives();
  59     static {
  60         registerNatives();
  61     }
  62 
  63     private Unsafe() {}
  64 
  65     private static final Unsafe theUnsafe = new Unsafe();
  66 
  67     /**
  68      * Provides the caller with the capability of performing unsafe
  69      * operations.
  70      *
  71      * <p>The returned {@code Unsafe} object should be carefully guarded
  72      * by the caller, since it can be used to read and write data at arbitrary
  73      * memory addresses.  It must never be passed to untrusted code.
  74      *
  75      * <p>Most methods in this class are very low-level, and correspond to a
  76      * small number of hardware instructions (on typical machines).  Compilers
  77      * are encouraged to optimize these methods accordingly.
  78      *
  79      * <p>Here is a suggested idiom for using unsafe operations:
  80      *
  81      * <pre> {@code
  82      * class MyTrustedClass {
  83      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  84      *   ...
  85      *   private long myCountAddress = ...;
  86      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  87      * }}</pre>
  88      *
  89      * (It may assist compilers to make the local variable {@code final}.)
  90      */
  91     public static Unsafe getUnsafe() {
  92         return theUnsafe;
  93     }
  94 
  95     /// peek and poke operations
  96     /// (compilers should optimize these to memory ops)
  97 
  98     // These work on object fields in the Java heap.
  99     // They will not work on elements of packed arrays.
 100 
 101     /**
 102      * Fetches a value from a given Java variable.
 103      * More specifically, fetches a field or array element within the given
 104      * object {@code o} at the given offset, or (if {@code o} is null)
 105      * from the memory address whose numerical value is the given offset.
 106      * <p>
 107      * The results are undefined unless one of the following cases is true:
 108      * <ul>
 109      * <li>The offset was obtained from {@link #objectFieldOffset} on
 110      * the {@link java.lang.reflect.Field} of some Java field and the object
 111      * referred to by {@code o} is of a class compatible with that
 112      * field's class.
 113      *
 114      * <li>The offset and object reference {@code o} (either null or
 115      * non-null) were both obtained via {@link #staticFieldOffset}
 116      * and {@link #staticFieldBase} (respectively) from the
 117      * reflective {@link Field} representation of some Java field.
 118      *
 119      * <li>The object referred to by {@code o} is an array, and the offset
 120      * is an integer of the form {@code B+N*S}, where {@code N} is
 121      * a valid index into the array, and {@code B} and {@code S} are
 122      * the values obtained by {@link #arrayBaseOffset} and {@link
 123      * #arrayIndexScale} (respectively) from the array's class.  The value
 124      * referred to is the {@code N}<em>th</em> element of the array.
 125      *
 126      * </ul>
 127      * <p>
 128      * If one of the above cases is true, the call references a specific Java
 129      * variable (field or array element).  However, the results are undefined
 130      * if that variable is not in fact of the type returned by this method.
 131      * <p>
 132      * This method refers to a variable by means of two parameters, and so
 133      * it provides (in effect) a <em>double-register</em> addressing mode
 134      * for Java variables.  When the object reference is null, this method
 135      * uses its offset as an absolute address.  This is similar in operation
 136      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 137      * <em>single-register</em> addressing mode for non-Java variables.
 138      * However, because Java variables may have a different layout in memory
 139      * from non-Java variables, programmers should not assume that these
 140      * two addressing modes are ever equivalent.  Also, programmers should
 141      * remember that offsets from the double-register addressing mode cannot
 142      * be portably confused with longs used in the single-register addressing
 143      * mode.
 144      *
 145      * @param o Java heap object in which the variable resides, if any, else
 146      *        null
 147      * @param offset indication of where the variable resides in a Java heap
 148      *        object, if any, else a memory address locating the variable
 149      *        statically
 150      * @return the value fetched from the indicated Java variable
 151      * @throws RuntimeException No defined exceptions are thrown, not even
 152      *         {@link NullPointerException}
 153      */
 154     @IntrinsicCandidate
 155     public native int getInt(Object o, long offset);
 156 
 157     /**
 158      * Stores a value into a given Java variable.
 159      * <p>
 160      * The first two parameters are interpreted exactly as with
 161      * {@link #getInt(Object, long)} to refer to a specific
 162      * Java variable (field or array element).  The given value
 163      * is stored into that variable.
 164      * <p>
 165      * The variable must be of the same type as the method
 166      * parameter {@code x}.
 167      *
 168      * @param o Java heap object in which the variable resides, if any, else
 169      *        null
 170      * @param offset indication of where the variable resides in a Java heap
 171      *        object, if any, else a memory address locating the variable
 172      *        statically
 173      * @param x the value to store into the indicated Java variable
 174      * @throws RuntimeException No defined exceptions are thrown, not even
 175      *         {@link NullPointerException}
 176      */
 177     @IntrinsicCandidate
 178     public native void putInt(Object o, long offset, int x);
 179 
 180 
 181     /**
 182      * Returns true if the given field is flattened.
 183      */
 184     public boolean isFlatField(Field f) {
 185         if (f == null) {
 186             throw new NullPointerException();
 187         }
 188         return isFlatField0(f);
 189     }
 190 
 191     private native boolean isFlatField0(Object o);
 192 
 193     /**
 194      * Returns true if the given class is a flattened array.
 195      */
 196     @IntrinsicCandidate
 197     public native boolean isFlatArray(Class<?> arrayClass);
 198 
 199     /**
 200      * Fetches a reference value from a given Java variable.
 201      * This method can return a reference to either an object or value
 202      * or a null reference.
 203      *
 204      * @see #getInt(Object, long)
 205      */
 206     @IntrinsicCandidate
 207     public native Object getReference(Object o, long offset);
 208 
 209     /**
 210      * Stores a reference value into a given Java variable.
 211      * This method can store a reference to either an object or value
 212      * or a null reference.
 213      * <p>
 214      * Unless the reference {@code x} being stored is either null
 215      * or matches the field type, the results are undefined.
 216      * If the reference {@code o} is non-null, card marks or
 217      * other store barriers for that object (if the VM requires them)
 218      * are updated.
 219      * @see #putInt(Object, long, int)
 220      */
 221     @IntrinsicCandidate
 222     public native void putReference(Object o, long offset, Object x);
 223 
 224     /**
 225      * Fetches a value of type {@code <V>} from a given Java variable.
 226      * More specifically, fetches a field or array element within the given
 227      * {@code o} object at the given offset, or (if {@code o} is null)
 228      * from the memory address whose numerical value is the given offset.
 229      *
 230      * @param o Java heap object in which the variable resides, if any, else
 231      *        null
 232      * @param offset indication of where the variable resides in a Java heap
 233      *        object, if any, else a memory address locating the variable
 234      *        statically
 235      * @param valueType value type
 236      * @param <V> the type of a value
 237      * @return the value fetched from the indicated Java variable
 238      * @throws RuntimeException No defined exceptions are thrown, not even
 239      *         {@link NullPointerException}
 240      */
 241     @IntrinsicCandidate
 242     public native <V> V getValue(Object o, long offset, Class<?> valueType);
 243 
 244     /**
 245      * Stores the given value into a given Java variable.
 246      *
 247      * Unless the reference {@code o} being stored is either null
 248      * or matches the field type, the results are undefined.
 249      *
 250      * @param o Java heap object in which the variable resides, if any, else
 251      *        null
 252      * @param offset indication of where the variable resides in a Java heap
 253      *        object, if any, else a memory address locating the variable
 254      *        statically
 255      * @param valueType value type
 256      * @param v the value to store into the indicated Java variable
 257      * @param <V> the type of a value
 258      * @throws RuntimeException No defined exceptions are thrown, not even
 259      *         {@link NullPointerException}
 260      */
 261     @IntrinsicCandidate
 262     public native <V> void putValue(Object o, long offset, Class<?> valueType, V v);
 263 
 264     /**
 265      * Returns an uninitialized default instance of the given value class.
 266      */
 267     public native <V> V uninitializedDefaultValue(Class<?> type);
 268 
 269     /**
 270      * Returns an object instance with a private buffered value whose layout
 271      * and contents is exactly the given value instance.  The return object
 272      * is in the larval state that can be updated using the unsafe put operation.
 273      *
 274      * @param value a value instance
 275      * @param <V> the type of the given value instance
 276      */
 277     @IntrinsicCandidate
 278     public native <V> V makePrivateBuffer(V value);
 279 
 280     /**
 281      * Exits the larval state and returns a value instance.
 282      *
 283      * @param value a value instance
 284      * @param <V> the type of the given value instance
 285      */
 286     @IntrinsicCandidate
 287     public native <V> V finishPrivateBuffer(V value);
 288 
 289     /**
 290      * Returns the header size of the given value type.
 291      *
 292      * @param valueType value type
 293      * @return the header size of the value type
 294      */
 295     public native <V> long valueHeaderSize(Class<V> valueType);
 296 
 297     /** @see #getInt(Object, long) */
 298     @IntrinsicCandidate
 299     public native boolean getBoolean(Object o, long offset);
 300 
 301     /** @see #putInt(Object, long, int) */
 302     @IntrinsicCandidate
 303     public native void    putBoolean(Object o, long offset, boolean x);
 304 
 305     /** @see #getInt(Object, long) */
 306     @IntrinsicCandidate
 307     public native byte    getByte(Object o, long offset);
 308 
 309     /** @see #putInt(Object, long, int) */
 310     @IntrinsicCandidate
 311     public native void    putByte(Object o, long offset, byte x);
 312 
 313     /** @see #getInt(Object, long) */
 314     @IntrinsicCandidate
 315     public native short   getShort(Object o, long offset);
 316 
 317     /** @see #putInt(Object, long, int) */
 318     @IntrinsicCandidate
 319     public native void    putShort(Object o, long offset, short x);
 320 
 321     /** @see #getInt(Object, long) */
 322     @IntrinsicCandidate
 323     public native char    getChar(Object o, long offset);
 324 
 325     /** @see #putInt(Object, long, int) */
 326     @IntrinsicCandidate
 327     public native void    putChar(Object o, long offset, char x);
 328 
 329     /** @see #getInt(Object, long) */
 330     @IntrinsicCandidate
 331     public native long    getLong(Object o, long offset);
 332 
 333     /** @see #putInt(Object, long, int) */
 334     @IntrinsicCandidate
 335     public native void    putLong(Object o, long offset, long x);
 336 
 337     /** @see #getInt(Object, long) */
 338     @IntrinsicCandidate
 339     public native float   getFloat(Object o, long offset);
 340 
 341     /** @see #putInt(Object, long, int) */
 342     @IntrinsicCandidate
 343     public native void    putFloat(Object o, long offset, float x);
 344 
 345     /** @see #getInt(Object, long) */
 346     @IntrinsicCandidate
 347     public native double  getDouble(Object o, long offset);
 348 
 349     /** @see #putInt(Object, long, int) */
 350     @IntrinsicCandidate
 351     public native void    putDouble(Object o, long offset, double x);
 352 
 353     /**
 354      * Fetches a native pointer from a given memory address.  If the address is
 355      * zero, or does not point into a block obtained from {@link
 356      * #allocateMemory}, the results are undefined.
 357      *
 358      * <p>If the native pointer is less than 64 bits wide, it is extended as
 359      * an unsigned number to a Java long.  The pointer may be indexed by any
 360      * given byte offset, simply by adding that offset (as a simple integer) to
 361      * the long representing the pointer.  The number of bytes actually read
 362      * from the target address may be determined by consulting {@link
 363      * #addressSize}.
 364      *
 365      * @see #allocateMemory
 366      * @see #getInt(Object, long)
 367      */
 368     @ForceInline
 369     public long getAddress(Object o, long offset) {
 370         if (ADDRESS_SIZE == 4) {
 371             return Integer.toUnsignedLong(getInt(o, offset));
 372         } else {
 373             return getLong(o, offset);
 374         }
 375     }
 376 
 377     /**
 378      * Stores a native pointer into a given memory address.  If the address is
 379      * zero, or does not point into a block obtained from {@link
 380      * #allocateMemory}, the results are undefined.
 381      *
 382      * <p>The number of bytes actually written at the target address may be
 383      * determined by consulting {@link #addressSize}.
 384      *
 385      * @see #allocateMemory
 386      * @see #putInt(Object, long, int)
 387      */
 388     @ForceInline
 389     public void putAddress(Object o, long offset, long x) {
 390         if (ADDRESS_SIZE == 4) {
 391             putInt(o, offset, (int)x);
 392         } else {
 393             putLong(o, offset, x);
 394         }
 395     }
 396 
 397     // These read VM internal data.
 398 
 399     /**
 400      * Fetches an uncompressed reference value from a given native variable
 401      * ignoring the VM's compressed references mode.
 402      *
 403      * @param address a memory address locating the variable
 404      * @return the value fetched from the indicated native variable
 405      */
 406     public native Object getUncompressedObject(long address);
 407 
 408     // These work on values in the C heap.
 409 
 410     /**
 411      * Fetches a value from a given memory address.  If the address is zero, or
 412      * does not point into a block obtained from {@link #allocateMemory}, the
 413      * results are undefined.
 414      *
 415      * @see #allocateMemory
 416      */
 417     @ForceInline
 418     public byte getByte(long address) {
 419         return getByte(null, address);
 420     }
 421 
 422     /**
 423      * Stores a value into a given memory address.  If the address is zero, or
 424      * does not point into a block obtained from {@link #allocateMemory}, the
 425      * results are undefined.
 426      *
 427      * @see #getByte(long)
 428      */
 429     @ForceInline
 430     public void putByte(long address, byte x) {
 431         putByte(null, address, x);
 432     }
 433 
 434     /** @see #getByte(long) */
 435     @ForceInline
 436     public short getShort(long address) {
 437         return getShort(null, address);
 438     }
 439 
 440     /** @see #putByte(long, byte) */
 441     @ForceInline
 442     public void putShort(long address, short x) {
 443         putShort(null, address, x);
 444     }
 445 
 446     /** @see #getByte(long) */
 447     @ForceInline
 448     public char getChar(long address) {
 449         return getChar(null, address);
 450     }
 451 
 452     /** @see #putByte(long, byte) */
 453     @ForceInline
 454     public void putChar(long address, char x) {
 455         putChar(null, address, x);
 456     }
 457 
 458     /** @see #getByte(long) */
 459     @ForceInline
 460     public int getInt(long address) {
 461         return getInt(null, address);
 462     }
 463 
 464     /** @see #putByte(long, byte) */
 465     @ForceInline
 466     public void putInt(long address, int x) {
 467         putInt(null, address, x);
 468     }
 469 
 470     /** @see #getByte(long) */
 471     @ForceInline
 472     public long getLong(long address) {
 473         return getLong(null, address);
 474     }
 475 
 476     /** @see #putByte(long, byte) */
 477     @ForceInline
 478     public void putLong(long address, long x) {
 479         putLong(null, address, x);
 480     }
 481 
 482     /** @see #getByte(long) */
 483     @ForceInline
 484     public float getFloat(long address) {
 485         return getFloat(null, address);
 486     }
 487 
 488     /** @see #putByte(long, byte) */
 489     @ForceInline
 490     public void putFloat(long address, float x) {
 491         putFloat(null, address, x);
 492     }
 493 
 494     /** @see #getByte(long) */
 495     @ForceInline
 496     public double getDouble(long address) {
 497         return getDouble(null, address);
 498     }
 499 
 500     /** @see #putByte(long, byte) */
 501     @ForceInline
 502     public void putDouble(long address, double x) {
 503         putDouble(null, address, x);
 504     }
 505 
 506     /** @see #getAddress(Object, long) */
 507     @ForceInline
 508     public long getAddress(long address) {
 509         return getAddress(null, address);
 510     }
 511 
 512     /** @see #putAddress(Object, long, long) */
 513     @ForceInline
 514     public void putAddress(long address, long x) {
 515         putAddress(null, address, x);
 516     }
 517 
 518 
 519 
 520     /// helper methods for validating various types of objects/values
 521 
 522     /**
 523      * Create an exception reflecting that some of the input was invalid
 524      *
 525      * <em>Note:</em> It is the responsibility of the caller to make
 526      * sure arguments are checked before the methods are called. While
 527      * some rudimentary checks are performed on the input, the checks
 528      * are best effort and when performance is an overriding priority,
 529      * as when methods of this class are optimized by the runtime
 530      * compiler, some or all checks (if any) may be elided. Hence, the
 531      * caller must not rely on the checks and corresponding
 532      * exceptions!
