1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.code;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.util.HashSet;
  30 import java.util.HashMap;
  31 import java.util.Locale;
  32 import java.util.Map;
  33 import java.util.Optional;
  34 import java.util.Set;
  35 import java.util.WeakHashMap;

  36 import java.util.function.BiPredicate;
  37 import java.util.function.Function;
  38 import java.util.function.Predicate;
  39 import java.util.stream.Collector;
  40 
  41 import javax.tools.JavaFileObject;
  42 
  43 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
  44 import com.sun.tools.javac.code.Lint.LintCategory;
  45 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
  46 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  47 import com.sun.tools.javac.comp.AttrContext;
  48 import com.sun.tools.javac.comp.Check;
  49 import com.sun.tools.javac.comp.Enter;
  50 import com.sun.tools.javac.comp.Env;
  51 import com.sun.tools.javac.jvm.ClassFile;
  52 import com.sun.tools.javac.util.*;
  53 
  54 import static com.sun.tools.javac.code.BoundKind.*;
  55 import static com.sun.tools.javac.code.Flags.*;
  56 import static com.sun.tools.javac.code.Kinds.Kind.*;
  57 import static com.sun.tools.javac.code.Scope.*;
  58 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  59 import static com.sun.tools.javac.code.Symbol.*;
  60 import static com.sun.tools.javac.code.Type.*;
  61 import static com.sun.tools.javac.code.TypeTag.*;
  62 import static com.sun.tools.javac.jvm.ClassFile.externalize;
  63 import static com.sun.tools.javac.main.Option.DOE;
  64 
  65 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  66 
  67 /**
  68  * Utility class containing various operations on types.
  69  *
  70  * <p>Unless other names are more illustrative, the following naming
  71  * conventions should be observed in this file:
  72  *
  73  * <dl>
  74  * <dt>t</dt>
  75  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
  76  * <dt>s</dt>
  77  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
  78  * <dt>ts</dt>
  79  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
  80  * <dt>ss</dt>
  81  * <dd>A second list of types should be named ss.</dd>
  82  * </dl>
  83  *
  84  * <p><b>This is NOT part of any supported API.
  85  * If you write code that depends on this, you do so at your own risk.
  86  * This code and its internal interfaces are subject to change or
  87  * deletion without notice.</b>
  88  */
  89 public class Types {
  90     protected static final Context.Key<Types> typesKey = new Context.Key<>();
  91 
  92     final Symtab syms;
  93     final JavacMessages messages;
  94     final Names names;
  95     final Check chk;
  96     final Enter enter;
  97     JCDiagnostic.Factory diags;
  98     List<Warner> warnStack = List.nil();
  99     final Name capturedName;
 100 
 101     public final Warner noWarnings;
 102     public final boolean dumpStacktraceOnError;
 103 
 104     // <editor-fold defaultstate="collapsed" desc="Instantiating">
 105     public static Types instance(Context context) {
 106         Types instance = context.get(typesKey);
 107         if (instance == null)
 108             instance = new Types(context);
 109         return instance;
 110     }
 111 
 112     @SuppressWarnings("this-escape")
 113     protected Types(Context context) {
 114         context.put(typesKey, this);
 115         syms = Symtab.instance(context);
 116         names = Names.instance(context);
 117         Source source = Source.instance(context);
 118         chk = Check.instance(context);
 119         enter = Enter.instance(context);
 120         capturedName = names.fromString("<captured wildcard>");
 121         messages = JavacMessages.instance(context);
 122         diags = JCDiagnostic.Factory.instance(context);
 123         noWarnings = new Warner(null);





 124         Options options = Options.instance(context);
 125         dumpStacktraceOnError = options.isSet("dev") || options.isSet(DOE);
 126     }
 127     // </editor-fold>
 128 
 129     // <editor-fold defaultstate="collapsed" desc="bounds">
 130     /**
 131      * Get a wildcard's upper bound, returning non-wildcards unchanged.
 132      * @param t a type argument, either a wildcard or a type
 133      */
 134     public Type wildUpperBound(Type t) {
 135         if (t.hasTag(WILDCARD)) {
 136             WildcardType w = (WildcardType) t;
 137             if (w.isSuperBound())
 138                 return w.bound == null ? syms.objectType : w.bound.getUpperBound();
 139             else
 140                 return wildUpperBound(w.type);
 141         }
 142         else return t;
 143     }
 144 
 145     /**
 146      * Get a capture variable's upper bound, returning other types unchanged.
 147      * @param t a type
 148      */
 149     public Type cvarUpperBound(Type t) {
 150         if (t.hasTag(TYPEVAR)) {
 151             TypeVar v = (TypeVar) t;
 152             return v.isCaptured() ? cvarUpperBound(v.getUpperBound()) : v;
 153         }
 154         else return t;
 155     }
 156 
 157     /**
 158      * Get a wildcard's lower bound, returning non-wildcards unchanged.
 159      * @param t a type argument, either a wildcard or a type
 160      */
 161     public Type wildLowerBound(Type t) {
 162         if (t.hasTag(WILDCARD)) {
 163             WildcardType w = (WildcardType) t;
 164             return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
 165         }
 166         else return t;
 167     }
 168 
 169     /**
 170      * Get a capture variable's lower bound, returning other types unchanged.
 171      * @param t a type
 172      */
 173     public Type cvarLowerBound(Type t) {
 174         if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
 175             return cvarLowerBound(t.getLowerBound());
 176         }
 177         else return t;
 178     }
 179 
 180     /**
 181      * Recursively skip type-variables until a class/array type is found; capture conversion is then
 182      * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
 183      * suitable for a method lookup.
 184      */
 185     public Type skipTypeVars(Type site, boolean capture) {
 186         while (site.hasTag(TYPEVAR)) {
 187             site = site.getUpperBound();
 188         }
 189         return capture ? capture(site) : site;
 190     }
 191     // </editor-fold>
 192 
 193     // <editor-fold defaultstate="collapsed" desc="projections">
 194 
 195     /**
 196      * A projection kind. See {@link TypeProjection}
 197      */
 198     enum ProjectionKind {
 199         UPWARDS() {
 200             @Override
 201             ProjectionKind complement() {
 202                 return DOWNWARDS;
 203             }
 204         },
 205         DOWNWARDS() {
 206             @Override
 207             ProjectionKind complement() {
 208                 return UPWARDS;
 209             }
 210         };
 211 
 212         abstract ProjectionKind complement();
 213     }
 214 
 215     /**
 216      * This visitor performs upwards and downwards projections on types.
 217      *
 218      * A projection is defined as a function that takes a type T, a set of type variables V and that
 219      * produces another type S.
 220      *
 221      * An upwards projection maps a type T into a type S such that (i) T has no variables in V,
 222      * and (ii) S is an upper bound of T.
 223      *
 224      * A downwards projection maps a type T into a type S such that (i) T has no variables in V,
 225      * and (ii) S is a lower bound of T.
 226      *
 227      * Note that projections are only allowed to touch variables in V. Therefore, it is possible for
 228      * a projection to leave its input type unchanged if it does not contain any variables in V.
 229      *
 230      * Moreover, note that while an upwards projection is always defined (every type as an upper bound),
 231      * a downwards projection is not always defined.
 232      *
 233      * Examples:
 234      *
 235      * {@code upwards(List<#CAP1>, [#CAP1]) = List<? extends String>, where #CAP1 <: String }
 236      * {@code downwards(List<#CAP2>, [#CAP2]) = List<? super String>, where #CAP2 :> String }
 237      * {@code upwards(List<#CAP1>, [#CAP2]) = List<#CAP1> }
 238      * {@code downwards(List<#CAP1>, [#CAP1]) = not defined }
 239      */
 240     class TypeProjection extends TypeMapping<ProjectionKind> {
 241 
 242         List<Type> vars;
 243         Set<Type> seen = new HashSet<>();
 244 
 245         public TypeProjection(List<Type> vars) {
 246             this.vars = vars;
 247         }
 248 
 249         @Override
 250         public Type visitClassType(ClassType t, ProjectionKind pkind) {
 251             if (t.isCompound()) {
 252                 List<Type> components = directSupertypes(t);
 253                 List<Type> components1 = components.map(c -> c.map(this, pkind));
 254                 if (components == components1) return t;
 255                 else return makeIntersectionType(components1);
 256             } else {
 257                 Type outer = t.getEnclosingType();
 258                 Type outer1 = visit(outer, pkind);
 259                 List<Type> typarams = t.getTypeArguments();
 260                 List<Type> formals = t.tsym.type.getTypeArguments();
 261                 ListBuffer<Type> typarams1 = new ListBuffer<>();
 262                 boolean changed = false;
 263                 for (Type actual : typarams) {
 264                     Type t2 = mapTypeArgument(t, formals.head.getUpperBound(), actual, pkind);
 265                     if (t2.hasTag(BOT)) {
 266                         //not defined
 267                         return syms.botType;
 268                     }
 269                     typarams1.add(t2);
 270                     changed |= actual != t2;
 271                     formals = formals.tail;
 272                 }
 273                 if (outer1 == outer && !changed) return t;
 274                 else return new ClassType(outer1, typarams1.toList(), t.tsym, t.getMetadata()) {
 275                     @Override
 276                     protected boolean needsStripping() {
 277                         return true;
 278                     }
 279                 };
 280             }
 281         }
 282 
 283         @Override
 284         public Type visitArrayType(ArrayType t, ProjectionKind s) {
 285             Type elemtype = t.elemtype;
 286             Type elemtype1 = visit(elemtype, s);
 287             if (elemtype1 == elemtype) {
 288                 return t;
 289             } else if (elemtype1.hasTag(BOT)) {
 290                 //undefined
 291                 return syms.botType;
 292             } else {
 293                 return new ArrayType(elemtype1, t.tsym, t.metadata) {
 294                     @Override
 295                     protected boolean needsStripping() {
 296                         return true;
 297                     }
 298                 };
 299             }
 300         }
 301 
 302         @Override
 303         public Type visitTypeVar(TypeVar t, ProjectionKind pkind) {
 304             if (vars.contains(t)) {
 305                 if (seen.add(t)) {
 306                     try {
 307                         final Type bound;
 308                         switch (pkind) {
 309                             case UPWARDS:
 310                                 bound = t.getUpperBound();
 311                                 break;
 312                             case DOWNWARDS:
 313                                 bound = (t.getLowerBound() == null) ?
 314                                         syms.botType :
 315                                         t.getLowerBound();
 316                                 break;
 317                             default:
 318                                 Assert.error();
 319                                 return null;
 320                         }
 321                         return bound.map(this, pkind);
 322                     } finally {
 323                         seen.remove(t);
 324                     }
 325                 } else {
 326                     //cycle
 327                     return pkind == ProjectionKind.UPWARDS ?
 328                             syms.objectType : syms.botType;
 329                 }
 330             } else {
 331                 return t;
 332             }
 333         }
 334 
 335         private Type mapTypeArgument(Type site, Type declaredBound, Type t, ProjectionKind pkind) {
 336             return t.containsAny(vars) ?
 337                     t.map(new TypeArgumentProjection(site, declaredBound), pkind) :
 338                     t;
 339         }
 340 
 341         class TypeArgumentProjection extends TypeMapping<ProjectionKind> {
 342 
 343             Type site;
 344             Type declaredBound;
 345 
 346             TypeArgumentProjection(Type site, Type declaredBound) {
 347                 this.site = site;
 348                 this.declaredBound = declaredBound;
 349             }
 350 
 351             @Override
 352             public Type visitType(Type t, ProjectionKind pkind) {
 353                 //type argument is some type containing restricted vars
 354                 if (pkind == ProjectionKind.DOWNWARDS) {
 355                     //not defined
 356                     return syms.botType;
 357                 }
 358                 Type upper = t.map(TypeProjection.this, ProjectionKind.UPWARDS);
 359                 Type lower = t.map(TypeProjection.this, ProjectionKind.DOWNWARDS);
 360                 List<Type> formals = site.tsym.type.getTypeArguments();
 361                 BoundKind bk;
 362                 Type bound;
 363                 if (!isSameType(upper, syms.objectType) &&
 364                         (declaredBound.containsAny(formals) ||
 365                          !isSubtype(declaredBound, upper))) {
 366                     bound = upper;
 367                     bk = EXTENDS;
 368                 } else if (!lower.hasTag(BOT)) {
 369                     bound = lower;
 370                     bk = SUPER;
 371                 } else {
 372                     bound = syms.objectType;
 373                     bk = UNBOUND;
 374                 }
 375                 return makeWildcard(bound, bk);
 376             }
 377 
 378             @Override
 379             public Type visitWildcardType(WildcardType wt, ProjectionKind pkind) {
 380                 //type argument is some wildcard whose bound contains restricted vars
 381                 Type bound = syms.botType;
 382                 BoundKind bk = wt.kind;
 383                 switch (wt.kind) {
 384                     case EXTENDS:
 385                         bound = wt.type.map(TypeProjection.this, pkind);
 386                         if (bound.hasTag(BOT)) {
 387                             return syms.botType;
 388                         }
 389                         break;
 390                     case SUPER:
 391                         bound = wt.type.map(TypeProjection.this, pkind.complement());
 392                         if (bound.hasTag(BOT)) {
 393                             bound = syms.objectType;
 394                             bk = UNBOUND;
 395                         }
 396                         break;
 397                 }
 398                 return makeWildcard(bound, bk);
 399             }
 400 
 401             private Type makeWildcard(Type bound, BoundKind bk) {
 402                 return new WildcardType(bound, bk, syms.boundClass) {
 403                     @Override
 404                     protected boolean needsStripping() {
 405                         return true;
 406                     }
 407                 };
 408             }
 409         }
 410     }
 411 
 412     /**
 413      * Computes an upward projection of given type, and vars. See {@link TypeProjection}.
 414      *
 415      * @param t the type to be projected
 416      * @param vars the set of type variables to be mapped
 417      * @return the type obtained as result of the projection
 418      */
 419     public Type upward(Type t, List<Type> vars) {
 420         return t.map(new TypeProjection(vars), ProjectionKind.UPWARDS);
 421     }
 422 
 423     /**
 424      * Computes the set of captured variables mentioned in a given type. See {@link CaptureScanner}.
 425      * This routine is typically used to computed the input set of variables to be used during
 426      * an upwards projection (see {@link Types#upward(Type, List)}).
 427      *
 428      * @param t the type where occurrences of captured variables have to be found
 429      * @return the set of captured variables found in t
 430      */
 431     public List<Type> captures(Type t) {
 432         CaptureScanner cs = new CaptureScanner();
 433         Set<Type> captures = new HashSet<>();
 434         cs.visit(t, captures);
 435         return List.from(captures);
 436     }
 437 
 438     /**
 439      * This visitor scans a type recursively looking for occurrences of captured type variables.
 440      */
 441     class CaptureScanner extends SimpleVisitor<Void, Set<Type>> {
 442 
 443         @Override
 444         public Void visitType(Type t, Set<Type> types) {
 445             return null;
 446         }
 447 
 448         @Override
 449         public Void visitClassType(ClassType t, Set<Type> seen) {
 450             if (t.isCompound()) {
 451                 directSupertypes(t).forEach(s -> visit(s, seen));
 452             } else {
 453                 t.allparams().forEach(ta -> visit(ta, seen));
 454             }
 455             return null;
 456         }
 457 
 458         @Override
 459         public Void visitArrayType(ArrayType t, Set<Type> seen) {
 460             return visit(t.elemtype, seen);
 461         }
 462 
 463         @Override
 464         public Void visitWildcardType(WildcardType t, Set<Type> seen) {
 465             visit(t.type, seen);
 466             return null;
 467         }
 468 
 469         @Override
 470         public Void visitTypeVar(TypeVar t, Set<Type> seen) {
 471             if ((t.tsym.flags() & Flags.SYNTHETIC) != 0 && seen.add(t)) {
 472                 visit(t.getUpperBound(), seen);
 473             }
 474             return null;
 475         }
 476 
 477         @Override
 478         public Void visitCapturedType(CapturedType t, Set<Type> seen) {
 479             if (seen.add(t)) {
 480                 visit(t.getUpperBound(), seen);
 481                 visit(t.getLowerBound(), seen);
 482             }
 483             return null;
 484         }
 485     }
 486 
 487     // </editor-fold>
 488 
 489     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
 490     /**
 491      * Checks that all the arguments to a class are unbounded
 492      * wildcards or something else that doesn't make any restrictions
 493      * on the arguments. If a class isUnbounded, a raw super- or
 494      * subclass can be cast to it without a warning.
 495      * @param t a type
 496      * @return true iff the given type is unbounded or raw
 497      */
 498     public boolean isUnbounded(Type t) {
 499         return isUnbounded.visit(t);
 500     }
 501     // where
 502         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
 503 
 504             public Boolean visitType(Type t, Void ignored) {
 505                 return true;
 506             }
 507 
 508             @Override
 509             public Boolean visitClassType(ClassType t, Void ignored) {
 510                 List<Type> parms = t.tsym.type.allparams();
 511                 List<Type> args = t.allparams();
 512                 while (parms.nonEmpty()) {
 513                     WildcardType unb = new WildcardType(syms.objectType,
 514                                                         BoundKind.UNBOUND,
 515                                                         syms.boundClass,
 516                                                         (TypeVar)parms.head);
 517                     if (!containsType(args.head, unb))
 518                         return false;
 519                     parms = parms.tail;
 520                     args = args.tail;
 521                 }
 522                 return true;
 523             }
 524         };
 525     // </editor-fold>
 526 
 527     // <editor-fold defaultstate="collapsed" desc="asSub">
 528     /**
 529      * Return the least specific subtype of t that starts with symbol
 530      * sym.  If none exists, return null.  The least specific subtype
 531      * is determined as follows:
 532      *
 533      * <p>If there is exactly one parameterized instance of sym that is a
 534      * subtype of t, that parameterized instance is returned.<br>
 535      * Otherwise, if the plain type or raw type `sym' is a subtype of
 536      * type t, the type `sym' itself is returned.  Otherwise, null is
 537      * returned.
 538      */
 539     public Type asSub(Type t, Symbol sym) {
 540         return asSub.visit(t, sym);
 541     }
 542     // where
 543         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
 544 
 545             public Type visitType(Type t, Symbol sym) {
 546                 return null;
 547             }
 548 
 549             @Override
 550             public Type visitClassType(ClassType t, Symbol sym) {
 551                 if (t.tsym == sym)
 552                     return t;
 553                 Type base = asSuper(sym.type, t.tsym);
 554                 if (base == null)
 555                     return null;
 556                 ListBuffer<Type> from = new ListBuffer<>();
 557                 ListBuffer<Type> to = new ListBuffer<>();
 558                 try {
 559                     adapt(base, t, from, to);
 560                 } catch (AdaptFailure ex) {
 561                     return null;
 562                 }
 563                 Type res = subst(sym.type, from.toList(), to.toList());
 564                 if (!isSubtype(res, t))
 565                     return null;
 566                 ListBuffer<Type> openVars = new ListBuffer<>();
 567                 for (List<Type> l = sym.type.allparams();
 568                      l.nonEmpty(); l = l.tail)
 569                     if (res.contains(l.head) && !t.contains(l.head))
 570                         openVars.append(l.head);
 571                 if (openVars.nonEmpty()) {
 572                     if (t.isRaw()) {
 573                         // The subtype of a raw type is raw
 574                         res = erasure(res);
 575                     } else {
 576                         // Unbound type arguments default to ?
 577                         List<Type> opens = openVars.toList();
 578                         ListBuffer<Type> qs = new ListBuffer<>();
 579                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
 580                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
 581                                                        syms.boundClass, (TypeVar) iter.head));
 582                         }
 583                         res = subst(res, opens, qs.toList());
 584                     }
 585                 }
 586                 return res;
 587             }
 588 
 589             @Override
 590             public Type visitErrorType(ErrorType t, Symbol sym) {
 591                 return t;
 592             }
 593         };
 594     // </editor-fold>
 595 
 596     // <editor-fold defaultstate="collapsed" desc="isConvertible">
 597     /**
 598      * Is t a subtype of or convertible via boxing/unboxing
 599      * conversion to s?
 600      */
 601     public boolean isConvertible(Type t, Type s, Warner warn) {
 602         if (t.hasTag(ERROR)) {
 603             return true;
 604         }
 605         boolean tPrimitive = t.isPrimitive();
 606         boolean sPrimitive = s.isPrimitive();
 607         if (tPrimitive == sPrimitive) {
 608             return isSubtypeUnchecked(t, s, warn);
 609         }
 610         boolean tUndet = t.hasTag(UNDETVAR);
 611         boolean sUndet = s.hasTag(UNDETVAR);
 612 
 613         if (tUndet || sUndet) {
 614             return tUndet ?
 615                     isSubtype(t, boxedTypeOrType(s)) :
 616                     isSubtype(boxedTypeOrType(t), s);
 617         }
 618 
 619         return tPrimitive
 620             ? isSubtype(boxedClass(t).type, s)
 621             : isSubtype(unboxedType(t), s);
 622     }
 623 
 624     /**
 625      * Is t a subtype of or convertible via boxing/unboxing
 626      * conversions to s?
 627      */
 628     public boolean isConvertible(Type t, Type s) {
 629         return isConvertible(t, s, noWarnings);
 630     }
 631     // </editor-fold>
 632 
 633     // <editor-fold defaultstate="collapsed" desc="findSam">
 634 
 635     /**
 636      * Exception used to report a function descriptor lookup failure. The exception
 637      * wraps a diagnostic that can be used to generate more details error
 638      * messages.
