1 /*
   2  * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.code;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.lang.runtime.ExactConversionsSupport;
  30 import java.util.HashSet;
  31 import java.util.HashMap;
  32 import java.util.Locale;
  33 import java.util.Map;
  34 import java.util.Optional;
  35 import java.util.Set;
  36 import java.util.WeakHashMap;

  37 import java.util.function.BiPredicate;
  38 import java.util.function.Function;
  39 import java.util.function.Predicate;
  40 import java.util.stream.Collector;
  41 
  42 import javax.tools.JavaFileObject;
  43 
  44 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
  45 import com.sun.tools.javac.code.Lint.LintCategory;
  46 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
  47 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  48 import com.sun.tools.javac.comp.AttrContext;
  49 import com.sun.tools.javac.comp.Check;
  50 import com.sun.tools.javac.comp.Enter;
  51 import com.sun.tools.javac.comp.Env;
  52 import com.sun.tools.javac.jvm.ClassFile;
  53 import com.sun.tools.javac.util.*;
  54 
  55 import static com.sun.tools.javac.code.BoundKind.*;
  56 import static com.sun.tools.javac.code.Flags.*;
  57 import static com.sun.tools.javac.code.Kinds.Kind.*;
  58 import static com.sun.tools.javac.code.Scope.*;
  59 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  60 import static com.sun.tools.javac.code.Symbol.*;
  61 import static com.sun.tools.javac.code.Type.*;
  62 import static com.sun.tools.javac.code.TypeTag.*;
  63 import static com.sun.tools.javac.jvm.ClassFile.externalize;
  64 import static com.sun.tools.javac.main.Option.DOE;
  65 
  66 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  67 
  68 /**
  69  * Utility class containing various operations on types.
  70  *
  71  * <p>Unless other names are more illustrative, the following naming
  72  * conventions should be observed in this file:
  73  *
  74  * <dl>
  75  * <dt>t</dt>
  76  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
  77  * <dt>s</dt>
  78  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
  79  * <dt>ts</dt>
  80  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
  81  * <dt>ss</dt>
  82  * <dd>A second list of types should be named ss.</dd>
  83  * </dl>
  84  *
  85  * <p><b>This is NOT part of any supported API.
  86  * If you write code that depends on this, you do so at your own risk.
  87  * This code and its internal interfaces are subject to change or
  88  * deletion without notice.</b>
  89  */
  90 public class Types {
  91     protected static final Context.Key<Types> typesKey = new Context.Key<>();
  92 
  93     final Symtab syms;
  94     final JavacMessages messages;
  95     final Names names;
  96     final Check chk;
  97     final Enter enter;
  98     JCDiagnostic.Factory diags;
  99     List<Warner> warnStack = List.nil();
 100     final Name capturedName;
 101 
 102     public final Warner noWarnings;
 103     public final boolean dumpStacktraceOnError;
 104 
 105     // <editor-fold defaultstate="collapsed" desc="Instantiating">
 106     public static Types instance(Context context) {
 107         Types instance = context.get(typesKey);
 108         if (instance == null)
 109             instance = new Types(context);
 110         return instance;
 111     }
 112 
 113     @SuppressWarnings("this-escape")
 114     protected Types(Context context) {
 115         context.put(typesKey, this);
 116         syms = Symtab.instance(context);
 117         names = Names.instance(context);
 118         Source source = Source.instance(context);
 119         chk = Check.instance(context);
 120         enter = Enter.instance(context);
 121         capturedName = names.fromString("<captured wildcard>");
 122         messages = JavacMessages.instance(context);
 123         diags = JCDiagnostic.Factory.instance(context);
 124         noWarnings = new Warner(null);





 125         Options options = Options.instance(context);
 126         dumpStacktraceOnError = options.isSet("dev") || options.isSet(DOE);
 127     }
 128     // </editor-fold>
 129 
 130     // <editor-fold defaultstate="collapsed" desc="bounds">
 131     /**
 132      * Get a wildcard's upper bound, returning non-wildcards unchanged.
 133      * @param t a type argument, either a wildcard or a type
 134      */
 135     public Type wildUpperBound(Type t) {
 136         if (t.hasTag(WILDCARD)) {
 137             WildcardType w = (WildcardType) t;
 138             if (w.isSuperBound())
 139                 return w.bound == null ? syms.objectType : w.bound.getUpperBound();
 140             else
 141                 return wildUpperBound(w.type);
 142         }
 143         else return t;
 144     }
 145 
 146     /**
 147      * Get a capture variable's upper bound, returning other types unchanged.
 148      * @param t a type
 149      */
 150     public Type cvarUpperBound(Type t) {
 151         if (t.hasTag(TYPEVAR)) {
 152             TypeVar v = (TypeVar) t;
 153             return v.isCaptured() ? cvarUpperBound(v.getUpperBound()) : v;
 154         }
 155         else return t;
 156     }
 157 
 158     /**
 159      * Get a wildcard's lower bound, returning non-wildcards unchanged.
 160      * @param t a type argument, either a wildcard or a type
 161      */
 162     public Type wildLowerBound(Type t) {
 163         if (t.hasTag(WILDCARD)) {
 164             WildcardType w = (WildcardType) t;
 165             return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
 166         }
 167         else return t;
 168     }
 169 
 170     /**
 171      * Get a capture variable's lower bound, returning other types unchanged.
 172      * @param t a type
 173      */
 174     public Type cvarLowerBound(Type t) {
 175         if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
 176             return cvarLowerBound(t.getLowerBound());
 177         }
 178         else return t;
 179     }
 180 
 181     /**
 182      * Recursively skip type-variables until a class/array type is found; capture conversion is then
 183      * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
 184      * suitable for a method lookup.
 185      */
 186     public Type skipTypeVars(Type site, boolean capture) {
 187         while (site.hasTag(TYPEVAR)) {
 188             site = site.getUpperBound();
 189         }
 190         return capture ? capture(site) : site;
 191     }
 192     // </editor-fold>
 193 
 194     // <editor-fold defaultstate="collapsed" desc="projections">
 195 
 196     /**
 197      * A projection kind. See {@link TypeProjection}
 198      */
 199     enum ProjectionKind {
 200         UPWARDS() {
 201             @Override
 202             ProjectionKind complement() {
 203                 return DOWNWARDS;
 204             }
 205         },
 206         DOWNWARDS() {
 207             @Override
 208             ProjectionKind complement() {
 209                 return UPWARDS;
 210             }
 211         };
 212 
 213         abstract ProjectionKind complement();
 214     }
 215 
 216     /**
 217      * This visitor performs upwards and downwards projections on types.
 218      *
 219      * A projection is defined as a function that takes a type T, a set of type variables V and that
 220      * produces another type S.
 221      *
 222      * An upwards projection maps a type T into a type S such that (i) T has no variables in V,
 223      * and (ii) S is an upper bound of T.
 224      *
 225      * A downwards projection maps a type T into a type S such that (i) T has no variables in V,
 226      * and (ii) S is a lower bound of T.
 227      *
 228      * Note that projections are only allowed to touch variables in V. Therefore, it is possible for
 229      * a projection to leave its input type unchanged if it does not contain any variables in V.
 230      *
 231      * Moreover, note that while an upwards projection is always defined (every type as an upper bound),
 232      * a downwards projection is not always defined.
 233      *
 234      * Examples:
 235      *
 236      * {@code upwards(List<#CAP1>, [#CAP1]) = List<? extends String>, where #CAP1 <: String }
 237      * {@code downwards(List<#CAP2>, [#CAP2]) = List<? super String>, where #CAP2 :> String }
 238      * {@code upwards(List<#CAP1>, [#CAP2]) = List<#CAP1> }
 239      * {@code downwards(List<#CAP1>, [#CAP1]) = not defined }
 240      */
 241     class TypeProjection extends TypeMapping<ProjectionKind> {
 242 
 243         List<Type> vars;
 244         Set<Type> seen = new HashSet<>();
 245 
 246         public TypeProjection(List<Type> vars) {
 247             this.vars = vars;
 248         }
 249 
 250         @Override
 251         public Type visitClassType(ClassType t, ProjectionKind pkind) {
 252             if (t.isCompound()) {
 253                 List<Type> components = directSupertypes(t);
 254                 List<Type> components1 = components.map(c -> c.map(this, pkind));
 255                 if (components == components1) return t;
 256                 else return makeIntersectionType(components1);
 257             } else {
 258                 Type outer = t.getEnclosingType();
 259                 Type outer1 = visit(outer, pkind);
 260                 List<Type> typarams = t.getTypeArguments();
 261                 List<Type> formals = t.tsym.type.getTypeArguments();
 262                 ListBuffer<Type> typarams1 = new ListBuffer<>();
 263                 boolean changed = false;
 264                 for (Type actual : typarams) {
 265                     Type t2 = mapTypeArgument(t, formals.head.getUpperBound(), actual, pkind);
 266                     if (t2.hasTag(BOT)) {
 267                         //not defined
 268                         return syms.botType;
 269                     }
 270                     typarams1.add(t2);
 271                     changed |= actual != t2;
 272                     formals = formals.tail;
 273                 }
 274                 if (outer1 == outer && !changed) return t;
 275                 else return new ClassType(outer1, typarams1.toList(), t.tsym, t.getMetadata()) {
 276                     @Override
 277                     protected boolean needsStripping() {
 278                         return true;
 279                     }
 280                 };
 281             }
 282         }
 283 
 284         @Override
 285         public Type visitArrayType(ArrayType t, ProjectionKind s) {
 286             Type elemtype = t.elemtype;
 287             Type elemtype1 = visit(elemtype, s);
 288             if (elemtype1 == elemtype) {
 289                 return t;
 290             } else if (elemtype1.hasTag(BOT)) {
 291                 //undefined
 292                 return syms.botType;
 293             } else {
 294                 return new ArrayType(elemtype1, t.tsym, t.metadata) {
 295                     @Override
 296                     protected boolean needsStripping() {
 297                         return true;
 298                     }
 299                 };
 300             }
 301         }
 302 
 303         @Override
 304         public Type visitTypeVar(TypeVar t, ProjectionKind pkind) {
 305             if (vars.contains(t)) {
 306                 if (seen.add(t)) {
 307                     try {
 308                         final Type bound;
 309                         switch (pkind) {
 310                             case UPWARDS:
 311                                 bound = t.getUpperBound();
 312                                 break;
 313                             case DOWNWARDS:
 314                                 bound = (t.getLowerBound() == null) ?
 315                                         syms.botType :
 316                                         t.getLowerBound();
 317                                 break;
 318                             default:
 319                                 Assert.error();
 320                                 return null;
 321                         }
 322                         return bound.map(this, pkind);
 323                     } finally {
 324                         seen.remove(t);
 325                     }
 326                 } else {
 327                     //cycle
 328                     return pkind == ProjectionKind.UPWARDS ?
 329                             syms.objectType : syms.botType;
 330                 }
 331             } else {
 332                 return t;
 333             }
 334         }
 335 
 336         private Type mapTypeArgument(Type site, Type declaredBound, Type t, ProjectionKind pkind) {
 337             return t.containsAny(vars) ?
 338                     t.map(new TypeArgumentProjection(site, declaredBound), pkind) :
 339                     t;
 340         }
 341 
 342         class TypeArgumentProjection extends TypeMapping<ProjectionKind> {
 343 
 344             Type site;
 345             Type declaredBound;
 346 
 347             TypeArgumentProjection(Type site, Type declaredBound) {
 348                 this.site = site;
 349                 this.declaredBound = declaredBound;
 350             }
 351 
 352             @Override
 353             public Type visitType(Type t, ProjectionKind pkind) {
 354                 //type argument is some type containing restricted vars
 355                 if (pkind == ProjectionKind.DOWNWARDS) {
 356                     //not defined
 357                     return syms.botType;
 358                 }
 359                 Type upper = t.map(TypeProjection.this, ProjectionKind.UPWARDS);
 360                 Type lower = t.map(TypeProjection.this, ProjectionKind.DOWNWARDS);
 361                 List<Type> formals = site.tsym.type.getTypeArguments();
 362                 BoundKind bk;
 363                 Type bound;
 364                 if (!isSameType(upper, syms.objectType) &&
 365                         (declaredBound.containsAny(formals) ||
 366                          !isSubtype(declaredBound, upper))) {
 367                     bound = upper;
 368                     bk = EXTENDS;
 369                 } else if (!lower.hasTag(BOT)) {
 370                     bound = lower;
 371                     bk = SUPER;
 372                 } else {
 373                     bound = syms.objectType;
 374                     bk = UNBOUND;
 375                 }
 376                 return makeWildcard(bound, bk);
 377             }
 378 
 379             @Override
 380             public Type visitWildcardType(WildcardType wt, ProjectionKind pkind) {
 381                 //type argument is some wildcard whose bound contains restricted vars
 382                 Type bound = syms.botType;
 383                 BoundKind bk = wt.kind;
 384                 switch (wt.kind) {
 385                     case EXTENDS:
 386                         bound = wt.type.map(TypeProjection.this, pkind);
 387                         if (bound.hasTag(BOT)) {
 388                             return syms.botType;
 389                         }
 390                         break;
 391                     case SUPER:
 392                         bound = wt.type.map(TypeProjection.this, pkind.complement());
 393                         if (bound.hasTag(BOT)) {
 394                             bound = syms.objectType;
 395                             bk = UNBOUND;
 396                         }
 397                         break;
 398                 }
 399                 return makeWildcard(bound, bk);
 400             }
 401 
 402             private Type makeWildcard(Type bound, BoundKind bk) {
 403                 return new WildcardType(bound, bk, syms.boundClass) {
 404                     @Override
 405                     protected boolean needsStripping() {
 406                         return true;
 407                     }
 408                 };
 409             }
 410         }
 411     }
 412 
 413     /**
 414      * Computes an upward projection of given type, and vars. See {@link TypeProjection}.
 415      *
 416      * @param t the type to be projected
 417      * @param vars the set of type variables to be mapped
 418      * @return the type obtained as result of the projection
 419      */
 420     public Type upward(Type t, List<Type> vars) {
 421         return t.map(new TypeProjection(vars), ProjectionKind.UPWARDS);
 422     }
 423 
 424     /**
 425      * Computes the set of captured variables mentioned in a given type. See {@link CaptureScanner}.
 426      * This routine is typically used to computed the input set of variables to be used during
 427      * an upwards projection (see {@link Types#upward(Type, List)}).
 428      *
 429      * @param t the type where occurrences of captured variables have to be found
 430      * @return the set of captured variables found in t
 431      */
 432     public List<Type> captures(Type t) {
 433         CaptureScanner cs = new CaptureScanner();
 434         Set<Type> captures = new HashSet<>();
 435         cs.visit(t, captures);
 436         return List.from(captures);
 437     }
 438 
 439     /**
 440      * This visitor scans a type recursively looking for occurrences of captured type variables.
 441      */
 442     class CaptureScanner extends SimpleVisitor<Void, Set<Type>> {
 443 
 444         @Override
 445         public Void visitType(Type t, Set<Type> types) {
 446             return null;
 447         }
 448 
 449         @Override
 450         public Void visitClassType(ClassType t, Set<Type> seen) {
 451             if (t.isCompound()) {
 452                 directSupertypes(t).forEach(s -> visit(s, seen));
 453             } else {
 454                 t.allparams().forEach(ta -> visit(ta, seen));
 455             }
 456             return null;
 457         }
 458 
 459         @Override
 460         public Void visitArrayType(ArrayType t, Set<Type> seen) {
 461             return visit(t.elemtype, seen);
 462         }
 463 
 464         @Override
 465         public Void visitWildcardType(WildcardType t, Set<Type> seen) {
 466             visit(t.type, seen);
 467             return null;
 468         }
 469 
 470         @Override
 471         public Void visitTypeVar(TypeVar t, Set<Type> seen) {
 472             if ((t.tsym.flags() & Flags.SYNTHETIC) != 0 && seen.add(t)) {
 473                 visit(t.getUpperBound(), seen);
 474             }
 475             return null;
 476         }
 477 
 478         @Override
 479         public Void visitCapturedType(CapturedType t, Set<Type> seen) {
 480             if (seen.add(t)) {
 481                 visit(t.getUpperBound(), seen);
 482                 visit(t.getLowerBound(), seen);
 483             }
 484             return null;
 485         }
 486     }
 487 
 488     // </editor-fold>
 489 
 490     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
 491     /**
 492      * Checks that all the arguments to a class are unbounded
 493      * wildcards or something else that doesn't make any restrictions
 494      * on the arguments. If a class isUnbounded, a raw super- or
 495      * subclass can be cast to it without a warning.
 496      * @param t a type
 497      * @return true iff the given type is unbounded or raw
 498      */
 499     public boolean isUnbounded(Type t) {
 500         return isUnbounded.visit(t);
 501     }
 502     // where
 503         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
 504 
 505             public Boolean visitType(Type t, Void ignored) {
 506                 return true;
 507             }
 508 
 509             @Override
 510             public Boolean visitClassType(ClassType t, Void ignored) {
 511                 List<Type> parms = t.tsym.type.allparams();
 512                 List<Type> args = t.allparams();
 513                 while (parms.nonEmpty()) {
 514                     WildcardType unb = new WildcardType(syms.objectType,
 515                                                         BoundKind.UNBOUND,
 516                                                         syms.boundClass,
 517                                                         (TypeVar)parms.head);
 518                     if (!containsType(args.head, unb))
 519                         return false;
 520                     parms = parms.tail;
 521                     args = args.tail;
 522                 }
 523                 return true;
 524             }
 525         };
 526     // </editor-fold>
 527 
 528     // <editor-fold defaultstate="collapsed" desc="asSub">
 529     /**
 530      * Return the least specific subtype of t that starts with symbol
 531      * sym.  If none exists, return null.  The least specific subtype
 532      * is determined as follows:
 533      *
 534      * <p>If there is exactly one parameterized instance of sym that is a
 535      * subtype of t, that parameterized instance is returned.<br>
 536      * Otherwise, if the plain type or raw type `sym' is a subtype of
 537      * type t, the type `sym' itself is returned.  Otherwise, null is
 538      * returned.
 539      */
 540     public Type asSub(Type t, Symbol sym) {
 541         return asSub.visit(t, sym);
 542     }
 543     // where
 544         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
 545 
 546             public Type visitType(Type t, Symbol sym) {
 547                 return null;
 548             }
 549 
 550             @Override
 551             public Type visitClassType(ClassType t, Symbol sym) {
 552                 if (t.tsym == sym)
 553                     return t;
 554                 Type base = asSuper(sym.type, t.tsym);
 555                 if (base == null)
 556                     return null;
 557                 ListBuffer<Type> from = new ListBuffer<>();
 558                 ListBuffer<Type> to = new ListBuffer<>();
 559                 try {
 560                     adapt(base, t, from, to);
 561                 } catch (AdaptFailure ex) {
 562                     return null;
 563                 }
 564                 Type res = subst(sym.type, from.toList(), to.toList());
 565                 if (!isSubtype(res, t))
 566                     return null;
 567                 ListBuffer<Type> openVars = new ListBuffer<>();
 568                 for (List<Type> l = sym.type.allparams();
 569                      l.nonEmpty(); l = l.tail)
 570                     if (res.contains(l.head) && !t.contains(l.head))
 571                         openVars.append(l.head);
 572                 if (openVars.nonEmpty()) {
 573                     if (t.isRaw()) {
 574                         // The subtype of a raw type is raw
 575                         res = erasure(res);
 576                     } else {
 577                         // Unbound type arguments default to ?
 578                         List<Type> opens = openVars.toList();
 579                         ListBuffer<Type> qs = new ListBuffer<>();
 580                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
 581                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
 582                                                        syms.boundClass, (TypeVar) iter.head));
 583                         }
 584                         res = subst(res, opens, qs.toList());
 585                     }
 586                 }
 587                 return res;
 588             }
 589 
 590             @Override
 591             public Type visitErrorType(ErrorType t, Symbol sym) {
 592                 return t;
 593             }
 594         };
 595     // </editor-fold>
 596 
 597     // <editor-fold defaultstate="collapsed" desc="isConvertible">
 598     /**
 599      * Is t a subtype of or convertible via boxing/unboxing
 600      * conversion to s?
 601      */
 602     public boolean isConvertible(Type t, Type s, Warner warn) {
 603         if (t.hasTag(ERROR)) {
 604             return true;
 605         }
 606         boolean tPrimitive = t.isPrimitive();
 607         boolean sPrimitive = s.isPrimitive();
 608         if (tPrimitive == sPrimitive) {
 609             return isSubtypeUnchecked(t, s, warn);
 610         }
 611         boolean tUndet = t.hasTag(UNDETVAR);
 612         boolean sUndet = s.hasTag(UNDETVAR);
 613 
 614         if (tUndet || sUndet) {
 615             return tUndet ?
 616                     isSubtype(t, boxedTypeOrType(s)) :
 617                     isSubtype(boxedTypeOrType(t), s);
 618         }
 619 
 620         return tPrimitive
 621             ? isSubtype(boxedClass(t).type, s)
 622             : isSubtype(unboxedType(t), s);
 623     }
 624 
 625     /**
 626      * Is t a subtype of or convertible via boxing/unboxing
 627      * conversions to s?
 628      */
 629     public boolean isConvertible(Type t, Type s) {
 630         return isConvertible(t, s, noWarnings);
 631     }
 632     // </editor-fold>
 633 
 634     // <editor-fold defaultstate="collapsed" desc="findSam">
 635 
 636     /**
 637      * Exception used to report a function descriptor lookup failure. The exception
 638      * wraps a diagnostic that can be used to generate more details error
 639      * messages.
 640      */
 641     public static class FunctionDescriptorLookupError extends CompilerInternalException {
 642         private static final long serialVersionUID = 0;
 643 
 644         transient JCDiagnostic diagnostic;
 645 
 646         FunctionDescriptorLookupError(boolean dumpStackTraceOnError) {
 647             super(dumpStackTraceOnError);
 648             this.diagnostic = null;
 649         }
 650 
 651         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
 652             this.diagnostic = diag;
 653             return this;
 654         }
 655 
 656         public JCDiagnostic getDiagnostic() {
 657             return diagnostic;
 658         }
 659     }
 660 
 661     /**
 662      * A cache that keeps track of function descriptors associated with given
 663      * functional interfaces.
