1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.IdentifierTree;
  38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  39 import com.sun.source.tree.MemberSelectTree;
  40 import com.sun.source.tree.TreeVisitor;
  41 import com.sun.source.util.SimpleTreeVisitor;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Lint.LintCategory;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Source.Feature;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  53 import com.sun.tools.javac.jvm.*;
  54 
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  58 
  59 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  60 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  61 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  62 import com.sun.tools.javac.tree.*;
  63 import com.sun.tools.javac.tree.JCTree.*;
  64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  65 import com.sun.tools.javac.util.*;
  66 import com.sun.tools.javac.util.DefinedBy.Api;
  67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  68 import com.sun.tools.javac.util.JCDiagnostic.Error;
  69 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  70 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  71 import com.sun.tools.javac.util.List;
  72 
  73 import static com.sun.tools.javac.code.Flags.*;
  74 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  75 import static com.sun.tools.javac.code.Flags.BLOCK;
  76 import static com.sun.tools.javac.code.Kinds.*;
  77 import static com.sun.tools.javac.code.Kinds.Kind.*;
  78 import static com.sun.tools.javac.code.TypeTag.*;
  79 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  82 
  83 /** This is the main context-dependent analysis phase in GJC. It
  84  *  encompasses name resolution, type checking and constant folding as
  85  *  subtasks. Some subtasks involve auxiliary classes.
  86  *  @see Check
  87  *  @see Resolve
  88  *  @see ConstFold
  89  *  @see Infer
  90  *
  91  *  <p><b>This is NOT part of any supported API.
  92  *  If you write code that depends on this, you do so at your own risk.
  93  *  This code and its internal interfaces are subject to change or
  94  *  deletion without notice.</b>
  95  */
  96 public class Attr extends JCTree.Visitor {
  97     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  98 
  99     final Names names;
 100     final Log log;
 101     final Symtab syms;
 102     final Resolve rs;
 103     final Operators operators;
 104     final Infer infer;
 105     final Analyzer analyzer;
 106     final DeferredAttr deferredAttr;
 107     final Check chk;
 108     final Flow flow;
 109     final MemberEnter memberEnter;
 110     final TypeEnter typeEnter;
 111     final TreeMaker make;
 112     final ConstFold cfolder;
 113     final Enter enter;
 114     final Target target;
 115     final Types types;
 116     final Preview preview;
 117     final JCDiagnostic.Factory diags;
 118     final TypeAnnotations typeAnnotations;
 119     final DeferredLintHandler deferredLintHandler;
 120     final TypeEnvs typeEnvs;
 121     final Dependencies dependencies;
 122     final Annotate annotate;
 123     final ArgumentAttr argumentAttr;
 124     final MatchBindingsComputer matchBindingsComputer;
 125     final AttrRecover attrRecover;
 126 
 127     public static Attr instance(Context context) {
 128         Attr instance = context.get(attrKey);
 129         if (instance == null)
 130             instance = new Attr(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Attr(Context context) {
 136         context.put(attrKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         syms = Symtab.instance(context);
 141         rs = Resolve.instance(context);
 142         operators = Operators.instance(context);
 143         chk = Check.instance(context);
 144         flow = Flow.instance(context);
 145         memberEnter = MemberEnter.instance(context);
 146         typeEnter = TypeEnter.instance(context);
 147         make = TreeMaker.instance(context);
 148         enter = Enter.instance(context);
 149         infer = Infer.instance(context);
 150         analyzer = Analyzer.instance(context);
 151         deferredAttr = DeferredAttr.instance(context);
 152         cfolder = ConstFold.instance(context);
 153         target = Target.instance(context);
 154         types = Types.instance(context);
 155         preview = Preview.instance(context);
 156         diags = JCDiagnostic.Factory.instance(context);
 157         annotate = Annotate.instance(context);
 158         typeAnnotations = TypeAnnotations.instance(context);
 159         deferredLintHandler = DeferredLintHandler.instance(context);
 160         typeEnvs = TypeEnvs.instance(context);
 161         dependencies = Dependencies.instance(context);
 162         argumentAttr = ArgumentAttr.instance(context);
 163         matchBindingsComputer = MatchBindingsComputer.instance(context);
 164         attrRecover = AttrRecover.instance(context);
 165 
 166         Options options = Options.instance(context);
 167 
 168         Source source = Source.instance(context);
 169         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 170         allowRecords = Feature.RECORDS.allowedInSource(source);
 171         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 172                              Feature.PATTERN_SWITCH.allowedInSource(source);
 173         allowUnconditionalPatternsInstanceOf =
 174                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 175         sourceName = source.name;
 176         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 177 
 178         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 179         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 180         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 181         methodAttrInfo = new MethodAttrInfo();
 182         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 183         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 184         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 185         initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
 186     }
 187 
 188     /** Switch: reifiable types in instanceof enabled?
 189      */
 190     boolean allowReifiableTypesInInstanceof;
 191 
 192     /** Are records allowed
 193      */
 194     private final boolean allowRecords;
 195 
 196     /** Are patterns in switch allowed
 197      */
 198     private final boolean allowPatternSwitch;
 199 
 200     /** Are unconditional patterns in instanceof allowed
 201      */
 202     private final boolean allowUnconditionalPatternsInstanceOf;
 203 
 204     /**
 205      * Switch: warn about use of variable before declaration?
 206      * RFE: 6425594
 207      */
 208     boolean useBeforeDeclarationWarning;
 209 
 210     /**
 211      * Switch: name of source level; used for error reporting.
 212      */
 213     String sourceName;
 214 
 215     /** Check kind and type of given tree against protokind and prototype.
 216      *  If check succeeds, store type in tree and return it.
 217      *  If check fails, store errType in tree and return it.
 218      *  No checks are performed if the prototype is a method type.
 219      *  It is not necessary in this case since we know that kind and type
 220      *  are correct.
 221      *
 222      *  @param tree     The tree whose kind and type is checked
 223      *  @param found    The computed type of the tree
 224      *  @param ownkind  The computed kind of the tree
 225      *  @param resultInfo  The expected result of the tree
 226      */
 227     Type check(final JCTree tree,
 228                final Type found,
 229                final KindSelector ownkind,
 230                final ResultInfo resultInfo) {
 231         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 232         Type owntype;
 233         boolean shouldCheck = !found.hasTag(ERROR) &&
 234                 !resultInfo.pt.hasTag(METHOD) &&
 235                 !resultInfo.pt.hasTag(FORALL);
 236         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 237             log.error(tree.pos(),
 238                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 239                                             ownkind.kindNames()));
 240             owntype = types.createErrorType(found);
 241         } else if (inferenceContext.free(found)) {
 242             //delay the check if there are inference variables in the found type
 243             //this means we are dealing with a partially inferred poly expression
 244             owntype = shouldCheck ? resultInfo.pt : found;
 245             if (resultInfo.checkMode.installPostInferenceHook()) {
 246                 inferenceContext.addFreeTypeListener(List.of(found),
 247                         instantiatedContext -> {
 248                             ResultInfo pendingResult =
 249                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 250                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 251                         });
 252             }
 253         } else {
 254             owntype = shouldCheck ?
 255             resultInfo.check(tree, found) :
 256             found;
 257         }
 258         if (resultInfo.checkMode.updateTreeType()) {
 259             tree.type = owntype;
 260         }
 261         return owntype;
 262     }
 263 
 264     /** Is given blank final variable assignable, i.e. in a scope where it
 265      *  may be assigned to even though it is final?
 266      *  @param v      The blank final variable.
 267      *  @param env    The current environment.
 268      */
 269     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 270         Symbol owner = env.info.scope.owner;
 271            // owner refers to the innermost variable, method or
 272            // initializer block declaration at this point.
 273         boolean isAssignable =
 274             v.owner == owner
 275             ||
 276             ((owner.name == names.init ||    // i.e. we are in a constructor
 277               owner.kind == VAR ||           // i.e. we are in a variable initializer
 278               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 279              &&
 280              v.owner == owner.owner
 281              &&
 282              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 283         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 284         return isAssignable & !insideCompactConstructor;
 285     }
 286 
 287     /** Check that variable can be assigned to.
 288      *  @param pos    The current source code position.
 289      *  @param v      The assigned variable
 290      *  @param base   If the variable is referred to in a Select, the part
 291      *                to the left of the `.', null otherwise.
 292      *  @param env    The current environment.
 293      */
 294     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 295         if (v.name == names._this) {
 296             log.error(pos, Errors.CantAssignValToThis);
 297             return;
 298         }
 299         if ((v.flags() & FINAL) != 0 &&
 300             ((v.flags() & HASINIT) != 0
 301              ||
 302              !((base == null ||
 303                TreeInfo.isThisQualifier(base)) &&
 304                isAssignableAsBlankFinal(v, env)))) {
 305             if (v.isResourceVariable()) { //TWR resource
 306                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 307             } else {
 308                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 309             }
 310             return;
 311         }
 312 
 313         // Check instance field assignments that appear in constructor prologues
 314         if (rs.isEarlyReference(env, base, v)) {
 315 
 316             // Field may not be inherited from a superclass
 317             if (v.owner != env.enclClass.sym) {
 318                 log.error(pos, Errors.CantRefBeforeCtorCalled(v));
 319                 return;
 320             }
 321 
 322             // Field may not have an initializer
 323             if ((v.flags() & HASINIT) != 0) {
 324                 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v));
 325                 return;
 326             }
 327         }
 328     }
 329 
 330     /** Does tree represent a static reference to an identifier?
 331      *  It is assumed that tree is either a SELECT or an IDENT.
 332      *  We have to weed out selects from non-type names here.
 333      *  @param tree    The candidate tree.
 334      */
 335     boolean isStaticReference(JCTree tree) {
 336         if (tree.hasTag(SELECT)) {
 337             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 338             if (lsym == null || lsym.kind != TYP) {
 339                 return false;
 340             }
 341         }
 342         return true;
 343     }
 344 
 345     /** Is this symbol a type?
 346      */
 347     static boolean isType(Symbol sym) {
 348         return sym != null && sym.kind == TYP;
 349     }
 350 
 351     /** Attribute a parsed identifier.
 352      * @param tree Parsed identifier name
 353      * @param topLevel The toplevel to use
 354      */
 355     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 356         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 357         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 358                                            syms.errSymbol.name,
 359                                            null, null, null, null);
 360         localEnv.enclClass.sym = syms.errSymbol;
 361         return attribIdent(tree, localEnv);
 362     }
 363 
 364     /** Attribute a parsed identifier.
 365      * @param tree Parsed identifier name
 366      * @param env The env to use
 367      */
 368     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 369         return tree.accept(identAttributer, env);
 370     }
 371     // where
 372         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 373         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 374             @Override @DefinedBy(Api.COMPILER_TREE)
 375             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 376                 Symbol site = visit(node.getExpression(), env);
 377                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 378                     return site;
 379                 Name name = (Name)node.getIdentifier();
 380                 if (site.kind == PCK) {
 381                     env.toplevel.packge = (PackageSymbol)site;
 382                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 383                             KindSelector.TYP_PCK);
 384                 } else {
 385                     env.enclClass.sym = (ClassSymbol)site;
 386                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 387                 }
 388             }
 389 
 390             @Override @DefinedBy(Api.COMPILER_TREE)
 391             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 392                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 393             }
 394         }
 395 
 396     public Type coerce(Type etype, Type ttype) {
 397         return cfolder.coerce(etype, ttype);
 398     }
 399 
 400     public Type attribType(JCTree node, TypeSymbol sym) {
 401         Env<AttrContext> env = typeEnvs.get(sym);
 402         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 403         return attribTree(node, localEnv, unknownTypeInfo);
 404     }
 405 
 406     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 407         // Attribute qualifying package or class.
 408         JCFieldAccess s = tree.qualid;
 409         return attribTree(s.selected, env,
 410                           new ResultInfo(tree.staticImport ?
 411                                          KindSelector.TYP : KindSelector.TYP_PCK,
 412                        Type.noType));
 413     }
 414 
 415     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 416         return attribToTree(expr, env, tree, unknownExprInfo);
 417     }
 418 
 419     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 420         return attribToTree(stmt, env, tree, statInfo);
 421     }
 422 
 423     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 424         breakTree = tree;
 425         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 426         try {
 427             deferredAttr.attribSpeculative(root, env, resultInfo,
 428                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 429                     argumentAttr.withLocalCacheContext());
 430             attrRecover.doRecovery();
 431         } catch (BreakAttr b) {
 432             return b.env;
 433         } catch (AssertionError ae) {
 434             if (ae.getCause() instanceof BreakAttr breakAttr) {
 435                 return breakAttr.env;
 436             } else {
 437                 throw ae;
 438             }
 439         } finally {
 440             breakTree = null;
 441             log.useSource(prev);
 442         }
 443         return env;
 444     }
 445 
 446     private JCTree breakTree = null;
 447 
 448     private static class BreakAttr extends RuntimeException {
 449         static final long serialVersionUID = -6924771130405446405L;
 450         private transient Env<AttrContext> env;
 451         private BreakAttr(Env<AttrContext> env) {
 452             this.env = env;
 453         }
 454     }
 455 
 456     /**
 457      * Mode controlling behavior of Attr.Check
 458      */
 459     enum CheckMode {
 460 
 461         NORMAL,
 462 
 463         /**
 464          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 465          * that the captured var cache in {@code InferenceContext} will be used in read-only
 466          * mode when performing inference checks.
 467          */
 468         NO_TREE_UPDATE {
 469             @Override
 470             public boolean updateTreeType() {
 471                 return false;
 472             }
 473         },
 474         /**
 475          * Mode signalling that caller will manage free types in tree decorations.
 476          */
 477         NO_INFERENCE_HOOK {
 478             @Override
 479             public boolean installPostInferenceHook() {
 480                 return false;
 481             }
 482         };
 483 
 484         public boolean updateTreeType() {
 485             return true;
 486         }
 487         public boolean installPostInferenceHook() {
 488             return true;
 489         }
 490     }
 491 
 492 
 493     class ResultInfo {
 494         final KindSelector pkind;
 495         final Type pt;
 496         final CheckContext checkContext;
 497         final CheckMode checkMode;
 498 
 499         ResultInfo(KindSelector pkind, Type pt) {
 500             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 501         }
 502 
 503         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 504             this(pkind, pt, chk.basicHandler, checkMode);
 505         }
 506 
 507         protected ResultInfo(KindSelector pkind,
 508                              Type pt, CheckContext checkContext) {
 509             this(pkind, pt, checkContext, CheckMode.NORMAL);
 510         }
 511 
 512         protected ResultInfo(KindSelector pkind,
 513                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 514             this.pkind = pkind;
 515             this.pt = pt;
 516             this.checkContext = checkContext;
 517             this.checkMode = checkMode;
 518         }
 519 
 520         /**
 521          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 522          * @param tree The tree to be type-checked.
 523          * @return true if {@code ArgumentAttr} should be used.
 524          */
 525         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 526 
 527         protected Type check(final DiagnosticPosition pos, final Type found) {
 528             return chk.checkType(pos, found, pt, checkContext);
 529         }
 530 
 531         protected ResultInfo dup(Type newPt) {
 532             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 533         }
 534 
 535         protected ResultInfo dup(CheckContext newContext) {
 536             return new ResultInfo(pkind, pt, newContext, checkMode);
 537         }
 538 
 539         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 540             return new ResultInfo(pkind, newPt, newContext, checkMode);
 541         }
 542 
 543         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 544             return new ResultInfo(pkind, newPt, newContext, newMode);
 545         }
 546 
 547         protected ResultInfo dup(CheckMode newMode) {
 548             return new ResultInfo(pkind, pt, checkContext, newMode);
 549         }
 550 
 551         @Override
 552         public String toString() {
 553             if (pt != null) {
 554                 return pt.toString();
 555             } else {
 556                 return "";
 557             }
 558         }
 559     }
 560 
 561     class MethodAttrInfo extends ResultInfo {
 562         public MethodAttrInfo() {
 563             this(chk.basicHandler);
 564         }
 565 
 566         public MethodAttrInfo(CheckContext checkContext) {
 567             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 568         }
 569 
 570         @Override
 571         protected boolean needsArgumentAttr(JCTree tree) {
 572             return true;
 573         }
 574 
 575         protected ResultInfo dup(Type newPt) {
 576             throw new IllegalStateException();
 577         }
 578 
 579         protected ResultInfo dup(CheckContext newContext) {
 580             return new MethodAttrInfo(newContext);
 581         }
 582 
 583         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 584             throw new IllegalStateException();
 585         }
 586 
 587         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 588             throw new IllegalStateException();
 589         }
 590 
 591         protected ResultInfo dup(CheckMode newMode) {
 592             throw new IllegalStateException();
 593         }
 594     }
 595 
 596     class RecoveryInfo extends ResultInfo {
 597 
 598         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 599             this(deferredAttrContext, Type.recoveryType);
 600         }
 601 
 602         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 603             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 604                 @Override
 605                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 606                     return deferredAttrContext;
 607                 }
 608                 @Override
 609                 public boolean compatible(Type found, Type req, Warner warn) {
 610                     return true;
 611                 }
 612                 @Override
 613                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 614                     boolean needsReport = pt == Type.recoveryType ||
 615                             (details.getDiagnosticPosition() != null &&
 616                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 617                     if (needsReport) {
 618                         chk.basicHandler.report(pos, details);
 619                     }
 620                 }
 621             });
 622         }
 623     }
 624 
 625     final ResultInfo statInfo;
 626     final ResultInfo varAssignmentInfo;
 627     final ResultInfo methodAttrInfo;
 628     final ResultInfo unknownExprInfo;
 629     final ResultInfo unknownTypeInfo;
 630     final ResultInfo unknownTypeExprInfo;
 631     final ResultInfo recoveryInfo;
 632     final MethodType initBlockType;
 633 
 634     Type pt() {
 635         return resultInfo.pt;
 636     }
 637 
 638     KindSelector pkind() {
 639         return resultInfo.pkind;
 640     }
 641 
 642 /* ************************************************************************
 643  * Visitor methods
 644  *************************************************************************/
 645 
 646     /** Visitor argument: the current environment.
 647      */
 648     Env<AttrContext> env;
 649 
 650     /** Visitor argument: the currently expected attribution result.
 651      */
 652     ResultInfo resultInfo;
 653 
 654     /** Visitor result: the computed type.
 655      */
 656     Type result;
 657 
 658     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 659 
 660     /** Visitor method: attribute a tree, catching any completion failure
 661      *  exceptions. Return the tree's type.
 662      *
 663      *  @param tree    The tree to be visited.
 664      *  @param env     The environment visitor argument.
 665      *  @param resultInfo   The result info visitor argument.
 666      */
 667     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 668         Env<AttrContext> prevEnv = this.env;
 669         ResultInfo prevResult = this.resultInfo;
 670         try {
 671             this.env = env;
 672             this.resultInfo = resultInfo;
 673             if (resultInfo.needsArgumentAttr(tree)) {
 674                 result = argumentAttr.attribArg(tree, env);
 675             } else {
 676                 tree.accept(this);
 677             }
 678             matchBindings = matchBindingsComputer.finishBindings(tree,
 679                                                                  matchBindings);
 680             if (tree == breakTree &&
 681                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 682                 breakTreeFound(copyEnv(env));
 683             }
 684             return result;
 685         } catch (CompletionFailure ex) {
 686             tree.type = syms.errType;
 687             return chk.completionError(tree.pos(), ex);
 688         } finally {
 689             this.env = prevEnv;
 690             this.resultInfo = prevResult;
 691         }
 692     }
 693 
 694     protected void breakTreeFound(Env<AttrContext> env) {
 695         throw new BreakAttr(env);
 696     }
 697 
 698     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 699         Env<AttrContext> newEnv =
 700                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 701         if (newEnv.outer != null) {
 702             newEnv.outer = copyEnv(newEnv.outer);
 703         }
 704         return newEnv;
 705     }
 706 
 707     WriteableScope copyScope(WriteableScope sc) {
 708         WriteableScope newScope = WriteableScope.create(sc.owner);
 709         List<Symbol> elemsList = List.nil();
 710         for (Symbol sym : sc.getSymbols()) {
 711             elemsList = elemsList.prepend(sym);
 712         }
 713         for (Symbol s : elemsList) {
 714             newScope.enter(s);
 715         }
 716         return newScope;
 717     }
 718 
 719     /** Derived visitor method: attribute an expression tree.
 720      */
 721     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 722         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 723     }
 724 
 725     /** Derived visitor method: attribute an expression tree with
 726      *  no constraints on the computed type.
 727      */
 728     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 729         return attribTree(tree, env, unknownExprInfo);
 730     }
 731 
 732     /** Derived visitor method: attribute a type tree.
 733      */
 734     public Type attribType(JCTree tree, Env<AttrContext> env) {
 735         Type result = attribType(tree, env, Type.noType);
 736         return result;
 737     }
 738 
 739     /** Derived visitor method: attribute a type tree.
 740      */
 741     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 742         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 743         return result;
 744     }
 745 
 746     /** Derived visitor method: attribute a statement or definition tree.
 747      */
 748     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 749         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 750         Type result = attribTree(tree, env, statInfo);
 751         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 752         attrRecover.doRecovery();
 753         return result;
 754     }
 755 
 756     /** Attribute a list of expressions, returning a list of types.
