1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.vm.annotation.AOTRuntimeSetup;
  29 import jdk.internal.vm.annotation.AOTSafeClassInitializer;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import jdk.internal.vm.annotation.IntrinsicCandidate;
  32 import sun.nio.Cleaner;
  33 import sun.nio.ch.DirectBuffer;
  34 
  35 import java.lang.reflect.Field;
  36 import java.security.ProtectionDomain;
  37 
  38 import static jdk.internal.misc.UnsafeConstants.*;
  39 
  40 /**
  41  * A collection of methods for performing low-level, unsafe operations.
  42  * Although the class and all methods are public, use of this class is
  43  * limited because only trusted code can obtain instances of it.
  44  *
  45  * <em>Note:</em> It is the responsibility of the caller to make sure
  46  * arguments are checked before methods of this class are
  47  * called. While some rudimentary checks are performed on the input,
  48  * the checks are best effort and when performance is an overriding
  49  * priority, as when methods of this class are optimized by the
  50  * runtime compiler, some or all checks (if any) may be elided. Hence,
  51  * the caller must not rely on the checks and corresponding
  52  * exceptions!
  53  *
  54  * @author John R. Rose
  55  * @see #getUnsafe
  56  */
  57 @AOTSafeClassInitializer
  58 public final class Unsafe {
  59 
  60     private static native void registerNatives();
  61     static {
  62         runtimeSetup();
  63     }
  64 
  65     /// BASE_OFFSET, INDEX_SCALE, and ADDRESS_SIZE fields are equivalent if the
  66     /// AOT initialized heap is reused, so just register natives
  67     @AOTRuntimeSetup
  68     private static void runtimeSetup() {
  69         registerNatives();
  70     }
  71 
  72     private Unsafe() {}
  73 
  74     private static final Unsafe theUnsafe = new Unsafe();
  75 
  76     /**
  77      * Provides the caller with the capability of performing unsafe
  78      * operations.
  79      *
  80      * <p>The returned {@code Unsafe} object should be carefully guarded
  81      * by the caller, since it can be used to read and write data at arbitrary
  82      * memory addresses.  It must never be passed to untrusted code.
  83      *
  84      * <p>Most methods in this class are very low-level, and correspond to a
  85      * small number of hardware instructions (on typical machines).  Compilers
  86      * are encouraged to optimize these methods accordingly.
  87      *
  88      * <p>Here is a suggested idiom for using unsafe operations:
  89      *
  90      * <pre> {@code
  91      * class MyTrustedClass {
  92      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  93      *   ...
  94      *   private long myCountAddress = ...;
  95      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  96      * }}</pre>
  97      *
  98      * (It may assist compilers to make the local variable {@code final}.)
  99      */
 100     public static Unsafe getUnsafe() {
 101         return theUnsafe;
 102     }
 103 
 104     //--- peek and poke operations
 105     // (compilers should optimize these to memory ops)
 106 
 107     // These work on object fields in the Java heap.
 108     // They will not work on elements of packed arrays.
 109 
 110     /**
 111      * Fetches a value from a given Java variable.
 112      * More specifically, fetches a field or array element within the given
 113      * object {@code o} at the given offset, or (if {@code o} is null)
 114      * from the memory address whose numerical value is the given offset.
 115      * <p>
 116      * The results are undefined unless one of the following cases is true:
 117      * <ul>
 118      * <li>The offset was obtained from {@link #objectFieldOffset} on
 119      * the {@link java.lang.reflect.Field} of some Java field and the object
 120      * referred to by {@code o} is of a class compatible with that
 121      * field's class.
 122      *
 123      * <li>The offset and object reference {@code o} (either null or
 124      * non-null) were both obtained via {@link #staticFieldOffset}
 125      * and {@link #staticFieldBase} (respectively) from the
 126      * reflective {@link Field} representation of some Java field.
 127      *
 128      * <li>The object referred to by {@code o} is an array, and the offset
 129      * is an integer of the form {@code B+N*S}, where {@code N} is
 130      * a valid index into the array, and {@code B} and {@code S} are
 131      * the values obtained by {@link #arrayBaseOffset} and {@link
 132      * #arrayIndexScale} (respectively) from the array's class.  The value
 133      * referred to is the {@code N}<em>th</em> element of the array.
 134      *
 135      * </ul>
 136      * <p>
 137      * If one of the above cases is true, the call references a specific Java
 138      * variable (field or array element).  However, the results are undefined
 139      * if that variable is not in fact of the type returned by this method.
 140      * <p>
 141      * This method refers to a variable by means of two parameters, and so
 142      * it provides (in effect) a <em>double-register</em> addressing mode
 143      * for Java variables.  When the object reference is null, this method
 144      * uses its offset as an absolute address.  This is similar in operation
 145      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 146      * <em>single-register</em> addressing mode for non-Java variables.
 147      * However, because Java variables may have a different layout in memory
 148      * from non-Java variables, programmers should not assume that these
 149      * two addressing modes are ever equivalent.  Also, programmers should
 150      * remember that offsets from the double-register addressing mode cannot
 151      * be portably confused with longs used in the single-register addressing
 152      * mode.
 153      *
 154      * @param o Java heap object in which the variable resides, if any, else
 155      *        null
 156      * @param offset indication of where the variable resides in a Java heap
 157      *        object, if any, else a memory address locating the variable
 158      *        statically
 159      * @return the value fetched from the indicated Java variable
 160      * @throws RuntimeException No defined exceptions are thrown, not even
 161      *         {@link NullPointerException}
 162      */
 163     @IntrinsicCandidate
 164     public native int getInt(Object o, long offset);
 165 
 166     /**
 167      * Stores a value into a given Java variable.
 168      * <p>
 169      * The first two parameters are interpreted exactly as with
 170      * {@link #getInt(Object, long)} to refer to a specific
 171      * Java variable (field or array element).  The given value
 172      * is stored into that variable.
 173      * <p>
 174      * The variable must be of the same type as the method
 175      * parameter {@code x}.
 176      *
 177      * @param o Java heap object in which the variable resides, if any, else
 178      *        null
 179      * @param offset indication of where the variable resides in a Java heap
 180      *        object, if any, else a memory address locating the variable
 181      *        statically
 182      * @param x the value to store into the indicated Java variable
 183      * @throws RuntimeException No defined exceptions are thrown, not even
 184      *         {@link NullPointerException}
 185      */
 186     @IntrinsicCandidate
 187     public native void putInt(Object o, long offset, int x);
 188 
 189 
 190     /**
 191      * Returns true if the given field is flattened.
 192      */
 193     public boolean isFlatField(Field f) {
 194         if (f == null) {
 195             throw new NullPointerException();
 196         }
 197         return isFlatField0(f);
 198     }
 199 
 200     private native boolean isFlatField0(Object o);
 201 
 202     /* Returns true if the given field has a null marker
 203      * <p>
 204      * Nullable flat fields are stored in a flattened representation
 205      * and have an associated null marker to indicate if the the field value is
 206      * null or the one stored with the flat representation
 207      */
 208 
 209     public boolean hasNullMarker(Field f) {
 210         if (f == null) {
 211             throw new NullPointerException();
 212         }
 213         return hasNullMarker0(f);
 214     }
 215 
 216     private native boolean hasNullMarker0(Object o);
 217 
 218     /* Returns the offset of the null marker of the field,
 219     * or -1 if the field doesn't have a null marker
 220     */
 221 
 222     public int nullMarkerOffset(Field f) {
 223         if (f == null) {
 224             throw new NullPointerException();
 225         }
 226         return nullMarkerOffset0(f);
 227     }
 228 
 229     private native int nullMarkerOffset0(Object o);
 230 
 231     public static final int NON_FLAT_LAYOUT = 0;
 232 
 233     /* Reports the kind of layout used for an element in the storage
 234      * allocation of the given array. Do not expect to perform any logic
 235      * or layout control with this value, it is just an opaque token
 236      * used for performance reasons.
 237      *
 238      * A layout of 0 indicates this array is not flat.
 239      */
 240     public int arrayLayout(Object[] array) {
 241         if (array == null) {
 242             throw new NullPointerException();
 243         }
 244         return arrayLayout0(array);
 245     }
 246 
 247     @IntrinsicCandidate
 248     private native int arrayLayout0(Object[] array);
 249 
 250 
 251     /* Reports the kind of layout used for a given field in the storage
 252      * allocation of its class.  Do not expect to perform any logic
 253      * or layout control with this value, it is just an opaque token
 254      * used for performance reasons.
 255      *
 256      * A layout of 0 indicates this field is not flat.
 257      */
 258     public int fieldLayout(Field f) {
 259         if (f == null) {
 260             throw new NullPointerException();
 261         }
 262         return fieldLayout0(f);
 263     }
 264 
 265     private native int fieldLayout0(Object o);
 266 
 267     public native Object[] newSpecialArray(Class<?> componentType,
 268                                                   int length, int layoutKind);
 269 
 270     /**
 271      * Fetches a reference value from a given Java variable.
 272      * This method can return a reference to either an object or value
 273      * or a null reference.
 274      *
 275      * @see #getInt(Object, long)
 276      */
 277     @IntrinsicCandidate
 278     public native Object getReference(Object o, long offset);
 279 
 280     /**
 281      * Stores a reference value into a given Java variable.
 282      * This method can store a reference to either an object or value
 283      * or a null reference.
 284      * <p>
 285      * Unless the reference {@code x} being stored is either null
 286      * or matches the field type, the results are undefined.
 287      * If the reference {@code o} is non-null, card marks or
 288      * other store barriers for that object (if the VM requires them)
 289      * are updated.
 290      * @see #putInt(Object, long, int)
 291      */
 292     @IntrinsicCandidate
 293     public native void putReference(Object o, long offset, Object x);
 294 
 295     /**
 296      * Fetches a value of type {@code <V>} from a given Java variable.
 297      * More specifically, fetches a field or array element within the given
 298      * {@code o} object at the given offset, or (if {@code o} is null)
 299      * from the memory address whose numerical value is the given offset.
 300      *
 301      * @apiNote
 302      * The returned object is newly allocated into the heap, because flat
 303      * values lack object headers and thus can't be used as objects directly.
 304      *
 305      * @param o Java heap object in which the variable resides, if any, else
 306      *        null
 307      * @param offset indication of where the variable resides in a Java heap
 308      *        object, if any, else a memory address locating the variable
 309      *        statically
 310      * @param layoutKind opaque value used by the VM to know the layout
 311      *        the field or array element. This value must be retrieved with
 312      *        {@link #fieldLayout} or {@link #arrayLayout}.
 313      * @param valueType value type
 314      * @param <V> the type of a value
 315      * @return the value fetched from the indicated Java variable
 316      * @throws RuntimeException No defined exceptions are thrown, not even
 317      *         {@link NullPointerException}
 318      */
 319     @IntrinsicCandidate
 320     public native <V> V getFlatValue(Object o, long offset, int layoutKind, Class<?> valueType);
 321 
 322     /**
 323      * Stores the given value into a given Java variable.
 324      *
 325      * Unless the reference {@code o} being stored is either null
 326      * or matches the field type, the results are undefined.
 327      *
 328      * @param o Java heap object in which the variable resides, if any, else
 329      *        null
 330      * @param offset indication of where the variable resides in a Java heap
 331      *        object, if any, else a memory address locating the variable
 332      *        statically
 333      * @param layoutKind opaque value used by the VM to know the layout
 334      *        the field or array element. This value must be retrieved with
 335      *        {@link #fieldLayout} or {@link #arrayLayout}.
 336      * @param valueType value type
 337      * @param v the value to store into the indicated Java variable
 338      * @param <V> the type of a value
 339      * @throws RuntimeException No defined exceptions are thrown, not even
 340      *         {@link NullPointerException}
 341      */
 342     @IntrinsicCandidate
 343     public native <V> void putFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, V v);
 344 
 345     /**
 346      * Returns an object instance with a private buffered value whose layout
 347      * and contents is exactly the given value instance.  The return object
 348      * is in the larval state that can be updated using the unsafe put operation.
 349      *
 350      * @param value a value instance
 351      * @param <V> the type of the given value instance
 352      */
 353     @IntrinsicCandidate
 354     public native <V> V makePrivateBuffer(V value);
 355 
 356     /**
 357      * Exits the larval state and returns a value instance.
 358      *
 359      * @param value a value instance
 360      * @param <V> the type of the given value instance
 361      */
 362     @IntrinsicCandidate
 363     public native <V> V finishPrivateBuffer(V value);
 364 
 365     /**
 366      * Returns the header size of the given value type.
 367      *
 368      * @param valueType value type
 369      * @return the header size of the value type
 370      */
 371     public native <V> long valueHeaderSize(Class<V> valueType);
 372 
 373     /** @see #getInt(Object, long) */
 374     @IntrinsicCandidate
 375     public native boolean getBoolean(Object o, long offset);
 376 
 377     /** @see #putInt(Object, long, int) */
 378     @IntrinsicCandidate
 379     public native void    putBoolean(Object o, long offset, boolean x);
 380 
 381     /** @see #getInt(Object, long) */
 382     @IntrinsicCandidate
 383     public native byte    getByte(Object o, long offset);
 384 
 385     /** @see #putInt(Object, long, int) */
 386     @IntrinsicCandidate
 387     public native void    putByte(Object o, long offset, byte x);
 388 
 389     /** @see #getInt(Object, long) */
 390     @IntrinsicCandidate
 391     public native short   getShort(Object o, long offset);
 392 
 393     /** @see #putInt(Object, long, int) */
 394     @IntrinsicCandidate
 395     public native void    putShort(Object o, long offset, short x);
 396 
 397     /** @see #getInt(Object, long) */
 398     @IntrinsicCandidate
 399     public native char    getChar(Object o, long offset);
 400 
 401     /** @see #putInt(Object, long, int) */
 402     @IntrinsicCandidate
 403     public native void    putChar(Object o, long offset, char x);
 404 
 405     /** @see #getInt(Object, long) */
 406     @IntrinsicCandidate
 407     public native long    getLong(Object o, long offset);
 408 
 409     /** @see #putInt(Object, long, int) */
 410     @IntrinsicCandidate
 411     public native void    putLong(Object o, long offset, long x);
 412 
 413     /** @see #getInt(Object, long) */
 414     @IntrinsicCandidate
 415     public native float   getFloat(Object o, long offset);
 416 
 417     /** @see #putInt(Object, long, int) */
 418     @IntrinsicCandidate
 419     public native void    putFloat(Object o, long offset, float x);
 420 
 421     /** @see #getInt(Object, long) */
 422     @IntrinsicCandidate
 423     public native double  getDouble(Object o, long offset);
 424 
 425     /** @see #putInt(Object, long, int) */
 426     @IntrinsicCandidate
 427     public native void    putDouble(Object o, long offset, double x);
 428 
 429     /**
 430      * Fetches a native pointer from a given memory address.  If the address is
 431      * zero, or does not point into a block obtained from {@link
 432      * #allocateMemory}, the results are undefined.
 433      *
 434      * <p>If the native pointer is less than 64 bits wide, it is extended as
 435      * an unsigned number to a Java long.  The pointer may be indexed by any
 436      * given byte offset, simply by adding that offset (as a simple integer) to
 437      * the long representing the pointer.  The number of bytes actually read
 438      * from the target address may be determined by consulting {@link
 439      * #addressSize}.
 440      *
 441      * @see #allocateMemory
 442      * @see #getInt(Object, long)
 443      */
 444     @ForceInline
 445     public long getAddress(Object o, long offset) {
 446         if (ADDRESS_SIZE == 4) {
 447             return Integer.toUnsignedLong(getInt(o, offset));
 448         } else {
 449             return getLong(o, offset);
 450         }
 451     }
 452 
 453     /**
 454      * Stores a native pointer into a given memory address.  If the address is
 455      * zero, or does not point into a block obtained from {@link
 456      * #allocateMemory}, the results are undefined.
 457      *
 458      * <p>The number of bytes actually written at the target address may be
 459      * determined by consulting {@link #addressSize}.
 460      *
 461      * @see #allocateMemory
 462      * @see #putInt(Object, long, int)
 463      */
 464     @ForceInline
 465     public void putAddress(Object o, long offset, long x) {
 466         if (ADDRESS_SIZE == 4) {
 467             putInt(o, offset, (int)x);
 468         } else {
 469             putLong(o, offset, x);
 470         }
 471     }
 472 
 473     // These read VM internal data.
 474 
 475     /**
 476      * Fetches an uncompressed reference value from a given native variable
 477      * ignoring the VM's compressed references mode.
 478      *
 479      * @param address a memory address locating the variable
 480      * @return the value fetched from the indicated native variable
 481      */
 482     public native Object getUncompressedObject(long address);
 483 
 484     // These work on values in the C heap.
 485 
 486     /**
 487      * Fetches a value from a given memory address.  If the address is zero, or
 488      * does not point into a block obtained from {@link #allocateMemory}, the
 489      * results are undefined.
 490      *
 491      * @see #allocateMemory
 492      */
 493     @ForceInline
 494     public byte getByte(long address) {
 495         return getByte(null, address);
 496     }
 497 
 498     /**
 499      * Stores a value into a given memory address.  If the address is zero, or
 500      * does not point into a block obtained from {@link #allocateMemory}, the
 501      * results are undefined.