 639      */
 640     public static class FunctionDescriptorLookupError extends CompilerInternalException {
 641         private static final long serialVersionUID = 0;
 642 
 643         transient JCDiagnostic diagnostic;
 644 
 645         FunctionDescriptorLookupError(boolean dumpStackTraceOnError) {
 646             super(dumpStackTraceOnError);
 647             this.diagnostic = null;
 648         }
 649 
 650         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
 651             this.diagnostic = diag;
 652             return this;
 653         }
 654 
 655         public JCDiagnostic getDiagnostic() {
 656             return diagnostic;
 657         }
 658     }
 659 
 660     /**
 661      * A cache that keeps track of function descriptors associated with given
 662      * functional interfaces.
 663      */
 664     class DescriptorCache {
 665 
 666         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
 667 
 668         class FunctionDescriptor {
 669             Symbol descSym;
 670 
 671             FunctionDescriptor(Symbol descSym) {
 672                 this.descSym = descSym;
 673             }
 674 
 675             public Symbol getSymbol() {
 676                 return descSym;
 677             }
 678 
 679             public Type getType(Type site) {
 680                 site = removeWildcards(site);
 681                 if (site.isIntersection()) {
 682                     IntersectionClassType ict = (IntersectionClassType)site;
 683                     for (Type component : ict.getExplicitComponents()) {
 684                         if (!chk.checkValidGenericType(component)) {
 685                             //if the inferred functional interface type is not well-formed,
 686                             //or if it's not a subtype of the original target, issue an error
 687                             throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
 688                         }
 689                     }
 690                 } else {
 691                     if (!chk.checkValidGenericType(site)) {
 692                         //if the inferred functional interface type is not well-formed,
 693                         //or if it's not a subtype of the original target, issue an error
 694                         throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
 695                     }
 696                 }
 697                 return memberType(site, descSym);
 698             }
 699         }
 700 
 701         class Entry {
 702             final FunctionDescriptor cachedDescRes;
 703             final int prevMark;
 704 
 705             public Entry(FunctionDescriptor cachedDescRes,
 706                     int prevMark) {
 707                 this.cachedDescRes = cachedDescRes;
 708                 this.prevMark = prevMark;
 709             }
 710 
 711             boolean matches(int mark) {
 712                 return  this.prevMark == mark;
 713             }
 714         }
 715 
 716         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
 717             Entry e = _map.get(origin);
 718             CompoundScope members = membersClosure(origin.type, false);
 719             if (e == null ||
 720                     !e.matches(members.getMark())) {
 721                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
 722                 _map.put(origin, new Entry(descRes, members.getMark()));
 723                 return descRes;
 724             }
 725             else {
 726                 return e.cachedDescRes;
 727             }
 728         }
 729 
 730         /**
 731          * Compute the function descriptor associated with a given functional interface
 732          */
 733         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
 734                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
 735             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0 || origin.isSealed()) {
 736                 //t must be an interface
 737                 throw failure("not.a.functional.intf", origin);
 738             }
 739 
 740             final ListBuffer<Symbol> abstracts = new ListBuffer<>();
 741             for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
 742                 Type mtype = memberType(origin.type, sym);
 743                 if (abstracts.isEmpty()) {
 744                     abstracts.append(sym);
 745                 } else if ((sym.name == abstracts.first().name &&
 746                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
 747                     if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
 748                             .map(msym -> memberType(origin.type, msym))
 749                             .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
 750                         abstracts.append(sym);
 751                     }
 752                 } else {
 753                     //the target method(s) should be the only abstract members of t
 754                     throw failure("not.a.functional.intf.1",  origin,
 755                             diags.fragment(Fragments.IncompatibleAbstracts(Kinds.kindName(origin), origin)));
 756                 }
 757             }
 758             if (abstracts.isEmpty()) {
 759                 //t must define a suitable non-generic method
 760                 throw failure("not.a.functional.intf.1", origin,
 761                             diags.fragment(Fragments.NoAbstracts(Kinds.kindName(origin), origin)));
 762             } else if (abstracts.size() == 1) {
 763                 return new FunctionDescriptor(abstracts.first());
 764             } else { // size > 1
 765                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
 766                 if (descRes == null) {
 767                     //we can get here if the functional interface is ill-formed
 768                     ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
 769                     for (Symbol desc : abstracts) {
 770                         String key = desc.type.getThrownTypes().nonEmpty() ?
 771                                 "descriptor.throws" : "descriptor";
 772                         descriptors.append(diags.fragment(key, desc.name,
 773                                 desc.type.getParameterTypes(),
 774                                 desc.type.getReturnType(),
 775                                 desc.type.getThrownTypes()));
 776                     }
 777                     JCDiagnostic msg =
 778                             diags.fragment(Fragments.IncompatibleDescsInFunctionalIntf(Kinds.kindName(origin),
 779                                                                                        origin));
 780                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
 781                             new JCDiagnostic.MultilineDiagnostic(msg, descriptors.toList());
 782                     throw failure(incompatibleDescriptors);
 783                 }
 784                 return descRes;
 785             }
 786         }
 787 
 788         /**
 789          * Compute a synthetic type for the target descriptor given a list
 790          * of override-equivalent methods in the functional interface type.
 791          * The resulting method type is a method type that is override-equivalent
 792          * and return-type substitutable with each method in the original list.
 793          */
 794         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
 795             return mergeAbstracts(methodSyms, origin.type, false)
 796                     .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
 797                         @Override
 798                         public Type getType(Type origin) {
 799                             Type mt = memberType(origin, getSymbol());
 800                             return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
 801                         }
 802                     }).orElse(null);
 803         }
 804 
 805         FunctionDescriptorLookupError failure(String msg, Object... args) {
 806             return failure(diags.fragment(msg, args));
 807         }
 808 
 809         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
 810             return new FunctionDescriptorLookupError(Types.this.dumpStacktraceOnError).setMessage(diag);
 811         }
 812     }
 813 
 814     private DescriptorCache descCache = new DescriptorCache();
 815 
 816     /**
 817      * Find the method descriptor associated to this class symbol - if the
 818      * symbol 'origin' is not a functional interface, an exception is thrown.
 819      */
 820     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
 821         return descCache.get(origin).getSymbol();
 822     }
 823 
 824     /**
 825      * Find the type of the method descriptor associated to this class symbol -
 826      * if the symbol 'origin' is not a functional interface, an exception is thrown.
 827      */
 828     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
 829         return descCache.get(origin.tsym).getType(origin);
 830     }
 831 
 832     /**
 833      * Is given type a functional interface?
 834      */
 835     public boolean isFunctionalInterface(TypeSymbol tsym) {
 836         try {
 837             findDescriptorSymbol(tsym);
 838             return true;
 839         } catch (FunctionDescriptorLookupError ex) {
 840             return false;
 841         }
 842     }
 843 
 844     public boolean isFunctionalInterface(Type site) {
 845         try {
 846             findDescriptorType(site);
 847             return true;
 848         } catch (FunctionDescriptorLookupError ex) {
 849             return false;
 850         }
 851     }
 852 
 853     public Type removeWildcards(Type site) {
 854         if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
 855             //compute non-wildcard parameterization - JLS 9.9
 856             List<Type> actuals = site.getTypeArguments();
 857             List<Type> formals = site.tsym.type.getTypeArguments();
 858             ListBuffer<Type> targs = new ListBuffer<>();
 859             for (Type formal : formals) {
 860                 Type actual = actuals.head;
 861                 Type bound = formal.getUpperBound();
 862                 if (actuals.head.hasTag(WILDCARD)) {
 863                     WildcardType wt = (WildcardType)actual;
 864                     //check that bound does not contain other formals
 865                     if (bound.containsAny(formals)) {
 866                         targs.add(wt.type);
 867                     } else {
 868                         //compute new type-argument based on declared bound and wildcard bound
 869                         switch (wt.kind) {
 870                             case UNBOUND:
 871                                 targs.add(bound);
 872                                 break;
 873                             case EXTENDS:
 874                                 targs.add(glb(bound, wt.type));
 875                                 break;
 876                             case SUPER:
 877                                 targs.add(wt.type);
 878                                 break;
 879                             default:
 880                                 Assert.error("Cannot get here!");
 881                         }
 882                     }
 883                 } else {
 884                     //not a wildcard - the new type argument remains unchanged
 885                     targs.add(actual);
 886                 }
 887                 actuals = actuals.tail;
 888             }
 889             return subst(site.tsym.type, formals, targs.toList());
 890         } else {
 891             return site;
 892         }
 893     }
 894 
 895     /**
 896      * Create a symbol for a class that implements a given functional interface
 897      * and overrides its functional descriptor. This routine is used for two
 898      * main purposes: (i) checking well-formedness of a functional interface;
 899      * (ii) perform functional interface bridge calculation.
 900      */
 901     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, Type target, long cflags) {
 902         if (target == null || target == syms.unknownType) {
 903             return null;
 904         }
 905         Symbol descSym = findDescriptorSymbol(target.tsym);
 906         Type descType = findDescriptorType(target);
 907         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
 908         csym.completer = Completer.NULL_COMPLETER;
 909         csym.members_field = WriteableScope.create(csym);
 910         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
 911         csym.members_field.enter(instDescSym);
 912         Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
 913         ctype.supertype_field = syms.objectType;
 914         ctype.interfaces_field = target.isIntersection() ?
 915                 directSupertypes(target) :
 916                 List.of(target);
 917         csym.type = ctype;
 918         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
 919         return csym;
 920     }
 921 
 922     /**
 923      * Find the minimal set of methods that are overridden by the functional
 924      * descriptor in 'origin'. All returned methods are assumed to have different
 925      * erased signatures.
 926      */
 927     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
 928         Assert.check(isFunctionalInterface(origin));
 929         Symbol descSym = findDescriptorSymbol(origin);
 930         CompoundScope members = membersClosure(origin.type, false);
 931         ListBuffer<Symbol> overridden = new ListBuffer<>();
 932         outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
 933             if (m2 == descSym) continue;
 934             else if (descSym.overrides(m2, origin, Types.this, false)) {
 935                 for (Symbol m3 : overridden) {
 936                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
 937                             (m3.overrides(m2, origin, Types.this, false) &&
 938                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
 939                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
 940                         continue outer;
 941                     }
 942                 }
 943                 overridden.add(m2);
 944             }
 945         }
 946         return overridden.toList();
 947     }
 948     //where
 949         // Use anonymous class instead of lambda expression intentionally,
 950         // because the variable `names` has modifier: final.
 951         private Predicate<Symbol> bridgeFilter = new Predicate<Symbol>() {
 952             public boolean test(Symbol t) {
 953                 return t.kind == MTH &&
 954                         t.name != names.init &&
 955                         t.name != names.clinit &&
 956                         (t.flags() & SYNTHETIC) == 0;
 957             }
 958         };
 959 
 960         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
 961             //a symbol will be completed from a classfile if (a) symbol has
 962             //an associated file object with CLASS kind and (b) the symbol has
 963             //not been entered
 964             if (origin.classfile != null &&
 965                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
 966                     enter.getEnv(origin) == null) {
 967                 return false;
 968             }
 969             if (origin == s) {
 970                 return true;
 971             }
 972             for (Type t : interfaces(origin.type)) {
 973                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
 974                     return true;
 975                 }
 976             }
 977             return false;
 978         }
 979     // </editor-fold>
 980 
 981    /**
 982     * Scope filter used to skip methods that should be ignored (such as methods
 983     * overridden by j.l.Object) during function interface conversion interface check
 984     */
 985     class DescriptorFilter implements Predicate<Symbol> {
 986 
 987        TypeSymbol origin;
 988 
 989        DescriptorFilter(TypeSymbol origin) {
 990            this.origin = origin;
 991        }
 992 
 993        @Override
 994        public boolean test(Symbol sym) {
 995            return sym.kind == MTH &&
 996                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
 997                    !overridesObjectMethod(origin, sym) &&
 998                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
 999        }
1000     }
1001 
1002     // <editor-fold defaultstate="collapsed" desc="isSubtype">
1003     /**
1004      * Is t an unchecked subtype of s?
1005      */
1006     public boolean isSubtypeUnchecked(Type t, Type s) {
1007         return isSubtypeUnchecked(t, s, noWarnings);
1008     }
1009     /**
1010      * Is t an unchecked subtype of s?
1011      */
1012     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
1013         boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
1014         if (result) {
1015             checkUnsafeVarargsConversion(t, s, warn);
1016         }
1017         return result;
1018     }
1019     //where
1020         private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
1021             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
1022                 if (((ArrayType)t).elemtype.isPrimitive()) {
1023                     return isSameType(elemtype(t), elemtype(s));
1024                 } else {
1025                     return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
1026                 }
1027             } else if (isSubtype(t, s, capture)) {
1028                 return true;
1029             } else if (t.hasTag(TYPEVAR)) {
1030                 return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
1031             } else if (!s.isRaw()) {
1032                 Type t2 = asSuper(t, s.tsym);
1033                 if (t2 != null && t2.isRaw()) {
1034                     if (isReifiable(s)) {
1035                         warn.silentWarn(LintCategory.UNCHECKED);
1036                     } else {
1037                         warn.warn(LintCategory.UNCHECKED);
1038                     }
1039                     return true;
1040                 }
1041             }
1042             return false;
1043         }
1044 
1045         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
1046             if (!t.hasTag(ARRAY) || isReifiable(t)) {
1047                 return;
1048             }
1049             ArrayType from = (ArrayType)t;
1050             boolean shouldWarn = false;
1051             switch (s.getTag()) {
1052                 case ARRAY:
1053                     ArrayType to = (ArrayType)s;
1054                     shouldWarn = from.isVarargs() &&
1055                             !to.isVarargs() &&
1056                             !isReifiable(from);
1057                     break;
1058                 case CLASS:
1059                     shouldWarn = from.isVarargs();
1060                     break;
1061             }
1062             if (shouldWarn) {
1063                 warn.warn(LintCategory.VARARGS);
1064             }
1065         }
1066 
1067     /**
1068      * Is t a subtype of s?<br>
1069      * (not defined for Method and ForAll types)
1070      */
1071     public final boolean isSubtype(Type t, Type s) {
1072         return isSubtype(t, s, true);
1073     }
1074     public final boolean isSubtypeNoCapture(Type t, Type s) {
1075         return isSubtype(t, s, false);
1076     }
1077     public boolean isSubtype(Type t, Type s, boolean capture) {
1078         if (t.equalsIgnoreMetadata(s))
1079             return true;
1080         if (s.isPartial())
1081             return isSuperType(s, t);
1082 
1083         if (s.isCompound()) {
1084             for (Type s2 : interfaces(s).prepend(supertype(s))) {
1085                 if (!isSubtype(t, s2, capture))
1086                     return false;
1087             }
1088             return true;
1089         }
1090 
1091         // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
1092         // for inference variables and intersections, we need to keep 's'
1093         // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
1094         if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
1095             // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
1096             Type lower = cvarLowerBound(wildLowerBound(s));
1097             if (s != lower && !lower.hasTag(BOT))
1098                 return isSubtype(capture ? capture(t) : t, lower, false);
1099         }
1100 
1101         return isSubtype.visit(capture ? capture(t) : t, s);
1102     }
1103     // where
1104         private TypeRelation isSubtype = new TypeRelation()
1105         {
1106             @Override
1107             public Boolean visitType(Type t, Type s) {
1108                 switch (t.getTag()) {
1109                  case BYTE:
1110                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
1111                  case CHAR:
1112                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
1113                  case SHORT: case INT: case LONG:
1114                  case FLOAT: case DOUBLE:
1115                      return t.getTag().isSubRangeOf(s.getTag());
1116                  case BOOLEAN: case VOID:
1117                      return t.hasTag(s.getTag());
1118                  case TYPEVAR:
1119                      return isSubtypeNoCapture(t.getUpperBound(), s);
1120                  case BOT:
1121                      return
1122                          s.hasTag(BOT) || s.hasTag(CLASS) ||
1123                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
1124                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
1125                  case NONE:
1126                      return false;
1127                  default:
1128                      throw new AssertionError("isSubtype " + t.getTag());
1129                  }
1130             }
1131 
1132             private Set<TypePair> cache = new HashSet<>();
1133 
1134             private boolean containsTypeRecursive(Type t, Type s) {
1135                 TypePair pair = new TypePair(t, s);
1136                 if (cache.add(pair)) {
1137                     try {
1138                         return containsType(t.getTypeArguments(),
1139                                             s.getTypeArguments());
1140                     } finally {
1141                         cache.remove(pair);
1142                     }
1143                 } else {
1144                     return containsType(t.getTypeArguments(),
1145                                         rewriteSupers(s).getTypeArguments());
1146                 }
1147             }
1148 
1149             private Type rewriteSupers(Type t) {
1150                 if (!t.isParameterized())
1151                     return t;
1152                 ListBuffer<Type> from = new ListBuffer<>();
1153                 ListBuffer<Type> to = new ListBuffer<>();
1154                 adaptSelf(t, from, to);
1155                 if (from.isEmpty())
1156                     return t;
1157                 ListBuffer<Type> rewrite = new ListBuffer<>();
1158                 boolean changed = false;
1159                 for (Type orig : to.toList()) {
1160                     Type s = rewriteSupers(orig);
1161                     if (s.isSuperBound() && !s.isExtendsBound()) {
1162                         s = new WildcardType(syms.objectType,
1163                                              BoundKind.UNBOUND,
1164                                              syms.boundClass,
1165                                              s.getMetadata());
1166                         changed = true;
1167                     } else if (s != orig) {
1168                         s = new WildcardType(wildUpperBound(s),
1169                                              BoundKind.EXTENDS,
1170                                              syms.boundClass,
1171                                              s.getMetadata());
1172                         changed = true;
1173                     }
1174                     rewrite.append(s);
1175                 }
1176                 if (changed)
1177                     return subst(t.tsym.type, from.toList(), rewrite.toList());
1178                 else
1179                     return t;
1180             }
1181 
1182             @Override
1183             public Boolean visitClassType(ClassType t, Type s) {
1184                 Type sup = asSuper(t, s.tsym);
1185                 if (sup == null) return false;
1186                 // If t is an intersection, sup might not be a class type
1187                 if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
1188                 return sup.tsym == s.tsym
1189                      // Check type variable containment
1190                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
1191                     && isSubtypeNoCapture(sup.getEnclosingType(),
1192                                           s.getEnclosingType());
1193             }
1194 
1195             @Override
1196             public Boolean visitArrayType(ArrayType t, Type s) {
1197                 if (s.hasTag(ARRAY)) {
1198                     if (t.elemtype.isPrimitive())
1199                         return isSameType(t.elemtype, elemtype(s));
1200                     else
1201                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
1202                 }
1203 
1204                 if (s.hasTag(CLASS)) {
1205                     Name sname = s.tsym.getQualifiedName();
1206                     return sname == names.java_lang_Object
1207                         || sname == names.java_lang_Cloneable
1208                         || sname == names.java_io_Serializable;
1209                 }
1210 
1211                 return false;
1212             }
1213 
1214             @Override
1215             public Boolean visitUndetVar(UndetVar t, Type s) {
1216                 //todo: test against origin needed? or replace with substitution?
1217                 if (t == s || t.qtype == s || s.hasTag(ERROR)) {
1218                     return true;
1219                 } else if (s.hasTag(BOT)) {
1220                     //if 's' is 'null' there's no instantiated type U for which
1221                     //U <: s (but 'null' itself, which is not a valid type)
1222                     return false;
1223                 }
1224 
1225                 t.addBound(InferenceBound.UPPER, s, Types.this);
1226                 return true;
1227             }
1228 
1229             @Override
1230             public Boolean visitErrorType(ErrorType t, Type s) {
1231                 return true;
1232             }
1233         };
1234 
1235     /**
1236      * Is t a subtype of every type in given list `ts'?<br>
1237      * (not defined for Method and ForAll types)<br>
1238      * Allows unchecked conversions.
1239      */
1240     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
1241         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1242             if (!isSubtypeUnchecked(t, l.head, warn))
1243                 return false;
1244         return true;
1245     }
1246 
1247     /**
1248      * Are corresponding elements of ts subtypes of ss?  If lists are
1249      * of different length, return false.
1250      */
1251     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
1252         while (ts.tail != null && ss.tail != null
1253                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1254                isSubtype(ts.head, ss.head)) {
1255             ts = ts.tail;
1256             ss = ss.tail;
1257         }
1258         return ts.tail == null && ss.tail == null;
1259         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1260     }
1261 
1262     /**
1263      * Are corresponding elements of ts subtypes of ss, allowing
1264      * unchecked conversions?  If lists are of different length,
1265      * return false.
1266      **/
1267     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
1268         while (ts.tail != null && ss.tail != null
1269                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1270                isSubtypeUnchecked(ts.head, ss.head, warn)) {
1271             ts = ts.tail;
1272             ss = ss.tail;
1273         }
1274         return ts.tail == null && ss.tail == null;
1275         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1276     }
1277     // </editor-fold>
1278 
1279     // <editor-fold defaultstate="collapsed" desc="isSuperType">
1280     /**
1281      * Is t a supertype of s?
1282      */
1283     public boolean isSuperType(Type t, Type s) {
1284         switch (t.getTag()) {
1285         case ERROR:
1286             return true;
1287         case UNDETVAR: {
1288             UndetVar undet = (UndetVar)t;
1289             if (t == s ||
1290                 undet.qtype == s ||
1291                 s.hasTag(ERROR) ||
1292                 s.hasTag(BOT)) {
1293                 return true;
1294             }
1295             undet.addBound(InferenceBound.LOWER, s, this);
1296             return true;
1297         }
1298         default:
1299             return isSubtype(s, t);
1300         }
1301     }
1302     // </editor-fold>
1303 
1304     // <editor-fold defaultstate="collapsed" desc="isSameType">
1305     /**
1306      * Are corresponding elements of the lists the same type?  If
1307      * lists are of different length, return false.
