1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 32 import javax.lang.model.element.ElementKind; 33 import javax.tools.JavaFileObject; 34 35 import com.sun.source.tree.CaseTree; 36 import com.sun.source.tree.IdentifierTree; 37 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 38 import com.sun.source.tree.MemberSelectTree; 39 import com.sun.source.tree.TreeVisitor; 40 import com.sun.source.util.SimpleTreeVisitor; 41 import com.sun.tools.javac.code.*; 42 import com.sun.tools.javac.code.Lint.LintCategory; 43 import com.sun.tools.javac.code.Scope.WriteableScope; 44 import com.sun.tools.javac.code.Source.Feature; 45 import com.sun.tools.javac.code.Symbol.*; 46 import com.sun.tools.javac.code.Type.*; 47 import com.sun.tools.javac.code.TypeMetadata.Annotations; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 62 import com.sun.tools.javac.tree.*; 63 import com.sun.tools.javac.tree.JCTree.*; 64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 65 import com.sun.tools.javac.util.*; 66 import com.sun.tools.javac.util.DefinedBy.Api; 67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 68 import com.sun.tools.javac.util.JCDiagnostic.Error; 69 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 70 import com.sun.tools.javac.util.JCDiagnostic.Warning; 71 import com.sun.tools.javac.util.List; 72 73 import static com.sun.tools.javac.code.Flags.*; 74 import static com.sun.tools.javac.code.Flags.ANNOTATION; 75 import static com.sun.tools.javac.code.Flags.BLOCK; 76 import static com.sun.tools.javac.code.Kinds.*; 77 import static com.sun.tools.javac.code.Kinds.Kind.*; 78 import static com.sun.tools.javac.code.TypeTag.*; 79 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 80 import static com.sun.tools.javac.tree.JCTree.Tag.*; 81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 82 83 /** This is the main context-dependent analysis phase in GJC. It 84 * encompasses name resolution, type checking and constant folding as 85 * subtasks. Some subtasks involve auxiliary classes. 86 * @see Check 87 * @see Resolve 88 * @see ConstFold 89 * @see Infer 90 * 91 * <p><b>This is NOT part of any supported API. 92 * If you write code that depends on this, you do so at your own risk. 93 * This code and its internal interfaces are subject to change or 94 * deletion without notice.</b> 95 */ 96 public class Attr extends JCTree.Visitor { 97 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 98 99 final Names names; 100 final Log log; 101 final Symtab syms; 102 final Resolve rs; 103 final Operators operators; 104 final Infer infer; 105 final Analyzer analyzer; 106 final DeferredAttr deferredAttr; 107 final Check chk; 108 final Flow flow; 109 final MemberEnter memberEnter; 110 final TypeEnter typeEnter; 111 final TreeMaker make; 112 final ConstFold cfolder; 113 final Enter enter; 114 final Target target; 115 final Types types; 116 final Preview preview; 117 final JCDiagnostic.Factory diags; 118 final TypeAnnotations typeAnnotations; 119 final DeferredLintHandler deferredLintHandler; 120 final TypeEnvs typeEnvs; 121 final Dependencies dependencies; 122 final Annotate annotate; 123 final ArgumentAttr argumentAttr; 124 final MatchBindingsComputer matchBindingsComputer; 125 final AttrRecover attrRecover; 126 127 public static Attr instance(Context context) { 128 Attr instance = context.get(attrKey); 129 if (instance == null) 130 instance = new Attr(context); 131 return instance; 132 } 133 134 protected Attr(Context context) { 135 context.put(attrKey, this); 136 137 names = Names.instance(context); 138 log = Log.instance(context); 139 syms = Symtab.instance(context); 140 rs = Resolve.instance(context); 141 operators = Operators.instance(context); 142 chk = Check.instance(context); 143 flow = Flow.instance(context); 144 memberEnter = MemberEnter.instance(context); 145 typeEnter = TypeEnter.instance(context); 146 make = TreeMaker.instance(context); 147 enter = Enter.instance(context); 148 infer = Infer.instance(context); 149 analyzer = Analyzer.instance(context); 150 deferredAttr = DeferredAttr.instance(context); 151 cfolder = ConstFold.instance(context); 152 target = Target.instance(context); 153 types = Types.instance(context); 154 preview = Preview.instance(context); 155 diags = JCDiagnostic.Factory.instance(context); 156 annotate = Annotate.instance(context); 157 typeAnnotations = TypeAnnotations.instance(context); 158 deferredLintHandler = DeferredLintHandler.instance(context); 159 typeEnvs = TypeEnvs.instance(context); 160 dependencies = Dependencies.instance(context); 161 argumentAttr = ArgumentAttr.instance(context); 162 matchBindingsComputer = MatchBindingsComputer.instance(context); 163 attrRecover = AttrRecover.instance(context); 164 165 Options options = Options.instance(context); 166 167 Source source = Source.instance(context); 168 allowPoly = Feature.POLY.allowedInSource(source); 169 allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source); 170 allowLambda = Feature.LAMBDA.allowedInSource(source); 171 allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source); 172 allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source); 173 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 174 allowRecords = Feature.RECORDS.allowedInSource(source); 175 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 176 Feature.PATTERN_SWITCH.allowedInSource(source); 177 sourceName = source.name; 178 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 179 180 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 181 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 182 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 183 methodAttrInfo = new MethodAttrInfo(); 184 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 185 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 186 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 187 } 188 189 /** Switch: support target-typing inference 190 */ 191 boolean allowPoly; 192 193 /** Switch: support type annotations. 194 */ 195 boolean allowTypeAnnos; 196 197 /** Switch: support lambda expressions ? 198 */ 199 boolean allowLambda; 200 201 /** Switch: support default methods ? 202 */ 203 boolean allowDefaultMethods; 204 205 /** Switch: static interface methods enabled? 206 */ 207 boolean allowStaticInterfaceMethods; 208 209 /** Switch: reifiable types in instanceof enabled? 210 */ 211 boolean allowReifiableTypesInInstanceof; 212 213 /** Are records allowed 214 */ 215 private final boolean allowRecords; 216 217 /** Are patterns in switch allowed 218 */ 219 private final boolean allowPatternSwitch; 220 221 /** 222 * Switch: warn about use of variable before declaration? 223 * RFE: 6425594 224 */ 225 boolean useBeforeDeclarationWarning; 226 227 /** 228 * Switch: name of source level; used for error reporting. 229 */ 230 String sourceName; 231 232 /** Check kind and type of given tree against protokind and prototype. 233 * If check succeeds, store type in tree and return it. 234 * If check fails, store errType in tree and return it. 235 * No checks are performed if the prototype is a method type. 236 * It is not necessary in this case since we know that kind and type 237 * are correct. 238 * 239 * @param tree The tree whose kind and type is checked 240 * @param found The computed type of the tree 241 * @param ownkind The computed kind of the tree 242 * @param resultInfo The expected result of the tree 243 */ 244 Type check(final JCTree tree, 245 final Type found, 246 final KindSelector ownkind, 247 final ResultInfo resultInfo) { 248 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 249 Type owntype; 250 boolean shouldCheck = !found.hasTag(ERROR) && 251 !resultInfo.pt.hasTag(METHOD) && 252 !resultInfo.pt.hasTag(FORALL); 253 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 254 log.error(tree.pos(), 255 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 256 ownkind.kindNames())); 257 owntype = types.createErrorType(found); 258 } else if (allowPoly && inferenceContext.free(found)) { 259 //delay the check if there are inference variables in the found type 260 //this means we are dealing with a partially inferred poly expression 261 owntype = shouldCheck ? resultInfo.pt : found; 262 if (resultInfo.checkMode.installPostInferenceHook()) { 263 inferenceContext.addFreeTypeListener(List.of(found), 264 instantiatedContext -> { 265 ResultInfo pendingResult = 266 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 267 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 268 }); 269 } 270 } else { 271 owntype = shouldCheck ? 272 resultInfo.check(tree, found) : 273 found; 274 } 275 if (resultInfo.checkMode.updateTreeType()) { 276 tree.type = owntype; 277 } 278 return owntype; 279 } 280 281 /** Is given blank final variable assignable, i.e. in a scope where it 282 * may be assigned to even though it is final? 283 * @param v The blank final variable. 284 * @param env The current environment. 285 */ 286 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 287 Symbol owner = env.info.scope.owner; 288 // owner refers to the innermost variable, method or 289 // initializer block declaration at this point. 290 boolean isAssignable = 291 v.owner == owner 292 || 293 ((owner.name == names.init || // i.e. we are in a constructor 294 owner.kind == VAR || // i.e. we are in a variable initializer 295 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 296 && 297 v.owner == owner.owner 298 && 299 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 300 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 301 return isAssignable & !insideCompactConstructor; 302 } 303 304 /** Check that variable can be assigned to. 305 * @param pos The current source code position. 306 * @param v The assigned variable 307 * @param base If the variable is referred to in a Select, the part 308 * to the left of the `.', null otherwise. 309 * @param env The current environment. 310 */ 311 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 312 if (v.name == names._this) { 313 log.error(pos, Errors.CantAssignValToThis); 314 } else if ((v.flags() & FINAL) != 0 && 315 ((v.flags() & HASINIT) != 0 316 || 317 !((base == null || 318 TreeInfo.isThisQualifier(base)) && 319 isAssignableAsBlankFinal(v, env)))) { 320 if (v.isResourceVariable()) { //TWR resource 321 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 322 } else { 323 log.error(pos, Errors.CantAssignValToFinalVar(v)); 324 } 325 } 326 } 327 328 /** Does tree represent a static reference to an identifier? 329 * It is assumed that tree is either a SELECT or an IDENT. 330 * We have to weed out selects from non-type names here. 331 * @param tree The candidate tree. 332 */ 333 boolean isStaticReference(JCTree tree) { 334 if (tree.hasTag(SELECT)) { 335 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 336 if (lsym == null || lsym.kind != TYP) { 337 return false; 338 } 339 } 340 return true; 341 } 342 343 /** Is this symbol a type? 344 */ 345 static boolean isType(Symbol sym) { 346 return sym != null && sym.kind == TYP; 347 } 348 349 /** The current `this' symbol. 350 * @param env The current environment. 351 */ 352 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) { 353 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this); 354 } 355 356 /** Attribute a parsed identifier. 357 * @param tree Parsed identifier name 358 * @param topLevel The toplevel to use 359 */ 360 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 361 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 362 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 363 syms.errSymbol.name, 364 null, null, null, null); 365 localEnv.enclClass.sym = syms.errSymbol; 366 return attribIdent(tree, localEnv); 367 } 368 369 /** Attribute a parsed identifier. 370 * @param tree Parsed identifier name 371 * @param env The env to use 372 */ 373 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 374 return tree.accept(identAttributer, env); 375 } 376 // where 377 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 378 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 379 @Override @DefinedBy(Api.COMPILER_TREE) 380 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 381 Symbol site = visit(node.getExpression(), env); 382 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 383 return site; 384 Name name = (Name)node.getIdentifier(); 385 if (site.kind == PCK) { 386 env.toplevel.packge = (PackageSymbol)site; 387 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 388 KindSelector.TYP_PCK); 389 } else { 390 env.enclClass.sym = (ClassSymbol)site; 391 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 392 } 393 } 394 395 @Override @DefinedBy(Api.COMPILER_TREE) 396 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 397 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 398 } 399 } 400 401 public Type coerce(Type etype, Type ttype) { 402 return cfolder.coerce(etype, ttype); 403 } 404 405 public Type attribType(JCTree node, TypeSymbol sym) { 406 Env<AttrContext> env = typeEnvs.get(sym); 407 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 408 return attribTree(node, localEnv, unknownTypeInfo); 409 } 410 411 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 412 // Attribute qualifying package or class. 413 JCFieldAccess s = (JCFieldAccess)tree.qualid; 414 return attribTree(s.selected, env, 415 new ResultInfo(tree.staticImport ? 416 KindSelector.TYP : KindSelector.TYP_PCK, 417 Type.noType)); 418 } 419 420 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 421 return attribToTree(expr, env, tree, unknownExprInfo); 422 } 423 424 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 425 return attribToTree(stmt, env, tree, statInfo); 426 } 427 428 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 429 breakTree = tree; 430 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 431 try { 432 deferredAttr.attribSpeculative(root, env, resultInfo, 433 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 434 argumentAttr.withLocalCacheContext()); 435 attrRecover.doRecovery(); 436 } catch (BreakAttr b) { 437 return b.env; 438 } catch (AssertionError ae) { 439 if (ae.getCause() instanceof BreakAttr breakAttr) { 440 return breakAttr.env; 441 } else { 442 throw ae; 443 } 444 } finally { 445 breakTree = null; 446 log.useSource(prev); 447 } 448 return env; 449 } 450 451 private JCTree breakTree = null; 452 453 private static class BreakAttr extends RuntimeException { 454 static final long serialVersionUID = -6924771130405446405L; 455 private transient Env<AttrContext> env; 456 private BreakAttr(Env<AttrContext> env) { 457 this.env = env; 458 } 459 } 460 461 /** 462 * Mode controlling behavior of Attr.Check 463 */ 464 enum CheckMode { 465 466 NORMAL, 467 468 /** 469 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 470 * that the captured var cache in {@code InferenceContext} will be used in read-only 471 * mode when performing inference checks. 472 */ 473 NO_TREE_UPDATE { 474 @Override 475 public boolean updateTreeType() { 476 return false; 477 } 478 }, 479 /** 480 * Mode signalling that caller will manage free types in tree decorations. 481 */ 482 NO_INFERENCE_HOOK { 483 @Override 484 public boolean installPostInferenceHook() { 485 return false; 486 } 487 }; 488 489 public boolean updateTreeType() { 490 return true; 491 } 492 public boolean installPostInferenceHook() { 493 return true; 494 } 495 } 496 497 498 class ResultInfo { 499 final KindSelector pkind; 500 final Type pt; 501 final CheckContext checkContext; 502 final CheckMode checkMode; 503 504 ResultInfo(KindSelector pkind, Type pt) { 505 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 506 } 507 508 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 509 this(pkind, pt, chk.basicHandler, checkMode); 510 } 511 512 protected ResultInfo(KindSelector pkind, 513 Type pt, CheckContext checkContext) { 514 this(pkind, pt, checkContext, CheckMode.NORMAL); 515 } 516 517 protected ResultInfo(KindSelector pkind, 518 Type pt, CheckContext checkContext, CheckMode checkMode) { 519 this.pkind = pkind; 520 this.pt = pt; 521 this.checkContext = checkContext; 522 this.checkMode = checkMode; 523 } 524 525 /** 526 * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one? 527 * @param tree The tree to be type-checked. 528 * @return true if {@ArgumentAttr} should be used. 529 */ 530 protected boolean needsArgumentAttr(JCTree tree) { return false; } 531 532 protected Type check(final DiagnosticPosition pos, final Type found) { 533 return chk.checkType(pos, found, pt, checkContext); 534 } 535 536 protected ResultInfo dup(Type newPt) { 537 return new ResultInfo(pkind, newPt, checkContext, checkMode); 538 } 539 540 protected ResultInfo dup(CheckContext newContext) { 541 return new ResultInfo(pkind, pt, newContext, checkMode); 542 } 543 544 protected ResultInfo dup(Type newPt, CheckContext newContext) { 545 return new ResultInfo(pkind, newPt, newContext, checkMode); 546 } 547 548 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 549 return new ResultInfo(pkind, newPt, newContext, newMode); 550 } 551 552 protected ResultInfo dup(CheckMode newMode) { 553 return new ResultInfo(pkind, pt, checkContext, newMode); 554 } 555 556 @Override 557 public String toString() { 558 if (pt != null) { 559 return pt.toString(); 560 } else { 561 return ""; 562 } 563 } 564 } 565 566 class MethodAttrInfo extends ResultInfo { 567 public MethodAttrInfo() { 568 this(chk.basicHandler); 569 } 570 571 public MethodAttrInfo(CheckContext checkContext) { 572 super(KindSelector.VAL, Infer.anyPoly, checkContext); 573 } 574 575 @Override 576 protected boolean needsArgumentAttr(JCTree tree) { 577 return true; 578 } 579 580 protected ResultInfo dup(Type newPt) { 581 throw new IllegalStateException(); 582 } 583 584 protected ResultInfo dup(CheckContext newContext) { 585 return new MethodAttrInfo(newContext); 586 } 587 588 protected ResultInfo dup(Type newPt, CheckContext newContext) { 589 throw new IllegalStateException(); 590 } 591 592 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 593 throw new IllegalStateException(); 594 } 595 596 protected ResultInfo dup(CheckMode newMode) { 597 throw new IllegalStateException(); 598 } 599 } 600 601 class RecoveryInfo extends ResultInfo { 602 603 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 604 this(deferredAttrContext, Type.recoveryType); 605 } 606 607 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 608 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 609 @Override 610 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 611 return deferredAttrContext; 612 } 613 @Override 614 public boolean compatible(Type found, Type req, Warner warn) { 615 return true; 616 } 617 @Override 618 public void report(DiagnosticPosition pos, JCDiagnostic details) { 619 boolean needsReport = pt == Type.recoveryType || 620 (details.getDiagnosticPosition() != null && 621 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 622 if (needsReport) { 623 chk.basicHandler.report(pos, details); 624 } 625 } 626 }); 627 } 628 } 629 630 final ResultInfo statInfo; 631 final ResultInfo varAssignmentInfo; 632 final ResultInfo methodAttrInfo; 633 final ResultInfo unknownExprInfo; 634 final ResultInfo unknownTypeInfo; 635 final ResultInfo unknownTypeExprInfo; 636 final ResultInfo recoveryInfo; 637 638 Type pt() { 639 return resultInfo.pt; 640 } 641 642 KindSelector pkind() { 643 return resultInfo.pkind; 644 } 645 646 /* ************************************************************************ 647 * Visitor methods 648 *************************************************************************/ 649 650 /** Visitor argument: the current environment. 651 */ 652 Env<AttrContext> env; 653 654 /** Visitor argument: the currently expected attribution result. 655 */ 656 ResultInfo resultInfo; 657 658 /** Visitor result: the computed type. 659 */ 660 Type result; 661 662 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 663 664 /** Visitor method: attribute a tree, catching any completion failure 665 * exceptions. Return the tree's type. 666 * 667 * @param tree The tree to be visited. 668 * @param env The environment visitor argument. 669 * @param resultInfo The result info visitor argument. 670 */ 671 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 672 Env<AttrContext> prevEnv = this.env; 673 ResultInfo prevResult = this.resultInfo; 674 try { 675 this.env = env; 676 this.resultInfo = resultInfo; 677 if (resultInfo.needsArgumentAttr(tree)) { 678 result = argumentAttr.attribArg(tree, env); 679 } else { 680 tree.accept(this); 681 } 682 matchBindings = matchBindingsComputer.finishBindings(tree, 683 matchBindings); 684 if (tree == breakTree && 685 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 686 breakTreeFound(copyEnv(env)); 687 } 688 return result; 689 } catch (CompletionFailure ex) { 690 tree.type = syms.errType; 691 return chk.completionError(tree.pos(), ex); 692 } finally { 693 this.env = prevEnv; 694 this.resultInfo = prevResult; 695 } 696 } 697 698 protected void breakTreeFound(Env<AttrContext> env) { 699 throw new BreakAttr(env); 700 } 701 702 Env<AttrContext> copyEnv(Env<AttrContext> env) { 703 Env<AttrContext> newEnv = 704 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 705 if (newEnv.outer != null) { 706 newEnv.outer = copyEnv(newEnv.outer); 707 } 708 return newEnv; 709 } 710 711 WriteableScope copyScope(WriteableScope sc) { 712 WriteableScope newScope = WriteableScope.create(sc.owner); 713 List<Symbol> elemsList = List.nil(); 714 for (Symbol sym : sc.getSymbols()) { 715 elemsList = elemsList.prepend(sym); 716 } 717 for (Symbol s : elemsList) { 718 newScope.enter(s); 719 } 720 return newScope; 721 } 722 723 /** Derived visitor method: attribute an expression tree. 724 */ 725 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 726 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 727 } 728 729 /** Derived visitor method: attribute an expression tree with 730 * no constraints on the computed type. 731 */ 732 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 733 return attribTree(tree, env, unknownExprInfo); 734 } 735 736 /** Derived visitor method: attribute a type tree. 737 */ 738 public Type attribType(JCTree tree, Env<AttrContext> env) { 739 Type result = attribType(tree, env, Type.noType); 740 return result; 741 } 742 743 /** Derived visitor method: attribute a type tree. 744 */ 745 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 746 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 747 return result; 748 } 749 750 /** Derived visitor method: attribute a statement or definition tree. 751 */ 752 public Type attribStat(JCTree tree, Env<AttrContext> env) { 753 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 754 Type result = attribTree(tree, env, statInfo); 755 analyzer.analyzeIfNeeded(tree, analyzeEnv); 756 attrRecover.doRecovery(); 757 return result; 758 } 759 760 /** Attribute a list of expressions, returning a list of types. 761 */ 762 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 763 ListBuffer<Type> ts = new ListBuffer<>(); 764 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 765 ts.append(attribExpr(l.head, env, pt)); 766 return ts.toList(); 767 } 768 769 /** Attribute a list of statements, returning nothing. 770 */ 771 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 772 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 773 attribStat(l.head, env); 774 } 775 776 /** Attribute the arguments in a method call, returning the method kind. 777 */ 778 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 779 KindSelector kind = initialKind; 780 for (JCExpression arg : trees) { 781 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo)); 782 if (argtype.hasTag(DEFERRED)) { 783 kind = KindSelector.of(KindSelector.POLY, kind); 784 } 785 argtypes.append(argtype); 786 } 787 return kind; 788 } 789 790 /** Attribute a type argument list, returning a list of types. 791 * Caller is responsible for calling checkRefTypes. 792 */ 793 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 794 ListBuffer<Type> argtypes = new ListBuffer<>(); 795 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 796 argtypes.append(attribType(l.head, env)); 797 return argtypes.toList(); 798 } 799 800 /** Attribute a type argument list, returning a list of types. 801 * Check that all the types are references. 802 */ 803 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 804 List<Type> types = attribAnyTypes(trees, env); 805 return chk.checkRefTypes(trees, types); 806 } 807 808 /** 809 * Attribute type variables (of generic classes or methods). 810 * Compound types are attributed later in attribBounds. 811 * @param typarams the type variables to enter 812 * @param env the current environment 813 */ 814 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 815 for (JCTypeParameter tvar : typarams) { 816 TypeVar a = (TypeVar)tvar.type; 817 a.tsym.flags_field |= UNATTRIBUTED; 818 a.setUpperBound(Type.noType); 819 if (!tvar.bounds.isEmpty()) { 820 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 821 for (JCExpression bound : tvar.bounds.tail) 822 bounds = bounds.prepend(attribType(bound, env)); 823 types.setBounds(a, bounds.reverse()); 824 } else { 825 // if no bounds are given, assume a single bound of 826 // java.lang.Object. 827 types.setBounds(a, List.of(syms.objectType)); 828 } 829 a.tsym.flags_field &= ~UNATTRIBUTED; 830 } 831 if (checkCyclic) { 832 for (JCTypeParameter tvar : typarams) { 833 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 834 } 835 } 836 } 837 838 /** 839 * Attribute the type references in a list of annotations. 