 502      *
 503      * @see #getByte(long)
 504      */
 505     @ForceInline
 506     public void putByte(long address, byte x) {
 507         putByte(null, address, x);
 508     }
 509 
 510     /** @see #getByte(long) */
 511     @ForceInline
 512     public short getShort(long address) {
 513         return getShort(null, address);
 514     }
 515 
 516     /** @see #putByte(long, byte) */
 517     @ForceInline
 518     public void putShort(long address, short x) {
 519         putShort(null, address, x);
 520     }
 521 
 522     /** @see #getByte(long) */
 523     @ForceInline
 524     public char getChar(long address) {
 525         return getChar(null, address);
 526     }
 527 
 528     /** @see #putByte(long, byte) */
 529     @ForceInline
 530     public void putChar(long address, char x) {
 531         putChar(null, address, x);
 532     }
 533 
 534     /** @see #getByte(long) */
 535     @ForceInline
 536     public int getInt(long address) {
 537         return getInt(null, address);
 538     }
 539 
 540     /** @see #putByte(long, byte) */
 541     @ForceInline
 542     public void putInt(long address, int x) {
 543         putInt(null, address, x);
 544     }
 545 
 546     /** @see #getByte(long) */
 547     @ForceInline
 548     public long getLong(long address) {
 549         return getLong(null, address);
 550     }
 551 
 552     /** @see #putByte(long, byte) */
 553     @ForceInline
 554     public void putLong(long address, long x) {
 555         putLong(null, address, x);
 556     }
 557 
 558     /** @see #getByte(long) */
 559     @ForceInline
 560     public float getFloat(long address) {
 561         return getFloat(null, address);
 562     }
 563 
 564     /** @see #putByte(long, byte) */
 565     @ForceInline
 566     public void putFloat(long address, float x) {
 567         putFloat(null, address, x);
 568     }
 569 
 570     /** @see #getByte(long) */
 571     @ForceInline
 572     public double getDouble(long address) {
 573         return getDouble(null, address);
 574     }
 575 
 576     /** @see #putByte(long, byte) */
 577     @ForceInline
 578     public void putDouble(long address, double x) {
 579         putDouble(null, address, x);
 580     }
 581 
 582     /** @see #getAddress(Object, long) */
 583     @ForceInline
 584     public long getAddress(long address) {
 585         return getAddress(null, address);
 586     }
 587 
 588     /** @see #putAddress(Object, long, long) */
 589     @ForceInline
 590     public void putAddress(long address, long x) {
 591         putAddress(null, address, x);
 592     }
 593 
 594 
 595 
 596     //--- helper methods for validating various types of objects/values
 597 
 598     /**
 599      * Create an exception reflecting that some of the input was invalid
 600      *
 601      * <em>Note:</em> It is the responsibility of the caller to make
 602      * sure arguments are checked before the methods are called. While
 603      * some rudimentary checks are performed on the input, the checks
 604      * are best effort and when performance is an overriding priority,
 605      * as when methods of this class are optimized by the runtime
 606      * compiler, some or all checks (if any) may be elided. Hence, the
 607      * caller must not rely on the checks and corresponding
 608      * exceptions!
 609      *
 610      * @return an exception object
 611      */
 612     private RuntimeException invalidInput() {
 613         return new IllegalArgumentException();
 614     }
 615 
 616     /**
 617      * Check if a value is 32-bit clean (32 MSB are all zero)
 618      *
 619      * @param value the 64-bit value to check
 620      *
 621      * @return true if the value is 32-bit clean
 622      */
 623     private boolean is32BitClean(long value) {
 624         return value >>> 32 == 0;
 625     }
 626 
 627     /**
 628      * Check the validity of a size (the equivalent of a size_t)
 629      *
 630      * @throws RuntimeException if the size is invalid
 631      *         (<em>Note:</em> after optimization, invalid inputs may
 632      *         go undetected, which will lead to unpredictable
 633      *         behavior)
 634      */
 635     private void checkSize(long size) {
 636         if (ADDRESS_SIZE == 4) {
 637             // Note: this will also check for negative sizes
 638             if (!is32BitClean(size)) {
 639                 throw invalidInput();
 640             }
 641         } else if (size < 0) {
 642             throw invalidInput();
 643         }
 644     }
 645 
 646     /**
 647      * Check the validity of a native address (the equivalent of void*)
 648      *
 649      * @throws RuntimeException if the address is invalid
 650      *         (<em>Note:</em> after optimization, invalid inputs may
 651      *         go undetected, which will lead to unpredictable
 652      *         behavior)
 653      */
 654     private void checkNativeAddress(long address) {
 655         if (ADDRESS_SIZE == 4) {
 656             // Accept both zero and sign extended pointers. A valid
 657             // pointer will, after the +1 below, either have produced
 658             // the value 0x0 or 0x1. Masking off the low bit allows
 659             // for testing against 0.
 660             if ((((address >> 32) + 1) & ~1) != 0) {
 661                 throw invalidInput();
 662             }
 663         }
 664     }
 665 
 666     /**
 667      * Check the validity of an offset, relative to a base object
 668      *
 669      * @param o the base object
 670      * @param offset the offset to check
 671      *
 672      * @throws RuntimeException if the size is invalid
 673      *         (<em>Note:</em> after optimization, invalid inputs may
 674      *         go undetected, which will lead to unpredictable
 675      *         behavior)
 676      */
 677     private void checkOffset(Object o, long offset) {
 678         if (ADDRESS_SIZE == 4) {
 679             // Note: this will also check for negative offsets
 680             if (!is32BitClean(offset)) {
 681                 throw invalidInput();
 682             }
 683         } else if (offset < 0) {
 684             throw invalidInput();
 685         }
 686     }
 687 
 688     /**
 689      * Check the validity of a double-register pointer
 690      *
 691      * Note: This code deliberately does *not* check for NPE for (at
 692      * least) three reasons:
 693      *
 694      * 1) NPE is not just NULL/0 - there is a range of values all
 695      * resulting in an NPE, which is not trivial to check for
 696      *
 697      * 2) It is the responsibility of the callers of Unsafe methods
 698      * to verify the input, so throwing an exception here is not really
 699      * useful - passing in a NULL pointer is a critical error and the
 700      * must not expect an exception to be thrown anyway.
 701      *
 702      * 3) the actual operations will detect NULL pointers anyway by
 703      * means of traps and signals (like SIGSEGV).
 704      *
 705      * @param o Java heap object, or null
 706      * @param offset indication of where the variable resides in a Java heap
 707      *        object, if any, else a memory address locating the variable
 708      *        statically
 709      *
 710      * @throws RuntimeException if the pointer is invalid
 711      *         (<em>Note:</em> after optimization, invalid inputs may
 712      *         go undetected, which will lead to unpredictable
 713      *         behavior)
 714      */
 715     private void checkPointer(Object o, long offset) {
 716         if (o == null) {
 717             checkNativeAddress(offset);
 718         } else {
 719             checkOffset(o, offset);
 720         }
 721     }
 722 
 723     /**
 724      * Check if a type is a primitive array type
 725      *
 726      * @param c the type to check
 727      *
 728      * @return true if the type is a primitive array type
 729      */
 730     private void checkPrimitiveArray(Class<?> c) {
 731         Class<?> componentType = c.getComponentType();
 732         if (componentType == null || !componentType.isPrimitive()) {
 733             throw invalidInput();
 734         }
 735     }
 736 
 737     /**
 738      * Check that a pointer is a valid primitive array type pointer
 739      *
 740      * Note: pointers off-heap are considered to be primitive arrays
 741      *
 742      * @throws RuntimeException if the pointer is invalid
 743      *         (<em>Note:</em> after optimization, invalid inputs may
 744      *         go undetected, which will lead to unpredictable
 745      *         behavior)
 746      */
 747     private void checkPrimitivePointer(Object o, long offset) {
 748         checkPointer(o, offset);
 749 
 750         if (o != null) {
 751             // If on heap, it must be a primitive array
 752             checkPrimitiveArray(o.getClass());
 753         }
 754     }
 755 
 756 
 757     //--- wrappers for malloc, realloc, free:
 758 
 759     /**
 760      * Round up allocation size to a multiple of HeapWordSize.
 761      */
 762     private long alignToHeapWordSize(long bytes) {
 763         if (bytes >= 0) {
 764             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 765         } else {
 766             throw invalidInput();
 767         }
 768     }
 769 
 770     /**
 771      * Allocates a new block of native memory, of the given size in bytes.  The
 772      * contents of the memory are uninitialized; they will generally be
 773      * garbage.  The resulting native pointer will be zero if and only if the
 774      * requested size is zero.  The resulting native pointer will be aligned for
 775      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 776      * or resize it with {@link #reallocateMemory}.
 777      *
 778      * <em>Note:</em> It is the responsibility of the caller to make
 779      * sure arguments are checked before the methods are called. While
 780      * some rudimentary checks are performed on the input, the checks
 781      * are best effort and when performance is an overriding priority,
 782      * as when methods of this class are optimized by the runtime
 783      * compiler, some or all checks (if any) may be elided. Hence, the
 784      * caller must not rely on the checks and corresponding
 785      * exceptions!
 786      *
 787      * @throws RuntimeException if the size is negative or too large
 788      *         for the native size_t type
 789      *
 790      * @throws OutOfMemoryError if the allocation is refused by the system
 791      *
 792      * @see #getByte(long)
 793      * @see #putByte(long, byte)
 794      */
 795     public long allocateMemory(long bytes) {
 796         bytes = alignToHeapWordSize(bytes);
 797 
 798         allocateMemoryChecks(bytes);
 799 
 800         if (bytes == 0) {
 801             return 0;
 802         }
 803 
 804         long p = allocateMemory0(bytes);
 805         if (p == 0) {
 806             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 807         }
 808 
 809         return p;
 810     }
 811 
 812     /**
 813      * Validate the arguments to allocateMemory
 814      *
 815      * @throws RuntimeException if the arguments are invalid
 816      *         (<em>Note:</em> after optimization, invalid inputs may
 817      *         go undetected, which will lead to unpredictable
 818      *         behavior)
 819      */
 820     private void allocateMemoryChecks(long bytes) {
 821         checkSize(bytes);
 822     }
 823 
 824     /**
 825      * Resizes a new block of native memory, to the given size in bytes.  The
 826      * contents of the new block past the size of the old block are
 827      * uninitialized; they will generally be garbage.  The resulting native
 828      * pointer will be zero if and only if the requested size is zero.  The
 829      * resulting native pointer will be aligned for all value types.  Dispose
 830      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 831      * #reallocateMemory}.  The address passed to this method may be null, in
 832      * which case an allocation will be performed.
 833      *
 834      * <em>Note:</em> It is the responsibility of the caller to make
 835      * sure arguments are checked before the methods are called. While
 836      * some rudimentary checks are performed on the input, the checks
 837      * are best effort and when performance is an overriding priority,
 838      * as when methods of this class are optimized by the runtime
 839      * compiler, some or all checks (if any) may be elided. Hence, the
 840      * caller must not rely on the checks and corresponding
 841      * exceptions!
 842      *
 843      * @throws RuntimeException if the size is negative or too large
 844      *         for the native size_t type
 845      *
 846      * @throws OutOfMemoryError if the allocation is refused by the system
 847      *
 848      * @see #allocateMemory
 849      */
 850     public long reallocateMemory(long address, long bytes) {
 851         bytes = alignToHeapWordSize(bytes);
 852 
 853         reallocateMemoryChecks(address, bytes);
 854 
 855         if (bytes == 0) {
 856             freeMemory(address);
 857             return 0;
 858         }
 859 
 860         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 861         if (p == 0) {
 862             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 863         }
 864 
 865         return p;
 866     }
 867 
 868     /**
 869      * Validate the arguments to reallocateMemory
 870      *
 871      * @throws RuntimeException if the arguments are invalid
 872      *         (<em>Note:</em> after optimization, invalid inputs may
 873      *         go undetected, which will lead to unpredictable
 874      *         behavior)
 875      */
 876     private void reallocateMemoryChecks(long address, long bytes) {
 877         checkPointer(null, address);
 878         checkSize(bytes);
 879     }
 880 
 881     /**
 882      * Sets all bytes in a given block of memory to a fixed value
 883      * (usually zero).
 884      *
 885      * <p>This method determines a block's base address by means of two parameters,
 886      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 887      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 888      * the offset supplies an absolute base address.
 889      *
 890      * <p>The stores are in coherent (atomic) units of a size determined
 891      * by the address and length parameters.  If the effective address and
 892      * length are all even modulo 8, the stores take place in 'long' units.
 893      * If the effective address and length are (resp.) even modulo 4 or 2,
 894      * the stores take place in units of 'int' or 'short'.
 895      *
 896      * <em>Note:</em> It is the responsibility of the caller to make
 897      * sure arguments are checked before the methods are called. While
 898      * some rudimentary checks are performed on the input, the checks
 899      * are best effort and when performance is an overriding priority,
 900      * as when methods of this class are optimized by the runtime
 901      * compiler, some or all checks (if any) may be elided. Hence, the
 902      * caller must not rely on the checks and corresponding
 903      * exceptions!
 904      *
 905      * @throws RuntimeException if any of the arguments is invalid
 906      *
 907      * @since 1.7
 908      */
 909     public void setMemory(Object o, long offset, long bytes, byte value) {
 910         setMemoryChecks(o, offset, bytes, value);
 911 
 912         if (bytes == 0) {
 913             return;
 914         }
 915 
 916         setMemory0(o, offset, bytes, value);
 917     }
 918 
 919     /**
 920      * Sets all bytes in a given block of memory to a fixed value
 921      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 922      * as discussed in {@link #getInt(Object,long)}.
 923      *
 924      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 925      */
 926     public void setMemory(long address, long bytes, byte value) {
 927         setMemory(null, address, bytes, value);
 928     }
 929 
 930     /**
 931      * Validate the arguments to setMemory
 932      *
 933      * @throws RuntimeException if the arguments are invalid
 934      *         (<em>Note:</em> after optimization, invalid inputs may
 935      *         go undetected, which will lead to unpredictable
 936      *         behavior)
 937      */
 938     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 939         checkPrimitivePointer(o, offset);
 940         checkSize(bytes);
 941     }
 942 
 943     /**
 944      * Sets all bytes in a given block of memory to a copy of another
 945      * block.
 946      *
 947      * <p>This method determines each block's base address by means of two parameters,
 948      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 949      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 950      * the offset supplies an absolute base address.
 951      *
 952      * <p>The transfers are in coherent (atomic) units of a size determined
 953      * by the address and length parameters.  If the effective addresses and
 954      * length are all even modulo 8, the transfer takes place in 'long' units.
 955      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 956      * the transfer takes place in units of 'int' or 'short'.
 957      *
 958      * <em>Note:</em> It is the responsibility of the caller to make
 959      * sure arguments are checked before the methods are called. While
 960      * some rudimentary checks are performed on the input, the checks
 961      * are best effort and when performance is an overriding priority,
 962      * as when methods of this class are optimized by the runtime
 963      * compiler, some or all checks (if any) may be elided. Hence, the
 964      * caller must not rely on the checks and corresponding
 965      * exceptions!
 966      *
 967      * @throws RuntimeException if any of the arguments is invalid
 968      *
 969      * @since 1.7
 970      */
 971     public void copyMemory(Object srcBase, long srcOffset,
 972                            Object destBase, long destOffset,
 973                            long bytes) {
 974         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 975 
 976         if (bytes == 0) {
 977             return;
 978         }
 979 
 980         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 981     }
 982 
 983     /**
 984      * Sets all bytes in a given block of memory to a copy of another
 985      * block.  This provides a <em>single-register</em> addressing mode,
 986      * as discussed in {@link #getInt(Object,long)}.
 987      *
 988      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 989      */
 990     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 991         copyMemory(null, srcAddress, null, destAddress, bytes);
 992     }
 993 
 994     /**
 995      * Validate the arguments to copyMemory
 996      *
 997      * @throws RuntimeException if any of the arguments is invalid
 998      *         (<em>Note:</em> after optimization, invalid inputs may
 999      *         go undetected, which will lead to unpredictable
1000      *         behavior)
1001      */
1002     private void copyMemoryChecks(Object srcBase, long srcOffset,
1003                                   Object destBase, long destOffset,
1004                                   long bytes) {
1005         checkSize(bytes);
1006         checkPrimitivePointer(srcBase, srcOffset);
1007         checkPrimitivePointer(destBase, destOffset);
1008     }
1009 
1010     /**
1011      * Copies all elements from one block of memory to another block,
1012      * *unconditionally* byte swapping the elements on the fly.
1013      *
1014      * <p>This method determines each block's base address by means of two parameters,
1015      * and so it provides (in effect) a <em>double-register</em> addressing mode,
1016      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
1017      * the offset supplies an absolute base address.
1018      *
1019      * <em>Note:</em> It is the responsibility of the caller to make
1020      * sure arguments are checked before the methods are called. While
1021      * some rudimentary checks are performed on the input, the checks
1022      * are best effort and when performance is an overriding priority,
1023      * as when methods of this class are optimized by the runtime
1024      * compiler, some or all checks (if any) may be elided. Hence, the
1025      * caller must not rely on the checks and corresponding
1026      * exceptions!
1027      *
1028      * @throws RuntimeException if any of the arguments is invalid
1029      *
1030      * @since 9
1031      */
1032     public void copySwapMemory(Object srcBase, long srcOffset,
1033                                Object destBase, long destOffset,
1034                                long bytes, long elemSize) {
1035         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1036 
1037         if (bytes == 0) {
1038             return;
1039         }
1040 
1041         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
1042     }
1043 
1044     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
1045                                       Object destBase, long destOffset,
1046                                       long bytes, long elemSize) {
1047         checkSize(bytes);
1048 
1049         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
1050             throw invalidInput();
1051         }
1052         if (bytes % elemSize != 0) {
1053             throw invalidInput();
1054         }
1055 
1056         checkPrimitivePointer(srcBase, srcOffset);
1057         checkPrimitivePointer(destBase, destOffset);
1058     }
1059 
1060     /**
1061      * Copies all elements from one block of memory to another block, byte swapping the
1062      * elements on the fly.
1063      *
1064      * This provides a <em>single-register</em> addressing mode, as
1065      * discussed in {@link #getInt(Object,long)}.
1066      *
1067      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
1068      */
1069     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
1070         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
1071     }
1072 
1073     /**
1074      * Disposes of a block of native memory, as obtained from {@link
1075      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
1076      * this method may be null, in which case no action is taken.
1077      *
1078      * <em>Note:</em> It is the responsibility of the caller to make
1079      * sure arguments are checked before the methods are called. While
1080      * some rudimentary checks are performed on the input, the checks
1081      * are best effort and when performance is an overriding priority,
1082      * as when methods of this class are optimized by the runtime
1083      * compiler, some or all checks (if any) may be elided. Hence, the
1084      * caller must not rely on the checks and corresponding
1085      * exceptions!