 757      */
 758     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 759         ListBuffer<Type> ts = new ListBuffer<>();
 760         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 761             ts.append(attribExpr(l.head, env, pt));
 762         return ts.toList();
 763     }
 764 
 765     /** Attribute a list of statements, returning nothing.
 766      */
 767     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 768         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 769             attribStat(l.head, env);
 770     }
 771 
 772     /** Attribute the arguments in a method call, returning the method kind.
 773      */
 774     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 775         KindSelector kind = initialKind;
 776         for (JCExpression arg : trees) {
 777             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 778             if (argtype.hasTag(DEFERRED)) {
 779                 kind = KindSelector.of(KindSelector.POLY, kind);
 780             }
 781             argtypes.append(argtype);
 782         }
 783         return kind;
 784     }
 785 
 786     /** Attribute a type argument list, returning a list of types.
 787      *  Caller is responsible for calling checkRefTypes.
 788      */
 789     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 790         ListBuffer<Type> argtypes = new ListBuffer<>();
 791         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 792             argtypes.append(attribType(l.head, env));
 793         return argtypes.toList();
 794     }
 795 
 796     /** Attribute a type argument list, returning a list of types.
 797      *  Check that all the types are references.
 798      */
 799     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 800         List<Type> types = attribAnyTypes(trees, env);
 801         return chk.checkRefTypes(trees, types);
 802     }
 803 
 804     /**
 805      * Attribute type variables (of generic classes or methods).
 806      * Compound types are attributed later in attribBounds.
 807      * @param typarams the type variables to enter
 808      * @param env      the current environment
 809      */
 810     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 811         for (JCTypeParameter tvar : typarams) {
 812             TypeVar a = (TypeVar)tvar.type;
 813             a.tsym.flags_field |= UNATTRIBUTED;
 814             a.setUpperBound(Type.noType);
 815             if (!tvar.bounds.isEmpty()) {
 816                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 817                 for (JCExpression bound : tvar.bounds.tail)
 818                     bounds = bounds.prepend(attribType(bound, env));
 819                 types.setBounds(a, bounds.reverse());
 820             } else {
 821                 // if no bounds are given, assume a single bound of
 822                 // java.lang.Object.
 823                 types.setBounds(a, List.of(syms.objectType));
 824             }
 825             a.tsym.flags_field &= ~UNATTRIBUTED;
 826         }
 827         if (checkCyclic) {
 828             for (JCTypeParameter tvar : typarams) {
 829                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 830             }
 831         }
 832     }
 833 
 834     /**
 835      * Attribute the type references in a list of annotations.
 836      */
 837     void attribAnnotationTypes(List<JCAnnotation> annotations,
 838                                Env<AttrContext> env) {
 839         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 840             JCAnnotation a = al.head;
 841             attribType(a.annotationType, env);
 842         }
 843     }
 844 
 845     /**
 846      * Attribute a "lazy constant value".
 847      *  @param env         The env for the const value
 848      *  @param variable    The initializer for the const value
 849      *  @param type        The expected type, or null
 850      *  @see VarSymbol#setLazyConstValue
 851      */
 852     public Object attribLazyConstantValue(Env<AttrContext> env,
 853                                       JCVariableDecl variable,
 854                                       Type type) {
 855 
 856         DiagnosticPosition prevLintPos
 857                 = deferredLintHandler.setPos(variable.pos());
 858 
 859         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 860         try {
 861             Type itype = attribExpr(variable.init, env, type);
 862             if (variable.isImplicitlyTyped()) {
 863                 //fixup local variable type
 864                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 865             }
 866             if (itype.constValue() != null) {
 867                 return coerce(itype, type).constValue();
 868             } else {
 869                 return null;
 870             }
 871         } finally {
 872             log.useSource(prevSource);
 873             deferredLintHandler.setPos(prevLintPos);
 874         }
 875     }
 876 
 877     /** Attribute type reference in an `extends' or `implements' clause.
 878      *  Supertypes of anonymous inner classes are usually already attributed.
 879      *
 880      *  @param tree              The tree making up the type reference.
 881      *  @param env               The environment current at the reference.
 882      *  @param classExpected     true if only a class is expected here.
 883      *  @param interfaceExpected true if only an interface is expected here.
 884      */
 885     Type attribBase(JCTree tree,
 886                     Env<AttrContext> env,
 887                     boolean classExpected,
 888                     boolean interfaceExpected,
 889                     boolean checkExtensible) {
 890         Type t = tree.type != null ?
 891             tree.type :
 892             attribType(tree, env);
 893         try {
 894             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 895         } catch (CompletionFailure ex) {
 896             chk.completionError(tree.pos(), ex);
 897             return t;
 898         }
 899     }
 900     Type checkBase(Type t,
 901                    JCTree tree,
 902                    Env<AttrContext> env,
 903                    boolean classExpected,
 904                    boolean interfaceExpected,
 905                    boolean checkExtensible) {
 906         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 907                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 908         if (t.tsym.isAnonymous()) {
 909             log.error(pos, Errors.CantInheritFromAnon);
 910             return types.createErrorType(t);
 911         }
 912         if (t.isErroneous())
 913             return t;
 914         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 915             // check that type variable is already visible
 916             if (t.getUpperBound() == null) {
 917                 log.error(pos, Errors.IllegalForwardRef);
 918                 return types.createErrorType(t);
 919             }
 920         } else {
 921             t = chk.checkClassType(pos, t, checkExtensible);
 922         }
 923         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 924             log.error(pos, Errors.IntfExpectedHere);
 925             // return errType is necessary since otherwise there might
 926             // be undetected cycles which cause attribution to loop
 927             return types.createErrorType(t);
 928         } else if (checkExtensible &&
 929                    classExpected &&
 930                    (t.tsym.flags() & INTERFACE) != 0) {
 931             log.error(pos, Errors.NoIntfExpectedHere);
 932             return types.createErrorType(t);
 933         }
 934         if (checkExtensible &&
 935             ((t.tsym.flags() & FINAL) != 0)) {
 936             log.error(pos,
 937                       Errors.CantInheritFromFinal(t.tsym));
 938         }
 939         chk.checkNonCyclic(pos, t);
 940         return t;
 941     }
 942 
 943     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 944         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 945         id.type = env.info.scope.owner.enclClass().type;
 946         id.sym = env.info.scope.owner.enclClass();
 947         return id.type;
 948     }
 949 
 950     public void visitClassDef(JCClassDecl tree) {
 951         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 952                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 953                         argumentAttr.withLocalCacheContext() : null);
 954         boolean ctorProloguePrev = env.info.ctorPrologue;
 955         try {
 956             // Local and anonymous classes have not been entered yet, so we need to
 957             // do it now.
 958             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 959                 enter.classEnter(tree, env);
 960             } else {
 961                 // If this class declaration is part of a class level annotation,
 962                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 963                 // order to simplify later steps and allow for sensible error
 964                 // messages.
 965                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 966                     enter.classEnter(tree, env);
 967             }
 968 
 969             ClassSymbol c = tree.sym;
 970             if (c == null) {
 971                 // exit in case something drastic went wrong during enter.
 972                 result = null;
 973             } else {
 974                 // make sure class has been completed:
 975                 c.complete();
 976 
 977                 // If a class declaration appears in a constructor prologue,
 978                 // that means it's either a local class or an anonymous class.
 979                 // Either way, there is no immediately enclosing instance.
 980                 if (ctorProloguePrev) {
 981                     c.flags_field |= NOOUTERTHIS;
 982                 }
 983                 attribClass(tree.pos(), c);
 984                 result = tree.type = c.type;
 985             }
 986         } finally {
 987             localCacheContext.ifPresent(LocalCacheContext::leave);
 988             env.info.ctorPrologue = ctorProloguePrev;
 989         }
 990     }
 991 
 992     public void visitMethodDef(JCMethodDecl tree) {
 993         MethodSymbol m = tree.sym;
 994         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 995 
 996         Lint lint = env.info.lint.augment(m);
 997         Lint prevLint = chk.setLint(lint);
 998         boolean ctorProloguePrev = env.info.ctorPrologue;
 999         Assert.check(!env.info.ctorPrologue);
1000         MethodSymbol prevMethod = chk.setMethod(m);
1001         try {
1002             deferredLintHandler.flush(tree.pos(), lint);
1003             chk.checkDeprecatedAnnotation(tree.pos(), m);
1004 
1005 
1006             // Create a new environment with local scope
1007             // for attributing the method.
1008             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
1009             localEnv.info.lint = lint;
1010 
1011             attribStats(tree.typarams, localEnv);
1012 
1013             // If we override any other methods, check that we do so properly.
1014             // JLS ???
1015             if (m.isStatic()) {
1016                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1017             } else {
1018                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1019             }
1020             chk.checkOverride(env, tree, m);
1021 
1022             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1023                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1024             }
1025 
1026             // Enter all type parameters into the local method scope.
1027             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1028                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1029 
1030             ClassSymbol owner = env.enclClass.sym;
1031             if ((owner.flags() & ANNOTATION) != 0 &&
1032                     (tree.params.nonEmpty() ||
1033                     tree.recvparam != null))
1034                 log.error(tree.params.nonEmpty() ?
1035                         tree.params.head.pos() :
1036                         tree.recvparam.pos(),
1037                         Errors.IntfAnnotationMembersCantHaveParams);
1038 
1039             // Attribute all value parameters.
1040             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1041                 attribStat(l.head, localEnv);
1042             }
1043 
1044             chk.checkVarargsMethodDecl(localEnv, tree);
1045 
1046             // Check that type parameters are well-formed.
1047             chk.validate(tree.typarams, localEnv);
1048 
1049             // Check that result type is well-formed.
1050             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1051                 chk.validate(tree.restype, localEnv);
1052 
1053             // Check that receiver type is well-formed.
1054             if (tree.recvparam != null) {
1055                 // Use a new environment to check the receiver parameter.
1056                 // Otherwise I get "might not have been initialized" errors.
1057                 // Is there a better way?
1058                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1059                 attribType(tree.recvparam, newEnv);
1060                 chk.validate(tree.recvparam, newEnv);
1061             }
1062 
1063             // Is this method a constructor?
1064             boolean isConstructor = TreeInfo.isConstructor(tree);
1065 
1066             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1067                 // lets find if this method is an accessor
1068                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1069                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1070                 if (recordComponent.isPresent()) {
1071                     // the method is a user defined accessor lets check that everything is fine
1072                     if (!tree.sym.isPublic()) {
1073                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1074                     }
1075                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1076                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1077                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1078                     }
1079                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1080                         log.error(tree,
1081                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1082                     }
1083                     if (!tree.typarams.isEmpty()) {
1084                         log.error(tree,
1085                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1086                     }
1087                     if (tree.sym.isStatic()) {
1088                         log.error(tree,
1089                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1090                     }
1091                 }
1092 
1093                 if (isConstructor) {
1094                     // if this a constructor other than the canonical one
1095                     if ((tree.sym.flags_field & RECORD) == 0) {
1096                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1097                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1098                         }
1099                     } else {
1100                         // but if it is the canonical:
1101 
1102                         /* if user generated, then it shouldn't:
1103                          *     - have an accessibility stricter than that of the record type
1104                          *     - explicitly invoke any other constructor
1105                          */
1106                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1107                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1108                                 log.error(tree,
1109                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1110                                             Errors.InvalidCanonicalConstructorInRecord(
1111                                                 Fragments.Canonical,
1112                                                 env.enclClass.sym.name,
1113                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1114                                             ) :
1115                                             Errors.InvalidCanonicalConstructorInRecord(
1116                                                     Fragments.Canonical,
1117                                                     env.enclClass.sym.name,
1118                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1119                                             )
1120                                 );
1121                             }
1122 
1123                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1124                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1125                                         Fragments.Canonical, env.enclClass.sym.name,
1126                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1127                             }
1128                         }
1129 
1130                         // also we want to check that no type variables have been defined
1131                         if (!tree.typarams.isEmpty()) {
1132                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1133                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1134                         }
1135 
1136                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1137                          * record components
1138                          */
1139                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1140                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1141                         for (JCVariableDecl param: tree.params) {
1142                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1143                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1144                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1145                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1146                                         Fragments.Canonical, env.enclClass.sym.name,
1147                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1148                             }
1149                             recordComponents = recordComponents.tail;
1150                             recordFieldTypes = recordFieldTypes.tail;
1151                         }
1152                     }
1153                 }
1154             }
1155 
1156             // annotation method checks
1157             if ((owner.flags() & ANNOTATION) != 0) {
1158                 // annotation method cannot have throws clause
1159                 if (tree.thrown.nonEmpty()) {
1160                     log.error(tree.thrown.head.pos(),
1161                               Errors.ThrowsNotAllowedInIntfAnnotation);
1162                 }
1163                 // annotation method cannot declare type-parameters
1164                 if (tree.typarams.nonEmpty()) {
1165                     log.error(tree.typarams.head.pos(),
1166                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1167                 }
1168                 // validate annotation method's return type (could be an annotation type)
1169                 chk.validateAnnotationType(tree.restype);
1170                 // ensure that annotation method does not clash with members of Object/Annotation
1171                 chk.validateAnnotationMethod(tree.pos(), m);
1172             }
1173 
1174             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1175                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1176 
1177             if (tree.body == null) {
1178                 // Empty bodies are only allowed for
1179                 // abstract, native, or interface methods, or for methods
1180                 // in a retrofit signature class.
1181                 if (tree.defaultValue != null) {
1182                     if ((owner.flags() & ANNOTATION) == 0)
1183                         log.error(tree.pos(),
1184                                   Errors.DefaultAllowedInIntfAnnotationMember);
1185                 }
1186                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1187                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1188             } else {
1189                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1190                     if ((owner.flags() & INTERFACE) != 0) {
1191                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1192                     } else {
1193                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1194                     }
1195                 } else if ((tree.mods.flags & NATIVE) != 0) {
1196                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1197                 }
1198                 // Add an implicit super() call unless an explicit call to
1199                 // super(...) or this(...) is given
1200                 // or we are compiling class java.lang.Object.
1201                 if (isConstructor && owner.type != syms.objectType) {
1202                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1203                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1204                                 make.Ident(names._super), make.Idents(List.nil())));
1205                         tree.body.stats = tree.body.stats.prepend(supCall);
1206                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1207                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1208                             TreeInfo.hasConstructorCall(tree, names._super)) {
1209                         // enum constructors are not allowed to call super
1210                         // directly, so make sure there aren't any super calls
1211                         // in enum constructors, except in the compiler
1212                         // generated one.
1213                         log.error(tree.body.stats.head.pos(),
1214                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1215                     }
1216                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1217                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1218                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1219                         if (!initParamNames.equals(recordComponentNames)) {
1220                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1221                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1222                         }
1223                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1224                             log.error(tree,
1225                                     Errors.InvalidCanonicalConstructorInRecord(
1226                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1227                                             env.enclClass.sym.name,
1228                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1229                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1230                         }
1231                     }
1232                 }
1233 
1234                 // Attribute all type annotations in the body
1235                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1236                 annotate.flush();
1237 
1238                 // Start of constructor prologue
1239                 localEnv.info.ctorPrologue = isConstructor;
1240 
1241                 // Attribute method body.
1242                 attribStat(tree.body, localEnv);
1243             }
1244 
1245             localEnv.info.scope.leave();
1246             result = tree.type = m.type;
1247         } finally {
1248             chk.setLint(prevLint);
1249             chk.setMethod(prevMethod);
1250             env.info.ctorPrologue = ctorProloguePrev;
1251         }
1252     }
1253 
1254     public void visitVarDef(JCVariableDecl tree) {
1255         // Local variables have not been entered yet, so we need to do it now:
1256         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1257             if (tree.sym != null) {
1258                 // parameters have already been entered
1259                 env.info.scope.enter(tree.sym);
1260             } else {
1261                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1262                     if (tree.init == null) {
1263                         //cannot use 'var' without initializer
1264                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1265                         tree.vartype = make.Erroneous();
1266                     } else {
1267                         Fragment msg = canInferLocalVarType(tree);
1268                         if (msg != null) {
1269                             //cannot use 'var' with initializer which require an explicit target
1270                             //(e.g. lambda, method reference, array initializer).
1271                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1272                             tree.vartype = make.Erroneous();
1273                         }
1274                     }
1275                 }
1276                 try {
1277                     annotate.blockAnnotations();
1278                     memberEnter.memberEnter(tree, env);
1279                 } finally {
1280                     annotate.unblockAnnotations();
1281                 }
1282             }
1283         } else {
1284             if (tree.init != null) {
1285                 // Field initializer expression need to be entered.
1286                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1287                 annotate.flush();
1288             }
1289         }
1290 
1291         VarSymbol v = tree.sym;
1292         Lint lint = env.info.lint.augment(v);
1293         Lint prevLint = chk.setLint(lint);
1294 
1295         // Check that the variable's declared type is well-formed.
1296         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1297                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1298                 (tree.sym.flags() & PARAMETER) != 0;
1299         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1300 
1301         try {
1302             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1303             deferredLintHandler.flush(tree.pos(), lint);
1304             chk.checkDeprecatedAnnotation(tree.pos(), v);
1305 
1306             if (tree.init != null) {
1307                 if ((v.flags_field & FINAL) == 0 ||
1308                     !memberEnter.needsLazyConstValue(tree.init)) {
1309                     // Not a compile-time constant
1310                     // Attribute initializer in a new environment
1311                     // with the declared variable as owner.
1312                     // Check that initializer conforms to variable's declared type.
1313                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1314                     initEnv.info.lint = lint;
1315                     // In order to catch self-references, we set the variable's
1316                     // declaration position to maximal possible value, effectively
1317                     // marking the variable as undefined.
1318                     initEnv.info.enclVar = v;
1319                     attribExpr(tree.init, initEnv, v.type);
1320                     if (tree.isImplicitlyTyped()) {
1321                         //fixup local variable type
1322                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1323                     }
1324                 }
1325                 if (tree.isImplicitlyTyped()) {
1326                     setSyntheticVariableType(tree, v.type);
1327                 }
1328             }
1329             result = tree.type = v.type;
1330             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1331                 if (isNonArgsMethodInObject(v.name)) {
1332                     log.error(tree, Errors.IllegalRecordComponentName(v));
1333                 }
1334             }
1335         }
1336         finally {
1337             chk.setLint(prevLint);
1338         }
1339     }
1340 
1341     private boolean isNonArgsMethodInObject(Name name) {
1342         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1343             if (s.type.getParameterTypes().isEmpty()) {
1344                 return true;
1345             }
1346         }
1347         return false;
1348     }
1349 
1350     Fragment canInferLocalVarType(JCVariableDecl tree) {
1351         LocalInitScanner lis = new LocalInitScanner();
1352         lis.scan(tree.init);
1353         return lis.badInferenceMsg;
1354     }
1355 
1356     static class LocalInitScanner extends TreeScanner {
1357         Fragment badInferenceMsg = null;
1358         boolean needsTarget = true;
1359 
1360         @Override
1361         public void visitNewArray(JCNewArray tree) {
1362             if (tree.elemtype == null && needsTarget) {
1363                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1364             }
1365         }
1366 
1367         @Override
1368         public void visitLambda(JCLambda tree) {
1369             if (needsTarget) {
1370                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1371             }
1372         }
1373 
1374         @Override
1375         public void visitTypeCast(JCTypeCast tree) {
1376             boolean prevNeedsTarget = needsTarget;
1377             try {
1378                 needsTarget = false;
1379                 super.visitTypeCast(tree);
1380             } finally {
1381                 needsTarget = prevNeedsTarget;
1382             }
1383         }
1384 
1385         @Override
1386         public void visitReference(JCMemberReference tree) {
1387             if (needsTarget) {
1388                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1389             }
1390         }
1391 
1392         @Override
1393         public void visitNewClass(JCNewClass tree) {
1394             boolean prevNeedsTarget = needsTarget;
1395             try {
1396                 needsTarget = false;
1397                 super.visitNewClass(tree);
1398             } finally {
1399                 needsTarget = prevNeedsTarget;
1400             }
1401         }
1402 
1403         @Override
1404         public void visitApply(JCMethodInvocation tree) {
1405             boolean prevNeedsTarget = needsTarget;
1406             try {
1407                 needsTarget = false;
1408                 super.visitApply(tree);
1409             } finally {
1410                 needsTarget = prevNeedsTarget;
1411             }
1412         }
1413     }
1414 
1415     public void visitSkip(JCSkip tree) {
1416         result = null;
1417     }
1418 
1419     public void visitBlock(JCBlock tree) {
1420         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1421             // Block is a static or instance initializer;
1422             // let the owner of the environment be a freshly
1423             // created BLOCK-method.
1424             Symbol fakeOwner =
1425                 new MethodSymbol(tree.flags | BLOCK |
1426                     env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1427                     env.info.scope.owner);
1428             final Env<AttrContext> localEnv =
1429                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1430 
1431             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1432             // Attribute all type annotations in the block
1433             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1434             annotate.flush();
1435             attribStats(tree.stats, localEnv);
1436 
1437             {
1438                 // Store init and clinit type annotations with the ClassSymbol
1439                 // to allow output in Gen.normalizeDefs.