840 */ 841 void attribAnnotationTypes(List<JCAnnotation> annotations, 842 Env<AttrContext> env) { 843 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 844 JCAnnotation a = al.head; 845 attribType(a.annotationType, env); 846 } 847 } 848 849 /** 850 * Attribute a "lazy constant value". 851 * @param env The env for the const value 852 * @param variable The initializer for the const value 853 * @param type The expected type, or null 854 * @see VarSymbol#setLazyConstValue 855 */ 856 public Object attribLazyConstantValue(Env<AttrContext> env, 857 JCVariableDecl variable, 858 Type type) { 859 860 DiagnosticPosition prevLintPos 861 = deferredLintHandler.setPos(variable.pos()); 862 863 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 864 try { 865 Type itype = attribExpr(variable.init, env, type); 866 if (variable.isImplicitlyTyped()) { 867 //fixup local variable type 868 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name); 869 } 870 if (itype.constValue() != null) { 871 return coerce(itype, type).constValue(); 872 } else { 873 return null; 874 } 875 } finally { 876 log.useSource(prevSource); 877 deferredLintHandler.setPos(prevLintPos); 878 } 879 } 880 881 /** Attribute type reference in an `extends' or `implements' clause. 882 * Supertypes of anonymous inner classes are usually already attributed. 883 * 884 * @param tree The tree making up the type reference. 885 * @param env The environment current at the reference. 886 * @param classExpected true if only a class is expected here. 887 * @param interfaceExpected true if only an interface is expected here. 888 */ 889 Type attribBase(JCTree tree, 890 Env<AttrContext> env, 891 boolean classExpected, 892 boolean interfaceExpected, 893 boolean checkExtensible) { 894 Type t = tree.type != null ? 895 tree.type : 896 attribType(tree, env); 897 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 898 } 899 Type checkBase(Type t, 900 JCTree tree, 901 Env<AttrContext> env, 902 boolean classExpected, 903 boolean interfaceExpected, 904 boolean checkExtensible) { 905 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 906 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 907 if (t.tsym.isAnonymous()) { 908 log.error(pos, Errors.CantInheritFromAnon); 909 return types.createErrorType(t); 910 } 911 if (t.isErroneous()) 912 return t; 913 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 914 // check that type variable is already visible 915 if (t.getUpperBound() == null) { 916 log.error(pos, Errors.IllegalForwardRef); 917 return types.createErrorType(t); 918 } 919 } else { 920 t = chk.checkClassType(pos, t, checkExtensible); 921 } 922 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 923 log.error(pos, Errors.IntfExpectedHere); 924 // return errType is necessary since otherwise there might 925 // be undetected cycles which cause attribution to loop 926 return types.createErrorType(t); 927 } else if (checkExtensible && 928 classExpected && 929 (t.tsym.flags() & INTERFACE) != 0) { 930 log.error(pos, Errors.NoIntfExpectedHere); 931 return types.createErrorType(t); 932 } 933 if (checkExtensible && 934 ((t.tsym.flags() & FINAL) != 0)) { 935 log.error(pos, 936 Errors.CantInheritFromFinal(t.tsym)); 937 } 938 chk.checkNonCyclic(pos, t); 939 return t; 940 } 941 942 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 943 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 944 id.type = env.info.scope.owner.enclClass().type; 945 id.sym = env.info.scope.owner.enclClass(); 946 return id.type; 947 } 948 949 public void visitClassDef(JCClassDecl tree) { 950 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 951 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 952 argumentAttr.withLocalCacheContext() : null); 953 try { 954 // Local and anonymous classes have not been entered yet, so we need to 955 // do it now. 956 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 957 enter.classEnter(tree, env); 958 } else { 959 // If this class declaration is part of a class level annotation, 960 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 961 // order to simplify later steps and allow for sensible error 962 // messages. 963 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 964 enter.classEnter(tree, env); 965 } 966 967 ClassSymbol c = tree.sym; 968 if (c == null) { 969 // exit in case something drastic went wrong during enter. 970 result = null; 971 } else { 972 // make sure class has been completed: 973 c.complete(); 974 975 // If this class appears as an anonymous class 976 // in a superclass constructor call 977 // disable implicit outer instance from being passed. 978 // (This would be an illegal access to "this before super"). 979 if (env.info.isSelfCall && 980 env.tree.hasTag(NEWCLASS)) { 981 c.flags_field |= NOOUTERTHIS; 982 } 983 attribClass(tree.pos(), c); 984 result = tree.type = c.type; 985 } 986 } finally { 987 localCacheContext.ifPresent(LocalCacheContext::leave); 988 } 989 } 990 991 public void visitMethodDef(JCMethodDecl tree) { 992 MethodSymbol m = tree.sym; 993 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 994 995 Lint lint = env.info.lint.augment(m); 996 Lint prevLint = chk.setLint(lint); 997 MethodSymbol prevMethod = chk.setMethod(m); 998 try { 999 deferredLintHandler.flush(tree.pos()); 1000 chk.checkDeprecatedAnnotation(tree.pos(), m); 1001 1002 1003 // Create a new environment with local scope 1004 // for attributing the method. 1005 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 1006 localEnv.info.lint = lint; 1007 1008 attribStats(tree.typarams, localEnv); 1009 1010 // If we override any other methods, check that we do so properly. 1011 // JLS ??? 1012 if (m.isStatic()) { 1013 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1014 } else { 1015 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1016 } 1017 chk.checkOverride(env, tree, m); 1018 1019 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1020 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1021 } 1022 1023 // Enter all type parameters into the local method scope. 1024 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1025 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1026 1027 ClassSymbol owner = env.enclClass.sym; 1028 if ((owner.flags() & ANNOTATION) != 0 && 1029 (tree.params.nonEmpty() || 1030 tree.recvparam != null)) 1031 log.error(tree.params.nonEmpty() ? 1032 tree.params.head.pos() : 1033 tree.recvparam.pos(), 1034 Errors.IntfAnnotationMembersCantHaveParams); 1035 1036 // Attribute all value parameters. 1037 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1038 attribStat(l.head, localEnv); 1039 } 1040 1041 chk.checkVarargsMethodDecl(localEnv, tree); 1042 1043 // Check that type parameters are well-formed. 1044 chk.validate(tree.typarams, localEnv); 1045 1046 // Check that result type is well-formed. 1047 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1048 chk.validate(tree.restype, localEnv); 1049 1050 // Check that receiver type is well-formed. 1051 if (tree.recvparam != null) { 1052 // Use a new environment to check the receiver parameter. 1053 // Otherwise I get "might not have been initialized" errors. 1054 // Is there a better way? 1055 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1056 attribType(tree.recvparam, newEnv); 1057 chk.validate(tree.recvparam, newEnv); 1058 } 1059 1060 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1061 // lets find if this method is an accessor 1062 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1063 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1064 if (recordComponent.isPresent()) { 1065 // the method is a user defined accessor lets check that everything is fine 1066 if (!tree.sym.isPublic()) { 1067 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1068 } 1069 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1070 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1071 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1072 } 1073 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1074 log.error(tree, 1075 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1076 } 1077 if (!tree.typarams.isEmpty()) { 1078 log.error(tree, 1079 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1080 } 1081 if (tree.sym.isStatic()) { 1082 log.error(tree, 1083 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1084 } 1085 } 1086 1087 if (tree.name == names.init) { 1088 // if this a constructor other than the canonical one 1089 if ((tree.sym.flags_field & RECORD) == 0) { 1090 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1091 if (app == null || 1092 TreeInfo.name(app.meth) != names._this || 1093 !checkFirstConstructorStat(app, tree, false)) { 1094 log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor(env.enclClass.sym)); 1095 } 1096 } else { 1097 // but if it is the canonical: 1098 1099 /* if user generated, then it shouldn't: 1100 * - have an accessibility stricter than that of the record type 1101 * - explicitly invoke any other constructor 1102 */ 1103 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1104 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1105 log.error(tree, 1106 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1107 Errors.InvalidCanonicalConstructorInRecord( 1108 Fragments.Canonical, 1109 env.enclClass.sym.name, 1110 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1111 ) : 1112 Errors.InvalidCanonicalConstructorInRecord( 1113 Fragments.Canonical, 1114 env.enclClass.sym.name, 1115 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1116 ) 1117 ); 1118 } 1119 1120 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1121 if (app != null && 1122 (TreeInfo.name(app.meth) == names._this || 1123 TreeInfo.name(app.meth) == names._super) && 1124 checkFirstConstructorStat(app, tree, false)) { 1125 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1126 Fragments.Canonical, env.enclClass.sym.name, 1127 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1128 } 1129 } 1130 1131 // also we want to check that no type variables have been defined 1132 if (!tree.typarams.isEmpty()) { 1133 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1134 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1135 } 1136 1137 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1138 * record components 1139 */ 1140 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1141 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1142 for (JCVariableDecl param: tree.params) { 1143 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1144 if (!types.isSameType(param.type, recordFieldTypes.head) || 1145 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1146 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1147 Fragments.Canonical, env.enclClass.sym.name, 1148 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1149 } 1150 recordComponents = recordComponents.tail; 1151 recordFieldTypes = recordFieldTypes.tail; 1152 } 1153 } 1154 } 1155 } 1156 1157 // annotation method checks 1158 if ((owner.flags() & ANNOTATION) != 0) { 1159 // annotation method cannot have throws clause 1160 if (tree.thrown.nonEmpty()) { 1161 log.error(tree.thrown.head.pos(), 1162 Errors.ThrowsNotAllowedInIntfAnnotation); 1163 } 1164 // annotation method cannot declare type-parameters 1165 if (tree.typarams.nonEmpty()) { 1166 log.error(tree.typarams.head.pos(), 1167 Errors.IntfAnnotationMembersCantHaveTypeParams); 1168 } 1169 // validate annotation method's return type (could be an annotation type) 1170 chk.validateAnnotationType(tree.restype); 1171 // ensure that annotation method does not clash with members of Object/Annotation 1172 chk.validateAnnotationMethod(tree.pos(), m); 1173 } 1174 1175 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1176 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1177 1178 if (tree.body == null) { 1179 // Empty bodies are only allowed for 1180 // abstract, native, or interface methods, or for methods 1181 // in a retrofit signature class. 1182 if (tree.defaultValue != null) { 1183 if ((owner.flags() & ANNOTATION) == 0) 1184 log.error(tree.pos(), 1185 Errors.DefaultAllowedInIntfAnnotationMember); 1186 } 1187 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1188 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1189 } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1190 if ((owner.flags() & INTERFACE) != 0) { 1191 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1192 } else { 1193 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1194 } 1195 } else if ((tree.mods.flags & NATIVE) != 0) { 1196 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1197 } else { 1198 // Add an implicit super() call unless an explicit call to 1199 // super(...) or this(...) is given 1200 // or we are compiling class java.lang.Object. 1201 if (tree.name == names.init && owner.type != syms.objectType) { 1202 JCBlock body = tree.body; 1203 if (body.stats.isEmpty() || 1204 TreeInfo.getConstructorInvocationName(body.stats, names) == names.empty) { 1205 JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(), 1206 make.Ident(names._super), make.Idents(List.nil()))); 1207 body.stats = body.stats.prepend(supCall); 1208 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1209 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1210 TreeInfo.isSuperCall(body.stats.head)) { 1211 // enum constructors are not allowed to call super 1212 // directly, so make sure there aren't any super calls 1213 // in enum constructors, except in the compiler 1214 // generated one. 1215 log.error(tree.body.stats.head.pos(), 1216 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1217 } 1218 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1219 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1220 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1221 if (!initParamNames.equals(recordComponentNames)) { 1222 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1223 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1224 } 1225 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1226 log.error(tree, 1227 Errors.InvalidCanonicalConstructorInRecord( 1228 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1229 env.enclClass.sym.name, 1230 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1231 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1232 } 1233 } 1234 } 1235 1236 // Attribute all type annotations in the body 1237 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1238 annotate.flush(); 1239 1240 // Attribute method body. 1241 attribStat(tree.body, localEnv); 1242 } 1243 1244 localEnv.info.scope.leave(); 1245 result = tree.type = m.type; 1246 } finally { 1247 chk.setLint(prevLint); 1248 chk.setMethod(prevMethod); 1249 } 1250 } 1251 1252 public void visitVarDef(JCVariableDecl tree) { 1253 // Local variables have not been entered yet, so we need to do it now: 1254 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1255 if (tree.sym != null) { 1256 // parameters have already been entered 1257 env.info.scope.enter(tree.sym); 1258 } else { 1259 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1260 if (tree.init == null) { 1261 //cannot use 'var' without initializer 1262 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1263 tree.vartype = make.Erroneous(); 1264 } else { 1265 Fragment msg = canInferLocalVarType(tree); 1266 if (msg != null) { 1267 //cannot use 'var' with initializer which require an explicit target 1268 //(e.g. lambda, method reference, array initializer). 1269 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1270 tree.vartype = make.Erroneous(); 1271 } 1272 } 1273 } 1274 try { 1275 annotate.blockAnnotations(); 1276 memberEnter.memberEnter(tree, env); 1277 } finally { 1278 annotate.unblockAnnotations(); 1279 } 1280 } 1281 } else { 1282 if (tree.init != null) { 1283 // Field initializer expression need to be entered. 1284 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos()); 1285 annotate.flush(); 1286 } 1287 } 1288 1289 VarSymbol v = tree.sym; 1290 Lint lint = env.info.lint.augment(v); 1291 Lint prevLint = chk.setLint(lint); 1292 1293 // Check that the variable's declared type is well-formed. 1294 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1295 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1296 (tree.sym.flags() & PARAMETER) != 0; 1297 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1298 1299 try { 1300 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1301 deferredLintHandler.flush(tree.pos()); 1302 chk.checkDeprecatedAnnotation(tree.pos(), v); 1303 1304 if (tree.init != null) { 1305 if ((v.flags_field & FINAL) == 0 || 1306 !memberEnter.needsLazyConstValue(tree.init)) { 1307 // Not a compile-time constant 1308 // Attribute initializer in a new environment 1309 // with the declared variable as owner. 1310 // Check that initializer conforms to variable's declared type. 1311 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1312 initEnv.info.lint = lint; 1313 // In order to catch self-references, we set the variable's 1314 // declaration position to maximal possible value, effectively 1315 // marking the variable as undefined. 1316 initEnv.info.enclVar = v; 1317 attribExpr(tree.init, initEnv, v.type); 1318 if (tree.isImplicitlyTyped()) { 1319 //fixup local variable type 1320 v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name); 1321 } 1322 } 1323 if (tree.isImplicitlyTyped()) { 1324 setSyntheticVariableType(tree, v.type); 1325 } 1326 } 1327 result = tree.type = v.type; 1328 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1329 if (isNonArgsMethodInObject(v.name)) { 1330 log.error(tree, Errors.IllegalRecordComponentName(v)); 1331 } 1332 } 1333 } 1334 finally { 1335 chk.setLint(prevLint); 1336 } 1337 } 1338 1339 private boolean isNonArgsMethodInObject(Name name) { 1340 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1341 if (s.type.getParameterTypes().isEmpty()) { 1342 return true; 1343 } 1344 } 1345 return false; 1346 } 1347 1348 Fragment canInferLocalVarType(JCVariableDecl tree) { 1349 LocalInitScanner lis = new LocalInitScanner(); 1350 lis.scan(tree.init); 1351 return lis.badInferenceMsg; 1352 } 1353 1354 static class LocalInitScanner extends TreeScanner { 1355 Fragment badInferenceMsg = null; 1356 boolean needsTarget = true; 1357 1358 @Override 1359 public void visitNewArray(JCNewArray tree) { 1360 if (tree.elemtype == null && needsTarget) { 1361 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1362 } 1363 } 1364 1365 @Override 1366 public void visitLambda(JCLambda tree) { 1367 if (needsTarget) { 1368 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1369 } 1370 } 1371 1372 @Override 1373 public void visitTypeCast(JCTypeCast tree) { 1374 boolean prevNeedsTarget = needsTarget; 1375 try { 1376 needsTarget = false; 1377 super.visitTypeCast(tree); 1378 } finally { 1379 needsTarget = prevNeedsTarget; 1380 } 1381 } 1382 1383 @Override 1384 public void visitReference(JCMemberReference tree) { 1385 if (needsTarget) { 1386 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1387 } 1388 } 1389 1390 @Override 1391 public void visitNewClass(JCNewClass tree) { 1392 boolean prevNeedsTarget = needsTarget; 1393 try { 1394 needsTarget = false; 1395 super.visitNewClass(tree); 1396 } finally { 1397 needsTarget = prevNeedsTarget; 1398 } 1399 } 1400 1401 @Override 1402 public void visitApply(JCMethodInvocation tree) { 1403 boolean prevNeedsTarget = needsTarget; 1404 try { 1405 needsTarget = false; 1406 super.visitApply(tree); 1407 } finally { 1408 needsTarget = prevNeedsTarget; 1409 } 1410 } 1411 } 1412 1413 public void visitSkip(JCSkip tree) { 1414 result = null; 1415 } 1416 1417 public void visitBlock(JCBlock tree) { 1418 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1419 // Block is a static or instance initializer; 1420 // let the owner of the environment be a freshly 1421 // created BLOCK-method. 1422 Symbol fakeOwner = 1423 new MethodSymbol(tree.flags | BLOCK | 1424 env.info.scope.owner.flags() & STRICTFP, names.empty, null, 1425 env.info.scope.owner); 1426 final Env<AttrContext> localEnv = 1427 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1428 1429 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; 1430 // Attribute all type annotations in the block 1431 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1432 annotate.flush(); 1433 attribStats(tree.stats, localEnv); 1434 1435 { 1436 // Store init and clinit type annotations with the ClassSymbol 1437 // to allow output in Gen.normalizeDefs. 1438 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1439 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1440 if ((tree.flags & STATIC) != 0) { 1441 cs.appendClassInitTypeAttributes(tas); 1442 } else { 1443 cs.appendInitTypeAttributes(tas); 1444 } 1445 } 1446 } else { 1447 // Create a new local environment with a local scope. 1448 Env<AttrContext> localEnv = 1449 env.dup(tree, env.info.dup(env.info.scope.dup())); 1450 try { 1451 attribStats(tree.stats, localEnv); 1452 } finally { 1453 localEnv.info.scope.leave(); 1454 } 1455 } 1456 result = null; 1457 } 1458 1459 public void visitDoLoop(JCDoWhileLoop tree) { 1460 attribStat(tree.body, env.dup(tree)); 1461 attribExpr(tree.cond, env, syms.booleanType); 1462 if (!breaksOutOf(tree, tree.body)) { 1463 //include condition's body when false after the while, if cannot get out of the loop 1464 MatchBindings condBindings = matchBindings; 1465 condBindings.bindingsWhenFalse.forEach(env.info.scope::enter); 1466 condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding); 1467 } 1468 result = null; 1469 } 1470 1471 public void visitWhileLoop(JCWhileLoop tree) { 1472 attribExpr(tree.cond, env, syms.booleanType); 1473 MatchBindings condBindings = matchBindings; 1474 // include condition's bindings when true in the body: 1475 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1476 try { 1477 attribStat(tree.body, whileEnv.dup(tree)); 1478 } finally { 1479 whileEnv.info.scope.leave(); 1480 } 1481 if (!breaksOutOf(tree, tree.body)) { 1482 //include condition's bindings when false after the while, if cannot get out of the loop 1483 condBindings.bindingsWhenFalse.forEach(env.info.scope::enter); 1484 condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding); 1485 } 1486 result = null; 1487 } 1488 1489 private boolean breaksOutOf(JCTree loop, JCTree body) { 1490 preFlow(body); 1491 return flow.breaksOutOf(env, loop, body, make); 1492 } 1493 1494 public void visitForLoop(JCForLoop tree) { 1495 Env<AttrContext> loopEnv = 1496 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1497 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1498 try { 1499 attribStats(tree.init, loopEnv); 1500 if (tree.cond != null) { 1501 attribExpr(tree.cond, loopEnv, syms.booleanType); 1502 // include condition's bindings when true in the body and step: 1503 condBindings = matchBindings; 1504 } 1505 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1506 try { 1507 bodyEnv.tree = tree; // before, we were not in loop! 1508 attribStats(tree.step, bodyEnv); 1509 attribStat(tree.body, bodyEnv); 1510 } finally { 1511 bodyEnv.info.scope.leave(); 1512 } 1513 result = null; 1514 } 1515 finally { 1516 loopEnv.info.scope.leave(); 1517 } 1518 if (!breaksOutOf(tree, tree.body)) { 1519 //include condition's body when false after the while, if cannot get out of the loop 1520 condBindings.bindingsWhenFalse.forEach(env.info.scope::enter); 1521 condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding); 1522 } 1523 } 1524 1525 public void visitForeachLoop(JCEnhancedForLoop tree) { 1526 Env<AttrContext> loopEnv = 1527 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1528 try { 1529 //the Formal Parameter of a for-each loop is not in the scope when 1530 //attributing the for-each expression; we mimic this by attributing 1531 //the for-each expression first (against original scope). 1532 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1533 chk.checkNonVoid(tree.pos(), exprType); 1534 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1535 if (elemtype == null) { 1536 // or perhaps expr implements Iterable<T>? 1537 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1538 if (base == null) { 1539 log.error(tree.expr.pos(), 1540 Errors.ForeachNotApplicableToType(exprType, 1541 Fragments.TypeReqArrayOrIterable)); 1542 elemtype = types.createErrorType(exprType); 1543 } else { 1544 List<Type> iterableParams = base.allparams(); 1545 elemtype = iterableParams.isEmpty() 1546 ? syms.objectType 1547 : types.wildUpperBound(iterableParams.head); 1548 1549 // Check the return type of the method iterator(). 