1086      *
1087      * @throws RuntimeException if any of the arguments is invalid
1088      *
1089      * @see #allocateMemory
1090      */
1091     public void freeMemory(long address) {
1092         freeMemoryChecks(address);
1093 
1094         if (address == 0) {
1095             return;
1096         }
1097 
1098         freeMemory0(address);
1099     }
1100 
1101     /**
1102      * Validate the arguments to freeMemory
1103      *
1104      * @throws RuntimeException if the arguments are invalid
1105      *         (<em>Note:</em> after optimization, invalid inputs may
1106      *         go undetected, which will lead to unpredictable
1107      *         behavior)
1108      */
1109     private void freeMemoryChecks(long address) {
1110         checkPointer(null, address);
1111     }
1112 
1113     /**
1114      * Ensure writeback of a specified virtual memory address range
1115      * from cache to physical memory. All bytes in the address range
1116      * are guaranteed to have been written back to physical memory on
1117      * return from this call i.e. subsequently executed store
1118      * instructions are guaranteed not to be visible before the
1119      * writeback is completed.
1120      *
1121      * @param address
1122      *        the lowest byte address that must be guaranteed written
1123      *        back to memory. bytes at lower addresses may also be
1124      *        written back.
1125      *
1126      * @param length
1127      *        the length in bytes of the region starting at address
1128      *        that must be guaranteed written back to memory.
1129      *
1130      * @throws RuntimeException if memory writeback is not supported
1131      *         on the current hardware of if the arguments are invalid.
1132      *         (<em>Note:</em> after optimization, invalid inputs may
1133      *         go undetected, which will lead to unpredictable
1134      *         behavior)
1135      *
1136      * @since 14
1137      */
1138 
1139     public void writebackMemory(long address, long length) {
1140         checkWritebackEnabled();
1141         checkWritebackMemory(address, length);
1142 
1143         // perform any required pre-writeback barrier
1144         writebackPreSync0();
1145 
1146         // write back one cache line at a time
1147         long line = dataCacheLineAlignDown(address);
1148         long end = address + length;
1149         while (line < end) {
1150             writeback0(line);
1151             line += dataCacheLineFlushSize();
1152         }
1153 
1154         // perform any required post-writeback barrier
1155         writebackPostSync0();
1156     }
1157 
1158     /**
1159      * Validate the arguments to writebackMemory
1160      *
1161      * @throws RuntimeException if the arguments are invalid
1162      *         (<em>Note:</em> after optimization, invalid inputs may
1163      *         go undetected, which will lead to unpredictable
1164      *         behavior)
1165      */
1166     private void checkWritebackMemory(long address, long length) {
1167         checkNativeAddress(address);
1168         checkSize(length);
1169     }
1170 
1171     /**
1172      * Validate that the current hardware supports memory writeback.
1173      * (<em>Note:</em> this is a belt and braces check.  Clients are
1174      * expected to test whether writeback is enabled by calling
1175      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1176      * calling method {@link writeback #writeback} if it is disabled).
1177      *
1178      *
1179      * @throws RuntimeException if memory writeback is not supported
1180      */
1181     private void checkWritebackEnabled() {
1182         if (!isWritebackEnabled()) {
1183             throw new RuntimeException("writebackMemory not enabled!");
1184         }
1185     }
1186 
1187     /**
1188      * force writeback of an individual cache line.
1189      *
1190      * @param address
1191      *        the start address of the cache line to be written back
1192      */
1193     @IntrinsicCandidate
1194     private native void writeback0(long address);
1195 
1196      /**
1197       * Serialize writeback operations relative to preceding memory writes.
1198       */
1199     @IntrinsicCandidate
1200     private native void writebackPreSync0();
1201 
1202      /**
1203       * Serialize writeback operations relative to following memory writes.
1204       */
1205     @IntrinsicCandidate
1206     private native void writebackPostSync0();
1207 
1208     //--- random queries
1209 
1210     /**
1211      * This constant differs from all results that will ever be returned from
1212      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1213      * or {@link #arrayBaseOffset}.
1214      * <p>
1215      * The static type is @code long} to emphasize that long arithmetic should
1216      * always be used for offset calculations to avoid overflows.
1217      */
1218     public static final long INVALID_FIELD_OFFSET = -1;
1219 
1220     /**
1221      * Reports the location of a given field in the storage allocation of its
1222      * class.  Do not expect to perform any sort of arithmetic on this offset;
1223      * it is just a cookie which is passed to the unsafe heap memory accessors.
1224      *
1225      * <p>Any given field will always have the same offset and base, and no
1226      * two distinct fields of the same class will ever have the same offset
1227      * and base.
1228      *
1229      * <p>As of 1.4.1, offsets for fields are represented as long values,
1230      * although the Sun JVM does not use the most significant 32 bits.
1231      * However, JVM implementations which store static fields at absolute
1232      * addresses can use long offsets and null base pointers to express
1233      * the field locations in a form usable by {@link #getInt(Object,long)}.
1234      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1235      * must preserve all bits of static field offsets.
1236      *
1237      * @throws NullPointerException if the field is {@code null}
1238      * @throws IllegalArgumentException if the field is static
1239      * @see #getInt(Object, long)
1240      */
1241     public long objectFieldOffset(Field f) {
1242         if (f == null) {
1243             throw new NullPointerException();
1244         }
1245 
1246         return objectFieldOffset0(f);
1247     }
1248 
1249     /**
1250      * (For compile-time known instance fields in JDK code only) Reports the
1251      * location of the field with a given name in the storage allocation of its
1252      * class.
1253      * <p>
1254      * This API is used to avoid creating reflective Objects in Java code at
1255      * startup.  This should not be used to find fields in non-trusted code.
1256      * Use the {@link #objectFieldOffset(Field) Field}-accepting version for
1257      * arbitrary fields instead.
1258      *
1259      * @throws NullPointerException if any parameter is {@code null}.
1260      * @throws InternalError if the presumably known field couldn't be found
1261      *
1262      * @see #objectFieldOffset(Field)
1263      */
1264     public long objectFieldOffset(Class<?> c, String name) {
1265         if (c == null || name == null) {
1266             throw new NullPointerException();
1267         }
1268 
1269         long result = knownObjectFieldOffset0(c, name);
1270         if (result < 0) {
1271             String type = switch ((int) result) {
1272                 case -2 -> "a static field";
1273                 case -1 -> "not found";
1274                 default -> "unknown";
1275             };
1276             throw new InternalError("Field %s.%s %s".formatted(c.getTypeName(), name, type));
1277         }
1278         return result;
1279     }
1280 
1281     /**
1282      * Reports the location of a given static field, in conjunction with {@link
1283      * #staticFieldBase}.
1284      * <p>Do not expect to perform any sort of arithmetic on this offset;
1285      * it is just a cookie which is passed to the unsafe heap memory accessors.
1286      *
1287      * <p>Any given field will always have the same offset, and no two distinct
1288      * fields of the same class will ever have the same offset.
1289      *
1290      * <p>As of 1.4.1, offsets for fields are represented as long values,
1291      * although the Sun JVM does not use the most significant 32 bits.
1292      * It is hard to imagine a JVM technology which needs more than
1293      * a few bits to encode an offset within a non-array object,
1294      * However, for consistency with other methods in this class,
1295      * this method reports its result as a long value.
1296      *
1297      * @throws NullPointerException if the field is {@code null}
1298      * @throws IllegalArgumentException if the field is not static
1299      * @see #getInt(Object, long)
1300      */
1301     public long staticFieldOffset(Field f) {
1302         if (f == null) {
1303             throw new NullPointerException();
1304         }
1305 
1306         return staticFieldOffset0(f);
1307     }
1308 
1309     /**
1310      * Reports the location of a given static field, in conjunction with {@link
1311      * #staticFieldOffset}.
1312      * <p>Fetch the base "Object", if any, with which static fields of the
1313      * given class can be accessed via methods like {@link #getInt(Object,
1314      * long)}.  This value may be null.  This value may refer to an object
1315      * which is a "cookie", not guaranteed to be a real Object, and it should
1316      * not be used in any way except as argument to the get and put routines in
1317      * this class.
1318      *
1319      * @throws NullPointerException if the field is {@code null}
1320      * @throws IllegalArgumentException if the field is not static
1321      */
1322     public Object staticFieldBase(Field f) {
1323         if (f == null) {
1324             throw new NullPointerException();
1325         }
1326 
1327         return staticFieldBase0(f);
1328     }
1329 
1330     /**
1331      * Detects if the given class may need to be initialized. This is often
1332      * needed in conjunction with obtaining the static field base of a
1333      * class.
1334      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1335      */
1336     public boolean shouldBeInitialized(Class<?> c) {
1337         if (c == null) {
1338             throw new NullPointerException();
1339         }
1340 
1341         return shouldBeInitialized0(c);
1342     }
1343 
1344     /**
1345      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1346      * This is often needed in conjunction with obtaining the static field base
1347      * of a class.
1348      *
1349      * The call returns when either class {@code c} is fully initialized or
1350      * class {@code c} is being initialized and the call is performed from
1351      * the initializing thread. In the latter case a subsequent call to
1352      * {@link #shouldBeInitialized} will return {@code true}.
1353      */
1354     public void ensureClassInitialized(Class<?> c) {
1355         if (c == null) {
1356             throw new NullPointerException();
1357         }
1358 
1359         ensureClassInitialized0(c);
1360     }
1361 
1362     /**
1363      * The reading or writing of strict static fields may require
1364      * special processing.  Notify the VM that such an event is about
1365      * to happen.  The VM may respond by throwing an exception, in the
1366      * case of a read of an uninitialized field.  If the VM allows the
1367      * method to return normally, no further calls are needed, with
1368      * the same arguments.
1369      */
1370     public void notifyStrictStaticAccess(Class<?> c, long staticFieldOffset, boolean writing) {
1371         if (c == null) {
1372             throw new NullPointerException();
1373         }
1374         notifyStrictStaticAccess0(c, staticFieldOffset, writing);
1375     }
1376 
1377     /**
1378      * Reports the offset of the first element in the storage allocation of a
1379      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1380      * for the same class, you may use that scale factor, together with this
1381      * base offset, to form new offsets to access elements of arrays of the
1382      * given class.
1383      * <p>
1384      * The return value is in the range of a {@code int}.  The return type is
1385      * {@code long} to emphasize that long arithmetic should always be used
1386      * for offset calculations to avoid overflows.
1387      * <p>
1388      * This method doesn't support arrays with an element type that is
1389      * a value class, because this type of array can have multiple layouts.
1390      * For these arrays, {@code arrayInstanceBaseOffset(Object[] array)}
1391      * must be used instead.
1392      *
1393      * @see #getInt(Object, long)
1394      * @see #putInt(Object, long, int)
1395      */
1396     public long arrayBaseOffset(Class<?> arrayClass) {
1397         if (arrayClass == null) {
1398             throw new NullPointerException();
1399         }
1400 
1401         return arrayBaseOffset0(arrayClass);
1402     }
1403 
1404     public long arrayInstanceBaseOffset(Object[] array) {
1405         if (array == null) {
1406             throw new NullPointerException();
1407         }
1408 
1409         return arrayInstanceBaseOffset0(array);
1410     }
1411 
1412     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1413     public static final long ARRAY_BOOLEAN_BASE_OFFSET
1414             = theUnsafe.arrayBaseOffset(boolean[].class);
1415 
1416     /** The value of {@code arrayBaseOffset(byte[].class)} */
1417     public static final long ARRAY_BYTE_BASE_OFFSET
1418             = theUnsafe.arrayBaseOffset(byte[].class);
1419 
1420     /** The value of {@code arrayBaseOffset(short[].class)} */
1421     public static final long ARRAY_SHORT_BASE_OFFSET
1422             = theUnsafe.arrayBaseOffset(short[].class);
1423 
1424     /** The value of {@code arrayBaseOffset(char[].class)} */
1425     public static final long ARRAY_CHAR_BASE_OFFSET
1426             = theUnsafe.arrayBaseOffset(char[].class);
1427 
1428     /** The value of {@code arrayBaseOffset(int[].class)} */
1429     public static final long ARRAY_INT_BASE_OFFSET
1430             = theUnsafe.arrayBaseOffset(int[].class);
1431 
1432     /** The value of {@code arrayBaseOffset(long[].class)} */
1433     public static final long ARRAY_LONG_BASE_OFFSET
1434             = theUnsafe.arrayBaseOffset(long[].class);
1435 
1436     /** The value of {@code arrayBaseOffset(float[].class)} */
1437     public static final long ARRAY_FLOAT_BASE_OFFSET
1438             = theUnsafe.arrayBaseOffset(float[].class);
1439 
1440     /** The value of {@code arrayBaseOffset(double[].class)} */
1441     public static final long ARRAY_DOUBLE_BASE_OFFSET
1442             = theUnsafe.arrayBaseOffset(double[].class);
1443 
1444     /** The value of {@code arrayBaseOffset(Object[].class)} */
1445     public static final long ARRAY_OBJECT_BASE_OFFSET
1446             = theUnsafe.arrayBaseOffset(Object[].class);
1447 
1448     /**
1449      * Reports the scale factor for addressing elements in the storage
1450      * allocation of a given array class.  However, arrays of "narrow" types
1451      * will generally not work properly with accessors like {@link
1452      * #getByte(Object, long)}, so the scale factor for such classes is reported
1453      * as zero.
1454      * <p>
1455      * The computation of the actual memory offset should always use {@code
1456      * long} arithmetic to avoid overflows.
1457      * <p>
1458      * This method doesn't support arrays with an element type that is
1459      * a value class, because this type of array can have multiple layouts.
1460      * For these arrays, {@code arrayInstanceIndexScale(Object[] array)}
1461      * must be used instead.
1462      *
1463      * @see #arrayBaseOffset
1464      * @see #getInt(Object, long)
1465      * @see #putInt(Object, long, int)
1466      */
1467     public int arrayIndexScale(Class<?> arrayClass) {
1468         if (arrayClass == null) {
1469             throw new NullPointerException();
1470         }
1471 
1472         return arrayIndexScale0(arrayClass);
1473     }
1474 
1475     public int arrayInstanceIndexScale(Object[] array) {
1476         if (array == null) {
1477             throw new NullPointerException();
1478         }
1479 
1480         return arrayInstanceIndexScale0(array);
1481     }
1482 
1483     public int[] getFieldMap(Class<? extends Object> c) {
1484       if (c == null) {
1485         throw new NullPointerException();
1486       }
1487       return getFieldMap0(c);
1488     }
1489 
1490     /**
1491      * Return the size of the object in the heap.
1492      * @param o an object
1493      * @return the objects's size
1494      * @since Valhalla
1495      */
1496     public long getObjectSize(Object o) {
1497         if (o == null)
1498             throw new NullPointerException();
1499         return getObjectSize0(o);
1500     }
1501 
1502     /** The value of {@code arrayIndexScale(boolean[].class)} */
1503     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1504             = theUnsafe.arrayIndexScale(boolean[].class);
1505 
1506     /** The value of {@code arrayIndexScale(byte[].class)} */
1507     public static final int ARRAY_BYTE_INDEX_SCALE
1508             = theUnsafe.arrayIndexScale(byte[].class);
1509 
1510     /** The value of {@code arrayIndexScale(short[].class)} */
1511     public static final int ARRAY_SHORT_INDEX_SCALE
1512             = theUnsafe.arrayIndexScale(short[].class);
1513 
1514     /** The value of {@code arrayIndexScale(char[].class)} */
1515     public static final int ARRAY_CHAR_INDEX_SCALE
1516             = theUnsafe.arrayIndexScale(char[].class);
1517 
1518     /** The value of {@code arrayIndexScale(int[].class)} */
1519     public static final int ARRAY_INT_INDEX_SCALE
1520             = theUnsafe.arrayIndexScale(int[].class);
1521 
1522     /** The value of {@code arrayIndexScale(long[].class)} */
1523     public static final int ARRAY_LONG_INDEX_SCALE
1524             = theUnsafe.arrayIndexScale(long[].class);
1525 
1526     /** The value of {@code arrayIndexScale(float[].class)} */
1527     public static final int ARRAY_FLOAT_INDEX_SCALE
1528             = theUnsafe.arrayIndexScale(float[].class);
1529 
1530     /** The value of {@code arrayIndexScale(double[].class)} */
1531     public static final int ARRAY_DOUBLE_INDEX_SCALE
1532             = theUnsafe.arrayIndexScale(double[].class);
1533 
1534     /** The value of {@code arrayIndexScale(Object[].class)} */
1535     public static final int ARRAY_OBJECT_INDEX_SCALE
1536             = theUnsafe.arrayIndexScale(Object[].class);
1537 
1538     /**
1539      * Reports the size in bytes of a native pointer, as stored via {@link
1540      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1541      * other primitive types (as stored in native memory blocks) is determined
1542      * fully by their information content.
1543      */
1544     public int addressSize() {
1545         return ADDRESS_SIZE;
1546     }
1547 
1548     /** The value of {@code addressSize()} */
1549     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1550 
1551     /**
1552      * Reports the size in bytes of a native memory page (whatever that is).
1553      * This value will always be a power of two.
1554      */
1555     public int pageSize() { return PAGE_SIZE; }
1556 
1557     /**
1558      * Reports the size in bytes of a data cache line written back by
1559      * the hardware cache line flush operation available to the JVM or
1560      * 0 if data cache line flushing is not enabled.
1561      */
1562     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1563 
1564     /**
1565      * Rounds down address to a data cache line boundary as
1566      * determined by {@link #dataCacheLineFlushSize}
1567      * @return the rounded down address
1568      */
1569     public long dataCacheLineAlignDown(long address) {
1570         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1571     }
1572 
1573     /**
1574      * Returns true if data cache line writeback
1575      */
1576     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1577 
1578     //--- random trusted operations from JNI:
1579 
1580     /**
1581      * Tells the VM to define a class, without security checks.  By default, the
1582      * class loader and protection domain come from the caller's class.