 664      */
 665     class DescriptorCache {
 666 
 667         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
 668 
 669         class FunctionDescriptor {
 670             Symbol descSym;
 671 
 672             FunctionDescriptor(Symbol descSym) {
 673                 this.descSym = descSym;
 674             }
 675 
 676             public Symbol getSymbol() {
 677                 return descSym;
 678             }
 679 
 680             public Type getType(Type site) {
 681                 site = removeWildcards(site);
 682                 if (site.isIntersection()) {
 683                     IntersectionClassType ict = (IntersectionClassType)site;
 684                     for (Type component : ict.getExplicitComponents()) {
 685                         if (!chk.checkValidGenericType(component)) {
 686                             //if the inferred functional interface type is not well-formed,
 687                             //or if it's not a subtype of the original target, issue an error
 688                             throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
 689                         }
 690                     }
 691                 } else {
 692                     if (!chk.checkValidGenericType(site)) {
 693                         //if the inferred functional interface type is not well-formed,
 694                         //or if it's not a subtype of the original target, issue an error
 695                         throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
 696                     }
 697                 }
 698                 return memberType(site, descSym);
 699             }
 700         }
 701 
 702         class Entry {
 703             final FunctionDescriptor cachedDescRes;
 704             final int prevMark;
 705 
 706             public Entry(FunctionDescriptor cachedDescRes,
 707                     int prevMark) {
 708                 this.cachedDescRes = cachedDescRes;
 709                 this.prevMark = prevMark;
 710             }
 711 
 712             boolean matches(int mark) {
 713                 return  this.prevMark == mark;
 714             }
 715         }
 716 
 717         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
 718             Entry e = _map.get(origin);
 719             CompoundScope members = membersClosure(origin.type, false);
 720             if (e == null ||
 721                     !e.matches(members.getMark())) {
 722                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
 723                 _map.put(origin, new Entry(descRes, members.getMark()));
 724                 return descRes;
 725             }
 726             else {
 727                 return e.cachedDescRes;
 728             }
 729         }
 730 
 731         /**
 732          * Compute the function descriptor associated with a given functional interface
 733          */
 734         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
 735                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
 736             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0 || origin.isSealed()) {
 737                 //t must be an interface
 738                 throw failure("not.a.functional.intf", origin);
 739             }
 740 
 741             final ListBuffer<Symbol> abstracts = new ListBuffer<>();
 742             for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
 743                 Type mtype = memberType(origin.type, sym);
 744                 if (abstracts.isEmpty()) {
 745                     abstracts.append(sym);
 746                 } else if ((sym.name == abstracts.first().name &&
 747                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
 748                     if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
 749                             .map(msym -> memberType(origin.type, msym))
 750                             .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
 751                         abstracts.append(sym);
 752                     }
 753                 } else {
 754                     //the target method(s) should be the only abstract members of t
 755                     throw failure("not.a.functional.intf.1",  origin,
 756                             diags.fragment(Fragments.IncompatibleAbstracts(Kinds.kindName(origin), origin)));
 757                 }
 758             }
 759             if (abstracts.isEmpty()) {
 760                 //t must define a suitable non-generic method
 761                 throw failure("not.a.functional.intf.1", origin,
 762                             diags.fragment(Fragments.NoAbstracts(Kinds.kindName(origin), origin)));
 763             } else if (abstracts.size() == 1) {
 764                 return new FunctionDescriptor(abstracts.first());
 765             } else { // size > 1
 766                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
 767                 if (descRes == null) {
 768                     //we can get here if the functional interface is ill-formed
 769                     ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
 770                     for (Symbol desc : abstracts) {
 771                         String key = desc.type.getThrownTypes().nonEmpty() ?
 772                                 "descriptor.throws" : "descriptor";
 773                         descriptors.append(diags.fragment(key, desc.name,
 774                                 desc.type.getParameterTypes(),
 775                                 desc.type.getReturnType(),
 776                                 desc.type.getThrownTypes()));
 777                     }
 778                     JCDiagnostic msg =
 779                             diags.fragment(Fragments.IncompatibleDescsInFunctionalIntf(Kinds.kindName(origin),
 780                                                                                        origin));
 781                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
 782                             new JCDiagnostic.MultilineDiagnostic(msg, descriptors.toList());
 783                     throw failure(incompatibleDescriptors);
 784                 }
 785                 return descRes;
 786             }
 787         }
 788 
 789         /**
 790          * Compute a synthetic type for the target descriptor given a list
 791          * of override-equivalent methods in the functional interface type.
 792          * The resulting method type is a method type that is override-equivalent
 793          * and return-type substitutable with each method in the original list.
 794          */
 795         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
 796             return mergeAbstracts(methodSyms, origin.type, false)
 797                     .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
 798                         @Override
 799                         public Type getType(Type origin) {
 800                             Type mt = memberType(origin, getSymbol());
 801                             return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
 802                         }
 803                     }).orElse(null);
 804         }
 805 
 806         FunctionDescriptorLookupError failure(String msg, Object... args) {
 807             return failure(diags.fragment(msg, args));
 808         }
 809 
 810         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
 811             return new FunctionDescriptorLookupError(Types.this.dumpStacktraceOnError).setMessage(diag);
 812         }
 813     }
 814 
 815     private DescriptorCache descCache = new DescriptorCache();
 816 
 817     /**
 818      * Find the method descriptor associated to this class symbol - if the
 819      * symbol 'origin' is not a functional interface, an exception is thrown.
 820      */
 821     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
 822         return descCache.get(origin).getSymbol();
 823     }
 824 
 825     /**
 826      * Find the type of the method descriptor associated to this class symbol -
 827      * if the symbol 'origin' is not a functional interface, an exception is thrown.
 828      */
 829     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
 830         return descCache.get(origin.tsym).getType(origin);
 831     }
 832 
 833     /**
 834      * Is given type a functional interface?
 835      */
 836     public boolean isFunctionalInterface(TypeSymbol tsym) {
 837         try {
 838             findDescriptorSymbol(tsym);
 839             return true;
 840         } catch (FunctionDescriptorLookupError ex) {
 841             return false;
 842         }
 843     }
 844 
 845     public boolean isFunctionalInterface(Type site) {
 846         try {
 847             findDescriptorType(site);
 848             return true;
 849         } catch (FunctionDescriptorLookupError ex) {
 850             return false;
 851         }
 852     }
 853 
 854     public Type removeWildcards(Type site) {
 855         if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
 856             //compute non-wildcard parameterization - JLS 9.9
 857             List<Type> actuals = site.getTypeArguments();
 858             List<Type> formals = site.tsym.type.getTypeArguments();
 859             ListBuffer<Type> targs = new ListBuffer<>();
 860             for (Type formal : formals) {
 861                 Type actual = actuals.head;
 862                 Type bound = formal.getUpperBound();
 863                 if (actuals.head.hasTag(WILDCARD)) {
 864                     WildcardType wt = (WildcardType)actual;
 865                     //check that bound does not contain other formals
 866                     if (bound.containsAny(formals)) {
 867                         targs.add(wt.type);
 868                     } else {
 869                         //compute new type-argument based on declared bound and wildcard bound
 870                         switch (wt.kind) {
 871                             case UNBOUND:
 872                                 targs.add(bound);
 873                                 break;
 874                             case EXTENDS:
 875                                 targs.add(glb(bound, wt.type));
 876                                 break;
 877                             case SUPER:
 878                                 targs.add(wt.type);
 879                                 break;
 880                             default:
 881                                 Assert.error("Cannot get here!");
 882                         }
 883                     }
 884                 } else {
 885                     //not a wildcard - the new type argument remains unchanged
 886                     targs.add(actual);
 887                 }
 888                 actuals = actuals.tail;
 889             }
 890             return subst(site.tsym.type, formals, targs.toList());
 891         } else {
 892             return site;
 893         }
 894     }
 895 
 896     /**
 897      * Create a symbol for a class that implements a given functional interface
 898      * and overrides its functional descriptor. This routine is used for two
 899      * main purposes: (i) checking well-formedness of a functional interface;
 900      * (ii) perform functional interface bridge calculation.
 901      */
 902     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, Type target, long cflags) {
 903         if (target == null || target == syms.unknownType) {
 904             return null;
 905         }
 906         Symbol descSym = findDescriptorSymbol(target.tsym);
 907         Type descType = findDescriptorType(target);
 908         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
 909         csym.completer = Completer.NULL_COMPLETER;
 910         csym.members_field = WriteableScope.create(csym);
 911         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
 912         csym.members_field.enter(instDescSym);
 913         Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
 914         ctype.supertype_field = syms.objectType;
 915         ctype.interfaces_field = target.isIntersection() ?
 916                 directSupertypes(target) :
 917                 List.of(target);
 918         csym.type = ctype;
 919         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
 920         return csym;
 921     }
 922 
 923     /**
 924      * Find the minimal set of methods that are overridden by the functional
 925      * descriptor in 'origin'. All returned methods are assumed to have different
 926      * erased signatures.
 927      */
 928     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
 929         Assert.check(isFunctionalInterface(origin));
 930         Symbol descSym = findDescriptorSymbol(origin);
 931         CompoundScope members = membersClosure(origin.type, false);
 932         ListBuffer<Symbol> overridden = new ListBuffer<>();
 933         outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
 934             if (m2 == descSym) continue;
 935             else if (descSym.overrides(m2, origin, Types.this, false)) {
 936                 for (Symbol m3 : overridden) {
 937                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
 938                             (m3.overrides(m2, origin, Types.this, false) &&
 939                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
 940                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
 941                         continue outer;
 942                     }
 943                 }
 944                 overridden.add(m2);
 945             }
 946         }
 947         return overridden.toList();
 948     }
 949     //where
 950         // Use anonymous class instead of lambda expression intentionally,
 951         // because the variable `names` has modifier: final.
 952         private Predicate<Symbol> bridgeFilter = new Predicate<Symbol>() {
 953             public boolean test(Symbol t) {
 954                 return t.kind == MTH &&
 955                         t.name != names.init &&
 956                         t.name != names.clinit &&
 957                         (t.flags() & SYNTHETIC) == 0;
 958             }
 959         };
 960 
 961         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
 962             //a symbol will be completed from a classfile if (a) symbol has
 963             //an associated file object with CLASS kind and (b) the symbol has
 964             //not been entered
 965             if (origin.classfile != null &&
 966                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
 967                     enter.getEnv(origin) == null) {
 968                 return false;
 969             }
 970             if (origin == s) {
 971                 return true;
 972             }
 973             for (Type t : interfaces(origin.type)) {
 974                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
 975                     return true;
 976                 }
 977             }
 978             return false;
 979         }
 980     // </editor-fold>
 981 
 982    /**
 983     * Scope filter used to skip methods that should be ignored (such as methods
 984     * overridden by j.l.Object) during function interface conversion interface check
 985     */
 986     class DescriptorFilter implements Predicate<Symbol> {
 987 
 988        TypeSymbol origin;
 989 
 990        DescriptorFilter(TypeSymbol origin) {
 991            this.origin = origin;
 992        }
 993 
 994        @Override
 995        public boolean test(Symbol sym) {
 996            return sym.kind == MTH &&
 997                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
 998                    !overridesObjectMethod(origin, sym) &&
 999                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
1000        }
1001     }
1002 
1003     // <editor-fold defaultstate="collapsed" desc="isSubtype">
1004     /**
1005      * Is t an unchecked subtype of s?
1006      */
1007     public boolean isSubtypeUnchecked(Type t, Type s) {
1008         return isSubtypeUnchecked(t, s, noWarnings);
1009     }
1010     /**
1011      * Is t an unchecked subtype of s?
1012      */
1013     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
1014         boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
1015         if (result) {
1016             checkUnsafeVarargsConversion(t, s, warn);
1017         }
1018         return result;
1019     }
1020     //where
1021         private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
1022             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
1023                 if (((ArrayType)t).elemtype.isPrimitive()) {
1024                     return isSameType(elemtype(t), elemtype(s));
1025                 } else {
1026                     return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
1027                 }
1028             } else if (isSubtype(t, s, capture)) {
1029                 return true;
1030             } else if (t.hasTag(TYPEVAR)) {
1031                 return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
1032             } else if (!s.isRaw()) {
1033                 Type t2 = asSuper(t, s.tsym);
1034                 if (t2 != null && t2.isRaw()) {
1035                     if (isReifiable(s)) {
1036                         warn.silentWarn(LintCategory.UNCHECKED);
1037                     } else {
1038                         warn.warn(LintCategory.UNCHECKED);
1039                     }
1040                     return true;
1041                 }
1042             }
1043             return false;
1044         }
1045 
1046         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
1047             if (!t.hasTag(ARRAY) || isReifiable(t)) {
1048                 return;
1049             }
1050             ArrayType from = (ArrayType)t;
1051             boolean shouldWarn = false;
1052             switch (s.getTag()) {
1053                 case ARRAY:
1054                     ArrayType to = (ArrayType)s;
1055                     shouldWarn = from.isVarargs() &&
1056                             !to.isVarargs() &&
1057                             !isReifiable(from);
1058                     break;
1059                 case CLASS:
1060                     shouldWarn = from.isVarargs();
1061                     break;
1062             }
1063             if (shouldWarn) {
1064                 warn.warn(LintCategory.VARARGS);
1065             }
1066         }
1067 
1068     /**
1069      * Is t a subtype of s?<br>
1070      * (not defined for Method and ForAll types)
1071      */
1072     public final boolean isSubtype(Type t, Type s) {
1073         return isSubtype(t, s, true);
1074     }
1075     public final boolean isSubtypeNoCapture(Type t, Type s) {
1076         return isSubtype(t, s, false);
1077     }
1078     public boolean isSubtype(Type t, Type s, boolean capture) {
1079         if (t.equalsIgnoreMetadata(s))
1080             return true;
1081         if (s.isPartial())
1082             return isSuperType(s, t);
1083 
1084         if (s.isCompound()) {
1085             for (Type s2 : interfaces(s).prepend(supertype(s))) {
1086                 if (!isSubtype(t, s2, capture))
1087                     return false;
1088             }
1089             return true;
1090         }
1091 
1092         // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
1093         // for inference variables and intersections, we need to keep 's'
1094         // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
1095         if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
1096             // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
1097             Type lower = cvarLowerBound(wildLowerBound(s));
1098             if (s != lower && !lower.hasTag(BOT))
1099                 return isSubtype(capture ? capture(t) : t, lower, false);
1100         }
1101 
1102         return isSubtype.visit(capture ? capture(t) : t, s);
1103     }
1104     // where
1105         private TypeRelation isSubtype = new TypeRelation()
1106         {
1107             @Override
1108             public Boolean visitType(Type t, Type s) {
1109                 switch (t.getTag()) {
1110                  case BYTE:
1111                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
1112                  case CHAR:
1113                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
1114                  case SHORT: case INT: case LONG:
1115                  case FLOAT: case DOUBLE:
1116                      return t.getTag().isSubRangeOf(s.getTag());
1117                  case BOOLEAN: case VOID:
1118                      return t.hasTag(s.getTag());
1119                  case TYPEVAR:
1120                      return isSubtypeNoCapture(t.getUpperBound(), s);
1121                  case BOT:
1122                      return
1123                          s.hasTag(BOT) || s.hasTag(CLASS) ||
1124                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
1125                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
1126                  case NONE:
1127                      return false;
1128                  default:
1129                      throw new AssertionError("isSubtype " + t.getTag());
1130                  }
1131             }
1132 
1133             private Set<TypePair> cache = new HashSet<>();
1134 
1135             private boolean containsTypeRecursive(Type t, Type s) {
1136                 TypePair pair = new TypePair(t, s);
1137                 if (cache.add(pair)) {
1138                     try {
1139                         return containsType(t.getTypeArguments(),
1140                                             s.getTypeArguments());
1141                     } finally {
1142                         cache.remove(pair);
1143                     }
1144                 } else {
1145                     return containsType(t.getTypeArguments(),
1146                                         rewriteSupers(s).getTypeArguments());
1147                 }
1148             }
1149 
1150             private Type rewriteSupers(Type t) {
1151                 if (!t.isParameterized())
1152                     return t;
1153                 ListBuffer<Type> from = new ListBuffer<>();
1154                 ListBuffer<Type> to = new ListBuffer<>();
1155                 adaptSelf(t, from, to);
1156                 if (from.isEmpty())
1157                     return t;
1158                 ListBuffer<Type> rewrite = new ListBuffer<>();
1159                 boolean changed = false;
1160                 for (Type orig : to.toList()) {
1161                     Type s = rewriteSupers(orig);
1162                     if (s.isSuperBound() && !s.isExtendsBound()) {
1163                         s = new WildcardType(syms.objectType,
1164                                              BoundKind.UNBOUND,
1165                                              syms.boundClass,
1166                                              s.getMetadata());
1167                         changed = true;
1168                     } else if (s != orig) {
1169                         s = new WildcardType(wildUpperBound(s),
1170                                              BoundKind.EXTENDS,
1171                                              syms.boundClass,
1172                                              s.getMetadata());
1173                         changed = true;
1174                     }
1175                     rewrite.append(s);
1176                 }
1177                 if (changed)
1178                     return subst(t.tsym.type, from.toList(), rewrite.toList());
1179                 else
1180                     return t;
1181             }
1182 
1183             @Override
1184             public Boolean visitClassType(ClassType t, Type s) {
1185                 Type sup = asSuper(t, s.tsym);
1186                 if (sup == null) return false;
1187                 // If t is an intersection, sup might not be a class type
1188                 if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
1189                 return sup.tsym == s.tsym
1190                      // Check type variable containment
1191                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
1192                     && isSubtypeNoCapture(sup.getEnclosingType(),
1193                                           s.getEnclosingType());
1194             }
1195 
1196             @Override
1197             public Boolean visitArrayType(ArrayType t, Type s) {
1198                 if (s.hasTag(ARRAY)) {
1199                     if (t.elemtype.isPrimitive())
1200                         return isSameType(t.elemtype, elemtype(s));
1201                     else
1202                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
1203                 }
1204 
1205                 if (s.hasTag(CLASS)) {
1206                     Name sname = s.tsym.getQualifiedName();
1207                     return sname == names.java_lang_Object
1208                         || sname == names.java_lang_Cloneable
1209                         || sname == names.java_io_Serializable;
1210                 }
1211 
1212                 return false;
1213             }
1214 
1215             @Override
1216             public Boolean visitUndetVar(UndetVar t, Type s) {
1217                 //todo: test against origin needed? or replace with substitution?
1218                 if (t == s || t.qtype == s || s.hasTag(ERROR)) {
1219                     return true;
1220                 } else if (s.hasTag(BOT)) {
1221                     //if 's' is 'null' there's no instantiated type U for which
1222                     //U <: s (but 'null' itself, which is not a valid type)
1223                     return false;
1224                 }
1225 
1226                 t.addBound(InferenceBound.UPPER, s, Types.this);
1227                 return true;
1228             }
1229 
1230             @Override
1231             public Boolean visitErrorType(ErrorType t, Type s) {
1232                 return true;
1233             }
1234         };
1235 
1236     /**
1237      * Is t a subtype of every type in given list `ts'?<br>
1238      * (not defined for Method and ForAll types)<br>
1239      * Allows unchecked conversions.
1240      */
1241     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
1242         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1243             if (!isSubtypeUnchecked(t, l.head, warn))
1244                 return false;
1245         return true;
1246     }
1247 
1248     /**
1249      * Are corresponding elements of ts subtypes of ss?  If lists are
1250      * of different length, return false.
1251      */
1252     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
1253         while (ts.tail != null && ss.tail != null
1254                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1255                isSubtype(ts.head, ss.head)) {
1256             ts = ts.tail;
1257             ss = ss.tail;
1258         }
1259         return ts.tail == null && ss.tail == null;
1260         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1261     }
1262 
1263     /**
1264      * Are corresponding elements of ts subtypes of ss, allowing
1265      * unchecked conversions?  If lists are of different length,
1266      * return false.
1267      **/
1268     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
1269         while (ts.tail != null && ss.tail != null
1270                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1271                isSubtypeUnchecked(ts.head, ss.head, warn)) {
1272             ts = ts.tail;
1273             ss = ss.tail;
1274         }
1275         return ts.tail == null && ss.tail == null;
1276         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1277     }
1278     // </editor-fold>
1279 
1280     // <editor-fold defaultstate="collapsed" desc="isSuperType">
1281     /**
1282      * Is t a supertype of s?
1283      */
1284     public boolean isSuperType(Type t, Type s) {
1285         switch (t.getTag()) {
1286         case ERROR:
1287             return true;
1288         case UNDETVAR: {
1289             UndetVar undet = (UndetVar)t;
1290             if (t == s ||
1291                 undet.qtype == s ||
1292                 s.hasTag(ERROR) ||
1293                 s.hasTag(BOT)) {
1294                 return true;
1295             }
1296             undet.addBound(InferenceBound.LOWER, s, this);
1297             return true;
1298         }
1299         default:
1300             return isSubtype(s, t);
1301         }
1302     }
1303     // </editor-fold>
1304 
1305     // <editor-fold defaultstate="collapsed" desc="isSameType">
1306     /**
1307      * Are corresponding elements of the lists the same type?  If
1308      * lists are of different length, return false.
1309      */
1310     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1311         while (ts.tail != null && ss.tail != null
1312                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1313                isSameType(ts.head, ss.head)) {
1314             ts = ts.tail;
1315             ss = ss.tail;
1316         }
1317         return ts.tail == null && ss.tail == null;
1318         /*inlined: ts.isEmpty() && ss.isEmpty();*/
1319     }
1320 
1321     /**
1322      * A polymorphic signature method (JLS 15.12.3) is a method that
1323      *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1324      *  (ii) takes a single variable arity parameter;
1325      * (iii) whose declared type is Object[];
1326      *  (iv) has any return type, Object signifying a polymorphic return type; and
1327      *   (v) is native.
1328     */
1329    public boolean isSignaturePolymorphic(MethodSymbol msym) {
1330        List<Type> argtypes = msym.type.getParameterTypes();
1331        return (msym.flags_field & NATIVE) != 0 &&
1332               (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1333                argtypes.length() == 1 &&
1334                argtypes.head.hasTag(TypeTag.ARRAY) &&
1335                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1336    }
1337 
1338     /**
1339      * Is t the same type as s?
1340      */
1341     public boolean isSameType(Type t, Type s) {
1342         return isSameTypeVisitor.visit(t, s);
1343     }
1344     // where
1345 
1346         /**
1347          * Type-equality relation - type variables are considered
1348          * equals if they share the same object identity.