 533      *
 534      * @return an exception object
 535      */
 536     private RuntimeException invalidInput() {
 537         return new IllegalArgumentException();
 538     }
 539 
 540     /**
 541      * Check if a value is 32-bit clean (32 MSB are all zero)
 542      *
 543      * @param value the 64-bit value to check
 544      *
 545      * @return true if the value is 32-bit clean
 546      */
 547     private boolean is32BitClean(long value) {
 548         return value >>> 32 == 0;
 549     }
 550 
 551     /**
 552      * Check the validity of a size (the equivalent of a size_t)
 553      *
 554      * @throws RuntimeException if the size is invalid
 555      *         (<em>Note:</em> after optimization, invalid inputs may
 556      *         go undetected, which will lead to unpredictable
 557      *         behavior)
 558      */
 559     private void checkSize(long size) {
 560         if (ADDRESS_SIZE == 4) {
 561             // Note: this will also check for negative sizes
 562             if (!is32BitClean(size)) {
 563                 throw invalidInput();
 564             }
 565         } else if (size < 0) {
 566             throw invalidInput();
 567         }
 568     }
 569 
 570     /**
 571      * Check the validity of a native address (the equivalent of void*)
 572      *
 573      * @throws RuntimeException if the address is invalid
 574      *         (<em>Note:</em> after optimization, invalid inputs may
 575      *         go undetected, which will lead to unpredictable
 576      *         behavior)
 577      */
 578     private void checkNativeAddress(long address) {
 579         if (ADDRESS_SIZE == 4) {
 580             // Accept both zero and sign extended pointers. A valid
 581             // pointer will, after the +1 below, either have produced
 582             // the value 0x0 or 0x1. Masking off the low bit allows
 583             // for testing against 0.
 584             if ((((address >> 32) + 1) & ~1) != 0) {
 585                 throw invalidInput();
 586             }
 587         }
 588     }
 589 
 590     /**
 591      * Check the validity of an offset, relative to a base object
 592      *
 593      * @param o the base object
 594      * @param offset the offset to check
 595      *
 596      * @throws RuntimeException if the size is invalid
 597      *         (<em>Note:</em> after optimization, invalid inputs may
 598      *         go undetected, which will lead to unpredictable
 599      *         behavior)
 600      */
 601     private void checkOffset(Object o, long offset) {
 602         if (ADDRESS_SIZE == 4) {
 603             // Note: this will also check for negative offsets
 604             if (!is32BitClean(offset)) {
 605                 throw invalidInput();
 606             }
 607         } else if (offset < 0) {
 608             throw invalidInput();
 609         }
 610     }
 611 
 612     /**
 613      * Check the validity of a double-register pointer
 614      *
 615      * Note: This code deliberately does *not* check for NPE for (at
 616      * least) three reasons:
 617      *
 618      * 1) NPE is not just NULL/0 - there is a range of values all
 619      * resulting in an NPE, which is not trivial to check for
 620      *
 621      * 2) It is the responsibility of the callers of Unsafe methods
 622      * to verify the input, so throwing an exception here is not really
 623      * useful - passing in a NULL pointer is a critical error and the
 624      * must not expect an exception to be thrown anyway.
 625      *
 626      * 3) the actual operations will detect NULL pointers anyway by
 627      * means of traps and signals (like SIGSEGV).
 628      *
 629      * @param o Java heap object, or null
 630      * @param offset indication of where the variable resides in a Java heap
 631      *        object, if any, else a memory address locating the variable
 632      *        statically
 633      *
 634      * @throws RuntimeException if the pointer is invalid
 635      *         (<em>Note:</em> after optimization, invalid inputs may
 636      *         go undetected, which will lead to unpredictable
 637      *         behavior)
 638      */
 639     private void checkPointer(Object o, long offset) {
 640         if (o == null) {
 641             checkNativeAddress(offset);
 642         } else {
 643             checkOffset(o, offset);
 644         }
 645     }
 646 
 647     /**
 648      * Check if a type is a primitive array type
 649      *
 650      * @param c the type to check
 651      *
 652      * @return true if the type is a primitive array type
 653      */
 654     private void checkPrimitiveArray(Class<?> c) {
 655         Class<?> componentType = c.getComponentType();
 656         if (componentType == null || !componentType.isPrimitive()) {
 657             throw invalidInput();
 658         }
 659     }
 660 
 661     /**
 662      * Check that a pointer is a valid primitive array type pointer
 663      *
 664      * Note: pointers off-heap are considered to be primitive arrays
 665      *
 666      * @throws RuntimeException if the pointer is invalid
 667      *         (<em>Note:</em> after optimization, invalid inputs may
 668      *         go undetected, which will lead to unpredictable
 669      *         behavior)
 670      */
 671     private void checkPrimitivePointer(Object o, long offset) {
 672         checkPointer(o, offset);
 673 
 674         if (o != null) {
 675             // If on heap, it must be a primitive array
 676             checkPrimitiveArray(o.getClass());
 677         }
 678     }
 679 
 680 
 681     /// wrappers for malloc, realloc, free:
 682 
 683     /**
 684      * Round up allocation size to a multiple of HeapWordSize.
 685      */
 686     private long alignToHeapWordSize(long bytes) {
 687         if (bytes >= 0) {
 688             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 689         } else {
 690             throw invalidInput();
 691         }
 692     }
 693 
 694     /**
 695      * Allocates a new block of native memory, of the given size in bytes.  The
 696      * contents of the memory are uninitialized; they will generally be
 697      * garbage.  The resulting native pointer will never be zero, and will be
 698      * aligned for all value types.  Dispose of this memory by calling {@link
 699      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 700      *
 701      * <em>Note:</em> It is the responsibility of the caller to make
 702      * sure arguments are checked before the methods are called. While
 703      * some rudimentary checks are performed on the input, the checks
 704      * are best effort and when performance is an overriding priority,
 705      * as when methods of this class are optimized by the runtime
 706      * compiler, some or all checks (if any) may be elided. Hence, the
 707      * caller must not rely on the checks and corresponding
 708      * exceptions!
 709      *
 710      * @throws RuntimeException if the size is negative or too large
 711      *         for the native size_t type
 712      *
 713      * @throws OutOfMemoryError if the allocation is refused by the system
 714      *
 715      * @see #getByte(long)
 716      * @see #putByte(long, byte)
 717      */
 718     public long allocateMemory(long bytes) {
 719         bytes = alignToHeapWordSize(bytes);
 720 
 721         allocateMemoryChecks(bytes);
 722 
 723         if (bytes == 0) {
 724             return 0;
 725         }
 726 
 727         long p = allocateMemory0(bytes);
 728         if (p == 0) {
 729             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 730         }
 731 
 732         return p;
 733     }
 734 
 735     /**
 736      * Validate the arguments to allocateMemory
 737      *
 738      * @throws RuntimeException if the arguments are invalid
 739      *         (<em>Note:</em> after optimization, invalid inputs may
 740      *         go undetected, which will lead to unpredictable
 741      *         behavior)
 742      */
 743     private void allocateMemoryChecks(long bytes) {
 744         checkSize(bytes);
 745     }
 746 
 747     /**
 748      * Resizes a new block of native memory, to the given size in bytes.  The
 749      * contents of the new block past the size of the old block are
 750      * uninitialized; they will generally be garbage.  The resulting native
 751      * pointer will be zero if and only if the requested size is zero.  The
 752      * resulting native pointer will be aligned for all value types.  Dispose
 753      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 754      * #reallocateMemory}.  The address passed to this method may be null, in
 755      * which case an allocation will be performed.
 756      *
 757      * <em>Note:</em> It is the responsibility of the caller to make
 758      * sure arguments are checked before the methods are called. While
 759      * some rudimentary checks are performed on the input, the checks
 760      * are best effort and when performance is an overriding priority,
 761      * as when methods of this class are optimized by the runtime
 762      * compiler, some or all checks (if any) may be elided. Hence, the
 763      * caller must not rely on the checks and corresponding
 764      * exceptions!
 765      *
 766      * @throws RuntimeException if the size is negative or too large
 767      *         for the native size_t type
 768      *
 769      * @throws OutOfMemoryError if the allocation is refused by the system
 770      *
 771      * @see #allocateMemory
 772      */
 773     public long reallocateMemory(long address, long bytes) {
 774         bytes = alignToHeapWordSize(bytes);
 775 
 776         reallocateMemoryChecks(address, bytes);
 777 
 778         if (bytes == 0) {
 779             freeMemory(address);
 780             return 0;
 781         }
 782 
 783         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 784         if (p == 0) {
 785             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 786         }
 787 
 788         return p;
 789     }
 790 
 791     /**
 792      * Validate the arguments to reallocateMemory
 793      *
 794      * @throws RuntimeException if the arguments are invalid
 795      *         (<em>Note:</em> after optimization, invalid inputs may
 796      *         go undetected, which will lead to unpredictable
 797      *         behavior)
 798      */
 799     private void reallocateMemoryChecks(long address, long bytes) {
 800         checkPointer(null, address);
 801         checkSize(bytes);
 802     }
 803 
 804     /**
 805      * Sets all bytes in a given block of memory to a fixed value
 806      * (usually zero).
 807      *
 808      * <p>This method determines a block's base address by means of two parameters,
 809      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 810      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 811      * the offset supplies an absolute base address.
 812      *
 813      * <p>The stores are in coherent (atomic) units of a size determined
 814      * by the address and length parameters.  If the effective address and
 815      * length are all even modulo 8, the stores take place in 'long' units.
 816      * If the effective address and length are (resp.) even modulo 4 or 2,
 817      * the stores take place in units of 'int' or 'short'.
 818      *
 819      * <em>Note:</em> It is the responsibility of the caller to make
 820      * sure arguments are checked before the methods are called. While
 821      * some rudimentary checks are performed on the input, the checks
 822      * are best effort and when performance is an overriding priority,
 823      * as when methods of this class are optimized by the runtime
 824      * compiler, some or all checks (if any) may be elided. Hence, the
 825      * caller must not rely on the checks and corresponding
 826      * exceptions!
 827      *
 828      * @throws RuntimeException if any of the arguments is invalid
 829      *
 830      * @since 1.7
 831      */
 832     public void setMemory(Object o, long offset, long bytes, byte value) {
 833         setMemoryChecks(o, offset, bytes, value);
 834 
 835         if (bytes == 0) {
 836             return;
 837         }
 838 
 839         setMemory0(o, offset, bytes, value);
 840     }
 841 
 842     /**
 843      * Sets all bytes in a given block of memory to a fixed value
 844      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 845      * as discussed in {@link #getInt(Object,long)}.
 846      *
 847      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 848      */
 849     public void setMemory(long address, long bytes, byte value) {
 850         setMemory(null, address, bytes, value);
 851     }
 852 
 853     /**
 854      * Validate the arguments to setMemory
 855      *
 856      * @throws RuntimeException if the arguments are invalid
 857      *         (<em>Note:</em> after optimization, invalid inputs may
 858      *         go undetected, which will lead to unpredictable
 859      *         behavior)
 860      */
 861     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 862         checkPrimitivePointer(o, offset);
 863         checkSize(bytes);
 864     }
 865 
 866     /**
 867      * Sets all bytes in a given block of memory to a copy of another
 868      * block.
 869      *
 870      * <p>This method determines each block's base address by means of two parameters,
 871      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 872      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 873      * the offset supplies an absolute base address.
 874      *
 875      * <p>The transfers are in coherent (atomic) units of a size determined
 876      * by the address and length parameters.  If the effective addresses and
 877      * length are all even modulo 8, the transfer takes place in 'long' units.
 878      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 879      * the transfer takes place in units of 'int' or 'short'.
 880      *
 881      * <em>Note:</em> It is the responsibility of the caller to make
 882      * sure arguments are checked before the methods are called. While
 883      * some rudimentary checks are performed on the input, the checks
 884      * are best effort and when performance is an overriding priority,
 885      * as when methods of this class are optimized by the runtime
 886      * compiler, some or all checks (if any) may be elided. Hence, the
 887      * caller must not rely on the checks and corresponding
 888      * exceptions!
 889      *
 890      * @throws RuntimeException if any of the arguments is invalid
 891      *
 892      * @since 1.7
 893      */
 894     public void copyMemory(Object srcBase, long srcOffset,
 895                            Object destBase, long destOffset,
 896                            long bytes) {
 897         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 898 
 899         if (bytes == 0) {
 900             return;
 901         }
 902 
 903         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 904     }
 905 
 906     /**
 907      * Sets all bytes in a given block of memory to a copy of another
 908      * block.  This provides a <em>single-register</em> addressing mode,
 909      * as discussed in {@link #getInt(Object,long)}.
 910      *
 911      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 912      */
 913     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 914         copyMemory(null, srcAddress, null, destAddress, bytes);
 915     }
 916 
 917     /**
 918      * Validate the arguments to copyMemory
 919      *
 920      * @throws RuntimeException if any of the arguments is invalid
 921      *         (<em>Note:</em> after optimization, invalid inputs may
 922      *         go undetected, which will lead to unpredictable
 923      *         behavior)
 924      */
 925     private void copyMemoryChecks(Object srcBase, long srcOffset,
 926                                   Object destBase, long destOffset,
 927                                   long bytes) {
 928         checkSize(bytes);
 929         checkPrimitivePointer(srcBase, srcOffset);
 930         checkPrimitivePointer(destBase, destOffset);
 931     }
 932 
 933     /**
 934      * Copies all elements from one block of memory to another block,
 935      * *unconditionally* byte swapping the elements on the fly.
 936      *
 937      * <p>This method determines each block's base address by means of two parameters,
 938      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 939      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 940      * the offset supplies an absolute base address.
 941      *
 942      * <em>Note:</em> It is the responsibility of the caller to make
 943      * sure arguments are checked before the methods are called. While
 944      * some rudimentary checks are performed on the input, the checks
 945      * are best effort and when performance is an overriding priority,
 946      * as when methods of this class are optimized by the runtime
 947      * compiler, some or all checks (if any) may be elided. Hence, the
 948      * caller must not rely on the checks and corresponding
 949      * exceptions!
 950      *
 951      * @throws RuntimeException if any of the arguments is invalid
 952      *
 953      * @since 9
 954      */
 955     public void copySwapMemory(Object srcBase, long srcOffset,
 956                                Object destBase, long destOffset,
 957                                long bytes, long elemSize) {
 958         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 959 
 960         if (bytes == 0) {
 961             return;
 962         }
 963 
 964         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 965     }
 966 
 967     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 968                                       Object destBase, long destOffset,
 969                                       long bytes, long elemSize) {
 970         checkSize(bytes);
 971 
 972         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 973             throw invalidInput();
 974         }
 975         if (bytes % elemSize != 0) {
 976             throw invalidInput();
 977         }
 978 
 979         checkPrimitivePointer(srcBase, srcOffset);
 980         checkPrimitivePointer(destBase, destOffset);
 981     }
 982 
 983     /**
 984      * Copies all elements from one block of memory to another block, byte swapping the
 985      * elements on the fly.
 986      *
 987      * This provides a <em>single-register</em> addressing mode, as
 988      * discussed in {@link #getInt(Object,long)}.
 989      *
 990      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 991      */
 992     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 993         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 994     }
 995 
 996     /**
 997      * Disposes of a block of native memory, as obtained from {@link
 998      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 999      * this method may be null, in which case no action is taken.
1000      *
1001      * <em>Note:</em> It is the responsibility of the caller to make
1002      * sure arguments are checked before the methods are called. While
1003      * some rudimentary checks are performed on the input, the checks
1004      * are best effort and when performance is an overriding priority,
1005      * as when methods of this class are optimized by the runtime
1006      * compiler, some or all checks (if any) may be elided. Hence, the
1007      * caller must not rely on the checks and corresponding
1008      * exceptions!
1009      *
1010      * @throws RuntimeException if any of the arguments is invalid
1011      *
1012      * @see #allocateMemory
1013      */
1014     public void freeMemory(long address) {
1015         freeMemoryChecks(address);
1016 
1017         if (address == 0) {
1018             return;
1019         }
1020 
1021         freeMemory0(address);
1022     }
1023 
1024     /**
1025      * Validate the arguments to freeMemory
1026      *
1027      * @throws RuntimeException if the arguments are invalid
1028      *         (<em>Note:</em> after optimization, invalid inputs may
1029      *         go undetected, which will lead to unpredictable
1030      *         behavior)
1031      */
1032     private void freeMemoryChecks(long address) {
1033         checkPointer(null, address);
1034     }
1035 
1036     /**
1037      * Ensure writeback of a specified virtual memory address range
1038      * from cache to physical memory. All bytes in the address range
1039      * are guaranteed to have been written back to physical memory on
1040      * return from this call i.e. subsequently executed store
1041      * instructions are guaranteed not to be visible before the
1042      * writeback is completed.
1043      *
1044      * @param address
1045      *        the lowest byte address that must be guaranteed written
1046      *        back to memory. bytes at lower addresses may also be
1047      *        written back.
1048      *
1049      * @param length
1050      *        the length in bytes of the region starting at address
1051      *        that must be guaranteed written back to memory.
1052      *
1053      * @throws RuntimeException if memory writeback is not supported
1054      *         on the current hardware of if the arguments are invalid.