1583      */
1584     public Class<?> defineClass(String name, byte[] b, int off, int len,
1585                                 ClassLoader loader,
1586                                 ProtectionDomain protectionDomain) {
1587         if (b == null) {
1588             throw new NullPointerException();
1589         }
1590         if (len < 0) {
1591             throw new ArrayIndexOutOfBoundsException();
1592         }
1593 
1594         return defineClass0(name, b, off, len, loader, protectionDomain);
1595     }
1596 
1597     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1598                                         ClassLoader loader,
1599                                         ProtectionDomain protectionDomain);
1600 
1601     /**
1602      * Allocates an instance but does not run any constructor.
1603      * Initializes the class if it has not yet been.
1604      */
1605     @IntrinsicCandidate
1606     public native Object allocateInstance(Class<?> cls)
1607         throws InstantiationException;
1608 
1609     /**
1610      * Allocates an array of a given type, but does not do zeroing.
1611      * <p>
1612      * This method should only be used in the very rare cases where a high-performance code
1613      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1614      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1615      * <p>
1616      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1617      * before allowing untrusted code, or code in other threads, to observe the reference
1618      * to the newly allocated array. In addition, the publication of the array reference must be
1619      * safe according to the Java Memory Model requirements.
1620      * <p>
1621      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1622      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1623      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1624      * or issuing a {@link #storeFence} before publishing the reference.
1625      * <p>
1626      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1627      * elements that could break heap integrity.
1628      *
1629      * @param componentType array component type to allocate
1630      * @param length array size to allocate
1631      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1632      *                                  or the length is negative
1633      */
1634     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1635        if (componentType == null) {
1636            throw new IllegalArgumentException("Component type is null");
1637        }
1638        if (!componentType.isPrimitive()) {
1639            throw new IllegalArgumentException("Component type is not primitive");
1640        }
1641        if (length < 0) {
1642            throw new IllegalArgumentException("Negative length");
1643        }
1644        return allocateUninitializedArray0(componentType, length);
1645     }
1646 
1647     @IntrinsicCandidate
1648     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1649        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1650        // return the zeroed arrays.
1651        if (componentType == byte.class)    return new byte[length];
1652        if (componentType == boolean.class) return new boolean[length];
1653        if (componentType == short.class)   return new short[length];
1654        if (componentType == char.class)    return new char[length];
1655        if (componentType == int.class)     return new int[length];
1656        if (componentType == float.class)   return new float[length];
1657        if (componentType == long.class)    return new long[length];
1658        if (componentType == double.class)  return new double[length];
1659        return null;
1660     }
1661 
1662     /** Throws the exception without telling the verifier. */
1663     public native void throwException(Throwable ee);
1664 
1665     /**
1666      * Atomically updates Java variable to {@code x} if it is currently
1667      * holding {@code expected}.
1668      *
1669      * <p>This operation has memory semantics of a {@code volatile} read
1670      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1671      *
1672      * @return {@code true} if successful
1673      */
1674     @IntrinsicCandidate
1675     public final native boolean compareAndSetReference(Object o, long offset,
1676                                                        Object expected,
1677                                                        Object x);
1678 
1679     private final boolean isValueObject(Object o) {
1680         return o != null && o.getClass().isValue();
1681     }
1682 
1683     /*
1684      * For value type, CAS should do substitutability test as opposed
1685      * to two pointers comparison.
1686      */
1687     @ForceInline
1688     public final <V> boolean compareAndSetReference(Object o, long offset,
1689                                                     Class<?> type,
1690                                                     V expected,
1691                                                     V x) {
1692         if (type.isValue() || isValueObject(expected)) {
1693             while (true) {
1694                 Object witness = getReferenceVolatile(o, offset);
1695                 if (witness != expected) {
1696                     return false;
1697                 }
1698                 if (compareAndSetReference(o, offset, witness, x)) {
1699                     return true;
1700                 }
1701             }
1702         } else {
1703             return compareAndSetReference(o, offset, expected, x);
1704         }
1705     }
1706 
1707     @ForceInline
1708     public final <V> boolean compareAndSetFlatValue(Object o, long offset,
1709                                                 int layout,
1710                                                 Class<?> valueType,
1711                                                 V expected,
1712                                                 V x) {
1713         Object[] array = newSpecialArray(valueType, 2, layout);
1714         return compareAndSetFlatValueAsBytes(array, o, offset, layout, valueType, expected, x);
1715     }
1716 
1717     @IntrinsicCandidate
1718     public final native Object compareAndExchangeReference(Object o, long offset,
1719                                                            Object expected,
1720                                                            Object x);
1721 
1722     @ForceInline
1723     public final <V> Object compareAndExchangeReference(Object o, long offset,
1724                                                         Class<?> valueType,
1725                                                         V expected,
1726                                                         V x) {
1727         if (valueType.isValue() || isValueObject(expected)) {
1728             while (true) {
1729                 Object witness = getReferenceVolatile(o, offset);
1730                 if (witness != expected) {
1731                     return witness;
1732                 }
1733                 if (compareAndSetReference(o, offset, witness, x)) {
1734                     return witness;
1735                 }
1736             }
1737         } else {
1738             return compareAndExchangeReference(o, offset, expected, x);
1739         }
1740     }
1741 
1742     @ForceInline
1743     public final <V> Object compareAndExchangeFlatValue(Object o, long offset,
1744                                                     int layout,
1745                                                     Class<?> valueType,
1746                                                     V expected,
1747                                                     V x) {
1748         Object[] array = newSpecialArray(valueType, 2, layout);
1749         compareAndSetFlatValueAsBytes(array, o, offset, layout, valueType, expected, x);
1750         return array[0];
1751     }
1752 
1753     @IntrinsicCandidate
1754     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1755                                                            Object expected,
1756                                                            Object x) {
1757         return compareAndExchangeReference(o, offset, expected, x);
1758     }
1759 
1760     public final <V> Object compareAndExchangeReferenceAcquire(Object o, long offset,
1761                                                                Class<?> valueType,
1762                                                                V expected,
1763                                                                V x) {
1764         return compareAndExchangeReference(o, offset, valueType, expected, x);
1765     }
1766 
1767     @ForceInline
1768     public final <V> Object compareAndExchangeFlatValueAcquire(Object o, long offset,
1769                                                            int layout,
1770                                                            Class<?> valueType,
1771                                                            V expected,
1772                                                            V x) {
1773         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1774     }
1775 
1776     @IntrinsicCandidate
1777     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1778                                                            Object expected,
1779                                                            Object x) {
1780         return compareAndExchangeReference(o, offset, expected, x);
1781     }
1782 
1783     public final <V> Object compareAndExchangeReferenceRelease(Object o, long offset,
1784                                                                Class<?> valueType,
1785                                                                V expected,
1786                                                                V x) {
1787         return compareAndExchangeReference(o, offset, valueType, expected, x);
1788     }
1789 
1790     @ForceInline
1791     public final <V> Object compareAndExchangeFlatValueRelease(Object o, long offset,
1792                                                            int layout,
1793                                                            Class<?> valueType,
1794                                                            V expected,
1795                                                            V x) {
1796         return compareAndExchangeFlatValue(o, offset, layout, valueType, expected, x);
1797     }
1798 
1799     @IntrinsicCandidate
1800     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1801                                                          Object expected,
1802                                                          Object x) {
1803         return compareAndSetReference(o, offset, expected, x);
1804     }
1805 
1806     public final <V> boolean weakCompareAndSetReferencePlain(Object o, long offset,
1807                                                              Class<?> valueType,
1808                                                              V expected,
1809                                                              V x) {
1810         if (valueType.isValue() || isValueObject(expected)) {
1811             return compareAndSetReference(o, offset, valueType, expected, x);
1812         } else {
1813             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1814         }
1815     }
1816 
1817     @ForceInline
1818     public final <V> boolean weakCompareAndSetFlatValuePlain(Object o, long offset,
1819                                                          int layout,
1820                                                          Class<?> valueType,
1821                                                          V expected,
1822                                                          V x) {
1823         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1824     }
1825 
1826     @IntrinsicCandidate
1827     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1828                                                            Object expected,
1829                                                            Object x) {
1830         return compareAndSetReference(o, offset, expected, x);
1831     }
1832 
1833     public final <V> boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1834                                                                Class<?> valueType,
1835                                                                V expected,
1836                                                                V x) {
1837         if (valueType.isValue() || isValueObject(expected)) {
1838             return compareAndSetReference(o, offset, valueType, expected, x);
1839         } else {
1840             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1841         }
1842     }
1843 
1844     @ForceInline
1845     public final <V> boolean weakCompareAndSetFlatValueAcquire(Object o, long offset,
1846                                                            int layout,
1847                                                            Class<?> valueType,
1848                                                            V expected,
1849                                                            V x) {
1850         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1851     }
1852 
1853     @IntrinsicCandidate
1854     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1855                                                            Object expected,
1856                                                            Object x) {
1857         return compareAndSetReference(o, offset, expected, x);
1858     }
1859 
1860     public final <V> boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1861                                                                Class<?> valueType,
1862                                                                V expected,
1863                                                                V x) {
1864         if (valueType.isValue() || isValueObject(expected)) {
1865             return compareAndSetReference(o, offset, valueType, expected, x);
1866         } else {
1867             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1868         }
1869     }
1870 
1871     @ForceInline
1872     public final <V> boolean weakCompareAndSetFlatValueRelease(Object o, long offset,
1873                                                            int layout,
1874                                                            Class<?> valueType,
1875                                                            V expected,
1876                                                            V x) {
1877         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1878     }
1879 
1880     @IntrinsicCandidate
1881     public final boolean weakCompareAndSetReference(Object o, long offset,
1882                                                     Object expected,
1883                                                     Object x) {
1884         return compareAndSetReference(o, offset, expected, x);
1885     }
1886 
1887     public final <V> boolean weakCompareAndSetReference(Object o, long offset,
1888                                                         Class<?> valueType,
1889                                                         V expected,
1890                                                         V x) {
1891         if (valueType.isValue() || isValueObject(expected)) {
1892             return compareAndSetReference(o, offset, valueType, expected, x);
1893         } else {
1894             return weakCompareAndSetReferencePlain(o, offset, expected, x);
1895         }
1896     }
1897 
1898     @ForceInline
1899     public final <V> boolean weakCompareAndSetFlatValue(Object o, long offset,
1900                                                     int layout,
1901                                                     Class<?> valueType,
1902                                                     V expected,
1903                                                     V x) {
1904         return compareAndSetFlatValue(o, offset, layout, valueType, expected, x);
1905     }
1906 
1907     /**
1908      * Atomically updates Java variable to {@code x} if it is currently
1909      * holding {@code expected}.
1910      *
1911      * <p>This operation has memory semantics of a {@code volatile} read
1912      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1913      *
1914      * @return {@code true} if successful
1915      */
1916     @IntrinsicCandidate
1917     public final native boolean compareAndSetInt(Object o, long offset,
1918                                                  int expected,
1919                                                  int x);
1920 
1921     @IntrinsicCandidate
1922     public final native int compareAndExchangeInt(Object o, long offset,
1923                                                   int expected,
1924                                                   int x);
1925 
1926     @IntrinsicCandidate
1927     public final int compareAndExchangeIntAcquire(Object o, long offset,
1928                                                          int expected,
1929                                                          int x) {
1930         return compareAndExchangeInt(o, offset, expected, x);
1931     }
1932 
1933     @IntrinsicCandidate
1934     public final int compareAndExchangeIntRelease(Object o, long offset,
1935                                                          int expected,
1936                                                          int x) {
1937         return compareAndExchangeInt(o, offset, expected, x);
1938     }
1939 
1940     @IntrinsicCandidate
1941     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1942                                                    int expected,
1943                                                    int x) {
1944         return compareAndSetInt(o, offset, expected, x);
1945     }
1946 
1947     @IntrinsicCandidate
1948     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1949                                                      int expected,
1950                                                      int x) {
1951         return compareAndSetInt(o, offset, expected, x);
1952     }
1953 
1954     @IntrinsicCandidate
1955     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1956                                                      int expected,
1957                                                      int x) {
1958         return compareAndSetInt(o, offset, expected, x);
1959     }
1960 
1961     @IntrinsicCandidate
1962     public final boolean weakCompareAndSetInt(Object o, long offset,
1963                                               int expected,
1964                                               int x) {
1965         return compareAndSetInt(o, offset, expected, x);
1966     }
1967 
1968     @IntrinsicCandidate
1969     public final byte compareAndExchangeByte(Object o, long offset,
1970                                              byte expected,
1971                                              byte x) {
1972         long wordOffset = offset & ~3;
1973         int shift = (int) (offset & 3) << 3;
1974         if (BIG_ENDIAN) {
1975             shift = 24 - shift;
1976         }
1977         int mask           = 0xFF << shift;
1978         int maskedExpected = (expected & 0xFF) << shift;
1979         int maskedX        = (x & 0xFF) << shift;
1980         int fullWord;
1981         do {
1982             fullWord = getIntVolatile(o, wordOffset);
1983             if ((fullWord & mask) != maskedExpected)
1984                 return (byte) ((fullWord & mask) >> shift);
1985         } while (!weakCompareAndSetInt(o, wordOffset,
1986                                                 fullWord, (fullWord & ~mask) | maskedX));
1987         return expected;
1988     }
1989 
1990     @IntrinsicCandidate
1991     public final boolean compareAndSetByte(Object o, long offset,
1992                                            byte expected,
1993                                            byte x) {
1994         return compareAndExchangeByte(o, offset, expected, x) == expected;
1995     }
1996 
1997     @IntrinsicCandidate
1998     public final boolean weakCompareAndSetByte(Object o, long offset,
1999                                                byte expected,
2000                                                byte x) {
2001         return compareAndSetByte(o, offset, expected, x);
2002     }
2003 
2004     @IntrinsicCandidate
2005     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
2006                                                       byte expected,
2007                                                       byte x) {
2008         return weakCompareAndSetByte(o, offset, expected, x);
2009     }
2010 
2011     @IntrinsicCandidate
2012     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
2013                                                       byte expected,
2014                                                       byte x) {
2015         return weakCompareAndSetByte(o, offset, expected, x);
2016     }
2017 
2018     @IntrinsicCandidate
2019     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
2020                                                     byte expected,
2021                                                     byte x) {
2022         return weakCompareAndSetByte(o, offset, expected, x);
2023     }
2024 
2025     @IntrinsicCandidate
2026     public final byte compareAndExchangeByteAcquire(Object o, long offset,
2027                                                     byte expected,
2028                                                     byte x) {
2029         return compareAndExchangeByte(o, offset, expected, x);
2030     }
2031 
2032     @IntrinsicCandidate
2033     public final byte compareAndExchangeByteRelease(Object o, long offset,
2034                                                     byte expected,
2035                                                     byte x) {
2036         return compareAndExchangeByte(o, offset, expected, x);
2037     }
2038 
2039     @IntrinsicCandidate
2040     public final short compareAndExchangeShort(Object o, long offset,
2041                                                short expected,
2042                                                short x) {
2043         if ((offset & 3) == 3) {
2044             throw new IllegalArgumentException("Update spans the word, not supported");
2045         }
2046         long wordOffset = offset & ~3;
2047         int shift = (int) (offset & 3) << 3;
2048         if (BIG_ENDIAN) {
2049             shift = 16 - shift;
2050         }
2051         int mask           = 0xFFFF << shift;
2052         int maskedExpected = (expected & 0xFFFF) << shift;
2053         int maskedX        = (x & 0xFFFF) << shift;
2054         int fullWord;
2055         do {
2056             fullWord = getIntVolatile(o, wordOffset);
2057             if ((fullWord & mask) != maskedExpected) {
2058                 return (short) ((fullWord & mask) >> shift);
2059             }
2060         } while (!weakCompareAndSetInt(o, wordOffset,
2061                                                 fullWord, (fullWord & ~mask) | maskedX));
2062         return expected;
2063     }
2064 
2065     @IntrinsicCandidate
2066     public final boolean compareAndSetShort(Object o, long offset,
2067                                             short expected,
2068                                             short x) {
2069         return compareAndExchangeShort(o, offset, expected, x) == expected;
2070     }
2071 
2072     @IntrinsicCandidate
2073     public final boolean weakCompareAndSetShort(Object o, long offset,
2074                                                 short expected,
2075                                                 short x) {
2076         return compareAndSetShort(o, offset, expected, x);
2077     }
2078 
2079     @IntrinsicCandidate
2080     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
2081                                                        short expected,
2082                                                        short x) {
2083         return weakCompareAndSetShort(o, offset, expected, x);
2084     }
2085 
2086     @IntrinsicCandidate
2087     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
2088                                                        short expected,
2089                                                        short x) {
2090         return weakCompareAndSetShort(o, offset, expected, x);
2091     }
2092 
2093     @IntrinsicCandidate
2094     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
2095                                                      short expected,
2096                                                      short x) {
2097         return weakCompareAndSetShort(o, offset, expected, x);
2098     }
2099 
2100 
2101     @IntrinsicCandidate
2102     public final short compareAndExchangeShortAcquire(Object o, long offset,
2103                                                      short expected,
2104                                                      short x) {
2105         return compareAndExchangeShort(o, offset, expected, x);
2106     }
2107 
2108     @IntrinsicCandidate
2109     public final short compareAndExchangeShortRelease(Object o, long offset,
2110                                                     short expected,
2111                                                     short x) {
2112         return compareAndExchangeShort(o, offset, expected, x);
2113     }
2114 
2115     @ForceInline
2116     private char s2c(short s) {
2117         return (char) s;
2118     }
2119 
2120     @ForceInline
2121     private short c2s(char s) {
2122         return (short) s;
2123     }
2124 
2125     @ForceInline
2126     public final boolean compareAndSetChar(Object o, long offset,
2127                                            char expected,
2128                                            char x) {
2129         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
2130     }
2131 
2132     @ForceInline
2133     public final char compareAndExchangeChar(Object o, long offset,
2134                                              char expected,
2135                                              char x) {
2136         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
2137     }
2138 
2139     @ForceInline
2140     public final char compareAndExchangeCharAcquire(Object o, long offset,
2141                                             char expected,
2142                                             char x) {
2143         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
2144     }
2145 
2146     @ForceInline
2147     public final char compareAndExchangeCharRelease(Object o, long offset,
2148                                             char expected,
2149                                             char x) {
2150         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
2151     }
2152 
2153     @ForceInline
2154     public final boolean weakCompareAndSetChar(Object o, long offset,
2155                                                char expected,
2156                                                char x) {
2157         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
2158     }
2159 
2160     @ForceInline
2161     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
2162                                                       char expected,
2163                                                       char x) {
2164         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
2165     }
2166 
2167     @ForceInline
2168     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
2169                                                       char expected,
2170                                                       char x) {
2171         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
2172     }
2173 
2174     @ForceInline
2175     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
2176                                                     char expected,
2177                                                     char x) {
2178         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
2179     }
2180 
2181     /**
2182      * The JVM converts integral values to boolean values using two
2183      * different conventions, byte testing against zero and truncation
2184      * to least-significant bit.