1440                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1441                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1442                 if ((tree.flags & STATIC) != 0) {
1443                     cs.appendClassInitTypeAttributes(tas);
1444                 } else {
1445                     cs.appendInitTypeAttributes(tas);
1446                 }
1447             }
1448         } else {
1449             // Create a new local environment with a local scope.
1450             Env<AttrContext> localEnv =
1451                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1452             try {
1453                 attribStats(tree.stats, localEnv);
1454             } finally {
1455                 localEnv.info.scope.leave();
1456             }
1457         }
1458         result = null;
1459     }
1460 
1461     public void visitDoLoop(JCDoWhileLoop tree) {
1462         attribStat(tree.body, env.dup(tree));
1463         attribExpr(tree.cond, env, syms.booleanType);
1464         handleLoopConditionBindings(matchBindings, tree, tree.body);
1465         result = null;
1466     }
1467 
1468     public void visitWhileLoop(JCWhileLoop tree) {
1469         attribExpr(tree.cond, env, syms.booleanType);
1470         MatchBindings condBindings = matchBindings;
1471         // include condition's bindings when true in the body:
1472         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1473         try {
1474             attribStat(tree.body, whileEnv.dup(tree));
1475         } finally {
1476             whileEnv.info.scope.leave();
1477         }
1478         handleLoopConditionBindings(condBindings, tree, tree.body);
1479         result = null;
1480     }
1481 
1482     public void visitForLoop(JCForLoop tree) {
1483         Env<AttrContext> loopEnv =
1484             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1485         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1486         try {
1487             attribStats(tree.init, loopEnv);
1488             if (tree.cond != null) {
1489                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1490                 // include condition's bindings when true in the body and step:
1491                 condBindings = matchBindings;
1492             }
1493             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1494             try {
1495                 bodyEnv.tree = tree; // before, we were not in loop!
1496                 attribStats(tree.step, bodyEnv);
1497                 attribStat(tree.body, bodyEnv);
1498             } finally {
1499                 bodyEnv.info.scope.leave();
1500             }
1501             result = null;
1502         }
1503         finally {
1504             loopEnv.info.scope.leave();
1505         }
1506         handleLoopConditionBindings(condBindings, tree, tree.body);
1507     }
1508 
1509     /**
1510      * Include condition's bindings when false after the loop, if cannot get out of the loop
1511      */
1512     private void handleLoopConditionBindings(MatchBindings condBindings,
1513                                              JCStatement loop,
1514                                              JCStatement loopBody) {
1515         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1516             !breaksTo(env, loop, loopBody)) {
1517             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1518         }
1519     }
1520 
1521     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1522         preFlow(body);
1523         return flow.breaksToTree(env, loop, body, make);
1524     }
1525 
1526     /**
1527      * Add given bindings to the current scope, unless there's a break to
1528      * an immediately enclosing labeled statement.
1529      */
1530     private void addBindings2Scope(JCStatement introducingStatement,
1531                                    List<BindingSymbol> bindings) {
1532         if (bindings.isEmpty()) {
1533             return ;
1534         }
1535 
1536         var searchEnv = env;
1537         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1538                labeled.body == introducingStatement) {
1539             if (breaksTo(env, labeled, labeled.body)) {
1540                 //breaking to an immediately enclosing labeled statement
1541                 return ;
1542             }
1543             searchEnv = searchEnv.next;
1544             introducingStatement = labeled;
1545         }
1546 
1547         //include condition's body when false after the while, if cannot get out of the loop
1548         bindings.forEach(env.info.scope::enter);
1549         bindings.forEach(BindingSymbol::preserveBinding);
1550     }
1551 
1552     public void visitForeachLoop(JCEnhancedForLoop tree) {
1553         Env<AttrContext> loopEnv =
1554             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1555         try {
1556             //the Formal Parameter of a for-each loop is not in the scope when
1557             //attributing the for-each expression; we mimic this by attributing
1558             //the for-each expression first (against original scope).
1559             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1560             chk.checkNonVoid(tree.pos(), exprType);
1561             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1562             if (elemtype == null) {
1563                 // or perhaps expr implements Iterable<T>?
1564                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1565                 if (base == null) {
1566                     log.error(tree.expr.pos(),
1567                               Errors.ForeachNotApplicableToType(exprType,
1568                                                                 Fragments.TypeReqArrayOrIterable));
1569                     elemtype = types.createErrorType(exprType);
1570                 } else {
1571                     List<Type> iterableParams = base.allparams();
1572                     elemtype = iterableParams.isEmpty()
1573                         ? syms.objectType
1574                         : types.wildUpperBound(iterableParams.head);
1575 
1576                     // Check the return type of the method iterator().
1577                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1578                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1579                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1580                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1581                         log.error(tree.pos(),
1582                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1583                     }
1584                 }
1585             }
1586             if (tree.var.isImplicitlyTyped()) {
1587                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1588                 setSyntheticVariableType(tree.var, inferredType);
1589             }
1590             attribStat(tree.var, loopEnv);
1591             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1592             loopEnv.tree = tree; // before, we were not in loop!
1593             attribStat(tree.body, loopEnv);
1594             result = null;
1595         }
1596         finally {
1597             loopEnv.info.scope.leave();
1598         }
1599     }
1600 
1601     public void visitLabelled(JCLabeledStatement tree) {
1602         // Check that label is not used in an enclosing statement
1603         Env<AttrContext> env1 = env;
1604         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1605             if (env1.tree.hasTag(LABELLED) &&
1606                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1607                 log.error(tree.pos(),
1608                           Errors.LabelAlreadyInUse(tree.label));
1609                 break;
1610             }
1611             env1 = env1.next;
1612         }
1613 
1614         attribStat(tree.body, env.dup(tree));
1615         result = null;
1616     }
1617 
1618     public void visitSwitch(JCSwitch tree) {
1619         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1620             attribStats(c.stats, caseEnv);
1621         });
1622         result = null;
1623     }
1624 
1625     public void visitSwitchExpression(JCSwitchExpression tree) {
1626         boolean wrongContext = false;
1627 
1628         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1629                 PolyKind.STANDALONE : PolyKind.POLY;
1630 
1631         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1632             //this means we are returning a poly conditional from void-compatible lambda expression
1633             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1634             resultInfo = recoveryInfo;
1635             wrongContext = true;
1636         }
1637 
1638         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1639                 unknownExprInfo :
1640                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1641 
1642         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1643         ListBuffer<Type> caseTypes = new ListBuffer<>();
1644 
1645         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1646             caseEnv.info.yieldResult = condInfo;
1647             attribStats(c.stats, caseEnv);
1648             new TreeScanner() {
1649                 @Override
1650                 public void visitYield(JCYield brk) {
1651                     if (brk.target == tree) {
1652                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1653                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1654                     }
1655                     super.visitYield(brk);
1656                 }
1657 
1658                 @Override public void visitClassDef(JCClassDecl tree) {}
1659                 @Override public void visitLambda(JCLambda tree) {}
1660             }.scan(c.stats);
1661         });
1662 
1663         if (tree.cases.isEmpty()) {
1664             log.error(tree.pos(),
1665                       Errors.SwitchExpressionEmpty);
1666         } else if (caseTypes.isEmpty()) {
1667             log.error(tree.pos(),
1668                       Errors.SwitchExpressionNoResultExpressions);
1669         }
1670 
1671         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1672 
1673         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1674     }
1675     //where:
1676         CheckContext switchExpressionContext(CheckContext checkContext) {
1677             return new Check.NestedCheckContext(checkContext) {
1678                 //this will use enclosing check context to check compatibility of
1679                 //subexpression against target type; if we are in a method check context,
1680                 //depending on whether boxing is allowed, we could have incompatibilities
1681                 @Override
1682                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1683                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1684                 }
1685             };
1686         }
1687 
1688     private void handleSwitch(JCTree switchTree,
1689                               JCExpression selector,
1690                               List<JCCase> cases,
1691                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1692         Type seltype = attribExpr(selector, env);
1693 
1694         Env<AttrContext> switchEnv =
1695             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1696 
1697         try {
1698             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1699             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1700             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1701             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1702             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1703             boolean patternSwitch;
1704             if (seltype.isPrimitive() && !intSwitch) {
1705                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1706                 patternSwitch = true;
1707             }
1708             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1709                 !intSwitch) {
1710                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1711                 patternSwitch = true;
1712             } else {
1713                 patternSwitch = cases.stream()
1714                                      .flatMap(c -> c.labels.stream())
1715                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1716                                                     TreeInfo.isNullCaseLabel(l));
1717             }
1718 
1719             // Attribute all cases and
1720             // check that there are no duplicate case labels or default clauses.
1721             Set<Object> constants = new HashSet<>(); // The set of case constants.
1722             boolean hasDefault = false;           // Is there a default label?
1723             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1724             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1725             boolean hasNullPattern = false;       // Is there a null pattern?
1726             CaseTree.CaseKind caseKind = null;
1727             boolean wasError = false;
1728             JCCaseLabel unconditionalCaseLabel = null;
1729             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1730                 JCCase c = l.head;
1731                 if (caseKind == null) {
1732                     caseKind = c.caseKind;
1733                 } else if (caseKind != c.caseKind && !wasError) {
1734                     log.error(c.pos(),
1735                               Errors.SwitchMixingCaseTypes);
1736                     wasError = true;
1737                 }
1738                 MatchBindings currentBindings = null;
1739                 MatchBindings guardBindings = null;
1740                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1741                     JCCaseLabel label = labels.head;
1742                     if (label instanceof JCConstantCaseLabel constLabel) {
1743                         JCExpression expr = constLabel.expr;
1744                         if (TreeInfo.isNull(expr)) {
1745                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1746                             if (hasNullPattern) {
1747                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1748                             }
1749                             hasNullPattern = true;
1750                             attribExpr(expr, switchEnv, seltype);
1751                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1752                         } else if (enumSwitch) {
1753                             Symbol sym = enumConstant(expr, seltype);
1754                             if (sym == null) {
1755                                 if (allowPatternSwitch) {
1756                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1757                                     Symbol enumSym = TreeInfo.symbol(expr);
1758                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1759                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1760                                     } else if (!constants.add(enumSym)) {
1761                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1762                                     }
1763                                 } else {
1764                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1765                                 }
1766                             } else if (!constants.add(sym)) {
1767                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1768                             }
1769                         } else if (errorEnumSwitch) {
1770                             //error recovery: the selector is erroneous, and all the case labels
1771                             //are identifiers. This could be an enum switch - don't report resolve
1772                             //error for the case label:
1773                             var prevResolveHelper = rs.basicLogResolveHelper;
1774                             try {
1775                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1776                                 attribExpr(expr, switchEnv, seltype);
1777                             } finally {
1778                                 rs.basicLogResolveHelper = prevResolveHelper;
1779                             }
1780                         } else {
1781                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1782                             if (!pattype.hasTag(ERROR)) {
1783                                 if (pattype.constValue() == null) {
1784                                     Symbol s = TreeInfo.symbol(expr);
1785                                     if (s != null && s.kind == TYP) {
1786                                         log.error(expr.pos(),
1787                                                   Errors.PatternExpected);
1788                                     } else if (s == null || !s.isEnum()) {
1789                                         log.error(expr.pos(),
1790                                                   (stringSwitch ? Errors.StringConstReq
1791                                                                 : intSwitch ? Errors.ConstExprReq
1792                                                                             : Errors.PatternOrEnumReq));
1793                                     } else if (!constants.add(s)) {
1794                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1795                                     }
1796                                 }
1797                                 else {
1798                                     if (!stringSwitch && !intSwitch &&
1799                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1800                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1801                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1802                                     } else if (!constants.add(pattype.constValue())) {
1803                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1804                                     }
1805                                 }
1806                             }
1807                         }
1808                     } else if (label instanceof JCDefaultCaseLabel def) {
1809                         if (hasDefault) {
1810                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1811                         } else if (hasUnconditionalPattern) {
1812                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1813                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1814                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1815                         }
1816                         hasDefault = true;
1817                         matchBindings = MatchBindingsComputer.EMPTY;
1818                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1819                         //pattern
1820                         JCPattern pat = patternlabel.pat;
1821                         attribExpr(pat, switchEnv, seltype);
1822                         Type primaryType = TreeInfo.primaryPatternType(pat);
1823 
1824                         if (primaryType.isPrimitive()) {
1825                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1826                         } else if (!primaryType.hasTag(TYPEVAR)) {
1827                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1828                         }
1829                         checkCastablePattern(pat.pos(), seltype, primaryType);
1830                         Type patternType = types.erasure(primaryType);
1831                         JCExpression guard = c.guard;
1832                         if (guardBindings == null && guard != null) {
1833                             MatchBindings afterPattern = matchBindings;
1834                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1835                             try {
1836                                 attribExpr(guard, bodyEnv, syms.booleanType);
1837                             } finally {
1838                                 bodyEnv.info.scope.leave();
1839                             }
1840 
1841                             guardBindings = matchBindings;
1842                             matchBindings = afterPattern;
1843 
1844                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1845                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1846                             }
1847                         }
1848                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1849                         boolean unconditional =
1850                                 unguarded &&
1851                                 !patternType.isErroneous() &&
1852                                 types.isUnconditionallyExact(seltype, patternType);
1853                         if (unconditional) {
1854                             if (hasUnconditionalPattern) {
1855                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1856                             } else if (hasDefault) {
1857                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1858                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1859                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1860                             }
1861                             hasUnconditionalPattern = true;
1862                             unconditionalCaseLabel = label;
1863                         }
1864                         lastPatternErroneous = patternType.isErroneous();
1865                     } else {
1866                         Assert.error();
1867                     }
1868                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1869                 }
1870 
1871                 if (guardBindings != null) {
1872                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1873                 }
1874 
1875                 Env<AttrContext> caseEnv =
1876                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1877                 try {
1878                     attribCase.accept(c, caseEnv);
1879                 } finally {
1880                     caseEnv.info.scope.leave();
1881                 }
1882                 addVars(c.stats, switchEnv.info.scope);
1883 
1884                 preFlow(c);
1885                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1886             }
1887             if (patternSwitch) {
1888                 chk.checkSwitchCaseStructure(cases);
1889                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1890             }
1891             if (switchTree.hasTag(SWITCH)) {
1892                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1893                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1894                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1895             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1896                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1897                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1898                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1899             } else {
1900                 Assert.error(switchTree.getTag().name());
1901             }
1902         } finally {
1903             switchEnv.info.scope.leave();
1904         }
1905     }
1906     // where
1907         private ResultInfo caseLabelResultInfo(Type seltype) {
1908             return new ResultInfo(KindSelector.VAL_TYP,
1909                                   !seltype.hasTag(ERROR) ? seltype
1910                                                          : Type.noType);
1911         }
1912         /** Add any variables defined in stats to the switch scope. */
1913         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1914             for (;stats.nonEmpty(); stats = stats.tail) {
1915                 JCTree stat = stats.head;
1916                 if (stat.hasTag(VARDEF))
1917                     switchScope.enter(((JCVariableDecl) stat).sym);
1918             }
1919         }
1920     // where
1921     /** Return the selected enumeration constant symbol, or null. */
1922     private Symbol enumConstant(JCTree tree, Type enumType) {
1923         if (tree.hasTag(IDENT)) {
1924             JCIdent ident = (JCIdent)tree;
1925             Name name = ident.name;
1926             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1927                 if (sym.kind == VAR) {
1928                     Symbol s = ident.sym = sym;
1929                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1930                     ident.type = s.type;
1931                     return ((s.flags_field & Flags.ENUM) == 0)
1932                         ? null : s;
1933                 }
1934             }
1935         }
1936         return null;
1937     }
1938 
1939     public void visitSynchronized(JCSynchronized tree) {
1940         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1941         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {
1942             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1943         }
1944         attribStat(tree.body, env);
1945         result = null;
1946     }
1947         // where
1948         private boolean isValueBased(Type t) {
1949             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1950         }
1951 
1952 
1953     public void visitTry(JCTry tree) {
1954         // Create a new local environment with a local
1955         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1956         try {
1957             boolean isTryWithResource = tree.resources.nonEmpty();
1958             // Create a nested environment for attributing the try block if needed
1959             Env<AttrContext> tryEnv = isTryWithResource ?
1960                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1961                 localEnv;
1962             try {
1963                 // Attribute resource declarations
1964                 for (JCTree resource : tree.resources) {
1965                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1966                         @Override
1967                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1968                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1969                         }
1970                     };
1971                     ResultInfo twrResult =
1972                         new ResultInfo(KindSelector.VAR,
1973                                        syms.autoCloseableType,
1974                                        twrContext);
1975                     if (resource.hasTag(VARDEF)) {
1976                         attribStat(resource, tryEnv);
1977                         twrResult.check(resource, resource.type);
1978 
1979                         //check that resource type cannot throw InterruptedException
1980                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1981 
1982                         VarSymbol var = ((JCVariableDecl) resource).sym;
1983 
1984                         var.flags_field |= Flags.FINAL;
1985                         var.setData(ElementKind.RESOURCE_VARIABLE);
1986                     } else {
1987                         attribTree(resource, tryEnv, twrResult);
1988                     }
1989                 }
1990                 // Attribute body
1991                 attribStat(tree.body, tryEnv);
1992             } finally {
1993                 if (isTryWithResource)
1994                     tryEnv.info.scope.leave();
1995             }
1996 
1997             // Attribute catch clauses
1998             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1999                 JCCatch c = l.head;
2000                 Env<AttrContext> catchEnv =
2001                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2002                 try {
2003                     Type ctype = attribStat(c.param, catchEnv);
2004                     if (TreeInfo.isMultiCatch(c)) {
2005                         //multi-catch parameter is implicitly marked as final
2006                         c.param.sym.flags_field |= FINAL | UNION;
2007                     }
2008                     if (c.param.sym.kind == VAR) {
2009                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2010                     }
2011                     chk.checkType(c.param.vartype.pos(),
2012                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2013                                   syms.throwableType);
2014                     attribStat(c.body, catchEnv);
2015                 } finally {
2016                     catchEnv.info.scope.leave();
2017                 }
2018             }
2019 
2020             // Attribute finalizer
2021             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2022             result = null;
2023         }
2024         finally {
2025             localEnv.info.scope.leave();
2026         }
2027     }
2028 
2029     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2030         if (!resource.isErroneous() &&
2031             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2032             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2033             Symbol close = syms.noSymbol;
2034             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
2035             try {
2036                 close = rs.resolveQualifiedMethod(pos,
2037                         env,
2038                         types.skipTypeVars(resource, false),
2039                         names.close,
2040                         List.nil(),
2041                         List.nil());
2042             }
2043             finally {
2044                 log.popDiagnosticHandler(discardHandler);
2045             }
2046             if (close.kind == MTH &&
2047                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2048                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2049                     env.info.lint.isEnabled(LintCategory.TRY)) {
2050                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2051             }
2052         }
2053     }
2054 
2055     public void visitConditional(JCConditional tree) {
2056         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2057         MatchBindings condBindings = matchBindings;
2058 
2059         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2060                 isBooleanOrNumeric(env, tree)) ?
2061                 PolyKind.STANDALONE : PolyKind.POLY;
2062 
2063         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2064             //this means we are returning a poly conditional from void-compatible lambda expression
2065             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2066             result = tree.type = types.createErrorType(resultInfo.pt);
2067             return;
2068         }
2069 
2070         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2071                 unknownExprInfo :
2072                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2073 
2074 
2075         // x ? y : z
2076         // include x's bindings when true in y
2077         // include x's bindings when false in z
2078 
2079         Type truetype;
2080         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2081         try {
2082             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2083         } finally {
2084             trueEnv.info.scope.leave();
2085         }
2086 
2087         MatchBindings trueBindings = matchBindings;
2088 
2089         Type falsetype;
2090         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2091         try {
2092             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2093         } finally {
2094             falseEnv.info.scope.leave();
2095         }
2096 
2097         MatchBindings falseBindings = matchBindings;
2098 
2099         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2100                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2101                          List.of(truetype, falsetype)) : pt();
2102         if (condtype.constValue() != null &&
2103                 truetype.constValue() != null &&
2104                 falsetype.constValue() != null &&
2105                 !owntype.hasTag(NONE)) {
2106             //constant folding
2107             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2108         }
2109         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2110         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2111     }
2112     //where
2113         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2114             switch (tree.getTag()) {
2115                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2116                               ((JCLiteral)tree).typetag == BOOLEAN ||
2117                               ((JCLiteral)tree).typetag == BOT;
2118                 case LAMBDA: case REFERENCE: return false;
2119                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2120                 case CONDEXPR:
2121                     JCConditional condTree = (JCConditional)tree;
2122                     return isBooleanOrNumeric(env, condTree.truepart) &&
2123                             isBooleanOrNumeric(env, condTree.falsepart);
2124                 case APPLY:
2125                     JCMethodInvocation speculativeMethodTree =
2126                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2127                                     tree, env, unknownExprInfo,
2128                                     argumentAttr.withLocalCacheContext());
2129                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2130                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2131                             env.enclClass.type :
2132                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2133                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2134                     return primitiveOrBoxed(owntype);
2135                 case NEWCLASS:
2136                     JCExpression className =
2137                             removeClassParams.translate(((JCNewClass)tree).clazz);
2138                     JCExpression speculativeNewClassTree =
2139                             (JCExpression)deferredAttr.attribSpeculative(
2140                                     className, env, unknownTypeInfo,
2141                                     argumentAttr.withLocalCacheContext());
2142                     return primitiveOrBoxed(speculativeNewClassTree.type);
2143                 default:
2144                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2145                             argumentAttr.withLocalCacheContext()).type;
2146                     return primitiveOrBoxed(speculativeType);
2147             }
2148         }
2149         //where
2150             boolean primitiveOrBoxed(Type t) {
2151                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2152             }
2153 
2154             TreeTranslator removeClassParams = new TreeTranslator() {
2155                 @Override
2156                 public void visitTypeApply(JCTypeApply tree) {
2157                     result = translate(tree.clazz);
2158                 }
2159             };
2160 
2161         CheckContext conditionalContext(CheckContext checkContext) {
2162             return new Check.NestedCheckContext(checkContext) {
2163                 //this will use enclosing check context to check compatibility of
2164                 //subexpression against target type; if we are in a method check context,
2165                 //depending on whether boxing is allowed, we could have incompatibilities
2166                 @Override
2167                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2168                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2169                 }
2170             };
2171         }
2172 
2173         /** Compute the type of a conditional expression, after
2174          *  checking that it exists.  See JLS 15.25. Does not take into
2175          *  account the special case where condition and both arms
2176          *  are constants.