1349          */
1350         abstract class TypeEqualityVisitor extends TypeRelation {
1351 
1352             public Boolean visitType(Type t, Type s) {
1353                 if (t.equalsIgnoreMetadata(s))
1354                     return true;
1355 
1356                 if (s.isPartial())
1357                     return visit(s, t);
1358 
1359                 switch (t.getTag()) {
1360                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1361                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1362                     return t.hasTag(s.getTag());
1363                 case TYPEVAR: {
1364                     if (s.hasTag(TYPEVAR)) {
1365                         //type-substitution does not preserve type-var types
1366                         //check that type var symbols and bounds are indeed the same
1367                         return t == s;
1368                     }
1369                     else {
1370                         //special case for s == ? super X, where upper(s) = u
1371                         //check that u == t, where u has been set by Type.withTypeVar
1372                         return s.isSuperBound() &&
1373                                 !s.isExtendsBound() &&
1374                                 visit(t, wildUpperBound(s));
1375                     }
1376                 }
1377                 default:
1378                     throw new AssertionError("isSameType " + t.getTag());
1379                 }
1380             }
1381 
1382             @Override
1383             public Boolean visitWildcardType(WildcardType t, Type s) {
1384                 if (!s.hasTag(WILDCARD)) {
1385                     return false;
1386                 } else {
1387                     WildcardType t2 = (WildcardType)s;
1388                     return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
1389                             sameTypeComparator(t.type, t2.type);
1390                 }
1391             }
1392 
1393             abstract boolean sameTypeComparator(Type t, Type s);
1394 
1395             @Override
1396             public Boolean visitClassType(ClassType t, Type s) {
1397                 if (t == s)
1398                     return true;
1399 
1400                 if (s.isPartial())
1401                     return visit(s, t);
1402 
1403                 if (s.isSuperBound() && !s.isExtendsBound())
1404                     return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1405 
1406                 if (t.isCompound() && s.isCompound()) {
1407                     if (!visit(supertype(t), supertype(s)))
1408                         return false;
1409 
1410                     Map<Symbol,Type> tMap = new HashMap<>();
1411                     for (Type ti : interfaces(t)) {
1412                         tMap.put(ti.tsym, ti);
1413                     }
1414                     for (Type si : interfaces(s)) {
1415                         if (!tMap.containsKey(si.tsym))
1416                             return false;
1417                         Type ti = tMap.remove(si.tsym);
1418                         if (!visit(ti, si))
1419                             return false;
1420                     }
1421                     return tMap.isEmpty();
1422                 }
1423                 return t.tsym == s.tsym
1424                     && visit(t.getEnclosingType(), s.getEnclosingType())
1425                     && sameTypeArguments(t.getTypeArguments(), s.getTypeArguments());
1426             }
1427 
1428             abstract boolean sameTypeArguments(List<Type> ts, List<Type> ss);
1429 
1430             @Override
1431             public Boolean visitArrayType(ArrayType t, Type s) {
1432                 if (t == s)
1433                     return true;
1434 
1435                 if (s.isPartial())
1436                     return visit(s, t);
1437 
1438                 return s.hasTag(ARRAY)
1439                     && containsTypeEquivalent(t.elemtype, elemtype(s));
1440             }
1441 
1442             @Override
1443             public Boolean visitMethodType(MethodType t, Type s) {
1444                 // isSameType for methods does not take thrown
1445                 // exceptions into account!
1446                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1447             }
1448 
1449             @Override
1450             public Boolean visitPackageType(PackageType t, Type s) {
1451                 return t == s;
1452             }
1453 
1454             @Override
1455             public Boolean visitForAll(ForAll t, Type s) {
1456                 if (!s.hasTag(FORALL)) {
1457                     return false;
1458                 }
1459 
1460                 ForAll forAll = (ForAll)s;
1461                 return hasSameBounds(t, forAll)
1462                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1463             }
1464 
1465             @Override
1466             public Boolean visitUndetVar(UndetVar t, Type s) {
1467                 if (s.hasTag(WILDCARD)) {
1468                     // FIXME, this might be leftovers from before capture conversion
1469                     return false;
1470                 }
1471 
1472                 if (t == s || t.qtype == s || s.hasTag(ERROR)) {
1473                     return true;
1474                 }
1475 
1476                 t.addBound(InferenceBound.EQ, s, Types.this);
1477 
1478                 return true;
1479             }
1480 
1481             @Override
1482             public Boolean visitErrorType(ErrorType t, Type s) {
1483                 return true;
1484             }
1485         }
1486 
1487         TypeEqualityVisitor isSameTypeVisitor = new TypeEqualityVisitor() {
1488             boolean sameTypeComparator(Type t, Type s) {
1489                 return isSameType(t, s);
1490             }
1491 
1492             boolean sameTypeArguments(List<Type> ts, List<Type> ss) {
1493                 return containsTypeEquivalent(ts, ss);
1494             }
1495         };
1496 
1497     // </editor-fold>
1498 
1499     // <editor-fold defaultstate="collapsed" desc="Contains Type">
1500     public boolean containedBy(Type t, Type s) {
1501         switch (t.getTag()) {
1502         case UNDETVAR:
1503             if (s.hasTag(WILDCARD)) {
1504                 UndetVar undetvar = (UndetVar)t;
1505                 WildcardType wt = (WildcardType)s;
1506                 switch(wt.kind) {
1507                     case UNBOUND:
1508                         break;
1509                     case EXTENDS: {
1510                         Type bound = wildUpperBound(s);
1511                         undetvar.addBound(InferenceBound.UPPER, bound, this);
1512                         break;
1513                     }
1514                     case SUPER: {
1515                         Type bound = wildLowerBound(s);
1516                         undetvar.addBound(InferenceBound.LOWER, bound, this);
1517                         break;
1518                     }
1519                 }
1520                 return true;
1521             } else {
1522                 return isSameType(t, s);
1523             }
1524         case ERROR:
1525             return true;
1526         default:
1527             return containsType(s, t);
1528         }
1529     }
1530 
1531     boolean containsType(List<Type> ts, List<Type> ss) {
1532         while (ts.nonEmpty() && ss.nonEmpty()
1533                && containsType(ts.head, ss.head)) {
1534             ts = ts.tail;
1535             ss = ss.tail;
1536         }
1537         return ts.isEmpty() && ss.isEmpty();
1538     }
1539 
1540     /**
1541      * Check if t contains s.
1542      *
1543      * <p>T contains S if:
1544      *
1545      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1546      *
1547      * <p>This relation is only used by ClassType.isSubtype(), that
1548      * is,
1549      *
1550      * <p>{@code C<S> <: C<T> if T contains S.}
1551      *
1552      * <p>Because of F-bounds, this relation can lead to infinite
1553      * recursion.  Thus we must somehow break that recursion.  Notice
1554      * that containsType() is only called from ClassType.isSubtype().
1555      * Since the arguments have already been checked against their
1556      * bounds, we know:
1557      *
1558      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1559      *
1560      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1561      *
1562      * @param t a type
1563      * @param s a type
1564      */
1565     public boolean containsType(Type t, Type s) {
1566         return containsType.visit(t, s);
1567     }
1568     // where
1569         private TypeRelation containsType = new TypeRelation() {
1570 
1571             public Boolean visitType(Type t, Type s) {
1572                 if (s.isPartial())
1573                     return containedBy(s, t);
1574                 else
1575                     return isSameType(t, s);
1576             }
1577 
1578 //            void debugContainsType(WildcardType t, Type s) {
1579 //                System.err.println();
1580 //                System.err.format(" does %s contain %s?%n", t, s);
1581 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1582 //                                  wildUpperBound(s), s, t, wildUpperBound(t),
1583 //                                  t.isSuperBound()
1584 //                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1585 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1586 //                                  wildLowerBound(t), t, s, wildLowerBound(s),
1587 //                                  t.isExtendsBound()
1588 //                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1589 //                System.err.println();
1590 //            }
1591 
1592             @Override
1593             public Boolean visitWildcardType(WildcardType t, Type s) {
1594                 if (s.isPartial())
1595                     return containedBy(s, t);
1596                 else {
1597 //                    debugContainsType(t, s);
1598                     return isSameWildcard(t, s)
1599                         || isCaptureOf(s, t)
1600                         || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1601                             (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1602                 }
1603             }
1604 
1605             @Override
1606             public Boolean visitUndetVar(UndetVar t, Type s) {
1607                 if (!s.hasTag(WILDCARD)) {
1608                     return isSameType(t, s);
1609                 } else {
1610                     return false;
1611                 }
1612             }
1613 
1614             @Override
1615             public Boolean visitErrorType(ErrorType t, Type s) {
1616                 return true;
1617             }
1618         };
1619 
1620     public boolean isCaptureOf(Type s, WildcardType t) {
1621         if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1622             return false;
1623         return isSameWildcard(t, ((CapturedType)s).wildcard);
1624     }
1625 
1626     public boolean isSameWildcard(WildcardType t, Type s) {
1627         if (!s.hasTag(WILDCARD))
1628             return false;
1629         WildcardType w = (WildcardType)s;
1630         return w.kind == t.kind && w.type == t.type;
1631     }
1632 
1633     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1634         while (ts.nonEmpty() && ss.nonEmpty()
1635                && containsTypeEquivalent(ts.head, ss.head)) {
1636             ts = ts.tail;
1637             ss = ss.tail;
1638         }
1639         return ts.isEmpty() && ss.isEmpty();
1640     }
1641     // </editor-fold>
1642 
1643     // <editor-fold defaultstate="collapsed" desc="isCastable">
1644     public boolean isCastable(Type t, Type s) {
1645         return isCastable(t, s, noWarnings);
1646     }
1647 
1648     /**
1649      * Is t castable to s?<br>
1650      * s is assumed to be an erased type.<br>
1651      * (not defined for Method and ForAll types).
1652      */
1653     public boolean isCastable(Type t, Type s, Warner warn) {
1654         // if same type
1655         if (t == s)
1656             return true;
1657         // if one of the types is primitive
1658         if (t.isPrimitive() != s.isPrimitive()) {
1659             t = skipTypeVars(t, false);
1660             return (isConvertible(t, s, warn)
1661                     || (s.isPrimitive() &&
1662                         isSubtype(boxedClass(s).type, t)));
1663         }
1664         boolean result;
1665         if (warn != warnStack.head) {
1666             try {
1667                 warnStack = warnStack.prepend(warn);
1668                 checkUnsafeVarargsConversion(t, s, warn);
1669                 result = isCastable.visit(t,s);
1670             } finally {
1671                 warnStack = warnStack.tail;
1672             }
1673         } else {
1674             result = isCastable.visit(t,s);
1675         }
1676         if (result && t.hasTag(CLASS) && t.tsym.kind.matches(Kinds.KindSelector.TYP)
1677                 && s.hasTag(CLASS) && s.tsym.kind.matches(Kinds.KindSelector.TYP)
1678                 && (t.tsym.isSealed() || s.tsym.isSealed())) {
1679             return (t.isCompound() || s.isCompound()) ?
1680                     true :
1681                     !(new DisjointChecker().areDisjoint((ClassSymbol)t.tsym, (ClassSymbol)s.tsym));
1682         }
1683         return result;
1684     }
1685     // where
1686         class DisjointChecker {
1687             Set<Pair<ClassSymbol, ClassSymbol>> pairsSeen = new HashSet<>();
1688             /* there are three cases for ts and ss:
1689              *   - one is a class and the other one is an interface (case I)
1690              *   - both are classes                                 (case II)
1691              *   - both are interfaces                              (case III)
1692              * all those cases are covered in JLS 23, section: "5.1.6.1 Allowed Narrowing Reference Conversion"
1693              */
1694             private boolean areDisjoint(ClassSymbol ts, ClassSymbol ss) {
1695                 Pair<ClassSymbol, ClassSymbol> newPair = new Pair<>(ts, ss);
1696                 /* if we are seeing the same pair again then there is an issue with the sealed hierarchy
1697                  * bail out, a detailed error will be reported downstream
1698                  */
1699                 if (!pairsSeen.add(newPair))
1700                     return false;
1701 
1702                 if (ts.isInterface() != ss.isInterface()) { // case I: one is a class and the other one is an interface
1703                     ClassSymbol isym = ts.isInterface() ? ts : ss; // isym is the interface and csym the class
1704                     ClassSymbol csym = isym == ts ? ss : ts;
1705                     if (!isSubtype(erasure(csym.type), erasure(isym.type))) {
1706                         if (csym.isFinal()) {
1707                             return true;
1708                         } else if (csym.isSealed()) {
1709                             return areDisjoint(isym, csym.getPermittedSubclasses());
1710                         } else if (isym.isSealed()) {
1711                             // if the class is not final and not sealed then it has to be freely extensible
1712                             return areDisjoint(csym, isym.getPermittedSubclasses());
1713                         }
1714                     } // now both are classes or both are interfaces
1715                 } else if (!ts.isInterface()) {              // case II: both are classes
1716                     return !isSubtype(erasure(ss.type), erasure(ts.type)) && !isSubtype(erasure(ts.type), erasure(ss.type));
1717                 } else {                                     // case III: both are interfaces
1718                     if (!isSubtype(erasure(ts.type), erasure(ss.type)) && !isSubtype(erasure(ss.type), erasure(ts.type))) {
1719                         if (ts.isSealed()) {
1720                             return areDisjoint(ss, ts.getPermittedSubclasses());
1721                         } else if (ss.isSealed()) {
1722                             return areDisjoint(ts, ss.getPermittedSubclasses());
1723                         }
1724                     }
1725                 }
1726                 // at this point we haven't been able to statically prove that the classes or interfaces are disjoint
1727                 return false;
1728             }
1729 
1730             boolean areDisjoint(ClassSymbol csym, List<Type> permittedSubtypes) {
1731                 return permittedSubtypes.stream().allMatch(psubtype -> areDisjoint(csym, (ClassSymbol) psubtype.tsym));
1732             }
1733         }
1734 
1735         private TypeRelation isCastable = new TypeRelation() {
1736 
1737             public Boolean visitType(Type t, Type s) {
1738                 if (s.hasTag(ERROR) || t.hasTag(NONE))
1739                     return true;
1740 
1741                 switch (t.getTag()) {
1742                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1743                 case DOUBLE:
1744                     return s.isNumeric();
1745                 case BOOLEAN:
1746                     return s.hasTag(BOOLEAN);
1747                 case VOID:
1748                     return false;
1749                 case BOT:
1750                     return isSubtype(t, s);
1751                 default:
1752                     throw new AssertionError();
1753                 }
1754             }
1755 
1756             @Override
1757             public Boolean visitWildcardType(WildcardType t, Type s) {
1758                 return isCastable(wildUpperBound(t), s, warnStack.head);
1759             }
1760 
1761             @Override
1762             public Boolean visitClassType(ClassType t, Type s) {
1763                 if (s.hasTag(ERROR) || s.hasTag(BOT))
1764                     return true;
1765 
1766                 if (s.hasTag(TYPEVAR)) {
1767                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
1768                         warnStack.head.warn(LintCategory.UNCHECKED);
1769                         return true;
1770                     } else {
1771                         return false;
1772                     }
1773                 }
1774 
1775                 if (t.isCompound() || s.isCompound()) {
1776                     return !t.isCompound() ?
1777                             visitCompoundType((ClassType)s, t, true) :
1778                             visitCompoundType(t, s, false);
1779                 }
1780 
1781                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1782                     boolean upcast;
1783                     if ((upcast = isSubtype(erasure(t), erasure(s)))
1784                         || isSubtype(erasure(s), erasure(t))) {
1785                         if (!upcast && s.hasTag(ARRAY)) {
1786                             if (!isReifiable(s))
1787                                 warnStack.head.warn(LintCategory.UNCHECKED);
1788                             return true;
1789                         } else if (s.isRaw()) {
1790                             return true;
1791                         } else if (t.isRaw()) {
1792                             if (!isUnbounded(s))
1793                                 warnStack.head.warn(LintCategory.UNCHECKED);
1794                             return true;
1795                         }
1796                         // Assume |a| <: |b|
1797                         final Type a = upcast ? t : s;
1798                         final Type b = upcast ? s : t;
1799                         final boolean HIGH = true;
1800                         final boolean LOW = false;
1801                         final boolean DONT_REWRITE_TYPEVARS = false;
1802                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1803                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1804                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1805                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1806                         Type lowSub = asSub(bLow, aLow.tsym);
1807                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1808                         if (highSub == null) {
1809                             final boolean REWRITE_TYPEVARS = true;
1810                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1811                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1812                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1813                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1814                             lowSub = asSub(bLow, aLow.tsym);
1815                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1816                         }
1817                         if (highSub != null) {
1818                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1819                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1820                             }
1821                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1822                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1823                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
1824                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1825                                 if (upcast ? giveWarning(a, b) :
1826                                     giveWarning(b, a))
1827                                     warnStack.head.warn(LintCategory.UNCHECKED);
1828                                 return true;
1829                             }
1830                         }
1831                         if (isReifiable(s))
1832                             return isSubtypeUnchecked(a, b);
1833                         else
1834                             return isSubtypeUnchecked(a, b, warnStack.head);
1835                     }
1836 
1837                     // Sidecast
1838                     if (s.hasTag(CLASS)) {
1839                         if ((s.tsym.flags() & INTERFACE) != 0) {
1840                             return ((t.tsym.flags() & FINAL) == 0)
1841                                 ? sideCast(t, s, warnStack.head)
1842                                 : sideCastFinal(t, s, warnStack.head);
1843                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
1844                             return ((s.tsym.flags() & FINAL) == 0)
1845                                 ? sideCast(t, s, warnStack.head)
1846                                 : sideCastFinal(t, s, warnStack.head);
1847                         } else {
1848                             // unrelated class types
1849                             return false;
1850                         }
1851                     }
1852                 }
1853                 return false;
1854             }
1855 
1856             boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1857                 Warner warn = noWarnings;
1858                 for (Type c : directSupertypes(ct)) {
1859                     warn.clear();
1860                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1861                         return false;
1862                 }
1863                 if (warn.hasLint(LintCategory.UNCHECKED))
1864                     warnStack.head.warn(LintCategory.UNCHECKED);
1865                 return true;
1866             }
1867 
1868             @Override
1869             public Boolean visitArrayType(ArrayType t, Type s) {
1870                 switch (s.getTag()) {
1871                 case ERROR:
1872                 case BOT:
1873                     return true;
1874                 case TYPEVAR:
1875                     if (isCastable(s, t, noWarnings)) {
1876                         warnStack.head.warn(LintCategory.UNCHECKED);
1877                         return true;
1878                     } else {
1879                         return false;
1880                     }
1881                 case CLASS:
1882                     return isSubtype(t, s);
1883                 case ARRAY:
1884                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1885                         return elemtype(t).hasTag(elemtype(s).getTag());
1886                     } else {
1887                         return isCastable(elemtype(t), elemtype(s), warnStack.head);
1888                     }
1889                 default:
1890                     return false;
1891                 }
1892             }
1893 
1894             @Override
1895             public Boolean visitTypeVar(TypeVar t, Type s) {
1896                 switch (s.getTag()) {
1897                 case ERROR:
1898                 case BOT:
1899                     return true;
1900                 case TYPEVAR:
1901                     if (isSubtype(t, s)) {
1902                         return true;
1903                     } else if (isCastable(t.getUpperBound(), s, noWarnings)) {
1904                         warnStack.head.warn(LintCategory.UNCHECKED);
1905                         return true;
1906                     } else {
1907                         return false;
1908                     }
1909                 default:
1910                     return isCastable(t.getUpperBound(), s, warnStack.head);
1911                 }
1912             }
1913 
1914             @Override
1915             public Boolean visitErrorType(ErrorType t, Type s) {
1916                 return true;
1917             }
1918         };
1919     // </editor-fold>
1920 
1921     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1922     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1923         while (ts.tail != null && ss.tail != null) {
1924             if (disjointType(ts.head, ss.head)) return true;
1925             ts = ts.tail;
1926             ss = ss.tail;
1927         }
1928         return false;
1929     }
1930 
1931     /**
1932      * Two types or wildcards are considered disjoint if it can be
1933      * proven that no type can be contained in both. It is
1934      * conservative in that it is allowed to say that two types are
1935      * not disjoint, even though they actually are.
1936      *
1937      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1938      * {@code X} and {@code Y} are not disjoint.
1939      */
1940     public boolean disjointType(Type t, Type s) {
1941         return disjointType.visit(t, s);
1942     }
1943     // where
1944         private TypeRelation disjointType = new TypeRelation() {
1945 
1946             private Set<TypePair> cache = new HashSet<>();
1947 
1948             @Override
1949             public Boolean visitType(Type t, Type s) {
1950                 if (s.hasTag(WILDCARD))
1951                     return visit(s, t);
1952                 else
1953                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1954             }
1955 
1956             private boolean isCastableRecursive(Type t, Type s) {
1957                 TypePair pair = new TypePair(t, s);
1958                 if (cache.add(pair)) {
1959                     try {
1960                         return Types.this.isCastable(t, s);
1961                     } finally {
1962                         cache.remove(pair);
1963                     }
1964                 } else {
1965                     return true;
1966                 }
1967             }
1968 
1969             private boolean notSoftSubtypeRecursive(Type t, Type s) {
1970                 TypePair pair = new TypePair(t, s);
1971                 if (cache.add(pair)) {
1972                     try {
1973                         return Types.this.notSoftSubtype(t, s);
1974                     } finally {
1975                         cache.remove(pair);
1976                     }
1977                 } else {
1978                     return false;
1979                 }
1980             }
1981 
1982             @Override
1983             public Boolean visitWildcardType(WildcardType t, Type s) {
1984                 if (t.isUnbound())
1985                     return false;
1986 
1987                 if (!s.hasTag(WILDCARD)) {
1988                     if (t.isExtendsBound())
1989                         return notSoftSubtypeRecursive(s, t.type);
1990                     else
1991                         return notSoftSubtypeRecursive(t.type, s);
1992                 }
1993 
1994                 if (s.isUnbound())
1995                     return false;
1996 
1997                 if (t.isExtendsBound()) {
1998                     if (s.isExtendsBound())
1999                         return !isCastableRecursive(t.type, wildUpperBound(s));
2000                     else if (s.isSuperBound())
2001                         return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
2002                 } else if (t.isSuperBound()) {
2003                     if (s.isExtendsBound())
2004                         return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
2005                 }
2006                 return false;
2007             }
2008         };
2009     // </editor-fold>
2010 
2011     // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
2012     public List<Type> cvarLowerBounds(List<Type> ts) {
2013         return ts.map(cvarLowerBoundMapping);
2014     }
2015         private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
2016             @Override
2017             public Type visitCapturedType(CapturedType t, Void _unused) {
2018                 return cvarLowerBound(t);
2019             }
2020         };
2021     // </editor-fold>
2022 
2023     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
2024     /**
2025      * This relation answers the question: is impossible that
2026      * something of type `t' can be a subtype of `s'? This is
2027      * different from the question "is `t' not a subtype of `s'?"