1055      *         (<em>Note:</em> after optimization, invalid inputs may
1056      *         go undetected, which will lead to unpredictable
1057      *         behavior)
1058      *
1059      * @since 14
1060      */
1061 
1062     public void writebackMemory(long address, long length) {
1063         checkWritebackEnabled();
1064         checkWritebackMemory(address, length);
1065 
1066         // perform any required pre-writeback barrier
1067         writebackPreSync0();
1068 
1069         // write back one cache line at a time
1070         long line = dataCacheLineAlignDown(address);
1071         long end = address + length;
1072         while (line < end) {
1073             writeback0(line);
1074             line += dataCacheLineFlushSize();
1075         }
1076 
1077         // perform any required post-writeback barrier
1078         writebackPostSync0();
1079     }
1080 
1081     /**
1082      * Validate the arguments to writebackMemory
1083      *
1084      * @throws RuntimeException if the arguments are invalid
1085      *         (<em>Note:</em> after optimization, invalid inputs may
1086      *         go undetected, which will lead to unpredictable
1087      *         behavior)
1088      */
1089     private void checkWritebackMemory(long address, long length) {
1090         checkNativeAddress(address);
1091         checkSize(length);
1092     }
1093 
1094     /**
1095      * Validate that the current hardware supports memory writeback.
1096      * (<em>Note:</em> this is a belt and braces check.  Clients are
1097      * expected to test whether writeback is enabled by calling
1098      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1099      * calling method {@link writeback #writeback} if it is disabled).
1100      *
1101      *
1102      * @throws RuntimeException if memory writeback is not supported
1103      */
1104     private void checkWritebackEnabled() {
1105         if (!isWritebackEnabled()) {
1106             throw new RuntimeException("writebackMemory not enabled!");
1107         }
1108     }
1109 
1110     /**
1111      * force writeback of an individual cache line.
1112      *
1113      * @param address
1114      *        the start address of the cache line to be written back
1115      */
1116     @IntrinsicCandidate
1117     private native void writeback0(long address);
1118 
1119      /**
1120       * Serialize writeback operations relative to preceding memory writes.
1121       */
1122     @IntrinsicCandidate
1123     private native void writebackPreSync0();
1124 
1125      /**
1126       * Serialize writeback operations relative to following memory writes.
1127       */
1128     @IntrinsicCandidate
1129     private native void writebackPostSync0();
1130 
1131     /// random queries
1132 
1133     /**
1134      * This constant differs from all results that will ever be returned from
1135      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1136      * or {@link #arrayBaseOffset}.
1137      */
1138     public static final int INVALID_FIELD_OFFSET = -1;
1139 
1140     /**
1141      * Reports the location of a given field in the storage allocation of its
1142      * class.  Do not expect to perform any sort of arithmetic on this offset;
1143      * it is just a cookie which is passed to the unsafe heap memory accessors.
1144      *
1145      * <p>Any given field will always have the same offset and base, and no
1146      * two distinct fields of the same class will ever have the same offset
1147      * and base.
1148      *
1149      * <p>As of 1.4.1, offsets for fields are represented as long values,
1150      * although the Sun JVM does not use the most significant 32 bits.
1151      * However, JVM implementations which store static fields at absolute
1152      * addresses can use long offsets and null base pointers to express
1153      * the field locations in a form usable by {@link #getInt(Object,long)}.
1154      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1155      * must preserve all bits of static field offsets.
1156      * @see #getInt(Object, long)
1157      */
1158     public long objectFieldOffset(Field f) {
1159         if (f == null) {
1160             throw new NullPointerException();
1161         }
1162 
1163         return objectFieldOffset0(f);
1164     }
1165 
1166     /**
1167      * Reports the location of the field with a given name in the storage
1168      * allocation of its class.
1169      *
1170      * @throws NullPointerException if any parameter is {@code null}.
1171      * @throws InternalError if there is no field named {@code name} declared
1172      *         in class {@code c}, i.e., if {@code c.getDeclaredField(name)}
1173      *         would throw {@code java.lang.NoSuchFieldException}.
1174      *
1175      * @see #objectFieldOffset(Field)
1176      */
1177     public long objectFieldOffset(Class<?> c, String name) {
1178         if (c == null || name == null) {
1179             throw new NullPointerException();
1180         }
1181 
1182         return objectFieldOffset1(c, name);
1183     }
1184 
1185     /**
1186      * Reports the location of a given static field, in conjunction with {@link
1187      * #staticFieldBase}.
1188      * <p>Do not expect to perform any sort of arithmetic on this offset;
1189      * it is just a cookie which is passed to the unsafe heap memory accessors.
1190      *
1191      * <p>Any given field will always have the same offset, and no two distinct
1192      * fields of the same class will ever have the same offset.
1193      *
1194      * <p>As of 1.4.1, offsets for fields are represented as long values,
1195      * although the Sun JVM does not use the most significant 32 bits.
1196      * It is hard to imagine a JVM technology which needs more than
1197      * a few bits to encode an offset within a non-array object,
1198      * However, for consistency with other methods in this class,
1199      * this method reports its result as a long value.
1200      * @see #getInt(Object, long)
1201      */
1202     public long staticFieldOffset(Field f) {
1203         if (f == null) {
1204             throw new NullPointerException();
1205         }
1206 
1207         return staticFieldOffset0(f);
1208     }
1209 
1210     /**
1211      * Reports the location of a given static field, in conjunction with {@link
1212      * #staticFieldOffset}.
1213      * <p>Fetch the base "Object", if any, with which static fields of the
1214      * given class can be accessed via methods like {@link #getInt(Object,
1215      * long)}.  This value may be null.  This value may refer to an object
1216      * which is a "cookie", not guaranteed to be a real Object, and it should
1217      * not be used in any way except as argument to the get and put routines in
1218      * this class.
1219      */
1220     public Object staticFieldBase(Field f) {
1221         if (f == null) {
1222             throw new NullPointerException();
1223         }
1224 
1225         return staticFieldBase0(f);
1226     }
1227 
1228     /**
1229      * Detects if the given class may need to be initialized. This is often
1230      * needed in conjunction with obtaining the static field base of a
1231      * class.
1232      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1233      */
1234     public boolean shouldBeInitialized(Class<?> c) {
1235         if (c == null) {
1236             throw new NullPointerException();
1237         }
1238 
1239         return shouldBeInitialized0(c);
1240     }
1241 
1242     /**
1243      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1244      * This is often needed in conjunction with obtaining the static field base
1245      * of a class.
1246      *
1247      * The call returns when either class {@code c} is fully initialized or
1248      * class {@code c} is being initialized and the call is performed from
1249      * the initializing thread. In the latter case a subsequent call to
1250      * {@link #shouldBeInitialized} will return {@code true}.
1251      */
1252     public void ensureClassInitialized(Class<?> c) {
1253         if (c == null) {
1254             throw new NullPointerException();
1255         }
1256 
1257         ensureClassInitialized0(c);
1258     }
1259 
1260     /**
1261      * Reports the offset of the first element in the storage allocation of a
1262      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1263      * for the same class, you may use that scale factor, together with this
1264      * base offset, to form new offsets to access elements of arrays of the
1265      * given class.
1266      *
1267      * @see #getInt(Object, long)
1268      * @see #putInt(Object, long, int)
1269      */
1270     public int arrayBaseOffset(Class<?> arrayClass) {
1271         if (arrayClass == null) {
1272             throw new NullPointerException();
1273         }
1274 
1275         return arrayBaseOffset0(arrayClass);
1276     }
1277 
1278 
1279     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1280     public static final int ARRAY_BOOLEAN_BASE_OFFSET
1281             = theUnsafe.arrayBaseOffset(boolean[].class);
1282 
1283     /** The value of {@code arrayBaseOffset(byte[].class)} */
1284     public static final int ARRAY_BYTE_BASE_OFFSET
1285             = theUnsafe.arrayBaseOffset(byte[].class);
1286 
1287     /** The value of {@code arrayBaseOffset(short[].class)} */
1288     public static final int ARRAY_SHORT_BASE_OFFSET
1289             = theUnsafe.arrayBaseOffset(short[].class);
1290 
1291     /** The value of {@code arrayBaseOffset(char[].class)} */
1292     public static final int ARRAY_CHAR_BASE_OFFSET
1293             = theUnsafe.arrayBaseOffset(char[].class);
1294 
1295     /** The value of {@code arrayBaseOffset(int[].class)} */
1296     public static final int ARRAY_INT_BASE_OFFSET
1297             = theUnsafe.arrayBaseOffset(int[].class);
1298 
1299     /** The value of {@code arrayBaseOffset(long[].class)} */
1300     public static final int ARRAY_LONG_BASE_OFFSET
1301             = theUnsafe.arrayBaseOffset(long[].class);
1302 
1303     /** The value of {@code arrayBaseOffset(float[].class)} */
1304     public static final int ARRAY_FLOAT_BASE_OFFSET
1305             = theUnsafe.arrayBaseOffset(float[].class);
1306 
1307     /** The value of {@code arrayBaseOffset(double[].class)} */
1308     public static final int ARRAY_DOUBLE_BASE_OFFSET
1309             = theUnsafe.arrayBaseOffset(double[].class);
1310 
1311     /** The value of {@code arrayBaseOffset(Object[].class)} */
1312     public static final int ARRAY_OBJECT_BASE_OFFSET
1313             = theUnsafe.arrayBaseOffset(Object[].class);
1314 
1315     /**
1316      * Reports the scale factor for addressing elements in the storage
1317      * allocation of a given array class.  However, arrays of "narrow" types
1318      * will generally not work properly with accessors like {@link
1319      * #getByte(Object, long)}, so the scale factor for such classes is reported
1320      * as zero.
1321      *
1322      * @see #arrayBaseOffset
1323      * @see #getInt(Object, long)
1324      * @see #putInt(Object, long, int)
1325      */
1326     public int arrayIndexScale(Class<?> arrayClass) {
1327         if (arrayClass == null) {
1328             throw new NullPointerException();
1329         }
1330 
1331         return arrayIndexScale0(arrayClass);
1332     }
1333 
1334     /**
1335      * Return the size of the object in the heap.
1336      * @param o an object
1337      * @return the objects's size
1338      * @since Valhalla
1339      */
1340     public long getObjectSize(Object o) {
1341         if (o == null)
1342             throw new NullPointerException();
1343         return getObjectSize0(o);
1344     }
1345 
1346     /** The value of {@code arrayIndexScale(boolean[].class)} */
1347     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1348             = theUnsafe.arrayIndexScale(boolean[].class);
1349 
1350     /** The value of {@code arrayIndexScale(byte[].class)} */
1351     public static final int ARRAY_BYTE_INDEX_SCALE
1352             = theUnsafe.arrayIndexScale(byte[].class);
1353 
1354     /** The value of {@code arrayIndexScale(short[].class)} */
1355     public static final int ARRAY_SHORT_INDEX_SCALE
1356             = theUnsafe.arrayIndexScale(short[].class);
1357 
1358     /** The value of {@code arrayIndexScale(char[].class)} */
1359     public static final int ARRAY_CHAR_INDEX_SCALE
1360             = theUnsafe.arrayIndexScale(char[].class);
1361 
1362     /** The value of {@code arrayIndexScale(int[].class)} */
1363     public static final int ARRAY_INT_INDEX_SCALE
1364             = theUnsafe.arrayIndexScale(int[].class);
1365 
1366     /** The value of {@code arrayIndexScale(long[].class)} */
1367     public static final int ARRAY_LONG_INDEX_SCALE
1368             = theUnsafe.arrayIndexScale(long[].class);
1369 
1370     /** The value of {@code arrayIndexScale(float[].class)} */
1371     public static final int ARRAY_FLOAT_INDEX_SCALE
1372             = theUnsafe.arrayIndexScale(float[].class);
1373 
1374     /** The value of {@code arrayIndexScale(double[].class)} */
1375     public static final int ARRAY_DOUBLE_INDEX_SCALE
1376             = theUnsafe.arrayIndexScale(double[].class);
1377 
1378     /** The value of {@code arrayIndexScale(Object[].class)} */
1379     public static final int ARRAY_OBJECT_INDEX_SCALE
1380             = theUnsafe.arrayIndexScale(Object[].class);
1381 
1382     /**
1383      * Reports the size in bytes of a native pointer, as stored via {@link
1384      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1385      * other primitive types (as stored in native memory blocks) is determined
1386      * fully by their information content.
1387      */
1388     public int addressSize() {
1389         return ADDRESS_SIZE;
1390     }
1391 
1392     /** The value of {@code addressSize()} */
1393     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1394 
1395     /**
1396      * Reports the size in bytes of a native memory page (whatever that is).
1397      * This value will always be a power of two.
1398      */
1399     public int pageSize() { return PAGE_SIZE; }
1400 
1401     /**
1402      * Reports the size in bytes of a data cache line written back by
1403      * the hardware cache line flush operation available to the JVM or
1404      * 0 if data cache line flushing is not enabled.
1405      */
1406     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1407 
1408     /**
1409      * Rounds down address to a data cache line boundary as
1410      * determined by {@link #dataCacheLineFlushSize}
1411      * @return the rounded down address
1412      */
1413     public long dataCacheLineAlignDown(long address) {
1414         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1415     }
1416 
1417     /**
1418      * Returns true if data cache line writeback
1419      */
1420     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1421 
1422     /// random trusted operations from JNI:
1423 
1424     /**
1425      * Tells the VM to define a class, without security checks.  By default, the
1426      * class loader and protection domain come from the caller's class.
1427      */
1428     public Class<?> defineClass(String name, byte[] b, int off, int len,
1429                                 ClassLoader loader,
1430                                 ProtectionDomain protectionDomain) {
1431         if (b == null) {
1432             throw new NullPointerException();
1433         }
1434         if (len < 0) {
1435             throw new ArrayIndexOutOfBoundsException();
1436         }
1437 
1438         return defineClass0(name, b, off, len, loader, protectionDomain);
1439     }
1440 
1441     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1442                                         ClassLoader loader,
1443                                         ProtectionDomain protectionDomain);
1444 
1445     /**
1446      * Allocates an instance but does not run any constructor.
1447      * Initializes the class if it has not yet been.
1448      */
1449     @IntrinsicCandidate
1450     public native Object allocateInstance(Class<?> cls)
1451         throws InstantiationException;
1452 
1453     /**
1454      * Allocates an array of a given type, but does not do zeroing.
1455      * <p>
1456      * This method should only be used in the very rare cases where a high-performance code
1457      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1458      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1459      * <p>
1460      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1461      * before allowing untrusted code, or code in other threads, to observe the reference
1462      * to the newly allocated array. In addition, the publication of the array reference must be
1463      * safe according to the Java Memory Model requirements.
1464      * <p>
1465      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1466      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1467      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1468      * or issuing a {@link #storeFence} before publishing the reference.
1469      * <p>
1470      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1471      * elements that could break heap integrity.
1472      *
1473      * @param componentType array component type to allocate
1474      * @param length array size to allocate
1475      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1476      *                                  or the length is negative
1477      */
1478     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1479        if (componentType == null) {
1480            throw new IllegalArgumentException("Component type is null");
1481        }
1482        if (!componentType.isPrimitive()) {
1483            throw new IllegalArgumentException("Component type is not primitive");
1484        }
1485        if (length < 0) {
1486            throw new IllegalArgumentException("Negative length");
1487        }
1488        return allocateUninitializedArray0(componentType, length);
1489     }
1490 
1491     @IntrinsicCandidate
1492     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1493        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1494        // return the zeroed arrays.
1495        if (componentType == byte.class)    return new byte[length];
1496        if (componentType == boolean.class) return new boolean[length];
1497        if (componentType == short.class)   return new short[length];
1498        if (componentType == char.class)    return new char[length];
1499        if (componentType == int.class)     return new int[length];
1500        if (componentType == float.class)   return new float[length];
1501        if (componentType == long.class)    return new long[length];
1502        if (componentType == double.class)  return new double[length];
1503        return null;
1504     }
1505 
1506     /** Throws the exception without telling the verifier. */
1507     public native void throwException(Throwable ee);
1508 
1509     /**
1510      * Atomically updates Java variable to {@code x} if it is currently
1511      * holding {@code expected}.
1512      *
1513      * <p>This operation has memory semantics of a {@code volatile} read
1514      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1515      *
1516      * @return {@code true} if successful
1517      */
1518     @IntrinsicCandidate
1519     public final native boolean compareAndSetReference(Object o, long offset,
1520                                                        Object expected,
1521                                                        Object x);
1522 
1523     private final boolean isValueObject(Object o) {
1524         return o != null && o.getClass().isValue();
1525     }
1526 
1527     /*
1528      * For primitive type, CAS should do substitutability test as opposed
1529      * to two pointers comparison.
1530      *
1531      * Perhaps we can keep the xxxObject methods for compatibility and
1532      * change the JDK 13 xxxReference method signature freely.