2177          *
2178          *  @param pos      The source position to be used for error
2179          *                  diagnostics.
2180          *  @param thentype The type of the expression's then-part.
2181          *  @param elsetype The type of the expression's else-part.
2182          */
2183         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2184             if (condTypes.isEmpty()) {
2185                 return syms.objectType; //TODO: how to handle?
2186             }
2187             Type first = condTypes.head;
2188             // If same type, that is the result
2189             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2190                 return first.baseType();
2191 
2192             List<Type> unboxedTypes = condTypes.stream()
2193                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2194                                                .collect(List.collector());
2195 
2196             // Otherwise, if both arms can be converted to a numeric
2197             // type, return the least numeric type that fits both arms
2198             // (i.e. return larger of the two, or return int if one
2199             // arm is short, the other is char).
2200             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2201                 // If one arm has an integer subrange type (i.e., byte,
2202                 // short, or char), and the other is an integer constant
2203                 // that fits into the subrange, return the subrange type.
2204                 for (Type type : unboxedTypes) {
2205                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2206                         continue;
2207                     }
2208                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2209                         return type.baseType();
2210                 }
2211 
2212                 for (TypeTag tag : primitiveTags) {
2213                     Type candidate = syms.typeOfTag[tag.ordinal()];
2214                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2215                         return candidate;
2216                     }
2217                 }
2218             }
2219 
2220             // Those were all the cases that could result in a primitive
2221             condTypes = condTypes.stream()
2222                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2223                                  .collect(List.collector());
2224 
2225             for (Type type : condTypes) {
2226                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2227                     return type.baseType();
2228             }
2229 
2230             Iterator<DiagnosticPosition> posIt = positions.iterator();
2231 
2232             condTypes = condTypes.stream()
2233                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2234                                  .collect(List.collector());
2235 
2236             // both are known to be reference types.  The result is
2237             // lub(thentype,elsetype). This cannot fail, as it will
2238             // always be possible to infer "Object" if nothing better.
2239             return types.lub(condTypes.stream()
2240                         .map(t -> t.baseType())
2241                         .filter(t -> !t.hasTag(BOT))
2242                         .collect(List.collector()));
2243         }
2244 
2245     static final TypeTag[] primitiveTags = new TypeTag[]{
2246         BYTE,
2247         CHAR,
2248         SHORT,
2249         INT,
2250         LONG,
2251         FLOAT,
2252         DOUBLE,
2253         BOOLEAN,
2254     };
2255 
2256     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2257         return bindingEnv(env, env.tree, bindings);
2258     }
2259 
2260     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2261         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2262         bindings.forEach(env1.info.scope::enter);
2263         return env1;
2264     }
2265 
2266     public void visitIf(JCIf tree) {
2267         attribExpr(tree.cond, env, syms.booleanType);
2268 
2269         // if (x) { y } [ else z ]
2270         // include x's bindings when true in y
2271         // include x's bindings when false in z
2272 
2273         MatchBindings condBindings = matchBindings;
2274         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2275 
2276         try {
2277             attribStat(tree.thenpart, thenEnv);
2278         } finally {
2279             thenEnv.info.scope.leave();
2280         }
2281 
2282         preFlow(tree.thenpart);
2283         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2284         boolean aliveAfterElse;
2285 
2286         if (tree.elsepart != null) {
2287             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2288             try {
2289                 attribStat(tree.elsepart, elseEnv);
2290             } finally {
2291                 elseEnv.info.scope.leave();
2292             }
2293             preFlow(tree.elsepart);
2294             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2295         } else {
2296             aliveAfterElse = true;
2297         }
2298 
2299         chk.checkEmptyIf(tree);
2300 
2301         List<BindingSymbol> afterIfBindings = List.nil();
2302 
2303         if (aliveAfterThen && !aliveAfterElse) {
2304             afterIfBindings = condBindings.bindingsWhenTrue;
2305         } else if (aliveAfterElse && !aliveAfterThen) {
2306             afterIfBindings = condBindings.bindingsWhenFalse;
2307         }
2308 
2309         addBindings2Scope(tree, afterIfBindings);
2310 
2311         result = null;
2312     }
2313 
2314         void preFlow(JCTree tree) {
2315             attrRecover.doRecovery();
2316             new PostAttrAnalyzer() {
2317                 @Override
2318                 public void scan(JCTree tree) {
2319                     if (tree == null ||
2320                             (tree.type != null &&
2321                             tree.type == Type.stuckType)) {
2322                         //don't touch stuck expressions!
2323                         return;
2324                     }
2325                     super.scan(tree);
2326                 }
2327 
2328                 @Override
2329                 public void visitClassDef(JCClassDecl that) {
2330                     if (that.sym != null) {
2331                         // Method preFlow shouldn't visit class definitions
2332                         // that have not been entered and attributed.
2333                         // See JDK-8254557 and JDK-8203277 for more details.
2334                         super.visitClassDef(that);
2335                     }
2336                 }
2337 
2338                 @Override
2339                 public void visitLambda(JCLambda that) {
2340                     if (that.type != null) {
2341                         // Method preFlow shouldn't visit lambda expressions
2342                         // that have not been entered and attributed.
2343                         // See JDK-8254557 and JDK-8203277 for more details.
2344                         super.visitLambda(that);
2345                     }
2346                 }
2347             }.scan(tree);
2348         }
2349 
2350     public void visitExec(JCExpressionStatement tree) {
2351         //a fresh environment is required for 292 inference to work properly ---
2352         //see Infer.instantiatePolymorphicSignatureInstance()
2353         Env<AttrContext> localEnv = env.dup(tree);
2354         attribExpr(tree.expr, localEnv);
2355         result = null;
2356     }
2357 
2358     public void visitBreak(JCBreak tree) {
2359         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2360         result = null;
2361     }
2362 
2363     public void visitYield(JCYield tree) {
2364         if (env.info.yieldResult != null) {
2365             attribTree(tree.value, env, env.info.yieldResult);
2366             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2367         } else {
2368             log.error(tree.pos(), tree.value.hasTag(PARENS)
2369                     ? Errors.NoSwitchExpressionQualify
2370                     : Errors.NoSwitchExpression);
2371             attribTree(tree.value, env, unknownExprInfo);
2372         }
2373         result = null;
2374     }
2375 
2376     public void visitContinue(JCContinue tree) {
2377         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2378         result = null;
2379     }
2380     //where
2381         /** Return the target of a break, continue or yield statement,
2382          *  if it exists, report an error if not.
2383          *  Note: The target of a labelled break or continue is the
2384          *  (non-labelled) statement tree referred to by the label,
2385          *  not the tree representing the labelled statement itself.
2386          *
2387          *  @param pos     The position to be used for error diagnostics
2388          *  @param tag     The tag of the jump statement. This is either
2389          *                 Tree.BREAK or Tree.CONTINUE.
2390          *  @param label   The label of the jump statement, or null if no
2391          *                 label is given.
2392          *  @param env     The environment current at the jump statement.
2393          */
2394         private JCTree findJumpTarget(DiagnosticPosition pos,
2395                                                    JCTree.Tag tag,
2396                                                    Name label,
2397                                                    Env<AttrContext> env) {
2398             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2399 
2400             if (jumpTarget.snd != null) {
2401                 log.error(pos, jumpTarget.snd);
2402             }
2403 
2404             return jumpTarget.fst;
2405         }
2406         /** Return the target of a break or continue statement, if it exists,
2407          *  report an error if not.
2408          *  Note: The target of a labelled break or continue is the
2409          *  (non-labelled) statement tree referred to by the label,
2410          *  not the tree representing the labelled statement itself.
2411          *
2412          *  @param tag     The tag of the jump statement. This is either
2413          *                 Tree.BREAK or Tree.CONTINUE.
2414          *  @param label   The label of the jump statement, or null if no
2415          *                 label is given.
2416          *  @param env     The environment current at the jump statement.
2417          */
2418         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2419                                                                        Name label,
2420                                                                        Env<AttrContext> env) {
2421             // Search environments outwards from the point of jump.
2422             Env<AttrContext> env1 = env;
2423             JCDiagnostic.Error pendingError = null;
2424             LOOP:
2425             while (env1 != null) {
2426                 switch (env1.tree.getTag()) {
2427                     case LABELLED:
2428                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2429                         if (label == labelled.label) {
2430                             // If jump is a continue, check that target is a loop.
2431                             if (tag == CONTINUE) {
2432                                 if (!labelled.body.hasTag(DOLOOP) &&
2433                                         !labelled.body.hasTag(WHILELOOP) &&
2434                                         !labelled.body.hasTag(FORLOOP) &&
2435                                         !labelled.body.hasTag(FOREACHLOOP)) {
2436                                     pendingError = Errors.NotLoopLabel(label);
2437                                 }
2438                                 // Found labelled statement target, now go inwards
2439                                 // to next non-labelled tree.
2440                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2441                             } else {
2442                                 return Pair.of(labelled, pendingError);
2443                             }
2444                         }
2445                         break;
2446                     case DOLOOP:
2447                     case WHILELOOP:
2448                     case FORLOOP:
2449                     case FOREACHLOOP:
2450                         if (label == null) return Pair.of(env1.tree, pendingError);
2451                         break;
2452                     case SWITCH:
2453                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2454                         break;
2455                     case SWITCH_EXPRESSION:
2456                         if (tag == YIELD) {
2457                             return Pair.of(env1.tree, null);
2458                         } else if (tag == BREAK) {
2459                             pendingError = Errors.BreakOutsideSwitchExpression;
2460                         } else {
2461                             pendingError = Errors.ContinueOutsideSwitchExpression;
2462                         }
2463                         break;
2464                     case LAMBDA:
2465                     case METHODDEF:
2466                     case CLASSDEF:
2467                         break LOOP;
2468                     default:
2469                 }
2470                 env1 = env1.next;
2471             }
2472             if (label != null)
2473                 return Pair.of(null, Errors.UndefLabel(label));
2474             else if (pendingError != null)
2475                 return Pair.of(null, pendingError);
2476             else if (tag == CONTINUE)
2477                 return Pair.of(null, Errors.ContOutsideLoop);
2478             else
2479                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2480         }
2481 
2482     public void visitReturn(JCReturn tree) {
2483         // Check that there is an enclosing method which is
2484         // nested within than the enclosing class.
2485         if (env.info.returnResult == null) {
2486             log.error(tree.pos(), Errors.RetOutsideMeth);
2487         } else if (env.info.yieldResult != null) {
2488             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2489             if (tree.expr != null) {
2490                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2491             }
2492         } else if (!env.info.isLambda &&
2493                 !env.info.isNewClass &&
2494                 env.enclMethod != null &&
2495                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2496             log.error(env.enclMethod,
2497                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2498         } else {
2499             // Attribute return expression, if it exists, and check that
2500             // it conforms to result type of enclosing method.
2501             if (tree.expr != null) {
2502                 if (env.info.returnResult.pt.hasTag(VOID)) {
2503                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2504                               diags.fragment(Fragments.UnexpectedRetVal));
2505                 }
2506                 attribTree(tree.expr, env, env.info.returnResult);
2507             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2508                     !env.info.returnResult.pt.hasTag(NONE)) {
2509                 env.info.returnResult.checkContext.report(tree.pos(),
2510                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2511             }
2512         }
2513         result = null;
2514     }
2515 
2516     public void visitThrow(JCThrow tree) {
2517         Type owntype = attribExpr(tree.expr, env, Type.noType);
2518         chk.checkType(tree, owntype, syms.throwableType);
2519         result = null;
2520     }
2521 
2522     public void visitAssert(JCAssert tree) {
2523         attribExpr(tree.cond, env, syms.booleanType);
2524         if (tree.detail != null) {
2525             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2526         }
2527         result = null;
2528     }
2529 
2530      /** Visitor method for method invocations.
2531      *  NOTE: The method part of an application will have in its type field
2532      *        the return type of the method, not the method's type itself!
2533      */
2534     public void visitApply(JCMethodInvocation tree) {
2535         // The local environment of a method application is
2536         // a new environment nested in the current one.
2537         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2538 
2539         // The types of the actual method arguments.
2540         List<Type> argtypes;
2541 
2542         // The types of the actual method type arguments.
2543         List<Type> typeargtypes = null;
2544 
2545         Name methName = TreeInfo.name(tree.meth);
2546 
2547         boolean isConstructorCall =
2548             methName == names._this || methName == names._super;
2549 
2550         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2551         if (isConstructorCall) {
2552 
2553             // Attribute arguments, yielding list of argument types.
2554             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2555             argtypes = argtypesBuf.toList();
2556             typeargtypes = attribTypes(tree.typeargs, localEnv);
2557 
2558             // Done with this()/super() parameters. End of constructor prologue.
2559             env.info.ctorPrologue = false;
2560 
2561             // Variable `site' points to the class in which the called
2562             // constructor is defined.
2563             Type site = env.enclClass.sym.type;
2564             if (methName == names._super) {
2565                 if (site == syms.objectType) {
2566                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2567                     site = types.createErrorType(syms.objectType);
2568                 } else {
2569                     site = types.supertype(site);
2570                 }
2571             }
2572 
2573             if (site.hasTag(CLASS)) {
2574                 Type encl = site.getEnclosingType();
2575                 while (encl != null && encl.hasTag(TYPEVAR))
2576                     encl = encl.getUpperBound();
2577                 if (encl.hasTag(CLASS)) {
2578                     // we are calling a nested class
2579 
2580                     if (tree.meth.hasTag(SELECT)) {
2581                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2582 
2583                         // We are seeing a prefixed call, of the form
2584                         //     <expr>.super(...).
2585                         // Check that the prefix expression conforms
2586                         // to the outer instance type of the class.
2587                         chk.checkRefType(qualifier.pos(),
2588                                          attribExpr(qualifier, localEnv,
2589                                                     encl));
2590                     } else if (methName == names._super) {
2591                         // qualifier omitted; check for existence
2592                         // of an appropriate implicit qualifier.
2593                         rs.resolveImplicitThis(tree.meth.pos(),
2594                                                localEnv, site, true);
2595                     }
2596                 } else if (tree.meth.hasTag(SELECT)) {
2597                     log.error(tree.meth.pos(),
2598                               Errors.IllegalQualNotIcls(site.tsym));
2599                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2600                 }
2601 
2602                 // if we're calling a java.lang.Enum constructor,
2603                 // prefix the implicit String and int parameters
2604                 if (site.tsym == syms.enumSym)
2605                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2606 
2607                 // Resolve the called constructor under the assumption
2608                 // that we are referring to a superclass instance of the
2609                 // current instance (JLS ???).
2610                 boolean selectSuperPrev = localEnv.info.selectSuper;
2611                 localEnv.info.selectSuper = true;
2612                 localEnv.info.pendingResolutionPhase = null;
2613                 Symbol sym = rs.resolveConstructor(
2614                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2615                 localEnv.info.selectSuper = selectSuperPrev;
2616 
2617                 // Set method symbol to resolved constructor...
2618                 TreeInfo.setSymbol(tree.meth, sym);
2619 
2620                 // ...and check that it is legal in the current context.
2621                 // (this will also set the tree's type)
2622                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2623                 checkId(tree.meth, site, sym, localEnv,
2624                         new ResultInfo(kind, mpt));
2625             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2626                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2627             }
2628             // Otherwise, `site' is an error type and we do nothing
2629             result = tree.type = syms.voidType;
2630         } else {
2631             // Otherwise, we are seeing a regular method call.
2632             // Attribute the arguments, yielding list of argument types, ...
2633             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2634             argtypes = argtypesBuf.toList();
2635             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2636 
2637             // ... and attribute the method using as a prototype a methodtype
2638             // whose formal argument types is exactly the list of actual
2639             // arguments (this will also set the method symbol).
2640             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2641             localEnv.info.pendingResolutionPhase = null;
2642             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2643 
2644             // Compute the result type.
2645             Type restype = mtype.getReturnType();
2646             if (restype.hasTag(WILDCARD))
2647                 throw new AssertionError(mtype);
2648 
2649             Type qualifier = (tree.meth.hasTag(SELECT))
2650                     ? ((JCFieldAccess) tree.meth).selected.type
2651                     : env.enclClass.sym.type;
2652             Symbol msym = TreeInfo.symbol(tree.meth);
2653             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2654 
2655             chk.checkRefTypes(tree.typeargs, typeargtypes);
2656 
2657             // Check that value of resulting type is admissible in the
2658             // current context.  Also, capture the return type
2659             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2660             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2661         }
2662         chk.validate(tree.typeargs, localEnv);
2663     }
2664     //where
2665         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2666             if (msym != null &&
2667                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2668                     methodName == names.getClass &&
2669                     argtypes.isEmpty()) {
2670                 // as a special case, x.getClass() has type Class<? extends |X|>
2671                 return new ClassType(restype.getEnclosingType(),
2672                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2673                                 BoundKind.EXTENDS,
2674                                 syms.boundClass)),
2675                         restype.tsym,
2676                         restype.getMetadata());
2677             } else if (msym != null &&
2678                     msym.owner == syms.arrayClass &&
2679                     methodName == names.clone &&
2680                     types.isArray(qualifierType)) {
2681                 // as a special case, array.clone() has a result that is
2682                 // the same as static type of the array being cloned
2683                 return qualifierType;
2684             } else {
2685                 return restype;
2686             }
2687         }
2688 
2689         /** Obtain a method type with given argument types.
2690          */
2691         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2692             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2693             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2694         }
2695 
2696     public void visitNewClass(final JCNewClass tree) {
2697         Type owntype = types.createErrorType(tree.type);
2698 
2699         // The local environment of a class creation is
2700         // a new environment nested in the current one.
2701         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2702 
2703         // The anonymous inner class definition of the new expression,
2704         // if one is defined by it.
2705         JCClassDecl cdef = tree.def;
2706 
2707         // If enclosing class is given, attribute it, and
2708         // complete class name to be fully qualified
2709         JCExpression clazz = tree.clazz; // Class field following new
2710         JCExpression clazzid;            // Identifier in class field
2711         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2712         annoclazzid = null;
2713 
2714         if (clazz.hasTag(TYPEAPPLY)) {
2715             clazzid = ((JCTypeApply) clazz).clazz;
2716             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2717                 annoclazzid = (JCAnnotatedType) clazzid;
2718                 clazzid = annoclazzid.underlyingType;
2719             }
2720         } else {
2721             if (clazz.hasTag(ANNOTATED_TYPE)) {
2722                 annoclazzid = (JCAnnotatedType) clazz;
2723                 clazzid = annoclazzid.underlyingType;
2724             } else {
2725                 clazzid = clazz;
2726             }
2727         }
2728 
2729         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2730 
2731         if (tree.encl != null) {
2732             // We are seeing a qualified new, of the form
2733             //    <expr>.new C <...> (...) ...
2734             // In this case, we let clazz stand for the name of the
2735             // allocated class C prefixed with the type of the qualifier
2736             // expression, so that we can
2737             // resolve it with standard techniques later. I.e., if
2738             // <expr> has type T, then <expr>.new C <...> (...)
2739             // yields a clazz T.C.
2740             Type encltype = chk.checkRefType(tree.encl.pos(),
2741                                              attribExpr(tree.encl, env));
2742             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2743             // from expr to the combined type, or not? Yes, do this.
2744             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2745                                                  ((JCIdent) clazzid).name);
2746 
2747             EndPosTable endPosTable = this.env.toplevel.endPositions;
2748             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2749             if (clazz.hasTag(ANNOTATED_TYPE)) {
2750                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2751                 List<JCAnnotation> annos = annoType.annotations;
2752 
2753                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2754                     clazzid1 = make.at(tree.pos).
2755                         TypeApply(clazzid1,
2756                                   ((JCTypeApply) clazz).arguments);
2757                 }
2758 
2759                 clazzid1 = make.at(tree.pos).
2760                     AnnotatedType(annos, clazzid1);
2761             } else if (clazz.hasTag(TYPEAPPLY)) {
2762                 clazzid1 = make.at(tree.pos).