2185      *
2186      * <p>The JNI documents specify that, at least for returning
2187      * values from native methods, a Java boolean value is converted
2188      * to the value-set 0..1 by first truncating to a byte (0..255 or
2189      * maybe -128..127) and then testing against zero. Thus, Java
2190      * booleans in non-Java data structures are by convention
2191      * represented as 8-bit containers containing either zero (for
2192      * false) or any non-zero value (for true).
2193      *
2194      * <p>Java booleans in the heap are also stored in bytes, but are
2195      * strongly normalized to the value-set 0..1 (i.e., they are
2196      * truncated to the least-significant bit).
2197      *
2198      * <p>The main reason for having different conventions for
2199      * conversion is performance: Truncation to the least-significant
2200      * bit can be usually implemented with fewer (machine)
2201      * instructions than byte testing against zero.
2202      *
2203      * <p>A number of Unsafe methods load boolean values from the heap
2204      * as bytes. Unsafe converts those values according to the JNI
2205      * rules (i.e, using the "testing against zero" convention). The
2206      * method {@code byte2bool} implements that conversion.
2207      *
2208      * @param b the byte to be converted to boolean
2209      * @return the result of the conversion
2210      */
2211     @ForceInline
2212     private boolean byte2bool(byte b) {
2213         return b != 0;
2214     }
2215 
2216     /**
2217      * Convert a boolean value to a byte. The return value is strongly
2218      * normalized to the value-set 0..1 (i.e., the value is truncated
2219      * to the least-significant bit). See {@link #byte2bool(byte)} for
2220      * more details on conversion conventions.
2221      *
2222      * @param b the boolean to be converted to byte (and then normalized)
2223      * @return the result of the conversion
2224      */
2225     @ForceInline
2226     private byte bool2byte(boolean b) {
2227         return b ? (byte)1 : (byte)0;
2228     }
2229 
2230     @ForceInline
2231     public final boolean compareAndSetBoolean(Object o, long offset,
2232                                               boolean expected,
2233                                               boolean x) {
2234         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2235     }
2236 
2237     @ForceInline
2238     public final boolean compareAndExchangeBoolean(Object o, long offset,
2239                                                    boolean expected,
2240                                                    boolean x) {
2241         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
2242     }
2243 
2244     @ForceInline
2245     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
2246                                                     boolean expected,
2247                                                     boolean x) {
2248         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
2249     }
2250 
2251     @ForceInline
2252     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
2253                                                        boolean expected,
2254                                                        boolean x) {
2255         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
2256     }
2257 
2258     @ForceInline
2259     public final boolean weakCompareAndSetBoolean(Object o, long offset,
2260                                                   boolean expected,
2261                                                   boolean x) {
2262         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
2263     }
2264 
2265     @ForceInline
2266     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
2267                                                          boolean expected,
2268                                                          boolean x) {
2269         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
2270     }
2271 
2272     @ForceInline
2273     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
2274                                                          boolean expected,
2275                                                          boolean x) {
2276         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
2277     }
2278 
2279     @ForceInline
2280     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
2281                                                        boolean expected,
2282                                                        boolean x) {
2283         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
2284     }
2285 
2286     /**
2287      * Atomically updates Java variable to {@code x} if it is currently
2288      * holding {@code expected}.
2289      *
2290      * <p>This operation has memory semantics of a {@code volatile} read
2291      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2292      *
2293      * @return {@code true} if successful
2294      */
2295     @ForceInline
2296     public final boolean compareAndSetFloat(Object o, long offset,
2297                                             float expected,
2298                                             float x) {
2299         return compareAndSetInt(o, offset,
2300                                  Float.floatToRawIntBits(expected),
2301                                  Float.floatToRawIntBits(x));
2302     }
2303 
2304     @ForceInline
2305     public final float compareAndExchangeFloat(Object o, long offset,
2306                                                float expected,
2307                                                float x) {
2308         int w = compareAndExchangeInt(o, offset,
2309                                       Float.floatToRawIntBits(expected),
2310                                       Float.floatToRawIntBits(x));
2311         return Float.intBitsToFloat(w);
2312     }
2313 
2314     @ForceInline
2315     public final float compareAndExchangeFloatAcquire(Object o, long offset,
2316                                                   float expected,
2317                                                   float x) {
2318         int w = compareAndExchangeIntAcquire(o, offset,
2319                                              Float.floatToRawIntBits(expected),
2320                                              Float.floatToRawIntBits(x));
2321         return Float.intBitsToFloat(w);
2322     }
2323 
2324     @ForceInline
2325     public final float compareAndExchangeFloatRelease(Object o, long offset,
2326                                                   float expected,
2327                                                   float x) {
2328         int w = compareAndExchangeIntRelease(o, offset,
2329                                              Float.floatToRawIntBits(expected),
2330                                              Float.floatToRawIntBits(x));
2331         return Float.intBitsToFloat(w);
2332     }
2333 
2334     @ForceInline
2335     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
2336                                                      float expected,
2337                                                      float x) {
2338         return weakCompareAndSetIntPlain(o, offset,
2339                                      Float.floatToRawIntBits(expected),
2340                                      Float.floatToRawIntBits(x));
2341     }
2342 
2343     @ForceInline
2344     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
2345                                                        float expected,
2346                                                        float x) {
2347         return weakCompareAndSetIntAcquire(o, offset,
2348                                             Float.floatToRawIntBits(expected),
2349                                             Float.floatToRawIntBits(x));
2350     }
2351 
2352     @ForceInline
2353     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
2354                                                        float expected,
2355                                                        float x) {
2356         return weakCompareAndSetIntRelease(o, offset,
2357                                             Float.floatToRawIntBits(expected),
2358                                             Float.floatToRawIntBits(x));
2359     }
2360 
2361     @ForceInline
2362     public final boolean weakCompareAndSetFloat(Object o, long offset,
2363                                                 float expected,
2364                                                 float x) {
2365         return weakCompareAndSetInt(o, offset,
2366                                              Float.floatToRawIntBits(expected),
2367                                              Float.floatToRawIntBits(x));
2368     }
2369 
2370     /**
2371      * Atomically updates Java variable to {@code x} if it is currently
2372      * holding {@code expected}.
2373      *
2374      * <p>This operation has memory semantics of a {@code volatile} read
2375      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2376      *
2377      * @return {@code true} if successful
2378      */
2379     @ForceInline
2380     public final boolean compareAndSetDouble(Object o, long offset,
2381                                              double expected,
2382                                              double x) {
2383         return compareAndSetLong(o, offset,
2384                                  Double.doubleToRawLongBits(expected),
2385                                  Double.doubleToRawLongBits(x));
2386     }
2387 
2388     @ForceInline
2389     public final double compareAndExchangeDouble(Object o, long offset,
2390                                                  double expected,
2391                                                  double x) {
2392         long w = compareAndExchangeLong(o, offset,
2393                                         Double.doubleToRawLongBits(expected),
2394                                         Double.doubleToRawLongBits(x));
2395         return Double.longBitsToDouble(w);
2396     }
2397 
2398     @ForceInline
2399     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
2400                                                         double expected,
2401                                                         double x) {
2402         long w = compareAndExchangeLongAcquire(o, offset,
2403                                                Double.doubleToRawLongBits(expected),
2404                                                Double.doubleToRawLongBits(x));
2405         return Double.longBitsToDouble(w);
2406     }
2407 
2408     @ForceInline
2409     public final double compareAndExchangeDoubleRelease(Object o, long offset,
2410                                                         double expected,
2411                                                         double x) {
2412         long w = compareAndExchangeLongRelease(o, offset,
2413                                                Double.doubleToRawLongBits(expected),
2414                                                Double.doubleToRawLongBits(x));
2415         return Double.longBitsToDouble(w);
2416     }
2417 
2418     @ForceInline
2419     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
2420                                                       double expected,
2421                                                       double x) {
2422         return weakCompareAndSetLongPlain(o, offset,
2423                                      Double.doubleToRawLongBits(expected),
2424                                      Double.doubleToRawLongBits(x));
2425     }
2426 
2427     @ForceInline
2428     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2429                                                         double expected,
2430                                                         double x) {
2431         return weakCompareAndSetLongAcquire(o, offset,
2432                                              Double.doubleToRawLongBits(expected),
2433                                              Double.doubleToRawLongBits(x));
2434     }
2435 
2436     @ForceInline
2437     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2438                                                         double expected,
2439                                                         double x) {
2440         return weakCompareAndSetLongRelease(o, offset,
2441                                              Double.doubleToRawLongBits(expected),
2442                                              Double.doubleToRawLongBits(x));
2443     }
2444 
2445     @ForceInline
2446     public final boolean weakCompareAndSetDouble(Object o, long offset,
2447                                                  double expected,
2448                                                  double x) {
2449         return weakCompareAndSetLong(o, offset,
2450                                               Double.doubleToRawLongBits(expected),
2451                                               Double.doubleToRawLongBits(x));
2452     }
2453 
2454     /**
2455      * Atomically updates Java variable to {@code x} if it is currently
2456      * holding {@code expected}.
2457      *
2458      * <p>This operation has memory semantics of a {@code volatile} read
2459      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2460      *
2461      * @return {@code true} if successful
2462      */
2463     @IntrinsicCandidate
2464     public final native boolean compareAndSetLong(Object o, long offset,
2465                                                   long expected,
2466                                                   long x);
2467 
2468     @IntrinsicCandidate
2469     public final native long compareAndExchangeLong(Object o, long offset,
2470                                                     long expected,
2471                                                     long x);
2472 
2473     @IntrinsicCandidate
2474     public final long compareAndExchangeLongAcquire(Object o, long offset,
2475                                                            long expected,
2476                                                            long x) {
2477         return compareAndExchangeLong(o, offset, expected, x);
2478     }
2479 
2480     @IntrinsicCandidate
2481     public final long compareAndExchangeLongRelease(Object o, long offset,
2482                                                            long expected,
2483                                                            long x) {
2484         return compareAndExchangeLong(o, offset, expected, x);
2485     }
2486 
2487     @IntrinsicCandidate
2488     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2489                                                     long expected,
2490                                                     long x) {
2491         return compareAndSetLong(o, offset, expected, x);
2492     }
2493 
2494     @IntrinsicCandidate
2495     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2496                                                       long expected,
2497                                                       long x) {
2498         return compareAndSetLong(o, offset, expected, x);
2499     }
2500 
2501     @IntrinsicCandidate
2502     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2503                                                       long expected,
2504                                                       long x) {
2505         return compareAndSetLong(o, offset, expected, x);
2506     }
2507 
2508     @IntrinsicCandidate
2509     public final boolean weakCompareAndSetLong(Object o, long offset,
2510                                                long expected,
2511                                                long x) {
2512         return compareAndSetLong(o, offset, expected, x);
2513     }
2514 
2515     /**
2516      * Fetches a reference value from a given Java variable, with volatile
2517      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2518      */
2519     @IntrinsicCandidate
2520     public native Object getReferenceVolatile(Object o, long offset);
2521 
2522     @ForceInline
2523     public final <V> Object getFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType) {
2524         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2525         Object res = getFlatValue(o, offset, layout, valueType);
2526         fullFence();
2527         return res;
2528     }
2529 
2530     /**
2531      * Stores a reference value into a given Java variable, with
2532      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2533      */
2534     @IntrinsicCandidate
2535     public native void putReferenceVolatile(Object o, long offset, Object x);
2536 
2537     @ForceInline
2538     public final <V> void putFlatValueVolatile(Object o, long offset, int layout, Class<?> valueType, V x) {
2539         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2540         putFlatValueRelease(o, offset, layout, valueType, x);
2541         fullFence();
2542     }
2543 
2544     /** Volatile version of {@link #getInt(Object, long)}  */
2545     @IntrinsicCandidate
2546     public native int     getIntVolatile(Object o, long offset);
2547 
2548     /** Volatile version of {@link #putInt(Object, long, int)}  */
2549     @IntrinsicCandidate
2550     public native void    putIntVolatile(Object o, long offset, int x);
2551 
2552     /** Volatile version of {@link #getBoolean(Object, long)}  */
2553     @IntrinsicCandidate
2554     public native boolean getBooleanVolatile(Object o, long offset);
2555 
2556     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2557     @IntrinsicCandidate
2558     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2559 
2560     /** Volatile version of {@link #getByte(Object, long)}  */
2561     @IntrinsicCandidate
2562     public native byte    getByteVolatile(Object o, long offset);
2563 
2564     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2565     @IntrinsicCandidate
2566     public native void    putByteVolatile(Object o, long offset, byte x);
2567 
2568     /** Volatile version of {@link #getShort(Object, long)}  */
2569     @IntrinsicCandidate
2570     public native short   getShortVolatile(Object o, long offset);
2571 
2572     /** Volatile version of {@link #putShort(Object, long, short)}  */
2573     @IntrinsicCandidate
2574     public native void    putShortVolatile(Object o, long offset, short x);
2575 
2576     /** Volatile version of {@link #getChar(Object, long)}  */
2577     @IntrinsicCandidate
2578     public native char    getCharVolatile(Object o, long offset);
2579 
2580     /** Volatile version of {@link #putChar(Object, long, char)}  */
2581     @IntrinsicCandidate
2582     public native void    putCharVolatile(Object o, long offset, char x);
2583 
2584     /** Volatile version of {@link #getLong(Object, long)}  */
2585     @IntrinsicCandidate
2586     public native long    getLongVolatile(Object o, long offset);
2587 
2588     /** Volatile version of {@link #putLong(Object, long, long)}  */
2589     @IntrinsicCandidate
2590     public native void    putLongVolatile(Object o, long offset, long x);
2591 
2592     /** Volatile version of {@link #getFloat(Object, long)}  */
2593     @IntrinsicCandidate
2594     public native float   getFloatVolatile(Object o, long offset);
2595 
2596     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2597     @IntrinsicCandidate
2598     public native void    putFloatVolatile(Object o, long offset, float x);
2599 
2600     /** Volatile version of {@link #getDouble(Object, long)}  */
2601     @IntrinsicCandidate
2602     public native double  getDoubleVolatile(Object o, long offset);
2603 
2604     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2605     @IntrinsicCandidate
2606     public native void    putDoubleVolatile(Object o, long offset, double x);
2607 
2608 
2609 
2610     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2611     @IntrinsicCandidate
2612     public final Object getReferenceAcquire(Object o, long offset) {
2613         return getReferenceVolatile(o, offset);
2614     }
2615 
2616     @ForceInline
2617     public final <V> Object getFlatValueAcquire(Object o, long offset, int layout, Class<?> valueType) {
2618         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2619         Object res = getFlatValue(o, offset, layout, valueType);
2620         loadFence();
2621         return res;
2622     }
2623 
2624     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2625     @IntrinsicCandidate
2626     public final boolean getBooleanAcquire(Object o, long offset) {
2627         return getBooleanVolatile(o, offset);
2628     }
2629 
2630     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2631     @IntrinsicCandidate
2632     public final byte getByteAcquire(Object o, long offset) {
2633         return getByteVolatile(o, offset);
2634     }
2635 
2636     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2637     @IntrinsicCandidate
2638     public final short getShortAcquire(Object o, long offset) {
2639         return getShortVolatile(o, offset);
2640     }
2641 
2642     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2643     @IntrinsicCandidate
2644     public final char getCharAcquire(Object o, long offset) {
2645         return getCharVolatile(o, offset);
2646     }
2647 
2648     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2649     @IntrinsicCandidate
2650     public final int getIntAcquire(Object o, long offset) {
2651         return getIntVolatile(o, offset);
2652     }
2653 
2654     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2655     @IntrinsicCandidate
2656     public final float getFloatAcquire(Object o, long offset) {
2657         return getFloatVolatile(o, offset);
2658     }
2659 
2660     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2661     @IntrinsicCandidate
2662     public final long getLongAcquire(Object o, long offset) {
2663         return getLongVolatile(o, offset);
2664     }
2665 
2666     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2667     @IntrinsicCandidate
2668     public final double getDoubleAcquire(Object o, long offset) {
2669         return getDoubleVolatile(o, offset);
2670     }
2671 
2672     /*
2673      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2674      * that do not guarantee immediate visibility of the store to
2675      * other threads. This method is generally only useful if the
2676      * underlying field is a Java volatile (or if an array cell, one
2677      * that is otherwise only accessed using volatile accesses).