1550 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1551 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1552 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1553 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1554 log.error(tree.pos(), 1555 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1556 } 1557 } 1558 } 1559 if (tree.var.isImplicitlyTyped()) { 1560 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1561 setSyntheticVariableType(tree.var, inferredType); 1562 } 1563 attribStat(tree.var, loopEnv); 1564 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1565 loopEnv.tree = tree; // before, we were not in loop! 1566 attribStat(tree.body, loopEnv); 1567 result = null; 1568 } 1569 finally { 1570 loopEnv.info.scope.leave(); 1571 } 1572 } 1573 1574 public void visitLabelled(JCLabeledStatement tree) { 1575 // Check that label is not used in an enclosing statement 1576 Env<AttrContext> env1 = env; 1577 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1578 if (env1.tree.hasTag(LABELLED) && 1579 ((JCLabeledStatement) env1.tree).label == tree.label) { 1580 log.error(tree.pos(), 1581 Errors.LabelAlreadyInUse(tree.label)); 1582 break; 1583 } 1584 env1 = env1.next; 1585 } 1586 1587 attribStat(tree.body, env.dup(tree)); 1588 result = null; 1589 } 1590 1591 public void visitSwitch(JCSwitch tree) { 1592 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1593 attribStats(c.stats, caseEnv); 1594 }); 1595 result = null; 1596 } 1597 1598 public void visitSwitchExpression(JCSwitchExpression tree) { 1599 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1600 PolyKind.STANDALONE : PolyKind.POLY; 1601 1602 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1603 //this means we are returning a poly conditional from void-compatible lambda expression 1604 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1605 result = tree.type = types.createErrorType(resultInfo.pt); 1606 return; 1607 } 1608 1609 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1610 unknownExprInfo : 1611 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1612 1613 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1614 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1615 1616 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1617 caseEnv.info.yieldResult = condInfo; 1618 attribStats(c.stats, caseEnv); 1619 new TreeScanner() { 1620 @Override 1621 public void visitYield(JCYield brk) { 1622 if (brk.target == tree) { 1623 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1624 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1625 } 1626 super.visitYield(brk); 1627 } 1628 1629 @Override public void visitClassDef(JCClassDecl tree) {} 1630 @Override public void visitLambda(JCLambda tree) {} 1631 }.scan(c.stats); 1632 }); 1633 1634 if (tree.cases.isEmpty()) { 1635 log.error(tree.pos(), 1636 Errors.SwitchExpressionEmpty); 1637 } else if (caseTypes.isEmpty()) { 1638 log.error(tree.pos(), 1639 Errors.SwitchExpressionNoResultExpressions); 1640 } 1641 1642 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1643 1644 result = tree.type = check(tree, owntype, KindSelector.VAL, resultInfo); 1645 } 1646 //where: 1647 CheckContext switchExpressionContext(CheckContext checkContext) { 1648 return new Check.NestedCheckContext(checkContext) { 1649 //this will use enclosing check context to check compatibility of 1650 //subexpression against target type; if we are in a method check context, 1651 //depending on whether boxing is allowed, we could have incompatibilities 1652 @Override 1653 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1654 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1655 } 1656 }; 1657 } 1658 1659 private void handleSwitch(JCTree switchTree, 1660 JCExpression selector, 1661 List<JCCase> cases, 1662 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1663 Type seltype = attribExpr(selector, env); 1664 1665 Env<AttrContext> switchEnv = 1666 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1667 1668 try { 1669 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1670 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1671 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1672 boolean patternSwitch; 1673 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1674 !types.isAssignable(seltype, syms.intType)) { 1675 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1676 patternSwitch = true; 1677 } else { 1678 patternSwitch = cases.stream() 1679 .flatMap(c -> c.labels.stream()) 1680 .anyMatch(l -> l.isPattern()); 1681 } 1682 1683 // Attribute all cases and 1684 // check that there are no duplicate case labels or default clauses. 1685 Set<Object> labels = new HashSet<>(); // The set of case labels. 1686 List<Type> coveredTypesForPatterns = List.nil(); 1687 List<Type> coveredTypesForConstants = List.nil(); 1688 boolean hasDefault = false; // Is there a default label? 1689 boolean hasTotalPattern = false; // Is there a total pattern? 1690 boolean hasNullPattern = false; // Is there a null pattern? 1691 CaseTree.CaseKind caseKind = null; 1692 boolean wasError = false; 1693 MatchBindings prevBindings = null; 1694 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1695 JCCase c = l.head; 1696 if (caseKind == null) { 1697 caseKind = c.caseKind; 1698 } else if (caseKind != c.caseKind && !wasError) { 1699 log.error(c.pos(), 1700 Errors.SwitchMixingCaseTypes); 1701 wasError = true; 1702 } 1703 MatchBindings currentBindings = prevBindings; 1704 boolean wasTotalPattern = hasTotalPattern; 1705 for (JCCaseLabel pat : c.labels) { 1706 if (pat.isExpression()) { 1707 JCExpression expr = (JCExpression) pat; 1708 if (TreeInfo.isNull(expr)) { 1709 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1710 if (hasNullPattern) { 1711 log.error(pat.pos(), Errors.DuplicateCaseLabel); 1712 } else if (wasTotalPattern) { 1713 log.error(pat.pos(), Errors.PatternDominated); 1714 } 1715 hasNullPattern = true; 1716 attribExpr(expr, switchEnv, seltype); 1717 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1718 } else if (enumSwitch) { 1719 Symbol sym = enumConstant(expr, seltype); 1720 if (sym == null) { 1721 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1722 } else if (!labels.add(sym)) { 1723 log.error(pat.pos(), Errors.DuplicateCaseLabel); 1724 } else { 1725 checkCaseLabelDominated(pat.pos(), coveredTypesForConstants, sym.type); 1726 } 1727 } else if (errorEnumSwitch) { 1728 //error recovery: the selector is erroneous, and all the case labels 1729 //are identifiers. This could be an enum switch - don't report resolve 1730 //error for the case label: 1731 var prevResolveHelper = rs.basicLogResolveHelper; 1732 try { 1733 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1734 attribExpr(pat, switchEnv, seltype); 1735 } finally { 1736 rs.basicLogResolveHelper = prevResolveHelper; 1737 } 1738 } else { 1739 ResultInfo valTypInfo = new ResultInfo(KindSelector.VAL_TYP, 1740 !seltype.hasTag(ERROR) ? seltype 1741 : Type.noType); 1742 Type pattype = attribTree(expr, switchEnv, valTypInfo); 1743 if (!pattype.hasTag(ERROR)) { 1744 if (pattype.constValue() == null) { 1745 Symbol s = TreeInfo.symbol(expr); 1746 if (s != null && s.kind == TYP && allowPatternSwitch) { 1747 log.error(expr.pos(), 1748 Errors.PatternExpected); 1749 } else { 1750 log.error(expr.pos(), 1751 (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq)); 1752 } 1753 } else if (!stringSwitch && !types.isAssignable(seltype, syms.intType)) { 1754 log.error(pat.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1755 } else if (!labels.add(pattype.constValue())) { 1756 log.error(c.pos(), Errors.DuplicateCaseLabel); 1757 } else { 1758 checkCaseLabelDominated(pat.pos(), coveredTypesForConstants, types.boxedTypeOrType(pattype)); 1759 } 1760 } 1761 } 1762 } else if (pat.hasTag(DEFAULTCASELABEL)) { 1763 if (hasDefault) { 1764 log.error(pat.pos(), Errors.DuplicateDefaultLabel); 1765 } else if (hasTotalPattern) { 1766 log.error(pat.pos(), Errors.TotalPatternAndDefault); 1767 } 1768 hasDefault = true; 1769 matchBindings = MatchBindingsComputer.EMPTY; 1770 } else { 1771 //binding pattern 1772 attribExpr(pat, switchEnv); 1773 var primary = TreeInfo.primaryPatternType((JCPattern) pat); 1774 Type primaryType = primary.type(); 1775 if (!primaryType.hasTag(TYPEVAR)) { 1776 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1777 } 1778 checkCastablePattern(pat.pos(), seltype, primaryType); 1779 Type patternType = types.erasure(primaryType); 1780 boolean isTotal = primary.unconditional() && 1781 !patternType.isErroneous() && 1782 types.isSubtype(types.erasure(seltype), patternType); 1783 if (isTotal) { 1784 if (hasTotalPattern) { 1785 log.error(pat.pos(), Errors.DuplicateTotalPattern); 1786 } else if (hasDefault) { 1787 log.error(pat.pos(), Errors.TotalPatternAndDefault); 1788 } 1789 hasTotalPattern = true; 1790 } 1791 checkCaseLabelDominated(pat.pos(), coveredTypesForPatterns, patternType); 1792 if (!patternType.isErroneous()) { 1793 coveredTypesForConstants = coveredTypesForConstants.prepend(patternType); 1794 if (primary.unconditional()) { 1795 coveredTypesForPatterns = coveredTypesForPatterns.prepend(patternType); 1796 } 1797 } 1798 } 1799 currentBindings = matchBindingsComputer.switchCase(pat, currentBindings, matchBindings); 1800 } 1801 Env<AttrContext> caseEnv = 1802 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1803 try { 1804 attribCase.accept(c, caseEnv); 1805 } finally { 1806 caseEnv.info.scope.leave(); 1807 } 1808 addVars(c.stats, switchEnv.info.scope); 1809 1810 preFlow(c); 1811 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1812 1813 prevBindings = c.caseKind == CaseTree.CaseKind.STATEMENT && c.completesNormally ? currentBindings 1814 : null; 1815 } 1816 if (patternSwitch) { 1817 chk.checkSwitchCaseStructure(cases); 1818 } 1819 if (switchTree.hasTag(SWITCH)) { 1820 ((JCSwitch) switchTree).hasTotalPattern = hasDefault || hasTotalPattern; 1821 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1822 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1823 ((JCSwitchExpression) switchTree).hasTotalPattern = hasDefault || hasTotalPattern; 1824 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1825 } else { 1826 Assert.error(switchTree.getTag().name()); 1827 } 1828 } finally { 1829 switchEnv.info.scope.leave(); 1830 } 1831 } 1832 // where 1833 /** Add any variables defined in stats to the switch scope. */ 1834 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1835 for (;stats.nonEmpty(); stats = stats.tail) { 1836 JCTree stat = stats.head; 1837 if (stat.hasTag(VARDEF)) 1838 switchScope.enter(((JCVariableDecl) stat).sym); 1839 } 1840 } 1841 private void checkCaseLabelDominated(DiagnosticPosition pos, 1842 List<Type> coveredTypes, Type patternType) { 1843 for (Type existing : coveredTypes) { 1844 if (types.isSubtype(patternType, existing)) { 1845 log.error(pos, Errors.PatternDominated); 1846 } 1847 } 1848 } 1849 // where 1850 /** Return the selected enumeration constant symbol, or null. */ 1851 private Symbol enumConstant(JCTree tree, Type enumType) { 1852 if (tree.hasTag(IDENT)) { 1853 JCIdent ident = (JCIdent)tree; 1854 Name name = ident.name; 1855 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1856 if (sym.kind == VAR) { 1857 Symbol s = ident.sym = sym; 1858 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1859 ident.type = s.type; 1860 return ((s.flags_field & Flags.ENUM) == 0) 1861 ? null : s; 1862 } 1863 } 1864 } 1865 return null; 1866 } 1867 1868 public void visitSynchronized(JCSynchronized tree) { 1869 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); 1870 if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) { 1871 log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1872 } 1873 attribStat(tree.body, env); 1874 result = null; 1875 } 1876 // where 1877 private boolean isValueBased(Type t) { 1878 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1879 } 1880 1881 1882 public void visitTry(JCTry tree) { 1883 // Create a new local environment with a local 1884 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1885 try { 1886 boolean isTryWithResource = tree.resources.nonEmpty(); 1887 // Create a nested environment for attributing the try block if needed 1888 Env<AttrContext> tryEnv = isTryWithResource ? 1889 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1890 localEnv; 1891 try { 1892 // Attribute resource declarations 1893 for (JCTree resource : tree.resources) { 1894 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1895 @Override 1896 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1897 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1898 } 1899 }; 1900 ResultInfo twrResult = 1901 new ResultInfo(KindSelector.VAR, 1902 syms.autoCloseableType, 1903 twrContext); 1904 if (resource.hasTag(VARDEF)) { 1905 attribStat(resource, tryEnv); 1906 twrResult.check(resource, resource.type); 1907 1908 //check that resource type cannot throw InterruptedException 1909 checkAutoCloseable(resource.pos(), localEnv, resource.type); 1910 1911 VarSymbol var = ((JCVariableDecl) resource).sym; 1912 var.setData(ElementKind.RESOURCE_VARIABLE); 1913 } else { 1914 attribTree(resource, tryEnv, twrResult); 1915 } 1916 } 1917 // Attribute body 1918 attribStat(tree.body, tryEnv); 1919 } finally { 1920 if (isTryWithResource) 1921 tryEnv.info.scope.leave(); 1922 } 1923 1924 // Attribute catch clauses 1925 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 1926 JCCatch c = l.head; 1927 Env<AttrContext> catchEnv = 1928 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 1929 try { 1930 Type ctype = attribStat(c.param, catchEnv); 1931 if (TreeInfo.isMultiCatch(c)) { 1932 //multi-catch parameter is implicitly marked as final 1933 c.param.sym.flags_field |= FINAL | UNION; 1934 } 1935 if (c.param.sym.kind == VAR) { 1936 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 1937 } 1938 chk.checkType(c.param.vartype.pos(), 1939 chk.checkClassType(c.param.vartype.pos(), ctype), 1940 syms.throwableType); 1941 attribStat(c.body, catchEnv); 1942 } finally { 1943 catchEnv.info.scope.leave(); 1944 } 1945 } 1946 1947 // Attribute finalizer 1948 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 1949 result = null; 1950 } 1951 finally { 1952 localEnv.info.scope.leave(); 1953 } 1954 } 1955 1956 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 1957 if (!resource.isErroneous() && 1958 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 1959 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 1960 Symbol close = syms.noSymbol; 1961 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); 1962 try { 1963 close = rs.resolveQualifiedMethod(pos, 1964 env, 1965 types.skipTypeVars(resource, false), 1966 names.close, 1967 List.nil(), 1968 List.nil()); 1969 } 1970 finally { 1971 log.popDiagnosticHandler(discardHandler); 1972 } 1973 if (close.kind == MTH && 1974 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 1975 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) && 1976 env.info.lint.isEnabled(LintCategory.TRY)) { 1977 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource)); 1978 } 1979 } 1980 } 1981 1982 public void visitConditional(JCConditional tree) { 1983 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 1984 MatchBindings condBindings = matchBindings; 1985 1986 tree.polyKind = (!allowPoly || 1987 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 1988 isBooleanOrNumeric(env, tree)) ? 1989 PolyKind.STANDALONE : PolyKind.POLY; 1990 1991 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1992 //this means we are returning a poly conditional from void-compatible lambda expression 1993 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 1994 result = tree.type = types.createErrorType(resultInfo.pt); 1995 return; 1996 } 1997 1998 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1999 unknownExprInfo : 2000 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2001 2002 2003 // x ? y : z 2004 // include x's bindings when true in y 2005 // include x's bindings when false in z 2006 2007 Type truetype; 2008 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2009 try { 2010 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2011 } finally { 2012 trueEnv.info.scope.leave(); 2013 } 2014 2015 MatchBindings trueBindings = matchBindings; 2016 2017 Type falsetype; 2018 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2019 try { 2020 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2021 } finally { 2022 falseEnv.info.scope.leave(); 2023 } 2024 2025 MatchBindings falseBindings = matchBindings; 2026 2027 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2028 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2029 List.of(truetype, falsetype)) : pt(); 2030 if (condtype.constValue() != null && 2031 truetype.constValue() != null && 2032 falsetype.constValue() != null && 2033 !owntype.hasTag(NONE)) { 2034 //constant folding 2035 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2036 } 2037 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2038 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2039 } 2040 //where 2041 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2042 switch (tree.getTag()) { 2043 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2044 ((JCLiteral)tree).typetag == BOOLEAN || 2045 ((JCLiteral)tree).typetag == BOT; 2046 case LAMBDA: case REFERENCE: return false; 2047 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2048 case CONDEXPR: 2049 JCConditional condTree = (JCConditional)tree; 2050 return isBooleanOrNumeric(env, condTree.truepart) && 2051 isBooleanOrNumeric(env, condTree.falsepart); 2052 case APPLY: 2053 JCMethodInvocation speculativeMethodTree = 2054 (JCMethodInvocation)deferredAttr.attribSpeculative( 2055 tree, env, unknownExprInfo, 2056 argumentAttr.withLocalCacheContext()); 2057 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2058 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2059 env.enclClass.type : 2060 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2061 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2062 return primitiveOrBoxed(owntype); 2063 case NEWCLASS: 2064 JCExpression className = 2065 removeClassParams.translate(((JCNewClass)tree).clazz); 2066 JCExpression speculativeNewClassTree = 2067 (JCExpression)deferredAttr.attribSpeculative( 2068 className, env, unknownTypeInfo, 2069 argumentAttr.withLocalCacheContext()); 2070 return primitiveOrBoxed(speculativeNewClassTree.type); 2071 default: 2072 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2073 argumentAttr.withLocalCacheContext()).type; 2074 return primitiveOrBoxed(speculativeType); 2075 } 2076 } 2077 //where 2078 boolean primitiveOrBoxed(Type t) { 2079 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2080 } 2081 2082 TreeTranslator removeClassParams = new TreeTranslator() { 2083 @Override 2084 public void visitTypeApply(JCTypeApply tree) { 2085 result = translate(tree.clazz); 2086 } 2087 }; 2088 2089 CheckContext conditionalContext(CheckContext checkContext) { 2090 return new Check.NestedCheckContext(checkContext) { 2091 //this will use enclosing check context to check compatibility of 2092 //subexpression against target type; if we are in a method check context, 2093 //depending on whether boxing is allowed, we could have incompatibilities 2094 @Override 2095 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2096 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2097 } 2098 }; 2099 } 2100 2101 /** Compute the type of a conditional expression, after 2102 * checking that it exists. See JLS 15.25. Does not take into 2103 * account the special case where condition and both arms 2104 * are constants. 2105 * 2106 * @param pos The source position to be used for error 2107 * diagnostics. 2108 * @param thentype The type of the expression's then-part. 2109 * @param elsetype The type of the expression's else-part. 2110 */ 2111 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2112 if (condTypes.isEmpty()) { 2113 return syms.objectType; //TODO: how to handle? 2114 } 2115 Type first = condTypes.head; 2116 // If same type, that is the result 2117 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2118 return first.baseType(); 2119 2120 List<Type> unboxedTypes = condTypes.stream() 2121 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2122 .collect(List.collector()); 2123 2124 // Otherwise, if both arms can be converted to a numeric 2125 // type, return the least numeric type that fits both arms 2126 // (i.e. return larger of the two, or return int if one 2127 // arm is short, the other is char). 2128 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2129 // If one arm has an integer subrange type (i.e., byte, 2130 // short, or char), and the other is an integer constant 2131 // that fits into the subrange, return the subrange type. 2132 for (Type type : unboxedTypes) { 2133 if (!type.getTag().isStrictSubRangeOf(INT)) { 2134 continue; 2135 } 2136 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2137 return type.baseType(); 2138 } 2139 2140 for (TypeTag tag : primitiveTags) { 2141 Type candidate = syms.typeOfTag[tag.ordinal()]; 2142 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2143 return candidate; 2144 } 2145 } 2146 } 2147 2148 // Those were all the cases that could result in a primitive 2149 condTypes = condTypes.stream() 2150 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2151 .collect(List.collector()); 2152 2153 for (Type type : condTypes) { 2154 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2155 return type.baseType(); 2156 } 2157 2158 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2159 2160 condTypes = condTypes.stream() 2161 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2162 .collect(List.collector()); 2163 2164 // both are known to be reference types. The result is 2165 // lub(thentype,elsetype). This cannot fail, as it will 2166 // always be possible to infer "Object" if nothing better. 2167 return types.lub(condTypes.stream() 2168 .map(t -> t.baseType()) 2169 .filter(t -> !t.hasTag(BOT)) 2170 .collect(List.collector())); 2171 } 2172 2173 static final TypeTag[] primitiveTags = new TypeTag[]{ 2174 BYTE, 2175 CHAR, 2176 SHORT, 2177 INT, 2178 LONG, 2179 FLOAT, 2180 DOUBLE, 2181 BOOLEAN, 2182 }; 2183 2184 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2185 return bindingEnv(env, env.tree, bindings); 2186 } 2187 2188 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2189 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2190 bindings.forEach(env1.info.scope::enter); 2191 return env1; 2192 } 2193 2194 public void visitIf(JCIf tree) { 2195 attribExpr(tree.cond, env, syms.booleanType); 2196 2197 // if (x) { y } [ else z ] 2198 // include x's bindings when true in y 2199 // include x's bindings when false in z 2200 2201 MatchBindings condBindings = matchBindings; 2202 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2203 2204 try { 2205 attribStat(tree.thenpart, thenEnv); 2206 } finally { 2207 thenEnv.info.scope.leave(); 2208 } 2209 2210 preFlow(tree.thenpart); 2211 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2212 boolean aliveAfterElse; 2213 2214 if (tree.elsepart != null) { 2215 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2216 try { 2217 attribStat(tree.elsepart, elseEnv); 2218 } finally { 2219 elseEnv.info.scope.leave(); 2220 } 2221 preFlow(tree.elsepart); 2222 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2223 } else { 2224 aliveAfterElse = true; 2225 } 2226 2227 chk.checkEmptyIf(tree); 2228 2229 List<BindingSymbol> afterIfBindings = List.nil(); 2230 2231 if (aliveAfterThen && !aliveAfterElse) { 2232 afterIfBindings = condBindings.bindingsWhenTrue; 2233 } else if (aliveAfterElse && !aliveAfterThen) { 2234 afterIfBindings = condBindings.bindingsWhenFalse; 2235 } 2236 2237 afterIfBindings.forEach(env.info.scope::enter); 2238 afterIfBindings.forEach(BindingSymbol::preserveBinding); 2239 2240 result = null; 2241 } 2242 2243 void preFlow(JCTree tree) { 2244 attrRecover.doRecovery(); 2245 new PostAttrAnalyzer() { 2246 @Override 2247 public void scan(JCTree tree) { 2248 if (tree == null || 2249 (tree.type != null && 2250 tree.type == Type.stuckType)) { 2251 //don't touch stuck expressions! 2252 return; 2253 } 2254 super.scan(tree); 2255 } 2256 2257 @Override 2258 public void visitClassDef(JCClassDecl that) { 2259 if (that.sym != null) { 2260 // Method preFlow shouldn't visit class definitions 2261 // that have not been entered and attributed. 2262 // See JDK-8254557 and JDK-8203277 for more details. 2263 super.visitClassDef(that); 2264 } 2265 } 2266 2267 @Override 2268 public void visitLambda(JCLambda that) { 2269 if (that.type != null) { 2270 // Method preFlow shouldn't visit lambda expressions 2271 // that have not been entered and attributed. 2272 // See JDK-8254557 and JDK-8203277 for more details. 2273 super.visitLambda(that); 2274 } 2275 } 2276 }.scan(tree); 2277 } 2278 2279 public void visitExec(JCExpressionStatement tree) { 2280 //a fresh environment is required for 292 inference to work properly --- 2281 //see Infer.instantiatePolymorphicSignatureInstance() 2282 Env<AttrContext> localEnv = env.dup(tree); 2283 attribExpr(tree.expr, localEnv); 2284 result = null; 2285 } 2286 2287 public void visitBreak(JCBreak tree) { 2288 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2289 result = null; 2290 } 2291 2292 public void visitYield(JCYield tree) { 2293 if (env.info.yieldResult != null) { 2294 attribTree(tree.value, env, env.info.yieldResult); 2295 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2296 } else { 2297 log.error(tree.pos(), tree.value.hasTag(PARENS) 2298 ? Errors.NoSwitchExpressionQualify 2299 : Errors.NoSwitchExpression); 2300 attribTree(tree.value, env, unknownExprInfo); 2301 } 2302 result = null; 2303 } 2304 2305 public void visitContinue(JCContinue tree) { 2306 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2307 result = null; 2308 } 2309 //where 2310 /** Return the target of a break, continue or yield statement, 2311 * if it exists, report an error if not. 2312 * Note: The target of a labelled break or continue is the 2313 * (non-labelled) statement tree referred to by the label, 2314 * not the tree representing the labelled statement itself. 2315 * 2316 * @param pos The position to be used for error diagnostics 2317 * @param tag The tag of the jump statement. This is either 2318 * Tree.BREAK or Tree.CONTINUE. 2319 * @param label The label of the jump statement, or null if no 2320 * label is given. 2321 * @param env The environment current at the jump statement. 