1308      */
1309     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1310         while (ts.tail != null && ss.tail != null
1311                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1312                isSameType(ts.head, ss.head)) {
1313             ts = ts.tail;
1314             ss = ss.tail;
1315         }
1316         return ts.tail == null && ss.tail == null;
1317         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1318     }
1319 
1320     /**
1321      * A polymorphic signature method (JLS 15.12.3) is a method that
1322      *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1323      *  (ii) takes a single variable arity parameter;
1324      * (iii) whose declared type is Object[];
1325      *  (iv) has any return type, Object signifying a polymorphic return type; and
1326      *   (v) is native.
1327     */
1328    public boolean isSignaturePolymorphic(MethodSymbol msym) {
1329        List<Type> argtypes = msym.type.getParameterTypes();
1330        return (msym.flags_field & NATIVE) != 0 &&
1331               (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1332                argtypes.length() == 1 &&
1333                argtypes.head.hasTag(TypeTag.ARRAY) &&
1334                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1335    }
1336 
1337     /**
1338      * Is t the same type as s?
1339      */
1340     public boolean isSameType(Type t, Type s) {
1341         return isSameTypeVisitor.visit(t, s);
1342     }
1343     // where
1344 
1345         /**
1346          * Type-equality relation - type variables are considered
1347          * equals if they share the same object identity.
1348          */
1349         TypeRelation isSameTypeVisitor = new TypeRelation() {
1350 
1351             public Boolean visitType(Type t, Type s) {
1352                 if (t.equalsIgnoreMetadata(s))
1353                     return true;
1354 
1355                 if (s.isPartial())
1356                     return visit(s, t);
1357 
1358                 switch (t.getTag()) {
1359                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1360                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1361                     return t.hasTag(s.getTag());
1362                 case TYPEVAR: {
1363                     if (s.hasTag(TYPEVAR)) {
1364                         //type-substitution does not preserve type-var types
1365                         //check that type var symbols and bounds are indeed the same
1366                         return t == s;
1367                     }
1368                     else {
1369                         //special case for s == ? super X, where upper(s) = u
1370                         //check that u == t, where u has been set by Type.withTypeVar
1371                         return s.isSuperBound() &&
1372                                 !s.isExtendsBound() &&
1373                                 visit(t, wildUpperBound(s));
1374                     }
1375                 }
1376                 default:
1377                     throw new AssertionError("isSameType " + t.getTag());
1378                 }
1379             }
1380 
1381             @Override
1382             public Boolean visitWildcardType(WildcardType t, Type s) {
1383                 if (!s.hasTag(WILDCARD)) {
1384                     return false;
1385                 } else {
1386                     WildcardType t2 = (WildcardType)s;
1387                     return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
1388                             isSameType(t.type, t2.type);
1389                 }
1390             }
1391 
1392             @Override
1393             public Boolean visitClassType(ClassType t, Type s) {
1394                 if (t == s)
1395                     return true;
1396 
1397                 if (s.isPartial())
1398                     return visit(s, t);
1399 
1400                 if (s.isSuperBound() && !s.isExtendsBound())
1401                     return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1402 
1403                 if (t.isCompound() && s.isCompound()) {
1404                     if (!visit(supertype(t), supertype(s)))
1405                         return false;
1406 
1407                     Map<Symbol,Type> tMap = new HashMap<>();
1408                     for (Type ti : interfaces(t)) {
1409                         tMap.put(ti.tsym, ti);
1410                     }
1411                     for (Type si : interfaces(s)) {
1412                         if (!tMap.containsKey(si.tsym))
1413                             return false;
1414                         Type ti = tMap.remove(si.tsym);
1415                         if (!visit(ti, si))
1416                             return false;
1417                     }
1418                     return tMap.isEmpty();
1419                 }
1420                 return t.tsym == s.tsym
1421                     && visit(t.getEnclosingType(), s.getEnclosingType())
1422                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
1423             }
1424 
1425             @Override
1426             public Boolean visitArrayType(ArrayType t, Type s) {
1427                 if (t == s)
1428                     return true;
1429 
1430                 if (s.isPartial())
1431                     return visit(s, t);
1432 
1433                 return s.hasTag(ARRAY)
1434                     && containsTypeEquivalent(t.elemtype, elemtype(s));
1435             }
1436 
1437             @Override
1438             public Boolean visitMethodType(MethodType t, Type s) {
1439                 // isSameType for methods does not take thrown
1440                 // exceptions into account!
1441                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1442             }
1443 
1444             @Override
1445             public Boolean visitPackageType(PackageType t, Type s) {
1446                 return t == s;
1447             }
1448 
1449             @Override
1450             public Boolean visitForAll(ForAll t, Type s) {
1451                 if (!s.hasTag(FORALL)) {
1452                     return false;
1453                 }
1454 
1455                 ForAll forAll = (ForAll)s;
1456                 return hasSameBounds(t, forAll)
1457                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1458             }
1459 
1460             @Override
1461             public Boolean visitUndetVar(UndetVar t, Type s) {
1462                 if (s.hasTag(WILDCARD)) {
1463                     // FIXME, this might be leftovers from before capture conversion
1464                     return false;
1465                 }
1466 
1467                 if (t == s || t.qtype == s || s.hasTag(ERROR)) {
1468                     return true;
1469                 }
1470 
1471                 t.addBound(InferenceBound.EQ, s, Types.this);
1472 
1473                 return true;
1474             }
1475 
1476             @Override
1477             public Boolean visitErrorType(ErrorType t, Type s) {
1478                 return true;
1479             }
1480         };
1481 
1482     // </editor-fold>
1483 
1484     // <editor-fold defaultstate="collapsed" desc="Contains Type">
1485     public boolean containedBy(Type t, Type s) {
1486         switch (t.getTag()) {
1487         case UNDETVAR:
1488             if (s.hasTag(WILDCARD)) {
1489                 UndetVar undetvar = (UndetVar)t;
1490                 WildcardType wt = (WildcardType)s;
1491                 switch(wt.kind) {
1492                     case UNBOUND:
1493                         break;
1494                     case EXTENDS: {
1495                         Type bound = wildUpperBound(s);
1496                         undetvar.addBound(InferenceBound.UPPER, bound, this);
1497                         break;
1498                     }
1499                     case SUPER: {
1500                         Type bound = wildLowerBound(s);
1501                         undetvar.addBound(InferenceBound.LOWER, bound, this);
1502                         break;
1503                     }
1504                 }
1505                 return true;
1506             } else {
1507                 return isSameType(t, s);
1508             }
1509         case ERROR:
1510             return true;
1511         default:
1512             return containsType(s, t);
1513         }
1514     }
1515 
1516     boolean containsType(List<Type> ts, List<Type> ss) {
1517         while (ts.nonEmpty() && ss.nonEmpty()
1518                && containsType(ts.head, ss.head)) {
1519             ts = ts.tail;
1520             ss = ss.tail;
1521         }
1522         return ts.isEmpty() && ss.isEmpty();
1523     }
1524 
1525     /**
1526      * Check if t contains s.
1527      *
1528      * <p>T contains S if:
1529      *
1530      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1531      *
1532      * <p>This relation is only used by ClassType.isSubtype(), that
1533      * is,
1534      *
1535      * <p>{@code C<S> <: C<T> if T contains S.}
1536      *
1537      * <p>Because of F-bounds, this relation can lead to infinite
1538      * recursion.  Thus we must somehow break that recursion.  Notice
1539      * that containsType() is only called from ClassType.isSubtype().
1540      * Since the arguments have already been checked against their
1541      * bounds, we know:
1542      *
1543      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1544      *
1545      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1546      *
1547      * @param t a type
1548      * @param s a type
1549      */
1550     public boolean containsType(Type t, Type s) {
1551         return containsType.visit(t, s);
1552     }
1553     // where
1554         private TypeRelation containsType = new TypeRelation() {
1555 
1556             public Boolean visitType(Type t, Type s) {
1557                 if (s.isPartial())
1558                     return containedBy(s, t);
1559                 else
1560                     return isSameType(t, s);
1561             }
1562 
1563 //            void debugContainsType(WildcardType t, Type s) {
1564 //                System.err.println();
1565 //                System.err.format(" does %s contain %s?%n", t, s);
1566 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1567 //                                  wildUpperBound(s), s, t, wildUpperBound(t),
1568 //                                  t.isSuperBound()
1569 //                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1570 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1571 //                                  wildLowerBound(t), t, s, wildLowerBound(s),
1572 //                                  t.isExtendsBound()
1573 //                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1574 //                System.err.println();
1575 //            }
1576 
1577             @Override
1578             public Boolean visitWildcardType(WildcardType t, Type s) {
1579                 if (s.isPartial())
1580                     return containedBy(s, t);
1581                 else {
1582 //                    debugContainsType(t, s);
1583                     return isSameWildcard(t, s)
1584                         || isCaptureOf(s, t)
1585                         || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1586                             (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1587                 }
1588             }
1589 
1590             @Override
1591             public Boolean visitUndetVar(UndetVar t, Type s) {
1592                 if (!s.hasTag(WILDCARD)) {
1593                     return isSameType(t, s);
1594                 } else {
1595                     return false;
1596                 }
1597             }
1598 
1599             @Override
1600             public Boolean visitErrorType(ErrorType t, Type s) {
1601                 return true;
1602             }
1603         };
1604 
1605     public boolean isCaptureOf(Type s, WildcardType t) {
1606         if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1607             return false;
1608         return isSameWildcard(t, ((CapturedType)s).wildcard);
1609     }
1610 
1611     public boolean isSameWildcard(WildcardType t, Type s) {
1612         if (!s.hasTag(WILDCARD))
1613             return false;
1614         WildcardType w = (WildcardType)s;
1615         return w.kind == t.kind && w.type == t.type;
1616     }
1617 
1618     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1619         while (ts.nonEmpty() && ss.nonEmpty()
1620                && containsTypeEquivalent(ts.head, ss.head)) {
1621             ts = ts.tail;
1622             ss = ss.tail;
1623         }
1624         return ts.isEmpty() && ss.isEmpty();
1625     }
1626     // </editor-fold>
1627 
1628     // <editor-fold defaultstate="collapsed" desc="isCastable">
1629     public boolean isCastable(Type t, Type s) {
1630         return isCastable(t, s, noWarnings);
1631     }
1632 
1633     /**
1634      * Is t castable to s?<br>
1635      * s is assumed to be an erased type.<br>
1636      * (not defined for Method and ForAll types).
1637      */
1638     public boolean isCastable(Type t, Type s, Warner warn) {
1639         // if same type
1640         if (t == s)
1641             return true;
1642         // if one of the types is primitive
1643         if (t.isPrimitive() != s.isPrimitive()) {
1644             t = skipTypeVars(t, false);
1645             return (isConvertible(t, s, warn)
1646                     || (s.isPrimitive() &&
1647                         isSubtype(boxedClass(s).type, t)));
1648         }
1649         boolean result;
1650         if (warn != warnStack.head) {
1651             try {
1652                 warnStack = warnStack.prepend(warn);
1653                 checkUnsafeVarargsConversion(t, s, warn);
1654                 result = isCastable.visit(t,s);
1655             } finally {
1656                 warnStack = warnStack.tail;
1657             }
1658         } else {
1659             result = isCastable.visit(t,s);
1660         }
1661         if (result && t.hasTag(CLASS) && t.tsym.kind.matches(Kinds.KindSelector.TYP)
1662                 && s.hasTag(CLASS) && s.tsym.kind.matches(Kinds.KindSelector.TYP)
1663                 && (t.tsym.isSealed() || s.tsym.isSealed())) {
1664             return (t.isCompound() || s.isCompound()) ?
1665                     true :
1666                     !(new DisjointChecker().areDisjoint((ClassSymbol)t.tsym, (ClassSymbol)s.tsym));
1667         }
1668         return result;
1669     }
1670     // where
1671         class DisjointChecker {
1672             Set<Pair<ClassSymbol, ClassSymbol>> pairsSeen = new HashSet<>();
1673             /* there are three cases for ts and ss:
1674              *   - one is a class and the other one is an interface (case I)
1675              *   - both are classes                                 (case II)
1676              *   - both are interfaces                              (case III)
1677              * all those cases are covered in JLS 23, section: "5.1.6.1 Allowed Narrowing Reference Conversion"
1678              */
1679             private boolean areDisjoint(ClassSymbol ts, ClassSymbol ss) {
1680                 Pair<ClassSymbol, ClassSymbol> newPair = new Pair<>(ts, ss);
1681                 /* if we are seeing the same pair again then there is an issue with the sealed hierarchy
1682                  * bail out, a detailed error will be reported downstream
1683                  */
1684                 if (!pairsSeen.add(newPair))
1685                     return false;
1686 
1687                 if (ts.isInterface() != ss.isInterface()) { // case I: one is a class and the other one is an interface
1688                     ClassSymbol isym = ts.isInterface() ? ts : ss; // isym is the interface and csym the class
1689                     ClassSymbol csym = isym == ts ? ss : ts;
1690                     if (!isSubtype(erasure(csym.type), erasure(isym.type))) {
1691                         if (csym.isFinal()) {
1692                             return true;
1693                         } else if (csym.isSealed()) {
1694                             return areDisjoint(isym, csym.getPermittedSubclasses());
1695                         } else if (isym.isSealed()) {
1696                             // if the class is not final and not sealed then it has to be freely extensible
1697                             return areDisjoint(csym, isym.getPermittedSubclasses());
1698                         }
1699                     } // now both are classes or both are interfaces
1700                 } else if (!ts.isInterface()) {              // case II: both are classes
1701                     return !isSubtype(erasure(ss.type), erasure(ts.type)) && !isSubtype(erasure(ts.type), erasure(ss.type));
1702                 } else {                                     // case III: both are interfaces
1703                     if (!isSubtype(erasure(ts.type), erasure(ss.type)) && !isSubtype(erasure(ss.type), erasure(ts.type))) {
1704                         if (ts.isSealed()) {
1705                             return areDisjoint(ss, ts.getPermittedSubclasses());
1706                         } else if (ss.isSealed()) {
1707                             return areDisjoint(ts, ss.getPermittedSubclasses());
1708                         }
1709                     }
1710                 }
1711                 // at this point we haven't been able to statically prove that the classes or interfaces are disjoint
1712                 return false;
1713             }
1714 
1715             boolean areDisjoint(ClassSymbol csym, List<Type> permittedSubtypes) {
1716                 return permittedSubtypes.stream().allMatch(psubtype -> areDisjoint(csym, (ClassSymbol) psubtype.tsym));
1717             }
1718         }
1719 
1720         private TypeRelation isCastable = new TypeRelation() {
1721 
1722             public Boolean visitType(Type t, Type s) {
1723                 if (s.hasTag(ERROR) || t.hasTag(NONE))
1724                     return true;
1725 
1726                 switch (t.getTag()) {
1727                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1728                 case DOUBLE:
1729                     return s.isNumeric();
1730                 case BOOLEAN:
1731                     return s.hasTag(BOOLEAN);
1732                 case VOID:
1733                     return false;
1734                 case BOT:
1735                     return isSubtype(t, s);
1736                 default:
1737                     throw new AssertionError();
1738                 }
1739             }
1740 
1741             @Override
1742             public Boolean visitWildcardType(WildcardType t, Type s) {
1743                 return isCastable(wildUpperBound(t), s, warnStack.head);
1744             }
1745 
1746             @Override
1747             public Boolean visitClassType(ClassType t, Type s) {
1748                 if (s.hasTag(ERROR) || s.hasTag(BOT))
1749                     return true;
1750 
1751                 if (s.hasTag(TYPEVAR)) {
1752                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
1753                         warnStack.head.warn(LintCategory.UNCHECKED);
1754                         return true;
1755                     } else {
1756                         return false;
1757                     }
1758                 }
1759 
1760                 if (t.isCompound() || s.isCompound()) {
1761                     return !t.isCompound() ?
1762                             visitCompoundType((ClassType)s, t, true) :
1763                             visitCompoundType(t, s, false);
1764                 }
1765 
1766                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1767                     boolean upcast;
1768                     if ((upcast = isSubtype(erasure(t), erasure(s)))
1769                         || isSubtype(erasure(s), erasure(t))) {
1770                         if (!upcast && s.hasTag(ARRAY)) {
1771                             if (!isReifiable(s))
1772                                 warnStack.head.warn(LintCategory.UNCHECKED);
1773                             return true;
1774                         } else if (s.isRaw()) {
1775                             return true;
1776                         } else if (t.isRaw()) {
1777                             if (!isUnbounded(s))
1778                                 warnStack.head.warn(LintCategory.UNCHECKED);
1779                             return true;
1780                         }
1781                         // Assume |a| <: |b|
1782                         final Type a = upcast ? t : s;
1783                         final Type b = upcast ? s : t;
1784                         final boolean HIGH = true;
1785                         final boolean LOW = false;
1786                         final boolean DONT_REWRITE_TYPEVARS = false;
1787                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1788                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1789                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1790                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1791                         Type lowSub = asSub(bLow, aLow.tsym);
1792                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1793                         if (highSub == null) {
1794                             final boolean REWRITE_TYPEVARS = true;
1795                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1796                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1797                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1798                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1799                             lowSub = asSub(bLow, aLow.tsym);
1800                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1801                         }
1802                         if (highSub != null) {
1803                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1804                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1805                             }
1806                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1807                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1808                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
1809                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1810                                 if (upcast ? giveWarning(a, b) :
1811                                     giveWarning(b, a))
1812                                     warnStack.head.warn(LintCategory.UNCHECKED);
1813                                 return true;
1814                             }
1815                         }
1816                         if (isReifiable(s))
1817                             return isSubtypeUnchecked(a, b);
1818                         else
1819                             return isSubtypeUnchecked(a, b, warnStack.head);
1820                     }
1821 
1822                     // Sidecast
1823                     if (s.hasTag(CLASS)) {
1824                         if ((s.tsym.flags() & INTERFACE) != 0) {
1825                             return ((t.tsym.flags() & FINAL) == 0)
1826                                 ? sideCast(t, s, warnStack.head)
1827                                 : sideCastFinal(t, s, warnStack.head);
1828                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
1829                             return ((s.tsym.flags() & FINAL) == 0)
1830                                 ? sideCast(t, s, warnStack.head)
1831                                 : sideCastFinal(t, s, warnStack.head);
1832                         } else {
1833                             // unrelated class types
1834                             return false;
1835                         }
1836                     }
1837                 }
1838                 return false;
1839             }
1840 
1841             boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1842                 Warner warn = noWarnings;
1843                 for (Type c : directSupertypes(ct)) {
1844                     warn.clear();
1845                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1846                         return false;
1847                 }
1848                 if (warn.hasLint(LintCategory.UNCHECKED))
1849                     warnStack.head.warn(LintCategory.UNCHECKED);
1850                 return true;
1851             }
1852 
1853             @Override
1854             public Boolean visitArrayType(ArrayType t, Type s) {
1855                 switch (s.getTag()) {
1856                 case ERROR:
1857                 case BOT:
1858                     return true;
1859                 case TYPEVAR:
1860                     if (isCastable(s, t, noWarnings)) {
1861                         warnStack.head.warn(LintCategory.UNCHECKED);
1862                         return true;
1863                     } else {
1864                         return false;
1865                     }
1866                 case CLASS:
1867                     return isSubtype(t, s);
1868                 case ARRAY:
1869                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1870                         return elemtype(t).hasTag(elemtype(s).getTag());
1871                     } else {
1872                         return isCastable(elemtype(t), elemtype(s), warnStack.head);
1873                     }
1874                 default:
1875                     return false;
1876                 }
1877             }
1878 
1879             @Override
1880             public Boolean visitTypeVar(TypeVar t, Type s) {
1881                 switch (s.getTag()) {
1882                 case ERROR:
1883                 case BOT:
1884                     return true;
1885                 case TYPEVAR:
1886                     if (isSubtype(t, s)) {
1887                         return true;
1888                     } else if (isCastable(t.getUpperBound(), s, noWarnings)) {
1889                         warnStack.head.warn(LintCategory.UNCHECKED);
1890                         return true;
1891                     } else {
1892                         return false;
1893                     }
1894                 default:
1895                     return isCastable(t.getUpperBound(), s, warnStack.head);
1896                 }
1897             }
1898 
1899             @Override
1900             public Boolean visitErrorType(ErrorType t, Type s) {
1901                 return true;
1902             }
1903         };
1904     // </editor-fold>
1905 
1906     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1907     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1908         while (ts.tail != null && ss.tail != null) {
1909             if (disjointType(ts.head, ss.head)) return true;
1910             ts = ts.tail;
1911             ss = ss.tail;
1912         }
1913         return false;
1914     }
1915 
1916     /**
1917      * Two types or wildcards are considered disjoint if it can be
1918      * proven that no type can be contained in both. It is
1919      * conservative in that it is allowed to say that two types are
1920      * not disjoint, even though they actually are.
1921      *
1922      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1923      * {@code X} and {@code Y} are not disjoint.