2678      *
2679      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2680      */
2681 
2682     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2683     @IntrinsicCandidate
2684     public final void putReferenceRelease(Object o, long offset, Object x) {
2685         putReferenceVolatile(o, offset, x);
2686     }
2687 
2688     @ForceInline
2689     public final <V> void putFlatValueRelease(Object o, long offset, int layout, Class<?> valueType, V x) {
2690         // we translate using fences (see: https://gee.cs.oswego.edu/dl/html/j9mm.html)
2691         storeFence();
2692         putFlatValue(o, offset, layout, valueType, x);
2693     }
2694 
2695     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2696     @IntrinsicCandidate
2697     public final void putBooleanRelease(Object o, long offset, boolean x) {
2698         putBooleanVolatile(o, offset, x);
2699     }
2700 
2701     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2702     @IntrinsicCandidate
2703     public final void putByteRelease(Object o, long offset, byte x) {
2704         putByteVolatile(o, offset, x);
2705     }
2706 
2707     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2708     @IntrinsicCandidate
2709     public final void putShortRelease(Object o, long offset, short x) {
2710         putShortVolatile(o, offset, x);
2711     }
2712 
2713     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2714     @IntrinsicCandidate
2715     public final void putCharRelease(Object o, long offset, char x) {
2716         putCharVolatile(o, offset, x);
2717     }
2718 
2719     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2720     @IntrinsicCandidate
2721     public final void putIntRelease(Object o, long offset, int x) {
2722         putIntVolatile(o, offset, x);
2723     }
2724 
2725     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2726     @IntrinsicCandidate
2727     public final void putFloatRelease(Object o, long offset, float x) {
2728         putFloatVolatile(o, offset, x);
2729     }
2730 
2731     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2732     @IntrinsicCandidate
2733     public final void putLongRelease(Object o, long offset, long x) {
2734         putLongVolatile(o, offset, x);
2735     }
2736 
2737     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2738     @IntrinsicCandidate
2739     public final void putDoubleRelease(Object o, long offset, double x) {
2740         putDoubleVolatile(o, offset, x);
2741     }
2742 
2743     // ------------------------------ Opaque --------------------------------------
2744 
2745     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2746     @IntrinsicCandidate
2747     public final Object getReferenceOpaque(Object o, long offset) {
2748         return getReferenceVolatile(o, offset);
2749     }
2750 
2751     @ForceInline
2752     public final <V> Object getFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType) {
2753         // this is stronger than opaque semantics
2754         return getFlatValueAcquire(o, offset, layout, valueType);
2755     }
2756 
2757     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2758     @IntrinsicCandidate
2759     public final boolean getBooleanOpaque(Object o, long offset) {
2760         return getBooleanVolatile(o, offset);
2761     }
2762 
2763     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2764     @IntrinsicCandidate
2765     public final byte getByteOpaque(Object o, long offset) {
2766         return getByteVolatile(o, offset);
2767     }
2768 
2769     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2770     @IntrinsicCandidate
2771     public final short getShortOpaque(Object o, long offset) {
2772         return getShortVolatile(o, offset);
2773     }
2774 
2775     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2776     @IntrinsicCandidate
2777     public final char getCharOpaque(Object o, long offset) {
2778         return getCharVolatile(o, offset);
2779     }
2780 
2781     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2782     @IntrinsicCandidate
2783     public final int getIntOpaque(Object o, long offset) {
2784         return getIntVolatile(o, offset);
2785     }
2786 
2787     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2788     @IntrinsicCandidate
2789     public final float getFloatOpaque(Object o, long offset) {
2790         return getFloatVolatile(o, offset);
2791     }
2792 
2793     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2794     @IntrinsicCandidate
2795     public final long getLongOpaque(Object o, long offset) {
2796         return getLongVolatile(o, offset);
2797     }
2798 
2799     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2800     @IntrinsicCandidate
2801     public final double getDoubleOpaque(Object o, long offset) {
2802         return getDoubleVolatile(o, offset);
2803     }
2804 
2805     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2806     @IntrinsicCandidate
2807     public final void putReferenceOpaque(Object o, long offset, Object x) {
2808         putReferenceVolatile(o, offset, x);
2809     }
2810 
2811     @ForceInline
2812     public final <V> void putFlatValueOpaque(Object o, long offset, int layout, Class<?> valueType, V x) {
2813         // this is stronger than opaque semantics
2814         putFlatValueRelease(o, offset, layout, valueType, x);
2815     }
2816 
2817     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2818     @IntrinsicCandidate
2819     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2820         putBooleanVolatile(o, offset, x);
2821     }
2822 
2823     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2824     @IntrinsicCandidate
2825     public final void putByteOpaque(Object o, long offset, byte x) {
2826         putByteVolatile(o, offset, x);
2827     }
2828 
2829     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2830     @IntrinsicCandidate
2831     public final void putShortOpaque(Object o, long offset, short x) {
2832         putShortVolatile(o, offset, x);
2833     }
2834 
2835     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2836     @IntrinsicCandidate
2837     public final void putCharOpaque(Object o, long offset, char x) {
2838         putCharVolatile(o, offset, x);
2839     }
2840 
2841     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2842     @IntrinsicCandidate
2843     public final void putIntOpaque(Object o, long offset, int x) {
2844         putIntVolatile(o, offset, x);
2845     }
2846 
2847     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2848     @IntrinsicCandidate
2849     public final void putFloatOpaque(Object o, long offset, float x) {
2850         putFloatVolatile(o, offset, x);
2851     }
2852 
2853     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2854     @IntrinsicCandidate
2855     public final void putLongOpaque(Object o, long offset, long x) {
2856         putLongVolatile(o, offset, x);
2857     }
2858 
2859     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2860     @IntrinsicCandidate
2861     public final void putDoubleOpaque(Object o, long offset, double x) {
2862         putDoubleVolatile(o, offset, x);
2863     }
2864 
2865     @ForceInline
2866     private boolean compareAndSetFlatValueAsBytes(Object[] array, Object o, long offset, int layout, Class<?> valueType, Object expected, Object x) {
2867         // We can convert between a value object and a binary value (of suitable size) using array elements.
2868         // This only works if the payload contains no oops (see VarHandles::isAtomicFlat).
2869         // Thus, we can implement the CAS with a plain numeric CAS.
2870 
2871         // array[0]: witness (put as binary, get as object), at base
2872         // array[1]: x (put as object, get as binary), at base + scale
2873         // When witness == expected, the witness binary may be different from the expected binary.
2874         // This happens when compiler does not zero unused positions in the witness.
2875         // So we must obtain the witness binary and use it as expected binary for the numeric CAS.
2876         long base = arrayInstanceBaseOffset(array);
2877         int scale = arrayInstanceIndexScale(array);
2878         putFlatValue(array, base + scale, layout, valueType, x); // put x as object
2879         switch (scale) {
2880             case 1: {
2881                 do {
2882                     byte witnessByte = getByteVolatile(o, offset);
2883                     putByte(array, base, witnessByte); // put witness as binary
2884                     Object witness = getFlatValue(array, base, layout, valueType); // get witness as object
2885                     if (witness != expected) {
2886                         return false;
2887                     }
2888                     byte xByte = getByte(array, base + scale); // get x as binary
2889                     if (compareAndSetByte(o, offset, witnessByte, xByte)) {
2890                         return true;
2891                     }
2892                 } while (true);
2893             }
2894             case 2: {
2895                 do {
2896                     short witnessShort = getShortVolatile(o, offset);
2897                     putShort(array, base, witnessShort); // put witness as binary
2898                     Object witness = getFlatValue(array, base, layout, valueType); // get witness as object
2899                     if (witness != expected) {
2900                         return false;
2901                     }
2902                     short xShort = getShort(array, base + scale); // get x as binary
2903                     if (compareAndSetShort(o, offset, witnessShort, xShort)) {
2904                         return true;
2905                     }
2906                 } while (true);
2907             }
2908             case 4: {
2909                 do {
2910                     int witnessInt = getIntVolatile(o, offset);
2911                     putInt(array, base, witnessInt); // put witness as binary
2912                     Object witness = getFlatValue(array, base, layout, valueType); // get witness as object
2913                     if (witness != expected) {
2914                         return false;
2915                     }
2916                     int xInt = getInt(array, base + scale); // get x as binary
2917                     if (compareAndSetInt(o, offset, witnessInt, xInt)) {
2918                         return true;
2919                     }
2920                 } while (true);
2921             }
2922             case 8: {
2923                 do {
2924                     long witnessLong = getLongVolatile(o, offset);
2925                     putLong(array, base, witnessLong); // put witness as binary
2926                     Object witness = getFlatValue(array, base, layout, valueType);
2927                     if (witness != expected) {
2928                         return false;
2929                     }
2930                     long xLong = getLong(array, base + scale); // get x as binary
2931                     if (compareAndSetLong(o, offset, witnessLong, xLong)) {
2932                         return true;
2933                     }
2934                 } while (true);
2935             }
2936             default: {
2937                 throw new UnsupportedOperationException();
2938             }
2939         }
2940     }
2941 
2942     /**
2943      * Unblocks the given thread blocked on {@code park}, or, if it is
2944      * not blocked, causes the subsequent call to {@code park} not to
2945      * block.  Note: this operation is "unsafe" solely because the
2946      * caller must somehow ensure that the thread has not been
2947      * destroyed. Nothing special is usually required to ensure this
2948      * when called from Java (in which there will ordinarily be a live
2949      * reference to the thread) but this is not nearly-automatically
2950      * so when calling from native code.
2951      *
2952      * @param thread the thread to unpark.
2953      */
2954     @IntrinsicCandidate
2955     public native void unpark(Object thread);
2956 
2957     /**
2958      * Blocks current thread, returning when a balancing
2959      * {@code unpark} occurs, or a balancing {@code unpark} has
2960      * already occurred, or the thread is interrupted, or, if not
2961      * absolute and time is not zero, the given time nanoseconds have
2962      * elapsed, or if absolute, the given deadline in milliseconds
2963      * since Epoch has passed, or spuriously (i.e., returning for no
2964      * "reason"). Note: This operation is in the Unsafe class only
2965      * because {@code unpark} is, so it would be strange to place it
2966      * elsewhere.
2967      */
2968     @IntrinsicCandidate
2969     public native void park(boolean isAbsolute, long time);
2970 
2971     /**
2972      * Gets the load average in the system run queue assigned
2973      * to the available processors averaged over various periods of time.
2974      * This method retrieves the given {@code nelem} samples and
2975      * assigns to the elements of the given {@code loadavg} array.
2976      * The system imposes a maximum of 3 samples, representing
2977      * averages over the last 1,  5,  and  15 minutes, respectively.
2978      *
2979      * @param loadavg an array of double of size nelems
2980      * @param nelems the number of samples to be retrieved and
2981      *        must be 1 to 3.
2982      *
2983      * @return the number of samples actually retrieved; or -1
2984      *         if the load average is unobtainable.
2985      */
2986     public int getLoadAverage(double[] loadavg, int nelems) {
2987         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2988             throw new ArrayIndexOutOfBoundsException();
2989         }
2990 
2991         return getLoadAverage0(loadavg, nelems);
2992     }
2993 
2994     // The following contain CAS-based Java implementations used on
2995     // platforms not supporting native instructions
2996 
2997     /**
2998      * Atomically adds the given value to the current value of a field
2999      * or array element within the given object {@code o}
3000      * at the given {@code offset}.
3001      *
3002      * @param o object/array to update the field/element in
3003      * @param offset field/element offset
3004      * @param delta the value to add
3005      * @return the previous value
3006      * @since 1.8
3007      */
3008     @IntrinsicCandidate
3009     public final int getAndAddInt(Object o, long offset, int delta) {
3010         int v;
3011         do {
3012             v = getIntVolatile(o, offset);
3013         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
3014         return v;
3015     }
3016 
3017     @ForceInline
3018     public final int getAndAddIntRelease(Object o, long offset, int delta) {
3019         int v;
3020         do {
3021             v = getInt(o, offset);
3022         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
3023         return v;
3024     }
3025 
3026     @ForceInline
3027     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
3028         int v;
3029         do {
3030             v = getIntAcquire(o, offset);
3031         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
3032         return v;
3033     }
3034 
3035     /**
3036      * Atomically adds the given value to the current value of a field
3037      * or array element within the given object {@code o}
3038      * at the given {@code offset}.
3039      *
3040      * @param o object/array to update the field/element in
3041      * @param offset field/element offset
3042      * @param delta the value to add
3043      * @return the previous value
3044      * @since 1.8
3045      */
3046     @IntrinsicCandidate
3047     public final long getAndAddLong(Object o, long offset, long delta) {
3048         long v;
3049         do {
3050             v = getLongVolatile(o, offset);
3051         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
3052         return v;
3053     }
3054 
3055     @ForceInline
3056     public final long getAndAddLongRelease(Object o, long offset, long delta) {
3057         long v;
3058         do {
3059             v = getLong(o, offset);
3060         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
3061         return v;
3062     }
3063 
3064     @ForceInline
3065     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
3066         long v;
3067         do {
3068             v = getLongAcquire(o, offset);
3069         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
3070         return v;
3071     }
3072 
3073     @IntrinsicCandidate
3074     public final byte getAndAddByte(Object o, long offset, byte delta) {
3075         byte v;
3076         do {
3077             v = getByteVolatile(o, offset);
3078         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
3079         return v;
3080     }
3081 
3082     @ForceInline
3083     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
3084         byte v;
3085         do {
3086             v = getByte(o, offset);
3087         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
3088         return v;
3089     }
3090 
3091     @ForceInline
3092     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
3093         byte v;
3094         do {
3095             v = getByteAcquire(o, offset);
3096         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
3097         return v;
3098     }
3099 
3100     @IntrinsicCandidate
3101     public final short getAndAddShort(Object o, long offset, short delta) {
3102         short v;
3103         do {
3104             v = getShortVolatile(o, offset);
3105         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
3106         return v;
3107     }
3108 
3109     @ForceInline
3110     public final short getAndAddShortRelease(Object o, long offset, short delta) {
3111         short v;
3112         do {
3113             v = getShort(o, offset);
3114         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
3115         return v;
3116     }
3117 
3118     @ForceInline
3119     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
3120         short v;
3121         do {
3122             v = getShortAcquire(o, offset);
3123         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
3124         return v;
3125     }
3126 
3127     @ForceInline
3128     public final char getAndAddChar(Object o, long offset, char delta) {
3129         return (char) getAndAddShort(o, offset, (short) delta);
3130     }
3131 
3132     @ForceInline
3133     public final char getAndAddCharRelease(Object o, long offset, char delta) {
3134         return (char) getAndAddShortRelease(o, offset, (short) delta);
3135     }
3136 
3137     @ForceInline
3138     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
3139         return (char) getAndAddShortAcquire(o, offset, (short) delta);
3140     }
3141 
3142     @ForceInline
3143     public final float getAndAddFloat(Object o, long offset, float delta) {
3144         int expectedBits;
3145         float v;
3146         do {
3147             // Load and CAS with the raw bits to avoid issues with NaNs and
3148             // possible bit conversion from signaling NaNs to quiet NaNs that
3149             // may result in the loop not terminating.
3150             expectedBits = getIntVolatile(o, offset);
3151             v = Float.intBitsToFloat(expectedBits);
3152         } while (!weakCompareAndSetInt(o, offset,
3153                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
3154         return v;
3155     }
3156 
3157     @ForceInline
3158     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
3159         int expectedBits;
3160         float v;
3161         do {
3162             // Load and CAS with the raw bits to avoid issues with NaNs and
3163             // possible bit conversion from signaling NaNs to quiet NaNs that
3164             // may result in the loop not terminating.
3165             expectedBits = getInt(o, offset);
3166             v = Float.intBitsToFloat(expectedBits);
3167         } while (!weakCompareAndSetIntRelease(o, offset,
3168                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3169         return v;
3170     }
3171 
3172     @ForceInline
3173     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
3174         int expectedBits;
3175         float v;
3176         do {
3177             // Load and CAS with the raw bits to avoid issues with NaNs and
3178             // possible bit conversion from signaling NaNs to quiet NaNs that
3179             // may result in the loop not terminating.
3180             expectedBits = getIntAcquire(o, offset);
3181             v = Float.intBitsToFloat(expectedBits);
3182         } while (!weakCompareAndSetIntAcquire(o, offset,
3183                                                expectedBits, Float.floatToRawIntBits(v + delta)));
3184         return v;
3185     }
3186 
3187     @ForceInline
3188     public final double getAndAddDouble(Object o, long offset, double delta) {
3189         long expectedBits;
3190         double v;
3191         do {
3192             // Load and CAS with the raw bits to avoid issues with NaNs and
3193             // possible bit conversion from signaling NaNs to quiet NaNs that
3194             // may result in the loop not terminating.
3195             expectedBits = getLongVolatile(o, offset);
3196             v = Double.longBitsToDouble(expectedBits);
3197         } while (!weakCompareAndSetLong(o, offset,
3198                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
3199         return v;
3200     }
3201 
3202     @ForceInline
3203     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
3204         long expectedBits;
3205         double v;
3206         do {
3207             // Load and CAS with the raw bits to avoid issues with NaNs and
3208             // possible bit conversion from signaling NaNs to quiet NaNs that
3209             // may result in the loop not terminating.
3210             expectedBits = getLong(o, offset);
3211             v = Double.longBitsToDouble(expectedBits);
3212         } while (!weakCompareAndSetLongRelease(o, offset,
3213                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3214         return v;
3215     }
3216 
3217     @ForceInline
3218     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
3219         long expectedBits;
3220         double v;
3221         do {
3222             // Load and CAS with the raw bits to avoid issues with NaNs and
3223             // possible bit conversion from signaling NaNs to quiet NaNs that
3224             // may result in the loop not terminating.
3225             expectedBits = getLongAcquire(o, offset);
3226             v = Double.longBitsToDouble(expectedBits);
3227         } while (!weakCompareAndSetLongAcquire(o, offset,
3228                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
3229         return v;
3230     }
3231 
3232     /**
3233      * Atomically exchanges the given value with the current value of
3234      * a field or array element within the given object {@code o}
3235      * at the given {@code offset}.
3236      *
3237      * @param o object/array to update the field/element in
3238      * @param offset field/element offset
3239      * @param newValue new value
3240      * @return the previous value
3241      * @since 1.8
3242      */
3243     @IntrinsicCandidate
3244     public final int getAndSetInt(Object o, long offset, int newValue) {
3245         int v;
3246         do {
3247             v = getIntVolatile(o, offset);
3248         } while (!weakCompareAndSetInt(o, offset, v, newValue));
3249         return v;
3250     }
3251 
3252     @ForceInline
3253     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
3254         int v;
3255         do {
3256             v = getInt(o, offset);
3257         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
3258         return v;
3259     }
3260 
3261     @ForceInline
3262     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
3263         int v;
3264         do {
3265             v = getIntAcquire(o, offset);
3266         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
3267         return v;
3268     }
3269 
3270     /**
3271      * Atomically exchanges the given value with the current value of
3272      * a field or array element within the given object {@code o}
3273      * at the given {@code offset}.