2322 */ 2323 private JCTree findJumpTarget(DiagnosticPosition pos, 2324 JCTree.Tag tag, 2325 Name label, 2326 Env<AttrContext> env) { 2327 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2328 2329 if (jumpTarget.snd != null) { 2330 log.error(pos, jumpTarget.snd); 2331 } 2332 2333 return jumpTarget.fst; 2334 } 2335 /** Return the target of a break or continue statement, if it exists, 2336 * report an error if not. 2337 * Note: The target of a labelled break or continue is the 2338 * (non-labelled) statement tree referred to by the label, 2339 * not the tree representing the labelled statement itself. 2340 * 2341 * @param tag The tag of the jump statement. This is either 2342 * Tree.BREAK or Tree.CONTINUE. 2343 * @param label The label of the jump statement, or null if no 2344 * label is given. 2345 * @param env The environment current at the jump statement. 2346 */ 2347 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2348 Name label, 2349 Env<AttrContext> env) { 2350 // Search environments outwards from the point of jump. 2351 Env<AttrContext> env1 = env; 2352 JCDiagnostic.Error pendingError = null; 2353 LOOP: 2354 while (env1 != null) { 2355 switch (env1.tree.getTag()) { 2356 case LABELLED: 2357 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2358 if (label == labelled.label) { 2359 // If jump is a continue, check that target is a loop. 2360 if (tag == CONTINUE) { 2361 if (!labelled.body.hasTag(DOLOOP) && 2362 !labelled.body.hasTag(WHILELOOP) && 2363 !labelled.body.hasTag(FORLOOP) && 2364 !labelled.body.hasTag(FOREACHLOOP)) { 2365 pendingError = Errors.NotLoopLabel(label); 2366 } 2367 // Found labelled statement target, now go inwards 2368 // to next non-labelled tree. 2369 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2370 } else { 2371 return Pair.of(labelled, pendingError); 2372 } 2373 } 2374 break; 2375 case DOLOOP: 2376 case WHILELOOP: 2377 case FORLOOP: 2378 case FOREACHLOOP: 2379 if (label == null) return Pair.of(env1.tree, pendingError); 2380 break; 2381 case SWITCH: 2382 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2383 break; 2384 case SWITCH_EXPRESSION: 2385 if (tag == YIELD) { 2386 return Pair.of(env1.tree, null); 2387 } else if (tag == BREAK) { 2388 pendingError = Errors.BreakOutsideSwitchExpression; 2389 } else { 2390 pendingError = Errors.ContinueOutsideSwitchExpression; 2391 } 2392 break; 2393 case LAMBDA: 2394 case METHODDEF: 2395 case CLASSDEF: 2396 break LOOP; 2397 default: 2398 } 2399 env1 = env1.next; 2400 } 2401 if (label != null) 2402 return Pair.of(null, Errors.UndefLabel(label)); 2403 else if (pendingError != null) 2404 return Pair.of(null, pendingError); 2405 else if (tag == CONTINUE) 2406 return Pair.of(null, Errors.ContOutsideLoop); 2407 else 2408 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2409 } 2410 2411 public void visitReturn(JCReturn tree) { 2412 // Check that there is an enclosing method which is 2413 // nested within than the enclosing class. 2414 if (env.info.returnResult == null) { 2415 log.error(tree.pos(), Errors.RetOutsideMeth); 2416 } else if (env.info.yieldResult != null) { 2417 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2418 } else if (!env.info.isLambda && 2419 !env.info.isNewClass && 2420 env.enclMethod != null && 2421 TreeInfo.isCompactConstructor(env.enclMethod)) { 2422 log.error(env.enclMethod, 2423 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2424 } else { 2425 // Attribute return expression, if it exists, and check that 2426 // it conforms to result type of enclosing method. 2427 if (tree.expr != null) { 2428 if (env.info.returnResult.pt.hasTag(VOID)) { 2429 env.info.returnResult.checkContext.report(tree.expr.pos(), 2430 diags.fragment(Fragments.UnexpectedRetVal)); 2431 } 2432 attribTree(tree.expr, env, env.info.returnResult); 2433 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2434 !env.info.returnResult.pt.hasTag(NONE)) { 2435 env.info.returnResult.checkContext.report(tree.pos(), 2436 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2437 } 2438 } 2439 result = null; 2440 } 2441 2442 public void visitThrow(JCThrow tree) { 2443 Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType); 2444 if (allowPoly) { 2445 chk.checkType(tree, owntype, syms.throwableType); 2446 } 2447 result = null; 2448 } 2449 2450 public void visitAssert(JCAssert tree) { 2451 attribExpr(tree.cond, env, syms.booleanType); 2452 if (tree.detail != null) { 2453 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2454 } 2455 result = null; 2456 } 2457 2458 /** Visitor method for method invocations. 2459 * NOTE: The method part of an application will have in its type field 2460 * the return type of the method, not the method's type itself! 2461 */ 2462 public void visitApply(JCMethodInvocation tree) { 2463 // The local environment of a method application is 2464 // a new environment nested in the current one. 2465 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2466 2467 // The types of the actual method arguments. 2468 List<Type> argtypes; 2469 2470 // The types of the actual method type arguments. 2471 List<Type> typeargtypes = null; 2472 2473 Name methName = TreeInfo.name(tree.meth); 2474 2475 boolean isConstructorCall = 2476 methName == names._this || methName == names._super; 2477 2478 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2479 if (isConstructorCall) { 2480 // We are seeing a ...this(...) or ...super(...) call. 2481 // Check that this is the first statement in a constructor. 2482 checkFirstConstructorStat(tree, env.enclMethod, true); 2483 2484 // Record the fact 2485 // that this is a constructor call (using isSelfCall). 2486 localEnv.info.isSelfCall = true; 2487 2488 // Attribute arguments, yielding list of argument types. 2489 localEnv.info.constructorArgs = true; 2490 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2491 localEnv.info.constructorArgs = false; 2492 argtypes = argtypesBuf.toList(); 2493 typeargtypes = attribTypes(tree.typeargs, localEnv); 2494 2495 // Variable `site' points to the class in which the called 2496 // constructor is defined. 2497 Type site = env.enclClass.sym.type; 2498 if (methName == names._super) { 2499 if (site == syms.objectType) { 2500 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2501 site = types.createErrorType(syms.objectType); 2502 } else { 2503 site = types.supertype(site); 2504 } 2505 } 2506 2507 if (site.hasTag(CLASS)) { 2508 Type encl = site.getEnclosingType(); 2509 while (encl != null && encl.hasTag(TYPEVAR)) 2510 encl = encl.getUpperBound(); 2511 if (encl.hasTag(CLASS)) { 2512 // we are calling a nested class 2513 2514 if (tree.meth.hasTag(SELECT)) { 2515 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2516 2517 // We are seeing a prefixed call, of the form 2518 // <expr>.super(...). 2519 // Check that the prefix expression conforms 2520 // to the outer instance type of the class. 2521 chk.checkRefType(qualifier.pos(), 2522 attribExpr(qualifier, localEnv, 2523 encl)); 2524 } else if (methName == names._super) { 2525 // qualifier omitted; check for existence 2526 // of an appropriate implicit qualifier. 2527 rs.resolveImplicitThis(tree.meth.pos(), 2528 localEnv, site, true); 2529 } 2530 } else if (tree.meth.hasTag(SELECT)) { 2531 log.error(tree.meth.pos(), 2532 Errors.IllegalQualNotIcls(site.tsym)); 2533 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2534 } 2535 2536 // if we're calling a java.lang.Enum constructor, 2537 // prefix the implicit String and int parameters 2538 if (site.tsym == syms.enumSym) 2539 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2540 2541 // Resolve the called constructor under the assumption 2542 // that we are referring to a superclass instance of the 2543 // current instance (JLS ???). 2544 boolean selectSuperPrev = localEnv.info.selectSuper; 2545 localEnv.info.selectSuper = true; 2546 localEnv.info.pendingResolutionPhase = null; 2547 Symbol sym = rs.resolveConstructor( 2548 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2549 localEnv.info.selectSuper = selectSuperPrev; 2550 2551 // Set method symbol to resolved constructor... 2552 TreeInfo.setSymbol(tree.meth, sym); 2553 2554 // ...and check that it is legal in the current context. 2555 // (this will also set the tree's type) 2556 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2557 checkId(tree.meth, site, sym, localEnv, 2558 new ResultInfo(kind, mpt)); 2559 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2560 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2561 } 2562 // Otherwise, `site' is an error type and we do nothing 2563 result = tree.type = syms.voidType; 2564 } else { 2565 // Otherwise, we are seeing a regular method call. 2566 // Attribute the arguments, yielding list of argument types, ... 2567 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2568 argtypes = argtypesBuf.toList(); 2569 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2570 2571 // ... and attribute the method using as a prototype a methodtype 2572 // whose formal argument types is exactly the list of actual 2573 // arguments (this will also set the method symbol). 2574 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2575 localEnv.info.pendingResolutionPhase = null; 2576 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2577 2578 // Compute the result type. 2579 Type restype = mtype.getReturnType(); 2580 if (restype.hasTag(WILDCARD)) 2581 throw new AssertionError(mtype); 2582 2583 Type qualifier = (tree.meth.hasTag(SELECT)) 2584 ? ((JCFieldAccess) tree.meth).selected.type 2585 : env.enclClass.sym.type; 2586 Symbol msym = TreeInfo.symbol(tree.meth); 2587 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2588 2589 chk.checkRefTypes(tree.typeargs, typeargtypes); 2590 2591 // Check that value of resulting type is admissible in the 2592 // current context. Also, capture the return type 2593 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2594 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2595 } 2596 chk.validate(tree.typeargs, localEnv); 2597 } 2598 //where 2599 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2600 if (msym != null && 2601 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2602 methodName == names.getClass && 2603 argtypes.isEmpty()) { 2604 // as a special case, x.getClass() has type Class<? extends |X|> 2605 return new ClassType(restype.getEnclosingType(), 2606 List.of(new WildcardType(types.erasure(qualifierType), 2607 BoundKind.EXTENDS, 2608 syms.boundClass)), 2609 restype.tsym, 2610 restype.getMetadata()); 2611 } else if (msym != null && 2612 msym.owner == syms.arrayClass && 2613 methodName == names.clone && 2614 types.isArray(qualifierType)) { 2615 // as a special case, array.clone() has a result that is 2616 // the same as static type of the array being cloned 2617 return qualifierType; 2618 } else { 2619 return restype; 2620 } 2621 } 2622 2623 /** Check that given application node appears as first statement 2624 * in a constructor call. 2625 * @param tree The application node 2626 * @param enclMethod The enclosing method of the application. 2627 * @param error Should an error be issued? 2628 */ 2629 boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) { 2630 if (enclMethod != null && enclMethod.name == names.init) { 2631 JCBlock body = enclMethod.body; 2632 if (body.stats.head.hasTag(EXEC) && 2633 ((JCExpressionStatement) body.stats.head).expr == tree) 2634 return true; 2635 } 2636 if (error) { 2637 log.error(tree.pos(), 2638 Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth))); 2639 } 2640 return false; 2641 } 2642 2643 /** Obtain a method type with given argument types. 2644 */ 2645 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2646 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2647 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2648 } 2649 2650 public void visitNewClass(final JCNewClass tree) { 2651 Type owntype = types.createErrorType(tree.type); 2652 2653 // The local environment of a class creation is 2654 // a new environment nested in the current one. 2655 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2656 2657 // The anonymous inner class definition of the new expression, 2658 // if one is defined by it. 2659 JCClassDecl cdef = tree.def; 2660 2661 // If enclosing class is given, attribute it, and 2662 // complete class name to be fully qualified 2663 JCExpression clazz = tree.clazz; // Class field following new 2664 JCExpression clazzid; // Identifier in class field 2665 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2666 annoclazzid = null; 2667 2668 if (clazz.hasTag(TYPEAPPLY)) { 2669 clazzid = ((JCTypeApply) clazz).clazz; 2670 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2671 annoclazzid = (JCAnnotatedType) clazzid; 2672 clazzid = annoclazzid.underlyingType; 2673 } 2674 } else { 2675 if (clazz.hasTag(ANNOTATED_TYPE)) { 2676 annoclazzid = (JCAnnotatedType) clazz; 2677 clazzid = annoclazzid.underlyingType; 2678 } else { 2679 clazzid = clazz; 2680 } 2681 } 2682 2683 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2684 2685 if (tree.encl != null) { 2686 // We are seeing a qualified new, of the form 2687 // <expr>.new C <...> (...) ... 2688 // In this case, we let clazz stand for the name of the 2689 // allocated class C prefixed with the type of the qualifier 2690 // expression, so that we can 2691 // resolve it with standard techniques later. I.e., if 2692 // <expr> has type T, then <expr>.new C <...> (...) 2693 // yields a clazz T.C. 2694 Type encltype = chk.checkRefType(tree.encl.pos(), 2695 attribExpr(tree.encl, env)); 2696 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2697 // from expr to the combined type, or not? Yes, do this. 2698 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2699 ((JCIdent) clazzid).name); 2700 2701 EndPosTable endPosTable = this.env.toplevel.endPositions; 2702 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2703 if (clazz.hasTag(ANNOTATED_TYPE)) { 2704 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2705 List<JCAnnotation> annos = annoType.annotations; 2706 2707 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2708 clazzid1 = make.at(tree.pos). 2709 TypeApply(clazzid1, 2710 ((JCTypeApply) clazz).arguments); 2711 } 2712 2713 clazzid1 = make.at(tree.pos). 2714 AnnotatedType(annos, clazzid1); 2715 } else if (clazz.hasTag(TYPEAPPLY)) { 2716 clazzid1 = make.at(tree.pos). 2717 TypeApply(clazzid1, 2718 ((JCTypeApply) clazz).arguments); 2719 } 2720 2721 clazz = clazzid1; 2722 } 2723 2724 // Attribute clazz expression and store 2725 // symbol + type back into the attributed tree. 2726 Type clazztype; 2727 2728 try { 2729 env.info.isNewClass = true; 2730 clazztype = TreeInfo.isEnumInit(env.tree) ? 2731 attribIdentAsEnumType(env, (JCIdent)clazz) : 2732 attribType(clazz, env); 2733 } finally { 2734 env.info.isNewClass = false; 2735 } 2736 2737 clazztype = chk.checkDiamond(tree, clazztype); 2738 chk.validate(clazz, localEnv); 2739 if (tree.encl != null) { 2740 // We have to work in this case to store 2741 // symbol + type back into the attributed tree. 2742 tree.clazz.type = clazztype; 2743 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2744 clazzid.type = ((JCIdent) clazzid).sym.type; 2745 if (annoclazzid != null) { 2746 annoclazzid.type = clazzid.type; 2747 } 2748 if (!clazztype.isErroneous()) { 2749 if (cdef != null && clazztype.tsym.isInterface()) { 2750 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2751 } else if (clazztype.tsym.isStatic()) { 2752 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2753 } 2754 } 2755 } else if (!clazztype.tsym.isInterface() && 2756 clazztype.getEnclosingType().hasTag(CLASS)) { 2757 // Check for the existence of an apropos outer instance 2758 rs.resolveImplicitThis(tree.pos(), env, clazztype); 2759 } 2760 2761 // Attribute constructor arguments. 2762 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2763 final KindSelector pkind = 2764 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2765 List<Type> argtypes = argtypesBuf.toList(); 2766 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2767 2768 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2769 // Enums may not be instantiated except implicitly 2770 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2771 (!env.tree.hasTag(VARDEF) || 2772 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2773 ((JCVariableDecl) env.tree).init != tree)) 2774 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2775 2776 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2777 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2778 boolean skipNonDiamondPath = false; 2779 // Check that class is not abstract 2780 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2781 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2782 log.error(tree.pos(), 2783 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2784 skipNonDiamondPath = true; 2785 } else if (cdef != null && clazztype.tsym.isInterface()) { 2786 // Check that no constructor arguments are given to 2787 // anonymous classes implementing an interface 2788 if (!argtypes.isEmpty()) 2789 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2790 2791 if (!typeargtypes.isEmpty()) 2792 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2793 2794 // Error recovery: pretend no arguments were supplied. 2795 argtypes = List.nil(); 2796 typeargtypes = List.nil(); 2797 skipNonDiamondPath = true; 2798 } 2799 if (TreeInfo.isDiamond(tree)) { 2800 ClassType site = new ClassType(clazztype.getEnclosingType(), 2801 clazztype.tsym.type.getTypeArguments(), 2802 clazztype.tsym, 2803 clazztype.getMetadata()); 2804 2805 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2806 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2807 diamondEnv.info.pendingResolutionPhase = null; 2808 2809 //if the type of the instance creation expression is a class type 2810 //apply method resolution inference (JLS 15.12.2.7). The return type 2811 //of the resolved constructor will be a partially instantiated type 2812 Symbol constructor = rs.resolveDiamond(tree.pos(), 2813 diamondEnv, 2814 site, 2815 argtypes, 2816 typeargtypes); 2817 tree.constructor = constructor.baseSymbol(); 2818 2819 final TypeSymbol csym = clazztype.tsym; 2820 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2821 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2822 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2823 constructorType = checkId(tree, site, 2824 constructor, 2825 diamondEnv, 2826 diamondResult); 2827 2828 tree.clazz.type = types.createErrorType(clazztype); 2829 if (!constructorType.isErroneous()) { 2830 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2831 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2832 } 2833 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2834 } 2835 2836 // Resolve the called constructor under the assumption 2837 // that we are referring to a superclass instance of the 2838 // current instance (JLS ???). 2839 else if (!skipNonDiamondPath) { 2840 //the following code alters some of the fields in the current 2841 //AttrContext - hence, the current context must be dup'ed in 2842 //order to avoid downstream failures 2843 Env<AttrContext> rsEnv = localEnv.dup(tree); 2844 rsEnv.info.selectSuper = cdef != null; 2845 rsEnv.info.pendingResolutionPhase = null; 2846 tree.constructor = rs.resolveConstructor( 2847 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2848 if (cdef == null) { //do not check twice! 2849 tree.constructorType = checkId(tree, 2850 clazztype, 2851 tree.constructor, 2852 rsEnv, 2853 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2854 if (rsEnv.info.lastResolveVarargs()) 2855 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2856 } 2857 } 2858 2859 if (cdef != null) { 2860 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2861 return; 2862 } 2863 2864 if (tree.constructor != null && tree.constructor.kind == MTH) 2865 owntype = clazztype; 2866 } 2867 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2868 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2869 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2870 //we need to wait for inference to finish and then replace inference vars in the constructor type 2871 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2872 instantiatedContext -> { 2873 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2874 }); 2875 } 2876 chk.validate(tree.typeargs, localEnv); 2877 } 2878 2879 // where 2880 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2881 JCClassDecl cdef, Env<AttrContext> localEnv, 2882 List<Type> argtypes, List<Type> typeargtypes, 2883 KindSelector pkind) { 2884 // We are seeing an anonymous class instance creation. 2885 // In this case, the class instance creation 2886 // expression 2887 // 2888 // E.new <typeargs1>C<typargs2>(args) { ... } 2889 // 2890 // is represented internally as 2891 // 2892 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2893 // 2894 // This expression is then *transformed* as follows: 2895 // 2896 // (1) add an extends or implements clause 2897 // (2) add a constructor. 2898 // 2899 // For instance, if C is a class, and ET is the type of E, 2900 // the expression 2901 // 2902 // E.new <typeargs1>C<typargs2>(args) { ... } 2903 // 2904 // is translated to (where X is a fresh name and typarams is the 2905 // parameter list of the super constructor): 2906 // 2907 // new <typeargs1>X(<*nullchk*>E, args) where 2908 // X extends C<typargs2> { 2909 // <typarams> X(ET e, args) { 2910 // e.<typeargs1>super(args) 2911 // } 2912 // ... 2913 // } 2914 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2915 Type enclType = clazztype.getEnclosingType(); 2916 if (enclType != null && 2917 enclType.hasTag(CLASS) && 2918 !chk.checkDenotable((ClassType)enclType)) { 2919 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2920 } 2921 final boolean isDiamond = TreeInfo.isDiamond(tree); 2922 if (isDiamond 2923 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2924 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2925 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2926 Env<AttrContext> dupLocalEnv = localEnv.dup(localEnv.tree, localEnv.info.dup(localEnv.info.scope.dupUnshared())); 2927 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 2928 instantiatedContext -> { 2929 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2930 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 2931 ResultInfo prevResult = this.resultInfo; 2932 try { 2933 this.resultInfo = resultInfoForClassDefinition; 2934 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 2935 dupLocalEnv, argtypes, typeargtypes, pkind); 2936 } finally { 2937 this.resultInfo = prevResult; 2938 } 2939 }); 2940 } else { 2941 if (isDiamond && clazztype.hasTag(CLASS)) { 2942 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 2943 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 2944 // One or more types inferred in the previous steps is non-denotable. 2945 Fragment fragment = Diamond(clazztype.tsym); 2946 log.error(tree.clazz.pos(), 2947 Errors.CantApplyDiamond1( 2948 fragment, 2949 invalidDiamondArgs.size() > 1 ? 2950 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 2951 DiamondInvalidArg(invalidDiamondArgs, fragment))); 2952 } 2953 // For <>(){}, inferred types must also be accessible. 2954 for (Type t : clazztype.getTypeArguments()) { 2955 rs.checkAccessibleType(env, t); 2956 } 2957 } 2958 2959 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 2960 // false for isInterface call even when the original type is an interface. 2961 boolean implementing = clazztype.tsym.isInterface() || 2962 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 2963 clazztype.getOriginalType().tsym.isInterface(); 2964 2965 if (implementing) { 2966 cdef.implementing = List.of(clazz); 2967 } else { 2968 cdef.extending = clazz; 2969 } 2970 2971 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 2972 rs.isSerializable(clazztype)) { 2973 localEnv.info.isSerializable = true; 2974 } 2975 2976 attribStat(cdef, localEnv); 2977 2978 List<Type> finalargtypes; 2979 // If an outer instance is given, 2980 // prefix it to the constructor arguments 2981 // and delete it from the new expression 2982 if (tree.encl != null && !clazztype.tsym.isInterface()) { 2983 finalargtypes = argtypes.prepend(tree.encl.type); 2984 } else { 2985 finalargtypes = argtypes; 2986 } 2987 2988 // Reassign clazztype and recompute constructor. As this necessarily involves 2989 // another attribution pass for deferred types in the case of <>, replicate 2990 // them. Original arguments have right decorations already. 