1924      */
1925     public boolean disjointType(Type t, Type s) {
1926         return disjointType.visit(t, s);
1927     }
1928     // where
1929         private TypeRelation disjointType = new TypeRelation() {
1930 
1931             private Set<TypePair> cache = new HashSet<>();
1932 
1933             @Override
1934             public Boolean visitType(Type t, Type s) {
1935                 if (s.hasTag(WILDCARD))
1936                     return visit(s, t);
1937                 else
1938                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1939             }
1940 
1941             private boolean isCastableRecursive(Type t, Type s) {
1942                 TypePair pair = new TypePair(t, s);
1943                 if (cache.add(pair)) {
1944                     try {
1945                         return Types.this.isCastable(t, s);
1946                     } finally {
1947                         cache.remove(pair);
1948                     }
1949                 } else {
1950                     return true;
1951                 }
1952             }
1953 
1954             private boolean notSoftSubtypeRecursive(Type t, Type s) {
1955                 TypePair pair = new TypePair(t, s);
1956                 if (cache.add(pair)) {
1957                     try {
1958                         return Types.this.notSoftSubtype(t, s);
1959                     } finally {
1960                         cache.remove(pair);
1961                     }
1962                 } else {
1963                     return false;
1964                 }
1965             }
1966 
1967             @Override
1968             public Boolean visitWildcardType(WildcardType t, Type s) {
1969                 if (t.isUnbound())
1970                     return false;
1971 
1972                 if (!s.hasTag(WILDCARD)) {
1973                     if (t.isExtendsBound())
1974                         return notSoftSubtypeRecursive(s, t.type);
1975                     else
1976                         return notSoftSubtypeRecursive(t.type, s);
1977                 }
1978 
1979                 if (s.isUnbound())
1980                     return false;
1981 
1982                 if (t.isExtendsBound()) {
1983                     if (s.isExtendsBound())
1984                         return !isCastableRecursive(t.type, wildUpperBound(s));
1985                     else if (s.isSuperBound())
1986                         return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1987                 } else if (t.isSuperBound()) {
1988                     if (s.isExtendsBound())
1989                         return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1990                 }
1991                 return false;
1992             }
1993         };
1994     // </editor-fold>
1995 
1996     // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1997     public List<Type> cvarLowerBounds(List<Type> ts) {
1998         return ts.map(cvarLowerBoundMapping);
1999     }
2000         private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
2001             @Override
2002             public Type visitCapturedType(CapturedType t, Void _unused) {
2003                 return cvarLowerBound(t);
2004             }
2005         };
2006     // </editor-fold>
2007 
2008     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
2009     /**
2010      * This relation answers the question: is impossible that
2011      * something of type `t' can be a subtype of `s'? This is
2012      * different from the question "is `t' not a subtype of `s'?"
2013      * when type variables are involved: Integer is not a subtype of T
2014      * where {@code <T extends Number>} but it is not true that Integer cannot
2015      * possibly be a subtype of T.
2016      */
2017     public boolean notSoftSubtype(Type t, Type s) {
2018         if (t == s) return false;
2019         if (t.hasTag(TYPEVAR)) {
2020             TypeVar tv = (TypeVar) t;
2021             return !isCastable(tv.getUpperBound(),
2022                                relaxBound(s),
2023                                noWarnings);
2024         }
2025         if (!s.hasTag(WILDCARD))
2026             s = cvarUpperBound(s);
2027 
2028         return !isSubtype(t, relaxBound(s));
2029     }
2030 
2031     private Type relaxBound(Type t) {
2032         return (t.hasTag(TYPEVAR)) ?
2033                 rewriteQuantifiers(skipTypeVars(t, false), true, true) :
2034                 t;
2035     }
2036     // </editor-fold>
2037 
2038     // <editor-fold defaultstate="collapsed" desc="isReifiable">
2039     public boolean isReifiable(Type t) {
2040         return isReifiable.visit(t);
2041     }
2042     // where
2043         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
2044 
2045             public Boolean visitType(Type t, Void ignored) {
2046                 return true;
2047             }
2048 
2049             @Override
2050             public Boolean visitClassType(ClassType t, Void ignored) {
2051                 if (t.isCompound())
2052                     return false;
2053                 else {
2054                     if (!t.isParameterized())
2055                         return true;
2056 
2057                     for (Type param : t.allparams()) {
2058                         if (!param.isUnbound())
2059                             return false;
2060                     }
2061                     return true;
2062                 }
2063             }
2064 
2065             @Override
2066             public Boolean visitArrayType(ArrayType t, Void ignored) {
2067                 return visit(t.elemtype);
2068             }
2069 
2070             @Override
2071             public Boolean visitTypeVar(TypeVar t, Void ignored) {
2072                 return false;
2073             }
2074         };
2075     // </editor-fold>
2076 
2077     // <editor-fold defaultstate="collapsed" desc="Array Utils">
2078     public boolean isArray(Type t) {
2079         while (t.hasTag(WILDCARD))
2080             t = wildUpperBound(t);
2081         return t.hasTag(ARRAY);
2082     }
2083 
2084     /**
2085      * The element type of an array.
2086      */
2087     public Type elemtype(Type t) {
2088         switch (t.getTag()) {
2089         case WILDCARD:
2090             return elemtype(wildUpperBound(t));
2091         case ARRAY:
2092             return ((ArrayType)t).elemtype;
2093         case FORALL:
2094             return elemtype(((ForAll)t).qtype);
2095         case ERROR:
2096             return t;
2097         default:
2098             return null;
2099         }
2100     }
2101 
2102     public Type elemtypeOrType(Type t) {
2103         Type elemtype = elemtype(t);
2104         return elemtype != null ?
2105             elemtype :
2106             t;
2107     }
2108 
2109     /**
2110      * Mapping to take element type of an arraytype
2111      */
2112     private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
2113         @Override
2114         public Type visitArrayType(ArrayType t, Void _unused) {
2115             return t.elemtype;
2116         }
2117 
2118         @Override
2119         public Type visitTypeVar(TypeVar t, Void _unused) {
2120             return visit(skipTypeVars(t, false));
2121         }
2122     };
2123 
2124     /**
2125      * The number of dimensions of an array type.
2126      */
2127     public int dimensions(Type t) {
2128         int result = 0;
2129         while (t.hasTag(ARRAY)) {
2130             result++;
2131             t = elemtype(t);
2132         }
2133         return result;
2134     }
2135 
2136     /**
2137      * Returns an ArrayType with the component type t
2138      *
2139      * @param t The component type of the ArrayType
2140      * @return the ArrayType for the given component
2141      */
2142     public ArrayType makeArrayType(Type t) {




2143         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
2144             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
2145         }
2146         return new ArrayType(t, syms.arrayClass);




2147     }
2148     // </editor-fold>
2149 
2150     // <editor-fold defaultstate="collapsed" desc="asSuper">
2151     /**
2152      * Return the (most specific) base type of t that starts with the
2153      * given symbol.  If none exists, return null.
2154      *
2155      * Caveat Emptor: Since javac represents the class of all arrays with a singleton
2156      * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
2157      * this method could yield surprising answers when invoked on arrays. For example when
2158      * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
2159      *
2160      * @param t a type
2161      * @param sym a symbol
2162      */
2163     public Type asSuper(Type t, Symbol sym) {
2164         /* Some examples:
2165          *
2166          * (Enum<E>, Comparable) => Comparable<E>
2167          * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
2168          * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
2169          * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
2170          *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
2171          */
2172         if (sym.type == syms.objectType) { //optimization
2173             return syms.objectType;
2174         }
2175         return asSuper.visit(t, sym);
2176     }
2177     // where
2178         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
2179 
2180             private Set<Symbol> seenTypes = new HashSet<>();
2181 
2182             public Type visitType(Type t, Symbol sym) {
2183                 return null;
2184             }
2185 
2186             @Override
2187             public Type visitClassType(ClassType t, Symbol sym) {
2188                 if (t.tsym == sym)
2189                     return t;
2190 
2191                 Symbol c = t.tsym;
2192                 if (!seenTypes.add(c)) {
2193                     return null;
2194                 }
2195                 try {
2196                     Type st = supertype(t);
2197                     if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
2198                         Type x = asSuper(st, sym);
2199                         if (x != null)
2200                             return x;
2201                     }
2202                     if ((sym.flags() & INTERFACE) != 0) {
2203                         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
2204                             if (!l.head.hasTag(ERROR)) {
2205                                 Type x = asSuper(l.head, sym);
2206                                 if (x != null)
2207                                     return x;
2208                             }
2209                         }
2210                     }
2211                     return null;
2212                 } finally {
2213                     seenTypes.remove(c);
2214                 }
2215             }
2216 
2217             @Override
2218             public Type visitArrayType(ArrayType t, Symbol sym) {
2219                 return isSubtype(t, sym.type) ? sym.type : null;
2220             }
2221 
2222             @Override
2223             public Type visitTypeVar(TypeVar t, Symbol sym) {
2224                 if (t.tsym == sym)
2225                     return t;
2226                 else
2227                     return asSuper(t.getUpperBound(), sym);
2228             }
2229 
2230             @Override
2231             public Type visitErrorType(ErrorType t, Symbol sym) {
2232                 return t;
2233             }
2234         };
2235 
2236     /**
2237      *  This method returns the first type in a sequence (starting at `t`) that is
2238      *  a subclass of `sym`. The next type in the sequence is obtained by calling
2239      *  `getEnclosingType()` on the previous type in the sequence. Note, this is
2240      *  typically used to compute the implicit qualifier in a method/field access
2241      *  expression. Example:
2242      *
2243      *  static class Sup<F> { public F f; }
2244      *   class Outer {
2245      *    static class Sub extends Sup<String> {
2246      *        class I {
2247      *          void test() {
2248      *              String f2 = f; // Sup<String>::f
2249      *          }
2250      *        }
2251      *    }
2252      *  }
2253      *
2254      *  @param t a type
2255      *  @param sym a symbol
2256      */
2257     public Type asOuterSuper(Type t, Symbol sym) {
2258         Type t1 = t;
2259         while (!t1.hasTag(NONE)) {
2260             Type s = asSuper(t1, sym);
2261             if (s != null) return s;
2262             t1 = t1.getEnclosingType();
2263         }
2264         return null;
2265     }
2266 
2267     /**
2268      * This method returns the first type in a sequence (starting at `t`) that is
2269      * a subclass of `sym`. The next type in the sequence is obtained by obtaining
2270      * innermost lexically enclosing class type of the previous type in the sequence.
2271      * Note, this is typically used to compute the implicit qualifier in
2272      * a type expression. Example:
2273      *
2274      * class A<T> { class B { } }
2275      *
2276      * class C extends A<String> {
2277      *   static class D {
2278      *      B b; // A<String>.B
2279      *   }
2280      * }
2281      *
2282      * @param t a type
2283      * @param sym a symbol
2284      */
2285     public Type asEnclosingSuper(Type t, Symbol sym) {
2286         Type t1 = t;
2287         while (!t1.hasTag(NONE)) {
2288             Type s = asSuper(t1, sym);
2289             if (s != null) return s;
2290             t1 = (t1.tsym.owner.enclClass() != null)
2291                     ? t1.tsym.owner.enclClass().type
2292                     : noType;
2293         }
2294         return null;
2295     }
2296     // </editor-fold>
2297 
2298     // <editor-fold defaultstate="collapsed" desc="memberType">
2299     /**
2300      * The type of given symbol, seen as a member of t.
2301      *
2302      * @param t a type
2303      * @param sym a symbol
2304      */
2305     public Type memberType(Type t, Symbol sym) {
2306         return (sym.flags() & STATIC) != 0
2307             ? sym.type
2308             : memberType.visit(t, sym);
2309         }
2310     // where
2311         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2312 
2313             public Type visitType(Type t, Symbol sym) {
2314                 return sym.type;
2315             }
2316 
2317             @Override
2318             public Type visitWildcardType(WildcardType t, Symbol sym) {
2319                 return memberType(wildUpperBound(t), sym);
2320             }
2321 
2322             @Override
2323             public Type visitClassType(ClassType t, Symbol sym) {
2324                 Symbol owner = sym.owner;
2325                 long flags = sym.flags();
2326                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2327                     Type base = asOuterSuper(t, owner);
2328                     //if t is an intersection type T = CT & I1 & I2 ... & In
2329                     //its supertypes CT, I1, ... In might contain wildcards
2330                     //so we need to go through capture conversion
2331                     base = t.isCompound() ? capture(base) : base;
2332                     if (base != null) {
2333                         List<Type> ownerParams = owner.type.allparams();
2334                         List<Type> baseParams = base.allparams();
2335                         if (ownerParams.nonEmpty()) {
2336                             if (baseParams.isEmpty()) {
2337                                 // then base is a raw type
2338                                 return erasure(sym.type);
2339                             } else {
2340                                 return subst(sym.type, ownerParams, baseParams);
2341                             }
2342                         }
2343                     }
2344                 }
2345                 return sym.type;
2346             }
2347 
2348             @Override
2349             public Type visitTypeVar(TypeVar t, Symbol sym) {
2350                 return memberType(t.getUpperBound(), sym);
2351             }
2352 
2353             @Override
2354             public Type visitErrorType(ErrorType t, Symbol sym) {
2355                 return t;
2356             }
2357         };
2358     // </editor-fold>
2359 
2360     // <editor-fold defaultstate="collapsed" desc="isAssignable">
2361     public boolean isAssignable(Type t, Type s) {
2362         return isAssignable(t, s, noWarnings);
2363     }
2364 
2365     /**
2366      * Is t assignable to s?<br>
2367      * Equivalent to subtype except for constant values and raw
2368      * types.<br>
2369      * (not defined for Method and ForAll types)
2370      */
2371     public boolean isAssignable(Type t, Type s, Warner warn) {
2372         if (t.hasTag(ERROR))
2373             return true;
2374         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2375             int value = ((Number)t.constValue()).intValue();
2376             switch (s.getTag()) {
2377             case BYTE:
2378             case CHAR:
2379             case SHORT:
2380             case INT:
2381                 if (s.getTag().checkRange(value))
2382                     return true;
2383                 break;
2384             case CLASS:
2385                 switch (unboxedType(s).getTag()) {
2386                 case BYTE:
2387                 case CHAR:
2388                 case SHORT:
2389                     return isAssignable(t, unboxedType(s), warn);
2390                 }
2391                 break;
2392             }
2393         }
2394         return isConvertible(t, s, warn);
2395     }
2396     // </editor-fold>
2397 
2398     // <editor-fold defaultstate="collapsed" desc="erasure">
2399     /**
2400      * The erasure of t {@code |t|} -- the type that results when all
2401      * type parameters in t are deleted.
2402      */
2403     public Type erasure(Type t) {
2404         return eraseNotNeeded(t) ? t : erasure(t, false);
2405     }
2406     //where
2407     private boolean eraseNotNeeded(Type t) {
2408         // We don't want to erase primitive types and String type as that
2409         // operation is idempotent. Also, erasing these could result in loss
2410         // of information such as constant values attached to such types.
2411         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2412     }
2413 
2414     private Type erasure(Type t, boolean recurse) {
2415         if (t.isPrimitive()) {
2416             return t; /* fast special case */
2417         } else {
2418             Type out = erasure.visit(t, recurse);
2419             return out;
2420         }
2421     }
2422     // where
2423         private TypeMapping<Boolean> erasure = new StructuralTypeMapping<Boolean>() {
2424             @SuppressWarnings("fallthrough")
2425             private Type combineMetadata(final Type s,
2426                                          final Type t) {
2427                 if (t.getMetadata().nonEmpty()) {
2428                     switch (s.getTag()) {
2429                         case CLASS:
2430                             if (s instanceof UnionClassType ||
2431                                 s instanceof IntersectionClassType) {
2432                                 return s;
2433                             }
2434                             //fall-through
2435                         case BYTE, CHAR, SHORT, LONG, FLOAT, INT, DOUBLE, BOOLEAN,
2436                              ARRAY, MODULE, TYPEVAR, WILDCARD, BOT:
2437                             return s.dropMetadata(Annotations.class);
2438                         case VOID, METHOD, PACKAGE, FORALL, DEFERRED,
2439                              NONE, ERROR, UNDETVAR, UNINITIALIZED_THIS,
2440                              UNINITIALIZED_OBJECT:
2441                             return s;
2442                         default:
2443                             throw new AssertionError(s.getTag().name());
2444                     }
2445                 } else {
2446                     return s;
2447                 }
2448             }
2449 
2450             public Type visitType(Type t, Boolean recurse) {
2451                 if (t.isPrimitive())
2452                     return t; /*fast special case*/
2453                 else {
2454                     //other cases already handled
2455                     return combineMetadata(t, t);
2456                 }
2457             }
2458 
2459             @Override
2460             public Type visitWildcardType(WildcardType t, Boolean recurse) {
2461                 Type erased = erasure(wildUpperBound(t), recurse);
2462                 return combineMetadata(erased, t);
2463             }
2464 
2465             @Override
2466             public Type visitClassType(ClassType t, Boolean recurse) {
2467                 Type erased = t.tsym.erasure(Types.this);
2468                 if (recurse) {
2469                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2470                             t.dropMetadata(Annotations.class).getMetadata());
2471                     return erased;
2472                 } else {
2473                     return combineMetadata(erased, t);
2474                 }
2475             }
2476 
2477             @Override
2478             public Type visitTypeVar(TypeVar t, Boolean recurse) {
2479                 Type erased = erasure(t.getUpperBound(), recurse);
2480                 return combineMetadata(erased, t);
2481             }
2482         };
2483 
2484     public List<Type> erasure(List<Type> ts) {
2485         return erasure.visit(ts, false);
2486     }
2487 
2488     public Type erasureRecursive(Type t) {
2489         return erasure(t, true);
2490     }
2491 
2492     public List<Type> erasureRecursive(List<Type> ts) {
2493         return erasure.visit(ts, true);
2494     }
2495     // </editor-fold>
2496 
2497     // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2498     /**
2499      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2500      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2501      * Hence, this version of makeIntersectionType may not be called during a classfile read.
2502      *
2503      * @param bounds    the types from which the intersection type is formed
2504      */
2505     public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2506         return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2507     }
2508 
2509     /**
2510      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2511      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2512      * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2513      * supertype is implicitly assumed to be 'Object'.
2514      *
2515      * @param bounds        the types from which the intersection type is formed
2516      * @param allInterfaces are all bounds interface types?
2517      */
2518     public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2519         Assert.check(bounds.nonEmpty());
2520         Type firstExplicitBound = bounds.head;
2521         if (allInterfaces) {
2522             bounds = bounds.prepend(syms.objectType);
2523         }
2524         ClassSymbol bc =
2525             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2526                             Type.moreInfo
2527                                 ? names.fromString(bounds.toString())
2528                                 : names.empty,
2529                             null,
2530                             syms.noSymbol);
2531         IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2532         bc.type = intersectionType;
2533         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2534                 syms.objectType : // error condition, recover
2535                 erasure(firstExplicitBound);
2536         bc.members_field = WriteableScope.create(bc);
2537         return intersectionType;
2538     }
2539     // </editor-fold>
2540 
2541     // <editor-fold defaultstate="collapsed" desc="supertype">
2542     public Type supertype(Type t) {
2543         return supertype.visit(t);
2544     }
2545     // where
2546         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2547 
2548             public Type visitType(Type t, Void ignored) {
2549                 // A note on wildcards: there is no good way to
2550                 // determine a supertype for a lower-bounded wildcard.
2551                 return Type.noType;
2552             }
2553 
2554             @Override
2555             public Type visitClassType(ClassType t, Void ignored) {
2556                 if (t.supertype_field == null) {
2557                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2558                     // An interface has no superclass; its supertype is Object.
2559                     if (t.isInterface())
2560                         supertype = ((ClassType)t.tsym.type).supertype_field;
2561                     if (t.supertype_field == null) {
2562                         List<Type> actuals = classBound(t).allparams();
2563                         List<Type> formals = t.tsym.type.allparams();
2564                         if (t.hasErasedSupertypes()) {
2565                             t.supertype_field = erasureRecursive(supertype);
2566                         } else if (formals.nonEmpty()) {
2567                             t.supertype_field = subst(supertype, formals, actuals);
2568                         }
2569                         else {
2570                             t.supertype_field = supertype;
2571                         }
2572                     }
2573                 }
2574                 return t.supertype_field;
2575             }
2576 
2577             /**
2578              * The supertype is always a class type. If the type
2579              * variable's bounds start with a class type, this is also
2580              * the supertype.  Otherwise, the supertype is
2581              * java.lang.Object.
2582              */
2583             @Override
2584             public Type visitTypeVar(TypeVar t, Void ignored) {
2585                 if (t.getUpperBound().hasTag(TYPEVAR) ||
2586                     (!t.getUpperBound().isCompound() && !t.getUpperBound().isInterface())) {
2587                     return t.getUpperBound();
2588                 } else {
2589                     return supertype(t.getUpperBound());
2590                 }
2591             }
2592 
2593             @Override
2594             public Type visitArrayType(ArrayType t, Void ignored) {
2595                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2596                     return arraySuperType();
2597                 else
2598                     return new ArrayType(supertype(t.elemtype), t.tsym);
2599             }
2600 
2601             @Override
2602             public Type visitErrorType(ErrorType t, Void ignored) {
2603                 return Type.noType;
2604             }
2605         };
2606     // </editor-fold>
2607 
2608     // <editor-fold defaultstate="collapsed" desc="interfaces">
2609     /**
2610      * Return the interfaces implemented by this class.
2611      */
2612     public List<Type> interfaces(Type t) {
2613         return interfaces.visit(t);
2614     }
2615     // where
2616         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2617 
2618             public List<Type> visitType(Type t, Void ignored) {
2619                 return List.nil();
2620             }
2621 
2622             @Override
2623             public List<Type> visitClassType(ClassType t, Void ignored) {
2624                 if (t.interfaces_field == null) {
2625                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2626                     if (t.interfaces_field == null) {
2627                         // If t.interfaces_field is null, then t must
2628                         // be a parameterized type (not to be confused
2629                         // with a generic type declaration).
2630                         // Terminology:
2631                         //    Parameterized type: List<String>
2632                         //    Generic type declaration: class List<E> { ... }
2633                         // So t corresponds to List<String> and
2634                         // t.tsym.type corresponds to List<E>.
2635                         // The reason t must be parameterized type is
2636                         // that completion will happen as a side
2637                         // effect of calling
2638                         // ClassSymbol.getInterfaces.  Since
2639                         // t.interfaces_field is null after
2640                         // completion, we can assume that t is not the
2641                         // type of a class/interface declaration.