1533      */
1534     public final <V> boolean compareAndSetReference(Object o, long offset,
1535                                                     Class<?> type,
1536                                                     V expected,
1537                                                     V x) {
1538         if (type.isValue() || isValueObject(expected)) {
1539             synchronized (valueLock) {
1540                 Object witness = getReference(o, offset);
1541                 if (witness == expected) {
1542                     putReference(o, offset, x);
1543                     return true;
1544                 } else {
1545                     return false;
1546                 }
1547             }
1548         } else {
1549             return compareAndSetReference(o, offset, expected, x);
1550         }
1551     }
1552 
1553     @ForceInline
1554     public final <V> boolean compareAndSetValue(Object o, long offset,
1555                                                 Class<?> valueType,
1556                                                 V expected,
1557                                                 V x) {
1558         synchronized (valueLock) {
1559             Object witness = getValue(o, offset, valueType);
1560             if (witness == expected) {
1561                 putValue(o, offset, valueType, x);
1562                 return true;
1563             }
1564             else {
1565                 return false;
1566             }
1567         }
1568     }
1569 
1570     @IntrinsicCandidate
1571     public final native Object compareAndExchangeReference(Object o, long offset,
1572                                                            Object expected,
1573                                                            Object x);
1574 
1575     public final <V> Object compareAndExchangeReference(Object o, long offset,
1576                                                         Class<?> valueType,
1577                                                         V expected,
1578                                                         V x) {
1579         if (valueType.isValue() || isValueObject(expected)) {
1580             synchronized (valueLock) {
1581                 Object witness = getReference(o, offset);
1582                 if (witness == expected) {
1583                     putReference(o, offset, x);
1584                 }
1585                 return witness;
1586             }
1587         } else {
1588             return compareAndExchangeReference(o, offset, expected, x);
1589         }
1590     }
1591 
1592     @ForceInline
1593     public final <V> Object compareAndExchangeValue(Object o, long offset,
1594                                                     Class<?> valueType,
1595                                                     V expected,
1596                                                     V x) {
1597         synchronized (valueLock) {
1598             Object witness = getValue(o, offset, valueType);
1599             if (witness == expected) {
1600                 putValue(o, offset, valueType, x);
1601             }
1602             return witness;
1603         }
1604     }
1605 
1606     @IntrinsicCandidate
1607     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1608                                                            Object expected,
1609                                                            Object x) {
1610         return compareAndExchangeReference(o, offset, expected, x);
1611     }
1612 
1613     public final <V> Object compareAndExchangeReferenceAcquire(Object o, long offset,
1614                                                                Class<?> valueType,
1615                                                                V expected,
1616                                                                V x) {
1617         return compareAndExchangeReference(o, offset, valueType, expected, x);
1618     }
1619 
1620     @ForceInline
1621     public final <V> Object compareAndExchangeValueAcquire(Object o, long offset,
1622                                                            Class<?> valueType,
1623                                                            V expected,
1624                                                            V x) {
1625         return compareAndExchangeValue(o, offset, valueType, expected, x);
1626     }
1627 
1628     @IntrinsicCandidate
1629     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1630                                                            Object expected,
1631                                                            Object x) {
1632         return compareAndExchangeReference(o, offset, expected, x);
1633     }
1634 
1635     public final <V> Object compareAndExchangeReferenceRelease(Object o, long offset,
1636                                                                Class<?> valueType,
1637                                                                V expected,
1638                                                                V x) {
1639         return compareAndExchangeReference(o, offset, valueType, expected, x);
1640     }
1641 
1642     @ForceInline
1643     public final <V> Object compareAndExchangeValueRelease(Object o, long offset,
1644                                                            Class<?> valueType,
1645                                                            V expected,
1646                                                            V x) {
1647         return compareAndExchangeValue(o, offset, valueType, expected, x);
1648     }
1649 
1650     @IntrinsicCandidate
1651     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1652                                                          Object expected,
1653                                                          Object x) {
1654         return compareAndSetReference(o, offset, expected, x);
1655     }
1656 
1657     public final <V> boolean weakCompareAndSetReferencePlain(Object o, long offset,
1658                                                              Class<?> valueType,
1659                                                              V expected,
1660                                                              V x) {
1661         if (valueType.isValue() || isValueObject(expected)) {
1662             return compareAndSetReference(o, offset, valueType, expected, x);
1663         } else {
1664             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1665         }
1666     }
1667 
1668     @ForceInline
1669     public final <V> boolean weakCompareAndSetValuePlain(Object o, long offset,
1670                                                          Class<?> valueType,
1671                                                          V expected,
1672                                                          V x) {
1673         return compareAndSetValue(o, offset, valueType, expected, x);
1674     }
1675 
1676     @IntrinsicCandidate
1677     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1678                                                            Object expected,
1679                                                            Object x) {
1680         return compareAndSetReference(o, offset, expected, x);
1681     }
1682 
1683     public final <V> boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1684                                                                Class<?> valueType,
1685                                                                V expected,
1686                                                                V x) {
1687         if (valueType.isValue() || isValueObject(expected)) {
1688             return compareAndSetReference(o, offset, valueType, expected, x);
1689         } else {
1690             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1691         }
1692     }
1693 
1694     @ForceInline
1695     public final <V> boolean weakCompareAndSetValueAcquire(Object o, long offset,
1696                                                            Class<?> valueType,
1697                                                            V expected,
1698                                                            V x) {
1699         return compareAndSetValue(o, offset, valueType, expected, x);
1700     }
1701 
1702     @IntrinsicCandidate
1703     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1704                                                            Object expected,
1705                                                            Object x) {
1706         return compareAndSetReference(o, offset, expected, x);
1707     }
1708 
1709     public final <V> boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1710                                                                Class<?> valueType,
1711                                                                V expected,
1712                                                                V x) {
1713         if (valueType.isValue() || isValueObject(expected)) {
1714             return compareAndSetReference(o, offset, valueType, expected, x);
1715         } else {
1716             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1717         }
1718     }
1719 
1720     @ForceInline
1721     public final <V> boolean weakCompareAndSetValueRelease(Object o, long offset,
1722                                                            Class<?> valueType,
1723                                                            V expected,
1724                                                            V x) {
1725         return compareAndSetValue(o, offset, valueType, expected, x);
1726     }
1727 
1728     @IntrinsicCandidate
1729     public final boolean weakCompareAndSetReference(Object o, long offset,
1730                                                     Object expected,
1731                                                     Object x) {
1732         return compareAndSetReference(o, offset, expected, x);
1733     }
1734 
1735     public final <V> boolean weakCompareAndSetReference(Object o, long offset,
1736                                                         Class<?> valueType,
1737                                                         V expected,
1738                                                         V x) {
1739         if (valueType.isValue() || isValueObject(expected)) {
1740             return compareAndSetReference(o, offset, valueType, expected, x);
1741         } else {
1742             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1743         }
1744     }
1745 
1746     @ForceInline
1747     public final <V> boolean weakCompareAndSetValue(Object o, long offset,
1748                                                     Class<?> valueType,
1749                                                     V expected,
1750                                                     V x) {
1751         return compareAndSetValue(o, offset, valueType, expected, x);
1752     }
1753 
1754     /**
1755      * Atomically updates Java variable to {@code x} if it is currently
1756      * holding {@code expected}.
1757      *
1758      * <p>This operation has memory semantics of a {@code volatile} read
1759      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1760      *
1761      * @return {@code true} if successful
1762      */
1763     @IntrinsicCandidate
1764     public final native boolean compareAndSetInt(Object o, long offset,
1765                                                  int expected,
1766                                                  int x);
1767 
1768     @IntrinsicCandidate
1769     public final native int compareAndExchangeInt(Object o, long offset,
1770                                                   int expected,
1771                                                   int x);
1772 
1773     @IntrinsicCandidate
1774     public final int compareAndExchangeIntAcquire(Object o, long offset,
1775                                                          int expected,
1776                                                          int x) {
1777         return compareAndExchangeInt(o, offset, expected, x);
1778     }
1779 
1780     @IntrinsicCandidate
1781     public final int compareAndExchangeIntRelease(Object o, long offset,
1782                                                          int expected,
1783                                                          int x) {
1784         return compareAndExchangeInt(o, offset, expected, x);
1785     }
1786 
1787     @IntrinsicCandidate
1788     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1789                                                    int expected,
1790                                                    int x) {
1791         return compareAndSetInt(o, offset, expected, x);
1792     }
1793 
1794     @IntrinsicCandidate
1795     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1796                                                      int expected,
1797                                                      int x) {
1798         return compareAndSetInt(o, offset, expected, x);
1799     }
1800 
1801     @IntrinsicCandidate
1802     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1803                                                      int expected,
1804                                                      int x) {
1805         return compareAndSetInt(o, offset, expected, x);
1806     }
1807 
1808     @IntrinsicCandidate
1809     public final boolean weakCompareAndSetInt(Object o, long offset,
1810                                               int expected,
1811                                               int x) {
1812         return compareAndSetInt(o, offset, expected, x);
1813     }
1814 
1815     @IntrinsicCandidate
1816     public final byte compareAndExchangeByte(Object o, long offset,
1817                                              byte expected,
1818                                              byte x) {
1819         long wordOffset = offset & ~3;
1820         int shift = (int) (offset & 3) << 3;
1821         if (BIG_ENDIAN) {
1822             shift = 24 - shift;
1823         }
1824         int mask           = 0xFF << shift;
1825         int maskedExpected = (expected & 0xFF) << shift;
1826         int maskedX        = (x & 0xFF) << shift;
1827         int fullWord;
1828         do {
1829             fullWord = getIntVolatile(o, wordOffset);
1830             if ((fullWord & mask) != maskedExpected)
1831                 return (byte) ((fullWord & mask) >> shift);
1832         } while (!weakCompareAndSetInt(o, wordOffset,
1833                                                 fullWord, (fullWord & ~mask) | maskedX));
1834         return expected;
1835     }
1836 
1837     @IntrinsicCandidate
1838     public final boolean compareAndSetByte(Object o, long offset,
1839                                            byte expected,
1840                                            byte x) {
1841         return compareAndExchangeByte(o, offset, expected, x) == expected;
1842     }
1843 
1844     @IntrinsicCandidate
1845     public final boolean weakCompareAndSetByte(Object o, long offset,
1846                                                byte expected,
1847                                                byte x) {
1848         return compareAndSetByte(o, offset, expected, x);
1849     }
1850 
1851     @IntrinsicCandidate
1852     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
1853                                                       byte expected,
1854                                                       byte x) {
1855         return weakCompareAndSetByte(o, offset, expected, x);
1856     }
1857 
1858     @IntrinsicCandidate
1859     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
1860                                                       byte expected,
1861                                                       byte x) {
1862         return weakCompareAndSetByte(o, offset, expected, x);
1863     }
1864 
1865     @IntrinsicCandidate
1866     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
1867                                                     byte expected,
1868                                                     byte x) {
1869         return weakCompareAndSetByte(o, offset, expected, x);
1870     }
1871 
1872     @IntrinsicCandidate
1873     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1874                                                     byte expected,
1875                                                     byte x) {
1876         return compareAndExchangeByte(o, offset, expected, x);
1877     }
1878 
1879     @IntrinsicCandidate
1880     public final byte compareAndExchangeByteRelease(Object o, long offset,
1881                                                     byte expected,
1882                                                     byte x) {
1883         return compareAndExchangeByte(o, offset, expected, x);
1884     }
1885 
1886     @IntrinsicCandidate
1887     public final short compareAndExchangeShort(Object o, long offset,
1888                                                short expected,
1889                                                short x) {
1890         if ((offset & 3) == 3) {
1891             throw new IllegalArgumentException("Update spans the word, not supported");
1892         }
1893         long wordOffset = offset & ~3;
1894         int shift = (int) (offset & 3) << 3;
1895         if (BIG_ENDIAN) {
1896             shift = 16 - shift;
1897         }
1898         int mask           = 0xFFFF << shift;
1899         int maskedExpected = (expected & 0xFFFF) << shift;
1900         int maskedX        = (x & 0xFFFF) << shift;
1901         int fullWord;
1902         do {
1903             fullWord = getIntVolatile(o, wordOffset);
1904             if ((fullWord & mask) != maskedExpected) {
1905                 return (short) ((fullWord & mask) >> shift);
1906             }
1907         } while (!weakCompareAndSetInt(o, wordOffset,
1908                                                 fullWord, (fullWord & ~mask) | maskedX));
1909         return expected;
1910     }
1911 
1912     @IntrinsicCandidate
1913     public final boolean compareAndSetShort(Object o, long offset,
1914                                             short expected,
1915                                             short x) {
1916         return compareAndExchangeShort(o, offset, expected, x) == expected;
1917     }
1918 
1919     @IntrinsicCandidate
1920     public final boolean weakCompareAndSetShort(Object o, long offset,
1921                                                 short expected,
1922                                                 short x) {
1923         return compareAndSetShort(o, offset, expected, x);
1924     }
1925 
1926     @IntrinsicCandidate
1927     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
1928                                                        short expected,
1929                                                        short x) {
1930         return weakCompareAndSetShort(o, offset, expected, x);
1931     }
1932 
1933     @IntrinsicCandidate
1934     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
1935                                                        short expected,
1936                                                        short x) {
1937         return weakCompareAndSetShort(o, offset, expected, x);
1938     }
1939 
1940     @IntrinsicCandidate
1941     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
1942                                                      short expected,
1943                                                      short x) {
1944         return weakCompareAndSetShort(o, offset, expected, x);
1945     }
1946 
1947 
1948     @IntrinsicCandidate
1949     public final short compareAndExchangeShortAcquire(Object o, long offset,
1950                                                      short expected,
1951                                                      short x) {
1952         return compareAndExchangeShort(o, offset, expected, x);
1953     }
1954 
1955     @IntrinsicCandidate
1956     public final short compareAndExchangeShortRelease(Object o, long offset,
1957                                                     short expected,
1958                                                     short x) {
1959         return compareAndExchangeShort(o, offset, expected, x);
1960     }
1961 
1962     @ForceInline
1963     private char s2c(short s) {
1964         return (char) s;
1965     }
1966 
1967     @ForceInline
1968     private short c2s(char s) {
1969         return (short) s;
1970     }
1971 
1972     @ForceInline
1973     public final boolean compareAndSetChar(Object o, long offset,
1974                                            char expected,
1975                                            char x) {
1976         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
1977     }
1978 
1979     @ForceInline
1980     public final char compareAndExchangeChar(Object o, long offset,
1981                                              char expected,
1982                                              char x) {
1983         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
1984     }
1985 
1986     @ForceInline
1987     public final char compareAndExchangeCharAcquire(Object o, long offset,
1988                                             char expected,
1989                                             char x) {
1990         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1991     }
1992 
1993     @ForceInline
1994     public final char compareAndExchangeCharRelease(Object o, long offset,
1995                                             char expected,
1996                                             char x) {
1997         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1998     }
1999 
2000     @ForceInline
2001     public final boolean weakCompareAndSetChar(Object o, long offset,
2002                                                char expected,
2003                                                char x) {
2004         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
2005     }
2006 
2007     @ForceInline
2008     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
2009                                                       char expected,
2010                                                       char x) {
2011         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
2012     }
2013 
2014     @ForceInline
2015     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
2016                                                       char expected,
2017                                                       char x) {
2018         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
2019     }
2020 
2021     @ForceInline
2022     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
2023                                                     char expected,
2024                                                     char x) {
2025         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
2026     }
2027 
2028     /**
2029      * The JVM converts integral values to boolean values using two
2030      * different conventions, byte testing against zero and truncation
2031      * to least-significant bit.
2032      *
2033      * <p>The JNI documents specify that, at least for returning
2034      * values from native methods, a Java boolean value is converted
2035      * to the value-set 0..1 by first truncating to a byte (0..255 or
2036      * maybe -128..127) and then testing against zero. Thus, Java
2037      * booleans in non-Java data structures are by convention
2038      * represented as 8-bit containers containing either zero (for
2039      * false) or any non-zero value (for true).
2040      *
2041      * <p>Java booleans in the heap are also stored in bytes, but are
2042      * strongly normalized to the value-set 0..1 (i.e., they are
2043      * truncated to the least-significant bit).
2044      *
2045      * <p>The main reason for having different conventions for
2046      * conversion is performance: Truncation to the least-significant
2047      * bit can be usually implemented with fewer (machine)
2048      * instructions than byte testing against zero.
2049      *
2050      * <p>A number of Unsafe methods load boolean values from the heap
2051      * as bytes. Unsafe converts those values according to the JNI
2052      * rules (i.e, using the "testing against zero" convention). The
2053      * method {@code byte2bool} implements that conversion.
2054      *
2055      * @param b the byte to be converted to boolean
2056      * @return the result of the conversion
2057      */
2058     @ForceInline
2059     private boolean byte2bool(byte b) {
2060         return b != 0;
2061     }
2062 
2063     /**
2064      * Convert a boolean value to a byte. The return value is strongly
2065      * normalized to the value-set 0..1 (i.e., the value is truncated
2066      * to the least-significant bit). See {@link #byte2bool(byte)} for
2067      * more details on conversion conventions.