2763                     TypeApply(clazzid1,
2764                               ((JCTypeApply) clazz).arguments);
2765             }
2766 
2767             clazz = clazzid1;
2768         }
2769 
2770         // Attribute clazz expression and store
2771         // symbol + type back into the attributed tree.
2772         Type clazztype;
2773 
2774         try {
2775             env.info.isNewClass = true;
2776             clazztype = TreeInfo.isEnumInit(env.tree) ?
2777                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2778                 attribType(clazz, env);
2779         } finally {
2780             env.info.isNewClass = false;
2781         }
2782 
2783         clazztype = chk.checkDiamond(tree, clazztype);
2784         chk.validate(clazz, localEnv);
2785         if (tree.encl != null) {
2786             // We have to work in this case to store
2787             // symbol + type back into the attributed tree.
2788             tree.clazz.type = clazztype;
2789             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2790             clazzid.type = ((JCIdent) clazzid).sym.type;
2791             if (annoclazzid != null) {
2792                 annoclazzid.type = clazzid.type;
2793             }
2794             if (!clazztype.isErroneous()) {
2795                 if (cdef != null && clazztype.tsym.isInterface()) {
2796                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2797                 } else if (clazztype.tsym.isStatic()) {
2798                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2799                 }
2800             }
2801         } else if (!clazztype.tsym.isInterface() &&
2802                    (clazztype.tsym.flags_field & NOOUTERTHIS) == 0 &&
2803                    clazztype.getEnclosingType().hasTag(CLASS)) {
2804             // Check for the existence of an apropos outer instance
2805             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2806         }
2807 
2808         // Attribute constructor arguments.
2809         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2810         final KindSelector pkind =
2811             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2812         List<Type> argtypes = argtypesBuf.toList();
2813         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2814 
2815         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2816             // Enums may not be instantiated except implicitly
2817             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2818                 (!env.tree.hasTag(VARDEF) ||
2819                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2820                  ((JCVariableDecl) env.tree).init != tree))
2821                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2822 
2823             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2824                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2825             boolean skipNonDiamondPath = false;
2826             // Check that class is not abstract
2827             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2828                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2829                 log.error(tree.pos(),
2830                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2831                 skipNonDiamondPath = true;
2832             } else if (cdef != null && clazztype.tsym.isInterface()) {
2833                 // Check that no constructor arguments are given to
2834                 // anonymous classes implementing an interface
2835                 if (!argtypes.isEmpty())
2836                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2837 
2838                 if (!typeargtypes.isEmpty())
2839                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2840 
2841                 // Error recovery: pretend no arguments were supplied.
2842                 argtypes = List.nil();
2843                 typeargtypes = List.nil();
2844                 skipNonDiamondPath = true;
2845             }
2846             if (TreeInfo.isDiamond(tree)) {
2847                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2848                             clazztype.tsym.type.getTypeArguments(),
2849                                                clazztype.tsym,
2850                                                clazztype.getMetadata());
2851 
2852                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2853                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2854                 diamondEnv.info.pendingResolutionPhase = null;
2855 
2856                 //if the type of the instance creation expression is a class type
2857                 //apply method resolution inference (JLS 15.12.2.7). The return type
2858                 //of the resolved constructor will be a partially instantiated type
2859                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2860                             diamondEnv,
2861                             site,
2862                             argtypes,
2863                             typeargtypes);
2864                 tree.constructor = constructor.baseSymbol();
2865 
2866                 final TypeSymbol csym = clazztype.tsym;
2867                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2868                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2869                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2870                 constructorType = checkId(tree, site,
2871                         constructor,
2872                         diamondEnv,
2873                         diamondResult);
2874 
2875                 tree.clazz.type = types.createErrorType(clazztype);
2876                 if (!constructorType.isErroneous()) {
2877                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2878                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2879                 }
2880                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2881             }
2882 
2883             // Resolve the called constructor under the assumption
2884             // that we are referring to a superclass instance of the
2885             // current instance (JLS ???).
2886             else if (!skipNonDiamondPath) {
2887                 //the following code alters some of the fields in the current
2888                 //AttrContext - hence, the current context must be dup'ed in
2889                 //order to avoid downstream failures
2890                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2891                 rsEnv.info.selectSuper = cdef != null;
2892                 rsEnv.info.pendingResolutionPhase = null;
2893                 tree.constructor = rs.resolveConstructor(
2894                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2895                 if (cdef == null) { //do not check twice!
2896                     tree.constructorType = checkId(tree,
2897                             clazztype,
2898                             tree.constructor,
2899                             rsEnv,
2900                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2901                     if (rsEnv.info.lastResolveVarargs())
2902                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2903                 }
2904             }
2905 
2906             if (cdef != null) {
2907                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2908                 return;
2909             }
2910 
2911             if (tree.constructor != null && tree.constructor.kind == MTH)
2912                 owntype = clazztype;
2913         }
2914         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2915         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2916         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2917             //we need to wait for inference to finish and then replace inference vars in the constructor type
2918             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2919                     instantiatedContext -> {
2920                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2921                     });
2922         }
2923         chk.validate(tree.typeargs, localEnv);
2924     }
2925 
2926         // where
2927         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2928                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2929                                                    List<Type> argtypes, List<Type> typeargtypes,
2930                                                    KindSelector pkind) {
2931             // We are seeing an anonymous class instance creation.
2932             // In this case, the class instance creation
2933             // expression
2934             //
2935             //    E.new <typeargs1>C<typargs2>(args) { ... }
2936             //
2937             // is represented internally as
2938             //
2939             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2940             //
2941             // This expression is then *transformed* as follows:
2942             //
2943             // (1) add an extends or implements clause
2944             // (2) add a constructor.
2945             //
2946             // For instance, if C is a class, and ET is the type of E,
2947             // the expression
2948             //
2949             //    E.new <typeargs1>C<typargs2>(args) { ... }
2950             //
2951             // is translated to (where X is a fresh name and typarams is the
2952             // parameter list of the super constructor):
2953             //
2954             //   new <typeargs1>X(<*nullchk*>E, args) where
2955             //     X extends C<typargs2> {
2956             //       <typarams> X(ET e, args) {
2957             //         e.<typeargs1>super(args)
2958             //       }
2959             //       ...
2960             //     }
2961             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2962             Type enclType = clazztype.getEnclosingType();
2963             if (enclType != null &&
2964                     enclType.hasTag(CLASS) &&
2965                     !chk.checkDenotable((ClassType)enclType)) {
2966                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2967             }
2968             final boolean isDiamond = TreeInfo.isDiamond(tree);
2969             if (isDiamond
2970                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2971                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2972                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2973                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
2974                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2975                         instantiatedContext -> {
2976                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2977                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2978                             ResultInfo prevResult = this.resultInfo;
2979                             try {
2980                                 this.resultInfo = resultInfoForClassDefinition;
2981                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2982                                         dupLocalEnv, argtypes, typeargtypes, pkind);
2983                             } finally {
2984                                 this.resultInfo = prevResult;
2985                             }
2986                         });
2987             } else {
2988                 if (isDiamond && clazztype.hasTag(CLASS)) {
2989                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2990                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2991                         // One or more types inferred in the previous steps is non-denotable.
2992                         Fragment fragment = Diamond(clazztype.tsym);
2993                         log.error(tree.clazz.pos(),
2994                                 Errors.CantApplyDiamond1(
2995                                         fragment,
2996                                         invalidDiamondArgs.size() > 1 ?
2997                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2998                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2999                     }
3000                     // For <>(){}, inferred types must also be accessible.
3001                     for (Type t : clazztype.getTypeArguments()) {
3002                         rs.checkAccessibleType(env, t);
3003                     }
3004                 }
3005 
3006                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3007                 // false for isInterface call even when the original type is an interface.
3008                 boolean implementing = clazztype.tsym.isInterface() ||
3009                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3010                         clazztype.getOriginalType().tsym.isInterface();
3011 
3012                 if (implementing) {
3013                     cdef.implementing = List.of(clazz);
3014                 } else {
3015                     cdef.extending = clazz;
3016                 }
3017 
3018                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3019                     rs.isSerializable(clazztype)) {
3020                     localEnv.info.isSerializable = true;
3021                 }
3022 
3023                 attribStat(cdef, localEnv);
3024 
3025                 List<Type> finalargtypes;
3026                 // If an outer instance is given,
3027                 // prefix it to the constructor arguments
3028                 // and delete it from the new expression
3029                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3030                     finalargtypes = argtypes.prepend(tree.encl.type);
3031                 } else {
3032                     finalargtypes = argtypes;
3033                 }
3034 
3035                 // Reassign clazztype and recompute constructor. As this necessarily involves
3036                 // another attribution pass for deferred types in the case of <>, replicate
3037                 // them. Original arguments have right decorations already.
3038                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3039                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3040                 }
3041 
3042                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3043                                                     : cdef.sym.type;
3044                 Symbol sym = tree.constructor = rs.resolveConstructor(
3045                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3046                 Assert.check(!sym.kind.isResolutionError());
3047                 tree.constructor = sym;
3048                 tree.constructorType = checkId(tree,
3049                         clazztype,
3050                         tree.constructor,
3051                         localEnv,
3052                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3053             }
3054             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3055                                 clazztype : types.createErrorType(tree.type);
3056             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3057             chk.validate(tree.typeargs, localEnv);
3058         }
3059 
3060         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3061             return new Check.NestedCheckContext(checkContext) {
3062                 @Override
3063                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3064                     enclosingContext.report(clazz.clazz,
3065                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3066                 }
3067             };
3068         }
3069 
3070     /** Make an attributed null check tree.
3071      */
3072     public JCExpression makeNullCheck(JCExpression arg) {
3073         // optimization: new Outer() can never be null; skip null check
3074         if (arg.getTag() == NEWCLASS)
3075             return arg;
3076         // optimization: X.this is never null; skip null check
3077         Name name = TreeInfo.name(arg);
3078         if (name == names._this || name == names._super) return arg;
3079 
3080         JCTree.Tag optag = NULLCHK;
3081         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3082         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3083         tree.type = arg.type;
3084         return tree;
3085     }
3086 
3087     public void visitNewArray(JCNewArray tree) {
3088         Type owntype = types.createErrorType(tree.type);
3089         Env<AttrContext> localEnv = env.dup(tree);
3090         Type elemtype;
3091         if (tree.elemtype != null) {
3092             elemtype = attribType(tree.elemtype, localEnv);
3093             chk.validate(tree.elemtype, localEnv);
3094             owntype = elemtype;
3095             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3096                 attribExpr(l.head, localEnv, syms.intType);
3097                 owntype = new ArrayType(owntype, syms.arrayClass);
3098             }
3099         } else {
3100             // we are seeing an untyped aggregate { ... }
3101             // this is allowed only if the prototype is an array
3102             if (pt().hasTag(ARRAY)) {
3103                 elemtype = types.elemtype(pt());
3104             } else {
3105                 if (!pt().hasTag(ERROR) &&
3106                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3107                     log.error(tree.pos(),
3108                               Errors.IllegalInitializerForType(pt()));
3109                 }
3110                 elemtype = types.createErrorType(pt());
3111             }
3112         }
3113         if (tree.elems != null) {
3114             attribExprs(tree.elems, localEnv, elemtype);
3115             owntype = new ArrayType(elemtype, syms.arrayClass);
3116         }
3117         if (!types.isReifiable(elemtype))
3118             log.error(tree.pos(), Errors.GenericArrayCreation);
3119         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3120     }
3121 
3122     /*
3123      * A lambda expression can only be attributed when a target-type is available.
3124      * In addition, if the target-type is that of a functional interface whose
3125      * descriptor contains inference variables in argument position the lambda expression
3126      * is 'stuck' (see DeferredAttr).
3127      */
3128     @Override
3129     public void visitLambda(final JCLambda that) {
3130         boolean wrongContext = false;
3131         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3132             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3133                 //lambda only allowed in assignment or method invocation/cast context
3134                 log.error(that.pos(), Errors.UnexpectedLambda);
3135             }
3136             resultInfo = recoveryInfo;
3137             wrongContext = true;
3138         }
3139         //create an environment for attribution of the lambda expression
3140         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3141         boolean needsRecovery =
3142                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3143         try {
3144             if (needsRecovery && rs.isSerializable(pt())) {
3145                 localEnv.info.isSerializable = true;
3146                 localEnv.info.isSerializableLambda = true;
3147             }
3148             List<Type> explicitParamTypes = null;
3149             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3150                 //attribute lambda parameters
3151                 attribStats(that.params, localEnv);
3152                 explicitParamTypes = TreeInfo.types(that.params);
3153             }
3154 
3155             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3156             Type currentTarget = targetInfo.target;
3157             Type lambdaType = targetInfo.descriptor;
3158 
3159             if (currentTarget.isErroneous()) {
3160                 result = that.type = currentTarget;
3161                 return;
3162             }
3163 
3164             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3165 
3166             if (lambdaType.hasTag(FORALL)) {
3167                 //lambda expression target desc cannot be a generic method
3168                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3169                                                                     kindName(currentTarget.tsym),
3170                                                                     currentTarget.tsym);
3171                 resultInfo.checkContext.report(that, diags.fragment(msg));
3172                 result = that.type = types.createErrorType(pt());
3173                 return;
3174             }
3175 
3176             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3177                 //add param type info in the AST
3178                 List<Type> actuals = lambdaType.getParameterTypes();
3179                 List<JCVariableDecl> params = that.params;
3180 
3181                 boolean arityMismatch = false;
3182 
3183                 while (params.nonEmpty()) {
3184                     if (actuals.isEmpty()) {
3185                         //not enough actuals to perform lambda parameter inference
3186                         arityMismatch = true;
3187                     }
3188                     //reset previously set info
3189                     Type argType = arityMismatch ?
3190                             syms.errType :
3191                             actuals.head;
3192                     if (params.head.isImplicitlyTyped()) {
3193                         setSyntheticVariableType(params.head, argType);
3194                     }
3195                     params.head.sym = null;
3196                     actuals = actuals.isEmpty() ?
3197                             actuals :
3198                             actuals.tail;
3199                     params = params.tail;
3200                 }
3201 
3202                 //attribute lambda parameters
3203                 attribStats(that.params, localEnv);
3204 
3205                 if (arityMismatch) {
3206                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3207                         result = that.type = types.createErrorType(currentTarget);
3208                         return;
3209                 }
3210             }
3211 
3212             //from this point on, no recovery is needed; if we are in assignment context
3213             //we will be able to attribute the whole lambda body, regardless of errors;
3214             //if we are in a 'check' method context, and the lambda is not compatible
3215             //with the target-type, it will be recovered anyway in Attr.checkId
3216             needsRecovery = false;
3217 
3218             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3219                     lambdaBodyResult(that, lambdaType, resultInfo);
3220 
3221             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3222                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3223             } else {
3224                 JCBlock body = (JCBlock)that.body;
3225                 if (body == breakTree &&
3226                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3227                     breakTreeFound(copyEnv(localEnv));
3228                 }
3229                 attribStats(body.stats, localEnv);
3230             }
3231 
3232             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3233 
3234             boolean isSpeculativeRound =
3235                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3236 
3237             preFlow(that);
3238             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3239 
3240             that.type = currentTarget; //avoids recovery at this stage
3241             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3242 
3243             if (!isSpeculativeRound) {
3244                 //add thrown types as bounds to the thrown types free variables if needed:
3245                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3246                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3247                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3248                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3249                     }
3250                 }
3251 
3252                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3253             }
3254             result = wrongContext ? that.type = types.createErrorType(pt())
3255                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3256         } catch (Types.FunctionDescriptorLookupError ex) {
3257             JCDiagnostic cause = ex.getDiagnostic();
3258             resultInfo.checkContext.report(that, cause);
3259             result = that.type = types.createErrorType(pt());
3260             return;
3261         } catch (CompletionFailure cf) {
3262             chk.completionError(that.pos(), cf);
3263         } catch (Throwable t) {
3264             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3265             //as that would likely cause the same exception again.
3266             needsRecovery = false;
3267             throw t;
3268         } finally {
3269             localEnv.info.scope.leave();
3270             if (needsRecovery) {
3271                 Type prevResult = result;
3272                 try {
3273                     attribTree(that, env, recoveryInfo);
3274                 } finally {
3275                     if (result == Type.recoveryType) {
3276                         result = prevResult;
3277                     }
3278                 }
3279             }
3280         }
3281     }
3282     //where
3283         class TargetInfo {
3284             Type target;
3285             Type descriptor;
3286 
3287             public TargetInfo(Type target, Type descriptor) {
3288                 this.target = target;
3289                 this.descriptor = descriptor;
3290             }
3291         }
3292 
3293         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3294             Type lambdaType;
3295             Type currentTarget = resultInfo.pt;
3296             if (resultInfo.pt != Type.recoveryType) {
3297                 /* We need to adjust the target. If the target is an
3298                  * intersection type, for example: SAM & I1 & I2 ...
3299                  * the target will be updated to SAM
3300                  */
3301                 currentTarget = targetChecker.visit(currentTarget, that);
3302                 if (!currentTarget.isIntersection()) {
3303                     if (explicitParamTypes != null) {
3304                         currentTarget = infer.instantiateFunctionalInterface(that,
3305                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3306                     }
3307                     currentTarget = types.removeWildcards(currentTarget);
3308                     lambdaType = types.findDescriptorType(currentTarget);
3309                 } else {
3310                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3311                     ListBuffer<Type> components = new ListBuffer<>();
3312                     for (Type bound : ict.getExplicitComponents()) {
3313                         if (explicitParamTypes != null) {
3314                             try {
3315                                 bound = infer.instantiateFunctionalInterface(that,
3316                                         bound, explicitParamTypes, resultInfo.checkContext);
3317                             } catch (FunctionDescriptorLookupError t) {
3318                                 // do nothing
3319                             }
3320                         }
3321                         bound = types.removeWildcards(bound);
3322                         components.add(bound);
3323                     }
3324                     currentTarget = types.makeIntersectionType(components.toList());
3325                     currentTarget.tsym.flags_field |= INTERFACE;
3326                     lambdaType = types.findDescriptorType(currentTarget);
3327                 }
3328 
3329             } else {
3330                 currentTarget = Type.recoveryType;
3331                 lambdaType = fallbackDescriptorType(that);
3332             }
3333             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3334                 //lambda expression target desc cannot be a generic method
3335                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3336                                                                     kindName(currentTarget.tsym),
3337                                                                     currentTarget.tsym);
3338                 resultInfo.checkContext.report(that, diags.fragment(msg));
3339                 currentTarget = types.createErrorType(pt());
3340             }
3341             return new TargetInfo(currentTarget, lambdaType);
3342         }
3343 
3344         void preFlow(JCLambda tree) {
3345             attrRecover.doRecovery();
3346             new PostAttrAnalyzer() {
3347                 @Override
3348                 public void scan(JCTree tree) {
3349                     if (tree == null ||
3350                             (tree.type != null &&
3351                             tree.type == Type.stuckType)) {
3352                         //don't touch stuck expressions!
3353                         return;
3354                     }
3355                     super.scan(tree);
3356                 }
3357 
3358                 @Override
3359                 public void visitClassDef(JCClassDecl that) {
3360                     // or class declaration trees!
3361                 }
3362 
3363                 public void visitLambda(JCLambda that) {
3364                     // or lambda expressions!
3365                 }
3366             }.scan(tree.body);
3367         }
3368 
3369         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3370 
3371             @Override
3372             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3373                 return t.isIntersection() ?
3374                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3375             }
3376 
3377             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3378                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3379                 return ict;
3380             }
3381 
3382             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3383                 ListBuffer<Type> targs = new ListBuffer<>();
3384                 ListBuffer<Type> supertypes = new ListBuffer<>();
3385                 for (Type i : ict.interfaces_field) {
3386                     if (i.isParameterized()) {
3387                         targs.appendList(i.tsym.type.allparams());
3388                     }
3389                     supertypes.append(i.tsym.type);
3390                 }
3391                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3392                 notionalIntf.allparams_field = targs.toList();
3393                 notionalIntf.tsym.flags_field |= INTERFACE;
3394                 return notionalIntf.tsym;
3395             }
3396         };
3397 
3398         private Type fallbackDescriptorType(JCExpression tree) {
3399             switch (tree.getTag()) {
3400                 case LAMBDA:
3401                     JCLambda lambda = (JCLambda)tree;
3402                     List<Type> argtypes = List.nil();
3403                     for (JCVariableDecl param : lambda.params) {
3404                         argtypes = param.vartype != null && param.vartype.type != null ?
3405                                 argtypes.append(param.vartype.type) :
3406                                 argtypes.append(syms.errType);
3407                     }
3408                     return new MethodType(argtypes, Type.recoveryType,
3409                             List.of(syms.throwableType), syms.methodClass);
3410                 case REFERENCE:
3411                     return new MethodType(List.nil(), Type.recoveryType,
3412                             List.of(syms.throwableType), syms.methodClass);
3413                 default:
3414                     Assert.error("Cannot get here!");
3415             }
3416             return null;
3417         }
3418 
3419         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3420                 final InferenceContext inferenceContext, final Type... ts) {
3421             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3422         }
3423 
3424         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3425                 final InferenceContext inferenceContext, final List<Type> ts) {
3426             if (inferenceContext.free(ts)) {
3427                 inferenceContext.addFreeTypeListener(ts,
3428                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3429             } else {
3430                 for (Type t : ts) {
3431                     rs.checkAccessibleType(env, t);
3432                 }
3433             }
3434         }
3435 
3436         /**
3437          * Lambda/method reference have a special check context that ensures
3438          * that i.e. a lambda return type is compatible with the expected
3439          * type according to both the inherited context and the assignment
3440          * context.