2642                         Assert.check(t != t.tsym.type, t);
2643                         List<Type> actuals = t.allparams();
2644                         List<Type> formals = t.tsym.type.allparams();
2645                         if (t.hasErasedSupertypes()) {
2646                             t.interfaces_field = erasureRecursive(interfaces);
2647                         } else if (formals.nonEmpty()) {
2648                             t.interfaces_field = subst(interfaces, formals, actuals);
2649                         }
2650                         else {
2651                             t.interfaces_field = interfaces;
2652                         }
2653                     }
2654                 }
2655                 return t.interfaces_field;
2656             }
2657 
2658             @Override
2659             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2660                 if (t.getUpperBound().isCompound())
2661                     return interfaces(t.getUpperBound());
2662 
2663                 if (t.getUpperBound().isInterface())
2664                     return List.of(t.getUpperBound());
2665 
2666                 return List.nil();
2667             }
2668         };
2669 
2670     public List<Type> directSupertypes(Type t) {
2671         return directSupertypes.visit(t);
2672     }
2673     // where
2674         private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2675 
2676             public List<Type> visitType(final Type type, final Void ignored) {
2677                 if (!type.isIntersection()) {
2678                     final Type sup = supertype(type);
2679                     return (sup == Type.noType || sup == type || sup == null)
2680                         ? interfaces(type)
2681                         : interfaces(type).prepend(sup);
2682                 } else {
2683                     return ((IntersectionClassType)type).getExplicitComponents();
2684                 }
2685             }
2686         };
2687 
2688     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2689         for (Type i2 : interfaces(origin.type)) {
2690             if (isym == i2.tsym) return true;
2691         }
2692         return false;
2693     }
2694     // </editor-fold>
2695 
2696     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2697     Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2698 
2699     public boolean isDerivedRaw(Type t) {
2700         Boolean result = isDerivedRawCache.get(t);
2701         if (result == null) {
2702             result = isDerivedRawInternal(t);
2703             isDerivedRawCache.put(t, result);
2704         }
2705         return result;
2706     }
2707 
2708     public boolean isDerivedRawInternal(Type t) {
2709         if (t.isErroneous())
2710             return false;
2711         return
2712             t.isRaw() ||
2713             supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2714             isDerivedRaw(interfaces(t));
2715     }
2716 
2717     public boolean isDerivedRaw(List<Type> ts) {
2718         List<Type> l = ts;
2719         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2720         return l.nonEmpty();
2721     }
2722     // </editor-fold>
2723 
2724     // <editor-fold defaultstate="collapsed" desc="setBounds">
2725     /**
2726      * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2727      * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2728      * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2729      * the bound list passed as second argument). Note that this check might cause a symbol completion.
2730      * Hence, this version of setBounds may not be called during a classfile read.
2731      *
2732      * @param t         a type variable
2733      * @param bounds    the bounds, must be nonempty
2734      */
2735     public void setBounds(TypeVar t, List<Type> bounds) {
2736         setBounds(t, bounds, bounds.head.tsym.isInterface());
2737     }
2738 
2739     /**
2740      * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2741      * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2742      * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2743      *
2744      * @param t             a type variable
2745      * @param bounds        the bounds, must be nonempty
2746      * @param allInterfaces are all bounds interface types?
2747      */
2748     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2749         t.setUpperBound( bounds.tail.isEmpty() ?
2750                 bounds.head :
2751                 makeIntersectionType(bounds, allInterfaces) );
2752         t.rank_field = -1;
2753     }
2754     // </editor-fold>
2755 
2756     // <editor-fold defaultstate="collapsed" desc="getBounds">
2757     /**
2758      * Return list of bounds of the given type variable.
2759      */
2760     public List<Type> getBounds(TypeVar t) {
2761         if (t.getUpperBound().hasTag(NONE))
2762             return List.nil();
2763         else if (t.getUpperBound().isErroneous() || !t.getUpperBound().isCompound())
2764             return List.of(t.getUpperBound());
2765         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2766             return interfaces(t).prepend(supertype(t));
2767         else
2768             // No superclass was given in bounds.
2769             // In this case, supertype is Object, erasure is first interface.
2770             return interfaces(t);
2771     }
2772     // </editor-fold>
2773 
2774     // <editor-fold defaultstate="collapsed" desc="classBound">
2775     /**
2776      * If the given type is a (possibly selected) type variable,
2777      * return the bounding class of this type, otherwise return the
2778      * type itself.
2779      */
2780     public Type classBound(Type t) {
2781         return classBound.visit(t);
2782     }
2783     // where
2784         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2785 
2786             public Type visitType(Type t, Void ignored) {
2787                 return t;
2788             }
2789 
2790             @Override
2791             public Type visitClassType(ClassType t, Void ignored) {
2792                 Type outer1 = classBound(t.getEnclosingType());
2793                 if (outer1 != t.getEnclosingType())
2794                     return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2795                                          t.getMetadata());
2796                 else
2797                     return t;
2798             }
2799 
2800             @Override
2801             public Type visitTypeVar(TypeVar t, Void ignored) {
2802                 return classBound(supertype(t));
2803             }
2804 
2805             @Override
2806             public Type visitErrorType(ErrorType t, Void ignored) {
2807                 return t;
2808             }
2809         };
2810     // </editor-fold>
2811 
2812     // <editor-fold defaultstate="collapsed" desc="subsignature / override equivalence">
2813     /**
2814      * Returns true iff the first signature is a <em>subsignature</em>
2815      * of the other.  This is <b>not</b> an equivalence
2816      * relation.
2817      *
2818      * @jls 8.4.2 Method Signature
2819      * @see #overrideEquivalent(Type t, Type s)
2820      * @param t first signature (possibly raw).
2821      * @param s second signature (could be subjected to erasure).
2822      * @return true if t is a subsignature of s.
2823      */
2824     public boolean isSubSignature(Type t, Type s) {
2825         return hasSameArgs(t, s, true) || hasSameArgs(t, erasure(s), true);
2826     }
2827 
2828     /**
2829      * Returns true iff these signatures are related by <em>override
2830      * equivalence</em>.  This is the natural extension of
2831      * isSubSignature to an equivalence relation.
2832      *
2833      * @jls 8.4.2 Method Signature
2834      * @see #isSubSignature(Type t, Type s)
2835      * @param t a signature (possible raw, could be subjected to
2836      * erasure).
2837      * @param s a signature (possible raw, could be subjected to
2838      * erasure).
2839      * @return true if either argument is a subsignature of the other.
2840      */
2841     public boolean overrideEquivalent(Type t, Type s) {
2842         return hasSameArgs(t, s) ||
2843             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2844     }
2845 
2846     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2847         for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2848             if (msym.overrides(sym, origin, Types.this, true)) {
2849                 return true;
2850             }
2851         }
2852         return false;
2853     }
2854 
2855     /**
2856      * This enum defines the strategy for implementing most specific return type check
2857      * during the most specific and functional interface checks.
2858      */
2859     public enum MostSpecificReturnCheck {
2860         /**
2861          * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
2862          * method type variables (if either method is generic) and (ii) subtyping should be replaced
2863          * by type-equivalence for primitives. This is essentially an inlined version of
2864          * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
2865          * replaced with a strict subtyping check.
2866          */
2867         BASIC() {
2868             @Override
2869             public boolean test(Type mt1, Type mt2, Types types) {
2870                 List<Type> tvars = mt1.getTypeArguments();
2871                 List<Type> svars = mt2.getTypeArguments();
2872                 Type t = mt1.getReturnType();
2873                 Type s = types.subst(mt2.getReturnType(), svars, tvars);
2874                 return types.isSameType(t, s) ||
2875                     !t.isPrimitive() &&
2876                     !s.isPrimitive() &&
2877                     types.isSubtype(t, s);
2878             }
2879         },
2880         /**
2881          * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
2882          */
2883         RTS() {
2884             @Override
2885             public boolean test(Type mt1, Type mt2, Types types) {
2886                 return types.returnTypeSubstitutable(mt1, mt2);
2887             }
2888         };
2889 
2890         public abstract boolean test(Type mt1, Type mt2, Types types);
2891     }
2892 
2893     /**
2894      * Merge multiple abstract methods. The preferred method is a method that is a subsignature
2895      * of all the other signatures and whose return type is more specific {@link MostSpecificReturnCheck}.
2896      * The resulting preferred method has a throws clause that is the intersection of the merged
2897      * methods' clauses.
2898      */
2899     public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
2900         //first check for preconditions
2901         boolean shouldErase = false;
2902         List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
2903         for (Symbol s : ambiguousInOrder) {
2904             if ((s.flags() & ABSTRACT) == 0 ||
2905                     (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
2906                 return Optional.empty();
2907             } else if (s.type.hasTag(FORALL)) {
2908                 shouldErase = true;
2909             }
2910         }
2911         //then merge abstracts
2912         for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
2913             outer: for (Symbol s : ambiguousInOrder) {
2914                 Type mt = memberType(site, s);
2915                 List<Type> allThrown = mt.getThrownTypes();
2916                 for (Symbol s2 : ambiguousInOrder) {
2917                     if (s != s2) {
2918                         Type mt2 = memberType(site, s2);
2919                         if (!isSubSignature(mt, mt2) ||
2920                                 !mostSpecificReturnCheck.test(mt, mt2, this)) {
2921                             //ambiguity cannot be resolved
2922                             continue outer;
2923                         } else {
2924                             List<Type> thrownTypes2 = mt2.getThrownTypes();
2925                             if (!mt.hasTag(FORALL) && shouldErase) {
2926                                 thrownTypes2 = erasure(thrownTypes2);
2927                             } else if (mt.hasTag(FORALL)) {
2928                                 //subsignature implies that if most specific is generic, then all other
2929                                 //methods are too
2930                                 Assert.check(mt2.hasTag(FORALL));
2931                                 // if both are generic methods, adjust thrown types ahead of intersection computation
2932                                 thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
2933                             }
2934                             allThrown = chk.intersect(allThrown, thrownTypes2);
2935                         }
2936                     }
2937                 }
2938                 return (allThrown == mt.getThrownTypes()) ?
2939                         Optional.of(s) :
2940                         Optional.of(new MethodSymbol(
2941                                 s.flags(),
2942                                 s.name,
2943                                 createMethodTypeWithThrown(s.type, allThrown),
2944                                 s.owner) {
2945                             @Override
2946                             public Symbol baseSymbol() {
2947                                 return s;
2948                             }
2949                         });
2950             }
2951         }
2952         return Optional.empty();
2953     }
2954 
2955     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2956     class ImplementationCache {
2957 
2958         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2959 
2960         class Entry {
2961             final MethodSymbol cachedImpl;
2962             final Predicate<Symbol> implFilter;
2963             final boolean checkResult;
2964             final int prevMark;
2965 
2966             public Entry(MethodSymbol cachedImpl,
2967                     Predicate<Symbol> scopeFilter,
2968                     boolean checkResult,
2969                     int prevMark) {
2970                 this.cachedImpl = cachedImpl;
2971                 this.implFilter = scopeFilter;
2972                 this.checkResult = checkResult;
2973                 this.prevMark = prevMark;
2974             }
2975 
2976             boolean matches(Predicate<Symbol> scopeFilter, boolean checkResult, int mark) {
2977                 return this.implFilter == scopeFilter &&
2978                         this.checkResult == checkResult &&
2979                         this.prevMark == mark;
2980             }
2981         }
2982 
2983         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
2984             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2985             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2986             if (cache == null) {
2987                 cache = new HashMap<>();
2988                 _map.put(ms, new SoftReference<>(cache));
2989             }
2990             Entry e = cache.get(origin);
2991             CompoundScope members = membersClosure(origin.type, true);
2992             if (e == null ||
2993                     !e.matches(implFilter, checkResult, members.getMark())) {
2994                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2995                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2996                 return impl;
2997             }
2998             else {
2999                 return e.cachedImpl;
3000             }
3001         }
3002 
3003         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
3004             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
3005                 t = skipTypeVars(t, false);
3006                 TypeSymbol c = t.tsym;
3007                 Symbol bestSoFar = null;
3008                 for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
3009                     if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
3010                         bestSoFar = sym;
3011                         if ((sym.flags() & ABSTRACT) == 0) {
3012                             //if concrete impl is found, exit immediately
3013                             break;
3014                         }
3015                     }
3016                 }
3017                 if (bestSoFar != null) {
3018                     //return either the (only) concrete implementation or the first abstract one
3019                     return (MethodSymbol)bestSoFar;
3020                 }
3021             }
3022             return null;
3023         }
3024     }
3025 
3026     private ImplementationCache implCache = new ImplementationCache();
3027 
3028     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
3029         return implCache.get(ms, origin, checkResult, implFilter);
3030     }
3031     // </editor-fold>
3032 
3033     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
3034     class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
3035 
3036         private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
3037 
3038         Set<TypeSymbol> seenTypes = new HashSet<>();
3039 
3040         class MembersScope extends CompoundScope {
3041 
3042             CompoundScope scope;
3043 
3044             public MembersScope(CompoundScope scope) {
3045                 super(scope.owner);
3046                 this.scope = scope;
3047             }
3048 
3049             Predicate<Symbol> combine(Predicate<Symbol> sf) {
3050                 return s -> !s.owner.isInterface() && (sf == null || sf.test(s));
3051             }
3052 
3053             @Override
3054             public Iterable<Symbol> getSymbols(Predicate<Symbol> sf, LookupKind lookupKind) {
3055                 return scope.getSymbols(combine(sf), lookupKind);
3056             }
3057 
3058             @Override
3059             public Iterable<Symbol> getSymbolsByName(Name name, Predicate<Symbol> sf, LookupKind lookupKind) {
3060                 return scope.getSymbolsByName(name, combine(sf), lookupKind);
3061             }
3062 
3063             @Override
3064             public int getMark() {
3065                 return scope.getMark();
3066             }
3067         }
3068 
3069         CompoundScope nilScope;
3070 
3071         /** members closure visitor methods **/
3072 
3073         public CompoundScope visitType(Type t, Void _unused) {
3074             if (nilScope == null) {
3075                 nilScope = new CompoundScope(syms.noSymbol);
3076             }
3077             return nilScope;
3078         }
3079 
3080         @Override
3081         public CompoundScope visitClassType(ClassType t, Void _unused) {
3082             if (!seenTypes.add(t.tsym)) {
3083                 //this is possible when an interface is implemented in multiple
3084                 //superclasses, or when a class hierarchy is circular - in such
3085                 //cases we don't need to recurse (empty scope is returned)
3086                 return new CompoundScope(t.tsym);
3087             }
3088             try {
3089                 seenTypes.add(t.tsym);
3090                 ClassSymbol csym = (ClassSymbol)t.tsym;
3091                 CompoundScope membersClosure = _map.get(csym);
3092                 if (membersClosure == null) {
3093                     membersClosure = new CompoundScope(csym);
3094                     for (Type i : interfaces(t)) {
3095                         membersClosure.prependSubScope(visit(i, null));
3096                     }
3097                     membersClosure.prependSubScope(visit(supertype(t), null));
3098                     membersClosure.prependSubScope(csym.members());
3099                     _map.put(csym, membersClosure);
3100                 }
3101                 return membersClosure;
3102             }
3103             finally {
3104                 seenTypes.remove(t.tsym);
3105             }
3106         }
3107 
3108         @Override
3109         public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
3110             return visit(t.getUpperBound(), null);
3111         }
3112     }
3113 
3114     private MembersClosureCache membersCache = new MembersClosureCache();
3115 
3116     public CompoundScope membersClosure(Type site, boolean skipInterface) {
3117         CompoundScope cs = membersCache.visit(site, null);
3118         Assert.checkNonNull(cs, () -> "type " + site);
3119         return skipInterface ? membersCache.new MembersScope(cs) : cs;
3120     }
3121     // </editor-fold>
3122 
3123 
3124     /** Return first abstract member of class `sym'.
3125      */
3126     public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
3127         try {
3128             return firstUnimplementedAbstractImpl(sym, sym);
3129         } catch (CompletionFailure ex) {
3130             chk.completionError(enter.getEnv(sym).tree.pos(), ex);
3131             return null;
3132         }
3133     }
3134         //where:
3135         private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
3136             MethodSymbol undef = null;
3137             // Do not bother to search in classes that are not abstract,
3138             // since they cannot have abstract members.
3139             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
3140                 Scope s = c.members();
3141                 for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
3142                     if (sym.kind == MTH &&
3143                         (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
3144                         MethodSymbol absmeth = (MethodSymbol)sym;
3145                         MethodSymbol implmeth = absmeth.implementation(impl, this, true);
3146                         if (implmeth == null || implmeth == absmeth) {
3147                             //look for default implementations
3148                             MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
3149                             if (prov != null && prov.overrides(absmeth, impl, this, true)) {
3150                                 implmeth = prov;
3151                             }
3152                         }
3153                         if (implmeth == null || implmeth == absmeth) {
3154                             undef = absmeth;
3155                             break;
3156                         }
3157                     }
3158                 }
3159                 if (undef == null) {
3160                     Type st = supertype(c.type);
3161                     if (st.hasTag(CLASS))
3162                         undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
3163                 }
3164                 for (List<Type> l = interfaces(c.type);
3165                      undef == null && l.nonEmpty();
3166                      l = l.tail) {
3167                     undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
3168                 }
3169             }
3170             return undef;
3171         }
3172 
3173     public class CandidatesCache {
3174         public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
3175 
3176         class Entry {
3177             Type site;
3178             MethodSymbol msym;
3179 
3180             Entry(Type site, MethodSymbol msym) {
3181                 this.site = site;
3182                 this.msym = msym;
3183             }
3184 
3185             @Override
3186             public boolean equals(Object obj) {
3187                 return (obj instanceof Entry entry)
3188                         && entry.msym == msym
3189                         && isSameType(site, entry.site);
3190             }
3191 
3192             @Override
3193             public int hashCode() {
3194                 return Types.this.hashCode(site) & ~msym.hashCode();
3195             }
3196         }
3197 
3198         public List<MethodSymbol> get(Entry e) {
3199             return cache.get(e);
3200         }
3201 
3202         public void put(Entry e, List<MethodSymbol> msymbols) {
3203             cache.put(e, msymbols);
3204         }
3205     }
3206 
3207     public CandidatesCache candidatesCache = new CandidatesCache();
3208 
3209     //where
3210     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
3211         CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
3212         List<MethodSymbol> candidates = candidatesCache.get(e);
3213         if (candidates == null) {
3214             Predicate<Symbol> filter = new MethodFilter(ms, site);
3215             List<MethodSymbol> candidates2 = List.nil();
3216             for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
3217                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
3218                     return List.of((MethodSymbol)s);
3219                 } else if (!candidates2.contains(s)) {
3220                     candidates2 = candidates2.prepend((MethodSymbol)s);
3221                 }
3222             }
3223             candidates = prune(candidates2);
3224             candidatesCache.put(e, candidates);
3225         }
3226         return candidates;
3227     }
3228 
3229     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
3230         ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
3231         for (MethodSymbol m1 : methods) {
3232             boolean isMin_m1 = true;
3233             for (MethodSymbol m2 : methods) {
3234                 if (m1 == m2) continue;
3235                 if (m2.owner != m1.owner &&
3236                         asSuper(m2.owner.type, m1.owner) != null) {
3237                     isMin_m1 = false;
3238                     break;
3239                 }
3240             }
3241             if (isMin_m1)
3242                 methodsMin.append(m1);
3243         }
3244         return methodsMin.toList();
3245     }
3246     // where
3247             private class MethodFilter implements Predicate<Symbol> {
3248 
3249                 Symbol msym;
3250                 Type site;
3251 
3252                 MethodFilter(Symbol msym, Type site) {
3253                     this.msym = msym;
3254                     this.site = site;
3255                 }
3256 
3257                 @Override
3258                 public boolean test(Symbol s) {
3259                     return s.kind == MTH &&
3260                             s.name == msym.name &&
3261                             (s.flags() & SYNTHETIC) == 0 &&
3262                             s.isInheritedIn(site.tsym, Types.this) &&
3263                             overrideEquivalent(memberType(site, s), memberType(site, msym));
3264                 }
3265             }
3266     // </editor-fold>
3267 
3268     /**
3269      * Does t have the same arguments as s?  It is assumed that both
3270      * types are (possibly polymorphic) method types.  Monomorphic
3271      * method types "have the same arguments", if their argument lists
3272      * are equal.  Polymorphic method types "have the same arguments",
3273      * if they have the same arguments after renaming all type
3274      * variables of one to corresponding type variables in the other,
3275      * where correspondence is by position in the type parameter list.
3276      */
3277     public boolean hasSameArgs(Type t, Type s) {
3278         return hasSameArgs(t, s, true);
3279     }
3280 
3281     public boolean hasSameArgs(Type t, Type s, boolean strict) {
3282         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
3283     }
3284 
3285     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
3286         return hasSameArgs.visit(t, s);
3287     }
3288     // where
3289         private class HasSameArgs extends TypeRelation {
3290 
3291             boolean strict;
3292 
3293             public HasSameArgs(boolean strict) {
3294                 this.strict = strict;
3295             }
3296 
3297             public Boolean visitType(Type t, Type s) {
3298                 throw new AssertionError();
3299             }
3300 
3301             @Override
3302             public Boolean visitMethodType(MethodType t, Type s) {
3303                 return s.hasTag(METHOD)
3304                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
3305             }
3306 
3307             @Override
3308             public Boolean visitForAll(ForAll t, Type s) {
3309                 if (!s.hasTag(FORALL))
3310                     return strict ? false : visitMethodType(t.asMethodType(), s);
3311 
3312                 ForAll forAll = (ForAll)s;
3313                 return hasSameBounds(t, forAll)
3314                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
3315             }
3316 
3317             @Override
3318             public Boolean visitErrorType(ErrorType t, Type s) {
3319                 return false;
3320             }
3321         }
3322 
3323     TypeRelation hasSameArgs_strict = new HasSameArgs(true);
3324         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
3325 
3326     // </editor-fold>
3327 
3328     // <editor-fold defaultstate="collapsed" desc="subst">
3329     public List<Type> subst(List<Type> ts,
3330                             List<Type> from,
3331                             List<Type> to) {
3332         return ts.map(new Subst(from, to));
3333     }
3334 
3335     /**
3336      * Substitute all occurrences of a type in `from' with the
3337      * corresponding type in `to' in 't'. Match lists `from' and `to'
3338      * from the right: If lists have different length, discard leading
3339      * elements of the longer list.