2028      * when type variables are involved: Integer is not a subtype of T
2029      * where {@code <T extends Number>} but it is not true that Integer cannot
2030      * possibly be a subtype of T.
2031      */
2032     public boolean notSoftSubtype(Type t, Type s) {
2033         if (t == s) return false;
2034         if (t.hasTag(TYPEVAR)) {
2035             TypeVar tv = (TypeVar) t;
2036             return !isCastable(tv.getUpperBound(),
2037                                relaxBound(s),
2038                                noWarnings);
2039         }
2040         if (!s.hasTag(WILDCARD))
2041             s = cvarUpperBound(s);
2042 
2043         return !isSubtype(t, relaxBound(s));
2044     }
2045 
2046     private Type relaxBound(Type t) {
2047         return (t.hasTag(TYPEVAR)) ?
2048                 rewriteQuantifiers(skipTypeVars(t, false), true, true) :
2049                 t;
2050     }
2051     // </editor-fold>
2052 
2053     // <editor-fold defaultstate="collapsed" desc="isReifiable">
2054     public boolean isReifiable(Type t) {
2055         return isReifiable.visit(t);
2056     }
2057     // where
2058         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
2059 
2060             public Boolean visitType(Type t, Void ignored) {
2061                 return true;
2062             }
2063 
2064             @Override
2065             public Boolean visitClassType(ClassType t, Void ignored) {
2066                 if (t.isCompound())
2067                     return false;
2068                 else {
2069                     if (!t.isParameterized())
2070                         return true;
2071 
2072                     for (Type param : t.allparams()) {
2073                         if (!param.isUnbound())
2074                             return false;
2075                     }
2076                     return true;
2077                 }
2078             }
2079 
2080             @Override
2081             public Boolean visitArrayType(ArrayType t, Void ignored) {
2082                 return visit(t.elemtype);
2083             }
2084 
2085             @Override
2086             public Boolean visitTypeVar(TypeVar t, Void ignored) {
2087                 return false;
2088             }
2089         };
2090     // </editor-fold>
2091 
2092     // <editor-fold defaultstate="collapsed" desc="Array Utils">
2093     public boolean isArray(Type t) {
2094         while (t.hasTag(WILDCARD))
2095             t = wildUpperBound(t);
2096         return t.hasTag(ARRAY);
2097     }
2098 
2099     /**
2100      * The element type of an array.
2101      */
2102     public Type elemtype(Type t) {
2103         switch (t.getTag()) {
2104         case WILDCARD:
2105             return elemtype(wildUpperBound(t));
2106         case ARRAY:
2107             return ((ArrayType)t).elemtype;
2108         case FORALL:
2109             return elemtype(((ForAll)t).qtype);
2110         case ERROR:
2111             return t;
2112         default:
2113             return null;
2114         }
2115     }
2116 
2117     public Type elemtypeOrType(Type t) {
2118         Type elemtype = elemtype(t);
2119         return elemtype != null ?
2120             elemtype :
2121             t;
2122     }
2123 
2124     /**
2125      * Mapping to take element type of an arraytype
2126      */
2127     private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
2128         @Override
2129         public Type visitArrayType(ArrayType t, Void _unused) {
2130             return t.elemtype;
2131         }
2132 
2133         @Override
2134         public Type visitTypeVar(TypeVar t, Void _unused) {
2135             return visit(skipTypeVars(t, false));
2136         }
2137     };
2138 
2139     /**
2140      * The number of dimensions of an array type.
2141      */
2142     public int dimensions(Type t) {
2143         int result = 0;
2144         while (t.hasTag(ARRAY)) {
2145             result++;
2146             t = elemtype(t);
2147         }
2148         return result;
2149     }
2150 
2151     /**
2152      * Returns an ArrayType with the component type t
2153      *
2154      * @param t The component type of the ArrayType
2155      * @return the ArrayType for the given component
2156      */
2157     public ArrayType makeArrayType(Type t) {




2158         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
2159             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
2160         }
2161         return new ArrayType(t, syms.arrayClass);




2162     }
2163     // </editor-fold>
2164 
2165     // <editor-fold defaultstate="collapsed" desc="asSuper">
2166     /**
2167      * Return the (most specific) base type of t that starts with the
2168      * given symbol.  If none exists, return null.
2169      *
2170      * Caveat Emptor: Since javac represents the class of all arrays with a singleton
2171      * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
2172      * this method could yield surprising answers when invoked on arrays. For example when
2173      * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
2174      *
2175      * @param t a type
2176      * @param sym a symbol
2177      */
2178     public Type asSuper(Type t, Symbol sym) {
2179         /* Some examples:
2180          *
2181          * (Enum<E>, Comparable) => Comparable<E>
2182          * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
2183          * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
2184          * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
2185          *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
2186          */
2187         if (sym.type == syms.objectType) { //optimization
2188             return syms.objectType;
2189         }
2190         return asSuper.visit(t, sym);
2191     }
2192     // where
2193         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
2194 
2195             private Set<Symbol> seenTypes = new HashSet<>();
2196 
2197             public Type visitType(Type t, Symbol sym) {
2198                 return null;
2199             }
2200 
2201             @Override
2202             public Type visitClassType(ClassType t, Symbol sym) {
2203                 if (t.tsym == sym)
2204                     return t;
2205 
2206                 Symbol c = t.tsym;
2207                 if (!seenTypes.add(c)) {
2208                     return null;
2209                 }
2210                 try {
2211                     Type st = supertype(t);
2212                     if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
2213                         Type x = asSuper(st, sym);
2214                         if (x != null)
2215                             return x;
2216                     }
2217                     if ((sym.flags() & INTERFACE) != 0) {
2218                         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
2219                             if (!l.head.hasTag(ERROR)) {
2220                                 Type x = asSuper(l.head, sym);
2221                                 if (x != null)
2222                                     return x;
2223                             }
2224                         }
2225                     }
2226                     return null;
2227                 } finally {
2228                     seenTypes.remove(c);
2229                 }
2230             }
2231 
2232             @Override
2233             public Type visitArrayType(ArrayType t, Symbol sym) {
2234                 return isSubtype(t, sym.type) ? sym.type : null;
2235             }
2236 
2237             @Override
2238             public Type visitTypeVar(TypeVar t, Symbol sym) {
2239                 if (t.tsym == sym)
2240                     return t;
2241                 else
2242                     return asSuper(t.getUpperBound(), sym);
2243             }
2244 
2245             @Override
2246             public Type visitErrorType(ErrorType t, Symbol sym) {
2247                 return t;
2248             }
2249         };
2250 
2251     /**
2252      *  This method returns the first type in a sequence (starting at `t`) that is
2253      *  a subclass of `sym`. The next type in the sequence is obtained by calling
2254      *  `getEnclosingType()` on the previous type in the sequence. Note, this is
2255      *  typically used to compute the implicit qualifier in a method/field access
2256      *  expression. Example:
2257      *
2258      *  static class Sup<F> { public F f; }
2259      *   class Outer {
2260      *    static class Sub extends Sup<String> {
2261      *        class I {
2262      *          void test() {
2263      *              String f2 = f; // Sup<String>::f
2264      *          }
2265      *        }
2266      *    }
2267      *  }
2268      *
2269      *  @param t a type
2270      *  @param sym a symbol
2271      */
2272     public Type asOuterSuper(Type t, Symbol sym) {
2273         Type t1 = t;
2274         while (!t1.hasTag(NONE)) {
2275             Type s = asSuper(t1, sym);
2276             if (s != null) return s;
2277             t1 = t1.getEnclosingType();
2278         }
2279         return null;
2280     }
2281 
2282     /**
2283      * This method returns the first type in a sequence (starting at `t`) that is
2284      * a subclass of `sym`. The next type in the sequence is obtained by obtaining
2285      * innermost lexically enclosing class type of the previous type in the sequence.
2286      * Note, this is typically used to compute the implicit qualifier in
2287      * a type expression. Example:
2288      *
2289      * class A<T> { class B { } }
2290      *
2291      * class C extends A<String> {
2292      *   static class D {
2293      *      B b; // A<String>.B
2294      *   }
2295      * }
2296      *
2297      * @param t a type
2298      * @param sym a symbol
2299      */
2300     public Type asEnclosingSuper(Type t, Symbol sym) {
2301         Type t1 = t;
2302         while (!t1.hasTag(NONE)) {
2303             Type s = asSuper(t1, sym);
2304             if (s != null) return s;
2305             t1 = (t1.tsym.owner.enclClass() != null)
2306                     ? t1.tsym.owner.enclClass().type
2307                     : noType;
2308         }
2309         return null;
2310     }
2311     // </editor-fold>
2312 
2313     // <editor-fold defaultstate="collapsed" desc="memberType">
2314     /**
2315      * The type of given symbol, seen as a member of t.
2316      *
2317      * @param t a type
2318      * @param sym a symbol
2319      */
2320     public Type memberType(Type t, Symbol sym) {
2321         return (sym.flags() & STATIC) != 0
2322             ? sym.type
2323             : memberType.visit(t, sym);
2324         }
2325     // where
2326         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2327 
2328             public Type visitType(Type t, Symbol sym) {
2329                 return sym.type;
2330             }
2331 
2332             @Override
2333             public Type visitWildcardType(WildcardType t, Symbol sym) {
2334                 return memberType(wildUpperBound(t), sym);
2335             }
2336 
2337             @Override
2338             public Type visitClassType(ClassType t, Symbol sym) {
2339                 Symbol owner = sym.owner;
2340                 long flags = sym.flags();
2341                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2342                     Type base = asOuterSuper(t, owner);
2343                     //if t is an intersection type T = CT & I1 & I2 ... & In
2344                     //its supertypes CT, I1, ... In might contain wildcards
2345                     //so we need to go through capture conversion
2346                     base = t.isCompound() ? capture(base) : base;
2347                     if (base != null) {
2348                         List<Type> ownerParams = owner.type.allparams();
2349                         List<Type> baseParams = base.allparams();
2350                         if (ownerParams.nonEmpty()) {
2351                             if (baseParams.isEmpty()) {
2352                                 // then base is a raw type
2353                                 return erasure(sym.type);
2354                             } else {
2355                                 return subst(sym.type, ownerParams, baseParams);
2356                             }
2357                         }
2358                     }
2359                 }
2360                 return sym.type;
2361             }
2362 
2363             @Override
2364             public Type visitTypeVar(TypeVar t, Symbol sym) {
2365                 return memberType(t.getUpperBound(), sym);
2366             }
2367 
2368             @Override
2369             public Type visitErrorType(ErrorType t, Symbol sym) {
2370                 return t;
2371             }
2372         };
2373     // </editor-fold>
2374 
2375     // <editor-fold defaultstate="collapsed" desc="isAssignable">
2376     public boolean isAssignable(Type t, Type s) {
2377         return isAssignable(t, s, noWarnings);
2378     }
2379 
2380     /**
2381      * Is t assignable to s?<br>
2382      * Equivalent to subtype except for constant values and raw
2383      * types.<br>
2384      * (not defined for Method and ForAll types)
2385      */
2386     public boolean isAssignable(Type t, Type s, Warner warn) {
2387         if (t.hasTag(ERROR))
2388             return true;
2389         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2390             int value = ((Number)t.constValue()).intValue();
2391             switch (s.getTag()) {
2392             case BYTE:
2393             case CHAR:
2394             case SHORT:
2395             case INT:
2396                 if (s.getTag().checkRange(value))
2397                     return true;
2398                 break;
2399             case CLASS:
2400                 switch (unboxedType(s).getTag()) {
2401                 case BYTE:
2402                 case CHAR:
2403                 case SHORT:
2404                     return isAssignable(t, unboxedType(s), warn);
2405                 }
2406                 break;
2407             }
2408         }
2409         return isConvertible(t, s, warn);
2410     }
2411     // </editor-fold>
2412 
2413     // <editor-fold defaultstate="collapsed" desc="erasure">
2414     /**
2415      * The erasure of t {@code |t|} -- the type that results when all
2416      * type parameters in t are deleted.
2417      */
2418     public Type erasure(Type t) {
2419         return eraseNotNeeded(t) ? t : erasure(t, false);
2420     }
2421     //where
2422     private boolean eraseNotNeeded(Type t) {
2423         // We don't want to erase primitive types and String type as that
2424         // operation is idempotent. Also, erasing these could result in loss
2425         // of information such as constant values attached to such types.
2426         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2427     }
2428 
2429     private Type erasure(Type t, boolean recurse) {
2430         if (t.isPrimitive()) {
2431             return t; /* fast special case */
2432         } else {
2433             Type out = erasure.visit(t, recurse);
2434             return out;
2435         }
2436     }
2437     // where
2438         private TypeMapping<Boolean> erasure = new StructuralTypeMapping<Boolean>() {
2439             @SuppressWarnings("fallthrough")
2440             private Type combineMetadata(final Type s,
2441                                          final Type t) {
2442                 if (t.getMetadata().nonEmpty()) {
2443                     switch (s.getTag()) {
2444                         case CLASS:
2445                             if (s instanceof UnionClassType ||
2446                                 s instanceof IntersectionClassType) {
2447                                 return s;
2448                             }
2449                             //fall-through
2450                         case BYTE, CHAR, SHORT, LONG, FLOAT, INT, DOUBLE, BOOLEAN,
2451                              ARRAY, MODULE, TYPEVAR, WILDCARD, BOT:
2452                             return s.dropMetadata(Annotations.class);
2453                         case VOID, METHOD, PACKAGE, FORALL, DEFERRED,
2454                              NONE, ERROR, UNDETVAR, UNINITIALIZED_THIS,
2455                              UNINITIALIZED_OBJECT:
2456                             return s;
2457                         default:
2458                             throw new AssertionError(s.getTag().name());
2459                     }
2460                 } else {
2461                     return s;
2462                 }
2463             }
2464 
2465             public Type visitType(Type t, Boolean recurse) {
2466                 if (t.isPrimitive())
2467                     return t; /*fast special case*/
2468                 else {
2469                     //other cases already handled
2470                     return combineMetadata(t, t);
2471                 }
2472             }
2473 
2474             @Override
2475             public Type visitWildcardType(WildcardType t, Boolean recurse) {
2476                 Type erased = erasure(wildUpperBound(t), recurse);
2477                 return combineMetadata(erased, t);
2478             }
2479 
2480             @Override
2481             public Type visitClassType(ClassType t, Boolean recurse) {
2482                 Type erased = t.tsym.erasure(Types.this);
2483                 if (recurse) {
2484                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2485                             t.dropMetadata(Annotations.class).getMetadata());
2486                     return erased;
2487                 } else {
2488                     return combineMetadata(erased, t);
2489                 }
2490             }
2491 
2492             @Override
2493             public Type visitTypeVar(TypeVar t, Boolean recurse) {
2494                 Type erased = erasure(t.getUpperBound(), recurse);
2495                 return combineMetadata(erased, t);
2496             }
2497         };
2498 
2499     public List<Type> erasure(List<Type> ts) {
2500         return erasure.visit(ts, false);
2501     }
2502 
2503     public Type erasureRecursive(Type t) {
2504         return erasure(t, true);
2505     }
2506 
2507     public List<Type> erasureRecursive(List<Type> ts) {
2508         return erasure.visit(ts, true);
2509     }
2510     // </editor-fold>
2511 
2512     // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2513     /**
2514      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2515      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2516      * Hence, this version of makeIntersectionType may not be called during a classfile read.
2517      *
2518      * @param bounds    the types from which the intersection type is formed
2519      */
2520     public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2521         return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2522     }
2523 
2524     /**
2525      * Make an intersection type from non-empty list of types.  The list should be ordered according to
2526      * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2527      * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2528      * supertype is implicitly assumed to be 'Object'.
2529      *
2530      * @param bounds        the types from which the intersection type is formed
2531      * @param allInterfaces are all bounds interface types?
2532      */
2533     public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2534         Assert.check(bounds.nonEmpty());
2535         Type firstExplicitBound = bounds.head;
2536         if (allInterfaces) {
2537             bounds = bounds.prepend(syms.objectType);
2538         }
2539         ClassSymbol bc =
2540             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2541                             Type.moreInfo
2542                                 ? names.fromString(bounds.toString())
2543                                 : names.empty,
2544                             null,
2545                             syms.noSymbol);
2546         IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2547         bc.type = intersectionType;
2548         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2549                 syms.objectType : // error condition, recover
2550                 erasure(firstExplicitBound);
2551         bc.members_field = WriteableScope.create(bc);
2552         return intersectionType;
2553     }
2554     // </editor-fold>
2555 
2556     // <editor-fold defaultstate="collapsed" desc="supertype">
2557     public Type supertype(Type t) {
2558         return supertype.visit(t);
2559     }
2560     // where
2561         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2562 
2563             public Type visitType(Type t, Void ignored) {
2564                 // A note on wildcards: there is no good way to
2565                 // determine a supertype for a lower-bounded wildcard.
2566                 return Type.noType;
2567             }
2568 
2569             @Override
2570             public Type visitClassType(ClassType t, Void ignored) {
2571                 if (t.supertype_field == null) {
2572                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2573                     // An interface has no superclass; its supertype is Object.
2574                     if (t.isInterface())
2575                         supertype = ((ClassType)t.tsym.type).supertype_field;
2576                     if (t.supertype_field == null) {
2577                         List<Type> actuals = classBound(t).allparams();
2578                         List<Type> formals = t.tsym.type.allparams();
2579                         if (t.hasErasedSupertypes()) {
2580                             t.supertype_field = erasureRecursive(supertype);
2581                         } else if (formals.nonEmpty()) {
2582                             t.supertype_field = subst(supertype, formals, actuals);
2583                         }
2584                         else {
2585                             t.supertype_field = supertype;
2586                         }
2587                     }
2588                 }
2589                 return t.supertype_field;
2590             }
2591 
2592             /**
2593              * The supertype is always a class type. If the type
2594              * variable's bounds start with a class type, this is also
2595              * the supertype.  Otherwise, the supertype is
2596              * java.lang.Object.
2597              */
2598             @Override
2599             public Type visitTypeVar(TypeVar t, Void ignored) {
2600                 if (t.getUpperBound().hasTag(TYPEVAR) ||
2601                     (!t.getUpperBound().isCompound() && !t.getUpperBound().isInterface())) {
2602                     return t.getUpperBound();
2603                 } else {
2604                     return supertype(t.getUpperBound());
2605                 }
2606             }
2607 
2608             @Override
2609             public Type visitArrayType(ArrayType t, Void ignored) {
2610                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2611                     return arraySuperType();
2612                 else
2613                     return new ArrayType(supertype(t.elemtype), t.tsym);
2614             }
2615 
2616             @Override
2617             public Type visitErrorType(ErrorType t, Void ignored) {
2618                 return Type.noType;
2619             }
2620         };
2621     // </editor-fold>
2622 
2623     // <editor-fold defaultstate="collapsed" desc="interfaces">
2624     /**
2625      * Return the interfaces implemented by this class.
2626      */
2627     public List<Type> interfaces(Type t) {
2628         return interfaces.visit(t);
2629     }
2630     // where
2631         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2632 
2633             public List<Type> visitType(Type t, Void ignored) {
2634                 return List.nil();
2635             }
2636 
2637             @Override
2638             public List<Type> visitClassType(ClassType t, Void ignored) {
2639                 if (t.interfaces_field == null) {
2640                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2641                     if (t.interfaces_field == null) {
2642                         // If t.interfaces_field is null, then t must
2643                         // be a parameterized type (not to be confused
2644                         // with a generic type declaration).
2645                         // Terminology:
2646                         //    Parameterized type: List<String>
2647                         //    Generic type declaration: class List<E> { ... }
2648                         // So t corresponds to List<String> and
2649                         // t.tsym.type corresponds to List<E>.
2650                         // The reason t must be parameterized type is
2651                         // that completion will happen as a side
2652                         // effect of calling
2653                         // ClassSymbol.getInterfaces.  Since
2654                         // t.interfaces_field is null after
2655                         // completion, we can assume that t is not the
2656                         // type of a class/interface declaration.
2657                         Assert.check(t != t.tsym.type, t);
2658                         List<Type> actuals = t.allparams();
2659                         List<Type> formals = t.tsym.type.allparams();
2660                         if (t.hasErasedSupertypes()) {
2661                             t.interfaces_field = erasureRecursive(interfaces);
2662                         } else if (formals.nonEmpty()) {
2663                             t.interfaces_field = subst(interfaces, formals, actuals);
2664                         }
2665                         else {
2666                             t.interfaces_field = interfaces;
2667                         }
2668                     }
2669                 }
2670                 return t.interfaces_field;
2671             }
2672 
2673             @Override
2674             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2675                 if (t.getUpperBound().isCompound())
2676                     return interfaces(t.getUpperBound());
2677 
2678                 if (t.getUpperBound().isInterface())
2679                     return List.of(t.getUpperBound());
2680 
2681                 return List.nil();
2682             }
2683         };
2684 
2685     public List<Type> directSupertypes(Type t) {
2686         return directSupertypes.visit(t);
2687     }
2688     // where
2689         private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2690 
2691             public List<Type> visitType(final Type type, final Void ignored) {
2692                 if (!type.isIntersection()) {
2693                     final Type sup = supertype(type);
2694                     return (sup == Type.noType || sup == type || sup == null)
2695                         ? interfaces(type)
2696                         : interfaces(type).prepend(sup);
2697                 } else {
2698                     return ((IntersectionClassType)type).getExplicitComponents();
2699                 }
2700             }
2701         };
2702 
2703     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2704         for (Type i2 : interfaces(origin.type)) {
2705             if (isym == i2.tsym) return true;
2706         }
2707         return false;
2708     }
2709     // </editor-fold>
2710 
2711     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2712     Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2713 
2714     public boolean isDerivedRaw(Type t) {
2715         Boolean result = isDerivedRawCache.get(t);
2716         if (result == null) {
2717             result = isDerivedRawInternal(t);
2718             isDerivedRawCache.put(t, result);
2719         }
2720         return result;
2721     }
2722 
2723     public boolean isDerivedRawInternal(Type t) {
2724         if (t.isErroneous())
2725             return false;
2726         return
2727             t.isRaw() ||
2728             supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2729             isDerivedRaw(interfaces(t));
2730     }
2731 
2732     public boolean isDerivedRaw(List<Type> ts) {
2733         List<Type> l = ts;
2734         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2735         return l.nonEmpty();
2736     }
2737     // </editor-fold>
2738 
2739     // <editor-fold defaultstate="collapsed" desc="setBounds">
2740     /**
2741      * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2742      * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2743      * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2744      * the bound list passed as second argument). Note that this check might cause a symbol completion.