2991 if (isDiamond && pkind.contains(KindSelector.POLY)) { 2992 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 2993 } 2994 2995 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 2996 : cdef.sym.type; 2997 Symbol sym = tree.constructor = rs.resolveConstructor( 2998 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 2999 Assert.check(!sym.kind.isResolutionError()); 3000 tree.constructor = sym; 3001 tree.constructorType = checkId(tree, 3002 clazztype, 3003 tree.constructor, 3004 localEnv, 3005 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3006 } 3007 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3008 clazztype : types.createErrorType(tree.type); 3009 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3010 chk.validate(tree.typeargs, localEnv); 3011 } 3012 3013 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3014 return new Check.NestedCheckContext(checkContext) { 3015 @Override 3016 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3017 enclosingContext.report(clazz.clazz, 3018 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3019 } 3020 }; 3021 } 3022 3023 /** Make an attributed null check tree. 3024 */ 3025 public JCExpression makeNullCheck(JCExpression arg) { 3026 // optimization: new Outer() can never be null; skip null check 3027 if (arg.getTag() == NEWCLASS) 3028 return arg; 3029 // optimization: X.this is never null; skip null check 3030 Name name = TreeInfo.name(arg); 3031 if (name == names._this || name == names._super) return arg; 3032 3033 JCTree.Tag optag = NULLCHK; 3034 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3035 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3036 tree.type = arg.type; 3037 return tree; 3038 } 3039 3040 public void visitNewArray(JCNewArray tree) { 3041 Type owntype = types.createErrorType(tree.type); 3042 Env<AttrContext> localEnv = env.dup(tree); 3043 Type elemtype; 3044 if (tree.elemtype != null) { 3045 elemtype = attribType(tree.elemtype, localEnv); 3046 chk.validate(tree.elemtype, localEnv); 3047 owntype = elemtype; 3048 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3049 attribExpr(l.head, localEnv, syms.intType); 3050 owntype = new ArrayType(owntype, syms.arrayClass); 3051 } 3052 } else { 3053 // we are seeing an untyped aggregate { ... } 3054 // this is allowed only if the prototype is an array 3055 if (pt().hasTag(ARRAY)) { 3056 elemtype = types.elemtype(pt()); 3057 } else { 3058 if (!pt().hasTag(ERROR) && 3059 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3060 log.error(tree.pos(), 3061 Errors.IllegalInitializerForType(pt())); 3062 } 3063 elemtype = types.createErrorType(pt()); 3064 } 3065 } 3066 if (tree.elems != null) { 3067 attribExprs(tree.elems, localEnv, elemtype); 3068 owntype = new ArrayType(elemtype, syms.arrayClass); 3069 } 3070 if (!types.isReifiable(elemtype)) 3071 log.error(tree.pos(), Errors.GenericArrayCreation); 3072 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3073 } 3074 3075 /* 3076 * A lambda expression can only be attributed when a target-type is available. 3077 * In addition, if the target-type is that of a functional interface whose 3078 * descriptor contains inference variables in argument position the lambda expression 3079 * is 'stuck' (see DeferredAttr). 3080 */ 3081 @Override 3082 public void visitLambda(final JCLambda that) { 3083 boolean wrongContext = false; 3084 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3085 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3086 //lambda only allowed in assignment or method invocation/cast context 3087 log.error(that.pos(), Errors.UnexpectedLambda); 3088 } 3089 resultInfo = recoveryInfo; 3090 wrongContext = true; 3091 } 3092 //create an environment for attribution of the lambda expression 3093 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3094 boolean needsRecovery = 3095 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3096 try { 3097 if (needsRecovery && rs.isSerializable(pt())) { 3098 localEnv.info.isSerializable = true; 3099 localEnv.info.isSerializableLambda = true; 3100 } 3101 List<Type> explicitParamTypes = null; 3102 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3103 //attribute lambda parameters 3104 attribStats(that.params, localEnv); 3105 explicitParamTypes = TreeInfo.types(that.params); 3106 } 3107 3108 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3109 Type currentTarget = targetInfo.target; 3110 Type lambdaType = targetInfo.descriptor; 3111 3112 if (currentTarget.isErroneous()) { 3113 result = that.type = currentTarget; 3114 return; 3115 } 3116 3117 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3118 3119 if (lambdaType.hasTag(FORALL)) { 3120 //lambda expression target desc cannot be a generic method 3121 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3122 kindName(currentTarget.tsym), 3123 currentTarget.tsym); 3124 resultInfo.checkContext.report(that, diags.fragment(msg)); 3125 result = that.type = types.createErrorType(pt()); 3126 return; 3127 } 3128 3129 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3130 //add param type info in the AST 3131 List<Type> actuals = lambdaType.getParameterTypes(); 3132 List<JCVariableDecl> params = that.params; 3133 3134 boolean arityMismatch = false; 3135 3136 while (params.nonEmpty()) { 3137 if (actuals.isEmpty()) { 3138 //not enough actuals to perform lambda parameter inference 3139 arityMismatch = true; 3140 } 3141 //reset previously set info 3142 Type argType = arityMismatch ? 3143 syms.errType : 3144 actuals.head; 3145 if (params.head.isImplicitlyTyped()) { 3146 setSyntheticVariableType(params.head, argType); 3147 } 3148 params.head.sym = null; 3149 actuals = actuals.isEmpty() ? 3150 actuals : 3151 actuals.tail; 3152 params = params.tail; 3153 } 3154 3155 //attribute lambda parameters 3156 attribStats(that.params, localEnv); 3157 3158 if (arityMismatch) { 3159 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3160 result = that.type = types.createErrorType(currentTarget); 3161 return; 3162 } 3163 } 3164 3165 //from this point on, no recovery is needed; if we are in assignment context 3166 //we will be able to attribute the whole lambda body, regardless of errors; 3167 //if we are in a 'check' method context, and the lambda is not compatible 3168 //with the target-type, it will be recovered anyway in Attr.checkId 3169 needsRecovery = false; 3170 3171 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3172 lambdaBodyResult(that, lambdaType, resultInfo); 3173 3174 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3175 attribTree(that.getBody(), localEnv, bodyResultInfo); 3176 } else { 3177 JCBlock body = (JCBlock)that.body; 3178 if (body == breakTree && 3179 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3180 breakTreeFound(copyEnv(localEnv)); 3181 } 3182 attribStats(body.stats, localEnv); 3183 } 3184 3185 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3186 3187 boolean isSpeculativeRound = 3188 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3189 3190 preFlow(that); 3191 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3192 3193 that.type = currentTarget; //avoids recovery at this stage 3194 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3195 3196 if (!isSpeculativeRound) { 3197 //add thrown types as bounds to the thrown types free variables if needed: 3198 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3199 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3200 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3201 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3202 } 3203 } 3204 3205 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3206 } 3207 result = wrongContext ? that.type = types.createErrorType(pt()) 3208 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3209 } catch (Types.FunctionDescriptorLookupError ex) { 3210 JCDiagnostic cause = ex.getDiagnostic(); 3211 resultInfo.checkContext.report(that, cause); 3212 result = that.type = types.createErrorType(pt()); 3213 return; 3214 } catch (CompletionFailure cf) { 3215 chk.completionError(that.pos(), cf); 3216 } catch (Throwable t) { 3217 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3218 //as that would likely cause the same exception again. 3219 needsRecovery = false; 3220 throw t; 3221 } finally { 3222 localEnv.info.scope.leave(); 3223 if (needsRecovery) { 3224 Type prevResult = result; 3225 try { 3226 attribTree(that, env, recoveryInfo); 3227 } finally { 3228 if (result == Type.recoveryType) { 3229 result = prevResult; 3230 } 3231 } 3232 } 3233 } 3234 } 3235 //where 3236 class TargetInfo { 3237 Type target; 3238 Type descriptor; 3239 3240 public TargetInfo(Type target, Type descriptor) { 3241 this.target = target; 3242 this.descriptor = descriptor; 3243 } 3244 } 3245 3246 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3247 Type lambdaType; 3248 Type currentTarget = resultInfo.pt; 3249 if (resultInfo.pt != Type.recoveryType) { 3250 /* We need to adjust the target. If the target is an 3251 * intersection type, for example: SAM & I1 & I2 ... 3252 * the target will be updated to SAM 3253 */ 3254 currentTarget = targetChecker.visit(currentTarget, that); 3255 if (!currentTarget.isIntersection()) { 3256 if (explicitParamTypes != null) { 3257 currentTarget = infer.instantiateFunctionalInterface(that, 3258 currentTarget, explicitParamTypes, resultInfo.checkContext); 3259 } 3260 currentTarget = types.removeWildcards(currentTarget); 3261 lambdaType = types.findDescriptorType(currentTarget); 3262 } else { 3263 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3264 ListBuffer<Type> components = new ListBuffer<>(); 3265 for (Type bound : ict.getExplicitComponents()) { 3266 if (explicitParamTypes != null) { 3267 try { 3268 bound = infer.instantiateFunctionalInterface(that, 3269 bound, explicitParamTypes, resultInfo.checkContext); 3270 } catch (FunctionDescriptorLookupError t) { 3271 // do nothing 3272 } 3273 } 3274 bound = types.removeWildcards(bound); 3275 components.add(bound); 3276 } 3277 currentTarget = types.makeIntersectionType(components.toList()); 3278 currentTarget.tsym.flags_field |= INTERFACE; 3279 lambdaType = types.findDescriptorType(currentTarget); 3280 } 3281 3282 } else { 3283 currentTarget = Type.recoveryType; 3284 lambdaType = fallbackDescriptorType(that); 3285 } 3286 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3287 //lambda expression target desc cannot be a generic method 3288 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3289 kindName(currentTarget.tsym), 3290 currentTarget.tsym); 3291 resultInfo.checkContext.report(that, diags.fragment(msg)); 3292 currentTarget = types.createErrorType(pt()); 3293 } 3294 return new TargetInfo(currentTarget, lambdaType); 3295 } 3296 3297 void preFlow(JCLambda tree) { 3298 attrRecover.doRecovery(); 3299 new PostAttrAnalyzer() { 3300 @Override 3301 public void scan(JCTree tree) { 3302 if (tree == null || 3303 (tree.type != null && 3304 tree.type == Type.stuckType)) { 3305 //don't touch stuck expressions! 3306 return; 3307 } 3308 super.scan(tree); 3309 } 3310 3311 @Override 3312 public void visitClassDef(JCClassDecl that) { 3313 // or class declaration trees! 3314 } 3315 3316 public void visitLambda(JCLambda that) { 3317 // or lambda expressions! 3318 } 3319 }.scan(tree.body); 3320 } 3321 3322 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3323 3324 @Override 3325 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3326 return t.isIntersection() ? 3327 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3328 } 3329 3330 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3331 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3332 return ict; 3333 } 3334 3335 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3336 ListBuffer<Type> targs = new ListBuffer<>(); 3337 ListBuffer<Type> supertypes = new ListBuffer<>(); 3338 for (Type i : ict.interfaces_field) { 3339 if (i.isParameterized()) { 3340 targs.appendList(i.tsym.type.allparams()); 3341 } 3342 supertypes.append(i.tsym.type); 3343 } 3344 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3345 notionalIntf.allparams_field = targs.toList(); 3346 notionalIntf.tsym.flags_field |= INTERFACE; 3347 return notionalIntf.tsym; 3348 } 3349 }; 3350 3351 private Type fallbackDescriptorType(JCExpression tree) { 3352 switch (tree.getTag()) { 3353 case LAMBDA: 3354 JCLambda lambda = (JCLambda)tree; 3355 List<Type> argtypes = List.nil(); 3356 for (JCVariableDecl param : lambda.params) { 3357 argtypes = param.vartype != null && param.vartype.type != null ? 3358 argtypes.append(param.vartype.type) : 3359 argtypes.append(syms.errType); 3360 } 3361 return new MethodType(argtypes, Type.recoveryType, 3362 List.of(syms.throwableType), syms.methodClass); 3363 case REFERENCE: 3364 return new MethodType(List.nil(), Type.recoveryType, 3365 List.of(syms.throwableType), syms.methodClass); 3366 default: 3367 Assert.error("Cannot get here!"); 3368 } 3369 return null; 3370 } 3371 3372 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3373 final InferenceContext inferenceContext, final Type... ts) { 3374 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3375 } 3376 3377 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3378 final InferenceContext inferenceContext, final List<Type> ts) { 3379 if (inferenceContext.free(ts)) { 3380 inferenceContext.addFreeTypeListener(ts, 3381 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3382 } else { 3383 for (Type t : ts) { 3384 rs.checkAccessibleType(env, t); 3385 } 3386 } 3387 } 3388 3389 /** 3390 * Lambda/method reference have a special check context that ensures 3391 * that i.e. a lambda return type is compatible with the expected 3392 * type according to both the inherited context and the assignment 3393 * context. 3394 */ 3395 class FunctionalReturnContext extends Check.NestedCheckContext { 3396 3397 FunctionalReturnContext(CheckContext enclosingContext) { 3398 super(enclosingContext); 3399 } 3400 3401 @Override 3402 public boolean compatible(Type found, Type req, Warner warn) { 3403 //return type must be compatible in both current context and assignment context 3404 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3405 } 3406 3407 @Override 3408 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3409 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3410 } 3411 } 3412 3413 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3414 3415 JCExpression expr; 3416 boolean expStmtExpected; 3417 3418 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3419 super(enclosingContext); 3420 this.expr = expr; 3421 } 3422 3423 @Override 3424 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3425 if (expStmtExpected) { 3426 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3427 } else { 3428 super.report(pos, details); 3429 } 3430 } 3431 3432 @Override 3433 public boolean compatible(Type found, Type req, Warner warn) { 3434 //a void return is compatible with an expression statement lambda 3435 if (req.hasTag(VOID)) { 3436 expStmtExpected = true; 3437 return TreeInfo.isExpressionStatement(expr); 3438 } else { 3439 return super.compatible(found, req, warn); 3440 } 3441 } 3442 } 3443 3444 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3445 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3446 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3447 new FunctionalReturnContext(resultInfo.checkContext); 3448 3449 return descriptor.getReturnType() == Type.recoveryType ? 3450 recoveryInfo : 3451 new ResultInfo(KindSelector.VAL, 3452 descriptor.getReturnType(), funcContext); 3453 } 3454 3455 /** 3456 * Lambda compatibility. Check that given return types, thrown types, parameter types 3457 * are compatible with the expected functional interface descriptor. This means that: 3458 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3459 * types must be compatible with the return type of the expected descriptor. 3460 */ 3461 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3462 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3463 3464 //return values have already been checked - but if lambda has no return 3465 //values, we must ensure that void/value compatibility is correct; 3466 //this amounts at checking that, if a lambda body can complete normally, 3467 //the descriptor's return type must be void 3468 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3469 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3470 Fragment msg = 3471 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3472 checkContext.report(tree, 3473 diags.fragment(msg)); 3474 } 3475 3476 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3477 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3478 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3479 } 3480 } 3481 3482 /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a 3483 * static field and that lambda has type annotations, these annotations will 3484 * also be stored at these fake clinit methods. 3485 * 3486 * LambdaToMethod also use fake clinit methods so they can be reused. 3487 * Also as LTM is a phase subsequent to attribution, the methods from 3488 * clinits can be safely removed by LTM to save memory. 3489 */ 3490 private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>(); 3491 3492 public MethodSymbol removeClinit(ClassSymbol sym) { 3493 return clinits.remove(sym); 3494 } 3495 3496 /* This method returns an environment to be used to attribute a lambda 3497 * expression. 3498 * 3499 * The owner of this environment is a method symbol. If the current owner 3500 * is not a method, for example if the lambda is used to initialize 3501 * a field, then if the field is: 3502 * 3503 * - an instance field, we use the first constructor. 3504 * - a static field, we create a fake clinit method. 3505 */ 3506 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3507 Env<AttrContext> lambdaEnv; 3508 Symbol owner = env.info.scope.owner; 3509 if (owner.kind == VAR && owner.owner.kind == TYP) { 3510 //field initializer 3511 ClassSymbol enclClass = owner.enclClass(); 3512 Symbol newScopeOwner = env.info.scope.owner; 3513 /* if the field isn't static, then we can get the first constructor 3514 * and use it as the owner of the environment. This is what 3515 * LTM code is doing to look for type annotations so we are fine. 3516 */ 3517 if ((owner.flags() & STATIC) == 0) { 3518 for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) { 3519 newScopeOwner = s; 3520 break; 3521 } 3522 } else { 3523 /* if the field is static then we need to create a fake clinit 3524 * method, this method can later be reused by LTM. 3525 */ 3526 MethodSymbol clinit = clinits.get(enclClass); 3527 if (clinit == null) { 3528 Type clinitType = new MethodType(List.nil(), 3529 syms.voidType, List.nil(), syms.methodClass); 3530 clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE, 3531 names.clinit, clinitType, enclClass); 3532 clinit.params = List.nil(); 3533 clinits.put(enclClass, clinit); 3534 } 3535 newScopeOwner = clinit; 3536 } 3537 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner))); 3538 } else { 3539 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3540 } 3541 lambdaEnv.info.yieldResult = null; 3542 lambdaEnv.info.isLambda = true; 3543 return lambdaEnv; 3544 } 3545 3546 @Override 3547 public void visitReference(final JCMemberReference that) { 3548 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3549 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3550 //method reference only allowed in assignment or method invocation/cast context 3551 log.error(that.pos(), Errors.UnexpectedMref); 3552 } 3553 result = that.type = types.createErrorType(pt()); 3554 return; 3555 } 3556 final Env<AttrContext> localEnv = env.dup(that); 3557 try { 3558 //attribute member reference qualifier - if this is a constructor 3559 //reference, the expected kind must be a type 3560 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3561 3562 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3563 exprType = chk.checkConstructorRefType(that.expr, exprType); 3564 if (!exprType.isErroneous() && 3565 exprType.isRaw() && 3566 that.typeargs != null) { 3567 log.error(that.expr.pos(), 3568 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3569 Fragments.MrefInferAndExplicitParams)); 3570 exprType = types.createErrorType(exprType); 3571 } 3572 } 3573 3574 if (exprType.isErroneous()) { 3575 //if the qualifier expression contains problems, 3576 //give up attribution of method reference 3577 result = that.type = exprType; 3578 return; 3579 } 3580 3581 if (TreeInfo.isStaticSelector(that.expr, names)) { 3582 //if the qualifier is a type, validate it; raw warning check is 3583 //omitted as we don't know at this stage as to whether this is a 3584 //raw selector (because of inference) 3585 chk.validate(that.expr, env, false); 3586 } else { 3587 Symbol lhsSym = TreeInfo.symbol(that.expr); 3588 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3589 } 3590 //attrib type-arguments 3591 List<Type> typeargtypes = List.nil(); 3592 if (that.typeargs != null) { 3593 typeargtypes = attribTypes(that.typeargs, localEnv); 3594 } 3595 3596 boolean isTargetSerializable = 3597 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3598 rs.isSerializable(pt()); 3599 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3600 Type currentTarget = targetInfo.target; 3601 Type desc = targetInfo.descriptor; 3602 3603 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3604 List<Type> argtypes = desc.getParameterTypes(); 3605 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3606 3607 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3608 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3609 } 3610 3611 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3612 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3613 try { 3614 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3615 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3616 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3617 } finally { 3618 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3619 } 3620 3621 Symbol refSym = refResult.fst; 3622 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3623 3624 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3625 * JDK-8075541 3626 */ 3627 if (refSym.kind != MTH) { 3628 boolean targetError; 3629 switch (refSym.kind) { 3630 case ABSENT_MTH: 3631 case MISSING_ENCL: 3632 targetError = false; 3633 break; 3634 case WRONG_MTH: 3635 case WRONG_MTHS: 3636 case AMBIGUOUS: 3637 case HIDDEN: 3638 case STATICERR: 3639 targetError = true; 3640 break; 3641 default: 3642 Assert.error("unexpected result kind " + refSym.kind); 3643 targetError = false; 3644 } 3645 3646 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3647 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3648 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3649 3650 JCDiagnostic diag = diags.create(log.currentSource(), that, 3651 targetError ? 