2068      *
2069      * @param b the boolean to be converted to byte (and then normalized)
2070      * @return the result of the conversion
2071      */
2072     @ForceInline
2073     private byte bool2byte(boolean b) {
2074         return b ? (byte)1 : (byte)0;
2075     }
2076 
2077     @ForceInline
2078     public final boolean compareAndSetBoolean(Object o, long offset,
2079                                               boolean expected,
2080                                               boolean x) {
2081         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2082     }
2083 
2084     @ForceInline
2085     public final boolean compareAndExchangeBoolean(Object o, long offset,
2086                                                    boolean expected,
2087                                                    boolean x) {
2088         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
2089     }
2090 
2091     @ForceInline
2092     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
2093                                                     boolean expected,
2094                                                     boolean x) {
2095         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
2096     }
2097 
2098     @ForceInline
2099     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
2100                                                        boolean expected,
2101                                                        boolean x) {
2102         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
2103     }
2104 
2105     @ForceInline
2106     public final boolean weakCompareAndSetBoolean(Object o, long offset,
2107                                                   boolean expected,
2108                                                   boolean x) {
2109         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2110     }
2111 
2112     @ForceInline
2113     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
2114                                                          boolean expected,
2115                                                          boolean x) {
2116         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
2117     }
2118 
2119     @ForceInline
2120     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
2121                                                          boolean expected,
2122                                                          boolean x) {
2123         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
2124     }
2125 
2126     @ForceInline
2127     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
2128                                                        boolean expected,
2129                                                        boolean x) {
2130         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
2131     }
2132 
2133     /**
2134      * Atomically updates Java variable to {@code x} if it is currently
2135      * holding {@code expected}.
2136      *
2137      * <p>This operation has memory semantics of a {@code volatile} read
2138      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2139      *
2140      * @return {@code true} if successful
2141      */
2142     @ForceInline
2143     public final boolean compareAndSetFloat(Object o, long offset,
2144                                             float expected,
2145                                             float x) {
2146         return compareAndSetInt(o, offset,
2147                                  Float.floatToRawIntBits(expected),
2148                                  Float.floatToRawIntBits(x));
2149     }
2150 
2151     @ForceInline
2152     public final float compareAndExchangeFloat(Object o, long offset,
2153                                                float expected,
2154                                                float x) {
2155         int w = compareAndExchangeInt(o, offset,
2156                                       Float.floatToRawIntBits(expected),
2157                                       Float.floatToRawIntBits(x));
2158         return Float.intBitsToFloat(w);
2159     }
2160 
2161     @ForceInline
2162     public final float compareAndExchangeFloatAcquire(Object o, long offset,
2163                                                   float expected,
2164                                                   float x) {
2165         int w = compareAndExchangeIntAcquire(o, offset,
2166                                              Float.floatToRawIntBits(expected),
2167                                              Float.floatToRawIntBits(x));
2168         return Float.intBitsToFloat(w);
2169     }
2170 
2171     @ForceInline
2172     public final float compareAndExchangeFloatRelease(Object o, long offset,
2173                                                   float expected,
2174                                                   float x) {
2175         int w = compareAndExchangeIntRelease(o, offset,
2176                                              Float.floatToRawIntBits(expected),
2177                                              Float.floatToRawIntBits(x));
2178         return Float.intBitsToFloat(w);
2179     }
2180 
2181     @ForceInline
2182     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
2183                                                      float expected,
2184                                                      float x) {
2185         return weakCompareAndSetIntPlain(o, offset,
2186                                      Float.floatToRawIntBits(expected),
2187                                      Float.floatToRawIntBits(x));
2188     }
2189 
2190     @ForceInline
2191     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
2192                                                        float expected,
2193                                                        float x) {
2194         return weakCompareAndSetIntAcquire(o, offset,
2195                                             Float.floatToRawIntBits(expected),
2196                                             Float.floatToRawIntBits(x));
2197     }
2198 
2199     @ForceInline
2200     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
2201                                                        float expected,
2202                                                        float x) {
2203         return weakCompareAndSetIntRelease(o, offset,
2204                                             Float.floatToRawIntBits(expected),
2205                                             Float.floatToRawIntBits(x));
2206     }
2207 
2208     @ForceInline
2209     public final boolean weakCompareAndSetFloat(Object o, long offset,
2210                                                 float expected,
2211                                                 float x) {
2212         return weakCompareAndSetInt(o, offset,
2213                                              Float.floatToRawIntBits(expected),
2214                                              Float.floatToRawIntBits(x));
2215     }
2216 
2217     /**
2218      * Atomically updates Java variable to {@code x} if it is currently
2219      * holding {@code expected}.
2220      *
2221      * <p>This operation has memory semantics of a {@code volatile} read
2222      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2223      *
2224      * @return {@code true} if successful
2225      */
2226     @ForceInline
2227     public final boolean compareAndSetDouble(Object o, long offset,
2228                                              double expected,
2229                                              double x) {
2230         return compareAndSetLong(o, offset,
2231                                  Double.doubleToRawLongBits(expected),
2232                                  Double.doubleToRawLongBits(x));
2233     }
2234 
2235     @ForceInline
2236     public final double compareAndExchangeDouble(Object o, long offset,
2237                                                  double expected,
2238                                                  double x) {
2239         long w = compareAndExchangeLong(o, offset,
2240                                         Double.doubleToRawLongBits(expected),
2241                                         Double.doubleToRawLongBits(x));
2242         return Double.longBitsToDouble(w);
2243     }
2244 
2245     @ForceInline
2246     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
2247                                                         double expected,
2248                                                         double x) {
2249         long w = compareAndExchangeLongAcquire(o, offset,
2250                                                Double.doubleToRawLongBits(expected),
2251                                                Double.doubleToRawLongBits(x));
2252         return Double.longBitsToDouble(w);
2253     }
2254 
2255     @ForceInline
2256     public final double compareAndExchangeDoubleRelease(Object o, long offset,
2257                                                         double expected,
2258                                                         double x) {
2259         long w = compareAndExchangeLongRelease(o, offset,
2260                                                Double.doubleToRawLongBits(expected),
2261                                                Double.doubleToRawLongBits(x));
2262         return Double.longBitsToDouble(w);
2263     }
2264 
2265     @ForceInline
2266     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
2267                                                       double expected,
2268                                                       double x) {
2269         return weakCompareAndSetLongPlain(o, offset,
2270                                      Double.doubleToRawLongBits(expected),
2271                                      Double.doubleToRawLongBits(x));
2272     }
2273 
2274     @ForceInline
2275     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2276                                                         double expected,
2277                                                         double x) {
2278         return weakCompareAndSetLongAcquire(o, offset,
2279                                              Double.doubleToRawLongBits(expected),
2280                                              Double.doubleToRawLongBits(x));
2281     }
2282 
2283     @ForceInline
2284     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2285                                                         double expected,
2286                                                         double x) {
2287         return weakCompareAndSetLongRelease(o, offset,
2288                                              Double.doubleToRawLongBits(expected),
2289                                              Double.doubleToRawLongBits(x));
2290     }
2291 
2292     @ForceInline
2293     public final boolean weakCompareAndSetDouble(Object o, long offset,
2294                                                  double expected,
2295                                                  double x) {
2296         return weakCompareAndSetLong(o, offset,
2297                                               Double.doubleToRawLongBits(expected),
2298                                               Double.doubleToRawLongBits(x));
2299     }
2300 
2301     /**
2302      * Atomically updates Java variable to {@code x} if it is currently
2303      * holding {@code expected}.
2304      *
2305      * <p>This operation has memory semantics of a {@code volatile} read
2306      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2307      *
2308      * @return {@code true} if successful
2309      */
2310     @IntrinsicCandidate
2311     public final native boolean compareAndSetLong(Object o, long offset,
2312                                                   long expected,
2313                                                   long x);
2314 
2315     @IntrinsicCandidate
2316     public final native long compareAndExchangeLong(Object o, long offset,
2317                                                     long expected,
2318                                                     long x);
2319 
2320     @IntrinsicCandidate
2321     public final long compareAndExchangeLongAcquire(Object o, long offset,
2322                                                            long expected,
2323                                                            long x) {
2324         return compareAndExchangeLong(o, offset, expected, x);
2325     }
2326 
2327     @IntrinsicCandidate
2328     public final long compareAndExchangeLongRelease(Object o, long offset,
2329                                                            long expected,
2330                                                            long x) {
2331         return compareAndExchangeLong(o, offset, expected, x);
2332     }
2333 
2334     @IntrinsicCandidate
2335     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2336                                                     long expected,
2337                                                     long x) {
2338         return compareAndSetLong(o, offset, expected, x);
2339     }
2340 
2341     @IntrinsicCandidate
2342     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2343                                                       long expected,
2344                                                       long x) {
2345         return compareAndSetLong(o, offset, expected, x);
2346     }
2347 
2348     @IntrinsicCandidate
2349     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2350                                                       long expected,
2351                                                       long x) {
2352         return compareAndSetLong(o, offset, expected, x);
2353     }
2354 
2355     @IntrinsicCandidate
2356     public final boolean weakCompareAndSetLong(Object o, long offset,
2357                                                long expected,
2358                                                long x) {
2359         return compareAndSetLong(o, offset, expected, x);
2360     }
2361 
2362     /**
2363      * Fetches a reference value from a given Java variable, with volatile
2364      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2365      */
2366     @IntrinsicCandidate
2367     public native Object getReferenceVolatile(Object o, long offset);
2368 
2369     /**
2370      * Global lock for atomic and volatile strength access to any value of
2371      * a value type.  This is a temporary workaround until better localized
2372      * atomic access mechanisms are supported for value class and primitive class.
2373      */
2374     private static final Object valueLock = new Object();
2375 
2376     public final <V> Object getValueVolatile(Object base, long offset, Class<?> valueType) {
2377         synchronized (valueLock) {
2378             return getValue(base, offset, valueType);
2379         }
2380     }
2381 
2382     /**
2383      * Stores a reference value into a given Java variable, with
2384      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2385      */
2386     @IntrinsicCandidate
2387     public native void putReferenceVolatile(Object o, long offset, Object x);
2388 
2389     public final <V> void putValueVolatile(Object o, long offset, Class<?> valueType, V x) {
2390         synchronized (valueLock) {
2391             putValue(o, offset, valueType, x);
2392         }
2393     }
2394 
2395     /** Volatile version of {@link #getInt(Object, long)}  */
2396     @IntrinsicCandidate
2397     public native int     getIntVolatile(Object o, long offset);
2398 
2399     /** Volatile version of {@link #putInt(Object, long, int)}  */
2400     @IntrinsicCandidate
2401     public native void    putIntVolatile(Object o, long offset, int x);
2402 
2403     /** Volatile version of {@link #getBoolean(Object, long)}  */
2404     @IntrinsicCandidate
2405     public native boolean getBooleanVolatile(Object o, long offset);
2406 
2407     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2408     @IntrinsicCandidate
2409     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2410 
2411     /** Volatile version of {@link #getByte(Object, long)}  */
2412     @IntrinsicCandidate
2413     public native byte    getByteVolatile(Object o, long offset);
2414 
2415     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2416     @IntrinsicCandidate
2417     public native void    putByteVolatile(Object o, long offset, byte x);
2418 
2419     /** Volatile version of {@link #getShort(Object, long)}  */
2420     @IntrinsicCandidate
2421     public native short   getShortVolatile(Object o, long offset);
2422 
2423     /** Volatile version of {@link #putShort(Object, long, short)}  */
2424     @IntrinsicCandidate
2425     public native void    putShortVolatile(Object o, long offset, short x);
2426 
2427     /** Volatile version of {@link #getChar(Object, long)}  */
2428     @IntrinsicCandidate
2429     public native char    getCharVolatile(Object o, long offset);
2430 
2431     /** Volatile version of {@link #putChar(Object, long, char)}  */
2432     @IntrinsicCandidate
2433     public native void    putCharVolatile(Object o, long offset, char x);
2434 
2435     /** Volatile version of {@link #getLong(Object, long)}  */
2436     @IntrinsicCandidate
2437     public native long    getLongVolatile(Object o, long offset);
2438 
2439     /** Volatile version of {@link #putLong(Object, long, long)}  */
2440     @IntrinsicCandidate
2441     public native void    putLongVolatile(Object o, long offset, long x);
2442 
2443     /** Volatile version of {@link #getFloat(Object, long)}  */
2444     @IntrinsicCandidate
2445     public native float   getFloatVolatile(Object o, long offset);
2446 
2447     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2448     @IntrinsicCandidate
2449     public native void    putFloatVolatile(Object o, long offset, float x);
2450 
2451     /** Volatile version of {@link #getDouble(Object, long)}  */
2452     @IntrinsicCandidate
2453     public native double  getDoubleVolatile(Object o, long offset);
2454 
2455     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2456     @IntrinsicCandidate
2457     public native void    putDoubleVolatile(Object o, long offset, double x);
2458 
2459 
2460 
2461     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2462     @IntrinsicCandidate
2463     public final Object getReferenceAcquire(Object o, long offset) {
2464         return getReferenceVolatile(o, offset);
2465     }
2466 
2467     public final <V> Object getValueAcquire(Object base, long offset, Class<?> valueType) {
2468         return getValueVolatile(base, offset, valueType);
2469     }
2470 
2471     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2472     @IntrinsicCandidate
2473     public final boolean getBooleanAcquire(Object o, long offset) {
2474         return getBooleanVolatile(o, offset);
2475     }
2476 
2477     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2478     @IntrinsicCandidate
2479     public final byte getByteAcquire(Object o, long offset) {
2480         return getByteVolatile(o, offset);
2481     }
2482 
2483     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2484     @IntrinsicCandidate
2485     public final short getShortAcquire(Object o, long offset) {
2486         return getShortVolatile(o, offset);
2487     }
2488 
2489     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2490     @IntrinsicCandidate
2491     public final char getCharAcquire(Object o, long offset) {
2492         return getCharVolatile(o, offset);
2493     }
2494 
2495     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2496     @IntrinsicCandidate
2497     public final int getIntAcquire(Object o, long offset) {
2498         return getIntVolatile(o, offset);
2499     }
2500 
2501     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2502     @IntrinsicCandidate
2503     public final float getFloatAcquire(Object o, long offset) {
2504         return getFloatVolatile(o, offset);
2505     }
2506 
2507     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2508     @IntrinsicCandidate
2509     public final long getLongAcquire(Object o, long offset) {
2510         return getLongVolatile(o, offset);
2511     }
2512 
2513     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2514     @IntrinsicCandidate
2515     public final double getDoubleAcquire(Object o, long offset) {
2516         return getDoubleVolatile(o, offset);
2517     }
2518 
2519     /*
2520      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2521      * that do not guarantee immediate visibility of the store to
2522      * other threads. This method is generally only useful if the
2523      * underlying field is a Java volatile (or if an array cell, one
2524      * that is otherwise only accessed using volatile accesses).
2525      *
2526      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2527      */
2528 
2529     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2530     @IntrinsicCandidate
2531     public final void putReferenceRelease(Object o, long offset, Object x) {
2532         putReferenceVolatile(o, offset, x);
2533     }
2534 
2535     public final <V> void putValueRelease(Object o, long offset, Class<?> valueType, V x) {
2536         putValueVolatile(o, offset, valueType, x);
2537     }
2538 
2539     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2540     @IntrinsicCandidate
2541     public final void putBooleanRelease(Object o, long offset, boolean x) {
2542         putBooleanVolatile(o, offset, x);
2543     }
2544 
2545     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2546     @IntrinsicCandidate
2547     public final void putByteRelease(Object o, long offset, byte x) {
2548         putByteVolatile(o, offset, x);
2549     }
2550 
2551     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2552     @IntrinsicCandidate
2553     public final void putShortRelease(Object o, long offset, short x) {
2554         putShortVolatile(o, offset, x);
2555     }
2556 
2557     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2558     @IntrinsicCandidate
2559     public final void putCharRelease(Object o, long offset, char x) {
2560         putCharVolatile(o, offset, x);
2561     }
2562 
2563     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2564     @IntrinsicCandidate
2565     public final void putIntRelease(Object o, long offset, int x) {
2566         putIntVolatile(o, offset, x);
2567     }
2568 
2569     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2570     @IntrinsicCandidate
2571     public final void putFloatRelease(Object o, long offset, float x) {
2572         putFloatVolatile(o, offset, x);
2573     }
2574 
2575     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2576     @IntrinsicCandidate
2577     public final void putLongRelease(Object o, long offset, long x) {
2578         putLongVolatile(o, offset, x);
2579     }
2580 
2581     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2582     @IntrinsicCandidate
2583     public final void putDoubleRelease(Object o, long offset, double x) {
2584         putDoubleVolatile(o, offset, x);
2585     }
2586 
2587     // ------------------------------ Opaque --------------------------------------
2588 
2589     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2590     @IntrinsicCandidate
2591     public final Object getReferenceOpaque(Object o, long offset) {
2592         return getReferenceVolatile(o, offset);
2593     }
2594 
2595     public final <V> Object getValueOpaque(Object base, long offset, Class<?> valueType) {
2596         return getValueVolatile(base, offset, valueType);
2597     }
2598 
2599     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2600     @IntrinsicCandidate
2601     public final boolean getBooleanOpaque(Object o, long offset) {
2602         return getBooleanVolatile(o, offset);
2603     }
2604 
2605     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2606     @IntrinsicCandidate
2607     public final byte getByteOpaque(Object o, long offset) {
2608         return getByteVolatile(o, offset);
2609     }
2610 
2611     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2612     @IntrinsicCandidate
2613     public final short getShortOpaque(Object o, long offset) {
2614         return getShortVolatile(o, offset);
2615     }
2616 
2617     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2618     @IntrinsicCandidate
2619     public final char getCharOpaque(Object o, long offset) {
2620         return getCharVolatile(o, offset);
2621     }
2622 
2623     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2624     @IntrinsicCandidate
2625     public final int getIntOpaque(Object o, long offset) {
2626         return getIntVolatile(o, offset);
2627     }
2628 
2629     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2630     @IntrinsicCandidate
2631     public final float getFloatOpaque(Object o, long offset) {
2632         return getFloatVolatile(o, offset);
2633     }
2634 
2635     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2636     @IntrinsicCandidate
2637     public final long getLongOpaque(Object o, long offset) {
2638         return getLongVolatile(o, offset);
2639     }
2640 
2641     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2642     @IntrinsicCandidate
2643     public final double getDoubleOpaque(Object o, long offset) {
2644         return getDoubleVolatile(o, offset);
2645     }
2646 
2647     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2648     @IntrinsicCandidate
2649     public final void putReferenceOpaque(Object o, long offset, Object x) {
2650         putReferenceVolatile(o, offset, x);
2651     }
2652 
2653     public final <V> void putValueOpaque(Object o, long offset, Class<?> valueType, V x) {
2654         putValueVolatile(o, offset, valueType, x);
2655     }
2656 
2657     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2658     @IntrinsicCandidate
2659     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2660         putBooleanVolatile(o, offset, x);
2661     }
2662 
2663     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2664     @IntrinsicCandidate
2665     public final void putByteOpaque(Object o, long offset, byte x) {
2666         putByteVolatile(o, offset, x);
2667     }
2668 
2669     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2670     @IntrinsicCandidate
2671     public final void putShortOpaque(Object o, long offset, short x) {
2672         putShortVolatile(o, offset, x);
2673     }
2674 
2675     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2676     @IntrinsicCandidate
2677     public final void putCharOpaque(Object o, long offset, char x) {
2678         putCharVolatile(o, offset, x);
2679     }
2680 
2681     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2682     @IntrinsicCandidate
2683     public final void putIntOpaque(Object o, long offset, int x) {
2684         putIntVolatile(o, offset, x);
2685     }
2686 
2687     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2688     @IntrinsicCandidate
2689     public final void putFloatOpaque(Object o, long offset, float x) {
2690         putFloatVolatile(o, offset, x);
2691     }
2692 
2693     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2694     @IntrinsicCandidate
2695     public final void putLongOpaque(Object o, long offset, long x) {
2696         putLongVolatile(o, offset, x);
2697     }
2698 
2699     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2700     @IntrinsicCandidate
2701     public final void putDoubleOpaque(Object o, long offset, double x) {
2702         putDoubleVolatile(o, offset, x);
2703     }
2704 
2705     /**
2706      * Unblocks the given thread blocked on {@code park}, or, if it is
2707      * not blocked, causes the subsequent call to {@code park} not to
2708      * block.  Note: this operation is "unsafe" solely because the
2709      * caller must somehow ensure that the thread has not been
2710      * destroyed. Nothing special is usually required to ensure this
2711      * when called from Java (in which there will ordinarily be a live
2712      * reference to the thread) but this is not nearly-automatically
2713      * so when calling from native code.