2745      * Hence, this version of setBounds may not be called during a classfile read.
2746      *
2747      * @param t         a type variable
2748      * @param bounds    the bounds, must be nonempty
2749      */
2750     public void setBounds(TypeVar t, List<Type> bounds) {
2751         setBounds(t, bounds, bounds.head.tsym.isInterface());
2752     }
2753 
2754     /**
2755      * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2756      * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2757      * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2758      *
2759      * @param t             a type variable
2760      * @param bounds        the bounds, must be nonempty
2761      * @param allInterfaces are all bounds interface types?
2762      */
2763     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2764         t.setUpperBound( bounds.tail.isEmpty() ?
2765                 bounds.head :
2766                 makeIntersectionType(bounds, allInterfaces) );
2767         t.rank_field = -1;
2768     }
2769     // </editor-fold>
2770 
2771     // <editor-fold defaultstate="collapsed" desc="getBounds">
2772     /**
2773      * Return list of bounds of the given type variable.
2774      */
2775     public List<Type> getBounds(TypeVar t) {
2776         if (t.getUpperBound().hasTag(NONE))
2777             return List.nil();
2778         else if (t.getUpperBound().isErroneous() || !t.getUpperBound().isCompound())
2779             return List.of(t.getUpperBound());
2780         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2781             return interfaces(t).prepend(supertype(t));
2782         else
2783             // No superclass was given in bounds.
2784             // In this case, supertype is Object, erasure is first interface.
2785             return interfaces(t);
2786     }
2787     // </editor-fold>
2788 
2789     // <editor-fold defaultstate="collapsed" desc="classBound">
2790     /**
2791      * If the given type is a (possibly selected) type variable,
2792      * return the bounding class of this type, otherwise return the
2793      * type itself.
2794      */
2795     public Type classBound(Type t) {
2796         return classBound.visit(t);
2797     }
2798     // where
2799         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2800 
2801             public Type visitType(Type t, Void ignored) {
2802                 return t;
2803             }
2804 
2805             @Override
2806             public Type visitClassType(ClassType t, Void ignored) {
2807                 Type outer1 = classBound(t.getEnclosingType());
2808                 if (outer1 != t.getEnclosingType())
2809                     return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2810                                          t.getMetadata());
2811                 else
2812                     return t;
2813             }
2814 
2815             @Override
2816             public Type visitTypeVar(TypeVar t, Void ignored) {
2817                 return classBound(supertype(t));
2818             }
2819 
2820             @Override
2821             public Type visitErrorType(ErrorType t, Void ignored) {
2822                 return t;
2823             }
2824         };
2825     // </editor-fold>
2826 
2827     // <editor-fold defaultstate="collapsed" desc="subsignature / override equivalence">
2828     /**
2829      * Returns true iff the first signature is a <em>subsignature</em>
2830      * of the other.  This is <b>not</b> an equivalence
2831      * relation.
2832      *
2833      * @jls 8.4.2 Method Signature
2834      * @see #overrideEquivalent(Type t, Type s)
2835      * @param t first signature (possibly raw).
2836      * @param s second signature (could be subjected to erasure).
2837      * @return true if t is a subsignature of s.
2838      */
2839     public boolean isSubSignature(Type t, Type s) {
2840         return hasSameArgs(t, s, true) || hasSameArgs(t, erasure(s), true);
2841     }
2842 
2843     /**
2844      * Returns true iff these signatures are related by <em>override
2845      * equivalence</em>.  This is the natural extension of
2846      * isSubSignature to an equivalence relation.
2847      *
2848      * @jls 8.4.2 Method Signature
2849      * @see #isSubSignature(Type t, Type s)
2850      * @param t a signature (possible raw, could be subjected to
2851      * erasure).
2852      * @param s a signature (possible raw, could be subjected to
2853      * erasure).
2854      * @return true if either argument is a subsignature of the other.
2855      */
2856     public boolean overrideEquivalent(Type t, Type s) {
2857         return hasSameArgs(t, s) ||
2858             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2859     }
2860 
2861     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2862         for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2863             if (msym.overrides(sym, origin, Types.this, true)) {
2864                 return true;
2865             }
2866         }
2867         return false;
2868     }
2869 
2870     /**
2871      * This enum defines the strategy for implementing most specific return type check
2872      * during the most specific and functional interface checks.
2873      */
2874     public enum MostSpecificReturnCheck {
2875         /**
2876          * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
2877          * method type variables (if either method is generic) and (ii) subtyping should be replaced
2878          * by type-equivalence for primitives. This is essentially an inlined version of
2879          * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
2880          * replaced with a strict subtyping check.
2881          */
2882         BASIC() {
2883             @Override
2884             public boolean test(Type mt1, Type mt2, Types types) {
2885                 List<Type> tvars = mt1.getTypeArguments();
2886                 List<Type> svars = mt2.getTypeArguments();
2887                 Type t = mt1.getReturnType();
2888                 Type s = types.subst(mt2.getReturnType(), svars, tvars);
2889                 return types.isSameType(t, s) ||
2890                     !t.isPrimitive() &&
2891                     !s.isPrimitive() &&
2892                     types.isSubtype(t, s);
2893             }
2894         },
2895         /**
2896          * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
2897          */
2898         RTS() {
2899             @Override
2900             public boolean test(Type mt1, Type mt2, Types types) {
2901                 return types.returnTypeSubstitutable(mt1, mt2);
2902             }
2903         };
2904 
2905         public abstract boolean test(Type mt1, Type mt2, Types types);
2906     }
2907 
2908     /**
2909      * Merge multiple abstract methods. The preferred method is a method that is a subsignature
2910      * of all the other signatures and whose return type is more specific {@link MostSpecificReturnCheck}.
2911      * The resulting preferred method has a throws clause that is the intersection of the merged
2912      * methods' clauses.
2913      */
2914     public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
2915         //first check for preconditions
2916         boolean shouldErase = false;
2917         List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
2918         for (Symbol s : ambiguousInOrder) {
2919             if ((s.flags() & ABSTRACT) == 0 ||
2920                     (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
2921                 return Optional.empty();
2922             } else if (s.type.hasTag(FORALL)) {
2923                 shouldErase = true;
2924             }
2925         }
2926         //then merge abstracts
2927         for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
2928             outer: for (Symbol s : ambiguousInOrder) {
2929                 Type mt = memberType(site, s);
2930                 List<Type> allThrown = mt.getThrownTypes();
2931                 for (Symbol s2 : ambiguousInOrder) {
2932                     if (s != s2) {
2933                         Type mt2 = memberType(site, s2);
2934                         if (!isSubSignature(mt, mt2) ||
2935                                 !mostSpecificReturnCheck.test(mt, mt2, this)) {
2936                             //ambiguity cannot be resolved
2937                             continue outer;
2938                         } else {
2939                             List<Type> thrownTypes2 = mt2.getThrownTypes();
2940                             if (!mt.hasTag(FORALL) && shouldErase) {
2941                                 thrownTypes2 = erasure(thrownTypes2);
2942                             } else if (mt.hasTag(FORALL)) {
2943                                 //subsignature implies that if most specific is generic, then all other
2944                                 //methods are too
2945                                 Assert.check(mt2.hasTag(FORALL));
2946                                 // if both are generic methods, adjust thrown types ahead of intersection computation
2947                                 thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
2948                             }
2949                             allThrown = chk.intersect(allThrown, thrownTypes2);
2950                         }
2951                     }
2952                 }
2953                 return (allThrown == mt.getThrownTypes()) ?
2954                         Optional.of(s) :
2955                         Optional.of(new MethodSymbol(
2956                                 s.flags(),
2957                                 s.name,
2958                                 createMethodTypeWithThrown(s.type, allThrown),
2959                                 s.owner) {
2960                             @Override
2961                             public Symbol baseSymbol() {
2962                                 return s;
2963                             }
2964                         });
2965             }
2966         }
2967         return Optional.empty();
2968     }
2969 
2970     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2971     class ImplementationCache {
2972 
2973         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2974 
2975         class Entry {
2976             final MethodSymbol cachedImpl;
2977             final Predicate<Symbol> implFilter;
2978             final boolean checkResult;
2979             final int prevMark;
2980 
2981             public Entry(MethodSymbol cachedImpl,
2982                     Predicate<Symbol> scopeFilter,
2983                     boolean checkResult,
2984                     int prevMark) {
2985                 this.cachedImpl = cachedImpl;
2986                 this.implFilter = scopeFilter;
2987                 this.checkResult = checkResult;
2988                 this.prevMark = prevMark;
2989             }
2990 
2991             boolean matches(Predicate<Symbol> scopeFilter, boolean checkResult, int mark) {
2992                 return this.implFilter == scopeFilter &&
2993                         this.checkResult == checkResult &&
2994                         this.prevMark == mark;
2995             }
2996         }
2997 
2998         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
2999             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
3000             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
3001             if (cache == null) {
3002                 cache = new HashMap<>();
3003                 _map.put(ms, new SoftReference<>(cache));
3004             }
3005             Entry e = cache.get(origin);
3006             CompoundScope members = membersClosure(origin.type, true);
3007             if (e == null ||
3008                     !e.matches(implFilter, checkResult, members.getMark())) {
3009                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
3010                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
3011                 return impl;
3012             }
3013             else {
3014                 return e.cachedImpl;
3015             }
3016         }
3017 
3018         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
3019             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
3020                 t = skipTypeVars(t, false);
3021                 TypeSymbol c = t.tsym;
3022                 Symbol bestSoFar = null;
3023                 for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
3024                     if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
3025                         bestSoFar = sym;
3026                         if ((sym.flags() & ABSTRACT) == 0) {
3027                             //if concrete impl is found, exit immediately
3028                             break;
3029                         }
3030                     }
3031                 }
3032                 if (bestSoFar != null) {
3033                     //return either the (only) concrete implementation or the first abstract one
3034                     return (MethodSymbol)bestSoFar;
3035                 }
3036             }
3037             return null;
3038         }
3039     }
3040 
3041     private ImplementationCache implCache = new ImplementationCache();
3042 
3043     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Predicate<Symbol> implFilter) {
3044         return implCache.get(ms, origin, checkResult, implFilter);
3045     }
3046     // </editor-fold>
3047 
3048     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
3049     class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
3050 
3051         private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
3052 
3053         Set<TypeSymbol> seenTypes = new HashSet<>();
3054 
3055         class MembersScope extends CompoundScope {
3056 
3057             CompoundScope scope;
3058 
3059             public MembersScope(CompoundScope scope) {
3060                 super(scope.owner);
3061                 this.scope = scope;
3062             }
3063 
3064             Predicate<Symbol> combine(Predicate<Symbol> sf) {
3065                 return s -> !s.owner.isInterface() && (sf == null || sf.test(s));
3066             }
3067 
3068             @Override
3069             public Iterable<Symbol> getSymbols(Predicate<Symbol> sf, LookupKind lookupKind) {
3070                 return scope.getSymbols(combine(sf), lookupKind);
3071             }
3072 
3073             @Override
3074             public Iterable<Symbol> getSymbolsByName(Name name, Predicate<Symbol> sf, LookupKind lookupKind) {
3075                 return scope.getSymbolsByName(name, combine(sf), lookupKind);
3076             }
3077 
3078             @Override
3079             public int getMark() {
3080                 return scope.getMark();
3081             }
3082         }
3083 
3084         CompoundScope nilScope;
3085 
3086         /** members closure visitor methods **/
3087 
3088         public CompoundScope visitType(Type t, Void _unused) {
3089             if (nilScope == null) {
3090                 nilScope = new CompoundScope(syms.noSymbol);
3091             }
3092             return nilScope;
3093         }
3094 
3095         @Override
3096         public CompoundScope visitClassType(ClassType t, Void _unused) {
3097             if (!seenTypes.add(t.tsym)) {
3098                 //this is possible when an interface is implemented in multiple
3099                 //superclasses, or when a class hierarchy is circular - in such
3100                 //cases we don't need to recurse (empty scope is returned)
3101                 return new CompoundScope(t.tsym);
3102             }
3103             try {
3104                 seenTypes.add(t.tsym);
3105                 ClassSymbol csym = (ClassSymbol)t.tsym;
3106                 CompoundScope membersClosure = _map.get(csym);
3107                 if (membersClosure == null) {
3108                     membersClosure = new CompoundScope(csym);
3109                     for (Type i : interfaces(t)) {
3110                         membersClosure.prependSubScope(visit(i, null));
3111                     }
3112                     membersClosure.prependSubScope(visit(supertype(t), null));
3113                     membersClosure.prependSubScope(csym.members());
3114                     _map.put(csym, membersClosure);
3115                 }
3116                 return membersClosure;
3117             }
3118             finally {
3119                 seenTypes.remove(t.tsym);
3120             }
3121         }
3122 
3123         @Override
3124         public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
3125             return visit(t.getUpperBound(), null);
3126         }
3127     }
3128 
3129     private MembersClosureCache membersCache = new MembersClosureCache();
3130 
3131     public CompoundScope membersClosure(Type site, boolean skipInterface) {
3132         CompoundScope cs = membersCache.visit(site, null);
3133         Assert.checkNonNull(cs, () -> "type " + site);
3134         return skipInterface ? membersCache.new MembersScope(cs) : cs;
3135     }
3136     // </editor-fold>
3137 
3138 
3139     /** Return first abstract member of class `sym'.
3140      */
3141     public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
3142         try {
3143             return firstUnimplementedAbstractImpl(sym, sym);
3144         } catch (CompletionFailure ex) {
3145             chk.completionError(enter.getEnv(sym).tree.pos(), ex);
3146             return null;
3147         }
3148     }
3149         //where:
3150         private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
3151             MethodSymbol undef = null;
3152             // Do not bother to search in classes that are not abstract,
3153             // since they cannot have abstract members.
3154             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
3155                 Scope s = c.members();
3156                 for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
3157                     if (sym.kind == MTH &&
3158                         (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
3159                         MethodSymbol absmeth = (MethodSymbol)sym;
3160                         MethodSymbol implmeth = absmeth.implementation(impl, this, true);
3161                         if (implmeth == null || implmeth == absmeth) {
3162                             //look for default implementations
3163                             MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
3164                             if (prov != null && prov.overrides(absmeth, impl, this, true)) {
3165                                 implmeth = prov;
3166                             }
3167                         }
3168                         if (implmeth == null || implmeth == absmeth) {
3169                             undef = absmeth;
3170                             break;
3171                         }
3172                     }
3173                 }
3174                 if (undef == null) {
3175                     Type st = supertype(c.type);
3176                     if (st.hasTag(CLASS))
3177                         undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
3178                 }
3179                 for (List<Type> l = interfaces(c.type);
3180                      undef == null && l.nonEmpty();
3181                      l = l.tail) {
3182                     undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
3183                 }
3184             }
3185             return undef;
3186         }
3187 
3188     public class CandidatesCache {
3189         public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
3190 
3191         class Entry {
3192             Type site;
3193             MethodSymbol msym;
3194 
3195             Entry(Type site, MethodSymbol msym) {
3196                 this.site = site;
3197                 this.msym = msym;
3198             }
3199 
3200             @Override
3201             public boolean equals(Object obj) {
3202                 return (obj instanceof Entry entry)
3203                         && entry.msym == msym
3204                         && isSameType(site, entry.site);
3205             }
3206 
3207             @Override
3208             public int hashCode() {
3209                 return Types.this.hashCode(site) & ~msym.hashCode();
3210             }
3211         }
3212 
3213         public List<MethodSymbol> get(Entry e) {
3214             return cache.get(e);
3215         }
3216 
3217         public void put(Entry e, List<MethodSymbol> msymbols) {
3218             cache.put(e, msymbols);
3219         }
3220     }
3221 
3222     public CandidatesCache candidatesCache = new CandidatesCache();
3223 
3224     //where
3225     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
3226         CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
3227         List<MethodSymbol> candidates = candidatesCache.get(e);
3228         if (candidates == null) {
3229             Predicate<Symbol> filter = new MethodFilter(ms, site);
3230             List<MethodSymbol> candidates2 = List.nil();
3231             for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
3232                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
3233                     return List.of((MethodSymbol)s);
3234                 } else if (!candidates2.contains(s)) {
3235                     candidates2 = candidates2.prepend((MethodSymbol)s);
3236                 }
3237             }
3238             candidates = prune(candidates2);
3239             candidatesCache.put(e, candidates);
3240         }
3241         return candidates;
3242     }
3243 
3244     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
3245         ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
3246         for (MethodSymbol m1 : methods) {
3247             boolean isMin_m1 = true;
3248             for (MethodSymbol m2 : methods) {
3249                 if (m1 == m2) continue;
3250                 if (m2.owner != m1.owner &&
3251                         asSuper(m2.owner.type, m1.owner) != null) {
3252                     isMin_m1 = false;
3253                     break;
3254                 }
3255             }
3256             if (isMin_m1)
3257                 methodsMin.append(m1);
3258         }
3259         return methodsMin.toList();
3260     }
3261     // where
3262             private class MethodFilter implements Predicate<Symbol> {
3263 
3264                 Symbol msym;
3265                 Type site;
3266 
3267                 MethodFilter(Symbol msym, Type site) {
3268                     this.msym = msym;
3269                     this.site = site;
3270                 }
3271 
3272                 @Override
3273                 public boolean test(Symbol s) {
3274                     return s.kind == MTH &&
3275                             s.name == msym.name &&
3276                             (s.flags() & SYNTHETIC) == 0 &&
3277                             s.isInheritedIn(site.tsym, Types.this) &&
3278                             overrideEquivalent(memberType(site, s), memberType(site, msym));
3279                 }
3280             }
3281     // </editor-fold>
3282 
3283     /**
3284      * Does t have the same arguments as s?  It is assumed that both
3285      * types are (possibly polymorphic) method types.  Monomorphic
3286      * method types "have the same arguments", if their argument lists
3287      * are equal.  Polymorphic method types "have the same arguments",
3288      * if they have the same arguments after renaming all type
3289      * variables of one to corresponding type variables in the other,
3290      * where correspondence is by position in the type parameter list.
3291      */
3292     public boolean hasSameArgs(Type t, Type s) {
3293         return hasSameArgs(t, s, true);
3294     }
3295 
3296     public boolean hasSameArgs(Type t, Type s, boolean strict) {
3297         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
3298     }
3299 
3300     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
3301         return hasSameArgs.visit(t, s);
3302     }
3303     // where
3304         private class HasSameArgs extends TypeRelation {
3305 
3306             boolean strict;
3307 
3308             public HasSameArgs(boolean strict) {
3309                 this.strict = strict;
3310             }
3311 
3312             public Boolean visitType(Type t, Type s) {
3313                 throw new AssertionError();
3314             }
3315 
3316             @Override
3317             public Boolean visitMethodType(MethodType t, Type s) {
3318                 return s.hasTag(METHOD)
3319                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
3320             }
3321 
3322             @Override
3323             public Boolean visitForAll(ForAll t, Type s) {
3324                 if (!s.hasTag(FORALL))
3325                     return strict ? false : visitMethodType(t.asMethodType(), s);
3326 
3327                 ForAll forAll = (ForAll)s;
3328                 return hasSameBounds(t, forAll)
3329                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
3330             }
3331 
3332             @Override
3333             public Boolean visitErrorType(ErrorType t, Type s) {
3334                 return false;
3335             }
3336         }
3337 
3338     TypeRelation hasSameArgs_strict = new HasSameArgs(true);
3339         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
3340 
3341     // </editor-fold>
3342 
3343     // <editor-fold defaultstate="collapsed" desc="subst">
3344     public List<Type> subst(List<Type> ts,
3345                             List<Type> from,
3346                             List<Type> to) {
3347         return ts.map(new Subst(from, to));
3348     }
3349 
3350     /**
3351      * Substitute all occurrences of a type in `from' with the
3352      * corresponding type in `to' in 't'. Match lists `from' and `to'
3353      * from the right: If lists have different length, discard leading
3354      * elements of the longer list.
3355      */
3356     public Type subst(Type t, List<Type> from, List<Type> to) {
3357         return t.map(new Subst(from, to));
3358     }
3359 
3360     /* this class won't substitute all types for example UndetVars are never substituted, this is
3361      * by design as UndetVars are used locally during inference and shouldn't escape from inference routines,
3362      * some specialized applications could need a tailored solution
3363      */
3364     private class Subst extends StructuralTypeMapping<Void> {
3365         List<Type> from;
3366         List<Type> to;
3367 
3368         public Subst(List<Type> from, List<Type> to) {
3369             int fromLength = from.length();
3370             int toLength = to.length();
3371             while (fromLength > toLength) {
3372                 fromLength--;
3373                 from = from.tail;
3374             }
3375             while (fromLength < toLength) {
3376                 toLength--;
3377                 to = to.tail;
3378             }
3379             this.from = from;
3380             this.to = to;
3381         }
3382 
3383         @Override
3384         public Type visitTypeVar(TypeVar t, Void ignored) {
3385             for (List<Type> from = this.from, to = this.to;
3386                  from.nonEmpty();
3387                  from = from.tail, to = to.tail) {
3388                 if (t.equalsIgnoreMetadata(from.head)) {
3389                     return to.head.withTypeVar(t);
3390                 }
3391             }
3392             return t;
3393         }
3394 
3395         @Override
3396         public Type visitClassType(ClassType t, Void ignored) {
3397             if (!t.isCompound()) {
3398                 return super.visitClassType(t, ignored);
3399             } else {
3400                 Type st = visit(supertype(t));
3401                 List<Type> is = visit(interfaces(t), ignored);
3402                 if (st == supertype(t) && is == interfaces(t))
3403                     return t;
3404                 else
3405                     return makeIntersectionType(is.prepend(st));
3406             }
3407         }
3408 
3409         @Override
3410         public Type visitWildcardType(WildcardType t, Void ignored) {
3411             WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
3412             if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
3413                 t2.type = wildUpperBound(t2.type);
3414             }
3415             return t2;
3416         }
3417 
3418         @Override
3419         public Type visitForAll(ForAll t, Void ignored) {
3420             if (Type.containsAny(to, t.tvars)) {
3421                 //perform alpha-renaming of free-variables in 't'
3422                 //if 'to' types contain variables that are free in 't'
3423                 List<Type> freevars = newInstances(t.tvars);
3424                 t = new ForAll(freevars,
3425                                Types.this.subst(t.qtype, t.tvars, freevars));
3426             }
3427             List<Type> tvars1 = substBounds(t.tvars, from, to);
3428             Type qtype1 = visit(t.qtype);
3429             if (tvars1 == t.tvars && qtype1 == t.qtype) {
3430                 return t;
3431             } else if (tvars1 == t.tvars) {
3432                 return new ForAll(tvars1, qtype1) {
3433                     @Override
3434                     public boolean needsStripping() {
3435                         return true;
3436                     }
3437                 };
3438             } else {
3439                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3440                     @Override
3441                     public boolean needsStripping() {
3442                         return true;
3443                     }
3444                 };
3445             }
3446         }
3447     }
3448 
3449     public List<Type> substBounds(List<Type> tvars,
3450                                   List<Type> from,
3451                                   List<Type> to) {
3452         if (tvars.isEmpty())
3453             return tvars;
3454         ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3455         boolean changed = false;
3456         // calculate new bounds
3457         for (Type t : tvars) {
3458             TypeVar tv = (TypeVar) t;
3459             Type bound = subst(tv.getUpperBound(), from, to);
3460             if (bound != tv.getUpperBound())
3461                 changed = true;
3462             newBoundsBuf.append(bound);
3463         }
3464         if (!changed)
3465             return tvars;
3466         ListBuffer<Type> newTvars = new ListBuffer<>();
3467         // create new type variables without bounds
3468         for (Type t : tvars) {
3469             newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3470                                         t.getMetadata()));
3471         }
3472         // the new bounds should use the new type variables in place
3473         // of the old
3474         List<Type> newBounds = newBoundsBuf.toList();
3475         from = tvars;
3476         to = newTvars.toList();
3477         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3478             newBounds.head = subst(newBounds.head, from, to);
3479         }
3480         newBounds = newBoundsBuf.toList();
3481         // set the bounds of new type variables to the new bounds
3482         for (Type t : newTvars.toList()) {
3483             TypeVar tv = (TypeVar) t;
3484             tv.setUpperBound( newBounds.head );
3485             newBounds = newBounds.tail;
3486         }
3487         return newTvars.toList();
3488     }
3489 
3490     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3491         Type bound1 = subst(t.getUpperBound(), from, to);
3492         if (bound1 == t.getUpperBound())
3493             return t;
3494         else {
3495             // create new type variable without bounds
3496             TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3497                                      t.getMetadata());
3498             // the new bound should use the new type variable in place
3499             // of the old
3500             tv.setUpperBound( subst(bound1, List.of(t), List.of(tv)) );
3501             return tv;
3502         }
3503     }
3504     // </editor-fold>
3505 
3506     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3507     /**
3508      * Does t have the same bounds for quantified variables as s?