3652 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3653 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3654 3655 if (targetError && currentTarget == Type.recoveryType) { 3656 //a target error doesn't make sense during recovery stage 3657 //as we don't know what actual parameter types are 3658 result = that.type = currentTarget; 3659 return; 3660 } else { 3661 if (targetError) { 3662 resultInfo.checkContext.report(that, diag); 3663 } else { 3664 log.report(diag); 3665 } 3666 result = that.type = types.createErrorType(currentTarget); 3667 return; 3668 } 3669 } 3670 3671 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3672 that.kind = lookupHelper.referenceKind(that.sym); 3673 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3674 3675 if (desc.getReturnType() == Type.recoveryType) { 3676 // stop here 3677 result = that.type = currentTarget; 3678 return; 3679 } 3680 3681 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3682 Type enclosingType = exprType.getEnclosingType(); 3683 if (enclosingType != null && enclosingType.hasTag(CLASS)) { 3684 // Check for the existence of an appropriate outer instance 3685 rs.resolveImplicitThis(that.pos(), env, exprType); 3686 } 3687 } 3688 3689 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3690 3691 if (that.getMode() == ReferenceMode.INVOKE && 3692 TreeInfo.isStaticSelector(that.expr, names) && 3693 that.kind.isUnbound() && 3694 lookupHelper.site.isRaw()) { 3695 chk.checkRaw(that.expr, localEnv); 3696 } 3697 3698 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3699 exprType.getTypeArguments().nonEmpty()) { 3700 //static ref with class type-args 3701 log.error(that.expr.pos(), 3702 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3703 Fragments.StaticMrefWithTargs)); 3704 result = that.type = types.createErrorType(currentTarget); 3705 return; 3706 } 3707 3708 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3709 // Check that super-qualified symbols are not abstract (JLS) 3710 rs.checkNonAbstract(that.pos(), that.sym); 3711 } 3712 3713 if (isTargetSerializable) { 3714 chk.checkAccessFromSerializableElement(that, true); 3715 } 3716 } 3717 3718 ResultInfo checkInfo = 3719 resultInfo.dup(newMethodTemplate( 3720 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3721 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3722 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3723 3724 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3725 3726 if (that.kind.isUnbound() && 3727 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3728 //re-generate inference constraints for unbound receiver 3729 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3730 //cannot happen as this has already been checked - we just need 3731 //to regenerate the inference constraints, as that has been lost 3732 //as a result of the call to inferenceContext.save() 3733 Assert.error("Can't get here"); 3734 } 3735 } 3736 3737 if (!refType.isErroneous()) { 3738 refType = types.createMethodTypeWithReturn(refType, 3739 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3740 } 3741 3742 //go ahead with standard method reference compatibility check - note that param check 3743 //is a no-op (as this has been taken care during method applicability) 3744 boolean isSpeculativeRound = 3745 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3746 3747 that.type = currentTarget; //avoids recovery at this stage 3748 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3749 if (!isSpeculativeRound) { 3750 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3751 } 3752 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3753 } catch (Types.FunctionDescriptorLookupError ex) { 3754 JCDiagnostic cause = ex.getDiagnostic(); 3755 resultInfo.checkContext.report(that, cause); 3756 result = that.type = types.createErrorType(pt()); 3757 return; 3758 } 3759 } 3760 //where 3761 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3762 //if this is a constructor reference, the expected kind must be a type 3763 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3764 KindSelector.VAL_TYP : KindSelector.TYP, 3765 Type.noType); 3766 } 3767 3768 3769 @SuppressWarnings("fallthrough") 3770 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3771 InferenceContext inferenceContext = checkContext.inferenceContext(); 3772 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3773 3774 Type resType; 3775 switch (tree.getMode()) { 3776 case NEW: 3777 if (!tree.expr.type.isRaw()) { 3778 resType = tree.expr.type; 3779 break; 3780 } 3781 default: 3782 resType = refType.getReturnType(); 3783 } 3784 3785 Type incompatibleReturnType = resType; 3786 3787 if (returnType.hasTag(VOID)) { 3788 incompatibleReturnType = null; 3789 } 3790 3791 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3792 if (resType.isErroneous() || 3793 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3794 checkContext.checkWarner(tree, resType, returnType))) { 3795 incompatibleReturnType = null; 3796 } 3797 } 3798 3799 if (incompatibleReturnType != null) { 3800 Fragment msg = 3801 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3802 checkContext.report(tree, diags.fragment(msg)); 3803 } else { 3804 if (inferenceContext.free(refType)) { 3805 // we need to wait for inference to finish and then replace inference vars in the referent type 3806 inferenceContext.addFreeTypeListener(List.of(refType), 3807 instantiatedContext -> { 3808 tree.referentType = instantiatedContext.asInstType(refType); 3809 }); 3810 } else { 3811 tree.referentType = refType; 3812 } 3813 } 3814 3815 if (!speculativeAttr) { 3816 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3817 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3818 } 3819 } 3820 } 3821 3822 boolean checkExConstraints( 3823 List<Type> thrownByFuncExpr, 3824 List<Type> thrownAtFuncType, 3825 InferenceContext inferenceContext) { 3826 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3827 * are not proper types 3828 */ 3829 List<Type> nonProperList = thrownAtFuncType.stream() 3830 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3831 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3832 3833 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3834 * in the throws clause of the invocation type of the method reference's compile-time 3835 * declaration 3836 */ 3837 List<Type> checkedList = thrownByFuncExpr.stream() 3838 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3839 3840 /** If n = 0 (the function type's throws clause consists only of proper types), then 3841 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3842 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3843 * reduces to true 3844 */ 3845 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3846 for (Type checked : checkedList) { 3847 boolean isSubtype = false; 3848 for (Type proper : properList) { 3849 if (types.isSubtype(checked, proper)) { 3850 isSubtype = true; 3851 break; 3852 } 3853 } 3854 if (!isSubtype) { 3855 uncaughtByProperTypes.add(checked); 3856 } 3857 } 3858 3859 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3860 return false; 3861 } 3862 3863 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3864 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3865 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3866 */ 3867 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3868 uncaughtByProperTypes.forEach(checkedEx -> { 3869 nonProperAsUndet.forEach(nonProper -> { 3870 types.isSubtype(checkedEx, nonProper); 3871 }); 3872 }); 3873 3874 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3875 */ 3876 nonProperAsUndet.stream() 3877 .filter(t -> t.hasTag(UNDETVAR)) 3878 .forEach(t -> ((UndetVar)t).setThrow()); 3879 return true; 3880 } 3881 3882 /** 3883 * Set functional type info on the underlying AST. Note: as the target descriptor 3884 * might contain inference variables, we might need to register an hook in the 3885 * current inference context. 3886 */ 3887 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3888 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3889 if (checkContext.inferenceContext().free(descriptorType)) { 3890 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3891 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3892 inferenceContext.asInstType(primaryTarget), checkContext)); 3893 } else { 3894 if (pt.hasTag(CLASS)) { 3895 fExpr.target = primaryTarget; 3896 } 3897 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3898 pt != Type.recoveryType) { 3899 //check that functional interface class is well-formed 3900 try { 3901 /* Types.makeFunctionalInterfaceClass() may throw an exception 3902 * when it's executed post-inference. See the listener code 3903 * above. 3904 */ 3905 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3906 names.empty, fExpr.target, ABSTRACT); 3907 if (csym != null) { 3908 chk.checkImplementations(env.tree, csym, csym); 3909 try { 3910 //perform an additional functional interface check on the synthetic class, 3911 //as there may be spurious errors for raw targets - because of existing issues 3912 //with membership and inheritance (see JDK-8074570). 3913 csym.flags_field |= INTERFACE; 3914 types.findDescriptorType(csym.type); 3915 } catch (FunctionDescriptorLookupError err) { 3916 resultInfo.checkContext.report(fExpr, 3917 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 3918 } 3919 } 3920 } catch (Types.FunctionDescriptorLookupError ex) { 3921 JCDiagnostic cause = ex.getDiagnostic(); 3922 resultInfo.checkContext.report(env.tree, cause); 3923 } 3924 } 3925 } 3926 } 3927 3928 public void visitParens(JCParens tree) { 3929 Type owntype = attribTree(tree.expr, env, resultInfo); 3930 result = check(tree, owntype, pkind(), resultInfo); 3931 Symbol sym = TreeInfo.symbol(tree); 3932 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 3933 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 3934 } 3935 3936 public void visitAssign(JCAssign tree) { 3937 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 3938 Type capturedType = capture(owntype); 3939 attribExpr(tree.rhs, env, owntype); 3940 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 3941 } 3942 3943 public void visitAssignop(JCAssignOp tree) { 3944 // Attribute arguments. 3945 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 3946 Type operand = attribExpr(tree.rhs, env); 3947 // Find operator. 3948 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 3949 if (operator != operators.noOpSymbol && 3950 !owntype.isErroneous() && 3951 !operand.isErroneous()) { 3952 chk.checkDivZero(tree.rhs.pos(), operator, operand); 3953 chk.checkCastable(tree.rhs.pos(), 3954 operator.type.getReturnType(), 3955 owntype); 3956 } 3957 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3958 } 3959 3960 public void visitUnary(JCUnary tree) { 3961 // Attribute arguments. 3962 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 3963 ? attribTree(tree.arg, env, varAssignmentInfo) 3964 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 3965 3966 // Find operator. 3967 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 3968 Type owntype = types.createErrorType(tree.type); 3969 if (operator != operators.noOpSymbol && 3970 !argtype.isErroneous()) { 3971 owntype = (tree.getTag().isIncOrDecUnaryOp()) 3972 ? tree.arg.type 3973 : operator.type.getReturnType(); 3974 int opc = operator.opcode; 3975 3976 // If the argument is constant, fold it. 3977 if (argtype.constValue() != null) { 3978 Type ctype = cfolder.fold1(opc, argtype); 3979 if (ctype != null) { 3980 owntype = cfolder.coerce(ctype, owntype); 3981 } 3982 } 3983 } 3984 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3985 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 3986 } 3987 3988 public void visitBinary(JCBinary tree) { 3989 // Attribute arguments. 3990 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 3991 // x && y 3992 // include x's bindings when true in y 3993 3994 // x || y 3995 // include x's bindings when false in y 3996 3997 MatchBindings lhsBindings = matchBindings; 3998 List<BindingSymbol> propagatedBindings; 3999 switch (tree.getTag()) { 4000 case AND: 4001 propagatedBindings = lhsBindings.bindingsWhenTrue; 4002 break; 4003 case OR: 4004 propagatedBindings = lhsBindings.bindingsWhenFalse; 4005 break; 4006 default: 4007 propagatedBindings = List.nil(); 4008 break; 4009 } 4010 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4011 Type right; 4012 try { 4013 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4014 } finally { 4015 rhsEnv.info.scope.leave(); 4016 } 4017 4018 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4019 4020 // Find operator. 4021 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4022 Type owntype = types.createErrorType(tree.type); 4023 if (operator != operators.noOpSymbol && 4024 !left.isErroneous() && 4025 !right.isErroneous()) { 4026 owntype = operator.type.getReturnType(); 4027 int opc = operator.opcode; 4028 // If both arguments are constants, fold them. 4029 if (left.constValue() != null && right.constValue() != null) { 4030 Type ctype = cfolder.fold2(opc, left, right); 4031 if (ctype != null) { 4032 owntype = cfolder.coerce(ctype, owntype); 4033 } 4034 } 4035 4036 // Check that argument types of a reference ==, != are 4037 // castable to each other, (JLS 15.21). Note: unboxing 4038 // comparisons will not have an acmp* opc at this point. 4039 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4040 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4041 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4042 } 4043 } 4044 4045 chk.checkDivZero(tree.rhs.pos(), operator, right); 4046 } 4047 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4048 } 4049 4050 public void visitTypeCast(final JCTypeCast tree) { 4051 Type clazztype = attribType(tree.clazz, env); 4052 chk.validate(tree.clazz, env, false); 4053 //a fresh environment is required for 292 inference to work properly --- 4054 //see Infer.instantiatePolymorphicSignatureInstance() 4055 Env<AttrContext> localEnv = env.dup(tree); 4056 //should we propagate the target type? 4057 final ResultInfo castInfo; 4058 JCExpression expr = TreeInfo.skipParens(tree.expr); 4059 boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4060 if (isPoly) { 4061 //expression is a poly - we need to propagate target type info 4062 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4063 new Check.NestedCheckContext(resultInfo.checkContext) { 4064 @Override 4065 public boolean compatible(Type found, Type req, Warner warn) { 4066 return types.isCastable(found, req, warn); 4067 } 4068 }); 4069 } else { 4070 //standalone cast - target-type info is not propagated 4071 castInfo = unknownExprInfo; 4072 } 4073 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4074 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4075 if (exprtype.constValue() != null) 4076 owntype = cfolder.coerce(exprtype, owntype); 4077 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4078 if (!isPoly) 4079 chk.checkRedundantCast(localEnv, tree); 4080 } 4081 4082 public void visitTypeTest(JCInstanceOf tree) { 4083 Type exprtype = chk.checkNullOrRefType( 4084 tree.expr.pos(), attribExpr(tree.expr, env)); 4085 Type clazztype; 4086 JCTree typeTree; 4087 if (tree.pattern.getTag() == BINDINGPATTERN || 4088 tree.pattern.getTag() == PARENTHESIZEDPATTERN) { 4089 attribTree(tree.pattern, env, unknownExprInfo); 4090 clazztype = tree.pattern.type; 4091 if (types.isSubtype(exprtype, clazztype) && 4092 !exprtype.isErroneous() && !clazztype.isErroneous()) { 4093 log.error(tree.pos(), Errors.InstanceofPatternNoSubtype(exprtype, clazztype)); 4094 } 4095 typeTree = TreeInfo.primaryPatternTree((JCPattern) tree.pattern).var.vartype; 4096 } else { 4097 clazztype = attribType(tree.pattern, env); 4098 typeTree = tree.pattern; 4099 chk.validate(typeTree, env, false); 4100 } 4101 if (!clazztype.hasTag(TYPEVAR)) { 4102 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4103 } 4104 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4105 boolean valid = false; 4106 if (allowReifiableTypesInInstanceof) { 4107 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4108 } else { 4109 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4110 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4111 allowReifiableTypesInInstanceof = true; 4112 } 4113 if (!valid) { 4114 clazztype = types.createErrorType(clazztype); 4115 } 4116 } 4117 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4118 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4119 } 4120 4121 private boolean checkCastablePattern(DiagnosticPosition pos, 4122 Type exprType, 4123 Type pattType) { 4124 Warner warner = new Warner(); 4125 if (!types.isCastable(exprType, pattType, warner)) { 4126 chk.basicHandler.report(pos, 4127 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4128 return false; 4129 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4130 log.error(pos, 4131 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4132 return false; 4133 } else { 4134 return true; 4135 } 4136 } 4137 4138 public void visitBindingPattern(JCBindingPattern tree) { 4139 ResultInfo varInfo = new ResultInfo(KindSelector.TYP, resultInfo.pt, resultInfo.checkContext); 4140 tree.type = tree.var.type = attribTree(tree.var.vartype, env, varInfo); 4141 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, tree.var.vartype.type, env.info.scope.owner); 4142 v.pos = tree.pos; 4143 tree.var.sym = v; 4144 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4145 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4146 } 4147 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos()); 4148 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos()); 4149 annotate.flush(); 4150 chk.validate(tree.var.vartype, env, true); 4151 result = tree.type; 4152 matchBindings = new MatchBindings(List.of(v), List.nil()); 4153 } 4154 4155 @Override 4156 public void visitParenthesizedPattern(JCParenthesizedPattern tree) { 4157 attribExpr(tree.pattern, env); 4158 result = tree.type = tree.pattern.type; 4159 } 4160 4161 @Override 4162 public void visitGuardPattern(JCGuardPattern tree) { 4163 attribExpr(tree.patt, env); 4164 MatchBindings afterPattern = matchBindings; 4165 Env<AttrContext> bodyEnv = bindingEnv(env, matchBindings.bindingsWhenTrue); 4166 try { 4167 attribExpr(tree.expr, bodyEnv, syms.booleanType); 4168 } finally { 4169 bodyEnv.info.scope.leave(); 4170 } 4171 result = tree.type = tree.patt.type; 4172 matchBindings = matchBindingsComputer.guardedPattern(tree, afterPattern, matchBindings); 4173 } 4174 4175 public void visitIndexed(JCArrayAccess tree) { 4176 Type owntype = types.createErrorType(tree.type); 4177 Type atype = attribExpr(tree.indexed, env); 4178 attribExpr(tree.index, env, syms.intType); 4179 if (types.isArray(atype)) 4180 owntype = types.elemtype(atype); 4181 else if (!atype.hasTag(ERROR)) 4182 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4183 if (!pkind().contains(KindSelector.VAL)) 4184 owntype = capture(owntype); 4185 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4186 } 4187 4188 public void visitIdent(JCIdent tree) { 4189 Symbol sym; 4190 4191 // Find symbol 4192 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4193 // If we are looking for a method, the prototype `pt' will be a 4194 // method type with the type of the call's arguments as parameters. 4195 env.info.pendingResolutionPhase = null; 4196 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4197 } else if (tree.sym != null && tree.sym.kind != VAR) { 4198 sym = tree.sym; 4199 } else { 4200 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4201 } 4202 tree.sym = sym; 4203 4204 // Also find the environment current for the class where 4205 // sym is defined (`symEnv'). 4206 Env<AttrContext> symEnv = env; 4207 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4208 sym.kind.matches(KindSelector.VAL_MTH) && 4209 sym.owner.kind == TYP && 4210 tree.name != names._this && tree.name != names._super) { 4211 4212 // Find environment in which identifier is defined. 4213 while (symEnv.outer != null && 4214 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4215 symEnv = symEnv.outer; 4216 } 4217 } 4218 4219 // If symbol is a variable, ... 4220 if (sym.kind == VAR) { 4221 VarSymbol v = (VarSymbol)sym; 4222 4223 // ..., evaluate its initializer, if it has one, and check for 4224 // illegal forward reference. 4225 checkInit(tree, env, v, false); 4226 4227 // If we are expecting a variable (as opposed to a value), check 4228 // that the variable is assignable in the current environment. 4229 if (KindSelector.ASG.subset(pkind())) 4230 checkAssignable(tree.pos(), v, null, env); 4231 } 4232 4233 // In a constructor body, 4234 // if symbol is a field or instance method, check that it is 4235 // not accessed before the supertype constructor is called. 4236 if (symEnv.info.isSelfCall && 4237 sym.kind.matches(KindSelector.VAL_MTH) && 4238 sym.owner.kind == TYP && 4239 (sym.flags() & STATIC) == 0) { 4240 chk.earlyRefError(tree.pos(), sym.kind == VAR ? 4241 sym : thisSym(tree.pos(), env)); 4242 } 4243 Env<AttrContext> env1 = env; 4244 if (sym.kind != ERR && sym.kind != TYP && 4245 sym.owner != null && sym.owner != env1.enclClass.sym) { 4246 // If the found symbol is inaccessible, then it is 4247 // accessed through an enclosing instance. Locate this 4248 // enclosing instance: 4249 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4250 env1 = env1.outer; 4251 } 4252 4253 if (env.info.isSerializable) { 4254 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4255 } 4256 4257 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4258 } 4259 4260 public void visitSelect(JCFieldAccess tree) { 4261 // Determine the expected kind of the qualifier expression. 4262 KindSelector skind = KindSelector.NIL; 4263 if (tree.name == names._this || tree.name == names._super || 4264 tree.name == names._class) 4265 { 4266 skind = KindSelector.TYP; 4267 } else { 4268 if (pkind().contains(KindSelector.PCK)) 4269 skind = KindSelector.of(skind, KindSelector.PCK); 4270 if (pkind().contains(KindSelector.TYP)) 4271 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4272 if (pkind().contains(KindSelector.VAL_MTH)) 4273 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4274 } 4275 4276 // Attribute the qualifier expression, and determine its symbol (if any). 4277 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4278 if (!pkind().contains(KindSelector.TYP_PCK)) 4279 site = capture(site); // Capture field access 4280 4281 // don't allow T.class T[].class, etc 4282 if (skind == KindSelector.TYP) { 4283 Type elt = site; 4284 while (elt.hasTag(ARRAY)) 4285 elt = ((ArrayType)elt).elemtype; 4286 if (elt.hasTag(TYPEVAR)) { 4287 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4288 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4289 tree.sym = tree.type.tsym; 4290 return ; 4291 } 4292 } 4293 4294 // If qualifier symbol is a type or `super', assert `selectSuper' 4295 // for the selection. This is relevant for determining whether 4296 // protected symbols are accessible. 4297 Symbol sitesym = TreeInfo.symbol(tree.selected); 4298 boolean selectSuperPrev = env.info.selectSuper; 4299 env.info.selectSuper = 4300 sitesym != null && 4301 sitesym.name == names._super; 4302 4303 // Determine the symbol represented by the selection. 4304 env.info.pendingResolutionPhase = null; 4305 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4306 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4307 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4308 sym = syms.errSymbol; 4309 } 4310 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4311 site = capture(site); 4312 sym = selectSym(tree, sitesym, site, env, resultInfo); 4313 } 4314 boolean varArgs = env.info.lastResolveVarargs(); 4315 tree.sym = sym; 4316 4317 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4318 site = types.skipTypeVars(site, true); 4319 } 4320 4321 // If that symbol is a variable, ... 4322 if (sym.kind == VAR) { 4323 VarSymbol v = (VarSymbol)sym; 4324 4325 // ..., evaluate its initializer, if it has one, and check for 4326 // illegal forward reference. 4327 checkInit(tree, env, v, true); 4328 4329 // If we are expecting a variable (as opposed to a value), check 4330 // that the variable is assignable in the current environment. 4331 if (KindSelector.ASG.subset(pkind())) 4332 checkAssignable(tree.pos(), v, tree.selected, env); 4333 } 4334 4335 if (sitesym != null && 4336 sitesym.kind == VAR && 4337 ((VarSymbol)sitesym).isResourceVariable() && 4338 sym.kind == MTH && 4339 sym.name.equals(names.close) && 4340 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) && 4341 env.info.lint.isEnabled(LintCategory.TRY)) { 4342 log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall); 4343 } 4344 4345 // Disallow selecting a type from an expression 4346 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4347 tree.type = check(tree.selected, pt(), 4348 sitesym == null ? 4349 KindSelector.VAL : sitesym.kind.toSelector(), 4350 new ResultInfo(KindSelector.TYP_PCK, pt())); 4351 } 4352 4353 if (isType(sitesym)) { 4354 if (sym.name == names._this || sym.name == names._super) { 4355 // If `C' is the currently compiled class, check that 4356 // `C.this' does not appear in an explicit call to a constructor 4357 // also make sure that `super` is not used in constructor invocations 4358 if (env.info.isSelfCall && 4359 ((sym.name == names._this && 4360 site.tsym == env.enclClass.sym) || 4361 sym.name == names._super && env.info.constructorArgs && 4362 (sitesym.isInterface() || site.tsym == env.enclClass.sym))) { 4363 chk.earlyRefError(tree.pos(), sym); 4364 } 4365 } else { 4366 // Check if type-qualified fields or methods are static (JLS) 4367 if ((sym.flags() & STATIC) == 0 && 4368 sym.name != names._super && 4369 (sym.kind == VAR || sym.kind == MTH)) { 4370 rs.accessBase(rs.new StaticError(sym), 4371 tree.pos(), site, sym.name, true); 4372 } 4373 } 4374 if (!allowStaticInterfaceMethods && sitesym.isInterface() && 4375 sym.isStatic() && sym.kind == MTH) { 4376 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName)); 4377 } 4378 } else if (sym.kind != ERR && 4379 (sym.flags() & STATIC) != 0 && 4380 sym.name != names._class) { 4381 // If the qualified item is not a type and the selected item is static, report 4382 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4383 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4384 } 4385 4386 // If we are selecting an instance member via a `super', ... 4387 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4388 4389 // Check that super-qualified symbols are not abstract (JLS) 4390 rs.checkNonAbstract(tree.pos(), sym); 4391 4392 if (site.isRaw()) { 4393 // Determine argument types for site. 4394 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4395 if (site1 != null) site = site1; 4396 } 4397 } 4398 4399 if (env.info.isSerializable) { 4400 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4401 } 4402 4403 env.info.selectSuper = selectSuperPrev; 4404 result = checkId(tree, site, sym, env, resultInfo); 4405 } 4406 //where 4407 /** Determine symbol referenced by a Select expression, 4408 * 4409 * @param tree The select tree. 4410 * @param site The type of the selected expression, 4411 * @param env The current environment. 4412 * @param resultInfo The current result. 4413 */ 4414 private Symbol selectSym(JCFieldAccess tree, 4415 Symbol location, 4416 Type site, 4417 Env<AttrContext> env, 4418 ResultInfo resultInfo) { 4419 DiagnosticPosition pos = tree.pos(); 4420 Name name = tree.name; 4421 switch (site.getTag()) { 4422 case PACKAGE: 4423 return rs.accessBase( 4424 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4425 pos, location, site, name, true); 4426 case ARRAY: 4427 case CLASS: 4428 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4429 return rs.resolveQualifiedMethod( 4430 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4431 } else if (name == names._this || name == names._super) { 4432 return rs.resolveSelf(pos, env, site.tsym, name); 4433 } else if (name == names._class) { 4434 // In this case, we have already made sure in 4435 // visitSelect that qualifier expression is a type. 4436 return syms.getClassField(site, types); 4437 } else { 4438 // We are seeing a plain identifier as selector. 4439 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4440 sym = rs.accessBase(sym, pos, location, site, name, true); 4441 return sym; 4442 } 4443 case WILDCARD: 4444 throw new AssertionError(tree); 4445 case TYPEVAR: 4446 // Normally, site.getUpperBound() shouldn't be null. 4447 // It should only happen during memberEnter/attribBase 4448 // when determining the super type which *must* be 4449 // done before attributing the type variables. In 4450 // other words, we are seeing this illegal program: 4451 // class B<T> extends A<T.foo> {} 4452 Symbol sym = (site.getUpperBound() != null) 4453 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4454 : null; 4455 if (sym == null) { 4456 log.error(pos, Errors.TypeVarCantBeDeref); 4457 return syms.errSymbol; 4458 } else { 4459 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4460 rs.new AccessError(env, site, sym) : 4461 sym; 4462 rs.accessBase(sym2, pos, location, site, name, true); 4463 return sym; 4464 } 4465 case ERROR: 4466 // preserve identifier names through errors 4467 return types.createErrorType(name, site.tsym, site).tsym; 4468 default: 4469 // The qualifier expression is of a primitive type -- only 4470 // .class is allowed for these. 