2714      *
2715      * @param thread the thread to unpark.
2716      */
2717     @IntrinsicCandidate
2718     public native void unpark(Object thread);
2719 
2720     /**
2721      * Blocks current thread, returning when a balancing
2722      * {@code unpark} occurs, or a balancing {@code unpark} has
2723      * already occurred, or the thread is interrupted, or, if not
2724      * absolute and time is not zero, the given time nanoseconds have
2725      * elapsed, or if absolute, the given deadline in milliseconds
2726      * since Epoch has passed, or spuriously (i.e., returning for no
2727      * "reason"). Note: This operation is in the Unsafe class only
2728      * because {@code unpark} is, so it would be strange to place it
2729      * elsewhere.
2730      */
2731     @IntrinsicCandidate
2732     public native void park(boolean isAbsolute, long time);
2733 
2734     /**
2735      * Gets the load average in the system run queue assigned
2736      * to the available processors averaged over various periods of time.
2737      * This method retrieves the given {@code nelem} samples and
2738      * assigns to the elements of the given {@code loadavg} array.
2739      * The system imposes a maximum of 3 samples, representing
2740      * averages over the last 1,  5,  and  15 minutes, respectively.
2741      *
2742      * @param loadavg an array of double of size nelems
2743      * @param nelems the number of samples to be retrieved and
2744      *        must be 1 to 3.
2745      *
2746      * @return the number of samples actually retrieved; or -1
2747      *         if the load average is unobtainable.
2748      */
2749     public int getLoadAverage(double[] loadavg, int nelems) {
2750         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2751             throw new ArrayIndexOutOfBoundsException();
2752         }
2753 
2754         return getLoadAverage0(loadavg, nelems);
2755     }
2756 
2757     // The following contain CAS-based Java implementations used on
2758     // platforms not supporting native instructions
2759 
2760     /**
2761      * Atomically adds the given value to the current value of a field
2762      * or array element within the given object {@code o}
2763      * at the given {@code offset}.
2764      *
2765      * @param o object/array to update the field/element in
2766      * @param offset field/element offset
2767      * @param delta the value to add
2768      * @return the previous value
2769      * @since 1.8
2770      */
2771     @IntrinsicCandidate
2772     public final int getAndAddInt(Object o, long offset, int delta) {
2773         int v;
2774         do {
2775             v = getIntVolatile(o, offset);
2776         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
2777         return v;
2778     }
2779 
2780     @ForceInline
2781     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2782         int v;
2783         do {
2784             v = getInt(o, offset);
2785         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
2786         return v;
2787     }
2788 
2789     @ForceInline
2790     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2791         int v;
2792         do {
2793             v = getIntAcquire(o, offset);
2794         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
2795         return v;
2796     }
2797 
2798     /**
2799      * Atomically adds the given value to the current value of a field
2800      * or array element within the given object {@code o}
2801      * at the given {@code offset}.
2802      *
2803      * @param o object/array to update the field/element in
2804      * @param offset field/element offset
2805      * @param delta the value to add
2806      * @return the previous value
2807      * @since 1.8
2808      */
2809     @IntrinsicCandidate
2810     public final long getAndAddLong(Object o, long offset, long delta) {
2811         long v;
2812         do {
2813             v = getLongVolatile(o, offset);
2814         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
2815         return v;
2816     }
2817 
2818     @ForceInline
2819     public final long getAndAddLongRelease(Object o, long offset, long delta) {
2820         long v;
2821         do {
2822             v = getLong(o, offset);
2823         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
2824         return v;
2825     }
2826 
2827     @ForceInline
2828     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
2829         long v;
2830         do {
2831             v = getLongAcquire(o, offset);
2832         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
2833         return v;
2834     }
2835 
2836     @IntrinsicCandidate
2837     public final byte getAndAddByte(Object o, long offset, byte delta) {
2838         byte v;
2839         do {
2840             v = getByteVolatile(o, offset);
2841         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
2842         return v;
2843     }
2844 
2845     @ForceInline
2846     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
2847         byte v;
2848         do {
2849             v = getByte(o, offset);
2850         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
2851         return v;
2852     }
2853 
2854     @ForceInline
2855     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
2856         byte v;
2857         do {
2858             v = getByteAcquire(o, offset);
2859         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
2860         return v;
2861     }
2862 
2863     @IntrinsicCandidate
2864     public final short getAndAddShort(Object o, long offset, short delta) {
2865         short v;
2866         do {
2867             v = getShortVolatile(o, offset);
2868         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
2869         return v;
2870     }
2871 
2872     @ForceInline
2873     public final short getAndAddShortRelease(Object o, long offset, short delta) {
2874         short v;
2875         do {
2876             v = getShort(o, offset);
2877         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
2878         return v;
2879     }
2880 
2881     @ForceInline
2882     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
2883         short v;
2884         do {
2885             v = getShortAcquire(o, offset);
2886         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
2887         return v;
2888     }
2889 
2890     @ForceInline
2891     public final char getAndAddChar(Object o, long offset, char delta) {
2892         return (char) getAndAddShort(o, offset, (short) delta);
2893     }
2894 
2895     @ForceInline
2896     public final char getAndAddCharRelease(Object o, long offset, char delta) {
2897         return (char) getAndAddShortRelease(o, offset, (short) delta);
2898     }
2899 
2900     @ForceInline
2901     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
2902         return (char) getAndAddShortAcquire(o, offset, (short) delta);
2903     }
2904 
2905     @ForceInline
2906     public final float getAndAddFloat(Object o, long offset, float delta) {
2907         int expectedBits;
2908         float v;
2909         do {
2910             // Load and CAS with the raw bits to avoid issues with NaNs and
2911             // possible bit conversion from signaling NaNs to quiet NaNs that
2912             // may result in the loop not terminating.
2913             expectedBits = getIntVolatile(o, offset);
2914             v = Float.intBitsToFloat(expectedBits);
2915         } while (!weakCompareAndSetInt(o, offset,
2916                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2917         return v;
2918     }
2919 
2920     @ForceInline
2921     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
2922         int expectedBits;
2923         float v;
2924         do {
2925             // Load and CAS with the raw bits to avoid issues with NaNs and
2926             // possible bit conversion from signaling NaNs to quiet NaNs that
2927             // may result in the loop not terminating.
2928             expectedBits = getInt(o, offset);
2929             v = Float.intBitsToFloat(expectedBits);
2930         } while (!weakCompareAndSetIntRelease(o, offset,
2931                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2932         return v;
2933     }
2934 
2935     @ForceInline
2936     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
2937         int expectedBits;
2938         float v;
2939         do {
2940             // Load and CAS with the raw bits to avoid issues with NaNs and
2941             // possible bit conversion from signaling NaNs to quiet NaNs that
2942             // may result in the loop not terminating.
2943             expectedBits = getIntAcquire(o, offset);
2944             v = Float.intBitsToFloat(expectedBits);
2945         } while (!weakCompareAndSetIntAcquire(o, offset,
2946                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2947         return v;
2948     }
2949 
2950     @ForceInline
2951     public final double getAndAddDouble(Object o, long offset, double delta) {
2952         long expectedBits;
2953         double v;
2954         do {
2955             // Load and CAS with the raw bits to avoid issues with NaNs and
2956             // possible bit conversion from signaling NaNs to quiet NaNs that
2957             // may result in the loop not terminating.
2958             expectedBits = getLongVolatile(o, offset);
2959             v = Double.longBitsToDouble(expectedBits);
2960         } while (!weakCompareAndSetLong(o, offset,
2961                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2962         return v;
2963     }
2964 
2965     @ForceInline
2966     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
2967         long expectedBits;
2968         double v;
2969         do {
2970             // Load and CAS with the raw bits to avoid issues with NaNs and
2971             // possible bit conversion from signaling NaNs to quiet NaNs that
2972             // may result in the loop not terminating.
2973             expectedBits = getLong(o, offset);
2974             v = Double.longBitsToDouble(expectedBits);
2975         } while (!weakCompareAndSetLongRelease(o, offset,
2976                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2977         return v;
2978     }
2979 
2980     @ForceInline
2981     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
2982         long expectedBits;
2983         double v;
2984         do {
2985             // Load and CAS with the raw bits to avoid issues with NaNs and
2986             // possible bit conversion from signaling NaNs to quiet NaNs that
2987             // may result in the loop not terminating.
2988             expectedBits = getLongAcquire(o, offset);
2989             v = Double.longBitsToDouble(expectedBits);
2990         } while (!weakCompareAndSetLongAcquire(o, offset,
2991                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2992         return v;
2993     }
2994 
2995     /**
2996      * Atomically exchanges the given value with the current value of
2997      * a field or array element within the given object {@code o}
2998      * at the given {@code offset}.
2999      *
3000      * @param o object/array to update the field/element in
3001      * @param offset field/element offset
3002      * @param newValue new value
3003      * @return the previous value
3004      * @since 1.8
3005      */
3006     @IntrinsicCandidate
3007     public final int getAndSetInt(Object o, long offset, int newValue) {
3008         int v;
3009         do {
3010             v = getIntVolatile(o, offset);
3011         } while (!weakCompareAndSetInt(o, offset, v, newValue));
3012         return v;
3013     }
3014 
3015     @ForceInline
3016     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
3017         int v;
3018         do {
3019             v = getInt(o, offset);
3020         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
3021         return v;
3022     }
3023 
3024     @ForceInline
3025     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
3026         int v;
3027         do {
3028             v = getIntAcquire(o, offset);
3029         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
3030         return v;
3031     }
3032 
3033     /**
3034      * Atomically exchanges the given value with the current value of
3035      * a field or array element within the given object {@code o}
3036      * at the given {@code offset}.
3037      *
3038      * @param o object/array to update the field/element in
3039      * @param offset field/element offset
3040      * @param newValue new value
3041      * @return the previous value
3042      * @since 1.8
3043      */
3044     @IntrinsicCandidate
3045     public final long getAndSetLong(Object o, long offset, long newValue) {
3046         long v;
3047         do {
3048             v = getLongVolatile(o, offset);
3049         } while (!weakCompareAndSetLong(o, offset, v, newValue));
3050         return v;
3051     }
3052 
3053     @ForceInline
3054     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
3055         long v;
3056         do {
3057             v = getLong(o, offset);
3058         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
3059         return v;
3060     }
3061 
3062     @ForceInline
3063     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
3064         long v;
3065         do {
3066             v = getLongAcquire(o, offset);
3067         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
3068         return v;
3069     }
3070 
3071     /**
3072      * Atomically exchanges the given reference value with the current
3073      * reference value of a field or array element within the given
3074      * object {@code o} at the given {@code offset}.