3441          */
3442         class FunctionalReturnContext extends Check.NestedCheckContext {
3443 
3444             FunctionalReturnContext(CheckContext enclosingContext) {
3445                 super(enclosingContext);
3446             }
3447 
3448             @Override
3449             public boolean compatible(Type found, Type req, Warner warn) {
3450                 //return type must be compatible in both current context and assignment context
3451                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3452             }
3453 
3454             @Override
3455             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3456                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3457             }
3458         }
3459 
3460         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3461 
3462             JCExpression expr;
3463             boolean expStmtExpected;
3464 
3465             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3466                 super(enclosingContext);
3467                 this.expr = expr;
3468             }
3469 
3470             @Override
3471             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3472                 if (expStmtExpected) {
3473                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3474                 } else {
3475                     super.report(pos, details);
3476                 }
3477             }
3478 
3479             @Override
3480             public boolean compatible(Type found, Type req, Warner warn) {
3481                 //a void return is compatible with an expression statement lambda
3482                 if (req.hasTag(VOID)) {
3483                     expStmtExpected = true;
3484                     return TreeInfo.isExpressionStatement(expr);
3485                 } else {
3486                     return super.compatible(found, req, warn);
3487                 }
3488             }
3489         }
3490 
3491         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3492             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3493                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3494                     new FunctionalReturnContext(resultInfo.checkContext);
3495 
3496             return descriptor.getReturnType() == Type.recoveryType ?
3497                     recoveryInfo :
3498                     new ResultInfo(KindSelector.VAL,
3499                             descriptor.getReturnType(), funcContext);
3500         }
3501 
3502         /**
3503         * Lambda compatibility. Check that given return types, thrown types, parameter types
3504         * are compatible with the expected functional interface descriptor. This means that:
3505         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3506         * types must be compatible with the return type of the expected descriptor.
3507         */
3508         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3509             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3510 
3511             //return values have already been checked - but if lambda has no return
3512             //values, we must ensure that void/value compatibility is correct;
3513             //this amounts at checking that, if a lambda body can complete normally,
3514             //the descriptor's return type must be void
3515             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3516                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3517                 Fragment msg =
3518                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3519                 checkContext.report(tree,
3520                                     diags.fragment(msg));
3521             }
3522 
3523             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3524             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3525                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3526             }
3527         }
3528 
3529         /* This method returns an environment to be used to attribute a lambda
3530          * expression.
3531          *
3532          * The owner of this environment is a method symbol. If the current owner
3533          * is not a method (e.g. if the lambda occurs in a field initializer), then
3534          * a synthetic method symbol owner is created.
3535          */
3536         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3537             Env<AttrContext> lambdaEnv;
3538             Symbol owner = env.info.scope.owner;
3539             if (owner.kind == VAR && owner.owner.kind == TYP) {
3540                 // If the lambda is nested in a field initializer, we need to create a fake init method.
3541                 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3542                 // init symbol's owner).
3543                 ClassSymbol enclClass = owner.enclClass();
3544                 Name initName = owner.isStatic() ? names.clinit : names.init;
3545                 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3546                         initName, initBlockType, enclClass);
3547                 initSym.params = List.nil();
3548                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3549             } else {
3550                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3551             }
3552             lambdaEnv.info.yieldResult = null;
3553             lambdaEnv.info.isLambda = true;
3554             return lambdaEnv;
3555         }
3556 
3557     @Override
3558     public void visitReference(final JCMemberReference that) {
3559         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3560             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3561                 //method reference only allowed in assignment or method invocation/cast context
3562                 log.error(that.pos(), Errors.UnexpectedMref);
3563             }
3564             result = that.type = types.createErrorType(pt());
3565             return;
3566         }
3567         final Env<AttrContext> localEnv = env.dup(that);
3568         try {
3569             //attribute member reference qualifier - if this is a constructor
3570             //reference, the expected kind must be a type
3571             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3572 
3573             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3574                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3575                 if (!exprType.isErroneous() &&
3576                     exprType.isRaw() &&
3577                     that.typeargs != null) {
3578                     log.error(that.expr.pos(),
3579                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3580                                                  Fragments.MrefInferAndExplicitParams));
3581                     exprType = types.createErrorType(exprType);
3582                 }
3583             }
3584 
3585             if (exprType.isErroneous()) {
3586                 //if the qualifier expression contains problems,
3587                 //give up attribution of method reference
3588                 result = that.type = exprType;
3589                 return;
3590             }
3591 
3592             if (TreeInfo.isStaticSelector(that.expr, names)) {
3593                 //if the qualifier is a type, validate it; raw warning check is
3594                 //omitted as we don't know at this stage as to whether this is a
3595                 //raw selector (because of inference)
3596                 chk.validate(that.expr, env, false);
3597             } else {
3598                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3599                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3600             }
3601             //attrib type-arguments
3602             List<Type> typeargtypes = List.nil();
3603             if (that.typeargs != null) {
3604                 typeargtypes = attribTypes(that.typeargs, localEnv);
3605             }
3606 
3607             boolean isTargetSerializable =
3608                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3609                     rs.isSerializable(pt());
3610             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3611             Type currentTarget = targetInfo.target;
3612             Type desc = targetInfo.descriptor;
3613 
3614             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3615             List<Type> argtypes = desc.getParameterTypes();
3616             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3617 
3618             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3619                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3620             }
3621 
3622             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3623             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3624             try {
3625                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3626                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3627                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3628             } finally {
3629                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3630             }
3631 
3632             Symbol refSym = refResult.fst;
3633             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3634 
3635             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3636              *  JDK-8075541
3637              */
3638             if (refSym.kind != MTH) {
3639                 boolean targetError;
3640                 switch (refSym.kind) {
3641                     case ABSENT_MTH:
3642                     case MISSING_ENCL:
3643                         targetError = false;
3644                         break;
3645                     case WRONG_MTH:
3646                     case WRONG_MTHS:
3647                     case AMBIGUOUS:
3648                     case HIDDEN:
3649                     case STATICERR:
3650                         targetError = true;
3651                         break;
3652                     default:
3653                         Assert.error("unexpected result kind " + refSym.kind);
3654                         targetError = false;
3655                 }
3656 
3657                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3658                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3659                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3660 
3661                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3662                         targetError ?
3663                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3664                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3665 
3666                 if (targetError && currentTarget == Type.recoveryType) {
3667                     //a target error doesn't make sense during recovery stage
3668                     //as we don't know what actual parameter types are
3669                     result = that.type = currentTarget;
3670                     return;
3671                 } else {
3672                     if (targetError) {
3673                         resultInfo.checkContext.report(that, diag);
3674                     } else {
3675                         log.report(diag);
3676                     }
3677                     result = that.type = types.createErrorType(currentTarget);
3678                     return;
3679                 }
3680             }
3681 
3682             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3683             that.kind = lookupHelper.referenceKind(that.sym);
3684             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3685 
3686             if (desc.getReturnType() == Type.recoveryType) {
3687                 // stop here
3688                 result = that.type = currentTarget;
3689                 return;
3690             }
3691 
3692             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3693                 Type enclosingType = exprType.getEnclosingType();
3694                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3695                     // Check for the existence of an appropriate outer instance
3696                     rs.resolveImplicitThis(that.pos(), env, exprType);
3697                 }
3698             }
3699 
3700             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3701 
3702                 if (that.getMode() == ReferenceMode.INVOKE &&
3703                         TreeInfo.isStaticSelector(that.expr, names) &&
3704                         that.kind.isUnbound() &&
3705                         lookupHelper.site.isRaw()) {
3706                     chk.checkRaw(that.expr, localEnv);
3707                 }
3708 
3709                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3710                         exprType.getTypeArguments().nonEmpty()) {
3711                     //static ref with class type-args
3712                     log.error(that.expr.pos(),
3713                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3714                                                  Fragments.StaticMrefWithTargs));
3715                     result = that.type = types.createErrorType(currentTarget);
3716                     return;
3717                 }
3718 
3719                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3720                     // Check that super-qualified symbols are not abstract (JLS)
3721                     rs.checkNonAbstract(that.pos(), that.sym);
3722                 }
3723 
3724                 if (isTargetSerializable) {
3725                     chk.checkAccessFromSerializableElement(that, true);
3726                 }
3727             }
3728 
3729             ResultInfo checkInfo =
3730                     resultInfo.dup(newMethodTemplate(
3731                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3732                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3733                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3734 
3735             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3736 
3737             if (that.kind.isUnbound() &&
3738                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3739                 //re-generate inference constraints for unbound receiver
3740                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3741                     //cannot happen as this has already been checked - we just need
3742                     //to regenerate the inference constraints, as that has been lost
3743                     //as a result of the call to inferenceContext.save()
3744                     Assert.error("Can't get here");
3745                 }
3746             }
3747 
3748             if (!refType.isErroneous()) {
3749                 refType = types.createMethodTypeWithReturn(refType,
3750                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3751             }
3752 
3753             //go ahead with standard method reference compatibility check - note that param check
3754             //is a no-op (as this has been taken care during method applicability)
3755             boolean isSpeculativeRound =
3756                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3757 
3758             that.type = currentTarget; //avoids recovery at this stage
3759             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3760             if (!isSpeculativeRound) {
3761                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3762             }
3763             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3764         } catch (Types.FunctionDescriptorLookupError ex) {
3765             JCDiagnostic cause = ex.getDiagnostic();
3766             resultInfo.checkContext.report(that, cause);
3767             result = that.type = types.createErrorType(pt());
3768             return;
3769         }
3770     }
3771     //where
3772         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3773             //if this is a constructor reference, the expected kind must be a type
3774             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3775                                   KindSelector.VAL_TYP : KindSelector.TYP,
3776                                   Type.noType);
3777         }
3778 
3779 
3780     @SuppressWarnings("fallthrough")
3781     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3782         InferenceContext inferenceContext = checkContext.inferenceContext();
3783         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3784 
3785         Type resType;
3786         switch (tree.getMode()) {
3787             case NEW:
3788                 if (!tree.expr.type.isRaw()) {
3789                     resType = tree.expr.type;
3790                     break;
3791                 }
3792             default:
3793                 resType = refType.getReturnType();
3794         }
3795 
3796         Type incompatibleReturnType = resType;
3797 
3798         if (returnType.hasTag(VOID)) {
3799             incompatibleReturnType = null;
3800         }
3801 
3802         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3803             if (resType.isErroneous() ||
3804                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3805                             checkContext.checkWarner(tree, resType, returnType))) {
3806                 incompatibleReturnType = null;
3807             }
3808         }
3809 
3810         if (incompatibleReturnType != null) {
3811             Fragment msg =
3812                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3813             checkContext.report(tree, diags.fragment(msg));
3814         } else {
3815             if (inferenceContext.free(refType)) {
3816                 // we need to wait for inference to finish and then replace inference vars in the referent type
3817                 inferenceContext.addFreeTypeListener(List.of(refType),
3818                         instantiatedContext -> {
3819                             tree.referentType = instantiatedContext.asInstType(refType);
3820                         });
3821             } else {
3822                 tree.referentType = refType;
3823             }
3824         }
3825 
3826         if (!speculativeAttr) {
3827             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3828                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3829             }
3830         }
3831     }
3832 
3833     boolean checkExConstraints(
3834             List<Type> thrownByFuncExpr,
3835             List<Type> thrownAtFuncType,
3836             InferenceContext inferenceContext) {
3837         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3838          *  are not proper types
3839          */
3840         List<Type> nonProperList = thrownAtFuncType.stream()
3841                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3842         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3843 
3844         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3845          *  in the throws clause of the invocation type of the method reference's compile-time
3846          *  declaration
3847          */
3848         List<Type> checkedList = thrownByFuncExpr.stream()
3849                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3850 
3851         /** If n = 0 (the function type's throws clause consists only of proper types), then
3852          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3853          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3854          *  reduces to true
3855          */
3856         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3857         for (Type checked : checkedList) {
3858             boolean isSubtype = false;
3859             for (Type proper : properList) {
3860                 if (types.isSubtype(checked, proper)) {
3861                     isSubtype = true;
3862                     break;
3863                 }
3864             }
3865             if (!isSubtype) {
3866                 uncaughtByProperTypes.add(checked);
3867             }
3868         }
3869 
3870         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3871             return false;
3872         }
3873 
3874         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3875          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3876          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3877          */
3878         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3879         uncaughtByProperTypes.forEach(checkedEx -> {
3880             nonProperAsUndet.forEach(nonProper -> {
3881                 types.isSubtype(checkedEx, nonProper);
3882             });
3883         });
3884 
3885         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3886          */
3887         nonProperAsUndet.stream()
3888                 .filter(t -> t.hasTag(UNDETVAR))
3889                 .forEach(t -> ((UndetVar)t).setThrow());
3890         return true;
3891     }
3892 
3893     /**
3894      * Set functional type info on the underlying AST. Note: as the target descriptor
3895      * might contain inference variables, we might need to register an hook in the
3896      * current inference context.
3897      */
3898     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3899             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3900         if (checkContext.inferenceContext().free(descriptorType)) {
3901             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3902                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3903                     inferenceContext.asInstType(primaryTarget), checkContext));
3904         } else {
3905             fExpr.owner = env.info.scope.owner;
3906             if (pt.hasTag(CLASS)) {
3907                 fExpr.target = primaryTarget;
3908             }
3909             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3910                     pt != Type.recoveryType) {
3911                 //check that functional interface class is well-formed
3912                 try {
3913                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3914                      * when it's executed post-inference. See the listener code
3915                      * above.
3916                      */
3917                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3918                             names.empty, fExpr.target, ABSTRACT);
3919                     if (csym != null) {
3920                         chk.checkImplementations(env.tree, csym, csym);
3921                         try {
3922                             //perform an additional functional interface check on the synthetic class,
3923                             //as there may be spurious errors for raw targets - because of existing issues
3924                             //with membership and inheritance (see JDK-8074570).
3925                             csym.flags_field |= INTERFACE;
3926                             types.findDescriptorType(csym.type);
3927                         } catch (FunctionDescriptorLookupError err) {
3928                             resultInfo.checkContext.report(fExpr,
3929                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3930                         }
3931                     }
3932                 } catch (Types.FunctionDescriptorLookupError ex) {
3933                     JCDiagnostic cause = ex.getDiagnostic();
3934                     resultInfo.checkContext.report(env.tree, cause);
3935                 }
3936             }
3937         }
3938     }
3939 
3940     public void visitParens(JCParens tree) {
3941         Type owntype = attribTree(tree.expr, env, resultInfo);
3942         result = check(tree, owntype, pkind(), resultInfo);
3943         Symbol sym = TreeInfo.symbol(tree);
3944         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
3945             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3946     }
3947 
3948     public void visitAssign(JCAssign tree) {
3949         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3950         Type capturedType = capture(owntype);
3951         attribExpr(tree.rhs, env, owntype);
3952         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3953     }
3954 
3955     public void visitAssignop(JCAssignOp tree) {
3956         // Attribute arguments.
3957         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3958         Type operand = attribExpr(tree.rhs, env);
3959         // Find operator.
3960         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3961         if (operator != operators.noOpSymbol &&
3962                 !owntype.isErroneous() &&
3963                 !operand.isErroneous()) {
3964             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3965             chk.checkCastable(tree.rhs.pos(),
3966                               operator.type.getReturnType(),
3967                               owntype);
3968             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
3969         }
3970         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3971     }
3972 
3973     public void visitUnary(JCUnary tree) {
3974         // Attribute arguments.
3975         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3976             ? attribTree(tree.arg, env, varAssignmentInfo)
3977             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3978 
3979         // Find operator.
3980         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3981         Type owntype = types.createErrorType(tree.type);
3982         if (operator != operators.noOpSymbol &&
3983                 !argtype.isErroneous()) {
3984             owntype = (tree.getTag().isIncOrDecUnaryOp())
3985                 ? tree.arg.type
3986                 : operator.type.getReturnType();
3987             int opc = operator.opcode;
3988 
3989             // If the argument is constant, fold it.
3990             if (argtype.constValue() != null) {
3991                 Type ctype = cfolder.fold1(opc, argtype);
3992                 if (ctype != null) {
3993                     owntype = cfolder.coerce(ctype, owntype);
3994                 }
3995             }
3996         }
3997         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3998         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
3999     }
4000 
4001     public void visitBinary(JCBinary tree) {
4002         // Attribute arguments.
4003         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4004         // x && y
4005         // include x's bindings when true in y
4006 
4007         // x || y
4008         // include x's bindings when false in y
4009 
4010         MatchBindings lhsBindings = matchBindings;
4011         List<BindingSymbol> propagatedBindings;
4012         switch (tree.getTag()) {
4013             case AND:
4014                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4015                 break;
4016             case OR:
4017                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4018                 break;
4019             default:
4020                 propagatedBindings = List.nil();
4021                 break;
4022         }
4023         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4024         Type right;
4025         try {
4026             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4027         } finally {
4028             rhsEnv.info.scope.leave();
4029         }
4030 
4031         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4032 
4033         // Find operator.
4034         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4035         Type owntype = types.createErrorType(tree.type);
4036         if (operator != operators.noOpSymbol &&
4037                 !left.isErroneous() &&
4038                 !right.isErroneous()) {
4039             owntype = operator.type.getReturnType();
4040             int opc = operator.opcode;
4041             // If both arguments are constants, fold them.
4042             if (left.constValue() != null && right.constValue() != null) {
4043                 Type ctype = cfolder.fold2(opc, left, right);
4044                 if (ctype != null) {
4045                     owntype = cfolder.coerce(ctype, owntype);
4046                 }
4047             }
4048 
4049             // Check that argument types of a reference ==, != are
4050             // castable to each other, (JLS 15.21).  Note: unboxing
4051             // comparisons will not have an acmp* opc at this point.
4052             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4053                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4054                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4055                 }
4056             }
4057 
4058             chk.checkDivZero(tree.rhs.pos(), operator, right);
4059         }
4060         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4061     }
4062 
4063     public void visitTypeCast(final JCTypeCast tree) {
4064         Type clazztype = attribType(tree.clazz, env);
4065         chk.validate(tree.clazz, env, false);
4066         //a fresh environment is required for 292 inference to work properly ---
4067         //see Infer.instantiatePolymorphicSignatureInstance()
4068         Env<AttrContext> localEnv = env.dup(tree);
4069         //should we propagate the target type?