3340      */
3341     public Type subst(Type t, List<Type> from, List<Type> to) {
3342         return t.map(new Subst(from, to));
3343     }
3344 
3345     /* this class won't substitute all types for example UndetVars are never substituted, this is
3346      * by design as UndetVars are used locally during inference and shouldn't escape from inference routines,
3347      * some specialized applications could need a tailored solution
3348      */
3349     private class Subst extends StructuralTypeMapping<Void> {
3350         List<Type> from;
3351         List<Type> to;
3352 
3353         public Subst(List<Type> from, List<Type> to) {
3354             int fromLength = from.length();
3355             int toLength = to.length();
3356             while (fromLength > toLength) {
3357                 fromLength--;
3358                 from = from.tail;
3359             }
3360             while (fromLength < toLength) {
3361                 toLength--;
3362                 to = to.tail;
3363             }
3364             this.from = from;
3365             this.to = to;
3366         }
3367 
3368         @Override
3369         public Type visitTypeVar(TypeVar t, Void ignored) {
3370             for (List<Type> from = this.from, to = this.to;
3371                  from.nonEmpty();
3372                  from = from.tail, to = to.tail) {
3373                 if (t.equalsIgnoreMetadata(from.head)) {
3374                     return to.head.withTypeVar(t);
3375                 }
3376             }
3377             return t;
3378         }
3379 
3380         @Override
3381         public Type visitClassType(ClassType t, Void ignored) {
3382             if (!t.isCompound()) {
3383                 return super.visitClassType(t, ignored);
3384             } else {
3385                 Type st = visit(supertype(t));
3386                 List<Type> is = visit(interfaces(t), ignored);
3387                 if (st == supertype(t) && is == interfaces(t))
3388                     return t;
3389                 else
3390                     return makeIntersectionType(is.prepend(st));
3391             }
3392         }
3393 
3394         @Override
3395         public Type visitWildcardType(WildcardType t, Void ignored) {
3396             WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
3397             if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
3398                 t2.type = wildUpperBound(t2.type);
3399             }
3400             return t2;
3401         }
3402 
3403         @Override
3404         public Type visitForAll(ForAll t, Void ignored) {
3405             if (Type.containsAny(to, t.tvars)) {
3406                 //perform alpha-renaming of free-variables in 't'
3407                 //if 'to' types contain variables that are free in 't'
3408                 List<Type> freevars = newInstances(t.tvars);
3409                 t = new ForAll(freevars,
3410                                Types.this.subst(t.qtype, t.tvars, freevars));
3411             }
3412             List<Type> tvars1 = substBounds(t.tvars, from, to);
3413             Type qtype1 = visit(t.qtype);
3414             if (tvars1 == t.tvars && qtype1 == t.qtype) {
3415                 return t;
3416             } else if (tvars1 == t.tvars) {
3417                 return new ForAll(tvars1, qtype1) {
3418                     @Override
3419                     public boolean needsStripping() {
3420                         return true;
3421                     }
3422                 };
3423             } else {
3424                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3425                     @Override
3426                     public boolean needsStripping() {
3427                         return true;
3428                     }
3429                 };
3430             }
3431         }
3432     }
3433 
3434     public List<Type> substBounds(List<Type> tvars,
3435                                   List<Type> from,
3436                                   List<Type> to) {
3437         if (tvars.isEmpty())
3438             return tvars;
3439         ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3440         boolean changed = false;
3441         // calculate new bounds
3442         for (Type t : tvars) {
3443             TypeVar tv = (TypeVar) t;
3444             Type bound = subst(tv.getUpperBound(), from, to);
3445             if (bound != tv.getUpperBound())
3446                 changed = true;
3447             newBoundsBuf.append(bound);
3448         }
3449         if (!changed)
3450             return tvars;
3451         ListBuffer<Type> newTvars = new ListBuffer<>();
3452         // create new type variables without bounds
3453         for (Type t : tvars) {
3454             newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3455                                         t.getMetadata()));
3456         }
3457         // the new bounds should use the new type variables in place
3458         // of the old
3459         List<Type> newBounds = newBoundsBuf.toList();
3460         from = tvars;
3461         to = newTvars.toList();
3462         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3463             newBounds.head = subst(newBounds.head, from, to);
3464         }
3465         newBounds = newBoundsBuf.toList();
3466         // set the bounds of new type variables to the new bounds
3467         for (Type t : newTvars.toList()) {
3468             TypeVar tv = (TypeVar) t;
3469             tv.setUpperBound( newBounds.head );
3470             newBounds = newBounds.tail;
3471         }
3472         return newTvars.toList();
3473     }
3474 
3475     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3476         Type bound1 = subst(t.getUpperBound(), from, to);
3477         if (bound1 == t.getUpperBound())
3478             return t;
3479         else {
3480             // create new type variable without bounds
3481             TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3482                                      t.getMetadata());
3483             // the new bound should use the new type variable in place
3484             // of the old
3485             tv.setUpperBound( subst(bound1, List.of(t), List.of(tv)) );
3486             return tv;
3487         }
3488     }
3489     // </editor-fold>
3490 
3491     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3492     /**
3493      * Does t have the same bounds for quantified variables as s?
3494      */
3495     public boolean hasSameBounds(ForAll t, ForAll s) {
3496         List<Type> l1 = t.tvars;
3497         List<Type> l2 = s.tvars;
3498         while (l1.nonEmpty() && l2.nonEmpty() &&
3499                isSameType(l1.head.getUpperBound(),
3500                           subst(l2.head.getUpperBound(),
3501                                 s.tvars,
3502                                 t.tvars))) {
3503             l1 = l1.tail;
3504             l2 = l2.tail;
3505         }
3506         return l1.isEmpty() && l2.isEmpty();
3507     }
3508     // </editor-fold>
3509 
3510     // <editor-fold defaultstate="collapsed" desc="newInstances">
3511     /** Create new vector of type variables from list of variables
3512      *  changing all recursive bounds from old to new list.
3513      */
3514     public List<Type> newInstances(List<Type> tvars) {
3515         List<Type> tvars1 = tvars.map(newInstanceFun);
3516         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3517             TypeVar tv = (TypeVar) l.head;
3518             tv.setUpperBound( subst(tv.getUpperBound(), tvars, tvars1) );
3519         }
3520         return tvars1;
3521     }
3522         private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3523             @Override
3524             public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3525                 return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3526             }
3527         };
3528     // </editor-fold>
3529 
3530     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3531         return original.accept(methodWithParameters, newParams);
3532     }
3533     // where
3534         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3535             public Type visitType(Type t, List<Type> newParams) {
3536                 throw new IllegalArgumentException("Not a method type: " + t);
3537             }
3538             public Type visitMethodType(MethodType t, List<Type> newParams) {
3539                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3540             }
3541             public Type visitForAll(ForAll t, List<Type> newParams) {
3542                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3543             }
3544         };
3545 
3546     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3547         return original.accept(methodWithThrown, newThrown);
3548     }
3549     // where
3550         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3551             public Type visitType(Type t, List<Type> newThrown) {
3552                 throw new IllegalArgumentException("Not a method type: " + t);
3553             }
3554             public Type visitMethodType(MethodType t, List<Type> newThrown) {
3555                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3556             }
3557             public Type visitForAll(ForAll t, List<Type> newThrown) {
3558                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3559             }
3560         };
3561 
3562     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3563         return original.accept(methodWithReturn, newReturn);
3564     }
3565     // where
3566         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3567             public Type visitType(Type t, Type newReturn) {
3568                 throw new IllegalArgumentException("Not a method type: " + t);
3569             }
3570             public Type visitMethodType(MethodType t, Type newReturn) {
3571                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3572                     @Override
3573                     public Type baseType() {
3574                         return t;
3575                     }
3576                 };
3577             }
3578             public Type visitForAll(ForAll t, Type newReturn) {
3579                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3580                     @Override
3581                     public Type baseType() {
3582                         return t;
3583                     }
3584                 };
3585             }
3586         };
3587 
3588     // <editor-fold defaultstate="collapsed" desc="createErrorType">
3589     public Type createErrorType(Type originalType) {
3590         return new ErrorType(originalType, syms.errSymbol);
3591     }
3592 
3593     public Type createErrorType(ClassSymbol c, Type originalType) {
3594         return new ErrorType(c, originalType);
3595     }
3596 
3597     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3598         return new ErrorType(name, container, originalType);
3599     }
3600     // </editor-fold>
3601 
3602     // <editor-fold defaultstate="collapsed" desc="rank">
3603     /**
3604      * The rank of a class is the length of the longest path between
3605      * the class and java.lang.Object in the class inheritance
3606      * graph. Undefined for all but reference types.
3607      */
3608     public int rank(Type t) {
3609         switch(t.getTag()) {
3610         case CLASS: {
3611             ClassType cls = (ClassType)t;
3612             if (cls.rank_field < 0) {
3613                 Name fullname = cls.tsym.getQualifiedName();
3614                 if (fullname == names.java_lang_Object)
3615                     cls.rank_field = 0;
3616                 else {
3617                     int r = rank(supertype(cls));
3618                     for (List<Type> l = interfaces(cls);
3619                          l.nonEmpty();
3620                          l = l.tail) {
3621                         if (rank(l.head) > r)
3622                             r = rank(l.head);
3623                     }
3624                     cls.rank_field = r + 1;
3625                 }
3626             }
3627             return cls.rank_field;
3628         }
3629         case TYPEVAR: {
3630             TypeVar tvar = (TypeVar)t;
3631             if (tvar.rank_field < 0) {
3632                 int r = rank(supertype(tvar));
3633                 for (List<Type> l = interfaces(tvar);
3634                      l.nonEmpty();
3635                      l = l.tail) {
3636                     if (rank(l.head) > r) r = rank(l.head);
3637                 }
3638                 tvar.rank_field = r + 1;
3639             }
3640             return tvar.rank_field;
3641         }
3642         case ERROR:
3643         case NONE:
3644             return 0;
3645         default:
3646             throw new AssertionError();
3647         }
3648     }
3649     // </editor-fold>
3650 
3651     /**
3652      * Helper method for generating a string representation of a given type
3653      * accordingly to a given locale
3654      */
3655     public String toString(Type t, Locale locale) {
3656         return Printer.createStandardPrinter(messages).visit(t, locale);
3657     }
3658 
3659     /**
3660      * Helper method for generating a string representation of a given type
3661      * accordingly to a given locale
3662      */
3663     public String toString(Symbol t, Locale locale) {
3664         return Printer.createStandardPrinter(messages).visit(t, locale);
3665     }
3666 
3667     // <editor-fold defaultstate="collapsed" desc="toString">
3668     /**
3669      * This toString is slightly more descriptive than the one on Type.
3670      *
3671      * @deprecated Types.toString(Type t, Locale l) provides better support
3672      * for localization
3673      */
3674     @Deprecated
3675     public String toString(Type t) {
3676         if (t.hasTag(FORALL)) {
3677             ForAll forAll = (ForAll)t;
3678             return typaramsString(forAll.tvars) + forAll.qtype;
3679         }
3680         return "" + t;
3681     }
3682     // where
3683         private String typaramsString(List<Type> tvars) {
3684             StringBuilder s = new StringBuilder();
3685             s.append('<');
3686             boolean first = true;
3687             for (Type t : tvars) {
3688                 if (!first) s.append(", ");
3689                 first = false;
3690                 appendTyparamString(((TypeVar)t), s);
3691             }
3692             s.append('>');
3693             return s.toString();
3694         }
3695         private void appendTyparamString(TypeVar t, StringBuilder buf) {
3696             buf.append(t);
3697             if (t.getUpperBound() == null ||
3698                 t.getUpperBound().tsym.getQualifiedName() == names.java_lang_Object)
3699                 return;
3700             buf.append(" extends "); // Java syntax; no need for i18n
3701             Type bound = t.getUpperBound();
3702             if (!bound.isCompound()) {
3703                 buf.append(bound);
3704             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3705                 buf.append(supertype(t));
3706                 for (Type intf : interfaces(t)) {
3707                     buf.append('&');
3708                     buf.append(intf);
3709                 }
3710             } else {
3711                 // No superclass was given in bounds.
3712                 // In this case, supertype is Object, erasure is first interface.
3713                 boolean first = true;
3714                 for (Type intf : interfaces(t)) {
3715                     if (!first) buf.append('&');
3716                     first = false;
3717                     buf.append(intf);
3718                 }
3719             }
3720         }
3721     // </editor-fold>
3722 
3723     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3724     /**
3725      * A cache for closures.
3726      *
3727      * <p>A closure is a list of all the supertypes and interfaces of
3728      * a class or interface type, ordered by ClassSymbol.precedes
3729      * (that is, subclasses come first, arbitrarily but fixed
3730      * otherwise).
3731      */
3732     private Map<Type,List<Type>> closureCache = new HashMap<>();
3733 
3734     /**
3735      * Returns the closure of a class or interface type.
3736      */
3737     public List<Type> closure(Type t) {
3738         List<Type> cl = closureCache.get(t);
3739         if (cl == null) {
3740             Type st = supertype(t);
3741             if (!t.isCompound()) {
3742                 if (st.hasTag(CLASS)) {
3743                     cl = insert(closure(st), t);
3744                 } else if (st.hasTag(TYPEVAR)) {
3745                     cl = closure(st).prepend(t);
3746                 } else {
3747                     cl = List.of(t);
3748                 }
3749             } else {
3750                 cl = closure(supertype(t));
3751             }
3752             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3753                 cl = union(cl, closure(l.head));
3754             closureCache.put(t, cl);
3755         }
3756         return cl;
3757     }
3758 
3759     /**
3760      * Collect types into a new closure (using a {@code ClosureHolder})
3761      */
3762     public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3763         return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3764                 ClosureHolder::add,
3765                 ClosureHolder::merge,
3766                 ClosureHolder::closure);
3767     }
3768     //where
3769         class ClosureHolder {
3770             List<Type> closure;
3771             final boolean minClosure;
3772             final BiPredicate<Type, Type> shouldSkip;
3773 
3774             ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3775                 this.closure = List.nil();
3776                 this.minClosure = minClosure;
3777                 this.shouldSkip = shouldSkip;
3778             }
3779 
3780             void add(Type type) {
3781                 closure = insert(closure, type, shouldSkip);
3782             }
3783 
3784             ClosureHolder merge(ClosureHolder other) {
3785                 closure = union(closure, other.closure, shouldSkip);
3786                 return this;
3787             }
3788 
3789             List<Type> closure() {
3790                 return minClosure ? closureMin(closure) : closure;
3791             }
3792         }
3793 
3794     BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3795 
3796     /**
3797      * Insert a type in a closure
3798      */
3799     public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3800         if (cl.isEmpty()) {
3801             return cl.prepend(t);
3802         } else if (shouldSkip.test(t, cl.head)) {
3803             return cl;
3804         } else if (t.tsym.precedes(cl.head.tsym, this)) {
3805             return cl.prepend(t);
3806         } else {
3807             // t comes after head, or the two are unrelated
3808             return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3809         }
3810     }
3811 
3812     public List<Type> insert(List<Type> cl, Type t) {
3813         return insert(cl, t, basicClosureSkip);
3814     }
3815 
3816     /**
3817      * Form the union of two closures
3818      */
3819     public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3820         if (cl1.isEmpty()) {
3821             return cl2;
3822         } else if (cl2.isEmpty()) {
3823             return cl1;
3824         } else if (shouldSkip.test(cl1.head, cl2.head)) {
3825             return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3826         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3827             return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3828         } else {
3829             return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3830         }
3831     }
3832 
3833     public List<Type> union(List<Type> cl1, List<Type> cl2) {
3834         return union(cl1, cl2, basicClosureSkip);
3835     }
3836 
3837     /**
3838      * Intersect two closures
3839      */
3840     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3841         if (cl1 == cl2)
3842             return cl1;
3843         if (cl1.isEmpty() || cl2.isEmpty())
3844             return List.nil();
3845         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3846             return intersect(cl1.tail, cl2);
3847         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3848             return intersect(cl1, cl2.tail);
3849         if (isSameType(cl1.head, cl2.head))
3850             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3851         if (cl1.head.tsym == cl2.head.tsym &&
3852             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3853             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3854                 Type merge = merge(cl1.head,cl2.head);
3855                 return intersect(cl1.tail, cl2.tail).prepend(merge);
3856             }
3857             if (cl1.head.isRaw() || cl2.head.isRaw())
3858                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3859         }
3860         return intersect(cl1.tail, cl2.tail);
3861     }
3862     // where
3863         class TypePair {
3864             final Type t1;
3865             final Type t2;;
3866 
3867             TypePair(Type t1, Type t2) {
3868                 this.t1 = t1;
3869                 this.t2 = t2;
3870             }
3871             @Override
3872             public int hashCode() {
3873                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3874             }
3875             @Override
3876             public boolean equals(Object obj) {
3877                 return (obj instanceof TypePair typePair)
3878                         && isSameType(t1, typePair.t1)
3879                         && isSameType(t2, typePair.t2);
3880             }
3881         }
3882         Set<TypePair> mergeCache = new HashSet<>();
3883         private Type merge(Type c1, Type c2) {
3884             ClassType class1 = (ClassType) c1;
3885             List<Type> act1 = class1.getTypeArguments();
3886             ClassType class2 = (ClassType) c2;
3887             List<Type> act2 = class2.getTypeArguments();
3888             ListBuffer<Type> merged = new ListBuffer<>();
3889             List<Type> typarams = class1.tsym.type.getTypeArguments();
3890 
3891             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3892                 if (containsType(act1.head, act2.head)) {
3893                     merged.append(act1.head);
3894                 } else if (containsType(act2.head, act1.head)) {
3895                     merged.append(act2.head);
3896                 } else {
3897                     TypePair pair = new TypePair(c1, c2);
3898                     Type m;
3899                     if (mergeCache.add(pair)) {
3900                         m = new WildcardType(lub(wildUpperBound(act1.head),
3901                                                  wildUpperBound(act2.head)),
3902                                              BoundKind.EXTENDS,
3903                                              syms.boundClass);
3904                         mergeCache.remove(pair);
3905                     } else {
3906                         m = new WildcardType(syms.objectType,
3907                                              BoundKind.UNBOUND,
3908                                              syms.boundClass);
3909                     }
3910                     merged.append(m.withTypeVar(typarams.head));
3911                 }
3912                 act1 = act1.tail;
3913                 act2 = act2.tail;
3914                 typarams = typarams.tail;
3915             }
3916             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3917             // There is no spec detailing how type annotations are to
3918             // be inherited.  So set it to noAnnotations for now
3919             return new ClassType(class1.getEnclosingType(), merged.toList(),
3920                                  class1.tsym);
3921         }
3922 
3923     /**
3924      * Return the minimum type of a closure, a compound type if no
3925      * unique minimum exists.
3926      */
3927     private Type compoundMin(List<Type> cl) {
3928         if (cl.isEmpty()) return syms.objectType;
3929         List<Type> compound = closureMin(cl);
3930         if (compound.isEmpty())
3931             return null;
3932         else if (compound.tail.isEmpty())
3933             return compound.head;
3934         else
3935             return makeIntersectionType(compound);
3936     }
3937 
3938     /**
3939      * Return the minimum types of a closure, suitable for computing
3940      * compoundMin or glb.
3941      */
3942     private List<Type> closureMin(List<Type> cl) {
3943         ListBuffer<Type> classes = new ListBuffer<>();
3944         ListBuffer<Type> interfaces = new ListBuffer<>();
3945         Set<Type> toSkip = new HashSet<>();
3946         while (!cl.isEmpty()) {
3947             Type current = cl.head;
3948             boolean keep = !toSkip.contains(current);
3949             if (keep && current.hasTag(TYPEVAR)) {
3950                 // skip lower-bounded variables with a subtype in cl.tail
3951                 for (Type t : cl.tail) {
3952                     if (isSubtypeNoCapture(t, current)) {
3953                         keep = false;
3954                         break;
3955                     }
3956                 }
3957             }
3958             if (keep) {
3959                 if (current.isInterface())
3960                     interfaces.append(current);
3961                 else
3962                     classes.append(current);
3963                 for (Type t : cl.tail) {
3964                     // skip supertypes of 'current' in cl.tail
3965                     if (isSubtypeNoCapture(current, t))
3966                         toSkip.add(t);
3967                 }
3968             }
3969             cl = cl.tail;
3970         }
3971         return classes.appendList(interfaces).toList();
3972     }
3973 
3974     /**
3975      * Return the least upper bound of list of types.  if the lub does
3976      * not exist return null.
3977      */
3978     public Type lub(List<Type> ts) {
3979         return lub(ts.toArray(new Type[ts.length()]));
3980     }
3981 
3982     /**
3983      * Return the least upper bound (lub) of set of types.  If the lub
3984      * does not exist return the type of null (bottom).