3075      *
3076      * @param o object/array to update the field/element in
3077      * @param offset field/element offset
3078      * @param newValue new value
3079      * @return the previous value
3080      * @since 1.8
3081      */
3082     @IntrinsicCandidate
3083     public final Object getAndSetReference(Object o, long offset, Object newValue) {
3084         Object v;
3085         do {
3086             v = getReferenceVolatile(o, offset);
3087         } while (!weakCompareAndSetReference(o, offset, v, newValue));
3088         return v;
3089     }
3090 
3091     @SuppressWarnings("unchecked")
3092     public final <V> Object getAndSetValue(Object o, long offset, Class<?> valueType, V newValue) {
3093         synchronized (valueLock) {
3094             Object oldValue = getValue(o, offset, valueType);
3095             putValue(o, offset, valueType, newValue);
3096             return oldValue;
3097         }
3098     }
3099 
3100     @ForceInline
3101     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
3102         Object v;
3103         do {
3104             v = getReference(o, offset);
3105         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
3106         return v;
3107     }
3108 
3109     @ForceInline
3110     public final <V> Object getAndSetValueRelease(Object o, long offset, Class<?> valueType, V newValue) {
3111         return getAndSetValue(o, offset, valueType, newValue);
3112     }
3113 
3114     @ForceInline
3115     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
3116         Object v;
3117         do {
3118             v = getReferenceAcquire(o, offset);
3119         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
3120         return v;
3121     }
3122 
3123     @ForceInline
3124     public final <V> Object getAndSetValueAcquire(Object o, long offset, Class<?> valueType, V newValue) {
3125         return getAndSetValue(o, offset, valueType, newValue);
3126     }
3127 
3128     @IntrinsicCandidate
3129     public final byte getAndSetByte(Object o, long offset, byte newValue) {
3130         byte v;
3131         do {
3132             v = getByteVolatile(o, offset);
3133         } while (!weakCompareAndSetByte(o, offset, v, newValue));
3134         return v;
3135     }
3136 
3137     @ForceInline
3138     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
3139         byte v;
3140         do {
3141             v = getByte(o, offset);
3142         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
3143         return v;
3144     }
3145 
3146     @ForceInline
3147     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
3148         byte v;
3149         do {
3150             v = getByteAcquire(o, offset);
3151         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
3152         return v;
3153     }
3154 
3155     @ForceInline
3156     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
3157         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
3158     }
3159 
3160     @ForceInline
3161     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
3162         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
3163     }
3164 
3165     @ForceInline
3166     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
3167         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
3168     }
3169 
3170     @IntrinsicCandidate
3171     public final short getAndSetShort(Object o, long offset, short newValue) {
3172         short v;
3173         do {
3174             v = getShortVolatile(o, offset);
3175         } while (!weakCompareAndSetShort(o, offset, v, newValue));
3176         return v;
3177     }
3178 
3179     @ForceInline
3180     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
3181         short v;
3182         do {
3183             v = getShort(o, offset);
3184         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
3185         return v;
3186     }
3187 
3188     @ForceInline
3189     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
3190         short v;
3191         do {
3192             v = getShortAcquire(o, offset);
3193         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
3194         return v;
3195     }
3196 
3197     @ForceInline
3198     public final char getAndSetChar(Object o, long offset, char newValue) {
3199         return s2c(getAndSetShort(o, offset, c2s(newValue)));
3200     }
3201 
3202     @ForceInline
3203     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
3204         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
3205     }
3206 
3207     @ForceInline
3208     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
3209         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
3210     }
3211 
3212     @ForceInline
3213     public final float getAndSetFloat(Object o, long offset, float newValue) {
3214         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
3215         return Float.intBitsToFloat(v);
3216     }
3217 
3218     @ForceInline
3219     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
3220         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
3221         return Float.intBitsToFloat(v);
3222     }
3223 
3224     @ForceInline
3225     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
3226         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
3227         return Float.intBitsToFloat(v);
3228     }
3229 
3230     @ForceInline
3231     public final double getAndSetDouble(Object o, long offset, double newValue) {
3232         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
3233         return Double.longBitsToDouble(v);
3234     }
3235 
3236     @ForceInline
3237     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
3238         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
3239         return Double.longBitsToDouble(v);
3240     }
3241 
3242     @ForceInline
3243     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
3244         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
3245         return Double.longBitsToDouble(v);
3246     }
3247 
3248 
3249     // The following contain CAS-based Java implementations used on
3250     // platforms not supporting native instructions
3251 
3252     @ForceInline
3253     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
3254         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
3255     }
3256 
3257     @ForceInline
3258     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
3259         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
3260     }
3261 
3262     @ForceInline
3263     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
3264         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
3265     }
3266 
3267     @ForceInline
3268     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
3269         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
3270     }
3271 
3272     @ForceInline
3273     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
3274         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
3275     }
3276 
3277     @ForceInline
3278     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
3279         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
3280     }
3281 
3282     @ForceInline
3283     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
3284         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
3285     }
3286 
3287     @ForceInline
3288     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
3289         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
3290     }
3291 
3292     @ForceInline
3293     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
3294         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
3295     }
3296 
3297 
3298     @ForceInline
3299     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
3300         byte current;
3301         do {
3302             current = getByteVolatile(o, offset);
3303         } while (!weakCompareAndSetByte(o, offset,
3304                                                   current, (byte) (current | mask)));
3305         return current;
3306     }
3307 
3308     @ForceInline
3309     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
3310         byte current;
3311         do {
3312             current = getByte(o, offset);
3313         } while (!weakCompareAndSetByteRelease(o, offset,
3314                                                  current, (byte) (current | mask)));
3315         return current;
3316     }
3317 
3318     @ForceInline
3319     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
3320         byte current;
3321         do {
3322             // Plain read, the value is a hint, the acquire CAS does the work
3323             current = getByte(o, offset);
3324         } while (!weakCompareAndSetByteAcquire(o, offset,
3325                                                  current, (byte) (current | mask)));
3326         return current;
3327     }
3328 
3329     @ForceInline
3330     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3331         byte current;
3332         do {
3333             current = getByteVolatile(o, offset);
3334         } while (!weakCompareAndSetByte(o, offset,
3335                                                   current, (byte) (current & mask)));
3336         return current;
3337     }
3338 
3339     @ForceInline
3340     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3341         byte current;
3342         do {
3343             current = getByte(o, offset);
3344         } while (!weakCompareAndSetByteRelease(o, offset,
3345                                                  current, (byte) (current & mask)));
3346         return current;
3347     }
3348 
3349     @ForceInline
3350     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3351         byte current;
3352         do {
3353             // Plain read, the value is a hint, the acquire CAS does the work
3354             current = getByte(o, offset);
3355         } while (!weakCompareAndSetByteAcquire(o, offset,
3356                                                  current, (byte) (current & mask)));
3357         return current;
3358     }
3359 
3360     @ForceInline
3361     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3362         byte current;
3363         do {
3364             current = getByteVolatile(o, offset);
3365         } while (!weakCompareAndSetByte(o, offset,
3366                                                   current, (byte) (current ^ mask)));
3367         return current;
3368     }
3369 
3370     @ForceInline
3371     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3372         byte current;
3373         do {
3374             current = getByte(o, offset);
3375         } while (!weakCompareAndSetByteRelease(o, offset,
3376                                                  current, (byte) (current ^ mask)));
3377         return current;
3378     }
3379 
3380     @ForceInline
3381     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3382         byte current;
3383         do {
3384             // Plain read, the value is a hint, the acquire CAS does the work
3385             current = getByte(o, offset);
3386         } while (!weakCompareAndSetByteAcquire(o, offset,
3387                                                  current, (byte) (current ^ mask)));
3388         return current;
3389     }
3390 
3391 
3392     @ForceInline
3393     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3394         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3395     }
3396 
3397     @ForceInline
3398     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3399         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3400     }
3401 
3402     @ForceInline
3403     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3404         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3405     }
3406 
3407     @ForceInline
3408     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3409         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3410     }
3411 
3412     @ForceInline
3413     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3414         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3415     }
3416 
3417     @ForceInline
3418     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3419         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3420     }
3421 
3422     @ForceInline
3423     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3424         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3425     }
3426 
3427     @ForceInline
3428     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3429         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3430     }
3431 
3432     @ForceInline
3433     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3434         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3435     }
3436 
3437 
3438     @ForceInline
3439     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3440         short current;
3441         do {
3442             current = getShortVolatile(o, offset);
3443         } while (!weakCompareAndSetShort(o, offset,
3444                                                 current, (short) (current | mask)));
3445         return current;
3446     }
3447 
3448     @ForceInline
3449     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3450         short current;
3451         do {
3452             current = getShort(o, offset);
3453         } while (!weakCompareAndSetShortRelease(o, offset,
3454                                                current, (short) (current | mask)));
3455         return current;
3456     }
3457 
3458     @ForceInline
3459     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3460         short current;
3461         do {
3462             // Plain read, the value is a hint, the acquire CAS does the work
3463             current = getShort(o, offset);
3464         } while (!weakCompareAndSetShortAcquire(o, offset,
3465                                                current, (short) (current | mask)));
3466         return current;
3467     }
3468 
3469     @ForceInline
3470     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3471         short current;
3472         do {
3473             current = getShortVolatile(o, offset);
3474         } while (!weakCompareAndSetShort(o, offset,
3475                                                 current, (short) (current & mask)));
3476         return current;
3477     }
3478 
3479     @ForceInline
3480     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3481         short current;
3482         do {
3483             current = getShort(o, offset);
3484         } while (!weakCompareAndSetShortRelease(o, offset,
3485                                                current, (short) (current & mask)));
3486         return current;
3487     }
3488 
3489     @ForceInline
3490     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3491         short current;
3492         do {
3493             // Plain read, the value is a hint, the acquire CAS does the work
3494             current = getShort(o, offset);
3495         } while (!weakCompareAndSetShortAcquire(o, offset,
3496                                                current, (short) (current & mask)));
3497         return current;
3498     }
3499 
3500     @ForceInline
3501     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3502         short current;
3503         do {
3504             current = getShortVolatile(o, offset);
3505         } while (!weakCompareAndSetShort(o, offset,
3506                                                 current, (short) (current ^ mask)));
3507         return current;
3508     }
3509 
3510     @ForceInline
3511     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3512         short current;
3513         do {
3514             current = getShort(o, offset);
3515         } while (!weakCompareAndSetShortRelease(o, offset,
3516                                                current, (short) (current ^ mask)));
3517         return current;
3518     }
3519 
3520     @ForceInline
3521     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3522         short current;
3523         do {
3524             // Plain read, the value is a hint, the acquire CAS does the work
3525             current = getShort(o, offset);
3526         } while (!weakCompareAndSetShortAcquire(o, offset,
3527                                                current, (short) (current ^ mask)));
3528         return current;
3529     }
3530 
3531 
3532     @ForceInline
3533     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3534         int current;
3535         do {
3536             current = getIntVolatile(o, offset);
3537         } while (!weakCompareAndSetInt(o, offset,
3538                                                 current, current | mask));
3539         return current;
3540     }
3541 
3542     @ForceInline
3543     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3544         int current;
3545         do {
3546             current = getInt(o, offset);
3547         } while (!weakCompareAndSetIntRelease(o, offset,
3548                                                current, current | mask));
3549         return current;
3550     }
3551 
3552     @ForceInline
3553     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3554         int current;
3555         do {
3556             // Plain read, the value is a hint, the acquire CAS does the work
3557             current = getInt(o, offset);
3558         } while (!weakCompareAndSetIntAcquire(o, offset,
3559                                                current, current | mask));
3560         return current;
3561     }
3562 
3563     /**
3564      * Atomically replaces the current value of a field or array element within
3565      * the given object with the result of bitwise AND between the current value
3566      * and mask.
3567      *
3568      * @param o object/array to update the field/element in
3569      * @param offset field/element offset
3570      * @param mask the mask value
3571      * @return the previous value
3572      * @since 9
3573      */
3574     @ForceInline
3575     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3576         int current;
3577         do {
3578             current = getIntVolatile(o, offset);
3579         } while (!weakCompareAndSetInt(o, offset,
3580                                                 current, current & mask));
3581         return current;
3582     }
3583 
3584     @ForceInline
3585     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3586         int current;
3587         do {
3588             current = getInt(o, offset);
3589         } while (!weakCompareAndSetIntRelease(o, offset,
3590                                                current, current & mask));
3591         return current;
3592     }
3593 
3594     @ForceInline
3595     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3596         int current;
3597         do {
3598             // Plain read, the value is a hint, the acquire CAS does the work
3599             current = getInt(o, offset);
3600         } while (!weakCompareAndSetIntAcquire(o, offset,
3601                                                current, current & mask));
3602         return current;
3603     }
3604 
3605     @ForceInline
3606     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3607         int current;
3608         do {
3609             current = getIntVolatile(o, offset);
3610         } while (!weakCompareAndSetInt(o, offset,
3611                                                 current, current ^ mask));
3612         return current;
3613     }
3614 
3615     @ForceInline
3616     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3617         int current;
3618         do {
3619             current = getInt(o, offset);
3620         } while (!weakCompareAndSetIntRelease(o, offset,
3621                                                current, current ^ mask));
3622         return current;
3623     }
3624 
3625     @ForceInline
3626     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3627         int current;
3628         do {
3629             // Plain read, the value is a hint, the acquire CAS does the work
3630             current = getInt(o, offset);
3631         } while (!weakCompareAndSetIntAcquire(o, offset,
3632                                                current, current ^ mask));
3633         return current;
3634     }
3635 
3636 
3637     @ForceInline
3638     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3639         long current;
3640         do {
3641             current = getLongVolatile(o, offset);
3642         } while (!weakCompareAndSetLong(o, offset,
3643                                                 current, current | mask));
3644         return current;
3645     }
3646 
3647     @ForceInline
3648     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3649         long current;
3650         do {
3651             current = getLong(o, offset);
3652         } while (!weakCompareAndSetLongRelease(o, offset,
3653                                                current, current | mask));
3654         return current;
3655     }
3656 
3657     @ForceInline
3658     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3659         long current;
3660         do {
3661             // Plain read, the value is a hint, the acquire CAS does the work
3662             current = getLong(o, offset);
3663         } while (!weakCompareAndSetLongAcquire(o, offset,
3664                                                current, current | mask));
3665         return current;
3666     }
3667 
3668     @ForceInline
3669     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3670         long current;
3671         do {
3672             current = getLongVolatile(o, offset);
3673         } while (!weakCompareAndSetLong(o, offset,
3674                                                 current, current & mask));
3675         return current;
3676     }
3677 
3678     @ForceInline
3679     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3680         long current;
3681         do {
3682             current = getLong(o, offset);
3683         } while (!weakCompareAndSetLongRelease(o, offset,
3684                                                current, current & mask));
3685         return current;
3686     }
3687 
3688     @ForceInline
3689     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3690         long current;
3691         do {
3692             // Plain read, the value is a hint, the acquire CAS does the work
3693             current = getLong(o, offset);
3694         } while (!weakCompareAndSetLongAcquire(o, offset,
3695                                                current, current & mask));
3696         return current;
3697     }
3698 
3699     @ForceInline
3700     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3701         long current;
3702         do {
3703             current = getLongVolatile(o, offset);
3704         } while (!weakCompareAndSetLong(o, offset,
3705                                                 current, current ^ mask));
3706         return current;
3707     }
3708 
3709     @ForceInline
3710     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3711         long current;
3712         do {
3713             current = getLong(o, offset);
3714         } while (!weakCompareAndSetLongRelease(o, offset,
3715                                                current, current ^ mask));
3716         return current;
3717     }
3718 
3719     @ForceInline
3720     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3721         long current;
3722         do {
3723             // Plain read, the value is a hint, the acquire CAS does the work
3724             current = getLong(o, offset);
3725         } while (!weakCompareAndSetLongAcquire(o, offset,
3726                                                current, current ^ mask));
3727         return current;
3728     }
3729 
3730 
3731 
3732     /**
3733      * Ensures that loads before the fence will not be reordered with loads and
3734      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3735      *
3736      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3737      * (an "acquire fence").
3738      *
3739      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3740      *
3741      * @since 1.8
3742      */
3743     @IntrinsicCandidate
3744     public final void loadFence() {
3745         // If loadFence intrinsic is not available, fall back to full fence.
3746         fullFence();
3747     }
3748 
3749     /**
3750      * Ensures that loads and stores before the fence will not be reordered with
3751      * stores after the fence; a "StoreStore plus LoadStore barrier".
3752      *
3753      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3754      * (a "release fence").
3755      *
3756      * Provides a StoreStore barrier followed by a LoadStore barrier.
3757      *
3758      * @since 1.8
3759      */
3760     @IntrinsicCandidate
3761     public final void storeFence() {
3762         // If storeFence intrinsic is not available, fall back to full fence.
3763         fullFence();
3764     }
3765 
3766     /**
3767      * Ensures that loads and stores before the fence will not be reordered
3768      * with loads and stores after the fence.  Implies the effects of both
3769      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3770      * barrier.
3771      *
3772      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3773      * @since 1.8
3774      */
3775     @IntrinsicCandidate
3776     public native void fullFence();
3777 
3778     /**
3779      * Ensures that loads before the fence will not be reordered with
3780      * loads after the fence.
3781      *
3782      * @implNote
3783      * This method is operationally equivalent to {@link #loadFence()}.
3784      *
3785      * @since 9
3786      */
3787     public final void loadLoadFence() {
3788         loadFence();
3789     }
3790 
3791     /**
3792      * Ensures that stores before the fence will not be reordered with
3793      * stores after the fence.
3794      *
3795      * @since 9
3796      */
3797     @IntrinsicCandidate
3798     public final void storeStoreFence() {
3799         // If storeStoreFence intrinsic is not available, fall back to storeFence.
3800         storeFence();
3801     }
3802 
3803     /**
3804      * Throws IllegalAccessError; for use by the VM for access control
3805      * error support.
3806      * @since 1.8
3807      */
3808     private static void throwIllegalAccessError() {
3809         throw new IllegalAccessError();
3810     }
3811 
3812     /**
3813      * Throws NoSuchMethodError; for use by the VM for redefinition support.
3814      * @since 13
3815      */
3816     private static void throwNoSuchMethodError() {
3817         throw new NoSuchMethodError();
3818     }
3819 
3820     /**
3821      * @return Returns true if the native byte ordering of this
3822      * platform is big-endian, false if it is little-endian.
3823      */
3824     public final boolean isBigEndian() { return BIG_ENDIAN; }
3825 
3826     /**
3827      * @return Returns true if this platform is capable of performing
3828      * accesses at addresses which are not aligned for the type of the
3829      * primitive type being accessed, false otherwise.
3830      */
3831     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
3832 
3833     /**
3834      * Fetches a value at some byte offset into a given Java object.
3835      * More specifically, fetches a value within the given object
3836      * <code>o</code> at the given offset, or (if <code>o</code> is
3837      * null) from the memory address whose numerical value is the
3838      * given offset.  <p>
3839      *
3840      * The specification of this method is the same as {@link
3841      * #getLong(Object, long)} except that the offset does not need to
3842      * have been obtained from {@link #objectFieldOffset} on the
3843      * {@link java.lang.reflect.Field} of some Java field.  The value
3844      * in memory is raw data, and need not correspond to any Java
3845      * variable.  Unless <code>o</code> is null, the value accessed
3846      * must be entirely within the allocated object.  The endianness
3847      * of the value in memory is the endianness of the native platform.
3848      *
3849      * <p> The read will be atomic with respect to the largest power
3850      * of two that divides the GCD of the offset and the storage size.
3851      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
3852      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3853      * respectively.  There are no other guarantees of atomicity.
3854      * <p>
3855      * 8-byte atomicity is only guaranteed on platforms on which
3856      * support atomic accesses to longs.
3857      *
3858      * @param o Java heap object in which the value resides, if any, else
3859      *        null
3860      * @param offset The offset in bytes from the start of the object
3861      * @return the value fetched from the indicated object
3862      * @throws RuntimeException No defined exceptions are thrown, not even
3863      *         {@link NullPointerException}
3864      * @since 9
3865      */
3866     @IntrinsicCandidate
3867     public final long getLongUnaligned(Object o, long offset) {
3868         if ((offset & 7) == 0) {
3869             return getLong(o, offset);
3870         } else if ((offset & 3) == 0) {
3871             return makeLong(getInt(o, offset),
3872                             getInt(o, offset + 4));
3873         } else if ((offset & 1) == 0) {
3874             return makeLong(getShort(o, offset),
3875                             getShort(o, offset + 2),
3876                             getShort(o, offset + 4),
3877                             getShort(o, offset + 6));
3878         } else {
3879             return makeLong(getByte(o, offset),
3880                             getByte(o, offset + 1),
3881                             getByte(o, offset + 2),
3882                             getByte(o, offset + 3),
3883                             getByte(o, offset + 4),
3884                             getByte(o, offset + 5),
3885                             getByte(o, offset + 6),
3886                             getByte(o, offset + 7));
3887         }
3888     }
3889     /**
3890      * As {@link #getLongUnaligned(Object, long)} but with an
3891      * additional argument which specifies the endianness of the value
3892      * as stored in memory.