4070         final ResultInfo castInfo;
4071         JCExpression expr = TreeInfo.skipParens(tree.expr);
4072         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4073         if (isPoly) {
4074             //expression is a poly - we need to propagate target type info
4075             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4076                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4077                 @Override
4078                 public boolean compatible(Type found, Type req, Warner warn) {
4079                     return types.isCastable(found, req, warn);
4080                 }
4081             });
4082         } else {
4083             //standalone cast - target-type info is not propagated
4084             castInfo = unknownExprInfo;
4085         }
4086         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4087         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4088         if (exprtype.constValue() != null)
4089             owntype = cfolder.coerce(exprtype, owntype);
4090         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4091         if (!isPoly)
4092             chk.checkRedundantCast(localEnv, tree);
4093     }
4094 
4095     public void visitTypeTest(JCInstanceOf tree) {
4096         Type exprtype = attribExpr(tree.expr, env);
4097         if (exprtype.isPrimitive()) {
4098             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4099         } else {
4100             exprtype = chk.checkNullOrRefType(
4101                     tree.expr.pos(), exprtype);
4102         }
4103         Type clazztype;
4104         JCTree typeTree;
4105         if (tree.pattern.getTag() == BINDINGPATTERN ||
4106             tree.pattern.getTag() == RECORDPATTERN) {
4107             attribExpr(tree.pattern, env, exprtype);
4108             clazztype = tree.pattern.type;
4109             if (types.isSubtype(exprtype, clazztype) &&
4110                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4111                 tree.pattern.getTag() != RECORDPATTERN) {
4112                 if (!allowUnconditionalPatternsInstanceOf) {
4113                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4114                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4115                 }
4116             }
4117             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4118         } else {
4119             clazztype = attribType(tree.pattern, env);
4120             typeTree = tree.pattern;
4121             chk.validate(typeTree, env, false);
4122         }
4123         if (clazztype.isPrimitive()) {
4124             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4125         } else {
4126             if (!clazztype.hasTag(TYPEVAR)) {
4127                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4128             }
4129             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4130                 boolean valid = false;
4131                 if (allowReifiableTypesInInstanceof) {
4132                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4133                 } else {
4134                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4135                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4136                     allowReifiableTypesInInstanceof = true;
4137                 }
4138                 if (!valid) {
4139                     clazztype = types.createErrorType(clazztype);
4140                 }
4141             }
4142         }
4143         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4144         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4145     }
4146 
4147     private boolean checkCastablePattern(DiagnosticPosition pos,
4148                                          Type exprType,
4149                                          Type pattType) {
4150         Warner warner = new Warner();
4151         // if any type is erroneous, the problem is reported elsewhere
4152         if (exprType.isErroneous() || pattType.isErroneous()) {
4153             return false;
4154         }
4155         if (!types.isCastable(exprType, pattType, warner)) {
4156             chk.basicHandler.report(pos,
4157                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4158             return false;
4159         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4160                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4161             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4162             return true;
4163         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4164             log.error(pos,
4165                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4166             return false;
4167         } else {
4168             return true;
4169         }
4170     }
4171 
4172     @Override
4173     public void visitAnyPattern(JCAnyPattern tree) {
4174         result = tree.type = resultInfo.pt;
4175     }
4176 
4177     public void visitBindingPattern(JCBindingPattern tree) {
4178         Type type;
4179         if (tree.var.vartype != null) {
4180             type = attribType(tree.var.vartype, env);
4181         } else {
4182             type = resultInfo.pt;
4183         }
4184         tree.type = tree.var.type = type;
4185         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4186         v.pos = tree.pos;
4187         tree.var.sym = v;
4188         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4189             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4190         }
4191         if (tree.var.isImplicitlyTyped()) {
4192             setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4193                                                                    : type);
4194         }
4195         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos());
4196         if (!tree.var.isImplicitlyTyped()) {
4197             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos());
4198         }
4199         annotate.flush();
4200         chk.validate(tree.var.vartype, env, true);
4201         result = tree.type;
4202         if (v.isUnnamedVariable()) {
4203             matchBindings = MatchBindingsComputer.EMPTY;
4204         } else {
4205             matchBindings = new MatchBindings(List.of(v), List.nil());
4206         }
4207     }
4208 
4209     @Override
4210     public void visitRecordPattern(JCRecordPattern tree) {
4211         Type site;
4212 
4213         if (tree.deconstructor == null) {
4214             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4215             tree.record = syms.errSymbol;
4216             site = tree.type = types.createErrorType(tree.record.type);
4217         } else {
4218             Type type = attribType(tree.deconstructor, env);
4219             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4220                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4221                 if (inferred == null) {
4222                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4223                 } else {
4224                     type = inferred;
4225                 }
4226             }
4227             tree.type = tree.deconstructor.type = type;
4228             site = types.capture(tree.type);
4229         }
4230 
4231         List<Type> expectedRecordTypes;
4232         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4233             ClassSymbol record = (ClassSymbol) site.tsym;
4234             expectedRecordTypes = record.getRecordComponents()
4235                                         .stream()
4236                                         .map(rc -> types.memberType(site, rc))
4237                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4238                                         .collect(List.collector());
4239             tree.record = record;
4240         } else {
4241             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4242             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4243                                 .limit(tree.nested.size())
4244                                 .collect(List.collector());
4245             tree.record = syms.errSymbol;
4246         }
4247         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4248         List<Type> recordTypes = expectedRecordTypes;
4249         List<JCPattern> nestedPatterns = tree.nested;
4250         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4251         try {
4252             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4253                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4254                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4255                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4256                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4257                 nestedPatterns = nestedPatterns.tail;
4258                 recordTypes = recordTypes.tail;
4259             }
4260             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4261                 while (nestedPatterns.nonEmpty()) {
4262                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4263                     nestedPatterns = nestedPatterns.tail;
4264                 }
4265                 List<Type> nestedTypes =
4266                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4267                 log.error(tree.pos(),
4268                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4269                                                                  nestedTypes));
4270             }
4271         } finally {
4272             localEnv.info.scope.leave();
4273         }
4274         chk.validate(tree.deconstructor, env, true);
4275         result = tree.type;
4276         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4277     }
4278 
4279     public void visitIndexed(JCArrayAccess tree) {
4280         Type owntype = types.createErrorType(tree.type);
4281         Type atype = attribExpr(tree.indexed, env);
4282         attribExpr(tree.index, env, syms.intType);
4283         if (types.isArray(atype))
4284             owntype = types.elemtype(atype);
4285         else if (!atype.hasTag(ERROR))
4286             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4287         if (!pkind().contains(KindSelector.VAL))
4288             owntype = capture(owntype);
4289         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4290     }
4291 
4292     public void visitIdent(JCIdent tree) {
4293         Symbol sym;
4294 
4295         // Find symbol
4296         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4297             // If we are looking for a method, the prototype `pt' will be a
4298             // method type with the type of the call's arguments as parameters.
4299             env.info.pendingResolutionPhase = null;
4300             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4301         } else if (tree.sym != null && tree.sym.kind != VAR) {
4302             sym = tree.sym;
4303         } else {
4304             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4305         }
4306         tree.sym = sym;
4307 
4308         // Also find the environment current for the class where
4309         // sym is defined (`symEnv').
4310         Env<AttrContext> symEnv = env;
4311         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4312             sym.kind.matches(KindSelector.VAL_MTH) &&
4313             sym.owner.kind == TYP &&
4314             tree.name != names._this && tree.name != names._super) {
4315 
4316             // Find environment in which identifier is defined.
4317             while (symEnv.outer != null &&
4318                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4319                 symEnv = symEnv.outer;
4320             }
4321         }
4322 
4323         // If symbol is a variable, ...
4324         if (sym.kind == VAR) {
4325             VarSymbol v = (VarSymbol)sym;
4326 
4327             // ..., evaluate its initializer, if it has one, and check for
4328             // illegal forward reference.
4329             checkInit(tree, env, v, false);
4330 
4331             // If we are expecting a variable (as opposed to a value), check
4332             // that the variable is assignable in the current environment.
4333             if (KindSelector.ASG.subset(pkind()))
4334                 checkAssignable(tree.pos(), v, null, env);
4335         }
4336 
4337         Env<AttrContext> env1 = env;
4338         if (sym.kind != ERR && sym.kind != TYP &&
4339             sym.owner != null && sym.owner != env1.enclClass.sym) {
4340             // If the found symbol is inaccessible, then it is
4341             // accessed through an enclosing instance.  Locate this
4342             // enclosing instance:
4343             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4344                 env1 = env1.outer;
4345         }
4346 
4347         if (env.info.isSerializable) {
4348             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4349         }
4350 
4351         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4352     }
4353 
4354     public void visitSelect(JCFieldAccess tree) {
4355         // Determine the expected kind of the qualifier expression.
4356         KindSelector skind = KindSelector.NIL;
4357         if (tree.name == names._this || tree.name == names._super ||
4358                 tree.name == names._class)
4359         {
4360             skind = KindSelector.TYP;
4361         } else {
4362             if (pkind().contains(KindSelector.PCK))
4363                 skind = KindSelector.of(skind, KindSelector.PCK);
4364             if (pkind().contains(KindSelector.TYP))
4365                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4366             if (pkind().contains(KindSelector.VAL_MTH))
4367                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4368         }
4369 
4370         // Attribute the qualifier expression, and determine its symbol (if any).
4371         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4372         if (!pkind().contains(KindSelector.TYP_PCK))
4373             site = capture(site); // Capture field access
4374 
4375         // don't allow T.class T[].class, etc
4376         if (skind == KindSelector.TYP) {
4377             Type elt = site;
4378             while (elt.hasTag(ARRAY))
4379                 elt = ((ArrayType)elt).elemtype;
4380             if (elt.hasTag(TYPEVAR)) {
4381                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4382                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4383                 tree.sym = tree.type.tsym;
4384                 return ;
4385             }
4386         }
4387 
4388         // If qualifier symbol is a type or `super', assert `selectSuper'
4389         // for the selection. This is relevant for determining whether
4390         // protected symbols are accessible.
4391         Symbol sitesym = TreeInfo.symbol(tree.selected);
4392         boolean selectSuperPrev = env.info.selectSuper;
4393         env.info.selectSuper =
4394             sitesym != null &&
4395             sitesym.name == names._super;
4396 
4397         // Determine the symbol represented by the selection.
4398         env.info.pendingResolutionPhase = null;
4399         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4400         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4401             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4402             sym = syms.errSymbol;
4403         }
4404         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4405             site = capture(site);
4406             sym = selectSym(tree, sitesym, site, env, resultInfo);
4407         }
4408         boolean varArgs = env.info.lastResolveVarargs();
4409         tree.sym = sym;
4410 
4411         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4412             site = types.skipTypeVars(site, true);
4413         }
4414 
4415         // If that symbol is a variable, ...
4416         if (sym.kind == VAR) {
4417             VarSymbol v = (VarSymbol)sym;
4418 
4419             // ..., evaluate its initializer, if it has one, and check for
4420             // illegal forward reference.
4421             checkInit(tree, env, v, true);
4422 
4423             // If we are expecting a variable (as opposed to a value), check
4424             // that the variable is assignable in the current environment.
4425             if (KindSelector.ASG.subset(pkind()))
4426                 checkAssignable(tree.pos(), v, tree.selected, env);
4427         }
4428 
4429         if (sitesym != null &&
4430                 sitesym.kind == VAR &&
4431                 ((VarSymbol)sitesym).isResourceVariable() &&
4432                 sym.kind == MTH &&
4433                 sym.name.equals(names.close) &&
4434                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4435                 env.info.lint.isEnabled(LintCategory.TRY)) {
4436             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4437         }
4438 
4439         // Disallow selecting a type from an expression
4440         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4441             tree.type = check(tree.selected, pt(),
4442                               sitesym == null ?
4443                                       KindSelector.VAL : sitesym.kind.toSelector(),
4444                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4445         }
4446 
4447         if (isType(sitesym)) {
4448             if (sym.name != names._this && sym.name != names._super) {
4449                 // Check if type-qualified fields or methods are static (JLS)
4450                 if ((sym.flags() & STATIC) == 0 &&
4451                     sym.name != names._super &&
4452                     (sym.kind == VAR || sym.kind == MTH)) {
4453                     rs.accessBase(rs.new StaticError(sym),
4454                               tree.pos(), site, sym.name, true);
4455                 }
4456             }
4457         } else if (sym.kind != ERR &&
4458                    (sym.flags() & STATIC) != 0 &&
4459                    sym.name != names._class) {
4460             // If the qualified item is not a type and the selected item is static, report
4461             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4462             if (!sym.owner.isAnonymous()) {
4463                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4464             } else {
4465                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4466             }
4467         }
4468 
4469         // If we are selecting an instance member via a `super', ...
4470         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4471 
4472             // Check that super-qualified symbols are not abstract (JLS)
4473             rs.checkNonAbstract(tree.pos(), sym);
4474 
4475             if (site.isRaw()) {
4476                 // Determine argument types for site.
4477                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4478                 if (site1 != null) site = site1;
4479             }
4480         }
4481 
4482         if (env.info.isSerializable) {
4483             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4484         }
4485 
4486         env.info.selectSuper = selectSuperPrev;
4487         result = checkId(tree, site, sym, env, resultInfo);
4488     }
4489     //where
4490         /** Determine symbol referenced by a Select expression,
4491          *
4492          *  @param tree   The select tree.
4493          *  @param site   The type of the selected expression,
4494          *  @param env    The current environment.
4495          *  @param resultInfo The current result.
4496          */
4497         private Symbol selectSym(JCFieldAccess tree,
4498                                  Symbol location,
4499                                  Type site,
4500                                  Env<AttrContext> env,
4501                                  ResultInfo resultInfo) {
4502             DiagnosticPosition pos = tree.pos();
4503             Name name = tree.name;
4504             switch (site.getTag()) {
4505             case PACKAGE:
4506                 return rs.accessBase(
4507                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4508                     pos, location, site, name, true);
4509             case ARRAY:
4510             case CLASS:
4511                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4512                     return rs.resolveQualifiedMethod(
4513                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4514                 } else if (name == names._this || name == names._super) {
4515                     return rs.resolveSelf(pos, env, site.tsym, name);
4516                 } else if (name == names._class) {
4517                     // In this case, we have already made sure in
4518                     // visitSelect that qualifier expression is a type.
4519                     return syms.getClassField(site, types);
4520                 } else {
4521                     // We are seeing a plain identifier as selector.
4522                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4523                         sym = rs.accessBase(sym, pos, location, site, name, true);
4524                     return sym;
4525                 }
4526             case WILDCARD:
4527                 throw new AssertionError(tree);
4528             case TYPEVAR:
4529                 // Normally, site.getUpperBound() shouldn't be null.
4530                 // It should only happen during memberEnter/attribBase
4531                 // when determining the supertype which *must* be
4532                 // done before attributing the type variables.  In
4533                 // other words, we are seeing this illegal program:
4534                 // class B<T> extends A<T.foo> {}
4535                 Symbol sym = (site.getUpperBound() != null)
4536                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4537                     : null;
4538                 if (sym == null) {
4539                     log.error(pos, Errors.TypeVarCantBeDeref);
4540                     return syms.errSymbol;
4541                 } else {
4542                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4543                         rs.new AccessError(env, site, sym) :
4544                                 sym;
4545                     rs.accessBase(sym2, pos, location, site, name, true);
4546                     return sym;
4547                 }
4548             case ERROR:
4549                 // preserve identifier names through errors
4550                 return types.createErrorType(name, site.tsym, site).tsym;
4551             default:
4552                 // The qualifier expression is of a primitive type -- only
4553                 // .class is allowed for these.
4554                 if (name == names._class) {
4555                     // In this case, we have already made sure in Select that
4556                     // qualifier expression is a type.
4557                     return syms.getClassField(site, types);
4558                 } else {
4559                     log.error(pos, Errors.CantDeref(site));
4560                     return syms.errSymbol;
4561                 }
4562             }
4563         }
4564 
4565         /** Determine type of identifier or select expression and check that
4566          *  (1) the referenced symbol is not deprecated
4567          *  (2) the symbol's type is safe (@see checkSafe)
4568          *  (3) if symbol is a variable, check that its type and kind are
4569          *      compatible with the prototype and protokind.
4570          *  (4) if symbol is an instance field of a raw type,
4571          *      which is being assigned to, issue an unchecked warning if its
4572          *      type changes under erasure.
4573          *  (5) if symbol is an instance method of a raw type, issue an
4574          *      unchecked warning if its argument types change under erasure.
4575          *  If checks succeed:
4576          *    If symbol is a constant, return its constant type
4577          *    else if symbol is a method, return its result type
4578          *    otherwise return its type.
4579          *  Otherwise return errType.
4580          *
4581          *  @param tree       The syntax tree representing the identifier
4582          *  @param site       If this is a select, the type of the selected
4583          *                    expression, otherwise the type of the current class.
4584          *  @param sym        The symbol representing the identifier.
4585          *  @param env        The current environment.
4586          *  @param resultInfo    The expected result
4587          */
4588         Type checkId(JCTree tree,
4589                      Type site,
4590                      Symbol sym,
4591                      Env<AttrContext> env,
4592                      ResultInfo resultInfo) {
4593             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4594                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4595                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4596         }
4597 
4598         Type checkMethodIdInternal(JCTree tree,
4599                      Type site,
4600                      Symbol sym,
4601                      Env<AttrContext> env,
4602                      ResultInfo resultInfo) {
4603             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4604                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4605             } else {
4606                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4607             }
4608         }
4609 
4610         Type checkIdInternal(JCTree tree,
4611                      Type site,
4612                      Symbol sym,
4613                      Type pt,
4614                      Env<AttrContext> env,
4615                      ResultInfo resultInfo) {
4616             Type owntype; // The computed type of this identifier occurrence.
4617             switch (sym.kind) {
4618             case TYP:
4619                 // For types, the computed type equals the symbol's type,
4620                 // except for two situations:
4621                 owntype = sym.type;
4622                 if (owntype.hasTag(CLASS)) {
4623                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4624                     Type ownOuter = owntype.getEnclosingType();
4625 
4626                     // (a) If the symbol's type is parameterized, erase it
4627                     // because no type parameters were given.
4628                     // We recover generic outer type later in visitTypeApply.
4629                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4630                         owntype = types.erasure(owntype);
4631                     }
4632 
4633                     // (b) If the symbol's type is an inner class, then
4634                     // we have to interpret its outer type as a superclass
4635                     // of the site type. Example:
4636                     //
4637                     // class Tree<A> { class Visitor { ... } }
4638                     // class PointTree extends Tree<Point> { ... }
4639                     // ...PointTree.Visitor...
4640                     //
4641                     // Then the type of the last expression above is
4642                     // Tree<Point>.Visitor.
4643                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4644                         Type normOuter = site;
4645                         if (normOuter.hasTag(CLASS)) {
4646                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4647                         }
4648                         if (normOuter == null) // perhaps from an import
4649                             normOuter = types.erasure(ownOuter);
4650                         if (normOuter != ownOuter)
4651                             owntype = new ClassType(
4652                                 normOuter, List.nil(), owntype.tsym,
4653                                 owntype.getMetadata());
4654                     }
4655                 }
4656                 break;
4657             case VAR:
4658                 VarSymbol v = (VarSymbol)sym;
4659 
4660                 if (env.info.enclVar != null
4661                         && v.type.hasTag(NONE)) {
4662                     //self reference to implicitly typed variable declaration
4663                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4664                     return tree.type = v.type = types.createErrorType(v.type);
4665                 }
4666 
4667                 // Test (4): if symbol is an instance field of a raw type,
4668                 // which is being assigned to, issue an unchecked warning if
4669                 // its type changes under erasure.
4670                 if (KindSelector.ASG.subset(pkind()) &&
4671                     v.owner.kind == TYP &&
4672                     (v.flags() & STATIC) == 0 &&
4673                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4674                     Type s = types.asOuterSuper(site, v.owner);
4675                     if (s != null &&
4676                         s.isRaw() &&
4677                         !types.isSameType(v.type, v.erasure(types))) {
4678                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4679                     }
4680                 }
4681                 // The computed type of a variable is the type of the
4682                 // variable symbol, taken as a member of the site type.
4683                 owntype = (sym.owner.kind == TYP &&
4684                            sym.name != names._this && sym.name != names._super)
4685                     ? types.memberType(site, sym)
4686                     : sym.type;
4687 
4688                 // If the variable is a constant, record constant value in
4689                 // computed type.
4690                 if (v.getConstValue() != null && isStaticReference(tree))
4691                     owntype = owntype.constType(v.getConstValue());
4692 
4693                 if (resultInfo.pkind == KindSelector.VAL) {
4694                     owntype = capture(owntype); // capture "names as expressions"
4695                 }
4696                 break;
4697             case MTH: {
4698                 owntype = checkMethod(site, sym,
4699                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4700                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4701                         resultInfo.pt.getTypeArguments());
4702                 chk.checkRestricted(tree.pos(), sym);
4703                 break;
4704             }
4705             case PCK: case ERR:
4706                 owntype = sym.type;
4707                 break;
4708             default:
4709                 throw new AssertionError("unexpected kind: " + sym.kind +
4710                                          " in tree " + tree);
4711             }
4712 
4713             // Emit a `deprecation' warning if symbol is deprecated.
4714             // (for constructors (but not for constructor references), the error
4715             // was given when the constructor was resolved)
4716 
4717             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4718                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4719                 chk.checkSunAPI(tree.pos(), sym);
4720                 chk.checkProfile(tree.pos(), sym);
4721                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4722             }
4723 
4724             if (pt.isErroneous()) {
4725                 owntype = types.createErrorType(owntype);
4726             }
4727 
4728             // If symbol is a variable, check that its type and
4729             // kind are compatible with the prototype and protokind.
4730             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4731         }
4732 
4733         /** Check that variable is initialized and evaluate the variable's
4734          *  initializer, if not yet done. Also check that variable is not
4735          *  referenced before it is defined.
4736          *  @param tree    The tree making up the variable reference.
4737          *  @param env     The current environment.
4738          *  @param v       The variable's symbol.
4739          */
4740         private void checkInit(JCTree tree,
4741                                Env<AttrContext> env,
4742                                VarSymbol v,
4743                                boolean onlyWarning) {
4744             // A forward reference is diagnosed if the declaration position
4745             // of the variable is greater than the current tree position
4746             // and the tree and variable definition occur in the same class
4747             // definition.  Note that writes don't count as references.
4748             // This check applies only to class and instance
4749             // variables.  Local variables follow different scope rules,
4750             // and are subject to definite assignment checking.
4751             Env<AttrContext> initEnv = enclosingInitEnv(env);
4752             if (initEnv != null &&
4753                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4754                 v.owner.kind == TYP &&
4755                 v.owner == env.info.scope.owner.enclClass() &&
4756                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4757                 (!env.tree.hasTag(ASSIGN) ||
4758                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4759                 if (!onlyWarning || isStaticEnumField(v)) {
4760                     Error errkey = (initEnv.info.enclVar == v) ?
4761                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4762                     log.error(tree.pos(), errkey);
4763                 } else if (useBeforeDeclarationWarning) {
4764                     Warning warnkey = (initEnv.info.enclVar == v) ?
4765                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4766                     log.warning(tree.pos(), warnkey);
4767                 }
4768             }
4769 
4770             v.getConstValue(); // ensure initializer is evaluated
4771 
4772             checkEnumInitializer(tree, env, v);
4773         }
4774 
4775         /**
4776          * Returns the enclosing init environment associated with this env (if any). An init env
4777          * can be either a field declaration env or a static/instance initializer env.