3985      */
3986     public Type lub(Type... ts) {
3987         final int UNKNOWN_BOUND = 0;
3988         final int ARRAY_BOUND = 1;
3989         final int CLASS_BOUND = 2;
3990 
3991         int[] kinds = new int[ts.length];
3992 
3993         int boundkind = UNKNOWN_BOUND;
3994         for (int i = 0 ; i < ts.length ; i++) {
3995             Type t = ts[i];
3996             switch (t.getTag()) {
3997             case CLASS:
3998                 boundkind |= kinds[i] = CLASS_BOUND;
3999                 break;
4000             case ARRAY:
4001                 boundkind |= kinds[i] = ARRAY_BOUND;
4002                 break;
4003             case  TYPEVAR:
4004                 do {
4005                     t = t.getUpperBound();
4006                 } while (t.hasTag(TYPEVAR));
4007                 if (t.hasTag(ARRAY)) {
4008                     boundkind |= kinds[i] = ARRAY_BOUND;
4009                 } else {
4010                     boundkind |= kinds[i] = CLASS_BOUND;
4011                 }
4012                 break;
4013             default:
4014                 kinds[i] = UNKNOWN_BOUND;
4015                 if (t.isPrimitive())
4016                     return syms.errType;
4017             }
4018         }
4019         switch (boundkind) {
4020         case 0:
4021             return syms.botType;
4022 
4023         case ARRAY_BOUND:
4024             // calculate lub(A[], B[])
4025             Type[] elements = new Type[ts.length];
4026             for (int i = 0 ; i < ts.length ; i++) {
4027                 Type elem = elements[i] = elemTypeFun.apply(ts[i]);
4028                 if (elem.isPrimitive()) {
4029                     // if a primitive type is found, then return
4030                     // arraySuperType unless all the types are the
4031                     // same
4032                     Type first = ts[0];
4033                     for (int j = 1 ; j < ts.length ; j++) {
4034                         if (!isSameType(first, ts[j])) {
4035                              // lub(int[], B[]) is Cloneable & Serializable
4036                             return arraySuperType();
4037                         }
4038                     }
4039                     // all the array types are the same, return one
4040                     // lub(int[], int[]) is int[]
4041                     return first;
4042                 }
4043             }
4044             // lub(A[], B[]) is lub(A, B)[]
4045             return new ArrayType(lub(elements), syms.arrayClass);
4046 
4047         case CLASS_BOUND:
4048             // calculate lub(A, B)
4049             int startIdx = 0;
4050             for (int i = 0; i < ts.length ; i++) {
4051                 Type t = ts[i];
4052                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
4053                     break;
4054                 } else {
4055                     startIdx++;
4056                 }
4057             }
4058             Assert.check(startIdx < ts.length);
4059             //step 1 - compute erased candidate set (EC)
4060             List<Type> cl = erasedSupertypes(ts[startIdx]);
4061             for (int i = startIdx + 1 ; i < ts.length ; i++) {
4062                 Type t = ts[i];
4063                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
4064                     cl = intersect(cl, erasedSupertypes(t));
4065             }
4066             //step 2 - compute minimal erased candidate set (MEC)
4067             List<Type> mec = closureMin(cl);
4068             //step 3 - for each element G in MEC, compute lci(Inv(G))
4069             List<Type> candidates = List.nil();
4070             for (Type erasedSupertype : mec) {
4071                 List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
4072                 for (int i = startIdx + 1 ; i < ts.length ; i++) {
4073                     Type superType = asSuper(ts[i], erasedSupertype.tsym);
4074                     lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
4075                 }
4076                 candidates = candidates.appendList(lci);
4077             }
4078             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
4079             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
4080             return compoundMin(candidates);
4081 
4082         default:
4083             // calculate lub(A, B[])
4084             List<Type> classes = List.of(arraySuperType());
4085             for (int i = 0 ; i < ts.length ; i++) {
4086                 if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
4087                     classes = classes.prepend(ts[i]);
4088             }
4089             // lub(A, B[]) is lub(A, arraySuperType)
4090             return lub(classes);
4091         }
4092     }
4093     // where
4094         List<Type> erasedSupertypes(Type t) {
4095             ListBuffer<Type> buf = new ListBuffer<>();
4096             for (Type sup : closure(t)) {
4097                 if (sup.hasTag(TYPEVAR)) {
4098                     buf.append(sup);
4099                 } else {
4100                     buf.append(erasure(sup));
4101                 }
4102             }
4103             return buf.toList();
4104         }
4105 
4106         private Type arraySuperType;
4107         private Type arraySuperType() {
4108             // initialized lazily to avoid problems during compiler startup
4109             if (arraySuperType == null) {
4110                 // JLS 10.8: all arrays implement Cloneable and Serializable.
4111                 arraySuperType = makeIntersectionType(List.of(syms.serializableType,
4112                         syms.cloneableType), true);
4113             }
4114             return arraySuperType;
4115         }
4116     // </editor-fold>
4117 
4118     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
4119     public Type glb(List<Type> ts) {
4120         Type t1 = ts.head;
4121         for (Type t2 : ts.tail) {
4122             if (t1.isErroneous())
4123                 return t1;
4124             t1 = glb(t1, t2);
4125         }
4126         return t1;
4127     }
4128     //where
4129     public Type glb(Type t, Type s) {
4130         if (s == null)
4131             return t;
4132         else if (t.isPrimitive() || s.isPrimitive())
4133             return syms.errType;
4134         else if (isSubtypeNoCapture(t, s))
4135             return t;
4136         else if (isSubtypeNoCapture(s, t))
4137             return s;
4138 
4139         List<Type> closure = union(closure(t), closure(s));
4140         return glbFlattened(closure, t);
4141     }
4142     //where
4143     /**
4144      * Perform glb for a list of non-primitive, non-error, non-compound types;
4145      * redundant elements are removed.  Bounds should be ordered according to
4146      * {@link Symbol#precedes(TypeSymbol,Types)}.
4147      *
4148      * @param flatBounds List of type to glb
4149      * @param errT Original type to use if the result is an error type
4150      */
4151     private Type glbFlattened(List<Type> flatBounds, Type errT) {
4152         List<Type> bounds = closureMin(flatBounds);
4153 
4154         if (bounds.isEmpty()) {             // length == 0
4155             return syms.objectType;
4156         } else if (bounds.tail.isEmpty()) { // length == 1
4157             return bounds.head;
4158         } else {                            // length > 1
4159             int classCount = 0;
4160             List<Type> cvars = List.nil();
4161             List<Type> lowers = List.nil();
4162             for (Type bound : bounds) {
4163                 if (!bound.isInterface()) {
4164                     classCount++;
4165                     Type lower = cvarLowerBound(bound);
4166                     if (bound != lower && !lower.hasTag(BOT)) {
4167                         cvars = cvars.append(bound);
4168                         lowers = lowers.append(lower);
4169                     }
4170                 }
4171             }
4172             if (classCount > 1) {
4173                 if (lowers.isEmpty()) {
4174                     return createErrorType(errT);
4175                 } else {
4176                     // try again with lower bounds included instead of capture variables
4177                     List<Type> newBounds = bounds.diff(cvars).appendList(lowers);
4178                     return glb(newBounds);
4179                 }
4180             }
4181         }
4182         return makeIntersectionType(bounds);
4183     }
4184     // </editor-fold>
4185 
4186     // <editor-fold defaultstate="collapsed" desc="hashCode">
4187     /**
4188      * Compute a hash code on a type.
4189      */
4190     public int hashCode(Type t) {
4191         return hashCode(t, false);
4192     }
4193 
4194     public int hashCode(Type t, boolean strict) {
4195         return strict ?
4196                 hashCodeStrictVisitor.visit(t) :
4197                 hashCodeVisitor.visit(t);
4198     }
4199     // where
4200         private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
4201         private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
4202             @Override
4203             public Integer visitTypeVar(TypeVar t, Void ignored) {
4204                 return System.identityHashCode(t);
4205             }
4206         };
4207 
4208         private static class HashCodeVisitor extends UnaryVisitor<Integer> {
4209             public Integer visitType(Type t, Void ignored) {
4210                 return t.getTag().ordinal();
4211             }
4212 
4213             @Override
4214             public Integer visitClassType(ClassType t, Void ignored) {
4215                 int result = visit(t.getEnclosingType());
4216                 result *= 127;
4217                 result += t.tsym.flatName().hashCode();
4218                 for (Type s : t.getTypeArguments()) {
4219                     result *= 127;
4220                     result += visit(s);
4221                 }
4222                 return result;
4223             }
4224 
4225             @Override
4226             public Integer visitMethodType(MethodType t, Void ignored) {
4227                 int h = METHOD.ordinal();
4228                 for (List<Type> thisargs = t.argtypes;
4229                      thisargs.tail != null;
4230                      thisargs = thisargs.tail)
4231                     h = (h << 5) + visit(thisargs.head);
4232                 return (h << 5) + visit(t.restype);
4233             }
4234 
4235             @Override
4236             public Integer visitWildcardType(WildcardType t, Void ignored) {
4237                 int result = t.kind.hashCode();
4238                 if (t.type != null) {
4239                     result *= 127;
4240                     result += visit(t.type);
4241                 }
4242                 return result;
4243             }
4244 
4245             @Override
4246             public Integer visitArrayType(ArrayType t, Void ignored) {
4247                 return visit(t.elemtype) + 12;
4248             }
4249 
4250             @Override
4251             public Integer visitTypeVar(TypeVar t, Void ignored) {
4252                 return System.identityHashCode(t);
4253             }
4254 
4255             @Override
4256             public Integer visitUndetVar(UndetVar t, Void ignored) {
4257                 return System.identityHashCode(t);
4258             }
4259 
4260             @Override
4261             public Integer visitErrorType(ErrorType t, Void ignored) {
4262                 return 0;
4263             }
4264         }
4265     // </editor-fold>
4266 
4267     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
4268     /**
4269      * Does t have a result that is a subtype of the result type of s,
4270      * suitable for covariant returns?  It is assumed that both types
4271      * are (possibly polymorphic) method types.  Monomorphic method
4272      * types are handled in the obvious way.  Polymorphic method types
4273      * require renaming all type variables of one to corresponding
4274      * type variables in the other, where correspondence is by
4275      * position in the type parameter list. */
4276     public boolean resultSubtype(Type t, Type s, Warner warner) {
4277         List<Type> tvars = t.getTypeArguments();
4278         List<Type> svars = s.getTypeArguments();
4279         Type tres = t.getReturnType();
4280         Type sres = subst(s.getReturnType(), svars, tvars);
4281         return covariantReturnType(tres, sres, warner);
4282     }
4283 
4284     /**
4285      * Return-Type-Substitutable.
4286      * @jls 8.4.5 Method Result
4287      */
4288     public boolean returnTypeSubstitutable(Type r1, Type r2) {
4289         if (hasSameArgs(r1, r2))
4290             return resultSubtype(r1, r2, noWarnings);
4291         else
4292             return covariantReturnType(r1.getReturnType(),
4293                                        erasure(r2.getReturnType()),
4294                                        noWarnings);
4295     }
4296 
4297     public boolean returnTypeSubstitutable(Type r1,
4298                                            Type r2, Type r2res,
4299                                            Warner warner) {
4300         if (isSameType(r1.getReturnType(), r2res))
4301             return true;
4302         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
4303             return false;
4304 
4305         if (hasSameArgs(r1, r2))
4306             return covariantReturnType(r1.getReturnType(), r2res, warner);
4307         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
4308             return true;
4309         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
4310             return false;
4311         warner.warn(LintCategory.UNCHECKED);
4312         return true;
4313     }
4314 
4315     /**
4316      * Is t an appropriate return type in an overrider for a
4317      * method that returns s?
4318      */
4319     public boolean covariantReturnType(Type t, Type s, Warner warner) {
4320         return
4321             isSameType(t, s) ||
4322             !t.isPrimitive() &&
4323             !s.isPrimitive() &&
4324             isAssignable(t, s, warner);
4325     }
4326     // </editor-fold>
4327 
4328     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
4329     /**
4330      * Return the class that boxes the given primitive.
4331      */
4332     public ClassSymbol boxedClass(Type t) {
4333         return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
4334     }
4335 
4336     /**
4337      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
4338      */
4339     public Type boxedTypeOrType(Type t) {
4340         return t.isPrimitive() ?
4341             boxedClass(t).type :
4342             t;
4343     }
4344 
4345     /**
4346      * Return the primitive type corresponding to a boxed type.
4347      */
4348     public Type unboxedType(Type t) {
4349         if (t.hasTag(ERROR))
4350             return Type.noType;
4351         for (int i=0; i<syms.boxedName.length; i++) {
4352             Name box = syms.boxedName[i];
4353             if (box != null &&
4354                 asSuper(t, syms.enterClass(syms.java_base, box)) != null)
4355                 return syms.typeOfTag[i];
4356         }
4357         return Type.noType;
4358     }
4359 
4360     /**
4361      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
4362      */
4363     public Type unboxedTypeOrType(Type t) {
4364         Type unboxedType = unboxedType(t);
4365         return unboxedType.hasTag(NONE) ? t : unboxedType;
4366     }
4367     // </editor-fold>
4368 
4369     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
4370     /*
4371      * JLS 5.1.10 Capture Conversion:
4372      *
4373      * Let G name a generic type declaration with n formal type
4374      * parameters A1 ... An with corresponding bounds U1 ... Un. There
4375      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
4376      * where, for 1 <= i <= n:
4377      *
4378      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
4379      *   Si is a fresh type variable whose upper bound is
4380      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
4381      *   type.
4382      *
4383      * + If Ti is a wildcard type argument of the form ? extends Bi,
4384      *   then Si is a fresh type variable whose upper bound is
4385      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
4386      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
4387      *   a compile-time error if for any two classes (not interfaces)
4388      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
4389      *
4390      * + If Ti is a wildcard type argument of the form ? super Bi,
4391      *   then Si is a fresh type variable whose upper bound is
4392      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4393      *
4394      * + Otherwise, Si = Ti.
4395      *
4396      * Capture conversion on any type other than a parameterized type
4397      * (4.5) acts as an identity conversion (5.1.1). Capture
4398      * conversions never require a special action at run time and
4399      * therefore never throw an exception at run time.
4400      *
4401      * Capture conversion is not applied recursively.
4402      */
4403     /**
4404      * Capture conversion as specified by the JLS.
4405      */
4406 
4407     public List<Type> capture(List<Type> ts) {
4408         List<Type> buf = List.nil();
4409         for (Type t : ts) {
4410             buf = buf.prepend(capture(t));
4411         }
4412         return buf.reverse();
4413     }
4414 
4415     public Type capture(Type t) {
4416         if (!t.hasTag(CLASS)) {
4417             return t;
4418         }
4419         if (t.getEnclosingType() != Type.noType) {
4420             Type capturedEncl = capture(t.getEnclosingType());
4421             if (capturedEncl != t.getEnclosingType()) {
4422                 Type type1 = memberType(capturedEncl, t.tsym);
4423                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4424             }
4425         }
4426         ClassType cls = (ClassType)t;
4427         if (cls.isRaw() || !cls.isParameterized())
4428             return cls;
4429 
4430         ClassType G = (ClassType)cls.asElement().asType();
4431         List<Type> A = G.getTypeArguments();
4432         List<Type> T = cls.getTypeArguments();
4433         List<Type> S = freshTypeVariables(T);
4434 
4435         List<Type> currentA = A;
4436         List<Type> currentT = T;
4437         List<Type> currentS = S;
4438         boolean captured = false;
4439         while (!currentA.isEmpty() &&
4440                !currentT.isEmpty() &&
4441                !currentS.isEmpty()) {
4442             if (currentS.head != currentT.head) {
4443                 captured = true;
4444                 WildcardType Ti = (WildcardType)currentT.head;
4445                 Type Ui = currentA.head.getUpperBound();
4446                 CapturedType Si = (CapturedType)currentS.head;
4447                 if (Ui == null)
4448                     Ui = syms.objectType;
4449                 switch (Ti.kind) {
4450                 case UNBOUND:
4451                     Si.setUpperBound( subst(Ui, A, S) );
4452                     Si.lower = syms.botType;
4453                     break;
4454                 case EXTENDS:
4455                     Si.setUpperBound( glb(Ti.getExtendsBound(), subst(Ui, A, S)) );
4456                     Si.lower = syms.botType;
4457                     break;
4458                 case SUPER:
4459                     Si.setUpperBound( subst(Ui, A, S) );
4460                     Si.lower = Ti.getSuperBound();
4461                     break;
4462                 }
4463                 Type tmpBound = Si.getUpperBound().hasTag(UNDETVAR) ? ((UndetVar)Si.getUpperBound()).qtype : Si.getUpperBound();
4464                 Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4465                 if (!Si.getUpperBound().hasTag(ERROR) &&
4466                     !Si.lower.hasTag(ERROR) &&
4467                     isSameType(tmpBound, tmpLower)) {
4468                     currentS.head = Si.getUpperBound();
4469                 }
4470             }
4471             currentA = currentA.tail;
4472             currentT = currentT.tail;
4473             currentS = currentS.tail;
4474         }
4475         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4476             return erasure(t); // some "rare" type involved
4477 
4478         if (captured)
4479             return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4480                                  cls.getMetadata());
4481         else
4482             return t;
4483     }
4484     // where
4485         public List<Type> freshTypeVariables(List<Type> types) {
4486             ListBuffer<Type> result = new ListBuffer<>();
4487             for (Type t : types) {
4488                 if (t.hasTag(WILDCARD)) {
4489                     Type bound = ((WildcardType)t).getExtendsBound();
4490                     if (bound == null)
4491                         bound = syms.objectType;
4492                     result.append(new CapturedType(capturedName,
4493                                                    syms.noSymbol,
4494                                                    bound,
4495                                                    syms.botType,
4496                                                    (WildcardType)t));
4497                 } else {
4498                     result.append(t);
4499                 }
4500             }
4501             return result.toList();
4502         }
4503     // </editor-fold>
4504 
4505     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4506     private boolean sideCast(Type from, Type to, Warner warn) {
4507         // We are casting from type $from$ to type $to$, which are
4508         // non-final unrelated types.  This method
4509         // tries to reject a cast by transferring type parameters
4510         // from $to$ to $from$ by common superinterfaces.
4511         boolean reverse = false;
4512         Type target = to;
4513         if ((to.tsym.flags() & INTERFACE) == 0) {
4514             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4515             reverse = true;
4516             to = from;
4517             from = target;
4518         }
4519         List<Type> commonSupers = supertypeClosure(to, erasure(from));
4520         boolean giveWarning = commonSupers.isEmpty();
4521         // The arguments to the supers could be unified here to
4522         // get a more accurate analysis
4523         while (commonSupers.nonEmpty()) {
4524             Type t1 = asSuper(from, commonSupers.head.tsym);
4525             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4526             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4527                 return false;
4528             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4529             commonSupers = commonSupers.tail;
4530         }
4531         if (giveWarning && !isReifiable(reverse ? from : to))
4532             warn.warn(LintCategory.UNCHECKED);
4533         return true;
4534     }
4535 
4536     private boolean sideCastFinal(Type from, Type to, Warner warn) {
4537         // We are casting from type $from$ to type $to$, which are
4538         // unrelated types one of which is final and the other of
4539         // which is an interface.  This method
4540         // tries to reject a cast by transferring type parameters
4541         // from the final class to the interface.
4542         boolean reverse = false;
4543         Type target = to;
4544         if ((to.tsym.flags() & INTERFACE) == 0) {
4545             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4546             reverse = true;
4547             to = from;
4548             from = target;
4549         }
4550         Assert.check((from.tsym.flags() & FINAL) != 0);
4551         Type t1 = asSuper(from, to.tsym);
4552         if (t1 == null) return false;
4553         Type t2 = to;
4554         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4555             return false;
4556         if (!isReifiable(target) &&
4557             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4558             warn.warn(LintCategory.UNCHECKED);
4559         return true;
4560     }
4561 
4562     private boolean giveWarning(Type from, Type to) {
4563         List<Type> bounds = to.isCompound() ?
4564                 directSupertypes(to) : List.of(to);
4565         for (Type b : bounds) {
4566             Type subFrom = asSub(from, b.tsym);
4567             if (b.isParameterized() &&
4568                     (!(isUnbounded(b) ||
4569                     isSubtype(from, b) ||
4570                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4571                 return true;
4572             }
4573         }
4574         return false;
4575     }
4576 
4577     private List<Type> supertypeClosure(Type t, Type s) {
4578         List<Type> cl = List.nil();
4579         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4580             if (isSubtype(s, erasure(l.head))) {
4581                 cl = insert(cl, l.head);
4582             } else {
4583                 cl = union(cl, supertypeClosure(l.head, s));
4584             }
4585         }
4586         return cl;
4587     }
4588 
4589     private boolean containsTypeEquivalent(Type t, Type s) {
4590         return isSameType(t, s) || // shortcut
4591             containsType(t, s) && containsType(s, t);
4592     }
4593 
4594     // <editor-fold defaultstate="collapsed" desc="adapt">
4595     /**
4596      * Adapt a type by computing a substitution which maps a source
4597      * type to a target type.
4598      *
4599      * @param source    the source type
4600      * @param target    the target type
4601      * @param from      the type variables of the computed substitution
4602      * @param to        the types of the computed substitution.