4471 if (name == names._class) { 4472 // In this case, we have already made sure in Select that 4473 // qualifier expression is a type. 4474 return syms.getClassField(site, types); 4475 } else { 4476 log.error(pos, Errors.CantDeref(site)); 4477 return syms.errSymbol; 4478 } 4479 } 4480 } 4481 4482 /** Determine type of identifier or select expression and check that 4483 * (1) the referenced symbol is not deprecated 4484 * (2) the symbol's type is safe (@see checkSafe) 4485 * (3) if symbol is a variable, check that its type and kind are 4486 * compatible with the prototype and protokind. 4487 * (4) if symbol is an instance field of a raw type, 4488 * which is being assigned to, issue an unchecked warning if its 4489 * type changes under erasure. 4490 * (5) if symbol is an instance method of a raw type, issue an 4491 * unchecked warning if its argument types change under erasure. 4492 * If checks succeed: 4493 * If symbol is a constant, return its constant type 4494 * else if symbol is a method, return its result type 4495 * otherwise return its type. 4496 * Otherwise return errType. 4497 * 4498 * @param tree The syntax tree representing the identifier 4499 * @param site If this is a select, the type of the selected 4500 * expression, otherwise the type of the current class. 4501 * @param sym The symbol representing the identifier. 4502 * @param env The current environment. 4503 * @param resultInfo The expected result 4504 */ 4505 Type checkId(JCTree tree, 4506 Type site, 4507 Symbol sym, 4508 Env<AttrContext> env, 4509 ResultInfo resultInfo) { 4510 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4511 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4512 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4513 } 4514 4515 Type checkMethodIdInternal(JCTree tree, 4516 Type site, 4517 Symbol sym, 4518 Env<AttrContext> env, 4519 ResultInfo resultInfo) { 4520 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4521 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4522 } else { 4523 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4524 } 4525 } 4526 4527 Type checkIdInternal(JCTree tree, 4528 Type site, 4529 Symbol sym, 4530 Type pt, 4531 Env<AttrContext> env, 4532 ResultInfo resultInfo) { 4533 if (pt.isErroneous()) { 4534 return types.createErrorType(site); 4535 } 4536 Type owntype; // The computed type of this identifier occurrence. 4537 switch (sym.kind) { 4538 case TYP: 4539 // For types, the computed type equals the symbol's type, 4540 // except for two situations: 4541 owntype = sym.type; 4542 if (owntype.hasTag(CLASS)) { 4543 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4544 Type ownOuter = owntype.getEnclosingType(); 4545 4546 // (a) If the symbol's type is parameterized, erase it 4547 // because no type parameters were given. 4548 // We recover generic outer type later in visitTypeApply. 4549 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4550 owntype = types.erasure(owntype); 4551 } 4552 4553 // (b) If the symbol's type is an inner class, then 4554 // we have to interpret its outer type as a superclass 4555 // of the site type. Example: 4556 // 4557 // class Tree<A> { class Visitor { ... } } 4558 // class PointTree extends Tree<Point> { ... } 4559 // ...PointTree.Visitor... 4560 // 4561 // Then the type of the last expression above is 4562 // Tree<Point>.Visitor. 4563 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4564 Type normOuter = site; 4565 if (normOuter.hasTag(CLASS)) { 4566 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4567 } 4568 if (normOuter == null) // perhaps from an import 4569 normOuter = types.erasure(ownOuter); 4570 if (normOuter != ownOuter) 4571 owntype = new ClassType( 4572 normOuter, List.nil(), owntype.tsym, 4573 owntype.getMetadata()); 4574 } 4575 } 4576 break; 4577 case VAR: 4578 VarSymbol v = (VarSymbol)sym; 4579 4580 if (env.info.enclVar != null 4581 && v.type.hasTag(NONE)) { 4582 //self reference to implicitly typed variable declaration 4583 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4584 return v.type = types.createErrorType(v.type); 4585 } 4586 4587 // Test (4): if symbol is an instance field of a raw type, 4588 // which is being assigned to, issue an unchecked warning if 4589 // its type changes under erasure. 4590 if (KindSelector.ASG.subset(pkind()) && 4591 v.owner.kind == TYP && 4592 (v.flags() & STATIC) == 0 && 4593 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4594 Type s = types.asOuterSuper(site, v.owner); 4595 if (s != null && 4596 s.isRaw() && 4597 !types.isSameType(v.type, v.erasure(types))) { 4598 chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s)); 4599 } 4600 } 4601 // The computed type of a variable is the type of the 4602 // variable symbol, taken as a member of the site type. 4603 owntype = (sym.owner.kind == TYP && 4604 sym.name != names._this && sym.name != names._super) 4605 ? types.memberType(site, sym) 4606 : sym.type; 4607 4608 // If the variable is a constant, record constant value in 4609 // computed type. 4610 if (v.getConstValue() != null && isStaticReference(tree)) 4611 owntype = owntype.constType(v.getConstValue()); 4612 4613 if (resultInfo.pkind == KindSelector.VAL) { 4614 owntype = capture(owntype); // capture "names as expressions" 4615 } 4616 break; 4617 case MTH: { 4618 owntype = checkMethod(site, sym, 4619 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4620 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4621 resultInfo.pt.getTypeArguments()); 4622 break; 4623 } 4624 case PCK: case ERR: 4625 owntype = sym.type; 4626 break; 4627 default: 4628 throw new AssertionError("unexpected kind: " + sym.kind + 4629 " in tree " + tree); 4630 } 4631 4632 // Emit a `deprecation' warning if symbol is deprecated. 4633 // (for constructors (but not for constructor references), the error 4634 // was given when the constructor was resolved) 4635 4636 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4637 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4638 chk.checkSunAPI(tree.pos(), sym); 4639 chk.checkProfile(tree.pos(), sym); 4640 chk.checkPreview(tree.pos(), env.info.scope.owner, sym); 4641 } 4642 4643 // If symbol is a variable, check that its type and 4644 // kind are compatible with the prototype and protokind. 4645 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4646 } 4647 4648 /** Check that variable is initialized and evaluate the variable's 4649 * initializer, if not yet done. Also check that variable is not 4650 * referenced before it is defined. 4651 * @param tree The tree making up the variable reference. 4652 * @param env The current environment. 4653 * @param v The variable's symbol. 4654 */ 4655 private void checkInit(JCTree tree, 4656 Env<AttrContext> env, 4657 VarSymbol v, 4658 boolean onlyWarning) { 4659 // A forward reference is diagnosed if the declaration position 4660 // of the variable is greater than the current tree position 4661 // and the tree and variable definition occur in the same class 4662 // definition. Note that writes don't count as references. 4663 // This check applies only to class and instance 4664 // variables. Local variables follow different scope rules, 4665 // and are subject to definite assignment checking. 4666 Env<AttrContext> initEnv = enclosingInitEnv(env); 4667 if (initEnv != null && 4668 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4669 v.owner.kind == TYP && 4670 v.owner == env.info.scope.owner.enclClass() && 4671 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4672 (!env.tree.hasTag(ASSIGN) || 4673 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4674 if (!onlyWarning || isStaticEnumField(v)) { 4675 Error errkey = (initEnv.info.enclVar == v) ? 4676 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4677 log.error(tree.pos(), errkey); 4678 } else if (useBeforeDeclarationWarning) { 4679 Warning warnkey = (initEnv.info.enclVar == v) ? 4680 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4681 log.warning(tree.pos(), warnkey); 4682 } 4683 } 4684 4685 v.getConstValue(); // ensure initializer is evaluated 4686 4687 checkEnumInitializer(tree, env, v); 4688 } 4689 4690 /** 4691 * Returns the enclosing init environment associated with this env (if any). An init env 4692 * can be either a field declaration env or a static/instance initializer env. 4693 */ 4694 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4695 while (true) { 4696 switch (env.tree.getTag()) { 4697 case VARDEF: 4698 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4699 if (vdecl.sym.owner.kind == TYP) { 4700 //field 4701 return env; 4702 } 4703 break; 4704 case BLOCK: 4705 if (env.next.tree.hasTag(CLASSDEF)) { 4706 //instance/static initializer 4707 return env; 4708 } 4709 break; 4710 case METHODDEF: 4711 case CLASSDEF: 4712 case TOPLEVEL: 4713 return null; 4714 } 4715 Assert.checkNonNull(env.next); 4716 env = env.next; 4717 } 4718 } 4719 4720 /** 4721 * Check for illegal references to static members of enum. In 4722 * an enum type, constructors and initializers may not 4723 * reference its static members unless they are constant. 4724 * 4725 * @param tree The tree making up the variable reference. 4726 * @param env The current environment. 4727 * @param v The variable's symbol. 4728 * @jls 8.9 Enum Types 4729 */ 4730 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4731 // JLS: 4732 // 4733 // "It is a compile-time error to reference a static field 4734 // of an enum type that is not a compile-time constant 4735 // (15.28) from constructors, instance initializer blocks, 4736 // or instance variable initializer expressions of that 4737 // type. It is a compile-time error for the constructors, 4738 // instance initializer blocks, or instance variable 4739 // initializer expressions of an enum constant e to refer 4740 // to itself or to an enum constant of the same type that 4741 // is declared to the right of e." 4742 if (isStaticEnumField(v)) { 4743 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4744 4745 if (enclClass == null || enclClass.owner == null) 4746 return; 4747 4748 // See if the enclosing class is the enum (or a 4749 // subclass thereof) declaring v. If not, this 4750 // reference is OK. 4751 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4752 return; 4753 4754 // If the reference isn't from an initializer, then 4755 // the reference is OK. 4756 if (!Resolve.isInitializer(env)) 4757 return; 4758 4759 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4760 } 4761 } 4762 4763 /** Is the given symbol a static, non-constant field of an Enum? 4764 * Note: enum literals should not be regarded as such 4765 */ 4766 private boolean isStaticEnumField(VarSymbol v) { 4767 return Flags.isEnum(v.owner) && 4768 Flags.isStatic(v) && 4769 !Flags.isConstant(v) && 4770 v.name != names._class; 4771 } 4772 4773 /** 4774 * Check that method arguments conform to its instantiation. 4775 **/ 4776 public Type checkMethod(Type site, 4777 final Symbol sym, 4778 ResultInfo resultInfo, 4779 Env<AttrContext> env, 4780 final List<JCExpression> argtrees, 4781 List<Type> argtypes, 4782 List<Type> typeargtypes) { 4783 // Test (5): if symbol is an instance method of a raw type, issue 4784 // an unchecked warning if its argument types change under erasure. 4785 if ((sym.flags() & STATIC) == 0 && 4786 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4787 Type s = types.asOuterSuper(site, sym.owner); 4788 if (s != null && s.isRaw() && 4789 !types.isSameTypes(sym.type.getParameterTypes(), 4790 sym.erasure(types).getParameterTypes())) { 4791 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s)); 4792 } 4793 } 4794 4795 if (env.info.defaultSuperCallSite != null) { 4796 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4797 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4798 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4799 List<MethodSymbol> icand_sup = 4800 types.interfaceCandidates(sup, (MethodSymbol)sym); 4801 if (icand_sup.nonEmpty() && 4802 icand_sup.head != sym && 4803 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4804 log.error(env.tree.pos(), 4805 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4806 break; 4807 } 4808 } 4809 env.info.defaultSuperCallSite = null; 4810 } 4811 4812 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 4813 JCMethodInvocation app = (JCMethodInvocation)env.tree; 4814 if (app.meth.hasTag(SELECT) && 4815 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 4816 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 4817 } 4818 } 4819 4820 // Compute the identifier's instantiated type. 4821 // For methods, we need to compute the instance type by 4822 // Resolve.instantiate from the symbol's type as well as 4823 // any type arguments and value arguments. 4824 Warner noteWarner = new Warner(); 4825 try { 4826 Type owntype = rs.checkMethod( 4827 env, 4828 site, 4829 sym, 4830 resultInfo, 4831 argtypes, 4832 typeargtypes, 4833 noteWarner); 4834 4835 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 4836 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 4837 4838 argtypes = argtypes.map(checkDeferredMap); 4839 4840 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 4841 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym), 4842 sym.name, 4843 rs.methodArguments(sym.type.getParameterTypes()), 4844 rs.methodArguments(argtypes.map(checkDeferredMap)), 4845 kindName(sym.location()), 4846 sym.location())); 4847 if (resultInfo.pt != Infer.anyPoly || 4848 !owntype.hasTag(METHOD) || 4849 !owntype.isPartial()) { 4850 //if this is not a partially inferred method type, erase return type. Otherwise, 4851 //erasure is carried out in PartiallyInferredMethodType.check(). 4852 owntype = new MethodType(owntype.getParameterTypes(), 4853 types.erasure(owntype.getReturnType()), 4854 types.erasure(owntype.getThrownTypes()), 4855 syms.methodClass); 4856 } 4857 } 4858 4859 PolyKind pkind = (sym.type.hasTag(FORALL) && 4860 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 4861 PolyKind.POLY : PolyKind.STANDALONE; 4862 TreeInfo.setPolyKind(env.tree, pkind); 4863 4864 return (resultInfo.pt == Infer.anyPoly) ? 4865 owntype : 4866 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 4867 resultInfo.checkContext.inferenceContext()); 4868 } catch (Infer.InferenceException ex) { 4869 //invalid target type - propagate exception outwards or report error 4870 //depending on the current check context 4871 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 4872 return types.createErrorType(site); 4873 } catch (Resolve.InapplicableMethodException ex) { 4874 final JCDiagnostic diag = ex.getDiagnostic(); 4875 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 4876 @Override 4877 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4878 return new Pair<>(sym, diag); 4879 } 4880 }; 4881 List<Type> argtypes2 = argtypes.map( 4882 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 4883 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 4884 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 4885 log.report(errDiag); 4886 return types.createErrorType(site); 4887 } 4888 } 4889 4890 public void visitLiteral(JCLiteral tree) { 4891 result = check(tree, litType(tree.typetag).constType(tree.value), 4892 KindSelector.VAL, resultInfo); 4893 } 4894 //where 4895 /** Return the type of a literal with given type tag. 4896 */ 4897 Type litType(TypeTag tag) { 4898 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 4899 } 4900 4901 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 4902 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 4903 } 4904 4905 public void visitTypeArray(JCArrayTypeTree tree) { 4906 Type etype = attribType(tree.elemtype, env); 4907 Type type = new ArrayType(etype, syms.arrayClass); 4908 result = check(tree, type, KindSelector.TYP, resultInfo); 4909 } 4910 4911 /** Visitor method for parameterized types. 4912 * Bound checking is left until later, since types are attributed 4913 * before supertype structure is completely known 4914 */ 4915 public void visitTypeApply(JCTypeApply tree) { 4916 Type owntype = types.createErrorType(tree.type); 4917 4918 // Attribute functor part of application and make sure it's a class. 4919 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 4920 4921 // Attribute type parameters 4922 List<Type> actuals = attribTypes(tree.arguments, env); 4923 4924 if (clazztype.hasTag(CLASS)) { 4925 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 4926 if (actuals.isEmpty()) //diamond 4927 actuals = formals; 4928 4929 if (actuals.length() == formals.length()) { 4930 List<Type> a = actuals; 4931 List<Type> f = formals; 4932 while (a.nonEmpty()) { 4933 a.head = a.head.withTypeVar(f.head); 4934 a = a.tail; 4935 f = f.tail; 4936 } 4937 // Compute the proper generic outer 4938 Type clazzOuter = clazztype.getEnclosingType(); 4939 if (clazzOuter.hasTag(CLASS)) { 4940 Type site; 4941 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 4942 if (clazz.hasTag(IDENT)) { 4943 site = env.enclClass.sym.type; 4944 } else if (clazz.hasTag(SELECT)) { 4945 site = ((JCFieldAccess) clazz).selected.type; 4946 } else throw new AssertionError(""+tree); 4947 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 4948 if (site.hasTag(CLASS)) 4949 site = types.asOuterSuper(site, clazzOuter.tsym); 4950 if (site == null) 4951 site = types.erasure(clazzOuter); 4952 clazzOuter = site; 4953 } 4954 } 4955 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 4956 clazztype.getMetadata()); 4957 } else { 4958 if (formals.length() != 0) { 4959 log.error(tree.pos(), 4960 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 4961 } else { 4962 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 4963 } 4964 owntype = types.createErrorType(tree.type); 4965 } 4966 } 4967 result = check(tree, owntype, KindSelector.TYP, resultInfo); 4968 } 4969 4970 public void visitTypeUnion(JCTypeUnion tree) { 4971 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 4972 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 4973 for (JCExpression typeTree : tree.alternatives) { 4974 Type ctype = attribType(typeTree, env); 4975 ctype = chk.checkType(typeTree.pos(), 4976 chk.checkClassType(typeTree.pos(), ctype), 4977 syms.throwableType); 4978 if (!ctype.isErroneous()) { 4979 //check that alternatives of a union type are pairwise 4980 //unrelated w.r.t. subtyping 4981 if (chk.intersects(ctype, multicatchTypes.toList())) { 4982 for (Type t : multicatchTypes) { 4983 boolean sub = types.isSubtype(ctype, t); 4984 boolean sup = types.isSubtype(t, ctype); 4985 if (sub || sup) { 4986 //assume 'a' <: 'b' 4987 Type a = sub ? ctype : t; 4988 Type b = sub ? t : ctype; 4989 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 4990 } 4991 } 4992 } 4993 multicatchTypes.append(ctype); 4994 if (all_multicatchTypes != null) 4995 all_multicatchTypes.append(ctype); 4996 } else { 4997 if (all_multicatchTypes == null) { 4998 all_multicatchTypes = new ListBuffer<>(); 4999 all_multicatchTypes.appendList(multicatchTypes); 5000 } 5001 all_multicatchTypes.append(ctype); 5002 } 5003 } 5004 Type t = check(tree, types.lub(multicatchTypes.toList()), 5005 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5006 if (t.hasTag(CLASS)) { 5007 List<Type> alternatives = 5008 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5009 t = new UnionClassType((ClassType) t, alternatives); 5010 } 5011 tree.type = result = t; 5012 } 5013 5014 public void visitTypeIntersection(JCTypeIntersection tree) { 5015 attribTypes(tree.bounds, env); 5016 tree.type = result = checkIntersection(tree, tree.bounds); 5017 } 5018 5019 public void visitTypeParameter(JCTypeParameter tree) { 5020 TypeVar typeVar = (TypeVar) tree.type; 5021 5022 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5023 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5024 } 5025 5026 if (!typeVar.getUpperBound().isErroneous()) { 5027 //fixup type-parameter bound computed in 'attribTypeVariables' 5028 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5029 } 5030 } 5031 5032 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5033 Set<Type> boundSet = new HashSet<>(); 5034 if (bounds.nonEmpty()) { 5035 // accept class or interface or typevar as first bound. 5036 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5037 boundSet.add(types.erasure(bounds.head.type)); 5038 if (bounds.head.type.isErroneous()) { 5039 return bounds.head.type; 5040 } 5041 else if (bounds.head.type.hasTag(TYPEVAR)) { 5042 // if first bound was a typevar, do not accept further bounds. 5043 if (bounds.tail.nonEmpty()) { 5044 log.error(bounds.tail.head.pos(), 5045 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5046 return bounds.head.type; 5047 } 5048 } else { 5049 // if first bound was a class or interface, accept only interfaces 5050 // as further bounds. 5051 for (JCExpression bound : bounds.tail) { 5052 bound.type = checkBase(bound.type, bound, env, false, true, false); 5053 if (bound.type.isErroneous()) { 5054 bounds = List.of(bound); 5055 } 5056 else if (bound.type.hasTag(CLASS)) { 5057 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5058 } 5059 } 5060 } 5061 } 5062 5063 if (bounds.length() == 0) { 5064 return syms.objectType; 5065 } else if (bounds.length() == 1) { 5066 return bounds.head.type; 5067 } else { 5068 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5069 // ... the variable's bound is a class type flagged COMPOUND 5070 // (see comment for TypeVar.bound). 5071 // In this case, generate a class tree that represents the 5072 // bound class, ... 5073 JCExpression extending; 5074 List<JCExpression> implementing; 5075 if (!bounds.head.type.isInterface()) { 5076 extending = bounds.head; 5077 implementing = bounds.tail; 5078 } else { 5079 extending = null; 5080 implementing = bounds; 5081 } 5082 JCClassDecl cd = make.at(tree).ClassDef( 5083 make.Modifiers(PUBLIC | ABSTRACT), 5084 names.empty, List.nil(), 5085 extending, implementing, List.nil()); 5086 5087 ClassSymbol c = (ClassSymbol)owntype.tsym; 5088 Assert.check((c.flags() & COMPOUND) != 0); 5089 cd.sym = c; 5090 c.sourcefile = env.toplevel.sourcefile; 5091 5092 // ... and attribute the bound class 5093 c.flags_field |= UNATTRIBUTED; 5094 Env<AttrContext> cenv = enter.classEnv(cd, env); 5095 typeEnvs.put(c, cenv); 5096 attribClass(c); 5097 return owntype; 5098 } 5099 } 5100 5101 public void visitWildcard(JCWildcard tree) { 5102 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5103 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5104 ? syms.objectType 5105 : attribType(tree.inner, env); 5106 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5107 tree.kind.kind, 5108 syms.boundClass), 5109 KindSelector.TYP, resultInfo); 5110 } 5111 5112 public void visitAnnotation(JCAnnotation tree) { 5113 Assert.error("should be handled in annotate"); 5114 } 5115 5116 @Override 5117 public void visitModifiers(JCModifiers tree) { 5118 //error recovery only: 5119 Assert.check(resultInfo.pkind == KindSelector.ERR); 5120 5121 attribAnnotationTypes(tree.annotations, env); 5122 } 5123 5124 public void visitAnnotatedType(JCAnnotatedType tree) { 5125 attribAnnotationTypes(tree.annotations, env); 5126 Type underlyingType = attribType(tree.underlyingType, env); 5127 Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET); 5128 5129 if (!env.info.isNewClass) 5130 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5131 result = tree.type = annotatedType; 5132 } 5133 5134 public void visitErroneous(JCErroneous tree) { 5135 if (tree.errs != null) { 5136 Env<AttrContext> errEnv = env.dup(env.tree); 5137 errEnv.info.returnResult = unknownExprInfo; 5138 for (JCTree err : tree.errs) 5139 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5140 } 5141 result = tree.type = syms.errType; 5142 } 5143 5144 /** Default visitor method for all other trees. 5145 */ 5146 public void visitTree(JCTree tree) { 5147 throw new AssertionError(); 5148 } 5149 5150 /** 5151 * Attribute an env for either a top level tree or class or module declaration. 5152 */ 5153 public void attrib(Env<AttrContext> env) { 5154 switch (env.tree.getTag()) { 5155 case MODULEDEF: 5156 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5157 break; 5158 case TOPLEVEL: 5159 attribTopLevel(env); 5160 break; 5161 case PACKAGEDEF: 5162 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5163 break; 5164 default: 5165 attribClass(env.tree.pos(), env.enclClass.sym); 5166 } 5167 } 5168 5169 /** 5170 * Attribute a top level tree. These trees are encountered when the 5171 * package declaration has annotations. 5172 */ 5173 public void attribTopLevel(Env<AttrContext> env) { 5174 JCCompilationUnit toplevel = env.toplevel; 5175 try { 5176 annotate.flush(); 5177 } catch (CompletionFailure ex) { 5178 chk.completionError(toplevel.pos(), ex); 5179 } 5180 } 5181 5182 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5183 try { 5184 annotate.flush(); 5185 attribPackage(p); 5186 } catch (CompletionFailure ex) { 5187 chk.completionError(pos, ex); 5188 } 5189 } 5190 5191 void attribPackage(PackageSymbol p) { 5192 attribWithLint(p, 5193 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5194 } 5195 5196 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5197 try { 5198 annotate.flush(); 5199 attribModule(m); 5200 } catch (CompletionFailure ex) { 5201 chk.completionError(pos, ex); 5202 } 5203 } 5204 5205 void attribModule(ModuleSymbol m) { 5206 attribWithLint(m, env -> attribStat(env.tree, env)); 5207 } 5208 5209 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5210 Env<AttrContext> env = typeEnvs.get(sym); 5211 5212 Env<AttrContext> lintEnv = env; 5213 while (lintEnv.info.lint == null) 5214 lintEnv = lintEnv.next; 5215 5216 Lint lint = lintEnv.info.lint.augment(sym); 5217 5218 Lint prevLint = chk.setLint(lint); 5219 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5220 5221 try { 5222 deferredLintHandler.flush(env.tree.pos()); 5223 attrib.accept(env); 5224 } finally { 5225 log.useSource(prev); 5226 chk.setLint(prevLint); 5227 } 5228 } 5229 5230 /** Main method: attribute class definition associated with given class symbol. 