3509      */
3510     public boolean hasSameBounds(ForAll t, ForAll s) {
3511         List<Type> l1 = t.tvars;
3512         List<Type> l2 = s.tvars;
3513         while (l1.nonEmpty() && l2.nonEmpty() &&
3514                isSameType(l1.head.getUpperBound(),
3515                           subst(l2.head.getUpperBound(),
3516                                 s.tvars,
3517                                 t.tvars))) {
3518             l1 = l1.tail;
3519             l2 = l2.tail;
3520         }
3521         return l1.isEmpty() && l2.isEmpty();
3522     }
3523     // </editor-fold>
3524 
3525     // <editor-fold defaultstate="collapsed" desc="newInstances">
3526     /** Create new vector of type variables from list of variables
3527      *  changing all recursive bounds from old to new list.
3528      */
3529     public List<Type> newInstances(List<Type> tvars) {
3530         List<Type> tvars1 = tvars.map(newInstanceFun);
3531         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3532             TypeVar tv = (TypeVar) l.head;
3533             tv.setUpperBound( subst(tv.getUpperBound(), tvars, tvars1) );
3534         }
3535         return tvars1;
3536     }
3537         private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3538             @Override
3539             public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3540                 return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3541             }
3542         };
3543     // </editor-fold>
3544 
3545     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3546         return original.accept(methodWithParameters, newParams);
3547     }
3548     // where
3549         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3550             public Type visitType(Type t, List<Type> newParams) {
3551                 throw new IllegalArgumentException("Not a method type: " + t);
3552             }
3553             public Type visitMethodType(MethodType t, List<Type> newParams) {
3554                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3555             }
3556             public Type visitForAll(ForAll t, List<Type> newParams) {
3557                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3558             }
3559         };
3560 
3561     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3562         return original.accept(methodWithThrown, newThrown);
3563     }
3564     // where
3565         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3566             public Type visitType(Type t, List<Type> newThrown) {
3567                 throw new IllegalArgumentException("Not a method type: " + t);
3568             }
3569             public Type visitMethodType(MethodType t, List<Type> newThrown) {
3570                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3571             }
3572             public Type visitForAll(ForAll t, List<Type> newThrown) {
3573                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3574             }
3575         };
3576 
3577     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3578         return original.accept(methodWithReturn, newReturn);
3579     }
3580     // where
3581         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3582             public Type visitType(Type t, Type newReturn) {
3583                 throw new IllegalArgumentException("Not a method type: " + t);
3584             }
3585             public Type visitMethodType(MethodType t, Type newReturn) {
3586                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3587                     @Override
3588                     public Type baseType() {
3589                         return t;
3590                     }
3591                 };
3592             }
3593             public Type visitForAll(ForAll t, Type newReturn) {
3594                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3595                     @Override
3596                     public Type baseType() {
3597                         return t;
3598                     }
3599                 };
3600             }
3601         };
3602 
3603     // <editor-fold defaultstate="collapsed" desc="createErrorType">
3604     public Type createErrorType(Type originalType) {
3605         return new ErrorType(originalType, syms.errSymbol);
3606     }
3607 
3608     public Type createErrorType(ClassSymbol c, Type originalType) {
3609         return new ErrorType(c, originalType);
3610     }
3611 
3612     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3613         return new ErrorType(name, container, originalType);
3614     }
3615     // </editor-fold>
3616 
3617     // <editor-fold defaultstate="collapsed" desc="rank">
3618     /**
3619      * The rank of a class is the length of the longest path between
3620      * the class and java.lang.Object in the class inheritance
3621      * graph. Undefined for all but reference types.
3622      */
3623     public int rank(Type t) {
3624         switch(t.getTag()) {
3625         case CLASS: {
3626             ClassType cls = (ClassType)t;
3627             if (cls.rank_field < 0) {
3628                 Name fullname = cls.tsym.getQualifiedName();
3629                 if (fullname == names.java_lang_Object)
3630                     cls.rank_field = 0;
3631                 else {
3632                     int r = rank(supertype(cls));
3633                     for (List<Type> l = interfaces(cls);
3634                          l.nonEmpty();
3635                          l = l.tail) {
3636                         if (rank(l.head) > r)
3637                             r = rank(l.head);
3638                     }
3639                     cls.rank_field = r + 1;
3640                 }
3641             }
3642             return cls.rank_field;
3643         }
3644         case TYPEVAR: {
3645             TypeVar tvar = (TypeVar)t;
3646             if (tvar.rank_field < 0) {
3647                 int r = rank(supertype(tvar));
3648                 for (List<Type> l = interfaces(tvar);
3649                      l.nonEmpty();
3650                      l = l.tail) {
3651                     if (rank(l.head) > r) r = rank(l.head);
3652                 }
3653                 tvar.rank_field = r + 1;
3654             }
3655             return tvar.rank_field;
3656         }
3657         case ERROR:
3658         case NONE:
3659             return 0;
3660         default:
3661             throw new AssertionError();
3662         }
3663     }
3664     // </editor-fold>
3665 
3666     /**
3667      * Helper method for generating a string representation of a given type
3668      * accordingly to a given locale
3669      */
3670     public String toString(Type t, Locale locale) {
3671         return Printer.createStandardPrinter(messages).visit(t, locale);
3672     }
3673 
3674     /**
3675      * Helper method for generating a string representation of a given type
3676      * accordingly to a given locale
3677      */
3678     public String toString(Symbol t, Locale locale) {
3679         return Printer.createStandardPrinter(messages).visit(t, locale);
3680     }
3681 
3682     // <editor-fold defaultstate="collapsed" desc="toString">
3683     /**
3684      * This toString is slightly more descriptive than the one on Type.
3685      *
3686      * @deprecated Types.toString(Type t, Locale l) provides better support
3687      * for localization
3688      */
3689     @Deprecated
3690     public String toString(Type t) {
3691         if (t.hasTag(FORALL)) {
3692             ForAll forAll = (ForAll)t;
3693             return typaramsString(forAll.tvars) + forAll.qtype;
3694         }
3695         return "" + t;
3696     }
3697     // where
3698         private String typaramsString(List<Type> tvars) {
3699             StringBuilder s = new StringBuilder();
3700             s.append('<');
3701             boolean first = true;
3702             for (Type t : tvars) {
3703                 if (!first) s.append(", ");
3704                 first = false;
3705                 appendTyparamString(((TypeVar)t), s);
3706             }
3707             s.append('>');
3708             return s.toString();
3709         }
3710         private void appendTyparamString(TypeVar t, StringBuilder buf) {
3711             buf.append(t);
3712             if (t.getUpperBound() == null ||
3713                 t.getUpperBound().tsym.getQualifiedName() == names.java_lang_Object)
3714                 return;
3715             buf.append(" extends "); // Java syntax; no need for i18n
3716             Type bound = t.getUpperBound();
3717             if (!bound.isCompound()) {
3718                 buf.append(bound);
3719             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3720                 buf.append(supertype(t));
3721                 for (Type intf : interfaces(t)) {
3722                     buf.append('&');
3723                     buf.append(intf);
3724                 }
3725             } else {
3726                 // No superclass was given in bounds.
3727                 // In this case, supertype is Object, erasure is first interface.
3728                 boolean first = true;
3729                 for (Type intf : interfaces(t)) {
3730                     if (!first) buf.append('&');
3731                     first = false;
3732                     buf.append(intf);
3733                 }
3734             }
3735         }
3736     // </editor-fold>
3737 
3738     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3739     /**
3740      * A cache for closures.
3741      *
3742      * <p>A closure is a list of all the supertypes and interfaces of
3743      * a class or interface type, ordered by ClassSymbol.precedes
3744      * (that is, subclasses come first, arbitrarily but fixed
3745      * otherwise).
3746      */
3747     private Map<Type,List<Type>> closureCache = new HashMap<>();
3748 
3749     /**
3750      * Returns the closure of a class or interface type.
3751      */
3752     public List<Type> closure(Type t) {
3753         List<Type> cl = closureCache.get(t);
3754         if (cl == null) {
3755             Type st = supertype(t);
3756             if (!t.isCompound()) {
3757                 if (st.hasTag(CLASS)) {
3758                     cl = insert(closure(st), t);
3759                 } else if (st.hasTag(TYPEVAR)) {
3760                     cl = closure(st).prepend(t);
3761                 } else {
3762                     cl = List.of(t);
3763                 }
3764             } else {
3765                 cl = closure(supertype(t));
3766             }
3767             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3768                 cl = union(cl, closure(l.head));
3769             closureCache.put(t, cl);
3770         }
3771         return cl;
3772     }
3773 
3774     /**
3775      * Collect types into a new closure (using a {@code ClosureHolder})
3776      */
3777     public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3778         return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3779                 ClosureHolder::add,
3780                 ClosureHolder::merge,
3781                 ClosureHolder::closure);
3782     }
3783     //where
3784         class ClosureHolder {
3785             List<Type> closure;
3786             final boolean minClosure;
3787             final BiPredicate<Type, Type> shouldSkip;
3788 
3789             ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3790                 this.closure = List.nil();
3791                 this.minClosure = minClosure;
3792                 this.shouldSkip = shouldSkip;
3793             }
3794 
3795             void add(Type type) {
3796                 closure = insert(closure, type, shouldSkip);
3797             }
3798 
3799             ClosureHolder merge(ClosureHolder other) {
3800                 closure = union(closure, other.closure, shouldSkip);
3801                 return this;
3802             }
3803 
3804             List<Type> closure() {
3805                 return minClosure ? closureMin(closure) : closure;
3806             }
3807         }
3808 
3809     BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3810 
3811     /**
3812      * Insert a type in a closure
3813      */
3814     public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3815         if (cl.isEmpty()) {
3816             return cl.prepend(t);
3817         } else if (shouldSkip.test(t, cl.head)) {
3818             return cl;
3819         } else if (t.tsym.precedes(cl.head.tsym, this)) {
3820             return cl.prepend(t);
3821         } else {
3822             // t comes after head, or the two are unrelated
3823             return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3824         }
3825     }
3826 
3827     public List<Type> insert(List<Type> cl, Type t) {
3828         return insert(cl, t, basicClosureSkip);
3829     }
3830 
3831     /**
3832      * Form the union of two closures
3833      */
3834     public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3835         if (cl1.isEmpty()) {
3836             return cl2;
3837         } else if (cl2.isEmpty()) {
3838             return cl1;
3839         } else if (shouldSkip.test(cl1.head, cl2.head)) {
3840             return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3841         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3842             return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3843         } else {
3844             return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3845         }
3846     }
3847 
3848     public List<Type> union(List<Type> cl1, List<Type> cl2) {
3849         return union(cl1, cl2, basicClosureSkip);
3850     }
3851 
3852     /**
3853      * Intersect two closures
3854      */
3855     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3856         if (cl1 == cl2)
3857             return cl1;
3858         if (cl1.isEmpty() || cl2.isEmpty())
3859             return List.nil();
3860         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3861             return intersect(cl1.tail, cl2);
3862         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3863             return intersect(cl1, cl2.tail);
3864         if (isSameType(cl1.head, cl2.head))
3865             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3866         if (cl1.head.tsym == cl2.head.tsym &&
3867             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3868             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3869                 Type merge = merge(cl1.head,cl2.head);
3870                 return intersect(cl1.tail, cl2.tail).prepend(merge);
3871             }
3872             if (cl1.head.isRaw() || cl2.head.isRaw())
3873                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3874         }
3875         return intersect(cl1.tail, cl2.tail);
3876     }
3877     // where
3878         class TypePair {
3879             final Type t1;
3880             final Type t2;
3881 
3882             TypePair(Type t1, Type t2) {
3883                 this.t1 = t1;
3884                 this.t2 = t2;
3885             }
3886             @Override
3887             public int hashCode() {
3888                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3889             }
3890             @Override
3891             public boolean equals(Object obj) {
3892                 return (obj instanceof TypePair typePair)
3893                         && exactTypeVisitor.visit(t1, typePair.t1)
3894                         && exactTypeVisitor.visit(t2, typePair.t2);
3895             }
3896         }
3897 
3898         TypeEqualityVisitor exactTypeVisitor = new TypeEqualityVisitor() {
3899             @Override
3900             boolean sameTypeArguments(List<Type> ts, List<Type> ss) {
3901                 while (ts.nonEmpty() && ss.nonEmpty()
3902                         && sameTypeComparator(ts.head, ss.head)) {
3903                     ts = ts.tail;
3904                     ss = ss.tail;
3905                 }
3906                 return ts.isEmpty() && ss.isEmpty();
3907             }
3908 
3909             @Override
3910             boolean sameTypeComparator(Type t, Type s) {
3911                 return exactTypeVisitor.visit(t, s);
3912             }
3913         };
3914 
3915         Set<TypePair> mergeCache = new HashSet<>();
3916         private Type merge(Type c1, Type c2) {
3917             ClassType class1 = (ClassType) c1;
3918             List<Type> act1 = class1.getTypeArguments();
3919             ClassType class2 = (ClassType) c2;
3920             List<Type> act2 = class2.getTypeArguments();
3921             ListBuffer<Type> merged = new ListBuffer<>();
3922             List<Type> typarams = class1.tsym.type.getTypeArguments();
3923 
3924             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3925                 if (containsType(act1.head, act2.head)) {
3926                     merged.append(act1.head);
3927                 } else if (containsType(act2.head, act1.head)) {
3928                     merged.append(act2.head);
3929                 } else {
3930                     TypePair pair = new TypePair(c1, c2);
3931                     Type m;
3932                     if (mergeCache.add(pair)) {
3933                         m = new WildcardType(lub(wildUpperBound(act1.head),
3934                                                  wildUpperBound(act2.head)),
3935                                              BoundKind.EXTENDS,
3936                                              syms.boundClass);
3937                         mergeCache.remove(pair);
3938                     } else {
3939                         m = new WildcardType(syms.objectType,
3940                                              BoundKind.UNBOUND,
3941                                              syms.boundClass);
3942                     }
3943                     merged.append(m.withTypeVar(typarams.head));
3944                 }
3945                 act1 = act1.tail;
3946                 act2 = act2.tail;
3947                 typarams = typarams.tail;
3948             }
3949             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3950             // There is no spec detailing how type annotations are to
3951             // be inherited.  So set it to noAnnotations for now
3952             return new ClassType(class1.getEnclosingType(), merged.toList(),
3953                                  class1.tsym);
3954         }
3955 
3956     /**
3957      * Return the minimum type of a closure, a compound type if no
3958      * unique minimum exists.
3959      */
3960     private Type compoundMin(List<Type> cl) {
3961         if (cl.isEmpty()) return syms.objectType;
3962         List<Type> compound = closureMin(cl);
3963         if (compound.isEmpty())
3964             return null;
3965         else if (compound.tail.isEmpty())
3966             return compound.head;
3967         else
3968             return makeIntersectionType(compound);
3969     }
3970 
3971     /**
3972      * Return the minimum types of a closure, suitable for computing
3973      * compoundMin or glb.
3974      */
3975     public List<Type> closureMin(List<Type> cl) {
3976         ListBuffer<Type> classes = new ListBuffer<>();
3977         ListBuffer<Type> interfaces = new ListBuffer<>();
3978         Set<Type> toSkip = new HashSet<>();
3979         while (!cl.isEmpty()) {
3980             Type current = cl.head;
3981             boolean keep = !toSkip.contains(current);
3982             if (keep && current.hasTag(TYPEVAR)) {
3983                 // skip lower-bounded variables with a subtype in cl.tail
3984                 for (Type t : cl.tail) {
3985                     if (isSubtypeNoCapture(t, current)) {
3986                         keep = false;
3987                         break;
3988                     }
3989                 }
3990             }
3991             if (keep) {
3992                 if (current.isInterface())
3993                     interfaces.append(current);
3994                 else
3995                     classes.append(current);
3996                 for (Type t : cl.tail) {
3997                     // skip supertypes of 'current' in cl.tail
3998                     if (isSubtypeNoCapture(current, t))
3999                         toSkip.add(t);
4000                 }
4001             }
4002             cl = cl.tail;
4003         }
4004         return classes.appendList(interfaces).toList();
4005     }
4006 
4007     /**
4008      * Return the least upper bound of list of types.  if the lub does
4009      * not exist return null.
4010      */
4011     public Type lub(List<Type> ts) {
4012         return lub(ts.toArray(new Type[ts.length()]));
4013     }
4014 
4015     /**
4016      * Return the least upper bound (lub) of set of types.  If the lub
4017      * does not exist return the type of null (bottom).
4018      */
4019     public Type lub(Type... ts) {
4020         final int UNKNOWN_BOUND = 0;
4021         final int ARRAY_BOUND = 1;
4022         final int CLASS_BOUND = 2;
4023 
4024         int[] kinds = new int[ts.length];
4025 
4026         int boundkind = UNKNOWN_BOUND;
4027         for (int i = 0 ; i < ts.length ; i++) {
4028             Type t = ts[i];
4029             switch (t.getTag()) {
4030             case CLASS:
4031                 boundkind |= kinds[i] = CLASS_BOUND;
4032                 break;
4033             case ARRAY:
4034                 boundkind |= kinds[i] = ARRAY_BOUND;
4035                 break;
4036             case  TYPEVAR:
4037                 do {
4038                     t = t.getUpperBound();
4039                 } while (t.hasTag(TYPEVAR));
4040                 if (t.hasTag(ARRAY)) {
4041                     boundkind |= kinds[i] = ARRAY_BOUND;
4042                 } else {
4043                     boundkind |= kinds[i] = CLASS_BOUND;
4044                 }
4045                 break;
4046             default:
4047                 kinds[i] = UNKNOWN_BOUND;
4048                 if (t.isPrimitive())
4049                     return syms.errType;
4050             }
4051         }
4052         switch (boundkind) {
4053         case 0:
4054             return syms.botType;
4055 
4056         case ARRAY_BOUND:
4057             // calculate lub(A[], B[])
4058             Type[] elements = new Type[ts.length];
4059             for (int i = 0 ; i < ts.length ; i++) {
4060                 Type elem = elements[i] = elemTypeFun.apply(ts[i]);
4061                 if (elem.isPrimitive()) {
4062                     // if a primitive type is found, then return
4063                     // arraySuperType unless all the types are the
4064                     // same
4065                     Type first = ts[0];
4066                     for (int j = 1 ; j < ts.length ; j++) {
4067                         if (!isSameType(first, ts[j])) {
4068                              // lub(int[], B[]) is Cloneable & Serializable
4069                             return arraySuperType();
4070                         }
4071                     }
4072                     // all the array types are the same, return one
4073                     // lub(int[], int[]) is int[]
4074                     return first;
4075                 }
4076             }
4077             // lub(A[], B[]) is lub(A, B)[]
4078             return new ArrayType(lub(elements), syms.arrayClass);
4079 
4080         case CLASS_BOUND:
4081             // calculate lub(A, B)
4082             int startIdx = 0;
4083             for (int i = 0; i < ts.length ; i++) {
4084                 Type t = ts[i];
4085                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
4086                     break;
4087                 } else {
4088                     startIdx++;
4089                 }
4090             }
4091             Assert.check(startIdx < ts.length);
4092             //step 1 - compute erased candidate set (EC)
4093             List<Type> cl = erasedSupertypes(ts[startIdx]);
4094             for (int i = startIdx + 1 ; i < ts.length ; i++) {
4095                 Type t = ts[i];
4096                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
4097                     cl = intersect(cl, erasedSupertypes(t));
4098             }
4099             //step 2 - compute minimal erased candidate set (MEC)
4100             List<Type> mec = closureMin(cl);
4101             //step 3 - for each element G in MEC, compute lci(Inv(G))
4102             List<Type> candidates = List.nil();
4103             for (Type erasedSupertype : mec) {
4104                 List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
4105                 for (int i = startIdx + 1 ; i < ts.length ; i++) {
4106                     Type superType = asSuper(ts[i], erasedSupertype.tsym);
4107                     lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
4108                 }
4109                 candidates = candidates.appendList(lci);
4110             }
4111             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
4112             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
4113             return compoundMin(candidates);
4114 
4115         default:
4116             // calculate lub(A, B[])
4117             List<Type> classes = List.of(arraySuperType());
4118             for (int i = 0 ; i < ts.length ; i++) {
4119                 if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
4120                     classes = classes.prepend(ts[i]);
4121             }
4122             // lub(A, B[]) is lub(A, arraySuperType)
4123             return lub(classes);
4124         }
4125     }
4126 
4127     public List<Type> erasedSupertypes(Type t) {
4128         ListBuffer<Type> buf = new ListBuffer<>();
4129         for (Type sup : closure(t)) {
4130             if (sup.hasTag(TYPEVAR)) {
4131                 buf.append(sup);
4132             } else {
4133                 buf.append(erasure(sup));
4134             }
4135         }
4136         return buf.toList();
4137     }
4138 
4139     // where
4140         private Type arraySuperType;
4141         private Type arraySuperType() {
4142             // initialized lazily to avoid problems during compiler startup
4143             if (arraySuperType == null) {
4144                 // JLS 10.8: all arrays implement Cloneable and Serializable.