4603      */
4604     public void adapt(Type source,
4605                        Type target,
4606                        ListBuffer<Type> from,
4607                        ListBuffer<Type> to) throws AdaptFailure {
4608         new Adapter(from, to).adapt(source, target);
4609     }
4610 
4611     class Adapter extends SimpleVisitor<Void, Type> {
4612 
4613         ListBuffer<Type> from;
4614         ListBuffer<Type> to;
4615         Map<Symbol,Type> mapping;
4616 
4617         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4618             this.from = from;
4619             this.to = to;
4620             mapping = new HashMap<>();
4621         }
4622 
4623         public void adapt(Type source, Type target) throws AdaptFailure {
4624             visit(source, target);
4625             List<Type> fromList = from.toList();
4626             List<Type> toList = to.toList();
4627             while (!fromList.isEmpty()) {
4628                 Type val = mapping.get(fromList.head.tsym);
4629                 if (toList.head != val)
4630                     toList.head = val;
4631                 fromList = fromList.tail;
4632                 toList = toList.tail;
4633             }
4634         }
4635 
4636         @Override
4637         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4638             if (target.hasTag(CLASS))
4639                 adaptRecursive(source.allparams(), target.allparams());
4640             return null;
4641         }
4642 
4643         @Override
4644         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4645             if (target.hasTag(ARRAY))
4646                 adaptRecursive(elemtype(source), elemtype(target));
4647             return null;
4648         }
4649 
4650         @Override
4651         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4652             if (source.isExtendsBound())
4653                 adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4654             else if (source.isSuperBound())
4655                 adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4656             return null;
4657         }
4658 
4659         @Override
4660         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4661             // Check to see if there is
4662             // already a mapping for $source$, in which case
4663             // the old mapping will be merged with the new
4664             Type val = mapping.get(source.tsym);
4665             if (val != null) {
4666                 if (val.isSuperBound() && target.isSuperBound()) {
4667                     val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4668                         ? target : val;
4669                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
4670                     val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4671                         ? val : target;
4672                 } else if (!isSameType(val, target)) {
4673                     throw new AdaptFailure();
4674                 }
4675             } else {
4676                 val = target;
4677                 from.append(source);
4678                 to.append(target);
4679             }
4680             mapping.put(source.tsym, val);
4681             return null;
4682         }
4683 
4684         @Override
4685         public Void visitType(Type source, Type target) {
4686             return null;
4687         }
4688 
4689         private Set<TypePair> cache = new HashSet<>();
4690 
4691         private void adaptRecursive(Type source, Type target) {
4692             TypePair pair = new TypePair(source, target);
4693             if (cache.add(pair)) {
4694                 try {
4695                     visit(source, target);
4696                 } finally {
4697                     cache.remove(pair);
4698                 }
4699             }
4700         }
4701 
4702         private void adaptRecursive(List<Type> source, List<Type> target) {
4703             if (source.length() == target.length()) {
4704                 while (source.nonEmpty()) {
4705                     adaptRecursive(source.head, target.head);
4706                     source = source.tail;
4707                     target = target.tail;
4708                 }
4709             }
4710         }
4711     }
4712 
4713     public static class AdaptFailure extends RuntimeException {
4714         static final long serialVersionUID = -7490231548272701566L;
4715     }
4716 
4717     private void adaptSelf(Type t,
4718                            ListBuffer<Type> from,
4719                            ListBuffer<Type> to) {
4720         try {
4721             //if (t.tsym.type != t)
4722                 adapt(t.tsym.type, t, from, to);
4723         } catch (AdaptFailure ex) {
4724             // Adapt should never fail calculating a mapping from
4725             // t.tsym.type to t as there can be no merge problem.
4726             throw new AssertionError(ex);
4727         }
4728     }
4729     // </editor-fold>
4730 
4731     /**
4732      * Rewrite all type variables (universal quantifiers) in the given
4733      * type to wildcards (existential quantifiers).  This is used to
4734      * determine if a cast is allowed.  For example, if high is true
4735      * and {@code T <: Number}, then {@code List<T>} is rewritten to
4736      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4737      * List<? extends Number>} a {@code List<T>} can be cast to {@code
4738      * List<Integer>} with a warning.
4739      * @param t a type
4740      * @param high if true return an upper bound; otherwise a lower
4741      * bound
4742      * @param rewriteTypeVars only rewrite captured wildcards if false;
4743      * otherwise rewrite all type variables
4744      * @return the type rewritten with wildcards (existential
4745      * quantifiers) only
4746      */
4747     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4748         return new Rewriter(high, rewriteTypeVars).visit(t);
4749     }
4750 
4751     class Rewriter extends UnaryVisitor<Type> {
4752 
4753         boolean high;
4754         boolean rewriteTypeVars;
4755         // map to avoid visiting same type argument twice, like in Foo<T>.Bar<T>
4756         Map<Type, Type> argMap = new HashMap<>();
4757         // cycle detection within an argument, see JDK-8324809
4758         Set<Type> seen = new HashSet<>();
4759 
4760         Rewriter(boolean high, boolean rewriteTypeVars) {
4761             this.high = high;
4762             this.rewriteTypeVars = rewriteTypeVars;
4763         }
4764 
4765         @Override
4766         public Type visitClassType(ClassType t, Void s) {
4767             ListBuffer<Type> rewritten = new ListBuffer<>();
4768             boolean changed = false;
4769             for (Type arg : t.allparams()) {
4770                 Type bound = argMap.get(arg);
4771                 if (bound == null) {
4772                     argMap.put(arg, bound = visit(arg));
4773                 }
4774                 if (arg != bound) {
4775                     changed = true;
4776                 }
4777                 rewritten.append(bound);
4778             }
4779             if (changed)
4780                 return subst(t.tsym.type,
4781                         t.tsym.type.allparams(),
4782                         rewritten.toList());
4783             else
4784                 return t;
4785         }
4786 
4787         public Type visitType(Type t, Void s) {
4788             return t;
4789         }
4790 
4791         @Override
4792         public Type visitCapturedType(CapturedType t, Void s) {
4793             Type w_bound = t.wildcard.type;
4794             Type bound = w_bound.contains(t) ?
4795                         erasure(w_bound) :
4796                         visit(w_bound);
4797             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4798         }
4799 
4800         @Override
4801         public Type visitTypeVar(TypeVar t, Void s) {
4802             if (seen.add(t)) {
4803                 if (rewriteTypeVars) {
4804                     Type bound = t.getUpperBound().contains(t) ?
4805                             erasure(t.getUpperBound()) :
4806                             visit(t.getUpperBound());
4807                     return rewriteAsWildcardType(bound, t, EXTENDS);
4808                 } else {
4809                     return t;
4810                 }
4811             } else {
4812                 return rewriteTypeVars ? makeExtendsWildcard(syms.objectType, t) : t;
4813             }
4814         }
4815 
4816         @Override
4817         public Type visitWildcardType(WildcardType t, Void s) {
4818             Type bound2 = visit(t.type);
4819             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4820         }
4821 
4822         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4823             switch (bk) {
4824                case EXTENDS: return high ?
4825                        makeExtendsWildcard(B(bound), formal) :
4826                        makeExtendsWildcard(syms.objectType, formal);
4827                case SUPER: return high ?
4828                        makeSuperWildcard(syms.botType, formal) :
4829                        makeSuperWildcard(B(bound), formal);
4830                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4831                default:
4832                    Assert.error("Invalid bound kind " + bk);
4833                    return null;
4834             }
4835         }
4836 
4837         Type B(Type t) {
4838             while (t.hasTag(WILDCARD)) {
4839                 WildcardType w = (WildcardType)t;
4840                 t = high ?
4841                     w.getExtendsBound() :
4842                     w.getSuperBound();
4843                 if (t == null) {
4844                     t = high ? syms.objectType : syms.botType;
4845                 }
4846             }
4847             return t;
4848         }
4849     }
4850 
4851 
4852     /**
4853      * Create a wildcard with the given upper (extends) bound; create
4854      * an unbounded wildcard if bound is Object.
4855      *
4856      * @param bound the upper bound
4857      * @param formal the formal type parameter that will be
4858      * substituted by the wildcard
4859      */
4860     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4861         if (bound == syms.objectType) {
4862             return new WildcardType(syms.objectType,
4863                                     BoundKind.UNBOUND,
4864                                     syms.boundClass,
4865                                     formal);
4866         } else {
4867             return new WildcardType(bound,
4868                                     BoundKind.EXTENDS,
4869                                     syms.boundClass,
4870                                     formal);
4871         }
4872     }
4873 
4874     /**
4875      * Create a wildcard with the given lower (super) bound; create an
4876      * unbounded wildcard if bound is bottom (type of {@code null}).
4877      *
4878      * @param bound the lower bound
4879      * @param formal the formal type parameter that will be
4880      * substituted by the wildcard
4881      */
4882     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4883         if (bound.hasTag(BOT)) {
4884             return new WildcardType(syms.objectType,
4885                                     BoundKind.UNBOUND,
4886                                     syms.boundClass,
4887                                     formal);
4888         } else {
4889             return new WildcardType(bound,
4890                                     BoundKind.SUPER,
4891                                     syms.boundClass,
4892                                     formal);
4893         }
4894     }
4895 
4896     /**
4897      * A wrapper for a type that allows use in sets.
4898      */
4899     public static class UniqueType {
4900         public final Type type;
4901         final Types types;

4902 
4903         public UniqueType(Type type, Types types) {
4904             this.type = type;
4905             this.types = types;





4906         }
4907 
4908         public int hashCode() {
4909             return types.hashCode(type);
4910         }
4911 
4912         public boolean equals(Object obj) {
4913             return (obj instanceof UniqueType uniqueType) &&
4914                     types.isSameType(type, uniqueType.type);
4915         }
4916 




4917         public String toString() {
4918             return type.toString();
4919         }
4920 
4921     }
4922     // </editor-fold>
4923 
4924     // <editor-fold defaultstate="collapsed" desc="Visitors">
4925     /**
4926      * A default visitor for types.  All visitor methods except
4927      * visitType are implemented by delegating to visitType.  Concrete
4928      * subclasses must provide an implementation of visitType and can
4929      * override other methods as needed.
4930      *
4931      * @param <R> the return type of the operation implemented by this
4932      * visitor; use Void if no return type is needed.
4933      * @param <S> the type of the second argument (the first being the
4934      * type itself) of the operation implemented by this visitor; use
4935      * Void if a second argument is not needed.
4936      */
4937     public abstract static class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4938         public final R visit(Type t, S s)               { return t.accept(this, s); }
4939         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4940         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4941         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4942         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4943         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4944         public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
4945         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4946         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4947         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4948         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4949         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4950     }
4951 
4952     /**
4953      * A default visitor for symbols.  All visitor methods except
4954      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4955      * subclasses must provide an implementation of visitSymbol and can
4956      * override other methods as needed.
4957      *
4958      * @param <R> the return type of the operation implemented by this
4959      * visitor; use Void if no return type is needed.
4960      * @param <S> the type of the second argument (the first being the
4961      * symbol itself) of the operation implemented by this visitor; use
4962      * Void if a second argument is not needed.
4963      */
4964     public abstract static class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4965         public final R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4966         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4967         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4968         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4969         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4970         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4971         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4972     }
4973 
4974     /**
4975      * A <em>simple</em> visitor for types.  This visitor is simple as
4976      * captured wildcards, for-all types (generic methods), and
4977      * undetermined type variables (part of inference) are hidden.
4978      * Captured wildcards are hidden by treating them as type
4979      * variables and the rest are hidden by visiting their qtypes.
4980      *
4981      * @param <R> the return type of the operation implemented by this
4982      * visitor; use Void if no return type is needed.
4983      * @param <S> the type of the second argument (the first being the
4984      * type itself) of the operation implemented by this visitor; use
4985      * Void if a second argument is not needed.
4986      */
4987     public abstract static class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4988         @Override
4989         public R visitCapturedType(CapturedType t, S s) {
4990             return visitTypeVar(t, s);
4991         }
4992         @Override
4993         public R visitForAll(ForAll t, S s) {
4994             return visit(t.qtype, s);
4995         }
4996         @Override
4997         public R visitUndetVar(UndetVar t, S s) {
4998             return visit(t.qtype, s);
4999         }
5000     }
5001 
5002     /**
5003      * A plain relation on types.  That is a 2-ary function on the
5004      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
5005      * <!-- In plain text: Type x Type -> Boolean -->
5006      */
5007     public abstract static class TypeRelation extends SimpleVisitor<Boolean,Type> {}
5008 
5009     /**
5010      * A convenience visitor for implementing operations that only
5011      * require one argument (the type itself), that is, unary
5012      * operations.
5013      *
5014      * @param <R> the return type of the operation implemented by this
5015      * visitor; use Void if no return type is needed.
5016      */
5017     public abstract static class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
5018         public final R visit(Type t) { return t.accept(this, null); }
5019     }
5020 
5021     /**
5022      * A visitor for implementing a mapping from types to types.  The
5023      * default behavior of this class is to implement the identity
5024      * mapping (mapping a type to itself).  This can be overridden in
5025      * subclasses.
5026      *
5027      * @param <S> the type of the second argument (the first being the
5028      * type itself) of this mapping; use Void if a second argument is
5029      * not needed.
5030      */
5031     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
5032         public final Type visit(Type t) { return t.accept(this, null); }
5033         public Type visitType(Type t, S s) { return t; }
5034     }
5035 
5036     /**
5037      * An abstract class for mappings from types to types (see {@link Type#map(TypeMapping)}.
5038      * This class implements the functional interface {@code Function}, that allows it to be used
5039      * fluently in stream-like processing.
5040      */
5041     public static class TypeMapping<S> extends MapVisitor<S> implements Function<Type, Type> {
5042         @Override
5043         public Type apply(Type type) { return visit(type); }
5044 
5045         List<Type> visit(List<Type> ts, S s) {
5046             return ts.map(t -> visit(t, s));
5047         }
5048 
5049         @Override
5050         public Type visitCapturedType(CapturedType t, S s) {
5051             return visitTypeVar(t, s);
5052         }
5053     }
5054     // </editor-fold>
5055 
5056     // <editor-fold defaultstate="collapsed" desc="Unconditionality">
5057     /** Check unconditionality between any combination of reference or primitive types.
5058      *
5059      *  Rules:
5060      *    an identity conversion
5061      *    a widening reference conversion
5062      *    a widening primitive conversion (delegates to `checkUnconditionallyExactPrimitives`)
5063      *    a boxing conversion
5064      *    a boxing conversion followed by a widening reference conversion
5065      *
5066      *  @param source     Source primitive or reference type
5067      *  @param target     Target primitive or reference type
5068      */
5069     public boolean isUnconditionallyExact(Type source, Type target) {
5070         if (isSameType(source, target)) {
5071             return true;
5072         }
5073 
5074         return target.isPrimitive()
5075                 ? isUnconditionallyExactPrimitives(source, target)
5076                 : isSubtype(boxedTypeOrType(erasure(source)), target);
5077     }
5078 
5079     /** Check unconditionality between primitive types.
5080      *
5081      *  - widening from one integral type to another,
5082      *  - widening from one floating point type to another,
5083      *  - widening from byte, short, or char to a floating point type,
5084      *  - widening from int to double.
5085      *
5086      *  @param selectorType     Type of selector
5087      *  @param targetType       Target type
5088      */
5089     public boolean isUnconditionallyExactPrimitives(Type selectorType, Type targetType) {
5090         return isSameType(selectorType, targetType) ||
5091                 (selectorType.isPrimitive() && targetType.isPrimitive()) &&
5092                 ((selectorType.getTag().isStrictSubRangeOf(targetType.getTag())) &&
5093                         !((selectorType.hasTag(BYTE) && targetType.hasTag(CHAR)) ||
5094                           (selectorType.hasTag(INT)  && targetType.hasTag(FLOAT)) ||
5095                           (selectorType.hasTag(LONG) && (targetType.hasTag(DOUBLE) || targetType.hasTag(FLOAT)))));
5096     }
5097     // </editor-fold>
5098 
5099     // <editor-fold defaultstate="collapsed" desc="Annotation support">
5100 
5101     public RetentionPolicy getRetention(Attribute.Compound a) {
5102         return getRetention(a.type.tsym);
5103     }
5104 
5105     public RetentionPolicy getRetention(TypeSymbol sym) {
5106         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
5107         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
5108         if (c != null) {
5109             Attribute value = c.member(names.value);
5110             if (value != null && value instanceof Attribute.Enum attributeEnum) {
5111                 Name levelName = attributeEnum.value.name;
5112                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
5113                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
5114                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
5115                 else ;// /* fail soft */ throw new AssertionError(levelName);
5116             }
5117         }
5118         return vis;
5119     }
5120     // </editor-fold>
5121 
5122     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
5123 
5124     public abstract class SignatureGenerator {
5125 
5126         public class InvalidSignatureException extends CompilerInternalException {
5127             private static final long serialVersionUID = 0;
5128 
5129             private final transient Type type;
5130 
5131             InvalidSignatureException(Type type, boolean dumpStackTraceOnError) {
5132                 super(dumpStackTraceOnError);
5133                 this.type = type;
5134             }
5135 
5136             public Type type() {
5137                 return type;
5138             }
5139         }
5140 
5141         protected abstract void append(char ch);
5142         protected abstract void append(byte[] ba);
5143         protected abstract void append(Name name);
5144         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
5145 
5146         protected void reportIllegalSignature(Type t) {
5147             throw new InvalidSignatureException(t, Types.this.dumpStacktraceOnError);
5148         }
5149 
5150         /**
5151          * Assemble signature of given type in string buffer.
5152          */
5153         public void assembleSig(Type type) {
5154             switch (type.getTag()) {
5155                 case BYTE:
5156                     append('B');
5157                     break;
5158                 case SHORT:
5159                     append('S');
5160                     break;
5161                 case CHAR:
5162                     append('C');
5163                     break;
5164                 case INT:
5165                     append('I');
5166                     break;
5167                 case LONG:
5168                     append('J');
5169                     break;
5170                 case FLOAT:
5171                     append('F');
5172                     break;
5173                 case DOUBLE:
5174                     append('D');
5175                     break;
5176                 case BOOLEAN:
5177                     append('Z');
5178                     break;
5179                 case VOID:
5180                     append('V');
5181                     break;
5182                 case CLASS:
5183                     if (type.isCompound()) {
5184                         reportIllegalSignature(type);
5185                     }
5186                     append('L');
5187                     assembleClassSig(type);
5188                     append(';');
5189                     break;
5190                 case ARRAY:
5191                     ArrayType at = (ArrayType) type;
5192                     append('[');
5193                     assembleSig(at.elemtype);
5194                     break;
5195                 case METHOD:
5196                     MethodType mt = (MethodType) type;
5197                     append('(');
5198                     assembleSig(mt.argtypes);
5199                     append(')');
5200                     assembleSig(mt.restype);
5201                     if (hasTypeVar(mt.thrown)) {
5202                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
5203                             append('^');
5204                             assembleSig(l.head);
5205                         }
5206                     }
5207                     break;
5208                 case WILDCARD: {
5209                     Type.WildcardType ta = (Type.WildcardType) type;
5210                     switch (ta.kind) {
5211                         case SUPER:
5212                             append('-');
5213                             assembleSig(ta.type);
5214                             break;
5215                         case EXTENDS:
5216                             append('+');
5217                             assembleSig(ta.type);
5218                             break;
5219                         case UNBOUND:
5220                             append('*');
5221                             break;
5222                         default:
5223                             throw new AssertionError(ta.kind);
5224                     }
5225                     break;
5226                 }
5227                 case TYPEVAR:
5228                     if (((TypeVar)type).isCaptured()) {
5229                         reportIllegalSignature(type);
5230                     }
5231                     append('T');
5232                     append(type.tsym.name);
5233                     append(';');
5234                     break;
5235                 case FORALL:
5236                     Type.ForAll ft = (Type.ForAll) type;
5237                     assembleParamsSig(ft.tvars);
5238                     assembleSig(ft.qtype);
5239                     break;
5240                 default:
5241                     throw new AssertionError("typeSig " + type.getTag());
5242             }
5243         }
5244 
5245         public boolean hasTypeVar(List<Type> l) {
5246             while (l.nonEmpty()) {
5247                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
5248                     return true;
5249                 }
5250                 l = l.tail;
5251             }
5252             return false;
5253         }
5254 
5255         public void assembleClassSig(Type type) {
5256             ClassType ct = (ClassType) type;
5257             ClassSymbol c = (ClassSymbol) ct.tsym;
5258             classReference(c);
5259             Type outer = ct.getEnclosingType();
5260             if (outer.allparams().nonEmpty()) {
5261                 boolean rawOuter =
5262                         c.owner.kind == MTH || // either a local class
5263                         c.name == Types.this.names.empty; // or anonymous
5264                 assembleClassSig(rawOuter
5265                         ? Types.this.erasure(outer)
5266                         : outer);
5267                 append(rawOuter ? '$' : '.');
5268                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
5269                 append(rawOuter
5270                         ? c.flatname.subName(c.owner.enclClass().flatname.length() + 1)
5271                         : c.name);
5272             } else {
5273                 append(externalize(c.flatname));
5274             }
5275             if (ct.getTypeArguments().nonEmpty()) {
5276                 append('<');
5277                 assembleSig(ct.getTypeArguments());
5278                 append('>');
5279             }
5280         }
5281 
5282         public void assembleParamsSig(List<Type> typarams) {
5283             append('<');
5284             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
5285                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
5286                 append(tvar.tsym.name);
5287                 List<Type> bounds = Types.this.getBounds(tvar);
5288                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
5289                     append(':');
5290                 }
5291                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
5292                     append(':');
5293                     assembleSig(l.head);
5294                 }
5295             }
5296             append('>');
5297         }
5298 
5299         public void assembleSig(List<Type> types) {
5300             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
5301                 assembleSig(ts.head);
5302             }
5303         }
5304     }
5305 
5306     public Type constantType(LoadableConstant c) {
5307         switch (c.poolTag()) {
5308             case ClassFile.CONSTANT_Class:
5309                 return syms.classType;
5310             case ClassFile.CONSTANT_String:
5311                 return syms.stringType;
5312             case ClassFile.CONSTANT_Integer:
5313                 return syms.intType;
5314             case ClassFile.CONSTANT_Float:
5315                 return syms.floatType;
5316             case ClassFile.CONSTANT_Long:
5317                 return syms.longType;
5318             case ClassFile.CONSTANT_Double:
5319                 return syms.doubleType;
5320             case ClassFile.CONSTANT_MethodHandle:
5321                 return syms.methodHandleType;
5322             case ClassFile.CONSTANT_MethodType:
5323                 return syms.methodTypeType;
5324             case ClassFile.CONSTANT_Dynamic:
5325                 return ((DynamicVarSymbol)c).type;
5326             default:
5327                 throw new AssertionError("Not a loadable constant: " + c.poolTag());
5328         }
5329     }
5330     // </editor-fold>
5331 
5332     public void newRound() {
5333         descCache._map.clear();
5334         isDerivedRawCache.clear();
5335         implCache._map.clear();
5336         membersCache._map.clear();
5337         closureCache.clear();
5338     }
5339 }
--- EOF ---