3893      *
3894      * @param o Java heap object in which the variable resides
3895      * @param offset The offset in bytes from the start of the object
3896      * @param bigEndian The endianness of the value
3897      * @return the value fetched from the indicated object
3898      * @since 9
3899      */
3900     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
3901         return convEndian(bigEndian, getLongUnaligned(o, offset));
3902     }
3903 
3904     /** @see #getLongUnaligned(Object, long) */
3905     @IntrinsicCandidate
3906     public final int getIntUnaligned(Object o, long offset) {
3907         if ((offset & 3) == 0) {
3908             return getInt(o, offset);
3909         } else if ((offset & 1) == 0) {
3910             return makeInt(getShort(o, offset),
3911                            getShort(o, offset + 2));
3912         } else {
3913             return makeInt(getByte(o, offset),
3914                            getByte(o, offset + 1),
3915                            getByte(o, offset + 2),
3916                            getByte(o, offset + 3));
3917         }
3918     }
3919     /** @see #getLongUnaligned(Object, long, boolean) */
3920     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
3921         return convEndian(bigEndian, getIntUnaligned(o, offset));
3922     }
3923 
3924     /** @see #getLongUnaligned(Object, long) */
3925     @IntrinsicCandidate
3926     public final short getShortUnaligned(Object o, long offset) {
3927         if ((offset & 1) == 0) {
3928             return getShort(o, offset);
3929         } else {
3930             return makeShort(getByte(o, offset),
3931                              getByte(o, offset + 1));
3932         }
3933     }
3934     /** @see #getLongUnaligned(Object, long, boolean) */
3935     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
3936         return convEndian(bigEndian, getShortUnaligned(o, offset));
3937     }
3938 
3939     /** @see #getLongUnaligned(Object, long) */
3940     @IntrinsicCandidate
3941     public final char getCharUnaligned(Object o, long offset) {
3942         if ((offset & 1) == 0) {
3943             return getChar(o, offset);
3944         } else {
3945             return (char)makeShort(getByte(o, offset),
3946                                    getByte(o, offset + 1));
3947         }
3948     }
3949 
3950     /** @see #getLongUnaligned(Object, long, boolean) */
3951     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
3952         return convEndian(bigEndian, getCharUnaligned(o, offset));
3953     }
3954 
3955     /**
3956      * Stores a value at some byte offset into a given Java object.
3957      * <p>
3958      * The specification of this method is the same as {@link
3959      * #getLong(Object, long)} except that the offset does not need to
3960      * have been obtained from {@link #objectFieldOffset} on the
3961      * {@link java.lang.reflect.Field} of some Java field.  The value
3962      * in memory is raw data, and need not correspond to any Java
3963      * variable.  The endianness of the value in memory is the
3964      * endianness of the native platform.
3965      * <p>
3966      * The write will be atomic with respect to the largest power of
3967      * two that divides the GCD of the offset and the storage size.
3968      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
3969      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3970      * respectively.  There are no other guarantees of atomicity.
3971      * <p>
3972      * 8-byte atomicity is only guaranteed on platforms on which
3973      * support atomic accesses to longs.
3974      *
3975      * @param o Java heap object in which the value resides, if any, else
3976      *        null
3977      * @param offset The offset in bytes from the start of the object
3978      * @param x the value to store
3979      * @throws RuntimeException No defined exceptions are thrown, not even
3980      *         {@link NullPointerException}
3981      * @since 9
3982      */
3983     @IntrinsicCandidate
3984     public final void putLongUnaligned(Object o, long offset, long x) {
3985         if ((offset & 7) == 0) {
3986             putLong(o, offset, x);
3987         } else if ((offset & 3) == 0) {
3988             putLongParts(o, offset,
3989                          (int)(x >> 0),
3990                          (int)(x >>> 32));
3991         } else if ((offset & 1) == 0) {
3992             putLongParts(o, offset,
3993                          (short)(x >>> 0),
3994                          (short)(x >>> 16),
3995                          (short)(x >>> 32),
3996                          (short)(x >>> 48));
3997         } else {
3998             putLongParts(o, offset,
3999                          (byte)(x >>> 0),
4000                          (byte)(x >>> 8),
4001                          (byte)(x >>> 16),
4002                          (byte)(x >>> 24),
4003                          (byte)(x >>> 32),
4004                          (byte)(x >>> 40),
4005                          (byte)(x >>> 48),
4006                          (byte)(x >>> 56));
4007         }
4008     }
4009 
4010     /**
4011      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
4012      * argument which specifies the endianness of the value as stored in memory.
4013      * @param o Java heap object in which the value resides
4014      * @param offset The offset in bytes from the start of the object
4015      * @param x the value to store
4016      * @param bigEndian The endianness of the value
4017      * @throws RuntimeException No defined exceptions are thrown, not even
4018      *         {@link NullPointerException}
4019      * @since 9
4020      */
4021     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
4022         putLongUnaligned(o, offset, convEndian(bigEndian, x));
4023     }
4024 
4025     /** @see #putLongUnaligned(Object, long, long) */
4026     @IntrinsicCandidate
4027     public final void putIntUnaligned(Object o, long offset, int x) {
4028         if ((offset & 3) == 0) {
4029             putInt(o, offset, x);
4030         } else if ((offset & 1) == 0) {
4031             putIntParts(o, offset,
4032                         (short)(x >> 0),
4033                         (short)(x >>> 16));
4034         } else {
4035             putIntParts(o, offset,
4036                         (byte)(x >>> 0),
4037                         (byte)(x >>> 8),
4038                         (byte)(x >>> 16),
4039                         (byte)(x >>> 24));
4040         }
4041     }
4042     /** @see #putLongUnaligned(Object, long, long, boolean) */
4043     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
4044         putIntUnaligned(o, offset, convEndian(bigEndian, x));
4045     }
4046 
4047     /** @see #putLongUnaligned(Object, long, long) */
4048     @IntrinsicCandidate
4049     public final void putShortUnaligned(Object o, long offset, short x) {
4050         if ((offset & 1) == 0) {
4051             putShort(o, offset, x);
4052         } else {
4053             putShortParts(o, offset,
4054                           (byte)(x >>> 0),
4055                           (byte)(x >>> 8));
4056         }
4057     }
4058     /** @see #putLongUnaligned(Object, long, long, boolean) */
4059     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
4060         putShortUnaligned(o, offset, convEndian(bigEndian, x));
4061     }
4062 
4063     /** @see #putLongUnaligned(Object, long, long) */
4064     @IntrinsicCandidate
4065     public final void putCharUnaligned(Object o, long offset, char x) {
4066         putShortUnaligned(o, offset, (short)x);
4067     }
4068     /** @see #putLongUnaligned(Object, long, long, boolean) */
4069     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
4070         putCharUnaligned(o, offset, convEndian(bigEndian, x));
4071     }
4072 
4073     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
4074 
4075     // These methods construct integers from bytes.  The byte ordering
4076     // is the native endianness of this platform.
4077     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4078         return ((toUnsignedLong(i0) << pickPos(56, 0))
4079               | (toUnsignedLong(i1) << pickPos(56, 8))
4080               | (toUnsignedLong(i2) << pickPos(56, 16))
4081               | (toUnsignedLong(i3) << pickPos(56, 24))
4082               | (toUnsignedLong(i4) << pickPos(56, 32))
4083               | (toUnsignedLong(i5) << pickPos(56, 40))
4084               | (toUnsignedLong(i6) << pickPos(56, 48))
4085               | (toUnsignedLong(i7) << pickPos(56, 56)));
4086     }
4087     private static long makeLong(short i0, short i1, short i2, short i3) {
4088         return ((toUnsignedLong(i0) << pickPos(48, 0))
4089               | (toUnsignedLong(i1) << pickPos(48, 16))
4090               | (toUnsignedLong(i2) << pickPos(48, 32))
4091               | (toUnsignedLong(i3) << pickPos(48, 48)));
4092     }
4093     private static long makeLong(int i0, int i1) {
4094         return (toUnsignedLong(i0) << pickPos(32, 0))
4095              | (toUnsignedLong(i1) << pickPos(32, 32));
4096     }
4097     private static int makeInt(short i0, short i1) {
4098         return (toUnsignedInt(i0) << pickPos(16, 0))
4099              | (toUnsignedInt(i1) << pickPos(16, 16));
4100     }
4101     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
4102         return ((toUnsignedInt(i0) << pickPos(24, 0))
4103               | (toUnsignedInt(i1) << pickPos(24, 8))
4104               | (toUnsignedInt(i2) << pickPos(24, 16))
4105               | (toUnsignedInt(i3) << pickPos(24, 24)));
4106     }
4107     private static short makeShort(byte i0, byte i1) {
4108         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
4109                      | (toUnsignedInt(i1) << pickPos(8, 8)));
4110     }
4111 
4112     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
4113     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
4114     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
4115 
4116     // These methods write integers to memory from smaller parts
4117     // provided by their caller.  The ordering in which these parts
4118     // are written is the native endianness of this platform.
4119     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4120         putByte(o, offset + 0, pick(i0, i7));
4121         putByte(o, offset + 1, pick(i1, i6));
4122         putByte(o, offset + 2, pick(i2, i5));
4123         putByte(o, offset + 3, pick(i3, i4));
4124         putByte(o, offset + 4, pick(i4, i3));
4125         putByte(o, offset + 5, pick(i5, i2));
4126         putByte(o, offset + 6, pick(i6, i1));
4127         putByte(o, offset + 7, pick(i7, i0));
4128     }
4129     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
4130         putShort(o, offset + 0, pick(i0, i3));
4131         putShort(o, offset + 2, pick(i1, i2));
4132         putShort(o, offset + 4, pick(i2, i1));
4133         putShort(o, offset + 6, pick(i3, i0));
4134     }
4135     private void putLongParts(Object o, long offset, int i0, int i1) {
4136         putInt(o, offset + 0, pick(i0, i1));
4137         putInt(o, offset + 4, pick(i1, i0));
4138     }
4139     private void putIntParts(Object o, long offset, short i0, short i1) {
4140         putShort(o, offset + 0, pick(i0, i1));
4141         putShort(o, offset + 2, pick(i1, i0));
4142     }
4143     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
4144         putByte(o, offset + 0, pick(i0, i3));
4145         putByte(o, offset + 1, pick(i1, i2));
4146         putByte(o, offset + 2, pick(i2, i1));
4147         putByte(o, offset + 3, pick(i3, i0));
4148     }
4149     private void putShortParts(Object o, long offset, byte i0, byte i1) {
4150         putByte(o, offset + 0, pick(i0, i1));
4151         putByte(o, offset + 1, pick(i1, i0));
4152     }
4153 
4154     // Zero-extend an integer
4155     private static int toUnsignedInt(byte n)    { return n & 0xff; }
4156     private static int toUnsignedInt(short n)   { return n & 0xffff; }
4157     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
4158     private static long toUnsignedLong(short n) { return n & 0xffffl; }
4159     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
4160 
4161     // Maybe byte-reverse an integer
4162     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
4163     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
4164     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
4165     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
4166 
4167 
4168 
4169     private native long allocateMemory0(long bytes);
4170     private native long reallocateMemory0(long address, long bytes);
4171     private native void freeMemory0(long address);
4172     private native void setMemory0(Object o, long offset, long bytes, byte value);
4173     @IntrinsicCandidate
4174     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4175     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
4176     private native long objectFieldOffset0(Field f);
4177     private native long objectFieldOffset1(Class<?> c, String name);
4178     private native long staticFieldOffset0(Field f);
4179     private native Object staticFieldBase0(Field f);
4180     private native boolean shouldBeInitialized0(Class<?> c);
4181     private native void ensureClassInitialized0(Class<?> c);
4182     private native int arrayBaseOffset0(Class<?> arrayClass);
4183     private native int arrayIndexScale0(Class<?> arrayClass);
4184     private native long getObjectSize0(Object o);
4185     private native int getLoadAverage0(double[] loadavg, int nelems);
4186 
4187 
4188     /**
4189      * Invokes the given direct byte buffer's cleaner, if any.
4190      *
4191      * @param directBuffer a direct byte buffer
4192      * @throws NullPointerException     if {@code directBuffer} is null
4193      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
4194      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
4195      *                                  {@link java.nio.Buffer#duplicate duplicate}
4196      */
4197     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
4198         if (!directBuffer.isDirect())
4199             throw new IllegalArgumentException("buffer is non-direct");
4200 
4201         DirectBuffer db = (DirectBuffer) directBuffer;
4202         if (db.attachment() != null)
4203             throw new IllegalArgumentException("duplicate or slice");
4204 
4205         Cleaner cleaner = db.cleaner();
4206         if (cleaner != null) {
4207             cleaner.clean();
4208         }
4209     }
4210 
4211     // The following deprecated methods are used by JSR 166.
4212 
4213     @Deprecated(since="12", forRemoval=true)
4214     public final Object getObject(Object o, long offset) {
4215         return getReference(o, offset);
4216     }
4217     @Deprecated(since="12", forRemoval=true)
4218     public final Object getObjectVolatile(Object o, long offset) {
4219         return getReferenceVolatile(o, offset);
4220     }
4221     @Deprecated(since="12", forRemoval=true)
4222     public final Object getObjectAcquire(Object o, long offset) {
4223         return getReferenceAcquire(o, offset);
4224     }
4225     @Deprecated(since="12", forRemoval=true)
4226     public final Object getObjectOpaque(Object o, long offset) {
4227         return getReferenceOpaque(o, offset);
4228     }
4229 
4230 
4231     @Deprecated(since="12", forRemoval=true)
4232     public final void putObject(Object o, long offset, Object x) {
4233         putReference(o, offset, x);
4234     }
4235     @Deprecated(since="12", forRemoval=true)
4236     public final void putObjectVolatile(Object o, long offset, Object x) {
4237         putReferenceVolatile(o, offset, x);
4238     }
4239     @Deprecated(since="12", forRemoval=true)
4240     public final void putObjectOpaque(Object o, long offset, Object x) {
4241         putReferenceOpaque(o, offset, x);
4242     }
4243     @Deprecated(since="12", forRemoval=true)
4244     public final void putObjectRelease(Object o, long offset, Object x) {
4245         putReferenceRelease(o, offset, x);
4246     }
4247 
4248 
4249     @Deprecated(since="12", forRemoval=true)
4250     public final Object getAndSetObject(Object o, long offset, Object newValue) {
4251         return getAndSetReference(o, offset, newValue);
4252     }
4253     @Deprecated(since="12", forRemoval=true)
4254     public final Object getAndSetObjectAcquire(Object o, long offset, Object newValue) {
4255         return getAndSetReferenceAcquire(o, offset, newValue);
4256     }
4257     @Deprecated(since="12", forRemoval=true)
4258     public final Object getAndSetObjectRelease(Object o, long offset, Object newValue) {
4259         return getAndSetReferenceRelease(o, offset, newValue);
4260     }
4261 
4262 
4263     @Deprecated(since="12", forRemoval=true)
4264     public final boolean compareAndSetObject(Object o, long offset, Object expected, Object x) {
4265         return compareAndSetReference(o, offset, expected, x);
4266     }
4267     @Deprecated(since="12", forRemoval=true)
4268     public final Object compareAndExchangeObject(Object o, long offset, Object expected, Object x) {
4269         return compareAndExchangeReference(o, offset, expected, x);
4270     }
4271     @Deprecated(since="12", forRemoval=true)
4272     public final Object compareAndExchangeObjectAcquire(Object o, long offset, Object expected, Object x) {
4273         return compareAndExchangeReferenceAcquire(o, offset, expected, x);
4274     }
4275     @Deprecated(since="12", forRemoval=true)
4276     public final Object compareAndExchangeObjectRelease(Object o, long offset, Object expected, Object x) {
4277         return compareAndExchangeReferenceRelease(o, offset, expected, x);
4278     }
4279 
4280 
4281     @Deprecated(since="12", forRemoval=true)
4282     public final boolean weakCompareAndSetObject(Object o, long offset, Object expected, Object x) {
4283         return weakCompareAndSetReference(o, offset, expected, x);
4284     }
4285     @Deprecated(since="12", forRemoval=true)
4286     public final boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x) {
4287         return weakCompareAndSetReferenceAcquire(o, offset, expected, x);
4288     }
4289     @Deprecated(since="12", forRemoval=true)
4290     public final boolean weakCompareAndSetObjectPlain(Object o, long offset, Object expected, Object x) {
4291         return weakCompareAndSetReferencePlain(o, offset, expected, x);
4292     }
4293     @Deprecated(since="12", forRemoval=true)
4294     public final boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x) {
4295         return weakCompareAndSetReferenceRelease(o, offset, expected, x);
4296     }
4297 }