5231 * reporting completion failures at the given position. 5232 * @param pos The source position at which completion errors are to be 5233 * reported. 5234 * @param c The class symbol whose definition will be attributed. 5235 */ 5236 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5237 try { 5238 annotate.flush(); 5239 attribClass(c); 5240 } catch (CompletionFailure ex) { 5241 chk.completionError(pos, ex); 5242 } 5243 } 5244 5245 /** Attribute class definition associated with given class symbol. 5246 * @param c The class symbol whose definition will be attributed. 5247 */ 5248 void attribClass(ClassSymbol c) throws CompletionFailure { 5249 if (c.type.hasTag(ERROR)) return; 5250 5251 // Check for cycles in the inheritance graph, which can arise from 5252 // ill-formed class files. 5253 chk.checkNonCyclic(null, c.type); 5254 5255 Type st = types.supertype(c.type); 5256 if ((c.flags_field & Flags.COMPOUND) == 0 && 5257 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5258 // First, attribute superclass. 5259 if (st.hasTag(CLASS)) 5260 attribClass((ClassSymbol)st.tsym); 5261 5262 // Next attribute owner, if it is a class. 5263 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5264 attribClass((ClassSymbol)c.owner); 5265 5266 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5267 } 5268 5269 // The previous operations might have attributed the current class 5270 // if there was a cycle. So we test first whether the class is still 5271 // UNATTRIBUTED. 5272 if ((c.flags_field & UNATTRIBUTED) != 0) { 5273 c.flags_field &= ~UNATTRIBUTED; 5274 5275 // Get environment current at the point of class definition. 5276 Env<AttrContext> env = typeEnvs.get(c); 5277 5278 if (c.isSealed() && 5279 !c.isEnum() && 5280 !c.isPermittedExplicit && 5281 c.permitted.isEmpty()) { 5282 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5283 } 5284 5285 if (c.isSealed()) { 5286 Set<Symbol> permittedTypes = new HashSet<>(); 5287 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5288 for (Symbol subTypeSym : c.permitted) { 5289 boolean isTypeVar = false; 5290 if (subTypeSym.type.getTag() == TYPEVAR) { 5291 isTypeVar = true; //error recovery 5292 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5293 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subTypeSym.type))); 5294 } 5295 if (subTypeSym.isAnonymous() && !c.isEnum()) { 5296 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5297 } 5298 if (permittedTypes.contains(subTypeSym)) { 5299 DiagnosticPosition pos = 5300 env.enclClass.permitting.stream() 5301 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subTypeSym, permittedExpr, true) != null) 5302 .limit(2).collect(List.collector()).get(1); 5303 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subTypeSym.type))); 5304 } else { 5305 permittedTypes.add(subTypeSym); 5306 } 5307 if (sealedInUnnamed) { 5308 if (subTypeSym.packge() != c.packge()) { 5309 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5310 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5311 ); 5312 } 5313 } else if (subTypeSym.packge().modle != c.packge().modle) { 5314 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5315 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5316 ); 5317 } 5318 if (subTypeSym == c.type.tsym || types.isSuperType(subTypeSym.type, c.type)) { 5319 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, ((JCClassDecl)env.tree).permitting), 5320 Errors.InvalidPermitsClause( 5321 subTypeSym == c.type.tsym ? 5322 Fragments.MustNotBeSameClass : 5323 Fragments.MustNotBeSupertype(subTypeSym.type) 5324 ) 5325 ); 5326 } else if (!isTypeVar) { 5327 boolean thisIsASuper = types.directSupertypes(subTypeSym.type) 5328 .stream() 5329 .anyMatch(d -> d.tsym == c); 5330 if (!thisIsASuper) { 5331 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5332 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subTypeSym.type))); 5333 } 5334 } 5335 } 5336 } 5337 5338 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5339 .stream() 5340 .filter(s -> s.tsym.isSealed()) 5341 .map(s -> (ClassSymbol) s.tsym) 5342 .collect(List.collector()); 5343 5344 if (sealedSupers.isEmpty()) { 5345 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5346 boolean hasErrorSuper = false; 5347 5348 hasErrorSuper |= types.directSupertypes(c.type) 5349 .stream() 5350 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5351 5352 ClassType ct = (ClassType) c.type; 5353 5354 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5355 5356 if (!hasErrorSuper) { 5357 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5358 } 5359 } 5360 } else { 5361 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5362 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5363 } 5364 5365 if (!c.type.isCompound()) { 5366 for (ClassSymbol supertypeSym : sealedSupers) { 5367 if (!supertypeSym.permitted.contains(c.type.tsym)) { 5368 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5369 } 5370 } 5371 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5372 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5373 c.isInterface() ? 5374 Errors.NonSealedOrSealedExpected : 5375 Errors.NonSealedSealedOrFinalExpected); 5376 } 5377 } 5378 } 5379 5380 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5381 // because the annotations were not available at the time the env was created. Therefore, 5382 // we look up the environment chain for the first enclosing environment for which the 5383 // lint value is set. Typically, this is the parent env, but might be further if there 5384 // are any envs created as a result of TypeParameter nodes. 5385 Env<AttrContext> lintEnv = env; 5386 while (lintEnv.info.lint == null) 5387 lintEnv = lintEnv.next; 5388 5389 // Having found the enclosing lint value, we can initialize the lint value for this class 5390 env.info.lint = lintEnv.info.lint.augment(c); 5391 5392 Lint prevLint = chk.setLint(env.info.lint); 5393 JavaFileObject prev = log.useSource(c.sourcefile); 5394 ResultInfo prevReturnRes = env.info.returnResult; 5395 5396 try { 5397 deferredLintHandler.flush(env.tree); 5398 env.info.returnResult = null; 5399 // java.lang.Enum may not be subclassed by a non-enum 5400 if (st.tsym == syms.enumSym && 5401 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5402 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5403 5404 // Enums may not be extended by source-level classes 5405 if (st.tsym != null && 5406 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5407 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5408 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5409 } 5410 5411 if (rs.isSerializable(c.type)) { 5412 env.info.isSerializable = true; 5413 } 5414 5415 attribClassBody(env, c); 5416 5417 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5418 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5419 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5420 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5421 } finally { 5422 env.info.returnResult = prevReturnRes; 5423 log.useSource(prev); 5424 chk.setLint(prevLint); 5425 } 5426 5427 } 5428 } 5429 5430 public void visitImport(JCImport tree) { 5431 // nothing to do 5432 } 5433 5434 public void visitModuleDef(JCModuleDecl tree) { 5435 tree.sym.completeUsesProvides(); 5436 ModuleSymbol msym = tree.sym; 5437 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5438 Lint prevLint = chk.setLint(lint); 5439 chk.checkModuleName(tree); 5440 chk.checkDeprecatedAnnotation(tree, msym); 5441 5442 try { 5443 deferredLintHandler.flush(tree.pos()); 5444 } finally { 5445 chk.setLint(prevLint); 5446 } 5447 } 5448 5449 /** Finish the attribution of a class. */ 5450 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5451 JCClassDecl tree = (JCClassDecl)env.tree; 5452 Assert.check(c == tree.sym); 5453 5454 // Validate type parameters, supertype and interfaces. 5455 attribStats(tree.typarams, env); 5456 if (!c.isAnonymous()) { 5457 //already checked if anonymous 5458 chk.validate(tree.typarams, env); 5459 chk.validate(tree.extending, env); 5460 chk.validate(tree.implementing, env); 5461 } 5462 5463 c.markAbstractIfNeeded(types); 5464 5465 // If this is a non-abstract class, check that it has no abstract 5466 // methods or unimplemented methods of an implemented interface. 5467 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5468 chk.checkAllDefined(tree.pos(), c); 5469 } 5470 5471 if ((c.flags() & ANNOTATION) != 0) { 5472 if (tree.implementing.nonEmpty()) 5473 log.error(tree.implementing.head.pos(), 5474 Errors.CantExtendIntfAnnotation); 5475 if (tree.typarams.nonEmpty()) { 5476 log.error(tree.typarams.head.pos(), 5477 Errors.IntfAnnotationCantHaveTypeParams(c)); 5478 } 5479 5480 // If this annotation type has a @Repeatable, validate 5481 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5482 // If this annotation type has a @Repeatable, validate 5483 if (repeatable != null) { 5484 // get diagnostic position for error reporting 5485 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5486 Assert.checkNonNull(cbPos); 5487 5488 chk.validateRepeatable(c, repeatable, cbPos); 5489 } 5490 } else { 5491 // Check that all extended classes and interfaces 5492 // are compatible (i.e. no two define methods with same arguments 5493 // yet different return types). (JLS 8.4.8.3) 5494 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5495 if (allowDefaultMethods) { 5496 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5497 } 5498 } 5499 5500 // Check that class does not import the same parameterized interface 5501 // with two different argument lists. 5502 chk.checkClassBounds(tree.pos(), c.type); 5503 5504 tree.type = c.type; 5505 5506 for (List<JCTypeParameter> l = tree.typarams; 5507 l.nonEmpty(); l = l.tail) { 5508 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5509 } 5510 5511 // Check that a generic class doesn't extend Throwable 5512 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5513 log.error(tree.extending.pos(), Errors.GenericThrowable); 5514 5515 // Check that all methods which implement some 5516 // method conform to the method they implement. 5517 chk.checkImplementations(tree); 5518 5519 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5520 checkAutoCloseable(tree.pos(), env, c.type); 5521 5522 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5523 // Attribute declaration 5524 attribStat(l.head, env); 5525 // Check that declarations in inner classes are not static (JLS 8.1.2) 5526 // Make an exception for static constants. 5527 if (!allowRecords && 5528 c.owner.kind != PCK && 5529 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5530 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5531 VarSymbol sym = null; 5532 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5533 if (sym == null || 5534 sym.kind != VAR || 5535 sym.getConstValue() == null) 5536 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5537 } 5538 } 5539 5540 // Check for cycles among non-initial constructors. 5541 chk.checkCyclicConstructors(tree); 5542 5543 // Check for cycles among annotation elements. 5544 chk.checkNonCyclicElements(tree); 5545 5546 // Check for proper use of serialVersionUID and other 5547 // serialization-related fields and methods 5548 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5549 && rs.isSerializable(c.type) 5550 && !c.isAnonymous()) { 5551 chk.checkSerialStructure(tree, c); 5552 } 5553 if (allowTypeAnnos) { 5554 // Correctly organize the positions of the type annotations 5555 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5556 5557 // Check type annotations applicability rules 5558 validateTypeAnnotations(tree, false); 5559 } 5560 } 5561 // where 5562 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5563 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5564 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5565 if (types.isSameType(al.head.annotationType.type, t)) 5566 return al.head.pos(); 5567 } 5568 5569 return null; 5570 } 5571 5572 private Type capture(Type type) { 5573 return types.capture(type); 5574 } 5575 5576 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5577 if (type.isErroneous()) { 5578 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5579 } else { 5580 tree.vartype = make.at(Position.NOPOS).Type(type); 5581 } 5582 } 5583 5584 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5585 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5586 } 5587 //where 5588 private final class TypeAnnotationsValidator extends TreeScanner { 5589 5590 private final boolean sigOnly; 5591 public TypeAnnotationsValidator(boolean sigOnly) { 5592 this.sigOnly = sigOnly; 5593 } 5594 5595 public void visitAnnotation(JCAnnotation tree) { 5596 chk.validateTypeAnnotation(tree, false); 5597 super.visitAnnotation(tree); 5598 } 5599 public void visitAnnotatedType(JCAnnotatedType tree) { 5600 if (!tree.underlyingType.type.isErroneous()) { 5601 super.visitAnnotatedType(tree); 5602 } 5603 } 5604 public void visitTypeParameter(JCTypeParameter tree) { 5605 chk.validateTypeAnnotations(tree.annotations, true); 5606 scan(tree.bounds); 5607 // Don't call super. 5608 // This is needed because above we call validateTypeAnnotation with 5609 // false, which would forbid annotations on type parameters. 5610 // super.visitTypeParameter(tree); 5611 } 5612 public void visitMethodDef(JCMethodDecl tree) { 5613 if (tree.recvparam != null && 5614 !tree.recvparam.vartype.type.isErroneous()) { 5615 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5616 } 5617 if (tree.restype != null && tree.restype.type != null) { 5618 validateAnnotatedType(tree.restype, tree.restype.type); 5619 } 5620 if (sigOnly) { 5621 scan(tree.mods); 5622 scan(tree.restype); 5623 scan(tree.typarams); 5624 scan(tree.recvparam); 5625 scan(tree.params); 5626 scan(tree.thrown); 5627 } else { 5628 scan(tree.defaultValue); 5629 scan(tree.body); 5630 } 5631 } 5632 public void visitVarDef(final JCVariableDecl tree) { 5633 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5634 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5635 validateAnnotatedType(tree.vartype, tree.sym.type); 5636 scan(tree.mods); 5637 scan(tree.vartype); 5638 if (!sigOnly) { 5639 scan(tree.init); 5640 } 5641 } 5642 public void visitTypeCast(JCTypeCast tree) { 5643 if (tree.clazz != null && tree.clazz.type != null) 5644 validateAnnotatedType(tree.clazz, tree.clazz.type); 5645 super.visitTypeCast(tree); 5646 } 5647 public void visitTypeTest(JCInstanceOf tree) { 5648 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5649 validateAnnotatedType(tree.pattern, tree.pattern.type); 5650 super.visitTypeTest(tree); 5651 } 5652 public void visitNewClass(JCNewClass tree) { 5653 if (tree.clazz != null && tree.clazz.type != null) { 5654 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5655 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5656 tree.clazz.type.tsym); 5657 } 5658 if (tree.def != null) { 5659 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5660 } 5661 5662 validateAnnotatedType(tree.clazz, tree.clazz.type); 5663 } 5664 super.visitNewClass(tree); 5665 } 5666 public void visitNewArray(JCNewArray tree) { 5667 if (tree.elemtype != null && tree.elemtype.type != null) { 5668 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5669 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5670 tree.elemtype.type.tsym); 5671 } 5672 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5673 } 5674 super.visitNewArray(tree); 5675 } 5676 public void visitClassDef(JCClassDecl tree) { 5677 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5678 if (sigOnly) { 5679 scan(tree.mods); 5680 scan(tree.typarams); 5681 scan(tree.extending); 5682 scan(tree.implementing); 5683 } 5684 for (JCTree member : tree.defs) { 5685 if (member.hasTag(Tag.CLASSDEF)) { 5686 continue; 5687 } 5688 scan(member); 5689 } 5690 } 5691 public void visitBlock(JCBlock tree) { 5692 if (!sigOnly) { 5693 scan(tree.stats); 5694 } 5695 } 5696 5697 /* I would want to model this after 5698 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5699 * and override visitSelect and visitTypeApply. 5700 * However, we only set the annotated type in the top-level type 5701 * of the symbol. 5702 * Therefore, we need to override each individual location where a type 5703 * can occur. 5704 */ 5705 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5706 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5707 5708 if (type.isPrimitiveOrVoid()) { 5709 return; 5710 } 5711 5712 JCTree enclTr = errtree; 5713 Type enclTy = type; 5714 5715 boolean repeat = true; 5716 while (repeat) { 5717 if (enclTr.hasTag(TYPEAPPLY)) { 5718 List<Type> tyargs = enclTy.getTypeArguments(); 5719 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5720 if (trargs.length() > 0) { 5721 // Nothing to do for diamonds 5722 if (tyargs.length() == trargs.length()) { 5723 for (int i = 0; i < tyargs.length(); ++i) { 5724 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5725 } 5726 } 5727 // If the lengths don't match, it's either a diamond 5728 // or some nested type that redundantly provides 5729 // type arguments in the tree. 5730 } 5731 5732 // Look at the clazz part of a generic type 5733 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5734 } 5735 5736 if (enclTr.hasTag(SELECT)) { 5737 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5738 if (enclTy != null && 5739 !enclTy.hasTag(NONE)) { 5740 enclTy = enclTy.getEnclosingType(); 5741 } 5742 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5743 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5744 if (enclTy == null || enclTy.hasTag(NONE)) { 5745 if (at.getAnnotations().size() == 1) { 5746 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute)); 5747 } else { 5748 ListBuffer<Attribute.Compound> comps = new ListBuffer<>(); 5749 for (JCAnnotation an : at.getAnnotations()) { 5750 comps.add(an.attribute); 5751 } 5752 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList())); 5753 } 5754 repeat = false; 5755 } 5756 enclTr = at.underlyingType; 5757 // enclTy doesn't need to be changed 5758 } else if (enclTr.hasTag(IDENT)) { 5759 repeat = false; 5760 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5761 JCWildcard wc = (JCWildcard) enclTr; 5762 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 5763 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 5764 validateAnnotatedType(wc.getBound(), wc.getBound().type); 5765 } else { 5766 // Nothing to do for UNBOUND 5767 } 5768 repeat = false; 5769 } else if (enclTr.hasTag(TYPEARRAY)) { 5770 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 5771 validateAnnotatedType(art.getType(), art.elemtype.type); 5772 repeat = false; 5773 } else if (enclTr.hasTag(TYPEUNION)) { 5774 JCTypeUnion ut = (JCTypeUnion) enclTr; 5775 for (JCTree t : ut.getTypeAlternatives()) { 5776 validateAnnotatedType(t, t.type); 5777 } 5778 repeat = false; 5779 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 5780 JCTypeIntersection it = (JCTypeIntersection) enclTr; 5781 for (JCTree t : it.getBounds()) { 5782 validateAnnotatedType(t, t.type); 5783 } 5784 repeat = false; 5785 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 5786 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 5787 repeat = false; 5788 } else { 5789 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 5790 " within: "+ errtree + " with kind: " + errtree.getKind()); 5791 } 5792 } 5793 } 5794 5795 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 5796 Symbol sym) { 5797 // Ensure that no declaration annotations are present. 5798 // Note that a tree type might be an AnnotatedType with 5799 // empty annotations, if only declaration annotations were given. 5800 // This method will raise an error for such a type. 5801 for (JCAnnotation ai : annotations) { 5802 if (!ai.type.isErroneous() && 5803 typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 5804 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 5805 } 5806 } 5807 } 5808 } 5809 5810 // <editor-fold desc="post-attribution visitor"> 5811 5812 /** 5813 * Handle missing types/symbols in an AST. This routine is useful when 5814 * the compiler has encountered some errors (which might have ended up 5815 * terminating attribution abruptly); if the compiler is used in fail-over 5816 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 5817 * prevents NPE to be propagated during subsequent compilation steps. 5818 */ 5819 public void postAttr(JCTree tree) { 5820 new PostAttrAnalyzer().scan(tree); 5821 } 5822 5823 class PostAttrAnalyzer extends TreeScanner { 5824 5825 private void initTypeIfNeeded(JCTree that) { 5826 if (that.type == null) { 5827 if (that.hasTag(METHODDEF)) { 5828 that.type = dummyMethodType((JCMethodDecl)that); 5829 } else { 5830 that.type = syms.unknownType; 5831 } 5832 } 5833 } 5834 5835 /* Construct a dummy method type. If we have a method declaration, 5836 * and the declared return type is void, then use that return type 5837 * instead of UNKNOWN to avoid spurious error messages in lambda 5838 * bodies (see:JDK-8041704). 5839 */ 5840 private Type dummyMethodType(JCMethodDecl md) { 5841 Type restype = syms.unknownType; 5842 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 5843 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 5844 if (prim.typetag == VOID) 5845 restype = syms.voidType; 5846 } 5847 return new MethodType(List.nil(), restype, 5848 List.nil(), syms.methodClass); 5849 } 5850 private Type dummyMethodType() { 5851 return dummyMethodType(null); 5852 } 5853 5854 @Override 5855 public void scan(JCTree tree) { 5856 if (tree == null) return; 5857 if (tree instanceof JCExpression) { 5858 initTypeIfNeeded(tree); 5859 } 5860 super.scan(tree); 5861 } 5862 5863 @Override 5864 public void visitIdent(JCIdent that) { 5865 if (that.sym == null) { 5866 that.sym = syms.unknownSymbol; 5867 } 5868 } 5869 5870 @Override 5871 public void visitSelect(JCFieldAccess that) { 5872 if (that.sym == null) { 5873 that.sym = syms.unknownSymbol; 5874 } 5875 super.visitSelect(that); 5876 } 5877 5878 @Override 5879 public void visitClassDef(JCClassDecl that) { 5880 initTypeIfNeeded(that); 5881 if (that.sym == null) { 5882 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 5883 } 5884 super.visitClassDef(that); 5885 } 5886 5887 @Override 5888 public void visitMethodDef(JCMethodDecl that) { 5889 initTypeIfNeeded(that); 5890 if (that.sym == null) { 5891 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 5892 } 5893 super.visitMethodDef(that); 5894 } 5895 5896 @Override 5897 public void visitVarDef(JCVariableDecl that) { 5898 initTypeIfNeeded(that); 5899 if (that.sym == null) { 5900 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 5901 that.sym.adr = 0; 5902 } 5903 if (that.vartype == null) { 5904 that.vartype = make.at(Position.NOPOS).Erroneous(); 5905 } 5906 super.visitVarDef(that); 5907 } 5908 5909 @Override 5910 public void visitBindingPattern(JCBindingPattern that) { 5911 initTypeIfNeeded(that); 5912 initTypeIfNeeded(that.var); 5913 if (that.var.sym == null) { 5914 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 5915 that.var.sym.adr = 0; 5916 } 5917 super.visitBindingPattern(that); 5918 } 5919 5920 @Override 5921 public void visitNewClass(JCNewClass that) { 5922 if (that.constructor == null) { 5923 that.constructor = new MethodSymbol(0, names.init, 5924 dummyMethodType(), syms.noSymbol); 5925 } 5926 if (that.constructorType == null) { 5927 that.constructorType = syms.unknownType; 5928 } 5929 super.visitNewClass(that); 5930 } 5931 5932 @Override 5933 public void visitAssignop(JCAssignOp that) { 5934 if (that.operator == null) { 5935 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 5936 -1, syms.noSymbol); 5937 } 5938 super.visitAssignop(that); 5939 } 5940 5941 @Override 5942 public void visitBinary(JCBinary that) { 5943 if (that.operator == null) { 5944 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 5945 -1, syms.noSymbol); 5946 } 5947 super.visitBinary(that); 5948 } 5949 5950 @Override 5951 public void visitUnary(JCUnary that) { 5952 if (that.operator == null) { 5953 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 5954 -1, syms.noSymbol); 5955 } 5956 super.visitUnary(that); 5957 } 5958 5959 @Override 5960 public void visitReference(JCMemberReference that) { 5961 super.visitReference(that); 5962 if (that.sym == null) { 5963 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 5964 syms.noSymbol); 5965 } 5966 } 5967 } 5968 // </editor-fold> 5969 5970 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 5971 new TreeScanner() { 5972 Symbol packge = pkg; 5973 @Override 5974 public void visitIdent(JCIdent that) { 5975 that.sym = packge; 5976 } 5977 5978 @Override 5979 public void visitSelect(JCFieldAccess that) { 5980 that.sym = packge; 5981 packge = packge.owner; 5982 super.visitSelect(that); 5983 } 5984 }.scan(pid); 5985 } 5986 5987 }