3274      *
3275      * @param o object/array to update the field/element in
3276      * @param offset field/element offset
3277      * @param newValue new value
3278      * @return the previous value
3279      * @since 1.8
3280      */
3281     @IntrinsicCandidate
3282     public final long getAndSetLong(Object o, long offset, long newValue) {
3283         long v;
3284         do {
3285             v = getLongVolatile(o, offset);
3286         } while (!weakCompareAndSetLong(o, offset, v, newValue));
3287         return v;
3288     }
3289 
3290     @ForceInline
3291     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
3292         long v;
3293         do {
3294             v = getLong(o, offset);
3295         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
3296         return v;
3297     }
3298 
3299     @ForceInline
3300     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
3301         long v;
3302         do {
3303             v = getLongAcquire(o, offset);
3304         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
3305         return v;
3306     }
3307 
3308     /**
3309      * Atomically exchanges the given reference value with the current
3310      * reference value of a field or array element within the given
3311      * object {@code o} at the given {@code offset}.
3312      *
3313      * @param o object/array to update the field/element in
3314      * @param offset field/element offset
3315      * @param newValue new value
3316      * @return the previous value
3317      * @since 1.8
3318      */
3319     @IntrinsicCandidate
3320     public final Object getAndSetReference(Object o, long offset, Object newValue) {
3321         Object v;
3322         do {
3323             v = getReferenceVolatile(o, offset);
3324         } while (!weakCompareAndSetReference(o, offset, v, newValue));
3325         return v;
3326     }
3327 
3328     @ForceInline
3329     public final Object getAndSetReference(Object o, long offset, Class<?> valueType, Object newValue) {
3330         Object v;
3331         do {
3332             v = getReferenceVolatile(o, offset);
3333         } while (!compareAndSetReference(o, offset, valueType, v, newValue));
3334         return v;
3335     }
3336 
3337     @ForceInline
3338     public Object getAndSetFlatValue(Object o, long offset, int layoutKind, Class<?> valueType, Object newValue) {
3339         Object v;
3340         do {
3341             v = getFlatValueVolatile(o, offset, layoutKind, valueType);
3342         } while (!compareAndSetFlatValue(o, offset, layoutKind, valueType, v, newValue));
3343         return v;
3344     }
3345 
3346     @ForceInline
3347     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
3348         Object v;
3349         do {
3350             v = getReference(o, offset);
3351         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
3352         return v;
3353     }
3354 
3355     @ForceInline
3356     public final Object getAndSetReferenceRelease(Object o, long offset, Class<?> valueType, Object newValue) {
3357         return getAndSetReference(o, offset, valueType, newValue);
3358     }
3359 
3360     @ForceInline
3361     public Object getAndSetFlatValueRelease(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3362         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3363     }
3364 
3365     @ForceInline
3366     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
3367         Object v;
3368         do {
3369             v = getReferenceAcquire(o, offset);
3370         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
3371         return v;
3372     }
3373 
3374     @ForceInline
3375     public final Object getAndSetReferenceAcquire(Object o, long offset, Class<?> valueType, Object newValue) {
3376         return getAndSetReference(o, offset, valueType, newValue);
3377     }
3378 
3379     @ForceInline
3380     public Object getAndSetFlatValueAcquire(Object o, long offset, int layoutKind, Class<?> valueType, Object x) {
3381         return getAndSetFlatValue(o, offset, layoutKind, valueType, x);
3382     }
3383 
3384     @IntrinsicCandidate
3385     public final byte getAndSetByte(Object o, long offset, byte newValue) {
3386         byte v;
3387         do {
3388             v = getByteVolatile(o, offset);
3389         } while (!weakCompareAndSetByte(o, offset, v, newValue));
3390         return v;
3391     }
3392 
3393     @ForceInline
3394     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
3395         byte v;
3396         do {
3397             v = getByte(o, offset);
3398         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
3399         return v;
3400     }
3401 
3402     @ForceInline
3403     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
3404         byte v;
3405         do {
3406             v = getByteAcquire(o, offset);
3407         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
3408         return v;
3409     }
3410 
3411     @ForceInline
3412     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
3413         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
3414     }
3415 
3416     @ForceInline
3417     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
3418         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
3419     }
3420 
3421     @ForceInline
3422     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
3423         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
3424     }
3425 
3426     @IntrinsicCandidate
3427     public final short getAndSetShort(Object o, long offset, short newValue) {
3428         short v;
3429         do {
3430             v = getShortVolatile(o, offset);
3431         } while (!weakCompareAndSetShort(o, offset, v, newValue));
3432         return v;
3433     }
3434 
3435     @ForceInline
3436     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
3437         short v;
3438         do {
3439             v = getShort(o, offset);
3440         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
3441         return v;
3442     }
3443 
3444     @ForceInline
3445     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
3446         short v;
3447         do {
3448             v = getShortAcquire(o, offset);
3449         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
3450         return v;
3451     }
3452 
3453     @ForceInline
3454     public final char getAndSetChar(Object o, long offset, char newValue) {
3455         return s2c(getAndSetShort(o, offset, c2s(newValue)));
3456     }
3457 
3458     @ForceInline
3459     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
3460         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
3461     }
3462 
3463     @ForceInline
3464     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
3465         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
3466     }
3467 
3468     @ForceInline
3469     public final float getAndSetFloat(Object o, long offset, float newValue) {
3470         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
3471         return Float.intBitsToFloat(v);
3472     }
3473 
3474     @ForceInline
3475     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
3476         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
3477         return Float.intBitsToFloat(v);
3478     }
3479 
3480     @ForceInline
3481     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
3482         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
3483         return Float.intBitsToFloat(v);
3484     }
3485 
3486     @ForceInline
3487     public final double getAndSetDouble(Object o, long offset, double newValue) {
3488         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
3489         return Double.longBitsToDouble(v);
3490     }
3491 
3492     @ForceInline
3493     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
3494         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
3495         return Double.longBitsToDouble(v);
3496     }
3497 
3498     @ForceInline
3499     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
3500         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
3501         return Double.longBitsToDouble(v);
3502     }
3503 
3504 
3505     // The following contain CAS-based Java implementations used on
3506     // platforms not supporting native instructions
3507 
3508     @ForceInline
3509     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
3510         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
3511     }
3512 
3513     @ForceInline
3514     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
3515         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
3516     }
3517 
3518     @ForceInline
3519     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
3520         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
3521     }
3522 
3523     @ForceInline
3524     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
3525         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
3526     }
3527 
3528     @ForceInline
3529     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
3530         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
3531     }
3532 
3533     @ForceInline
3534     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
3535         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
3536     }
3537 
3538     @ForceInline
3539     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
3540         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
3541     }
3542 
3543     @ForceInline
3544     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
3545         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
3546     }
3547 
3548     @ForceInline
3549     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
3550         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
3551     }
3552 
3553 
3554     @ForceInline
3555     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
3556         byte current;
3557         do {
3558             current = getByteVolatile(o, offset);
3559         } while (!weakCompareAndSetByte(o, offset,
3560                                                   current, (byte) (current | mask)));
3561         return current;
3562     }
3563 
3564     @ForceInline
3565     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
3566         byte current;
3567         do {
3568             current = getByte(o, offset);
3569         } while (!weakCompareAndSetByteRelease(o, offset,
3570                                                  current, (byte) (current | mask)));
3571         return current;
3572     }
3573 
3574     @ForceInline
3575     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
3576         byte current;
3577         do {
3578             // Plain read, the value is a hint, the acquire CAS does the work
3579             current = getByte(o, offset);
3580         } while (!weakCompareAndSetByteAcquire(o, offset,
3581                                                  current, (byte) (current | mask)));
3582         return current;
3583     }
3584 
3585     @ForceInline
3586     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3587         byte current;
3588         do {
3589             current = getByteVolatile(o, offset);
3590         } while (!weakCompareAndSetByte(o, offset,
3591                                                   current, (byte) (current & mask)));
3592         return current;
3593     }
3594 
3595     @ForceInline
3596     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3597         byte current;
3598         do {
3599             current = getByte(o, offset);
3600         } while (!weakCompareAndSetByteRelease(o, offset,
3601                                                  current, (byte) (current & mask)));
3602         return current;
3603     }
3604 
3605     @ForceInline
3606     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3607         byte current;
3608         do {
3609             // Plain read, the value is a hint, the acquire CAS does the work
3610             current = getByte(o, offset);
3611         } while (!weakCompareAndSetByteAcquire(o, offset,
3612                                                  current, (byte) (current & mask)));
3613         return current;
3614     }
3615 
3616     @ForceInline
3617     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3618         byte current;
3619         do {
3620             current = getByteVolatile(o, offset);
3621         } while (!weakCompareAndSetByte(o, offset,
3622                                                   current, (byte) (current ^ mask)));
3623         return current;
3624     }
3625 
3626     @ForceInline
3627     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3628         byte current;
3629         do {
3630             current = getByte(o, offset);
3631         } while (!weakCompareAndSetByteRelease(o, offset,
3632                                                  current, (byte) (current ^ mask)));
3633         return current;
3634     }
3635 
3636     @ForceInline
3637     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3638         byte current;
3639         do {
3640             // Plain read, the value is a hint, the acquire CAS does the work
3641             current = getByte(o, offset);
3642         } while (!weakCompareAndSetByteAcquire(o, offset,
3643                                                  current, (byte) (current ^ mask)));
3644         return current;
3645     }
3646 
3647 
3648     @ForceInline
3649     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3650         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3651     }
3652 
3653     @ForceInline
3654     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3655         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3656     }
3657 
3658     @ForceInline
3659     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3660         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3661     }
3662 
3663     @ForceInline
3664     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3665         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3666     }
3667 
3668     @ForceInline
3669     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3670         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3671     }
3672 
3673     @ForceInline
3674     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3675         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3676     }
3677 
3678     @ForceInline
3679     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3680         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3681     }
3682 
3683     @ForceInline
3684     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3685         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3686     }
3687 
3688     @ForceInline
3689     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3690         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3691     }
3692 
3693 
3694     @ForceInline
3695     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3696         short current;
3697         do {
3698             current = getShortVolatile(o, offset);
3699         } while (!weakCompareAndSetShort(o, offset,
3700                                                 current, (short) (current | mask)));
3701         return current;
3702     }
3703 
3704     @ForceInline
3705     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3706         short current;
3707         do {
3708             current = getShort(o, offset);
3709         } while (!weakCompareAndSetShortRelease(o, offset,
3710                                                current, (short) (current | mask)));
3711         return current;
3712     }
3713 
3714     @ForceInline
3715     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3716         short current;
3717         do {
3718             // Plain read, the value is a hint, the acquire CAS does the work
3719             current = getShort(o, offset);
3720         } while (!weakCompareAndSetShortAcquire(o, offset,
3721                                                current, (short) (current | mask)));
3722         return current;
3723     }
3724 
3725     @ForceInline
3726     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3727         short current;
3728         do {
3729             current = getShortVolatile(o, offset);
3730         } while (!weakCompareAndSetShort(o, offset,
3731                                                 current, (short) (current & mask)));
3732         return current;
3733     }
3734 
3735     @ForceInline
3736     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3737         short current;
3738         do {
3739             current = getShort(o, offset);
3740         } while (!weakCompareAndSetShortRelease(o, offset,
3741                                                current, (short) (current & mask)));
3742         return current;
3743     }
3744 
3745     @ForceInline
3746     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3747         short current;
3748         do {
3749             // Plain read, the value is a hint, the acquire CAS does the work
3750             current = getShort(o, offset);
3751         } while (!weakCompareAndSetShortAcquire(o, offset,
3752                                                current, (short) (current & mask)));
3753         return current;
3754     }
3755 
3756     @ForceInline
3757     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3758         short current;
3759         do {
3760             current = getShortVolatile(o, offset);
3761         } while (!weakCompareAndSetShort(o, offset,
3762                                                 current, (short) (current ^ mask)));
3763         return current;
3764     }
3765 
3766     @ForceInline
3767     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3768         short current;
3769         do {
3770             current = getShort(o, offset);
3771         } while (!weakCompareAndSetShortRelease(o, offset,
3772                                                current, (short) (current ^ mask)));
3773         return current;
3774     }
3775 
3776     @ForceInline
3777     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3778         short current;
3779         do {
3780             // Plain read, the value is a hint, the acquire CAS does the work
3781             current = getShort(o, offset);
3782         } while (!weakCompareAndSetShortAcquire(o, offset,
3783                                                current, (short) (current ^ mask)));
3784         return current;
3785     }
3786 
3787 
3788     @ForceInline
3789     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3790         int current;
3791         do {
3792             current = getIntVolatile(o, offset);
3793         } while (!weakCompareAndSetInt(o, offset,
3794                                                 current, current | mask));
3795         return current;
3796     }
3797 
3798     @ForceInline
3799     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3800         int current;
3801         do {
3802             current = getInt(o, offset);
3803         } while (!weakCompareAndSetIntRelease(o, offset,
3804                                                current, current | mask));
3805         return current;
3806     }
3807 
3808     @ForceInline
3809     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3810         int current;
3811         do {
3812             // Plain read, the value is a hint, the acquire CAS does the work
3813             current = getInt(o, offset);
3814         } while (!weakCompareAndSetIntAcquire(o, offset,
3815                                                current, current | mask));
3816         return current;
3817     }
3818 
3819     /**
3820      * Atomically replaces the current value of a field or array element within
3821      * the given object with the result of bitwise AND between the current value
3822      * and mask.
3823      *
3824      * @param o object/array to update the field/element in
3825      * @param offset field/element offset
3826      * @param mask the mask value
3827      * @return the previous value
3828      * @since 9
3829      */
3830     @ForceInline
3831     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3832         int current;
3833         do {
3834             current = getIntVolatile(o, offset);
3835         } while (!weakCompareAndSetInt(o, offset,
3836                                                 current, current & mask));
3837         return current;
3838     }
3839 
3840     @ForceInline
3841     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3842         int current;
3843         do {
3844             current = getInt(o, offset);
3845         } while (!weakCompareAndSetIntRelease(o, offset,
3846                                                current, current & mask));
3847         return current;
3848     }
3849 
3850     @ForceInline
3851     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3852         int current;
3853         do {
3854             // Plain read, the value is a hint, the acquire CAS does the work
3855             current = getInt(o, offset);
3856         } while (!weakCompareAndSetIntAcquire(o, offset,
3857                                                current, current & mask));
3858         return current;
3859     }
3860 
3861     @ForceInline
3862     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3863         int current;
3864         do {
3865             current = getIntVolatile(o, offset);
3866         } while (!weakCompareAndSetInt(o, offset,
3867                                                 current, current ^ mask));
3868         return current;
3869     }
3870 
3871     @ForceInline
3872     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3873         int current;
3874         do {
3875             current = getInt(o, offset);
3876         } while (!weakCompareAndSetIntRelease(o, offset,
3877                                                current, current ^ mask));
3878         return current;
3879     }
3880 
3881     @ForceInline
3882     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3883         int current;
3884         do {
3885             // Plain read, the value is a hint, the acquire CAS does the work
3886             current = getInt(o, offset);
3887         } while (!weakCompareAndSetIntAcquire(o, offset,
3888                                                current, current ^ mask));
3889         return current;
3890     }
3891 
3892 
3893     @ForceInline
3894     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3895         long current;
3896         do {
3897             current = getLongVolatile(o, offset);
3898         } while (!weakCompareAndSetLong(o, offset,
3899                                                 current, current | mask));
3900         return current;
3901     }
3902 
3903     @ForceInline
3904     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3905         long current;
3906         do {
3907             current = getLong(o, offset);
3908         } while (!weakCompareAndSetLongRelease(o, offset,
3909                                                current, current | mask));
3910         return current;
3911     }
3912 
3913     @ForceInline
3914     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3915         long current;
3916         do {
3917             // Plain read, the value is a hint, the acquire CAS does the work
3918             current = getLong(o, offset);
3919         } while (!weakCompareAndSetLongAcquire(o, offset,
3920                                                current, current | mask));
3921         return current;
3922     }
3923 
3924     @ForceInline
3925     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3926         long current;
3927         do {
3928             current = getLongVolatile(o, offset);
3929         } while (!weakCompareAndSetLong(o, offset,
3930                                                 current, current & mask));
3931         return current;
3932     }
3933 
3934     @ForceInline
3935     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3936         long current;
3937         do {
3938             current = getLong(o, offset);
3939         } while (!weakCompareAndSetLongRelease(o, offset,
3940                                                current, current & mask));
3941         return current;
3942     }
3943 
3944     @ForceInline
3945     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3946         long current;
3947         do {
3948             // Plain read, the value is a hint, the acquire CAS does the work
3949             current = getLong(o, offset);
3950         } while (!weakCompareAndSetLongAcquire(o, offset,
3951                                                current, current & mask));
3952         return current;
3953     }
3954 
3955     @ForceInline
3956     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3957         long current;
3958         do {
3959             current = getLongVolatile(o, offset);
3960         } while (!weakCompareAndSetLong(o, offset,
3961                                                 current, current ^ mask));
3962         return current;
3963     }
3964 
3965     @ForceInline
3966     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3967         long current;
3968         do {
3969             current = getLong(o, offset);
3970         } while (!weakCompareAndSetLongRelease(o, offset,
3971                                                current, current ^ mask));
3972         return current;
3973     }
3974 
3975     @ForceInline
3976     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3977         long current;
3978         do {
3979             // Plain read, the value is a hint, the acquire CAS does the work
3980             current = getLong(o, offset);
3981         } while (!weakCompareAndSetLongAcquire(o, offset,
3982                                                current, current ^ mask));
3983         return current;
3984     }
3985 
3986 
3987 
3988     /**
3989      * Ensures that loads before the fence will not be reordered with loads and
3990      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3991      *
3992      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3993      * (an "acquire fence").
3994      *
3995      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3996      *
3997      * @since 1.8
3998      */
3999     @IntrinsicCandidate
4000     public final void loadFence() {
4001         // If loadFence intrinsic is not available, fall back to full fence.
4002         fullFence();
4003     }
4004 
4005     /**
4006      * Ensures that loads and stores before the fence will not be reordered with
4007      * stores after the fence; a "StoreStore plus LoadStore barrier".