4145                 arraySuperType = makeIntersectionType(List.of(syms.serializableType,
4146                         syms.cloneableType), true);
4147             }
4148             return arraySuperType;
4149         }
4150     // </editor-fold>
4151 
4152     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
4153     public Type glb(List<Type> ts) {
4154         Type t1 = ts.head;
4155         for (Type t2 : ts.tail) {
4156             if (t1.isErroneous())
4157                 return t1;
4158             t1 = glb(t1, t2);
4159         }
4160         return t1;
4161     }
4162     //where
4163     public Type glb(Type t, Type s) {
4164         if (s == null)
4165             return t;
4166         else if (t.isPrimitive() || s.isPrimitive())
4167             return syms.errType;
4168         else if (isSubtypeNoCapture(t, s))
4169             return t;
4170         else if (isSubtypeNoCapture(s, t))
4171             return s;
4172 
4173         List<Type> closure = union(closure(t), closure(s));
4174         return glbFlattened(closure, t);
4175     }
4176     //where
4177     /**
4178      * Perform glb for a list of non-primitive, non-error, non-compound types;
4179      * redundant elements are removed.  Bounds should be ordered according to
4180      * {@link Symbol#precedes(TypeSymbol,Types)}.
4181      *
4182      * @param flatBounds List of type to glb
4183      * @param errT Original type to use if the result is an error type
4184      */
4185     private Type glbFlattened(List<Type> flatBounds, Type errT) {
4186         List<Type> bounds = closureMin(flatBounds);
4187 
4188         if (bounds.isEmpty()) {             // length == 0
4189             return syms.objectType;
4190         } else if (bounds.tail.isEmpty()) { // length == 1
4191             return bounds.head;
4192         } else {                            // length > 1
4193             int classCount = 0;
4194             List<Type> cvars = List.nil();
4195             List<Type> lowers = List.nil();
4196             for (Type bound : bounds) {
4197                 if (!bound.isInterface()) {
4198                     classCount++;
4199                     Type lower = cvarLowerBound(bound);
4200                     if (bound != lower && !lower.hasTag(BOT)) {
4201                         cvars = cvars.append(bound);
4202                         lowers = lowers.append(lower);
4203                     }
4204                 }
4205             }
4206             if (classCount > 1) {
4207                 if (lowers.isEmpty()) {
4208                     return createErrorType(errT);
4209                 } else {
4210                     // try again with lower bounds included instead of capture variables
4211                     List<Type> newBounds = bounds.diff(cvars).appendList(lowers);
4212                     return glb(newBounds);
4213                 }
4214             }
4215         }
4216         return makeIntersectionType(bounds);
4217     }
4218     // </editor-fold>
4219 
4220     // <editor-fold defaultstate="collapsed" desc="hashCode">
4221     /**
4222      * Compute a hash code on a type.
4223      */
4224     public int hashCode(Type t) {
4225         return hashCode(t, false);
4226     }
4227 
4228     public int hashCode(Type t, boolean strict) {
4229         return strict ?
4230                 hashCodeStrictVisitor.visit(t) :
4231                 hashCodeVisitor.visit(t);
4232     }
4233     // where
4234         private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
4235         private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
4236             @Override
4237             public Integer visitTypeVar(TypeVar t, Void ignored) {
4238                 return System.identityHashCode(t);
4239             }
4240         };
4241 
4242         private static class HashCodeVisitor extends UnaryVisitor<Integer> {
4243             public Integer visitType(Type t, Void ignored) {
4244                 return t.getTag().ordinal();
4245             }
4246 
4247             @Override
4248             public Integer visitClassType(ClassType t, Void ignored) {
4249                 int result = visit(t.getEnclosingType());
4250                 result *= 127;
4251                 result += t.tsym.flatName().hashCode();
4252                 for (Type s : t.getTypeArguments()) {
4253                     result *= 127;
4254                     result += visit(s);
4255                 }
4256                 return result;
4257             }
4258 
4259             @Override
4260             public Integer visitMethodType(MethodType t, Void ignored) {
4261                 int h = METHOD.ordinal();
4262                 for (List<Type> thisargs = t.argtypes;
4263                      thisargs.tail != null;
4264                      thisargs = thisargs.tail)
4265                     h = (h << 5) + visit(thisargs.head);
4266                 return (h << 5) + visit(t.restype);
4267             }
4268 
4269             @Override
4270             public Integer visitWildcardType(WildcardType t, Void ignored) {
4271                 int result = t.kind.hashCode();
4272                 if (t.type != null) {
4273                     result *= 127;
4274                     result += visit(t.type);
4275                 }
4276                 return result;
4277             }
4278 
4279             @Override
4280             public Integer visitArrayType(ArrayType t, Void ignored) {
4281                 return visit(t.elemtype) + 12;
4282             }
4283 
4284             @Override
4285             public Integer visitTypeVar(TypeVar t, Void ignored) {
4286                 return System.identityHashCode(t);
4287             }
4288 
4289             @Override
4290             public Integer visitUndetVar(UndetVar t, Void ignored) {
4291                 return System.identityHashCode(t);
4292             }
4293 
4294             @Override
4295             public Integer visitErrorType(ErrorType t, Void ignored) {
4296                 return 0;
4297             }
4298         }
4299     // </editor-fold>
4300 
4301     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
4302     /**
4303      * Does t have a result that is a subtype of the result type of s,
4304      * suitable for covariant returns?  It is assumed that both types
4305      * are (possibly polymorphic) method types.  Monomorphic method
4306      * types are handled in the obvious way.  Polymorphic method types
4307      * require renaming all type variables of one to corresponding
4308      * type variables in the other, where correspondence is by
4309      * position in the type parameter list. */
4310     public boolean resultSubtype(Type t, Type s, Warner warner) {
4311         List<Type> tvars = t.getTypeArguments();
4312         List<Type> svars = s.getTypeArguments();
4313         Type tres = t.getReturnType();
4314         Type sres = subst(s.getReturnType(), svars, tvars);
4315         return covariantReturnType(tres, sres, warner);
4316     }
4317 
4318     /**
4319      * Return-Type-Substitutable.
4320      * @jls 8.4.5 Method Result
4321      */
4322     public boolean returnTypeSubstitutable(Type r1, Type r2) {
4323         if (hasSameArgs(r1, r2))
4324             return resultSubtype(r1, r2, noWarnings);
4325         else
4326             return covariantReturnType(r1.getReturnType(),
4327                                        erasure(r2.getReturnType()),
4328                                        noWarnings);
4329     }
4330 
4331     public boolean returnTypeSubstitutable(Type r1,
4332                                            Type r2, Type r2res,
4333                                            Warner warner) {
4334         if (isSameType(r1.getReturnType(), r2res))
4335             return true;
4336         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
4337             return false;
4338 
4339         if (hasSameArgs(r1, r2))
4340             return covariantReturnType(r1.getReturnType(), r2res, warner);
4341         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
4342             return true;
4343         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
4344             return false;
4345         warner.warn(LintCategory.UNCHECKED);
4346         return true;
4347     }
4348 
4349     /**
4350      * Is t an appropriate return type in an overrider for a
4351      * method that returns s?
4352      */
4353     public boolean covariantReturnType(Type t, Type s, Warner warner) {
4354         return
4355             isSameType(t, s) ||
4356             !t.isPrimitive() &&
4357             !s.isPrimitive() &&
4358             isAssignable(t, s, warner);
4359     }
4360     // </editor-fold>
4361 
4362     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
4363     /**
4364      * Return the class that boxes the given primitive.
4365      */
4366     public ClassSymbol boxedClass(Type t) {
4367         return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
4368     }
4369 
4370     /**
4371      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
4372      */
4373     public Type boxedTypeOrType(Type t) {
4374         return t.isPrimitive() ?
4375             boxedClass(t).type :
4376             t;
4377     }
4378 
4379     /**
4380      * Return the primitive type corresponding to a boxed type.
4381      */
4382     public Type unboxedType(Type t) {
4383         if (t.hasTag(ERROR))
4384             return Type.noType;
4385         for (int i=0; i<syms.boxedName.length; i++) {
4386             Name box = syms.boxedName[i];
4387             if (box != null &&
4388                 asSuper(t, syms.enterClass(syms.java_base, box)) != null)
4389                 return syms.typeOfTag[i];
4390         }
4391         return Type.noType;
4392     }
4393 
4394     /**
4395      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
4396      */
4397     public Type unboxedTypeOrType(Type t) {
4398         Type unboxedType = unboxedType(t);
4399         return unboxedType.hasTag(NONE) ? t : unboxedType;
4400     }
4401     // </editor-fold>
4402 
4403     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
4404     /*
4405      * JLS 5.1.10 Capture Conversion:
4406      *
4407      * Let G name a generic type declaration with n formal type
4408      * parameters A1 ... An with corresponding bounds U1 ... Un. There
4409      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
4410      * where, for 1 <= i <= n:
4411      *
4412      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
4413      *   Si is a fresh type variable whose upper bound is
4414      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
4415      *   type.
4416      *
4417      * + If Ti is a wildcard type argument of the form ? extends Bi,
4418      *   then Si is a fresh type variable whose upper bound is
4419      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
4420      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
4421      *   a compile-time error if for any two classes (not interfaces)
4422      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
4423      *
4424      * + If Ti is a wildcard type argument of the form ? super Bi,
4425      *   then Si is a fresh type variable whose upper bound is
4426      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4427      *
4428      * + Otherwise, Si = Ti.
4429      *
4430      * Capture conversion on any type other than a parameterized type
4431      * (4.5) acts as an identity conversion (5.1.1). Capture
4432      * conversions never require a special action at run time and
4433      * therefore never throw an exception at run time.
4434      *
4435      * Capture conversion is not applied recursively.
4436      */
4437     /**
4438      * Capture conversion as specified by the JLS.
4439      */
4440 
4441     public List<Type> capture(List<Type> ts) {
4442         List<Type> buf = List.nil();
4443         for (Type t : ts) {
4444             buf = buf.prepend(capture(t));
4445         }
4446         return buf.reverse();
4447     }
4448 
4449     public Type capture(Type t) {
4450         if (!t.hasTag(CLASS)) {
4451             return t;
4452         }
4453         if (t.getEnclosingType() != Type.noType) {
4454             Type capturedEncl = capture(t.getEnclosingType());
4455             if (capturedEncl != t.getEnclosingType()) {
4456                 Type type1 = memberType(capturedEncl, t.tsym);
4457                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4458             }
4459         }
4460         ClassType cls = (ClassType)t;
4461         if (cls.isRaw() || !cls.isParameterized())
4462             return cls;
4463 
4464         ClassType G = (ClassType)cls.asElement().asType();
4465         List<Type> A = G.getTypeArguments();
4466         List<Type> T = cls.getTypeArguments();
4467         List<Type> S = freshTypeVariables(T);
4468 
4469         List<Type> currentA = A;
4470         List<Type> currentT = T;
4471         List<Type> currentS = S;
4472         boolean captured = false;
4473         while (!currentA.isEmpty() &&
4474                !currentT.isEmpty() &&
4475                !currentS.isEmpty()) {
4476             if (currentS.head != currentT.head) {
4477                 captured = true;
4478                 WildcardType Ti = (WildcardType)currentT.head;
4479                 Type Ui = currentA.head.getUpperBound();
4480                 CapturedType Si = (CapturedType)currentS.head;
4481                 if (Ui == null)
4482                     Ui = syms.objectType;
4483                 switch (Ti.kind) {
4484                 case UNBOUND:
4485                     Si.setUpperBound( subst(Ui, A, S) );
4486                     Si.lower = syms.botType;
4487                     break;
4488                 case EXTENDS:
4489                     Si.setUpperBound( glb(Ti.getExtendsBound(), subst(Ui, A, S)) );
4490                     Si.lower = syms.botType;
4491                     break;
4492                 case SUPER:
4493                     Si.setUpperBound( subst(Ui, A, S) );
4494                     Si.lower = Ti.getSuperBound();
4495                     break;
4496                 }
4497                 Type tmpBound = Si.getUpperBound().hasTag(UNDETVAR) ? ((UndetVar)Si.getUpperBound()).qtype : Si.getUpperBound();
4498                 Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4499                 if (!Si.getUpperBound().hasTag(ERROR) &&
4500                     !Si.lower.hasTag(ERROR) &&
4501                     isSameType(tmpBound, tmpLower)) {
4502                     currentS.head = Si.getUpperBound();
4503                 }
4504             }
4505             currentA = currentA.tail;
4506             currentT = currentT.tail;
4507             currentS = currentS.tail;
4508         }
4509         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4510             return erasure(t); // some "rare" type involved
4511 
4512         if (captured)
4513             return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4514                                  cls.getMetadata());
4515         else
4516             return t;
4517     }
4518     // where
4519         public List<Type> freshTypeVariables(List<Type> types) {
4520             ListBuffer<Type> result = new ListBuffer<>();
4521             for (Type t : types) {
4522                 if (t.hasTag(WILDCARD)) {
4523                     Type bound = ((WildcardType)t).getExtendsBound();
4524                     if (bound == null)
4525                         bound = syms.objectType;
4526                     result.append(new CapturedType(capturedName,
4527                                                    syms.noSymbol,
4528                                                    bound,
4529                                                    syms.botType,
4530                                                    (WildcardType)t));
4531                 } else {
4532                     result.append(t);
4533                 }
4534             }
4535             return result.toList();
4536         }
4537     // </editor-fold>
4538 
4539     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4540     private boolean sideCast(Type from, Type to, Warner warn) {
4541         // We are casting from type $from$ to type $to$, which are
4542         // non-final unrelated types.  This method
4543         // tries to reject a cast by transferring type parameters
4544         // from $to$ to $from$ by common superinterfaces.
4545         boolean reverse = false;
4546         Type target = to;
4547         if ((to.tsym.flags() & INTERFACE) == 0) {
4548             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4549             reverse = true;
4550             to = from;
4551             from = target;
4552         }
4553         List<Type> commonSupers = supertypeClosure(to, erasure(from));
4554         boolean giveWarning = commonSupers.isEmpty();
4555         // The arguments to the supers could be unified here to
4556         // get a more accurate analysis
4557         while (commonSupers.nonEmpty()) {
4558             Type t1 = asSuper(from, commonSupers.head.tsym);
4559             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4560             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4561                 return false;
4562             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4563             commonSupers = commonSupers.tail;
4564         }
4565         if (giveWarning && !isReifiable(reverse ? from : to))
4566             warn.warn(LintCategory.UNCHECKED);
4567         return true;
4568     }
4569 
4570     private boolean sideCastFinal(Type from, Type to, Warner warn) {
4571         // We are casting from type $from$ to type $to$, which are
4572         // unrelated types one of which is final and the other of
4573         // which is an interface.  This method
4574         // tries to reject a cast by transferring type parameters
4575         // from the final class to the interface.
4576         boolean reverse = false;
4577         Type target = to;
4578         if ((to.tsym.flags() & INTERFACE) == 0) {
4579             Assert.check((from.tsym.flags() & INTERFACE) != 0);
4580             reverse = true;
4581             to = from;
4582             from = target;
4583         }
4584         Assert.check((from.tsym.flags() & FINAL) != 0);
4585         Type t1 = asSuper(from, to.tsym);
4586         if (t1 == null) return false;
4587         Type t2 = to;
4588         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4589             return false;
4590         if (!isReifiable(target) &&
4591             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4592             warn.warn(LintCategory.UNCHECKED);
4593         return true;
4594     }
4595 
4596     private boolean giveWarning(Type from, Type to) {
4597         List<Type> bounds = to.isCompound() ?
4598                 directSupertypes(to) : List.of(to);
4599         for (Type b : bounds) {
4600             Type subFrom = asSub(from, b.tsym);
4601             if (b.isParameterized() &&
4602                     (!(isUnbounded(b) ||
4603                     isSubtype(from, b) ||
4604                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4605                 return true;
4606             }
4607         }
4608         return false;
4609     }
4610 
4611     private List<Type> supertypeClosure(Type t, Type s) {
4612         List<Type> cl = List.nil();
4613         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4614             if (isSubtype(s, erasure(l.head))) {
4615                 cl = insert(cl, l.head);
4616             } else {
4617                 cl = union(cl, supertypeClosure(l.head, s));
4618             }
4619         }
4620         return cl;
4621     }
4622 
4623     private boolean containsTypeEquivalent(Type t, Type s) {
4624         return isSameType(t, s) || // shortcut
4625             containsType(t, s) && containsType(s, t);
4626     }
4627 
4628     // <editor-fold defaultstate="collapsed" desc="adapt">
4629     /**
4630      * Adapt a type by computing a substitution which maps a source
4631      * type to a target type.
4632      *
4633      * @param source    the source type
4634      * @param target    the target type
4635      * @param from      the type variables of the computed substitution
4636      * @param to        the types of the computed substitution.
4637      */
4638     public void adapt(Type source,
4639                        Type target,
4640                        ListBuffer<Type> from,
4641                        ListBuffer<Type> to) throws AdaptFailure {
4642         new Adapter(from, to).adapt(source, target);
4643     }
4644 
4645     class Adapter extends SimpleVisitor<Void, Type> {
4646 
4647         ListBuffer<Type> from;
4648         ListBuffer<Type> to;
4649         Map<Symbol,Type> mapping;
4650 
4651         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4652             this.from = from;
4653             this.to = to;
4654             mapping = new HashMap<>();
4655         }
4656 
4657         public void adapt(Type source, Type target) throws AdaptFailure {
4658             visit(source, target);
4659             List<Type> fromList = from.toList();
4660             List<Type> toList = to.toList();
4661             while (!fromList.isEmpty()) {
4662                 Type val = mapping.get(fromList.head.tsym);
4663                 if (toList.head != val)
4664                     toList.head = val;
4665                 fromList = fromList.tail;
4666                 toList = toList.tail;
4667             }
4668         }
4669 
4670         @Override
4671         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4672             if (target.hasTag(CLASS))
4673                 adaptRecursive(source.allparams(), target.allparams());
4674             return null;
4675         }
4676 
4677         @Override
4678         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4679             if (target.hasTag(ARRAY))
4680                 adaptRecursive(elemtype(source), elemtype(target));
4681             return null;
4682         }
4683 
4684         @Override
4685         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4686             if (source.isExtendsBound())
4687                 adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4688             else if (source.isSuperBound())
4689                 adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4690             return null;
4691         }
4692 
4693         @Override
4694         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4695             // Check to see if there is
4696             // already a mapping for $source$, in which case
4697             // the old mapping will be merged with the new
4698             Type val = mapping.get(source.tsym);
4699             if (val != null) {
4700                 if (val.isSuperBound() && target.isSuperBound()) {
4701                     val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4702                         ? target : val;
4703                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
4704                     val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4705                         ? val : target;
4706                 } else if (!isSameType(val, target)) {
4707                     throw new AdaptFailure();
4708                 }
4709             } else {
4710                 val = target;
4711                 from.append(source);
4712                 to.append(target);
4713             }
4714             mapping.put(source.tsym, val);
4715             return null;
4716         }
4717 
4718         @Override
4719         public Void visitType(Type source, Type target) {
4720             return null;
4721         }
4722 
4723         private Set<TypePair> cache = new HashSet<>();
4724 
4725         private void adaptRecursive(Type source, Type target) {
4726             TypePair pair = new TypePair(source, target);
4727             if (cache.add(pair)) {
4728                 try {
4729                     visit(source, target);
4730                 } finally {
4731                     cache.remove(pair);
4732                 }
4733             }
4734         }
4735 
4736         private void adaptRecursive(List<Type> source, List<Type> target) {
4737             if (source.length() == target.length()) {
4738                 while (source.nonEmpty()) {
4739                     adaptRecursive(source.head, target.head);
4740                     source = source.tail;
4741                     target = target.tail;
4742                 }
4743             }
4744         }
4745     }
4746 
4747     public static class AdaptFailure extends RuntimeException {
4748         static final long serialVersionUID = -7490231548272701566L;
4749     }
4750 
4751     private void adaptSelf(Type t,
4752                            ListBuffer<Type> from,
4753                            ListBuffer<Type> to) {
4754         try {
4755             //if (t.tsym.type != t)
4756                 adapt(t.tsym.type, t, from, to);
4757         } catch (AdaptFailure ex) {
4758             // Adapt should never fail calculating a mapping from
4759             // t.tsym.type to t as there can be no merge problem.
4760             throw new AssertionError(ex);
4761         }
4762     }
4763     // </editor-fold>
4764 
4765     /**
4766      * Rewrite all type variables (universal quantifiers) in the given
4767      * type to wildcards (existential quantifiers).  This is used to
4768      * determine if a cast is allowed.  For example, if high is true
4769      * and {@code T <: Number}, then {@code List<T>} is rewritten to
4770      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4771      * List<? extends Number>} a {@code List<T>} can be cast to {@code
4772      * List<Integer>} with a warning.