4008      *
4009      * Corresponds to C11 atomic_thread_fence(memory_order_release)
4010      * (a "release fence").
4011      *
4012      * Provides a StoreStore barrier followed by a LoadStore barrier.
4013      *
4014      * @since 1.8
4015      */
4016     @IntrinsicCandidate
4017     public final void storeFence() {
4018         // If storeFence intrinsic is not available, fall back to full fence.
4019         fullFence();
4020     }
4021 
4022     /**
4023      * Ensures that loads and stores before the fence will not be reordered
4024      * with loads and stores after the fence.  Implies the effects of both
4025      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
4026      * barrier.
4027      *
4028      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
4029      * @since 1.8
4030      */
4031     @IntrinsicCandidate
4032     public native void fullFence();
4033 
4034     /**
4035      * Ensures that loads before the fence will not be reordered with
4036      * loads after the fence.
4037      *
4038      * @implNote
4039      * This method is operationally equivalent to {@link #loadFence()}.
4040      *
4041      * @since 9
4042      */
4043     public final void loadLoadFence() {
4044         loadFence();
4045     }
4046 
4047     /**
4048      * Ensures that stores before the fence will not be reordered with
4049      * stores after the fence.
4050      *
4051      * @since 9
4052      */
4053     @IntrinsicCandidate
4054     public final void storeStoreFence() {
4055         // If storeStoreFence intrinsic is not available, fall back to storeFence.
4056         storeFence();
4057     }
4058 
4059     /**
4060      * Throws IllegalAccessError; for use by the VM for access control
4061      * error support.
4062      * @since 1.8
4063      */
4064     private static void throwIllegalAccessError() {
4065         throw new IllegalAccessError();
4066     }
4067 
4068     /**
4069      * Throws NoSuchMethodError; for use by the VM for redefinition support.
4070      * @since 13
4071      */
4072     private static void throwNoSuchMethodError() {
4073         throw new NoSuchMethodError();
4074     }
4075 
4076     /**
4077      * @return Returns true if the native byte ordering of this
4078      * platform is big-endian, false if it is little-endian.
4079      */
4080     public final boolean isBigEndian() { return BIG_ENDIAN; }
4081 
4082     /**
4083      * @return Returns true if this platform is capable of performing
4084      * accesses at addresses which are not aligned for the type of the
4085      * primitive type being accessed, false otherwise.
4086      */
4087     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
4088 
4089     /**
4090      * Fetches a value at some byte offset into a given Java object.
4091      * More specifically, fetches a value within the given object
4092      * <code>o</code> at the given offset, or (if <code>o</code> is
4093      * null) from the memory address whose numerical value is the
4094      * given offset.  <p>
4095      *
4096      * The specification of this method is the same as {@link
4097      * #getLong(Object, long)} except that the offset does not need to
4098      * have been obtained from {@link #objectFieldOffset} on the
4099      * {@link java.lang.reflect.Field} of some Java field.  The value
4100      * in memory is raw data, and need not correspond to any Java
4101      * variable.  Unless <code>o</code> is null, the value accessed
4102      * must be entirely within the allocated object.  The endianness
4103      * of the value in memory is the endianness of the native platform.
4104      *
4105      * <p> The read will be atomic with respect to the largest power
4106      * of two that divides the GCD of the offset and the storage size.
4107      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
4108      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4109      * respectively.  There are no other guarantees of atomicity.
4110      * <p>
4111      * 8-byte atomicity is only guaranteed on platforms on which
4112      * support atomic accesses to longs.
4113      *
4114      * @param o Java heap object in which the value resides, if any, else
4115      *        null
4116      * @param offset The offset in bytes from the start of the object
4117      * @return the value fetched from the indicated object
4118      * @throws RuntimeException No defined exceptions are thrown, not even
4119      *         {@link NullPointerException}
4120      * @since 9
4121      */
4122     @IntrinsicCandidate
4123     public final long getLongUnaligned(Object o, long offset) {
4124         if ((offset & 7) == 0) {
4125             return getLong(o, offset);
4126         } else if ((offset & 3) == 0) {
4127             return makeLong(getInt(o, offset),
4128                             getInt(o, offset + 4));
4129         } else if ((offset & 1) == 0) {
4130             return makeLong(getShort(o, offset),
4131                             getShort(o, offset + 2),
4132                             getShort(o, offset + 4),
4133                             getShort(o, offset + 6));
4134         } else {
4135             return makeLong(getByte(o, offset),
4136                             getByte(o, offset + 1),
4137                             getByte(o, offset + 2),
4138                             getByte(o, offset + 3),
4139                             getByte(o, offset + 4),
4140                             getByte(o, offset + 5),
4141                             getByte(o, offset + 6),
4142                             getByte(o, offset + 7));
4143         }
4144     }
4145     /**
4146      * As {@link #getLongUnaligned(Object, long)} but with an
4147      * additional argument which specifies the endianness of the value
4148      * as stored in memory.
4149      *
4150      * @param o Java heap object in which the variable resides
4151      * @param offset The offset in bytes from the start of the object
4152      * @param bigEndian The endianness of the value
4153      * @return the value fetched from the indicated object
4154      * @since 9
4155      */
4156     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
4157         return convEndian(bigEndian, getLongUnaligned(o, offset));
4158     }
4159 
4160     /** @see #getLongUnaligned(Object, long) */
4161     @IntrinsicCandidate
4162     public final int getIntUnaligned(Object o, long offset) {
4163         if ((offset & 3) == 0) {
4164             return getInt(o, offset);
4165         } else if ((offset & 1) == 0) {
4166             return makeInt(getShort(o, offset),
4167                            getShort(o, offset + 2));
4168         } else {
4169             return makeInt(getByte(o, offset),
4170                            getByte(o, offset + 1),
4171                            getByte(o, offset + 2),
4172                            getByte(o, offset + 3));
4173         }
4174     }
4175     /** @see #getLongUnaligned(Object, long, boolean) */
4176     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
4177         return convEndian(bigEndian, getIntUnaligned(o, offset));
4178     }
4179 
4180     /** @see #getLongUnaligned(Object, long) */
4181     @IntrinsicCandidate
4182     public final short getShortUnaligned(Object o, long offset) {
4183         if ((offset & 1) == 0) {
4184             return getShort(o, offset);
4185         } else {
4186             return makeShort(getByte(o, offset),
4187                              getByte(o, offset + 1));
4188         }
4189     }
4190     /** @see #getLongUnaligned(Object, long, boolean) */
4191     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
4192         return convEndian(bigEndian, getShortUnaligned(o, offset));
4193     }
4194 
4195     /** @see #getLongUnaligned(Object, long) */
4196     @IntrinsicCandidate
4197     public final char getCharUnaligned(Object o, long offset) {
4198         if ((offset & 1) == 0) {
4199             return getChar(o, offset);
4200         } else {
4201             return (char)makeShort(getByte(o, offset),
4202                                    getByte(o, offset + 1));
4203         }
4204     }
4205 
4206     /** @see #getLongUnaligned(Object, long, boolean) */
4207     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
4208         return convEndian(bigEndian, getCharUnaligned(o, offset));
4209     }
4210 
4211     /**
4212      * Stores a value at some byte offset into a given Java object.
4213      * <p>
4214      * The specification of this method is the same as {@link
4215      * #getLong(Object, long)} except that the offset does not need to
4216      * have been obtained from {@link #objectFieldOffset} on the
4217      * {@link java.lang.reflect.Field} of some Java field.  The value
4218      * in memory is raw data, and need not correspond to any Java
4219      * variable.  The endianness of the value in memory is the
4220      * endianness of the native platform.
4221      * <p>
4222      * The write will be atomic with respect to the largest power of
4223      * two that divides the GCD of the offset and the storage size.
4224      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
4225      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
4226      * respectively.  There are no other guarantees of atomicity.
4227      * <p>
4228      * 8-byte atomicity is only guaranteed on platforms on which
4229      * support atomic accesses to longs.
4230      *
4231      * @param o Java heap object in which the value resides, if any, else
4232      *        null
4233      * @param offset The offset in bytes from the start of the object
4234      * @param x the value to store
4235      * @throws RuntimeException No defined exceptions are thrown, not even
4236      *         {@link NullPointerException}
4237      * @since 9
4238      */
4239     @IntrinsicCandidate
4240     public final void putLongUnaligned(Object o, long offset, long x) {
4241         if ((offset & 7) == 0) {
4242             putLong(o, offset, x);
4243         } else if ((offset & 3) == 0) {
4244             putLongParts(o, offset,
4245                          (int)(x >> 0),
4246                          (int)(x >>> 32));
4247         } else if ((offset & 1) == 0) {
4248             putLongParts(o, offset,
4249                          (short)(x >>> 0),
4250                          (short)(x >>> 16),
4251                          (short)(x >>> 32),
4252                          (short)(x >>> 48));
4253         } else {
4254             putLongParts(o, offset,
4255                          (byte)(x >>> 0),
4256                          (byte)(x >>> 8),
4257                          (byte)(x >>> 16),
4258                          (byte)(x >>> 24),
4259                          (byte)(x >>> 32),
4260                          (byte)(x >>> 40),
4261                          (byte)(x >>> 48),
4262                          (byte)(x >>> 56));
4263         }
4264     }
4265 
4266     /**
4267      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
4268      * argument which specifies the endianness of the value as stored in memory.
4269      * @param o Java heap object in which the value resides
4270      * @param offset The offset in bytes from the start of the object
4271      * @param x the value to store
4272      * @param bigEndian The endianness of the value
4273      * @throws RuntimeException No defined exceptions are thrown, not even
4274      *         {@link NullPointerException}
4275      * @since 9
4276      */
4277     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
4278         putLongUnaligned(o, offset, convEndian(bigEndian, x));
4279     }
4280 
4281     /** @see #putLongUnaligned(Object, long, long) */
4282     @IntrinsicCandidate
4283     public final void putIntUnaligned(Object o, long offset, int x) {
4284         if ((offset & 3) == 0) {
4285             putInt(o, offset, x);
4286         } else if ((offset & 1) == 0) {
4287             putIntParts(o, offset,
4288                         (short)(x >> 0),
4289                         (short)(x >>> 16));
4290         } else {
4291             putIntParts(o, offset,
4292                         (byte)(x >>> 0),
4293                         (byte)(x >>> 8),
4294                         (byte)(x >>> 16),
4295                         (byte)(x >>> 24));
4296         }
4297     }
4298     /** @see #putLongUnaligned(Object, long, long, boolean) */
4299     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
4300         putIntUnaligned(o, offset, convEndian(bigEndian, x));
4301     }
4302 
4303     /** @see #putLongUnaligned(Object, long, long) */
4304     @IntrinsicCandidate
4305     public final void putShortUnaligned(Object o, long offset, short x) {
4306         if ((offset & 1) == 0) {
4307             putShort(o, offset, x);
4308         } else {
4309             putShortParts(o, offset,
4310                           (byte)(x >>> 0),
4311                           (byte)(x >>> 8));
4312         }
4313     }
4314     /** @see #putLongUnaligned(Object, long, long, boolean) */
4315     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
4316         putShortUnaligned(o, offset, convEndian(bigEndian, x));
4317     }
4318 
4319     /** @see #putLongUnaligned(Object, long, long) */
4320     @IntrinsicCandidate
4321     public final void putCharUnaligned(Object o, long offset, char x) {
4322         putShortUnaligned(o, offset, (short)x);
4323     }
4324     /** @see #putLongUnaligned(Object, long, long, boolean) */
4325     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
4326         putCharUnaligned(o, offset, convEndian(bigEndian, x));
4327     }
4328 
4329     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
4330 
4331     // These methods construct integers from bytes.  The byte ordering
4332     // is the native endianness of this platform.
4333     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4334         return ((toUnsignedLong(i0) << pickPos(56, 0))
4335               | (toUnsignedLong(i1) << pickPos(56, 8))
4336               | (toUnsignedLong(i2) << pickPos(56, 16))
4337               | (toUnsignedLong(i3) << pickPos(56, 24))
4338               | (toUnsignedLong(i4) << pickPos(56, 32))
4339               | (toUnsignedLong(i5) << pickPos(56, 40))
4340               | (toUnsignedLong(i6) << pickPos(56, 48))
4341               | (toUnsignedLong(i7) << pickPos(56, 56)));
4342     }
4343     private static long makeLong(short i0, short i1, short i2, short i3) {
4344         return ((toUnsignedLong(i0) << pickPos(48, 0))
4345               | (toUnsignedLong(i1) << pickPos(48, 16))
4346               | (toUnsignedLong(i2) << pickPos(48, 32))
4347               | (toUnsignedLong(i3) << pickPos(48, 48)));
4348     }
4349     private static long makeLong(int i0, int i1) {
4350         return (toUnsignedLong(i0) << pickPos(32, 0))
4351              | (toUnsignedLong(i1) << pickPos(32, 32));
4352     }
4353     private static int makeInt(short i0, short i1) {
4354         return (toUnsignedInt(i0) << pickPos(16, 0))
4355              | (toUnsignedInt(i1) << pickPos(16, 16));
4356     }
4357     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
4358         return ((toUnsignedInt(i0) << pickPos(24, 0))
4359               | (toUnsignedInt(i1) << pickPos(24, 8))
4360               | (toUnsignedInt(i2) << pickPos(24, 16))
4361               | (toUnsignedInt(i3) << pickPos(24, 24)));
4362     }
4363     private static short makeShort(byte i0, byte i1) {
4364         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
4365                      | (toUnsignedInt(i1) << pickPos(8, 8)));
4366     }
4367 
4368     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
4369     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
4370     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
4371 
4372     // These methods write integers to memory from smaller parts
4373     // provided by their caller.  The ordering in which these parts
4374     // are written is the native endianness of this platform.
4375     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
4376         putByte(o, offset + 0, pick(i0, i7));
4377         putByte(o, offset + 1, pick(i1, i6));
4378         putByte(o, offset + 2, pick(i2, i5));
4379         putByte(o, offset + 3, pick(i3, i4));
4380         putByte(o, offset + 4, pick(i4, i3));
4381         putByte(o, offset + 5, pick(i5, i2));
4382         putByte(o, offset + 6, pick(i6, i1));
4383         putByte(o, offset + 7, pick(i7, i0));
4384     }
4385     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
4386         putShort(o, offset + 0, pick(i0, i3));
4387         putShort(o, offset + 2, pick(i1, i2));
4388         putShort(o, offset + 4, pick(i2, i1));
4389         putShort(o, offset + 6, pick(i3, i0));
4390     }
4391     private void putLongParts(Object o, long offset, int i0, int i1) {
4392         putInt(o, offset + 0, pick(i0, i1));
4393         putInt(o, offset + 4, pick(i1, i0));
4394     }
4395     private void putIntParts(Object o, long offset, short i0, short i1) {
4396         putShort(o, offset + 0, pick(i0, i1));
4397         putShort(o, offset + 2, pick(i1, i0));
4398     }
4399     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
4400         putByte(o, offset + 0, pick(i0, i3));
4401         putByte(o, offset + 1, pick(i1, i2));
4402         putByte(o, offset + 2, pick(i2, i1));
4403         putByte(o, offset + 3, pick(i3, i0));
4404     }
4405     private void putShortParts(Object o, long offset, byte i0, byte i1) {
4406         putByte(o, offset + 0, pick(i0, i1));
4407         putByte(o, offset + 1, pick(i1, i0));
4408     }
4409 
4410     // Zero-extend an integer
4411     private static int toUnsignedInt(byte n)    { return n & 0xff; }
4412     private static int toUnsignedInt(short n)   { return n & 0xffff; }
4413     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
4414     private static long toUnsignedLong(short n) { return n & 0xffffl; }
4415     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
4416 
4417     // Maybe byte-reverse an integer
4418     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
4419     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
4420     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
4421     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
4422 
4423 
4424 
4425     private native long allocateMemory0(long bytes);
4426     private native long reallocateMemory0(long address, long bytes);
4427     private native void freeMemory0(long address);
4428     @IntrinsicCandidate
4429     private native void setMemory0(Object o, long offset, long bytes, byte value);
4430     @IntrinsicCandidate
4431     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4432     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
4433     private native long objectFieldOffset0(Field f); // throws IAE
4434     private native long knownObjectFieldOffset0(Class<?> c, String name); // error code: -1 not found, -2 static
4435     private native long staticFieldOffset0(Field f); // throws IAE
4436     private native Object staticFieldBase0(Field f); // throws IAE
4437     private native boolean shouldBeInitialized0(Class<?> c);
4438     private native void ensureClassInitialized0(Class<?> c);
4439     private native void notifyStrictStaticAccess0(Class<?> c, long staticFieldOffset, boolean writing);
4440     private native int arrayBaseOffset0(Class<?> arrayClass); // public version returns long to promote correct arithmetic
4441     @IntrinsicCandidate
4442     private native int arrayInstanceBaseOffset0(Object[] array);
4443     private native int arrayIndexScale0(Class<?> arrayClass);
4444     @IntrinsicCandidate
4445     private native int arrayInstanceIndexScale0(Object[] array);
4446     private native long getObjectSize0(Object o);
4447     private native int getLoadAverage0(double[] loadavg, int nelems);
4448     @IntrinsicCandidate
4449     private native int[] getFieldMap0(Class <?> c);
4450 
4451 
4452     /**
4453      * Invokes the given direct byte buffer's cleaner, if any.
4454      *
4455      * @param directBuffer a direct byte buffer
4456      * @throws NullPointerException     if {@code directBuffer} is null
4457      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
4458      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
4459      *                                  {@link java.nio.Buffer#duplicate duplicate}
4460      */
4461     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
4462         if (!directBuffer.isDirect())
4463             throw new IllegalArgumentException("buffer is non-direct");
4464 
4465         DirectBuffer db = (DirectBuffer) directBuffer;
4466         if (db.attachment() != null)
4467             throw new IllegalArgumentException("duplicate or slice");
4468 
4469         Cleaner cleaner = db.cleaner();
4470         if (cleaner != null) {
4471             cleaner.clean();
4472         }
4473     }
4474 }