4773      * @param t a type
4774      * @param high if true return an upper bound; otherwise a lower
4775      * bound
4776      * @param rewriteTypeVars only rewrite captured wildcards if false;
4777      * otherwise rewrite all type variables
4778      * @return the type rewritten with wildcards (existential
4779      * quantifiers) only
4780      */
4781     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4782         return new Rewriter(high, rewriteTypeVars).visit(t);
4783     }
4784 
4785     class Rewriter extends UnaryVisitor<Type> {
4786 
4787         boolean high;
4788         boolean rewriteTypeVars;
4789         // map to avoid visiting same type argument twice, like in Foo<T>.Bar<T>
4790         Map<Type, Type> argMap = new HashMap<>();
4791         // cycle detection within an argument, see JDK-8324809
4792         Set<Type> seen = new HashSet<>();
4793 
4794         Rewriter(boolean high, boolean rewriteTypeVars) {
4795             this.high = high;
4796             this.rewriteTypeVars = rewriteTypeVars;
4797         }
4798 
4799         @Override
4800         public Type visitClassType(ClassType t, Void s) {
4801             ListBuffer<Type> rewritten = new ListBuffer<>();
4802             boolean changed = false;
4803             for (Type arg : t.allparams()) {
4804                 Type bound = argMap.get(arg);
4805                 if (bound == null) {
4806                     argMap.put(arg, bound = visit(arg));
4807                 }
4808                 if (arg != bound) {
4809                     changed = true;
4810                 }
4811                 rewritten.append(bound);
4812             }
4813             if (changed)
4814                 return subst(t.tsym.type,
4815                         t.tsym.type.allparams(),
4816                         rewritten.toList());
4817             else
4818                 return t;
4819         }
4820 
4821         public Type visitType(Type t, Void s) {
4822             return t;
4823         }
4824 
4825         @Override
4826         public Type visitCapturedType(CapturedType t, Void s) {
4827             Type w_bound = t.wildcard.type;
4828             Type bound = w_bound.contains(t) ?
4829                         erasure(w_bound) :
4830                         visit(w_bound);
4831             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4832         }
4833 
4834         @Override
4835         public Type visitTypeVar(TypeVar t, Void s) {
4836             if (seen.add(t)) {
4837                 if (rewriteTypeVars) {
4838                     Type bound = t.getUpperBound().contains(t) ?
4839                             erasure(t.getUpperBound()) :
4840                             visit(t.getUpperBound());
4841                     return rewriteAsWildcardType(bound, t, EXTENDS);
4842                 } else {
4843                     return t;
4844                 }
4845             } else {
4846                 return rewriteTypeVars ? makeExtendsWildcard(syms.objectType, t) : t;
4847             }
4848         }
4849 
4850         @Override
4851         public Type visitWildcardType(WildcardType t, Void s) {
4852             Type bound2 = visit(t.type);
4853             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4854         }
4855 
4856         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4857             switch (bk) {
4858                case EXTENDS: return high ?
4859                        makeExtendsWildcard(B(bound), formal) :
4860                        makeExtendsWildcard(syms.objectType, formal);
4861                case SUPER: return high ?
4862                        makeSuperWildcard(syms.botType, formal) :
4863                        makeSuperWildcard(B(bound), formal);
4864                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4865                default:
4866                    Assert.error("Invalid bound kind " + bk);
4867                    return null;
4868             }
4869         }
4870 
4871         Type B(Type t) {
4872             while (t.hasTag(WILDCARD)) {
4873                 WildcardType w = (WildcardType)t;
4874                 t = high ?
4875                     w.getExtendsBound() :
4876                     w.getSuperBound();
4877                 if (t == null) {
4878                     t = high ? syms.objectType : syms.botType;
4879                 }
4880             }
4881             return t;
4882         }
4883     }
4884 
4885 
4886     /**
4887      * Create a wildcard with the given upper (extends) bound; create
4888      * an unbounded wildcard if bound is Object.
4889      *
4890      * @param bound the upper bound
4891      * @param formal the formal type parameter that will be
4892      * substituted by the wildcard
4893      */
4894     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4895         if (bound == syms.objectType) {
4896             return new WildcardType(syms.objectType,
4897                                     BoundKind.UNBOUND,
4898                                     syms.boundClass,
4899                                     formal);
4900         } else {
4901             return new WildcardType(bound,
4902                                     BoundKind.EXTENDS,
4903                                     syms.boundClass,
4904                                     formal);
4905         }
4906     }
4907 
4908     /**
4909      * Create a wildcard with the given lower (super) bound; create an
4910      * unbounded wildcard if bound is bottom (type of {@code null}).
4911      *
4912      * @param bound the lower bound
4913      * @param formal the formal type parameter that will be
4914      * substituted by the wildcard
4915      */
4916     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4917         if (bound.hasTag(BOT)) {
4918             return new WildcardType(syms.objectType,
4919                                     BoundKind.UNBOUND,
4920                                     syms.boundClass,
4921                                     formal);
4922         } else {
4923             return new WildcardType(bound,
4924                                     BoundKind.SUPER,
4925                                     syms.boundClass,
4926                                     formal);
4927         }
4928     }
4929 
4930     /**
4931      * A wrapper for a type that allows use in sets.
4932      */
4933     public static class UniqueType {
4934         public final Type type;
4935         final Types types;

4936 
4937         public UniqueType(Type type, Types types) {
4938             this.type = type;
4939             this.types = types;





4940         }
4941 
4942         public int hashCode() {
4943             return types.hashCode(type);
4944         }
4945 
4946         public boolean equals(Object obj) {
4947             return (obj instanceof UniqueType uniqueType) &&
4948                     types.isSameType(type, uniqueType.type);
4949         }
4950 




4951         public String toString() {
4952             return type.toString();
4953         }
4954 
4955     }
4956     // </editor-fold>
4957 
4958     // <editor-fold defaultstate="collapsed" desc="Visitors">
4959     /**
4960      * A default visitor for types.  All visitor methods except
4961      * visitType are implemented by delegating to visitType.  Concrete
4962      * subclasses must provide an implementation of visitType and can
4963      * override other methods as needed.
4964      *
4965      * @param <R> the return type of the operation implemented by this
4966      * visitor; use Void if no return type is needed.
4967      * @param <S> the type of the second argument (the first being the
4968      * type itself) of the operation implemented by this visitor; use
4969      * Void if a second argument is not needed.
4970      */
4971     public abstract static class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4972         public final R visit(Type t, S s)               { return t.accept(this, s); }
4973         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4974         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4975         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4976         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4977         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4978         public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
4979         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4980         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4981         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4982         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4983         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4984     }
4985 
4986     /**
4987      * A default visitor for symbols.  All visitor methods except
4988      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4989      * subclasses must provide an implementation of visitSymbol and can
4990      * override other methods as needed.
4991      *
4992      * @param <R> the return type of the operation implemented by this
4993      * visitor; use Void if no return type is needed.
4994      * @param <S> the type of the second argument (the first being the
4995      * symbol itself) of the operation implemented by this visitor; use
4996      * Void if a second argument is not needed.
4997      */
4998     public abstract static class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4999         public final R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
5000         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
5001         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
5002         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
5003         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
5004         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
5005         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
5006     }
5007 
5008     /**
5009      * A <em>simple</em> visitor for types.  This visitor is simple as
5010      * captured wildcards, for-all types (generic methods), and
5011      * undetermined type variables (part of inference) are hidden.
5012      * Captured wildcards are hidden by treating them as type
5013      * variables and the rest are hidden by visiting their qtypes.
5014      *
5015      * @param <R> the return type of the operation implemented by this
5016      * visitor; use Void if no return type is needed.
5017      * @param <S> the type of the second argument (the first being the
5018      * type itself) of the operation implemented by this visitor; use
5019      * Void if a second argument is not needed.
5020      */
5021     public abstract static class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
5022         @Override
5023         public R visitCapturedType(CapturedType t, S s) {
5024             return visitTypeVar(t, s);
5025         }
5026         @Override
5027         public R visitForAll(ForAll t, S s) {
5028             return visit(t.qtype, s);
5029         }
5030         @Override
5031         public R visitUndetVar(UndetVar t, S s) {
5032             return visit(t.qtype, s);
5033         }
5034     }
5035 
5036     /**
5037      * A plain relation on types.  That is a 2-ary function on the
5038      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
5039      * <!-- In plain text: Type x Type -> Boolean -->
5040      */
5041     public abstract static class TypeRelation extends SimpleVisitor<Boolean,Type> {}
5042 
5043     /**
5044      * A convenience visitor for implementing operations that only
5045      * require one argument (the type itself), that is, unary
5046      * operations.
5047      *
5048      * @param <R> the return type of the operation implemented by this
5049      * visitor; use Void if no return type is needed.
5050      */
5051     public abstract static class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
5052         public final R visit(Type t) { return t.accept(this, null); }
5053     }
5054 
5055     /**
5056      * A visitor for implementing a mapping from types to types.  The
5057      * default behavior of this class is to implement the identity
5058      * mapping (mapping a type to itself).  This can be overridden in
5059      * subclasses.
5060      *
5061      * @param <S> the type of the second argument (the first being the
5062      * type itself) of this mapping; use Void if a second argument is
5063      * not needed.
5064      */
5065     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
5066         public final Type visit(Type t) { return t.accept(this, null); }
5067         public Type visitType(Type t, S s) { return t; }
5068     }
5069 
5070     /**
5071      * An abstract class for mappings from types to types (see {@link Type#map(TypeMapping)}.
5072      * This class implements the functional interface {@code Function}, that allows it to be used
5073      * fluently in stream-like processing.
5074      */
5075     public static class TypeMapping<S> extends MapVisitor<S> implements Function<Type, Type> {
5076         @Override
5077         public Type apply(Type type) { return visit(type); }
5078 
5079         List<Type> visit(List<Type> ts, S s) {
5080             return ts.map(t -> visit(t, s));
5081         }
5082 
5083         @Override
5084         public Type visitCapturedType(CapturedType t, S s) {
5085             return visitTypeVar(t, s);
5086         }
5087     }
5088     // </editor-fold>
5089 
5090     // <editor-fold defaultstate="collapsed" desc="Unconditional Exactness">
5091     /** Check type-based unconditional exactness between any combination of
5092      *  reference or primitive types according to JLS 5.7.2.
5093      *
5094      *  The following are unconditionally exact regardless of the input
5095      *  expression:
5096      *
5097      *    - an identity conversion
5098      *    - a widening reference conversion
5099      *    - an exact widening primitive conversion
5100      *    - a boxing conversion
5101      *    - a boxing conversion followed by a widening reference conversion
5102      *
5103      *  @param source     Source primitive or reference type
5104      *  @param target     Target primitive or reference type
5105      */
5106     public boolean isUnconditionallyExactTypeBased(Type source, Type target) {
5107         if (isSameType(source, target)) {
5108             return true;
5109         }
5110 
5111         if (target.isPrimitive()) {
5112             if (source.isPrimitive() &&
5113                 ((source.getTag().isStrictSubRangeOf(target.getTag())) &&
5114                         !((source.hasTag(BYTE) && target.hasTag(CHAR)) ||
5115                           (source.hasTag(INT) && target.hasTag(FLOAT)) ||
5116                           (source.hasTag(LONG) && (target.hasTag(DOUBLE) || target.hasTag(FLOAT)))))) return true;
5117             else {
5118                 return false;
5119             }
5120         } else {
5121             return isSubtype(boxedTypeOrType(erasure(source)), target);
5122         }
5123     }
5124 
5125     /** Check value-based unconditional exactness between any combination of
5126      *  reference or primitive types for the value of a constant expression
5127      *   according to JLS 5.7.2.
5128      *
5129      *  The following can be unconditionally exact if the source primitive is a
5130      *  constant expression and the conversions is exact for that constant
5131      *  expression:
5132      *
5133      *    - a narrowing primitive conversion
5134      *    - a widening and narrowing primitive conversion
5135      *    - a widening primitive conversion that is not exact
5136      *
5137      *  @param source     Source primitive or reference type, should be a numeric value
5138      *  @param target     Target primitive or reference type
5139      */
5140     public boolean isUnconditionallyExactValueBased(Type source, Type target) {
5141         if (!(source.constValue() instanceof Number value) || !target.getTag().isNumeric()) return false;
5142 
5143         switch (source.getTag()) {
5144             case BYTE:
5145                 switch (target.getTag()) {
5146                     case CHAR:      return ExactConversionsSupport.isIntToCharExact(value.intValue());
5147                 }
5148                 break;
5149             case CHAR:
5150                 switch (target.getTag()) {
5151                     case BYTE:      return ExactConversionsSupport.isIntToByteExact(value.intValue());
5152                     case SHORT:     return ExactConversionsSupport.isIntToShortExact(value.intValue());
5153                 }
5154                 break;
5155             case SHORT:
5156                 switch (target.getTag()) {
5157                     case BYTE:      return ExactConversionsSupport.isIntToByteExact(value.intValue());
5158                     case CHAR:      return ExactConversionsSupport.isIntToCharExact(value.intValue());
5159                 }
5160                 break;
5161             case INT:
5162                 switch (target.getTag()) {
5163                     case BYTE:      return ExactConversionsSupport.isIntToByteExact(value.intValue());
5164                     case CHAR:      return ExactConversionsSupport.isIntToCharExact(value.intValue());
5165                     case SHORT:     return ExactConversionsSupport.isIntToShortExact(value.intValue());
5166                     case FLOAT:     return ExactConversionsSupport.isIntToFloatExact(value.intValue());
5167                 }
5168                 break;
5169             case FLOAT:
5170                 switch (target.getTag()) {
5171                     case BYTE:      return ExactConversionsSupport.isFloatToByteExact(value.floatValue());
5172                     case CHAR:      return ExactConversionsSupport.isFloatToCharExact(value.floatValue());
5173                     case SHORT:     return ExactConversionsSupport.isFloatToShortExact(value.floatValue());
5174                     case INT:       return ExactConversionsSupport.isFloatToIntExact(value.floatValue());
5175                     case LONG:      return ExactConversionsSupport.isFloatToLongExact(value.floatValue());
5176                 }
5177                 break;
5178             case LONG:
5179                 switch (target.getTag()) {
5180                     case BYTE:      return ExactConversionsSupport.isLongToByteExact(value.longValue());
5181                     case CHAR:      return ExactConversionsSupport.isLongToCharExact(value.longValue());
5182                     case SHORT:     return ExactConversionsSupport.isLongToShortExact(value.longValue());
5183                     case INT:       return ExactConversionsSupport.isLongToIntExact(value.longValue());
5184                     case FLOAT:     return ExactConversionsSupport.isLongToFloatExact(value.longValue());
5185                     case DOUBLE:    return ExactConversionsSupport.isLongToDoubleExact(value.longValue());
5186                 }
5187                 break;
5188             case DOUBLE:
5189                 switch (target.getTag()) {
5190                     case BYTE:      return ExactConversionsSupport.isDoubleToByteExact(value.doubleValue());
5191                     case CHAR:      return ExactConversionsSupport.isDoubleToCharExact(value.doubleValue());
5192                     case SHORT:     return ExactConversionsSupport.isDoubleToShortExact(value.doubleValue());
5193                     case INT:       return ExactConversionsSupport.isDoubleToIntExact(value.doubleValue());
5194                     case FLOAT:     return ExactConversionsSupport.isDoubleToFloatExact(value.doubleValue());
5195                     case LONG:      return ExactConversionsSupport.isDoubleToLongExact(value.doubleValue());
5196                 }
5197                 break;
5198         }
5199         return true;
5200     }
5201 
5202     /** Check both type or value-based unconditional exactness between any
5203      *  combination of reference or primitive types for the value of a constant
5204      *  expression according to JLS 5.7.2.
5205      *
5206      *  @param source     Source primitive or reference type, should be a numeric value
5207      *  @param target     Target primitive or reference type
5208      */
5209     public boolean isUnconditionallyExactCombined(Type currentType, Type testType) {
5210         return isUnconditionallyExactTypeBased(currentType, testType) ||
5211                 (currentType.constValue() instanceof Number && isUnconditionallyExactValueBased(currentType, testType));
5212     }
5213     // </editor-fold>
5214 
5215     // <editor-fold defaultstate="collapsed" desc="Annotation support">
5216 
5217     public RetentionPolicy getRetention(Attribute.Compound a) {
5218         return getRetention(a.type.tsym);
5219     }
5220 
5221     public RetentionPolicy getRetention(TypeSymbol sym) {
5222         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
5223         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
5224         if (c != null) {
5225             Attribute value = c.member(names.value);
5226             if (value != null && value instanceof Attribute.Enum attributeEnum) {
5227                 Name levelName = attributeEnum.value.name;
5228                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
5229                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
5230                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
5231                 else ;// /* fail soft */ throw new AssertionError(levelName);
5232             }
5233         }
5234         return vis;
5235     }
5236     // </editor-fold>
5237 
5238     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
5239 
5240     public abstract class SignatureGenerator {
5241 
5242         public class InvalidSignatureException extends CompilerInternalException {
5243             private static final long serialVersionUID = 0;
5244 
5245             private final transient Type type;
5246 
5247             InvalidSignatureException(Type type, boolean dumpStackTraceOnError) {
5248                 super(dumpStackTraceOnError);
5249                 this.type = type;
5250             }
5251 
5252             public Type type() {
5253                 return type;
5254             }
5255         }
5256 
5257         protected abstract void append(char ch);
5258         protected abstract void append(byte[] ba);
5259         protected abstract void append(Name name);
5260         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
5261 
5262         protected void reportIllegalSignature(Type t) {
5263             throw new InvalidSignatureException(t, Types.this.dumpStacktraceOnError);
5264         }
5265 
5266         /**
5267          * Assemble signature of given type in string buffer.
5268          */
5269         public void assembleSig(Type type) {
5270             switch (type.getTag()) {
5271                 case BYTE:
5272                     append('B');
5273                     break;
5274                 case SHORT:
5275                     append('S');
5276                     break;
5277                 case CHAR:
5278                     append('C');
5279                     break;
5280                 case INT:
5281                     append('I');
5282                     break;
5283                 case LONG:
5284                     append('J');
5285                     break;
5286                 case FLOAT:
5287                     append('F');
5288                     break;
5289                 case DOUBLE:
5290                     append('D');
5291                     break;
5292                 case BOOLEAN:
5293                     append('Z');
5294                     break;
5295                 case VOID:
5296                     append('V');
5297                     break;
5298                 case CLASS:
5299                     if (type.isCompound()) {
5300                         reportIllegalSignature(type);
5301                     }
5302                     append('L');
5303                     assembleClassSig(type);
5304                     append(';');
5305                     break;
5306                 case ARRAY:
5307                     ArrayType at = (ArrayType) type;
5308                     append('[');
5309                     assembleSig(at.elemtype);
5310                     break;
5311                 case METHOD:
5312                     MethodType mt = (MethodType) type;
5313                     append('(');
5314                     assembleSig(mt.argtypes);
5315                     append(')');
5316                     assembleSig(mt.restype);
5317                     if (hasTypeVar(mt.thrown)) {
5318                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
5319                             append('^');
5320                             assembleSig(l.head);
5321                         }
5322                     }
5323                     break;
5324                 case WILDCARD: {
5325                     Type.WildcardType ta = (Type.WildcardType) type;
5326                     switch (ta.kind) {
5327                         case SUPER:
5328                             append('-');
5329                             assembleSig(ta.type);
5330                             break;
5331                         case EXTENDS:
5332                             append('+');
5333                             assembleSig(ta.type);
5334                             break;
5335                         case UNBOUND:
5336                             append('*');
5337                             break;
5338                         default:
5339                             throw new AssertionError(ta.kind);
5340                     }
5341                     break;
5342                 }
5343                 case TYPEVAR:
5344                     if (((TypeVar)type).isCaptured()) {
5345                         reportIllegalSignature(type);
5346                     }
5347                     append('T');
5348                     append(type.tsym.name);
5349                     append(';');
5350                     break;
5351                 case FORALL:
5352                     Type.ForAll ft = (Type.ForAll) type;
5353                     assembleParamsSig(ft.tvars);
5354                     assembleSig(ft.qtype);
5355                     break;
5356                 default:
5357                     throw new AssertionError("typeSig " + type.getTag());
5358             }
5359         }
5360 
5361         public boolean hasTypeVar(List<Type> l) {
5362             while (l.nonEmpty()) {
5363                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
5364                     return true;
5365                 }
5366                 l = l.tail;
5367             }
5368             return false;
5369         }
5370 
5371         public void assembleClassSig(Type type) {
5372             ClassType ct = (ClassType) type;
5373             ClassSymbol c = (ClassSymbol) ct.tsym;
5374             classReference(c);
5375             Type outer = ct.getEnclosingType();
5376             if (outer.allparams().nonEmpty()) {
5377                 boolean rawOuter =
5378                         c.owner.kind == MTH || // either a local class
5379                         c.name == Types.this.names.empty; // or anonymous
5380                 assembleClassSig(rawOuter
5381                         ? Types.this.erasure(outer)
5382                         : outer);
5383                 append(rawOuter ? '$' : '.');
5384                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
5385                 append(rawOuter
5386                         ? c.flatname.subName(c.owner.enclClass().flatname.length() + 1)
5387                         : c.name);
5388             } else {
5389                 append(externalize(c.flatname));
5390             }
5391             if (ct.getTypeArguments().nonEmpty()) {
5392                 append('<');
5393                 assembleSig(ct.getTypeArguments());
5394                 append('>');
5395             }
5396         }
5397 
5398         public void assembleParamsSig(List<Type> typarams) {
5399             append('<');
5400             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
5401                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
5402                 append(tvar.tsym.name);
5403                 List<Type> bounds = Types.this.getBounds(tvar);
5404                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
5405                     append(':');
5406                 }
5407                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
5408                     append(':');
5409                     assembleSig(l.head);
5410                 }
5411             }
5412             append('>');
5413         }
5414 
5415         public void assembleSig(List<Type> types) {
5416             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
5417                 assembleSig(ts.head);
5418             }
5419         }
5420     }
5421 
5422     public Type constantType(LoadableConstant c) {
5423         switch (c.poolTag()) {
5424             case ClassFile.CONSTANT_Class:
5425                 return syms.classType;
5426             case ClassFile.CONSTANT_String:
5427                 return syms.stringType;
5428             case ClassFile.CONSTANT_Integer:
5429                 return syms.intType;
5430             case ClassFile.CONSTANT_Float:
5431                 return syms.floatType;
5432             case ClassFile.CONSTANT_Long:
5433                 return syms.longType;
5434             case ClassFile.CONSTANT_Double:
5435                 return syms.doubleType;
5436             case ClassFile.CONSTANT_MethodHandle:
5437                 return syms.methodHandleType;
5438             case ClassFile.CONSTANT_MethodType:
5439                 return syms.methodTypeType;
5440             case ClassFile.CONSTANT_Dynamic:
5441                 return ((DynamicVarSymbol)c).type;
5442             default:
5443                 throw new AssertionError("Not a loadable constant: " + c.poolTag());
5444         }
5445     }
5446     // </editor-fold>
5447 
5448     public void newRound() {
5449         descCache._map.clear();
5450         isDerivedRawCache.clear();
5451         implCache._map.clear();
5452         membersCache._map.clear();
5453         closureCache.clear();
5454     }
5455 }
--- EOF ---