4778          */
4779         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4780             while (true) {
4781                 switch (env.tree.getTag()) {
4782                     case VARDEF:
4783                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4784                         if (vdecl.sym.owner.kind == TYP) {
4785                             //field
4786                             return env;
4787                         }
4788                         break;
4789                     case BLOCK:
4790                         if (env.next.tree.hasTag(CLASSDEF)) {
4791                             //instance/static initializer
4792                             return env;
4793                         }
4794                         break;
4795                     case METHODDEF:
4796                     case CLASSDEF:
4797                     case TOPLEVEL:
4798                         return null;
4799                 }
4800                 Assert.checkNonNull(env.next);
4801                 env = env.next;
4802             }
4803         }
4804 
4805         /**
4806          * Check for illegal references to static members of enum.  In
4807          * an enum type, constructors and initializers may not
4808          * reference its static members unless they are constant.
4809          *
4810          * @param tree    The tree making up the variable reference.
4811          * @param env     The current environment.
4812          * @param v       The variable's symbol.
4813          * @jls 8.9 Enum Types
4814          */
4815         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4816             // JLS:
4817             //
4818             // "It is a compile-time error to reference a static field
4819             // of an enum type that is not a compile-time constant
4820             // (15.28) from constructors, instance initializer blocks,
4821             // or instance variable initializer expressions of that
4822             // type. It is a compile-time error for the constructors,
4823             // instance initializer blocks, or instance variable
4824             // initializer expressions of an enum constant e to refer
4825             // to itself or to an enum constant of the same type that
4826             // is declared to the right of e."
4827             if (isStaticEnumField(v)) {
4828                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4829 
4830                 if (enclClass == null || enclClass.owner == null)
4831                     return;
4832 
4833                 // See if the enclosing class is the enum (or a
4834                 // subclass thereof) declaring v.  If not, this
4835                 // reference is OK.
4836                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4837                     return;
4838 
4839                 // If the reference isn't from an initializer, then
4840                 // the reference is OK.
4841                 if (!Resolve.isInitializer(env))
4842                     return;
4843 
4844                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4845             }
4846         }
4847 
4848         /** Is the given symbol a static, non-constant field of an Enum?
4849          *  Note: enum literals should not be regarded as such
4850          */
4851         private boolean isStaticEnumField(VarSymbol v) {
4852             return Flags.isEnum(v.owner) &&
4853                    Flags.isStatic(v) &&
4854                    !Flags.isConstant(v) &&
4855                    v.name != names._class;
4856         }
4857 
4858     /**
4859      * Check that method arguments conform to its instantiation.
4860      **/
4861     public Type checkMethod(Type site,
4862                             final Symbol sym,
4863                             ResultInfo resultInfo,
4864                             Env<AttrContext> env,
4865                             final List<JCExpression> argtrees,
4866                             List<Type> argtypes,
4867                             List<Type> typeargtypes) {
4868         // Test (5): if symbol is an instance method of a raw type, issue
4869         // an unchecked warning if its argument types change under erasure.
4870         if ((sym.flags() & STATIC) == 0 &&
4871             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4872             Type s = types.asOuterSuper(site, sym.owner);
4873             if (s != null && s.isRaw() &&
4874                 !types.isSameTypes(sym.type.getParameterTypes(),
4875                                    sym.erasure(types).getParameterTypes())) {
4876                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4877             }
4878         }
4879 
4880         if (env.info.defaultSuperCallSite != null) {
4881             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4882                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4883                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4884                 List<MethodSymbol> icand_sup =
4885                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4886                 if (icand_sup.nonEmpty() &&
4887                         icand_sup.head != sym &&
4888                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4889                     log.error(env.tree.pos(),
4890                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4891                     break;
4892                 }
4893             }
4894             env.info.defaultSuperCallSite = null;
4895         }
4896 
4897         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4898             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4899             if (app.meth.hasTag(SELECT) &&
4900                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4901                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4902             }
4903         }
4904 
4905         // Compute the identifier's instantiated type.
4906         // For methods, we need to compute the instance type by
4907         // Resolve.instantiate from the symbol's type as well as
4908         // any type arguments and value arguments.
4909         Warner noteWarner = new Warner();
4910         try {
4911             Type owntype = rs.checkMethod(
4912                     env,
4913                     site,
4914                     sym,
4915                     resultInfo,
4916                     argtypes,
4917                     typeargtypes,
4918                     noteWarner);
4919 
4920             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4921                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4922 
4923             argtypes = argtypes.map(checkDeferredMap);
4924 
4925             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4926                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4927                         sym.name,
4928                         rs.methodArguments(sym.type.getParameterTypes()),
4929                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4930                         kindName(sym.location()),
4931                         sym.location()));
4932                 if (resultInfo.pt != Infer.anyPoly ||
4933                         !owntype.hasTag(METHOD) ||
4934                         !owntype.isPartial()) {
4935                     //if this is not a partially inferred method type, erase return type. Otherwise,
4936                     //erasure is carried out in PartiallyInferredMethodType.check().
4937                     owntype = new MethodType(owntype.getParameterTypes(),
4938                             types.erasure(owntype.getReturnType()),
4939                             types.erasure(owntype.getThrownTypes()),
4940                             syms.methodClass);
4941                 }
4942             }
4943 
4944             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4945                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4946                  PolyKind.POLY : PolyKind.STANDALONE;
4947             TreeInfo.setPolyKind(env.tree, pkind);
4948 
4949             return (resultInfo.pt == Infer.anyPoly) ?
4950                     owntype :
4951                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4952                             resultInfo.checkContext.inferenceContext());
4953         } catch (Infer.InferenceException ex) {
4954             //invalid target type - propagate exception outwards or report error
4955             //depending on the current check context
4956             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4957             return types.createErrorType(site);
4958         } catch (Resolve.InapplicableMethodException ex) {
4959             final JCDiagnostic diag = ex.getDiagnostic();
4960             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4961                 @Override
4962                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4963                     return new Pair<>(sym, diag);
4964                 }
4965             };
4966             List<Type> argtypes2 = argtypes.map(
4967                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4968             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4969                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4970             log.report(errDiag);
4971             return types.createErrorType(site);
4972         }
4973     }
4974 
4975     public void visitLiteral(JCLiteral tree) {
4976         result = check(tree, litType(tree.typetag).constType(tree.value),
4977                 KindSelector.VAL, resultInfo);
4978     }
4979     //where
4980     /** Return the type of a literal with given type tag.
4981      */
4982     Type litType(TypeTag tag) {
4983         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4984     }
4985 
4986     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4987         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4988     }
4989 
4990     public void visitTypeArray(JCArrayTypeTree tree) {
4991         Type etype = attribType(tree.elemtype, env);
4992         Type type = new ArrayType(etype, syms.arrayClass);
4993         result = check(tree, type, KindSelector.TYP, resultInfo);
4994     }
4995 
4996     /** Visitor method for parameterized types.
4997      *  Bound checking is left until later, since types are attributed
4998      *  before supertype structure is completely known
4999      */
5000     public void visitTypeApply(JCTypeApply tree) {
5001         Type owntype = types.createErrorType(tree.type);
5002 
5003         // Attribute functor part of application and make sure it's a class.
5004         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5005 
5006         // Attribute type parameters
5007         List<Type> actuals = attribTypes(tree.arguments, env);
5008 
5009         if (clazztype.hasTag(CLASS)) {
5010             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5011             if (actuals.isEmpty()) //diamond
5012                 actuals = formals;
5013 
5014             if (actuals.length() == formals.length()) {
5015                 List<Type> a = actuals;
5016                 List<Type> f = formals;
5017                 while (a.nonEmpty()) {
5018                     a.head = a.head.withTypeVar(f.head);
5019                     a = a.tail;
5020                     f = f.tail;
5021                 }
5022                 // Compute the proper generic outer
5023                 Type clazzOuter = clazztype.getEnclosingType();
5024                 if (clazzOuter.hasTag(CLASS)) {
5025                     Type site;
5026                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5027                     if (clazz.hasTag(IDENT)) {
5028                         site = env.enclClass.sym.type;
5029                     } else if (clazz.hasTag(SELECT)) {
5030                         site = ((JCFieldAccess) clazz).selected.type;
5031                     } else throw new AssertionError(""+tree);
5032                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5033                         if (site.hasTag(CLASS))
5034                             site = types.asOuterSuper(site, clazzOuter.tsym);
5035                         if (site == null)
5036                             site = types.erasure(clazzOuter);
5037                         clazzOuter = site;
5038                     }
5039                 }
5040                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5041                                         clazztype.getMetadata());
5042             } else {
5043                 if (formals.length() != 0) {
5044                     log.error(tree.pos(),
5045                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5046                 } else {
5047                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5048                 }
5049                 owntype = types.createErrorType(tree.type);
5050             }
5051         } else if (clazztype.hasTag(ERROR)) {
5052             ErrorType parameterizedErroneous =
5053                     new ErrorType(clazztype.getOriginalType(),
5054                                   clazztype.tsym,
5055                                   clazztype.getMetadata());
5056 
5057             parameterizedErroneous.typarams_field = actuals;
5058             owntype = parameterizedErroneous;
5059         }
5060         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5061     }
5062 
5063     public void visitTypeUnion(JCTypeUnion tree) {
5064         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5065         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5066         for (JCExpression typeTree : tree.alternatives) {
5067             Type ctype = attribType(typeTree, env);
5068             ctype = chk.checkType(typeTree.pos(),
5069                           chk.checkClassType(typeTree.pos(), ctype),
5070                           syms.throwableType);
5071             if (!ctype.isErroneous()) {
5072                 //check that alternatives of a union type are pairwise
5073                 //unrelated w.r.t. subtyping
5074                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5075                     for (Type t : multicatchTypes) {
5076                         boolean sub = types.isSubtype(ctype, t);
5077                         boolean sup = types.isSubtype(t, ctype);
5078                         if (sub || sup) {
5079                             //assume 'a' <: 'b'
5080                             Type a = sub ? ctype : t;
5081                             Type b = sub ? t : ctype;
5082                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5083                         }
5084                     }
5085                 }
5086                 multicatchTypes.append(ctype);
5087                 if (all_multicatchTypes != null)
5088                     all_multicatchTypes.append(ctype);
5089             } else {
5090                 if (all_multicatchTypes == null) {
5091                     all_multicatchTypes = new ListBuffer<>();
5092                     all_multicatchTypes.appendList(multicatchTypes);
5093                 }
5094                 all_multicatchTypes.append(ctype);
5095             }
5096         }
5097         Type t = check(tree, types.lub(multicatchTypes.toList()),
5098                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5099         if (t.hasTag(CLASS)) {
5100             List<Type> alternatives =
5101                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5102             t = new UnionClassType((ClassType) t, alternatives);
5103         }
5104         tree.type = result = t;
5105     }
5106 
5107     public void visitTypeIntersection(JCTypeIntersection tree) {
5108         attribTypes(tree.bounds, env);
5109         tree.type = result = checkIntersection(tree, tree.bounds);
5110     }
5111 
5112     public void visitTypeParameter(JCTypeParameter tree) {
5113         TypeVar typeVar = (TypeVar) tree.type;
5114 
5115         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5116             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5117         }
5118 
5119         if (!typeVar.getUpperBound().isErroneous()) {
5120             //fixup type-parameter bound computed in 'attribTypeVariables'
5121             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5122         }
5123     }
5124 
5125     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5126         Set<Symbol> boundSet = new HashSet<>();
5127         if (bounds.nonEmpty()) {
5128             // accept class or interface or typevar as first bound.
5129             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5130             boundSet.add(types.erasure(bounds.head.type).tsym);
5131             if (bounds.head.type.isErroneous()) {
5132                 return bounds.head.type;
5133             }
5134             else if (bounds.head.type.hasTag(TYPEVAR)) {
5135                 // if first bound was a typevar, do not accept further bounds.
5136                 if (bounds.tail.nonEmpty()) {
5137                     log.error(bounds.tail.head.pos(),
5138                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5139                     return bounds.head.type;
5140                 }
5141             } else {
5142                 // if first bound was a class or interface, accept only interfaces
5143                 // as further bounds.
5144                 for (JCExpression bound : bounds.tail) {
5145                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5146                     if (bound.type.isErroneous()) {
5147                         bounds = List.of(bound);
5148                     }
5149                     else if (bound.type.hasTag(CLASS)) {
5150                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5151                     }
5152                 }
5153             }
5154         }
5155 
5156         if (bounds.length() == 0) {
5157             return syms.objectType;
5158         } else if (bounds.length() == 1) {
5159             return bounds.head.type;
5160         } else {
5161             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5162             // ... the variable's bound is a class type flagged COMPOUND
5163             // (see comment for TypeVar.bound).
5164             // In this case, generate a class tree that represents the
5165             // bound class, ...
5166             JCExpression extending;
5167             List<JCExpression> implementing;
5168             if (!bounds.head.type.isInterface()) {
5169                 extending = bounds.head;
5170                 implementing = bounds.tail;
5171             } else {
5172                 extending = null;
5173                 implementing = bounds;
5174             }
5175             JCClassDecl cd = make.at(tree).ClassDef(
5176                 make.Modifiers(PUBLIC | ABSTRACT),
5177                 names.empty, List.nil(),
5178                 extending, implementing, List.nil());
5179 
5180             ClassSymbol c = (ClassSymbol)owntype.tsym;
5181             Assert.check((c.flags() & COMPOUND) != 0);
5182             cd.sym = c;
5183             c.sourcefile = env.toplevel.sourcefile;
5184 
5185             // ... and attribute the bound class
5186             c.flags_field |= UNATTRIBUTED;
5187             Env<AttrContext> cenv = enter.classEnv(cd, env);
5188             typeEnvs.put(c, cenv);
5189             attribClass(c);
5190             return owntype;
5191         }
5192     }
5193 
5194     public void visitWildcard(JCWildcard tree) {
5195         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5196         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5197             ? syms.objectType
5198             : attribType(tree.inner, env);
5199         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5200                                               tree.kind.kind,
5201                                               syms.boundClass),
5202                 KindSelector.TYP, resultInfo);
5203     }
5204 
5205     public void visitAnnotation(JCAnnotation tree) {
5206         Assert.error("should be handled in annotate");
5207     }
5208 
5209     @Override
5210     public void visitModifiers(JCModifiers tree) {
5211         //error recovery only:
5212         Assert.check(resultInfo.pkind == KindSelector.ERR);
5213 
5214         attribAnnotationTypes(tree.annotations, env);
5215     }
5216 
5217     public void visitAnnotatedType(JCAnnotatedType tree) {
5218         attribAnnotationTypes(tree.annotations, env);
5219         Type underlyingType = attribType(tree.underlyingType, env);
5220         Type annotatedType = underlyingType.preannotatedType();
5221 
5222         if (!env.info.isNewClass)
5223             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5224         result = tree.type = annotatedType;
5225     }
5226 
5227     public void visitErroneous(JCErroneous tree) {
5228         if (tree.errs != null) {
5229             WriteableScope newScope = env.info.scope;
5230 
5231             if (env.tree instanceof JCClassDecl) {
5232                 Symbol fakeOwner =
5233                     new MethodSymbol(BLOCK, names.empty, null,
5234                         env.info.scope.owner);
5235                 newScope = newScope.dupUnshared(fakeOwner);
5236             }
5237 
5238             Env<AttrContext> errEnv =
5239                     env.dup(env.tree,
5240                             env.info.dup(newScope));
5241             errEnv.info.returnResult = unknownExprInfo;
5242             for (JCTree err : tree.errs)
5243                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5244         }
5245         result = tree.type = syms.errType;
5246     }
5247 
5248     /** Default visitor method for all other trees.
5249      */
5250     public void visitTree(JCTree tree) {
5251         throw new AssertionError();
5252     }
5253 
5254     /**
5255      * Attribute an env for either a top level tree or class or module declaration.
5256      */
5257     public void attrib(Env<AttrContext> env) {
5258         switch (env.tree.getTag()) {
5259             case MODULEDEF:
5260                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5261                 break;
5262             case PACKAGEDEF:
5263                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5264                 break;
5265             default:
5266                 attribClass(env.tree.pos(), env.enclClass.sym);
5267         }
5268 
5269         annotate.flush();
5270     }
5271 
5272     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5273         try {
5274             annotate.flush();
5275             attribPackage(p);
5276         } catch (CompletionFailure ex) {
5277             chk.completionError(pos, ex);
5278         }
5279     }
5280 
5281     void attribPackage(PackageSymbol p) {
5282         attribWithLint(p,
5283                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5284     }
5285 
5286     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5287         try {
5288             annotate.flush();
5289             attribModule(m);
5290         } catch (CompletionFailure ex) {
5291             chk.completionError(pos, ex);
5292         }
5293     }
5294 
5295     void attribModule(ModuleSymbol m) {
5296         attribWithLint(m, env -> attribStat(env.tree, env));
5297     }
5298 
5299     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5300         Env<AttrContext> env = typeEnvs.get(sym);
5301 
5302         Env<AttrContext> lintEnv = env;
5303         while (lintEnv.info.lint == null)
5304             lintEnv = lintEnv.next;
5305 
5306         Lint lint = lintEnv.info.lint.augment(sym);
5307 
5308         Lint prevLint = chk.setLint(lint);
5309         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5310 
5311         try {
5312             deferredLintHandler.flush(env.tree.pos(), lint);
5313             attrib.accept(env);
5314         } finally {
5315             log.useSource(prev);
5316             chk.setLint(prevLint);
5317         }
5318     }
5319 
5320     /** Main method: attribute class definition associated with given class symbol.
5321      *  reporting completion failures at the given position.
5322      *  @param pos The source position at which completion errors are to be
5323      *             reported.
5324      *  @param c   The class symbol whose definition will be attributed.
5325      */
5326     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5327         try {
5328             annotate.flush();
5329             attribClass(c);
5330         } catch (CompletionFailure ex) {
5331             chk.completionError(pos, ex);
5332         }
5333     }
5334 
5335     /** Attribute class definition associated with given class symbol.
5336      *  @param c   The class symbol whose definition will be attributed.
5337      */
5338     void attribClass(ClassSymbol c) throws CompletionFailure {
5339         if (c.type.hasTag(ERROR)) return;
5340 
5341         // Check for cycles in the inheritance graph, which can arise from
5342         // ill-formed class files.
5343         chk.checkNonCyclic(null, c.type);
5344 
5345         Type st = types.supertype(c.type);
5346         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5347             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5348             // First, attribute superclass.
5349             if (st.hasTag(CLASS))
5350                 attribClass((ClassSymbol)st.tsym);
5351 
5352             // Next attribute owner, if it is a class.
5353             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5354                 attribClass((ClassSymbol)c.owner);
5355 
5356             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5357         }
5358 
5359         // The previous operations might have attributed the current class
5360         // if there was a cycle. So we test first whether the class is still
5361         // UNATTRIBUTED.
5362         if ((c.flags_field & UNATTRIBUTED) != 0) {
5363             c.flags_field &= ~UNATTRIBUTED;
5364 
5365             // Get environment current at the point of class definition.
5366             Env<AttrContext> env = typeEnvs.get(c);
5367 
5368             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5369             // because the annotations were not available at the time the env was created. Therefore,
5370             // we look up the environment chain for the first enclosing environment for which the
5371             // lint value is set. Typically, this is the parent env, but might be further if there
5372             // are any envs created as a result of TypeParameter nodes.
5373             Env<AttrContext> lintEnv = env;
5374             while (lintEnv.info.lint == null)
5375                 lintEnv = lintEnv.next;
5376 
5377             // Having found the enclosing lint value, we can initialize the lint value for this class
5378             env.info.lint = lintEnv.info.lint.augment(c);
5379 
5380             Lint prevLint = chk.setLint(env.info.lint);
5381             JavaFileObject prev = log.useSource(c.sourcefile);
5382             ResultInfo prevReturnRes = env.info.returnResult;
5383 
5384             try {
5385                 if (c.isSealed() &&
5386                         !c.isEnum() &&
5387                         !c.isPermittedExplicit &&
5388                         c.getPermittedSubclasses().isEmpty()) {
5389                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5390                 }
5391 
5392                 if (c.isSealed()) {
5393                     Set<Symbol> permittedTypes = new HashSet<>();
5394                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5395                     for (Type subType : c.getPermittedSubclasses()) {
5396                         boolean isTypeVar = false;
5397                         if (subType.getTag() == TYPEVAR) {
5398                             isTypeVar = true; //error recovery
5399                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5400                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5401                         }
5402                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5403                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5404                         }
5405                         if (permittedTypes.contains(subType.tsym)) {
5406                             DiagnosticPosition pos =
5407                                     env.enclClass.permitting.stream()
5408                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5409                                             .limit(2).collect(List.collector()).get(1);
5410                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5411                         } else {
5412                             permittedTypes.add(subType.tsym);
5413                         }
5414                         if (sealedInUnnamed) {
5415                             if (subType.tsym.packge() != c.packge()) {
5416                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5417                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5418                                 );
5419                             }
5420                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5421                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5422                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5423                             );
5424                         }
5425                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5426                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5427                                     Errors.InvalidPermitsClause(
5428                                             subType.tsym == c.type.tsym ?
5429                                                     Fragments.MustNotBeSameClass :
5430                                                     Fragments.MustNotBeSupertype(subType)
5431                                     )
5432                             );
5433                         } else if (!isTypeVar) {
5434                             boolean thisIsASuper = types.directSupertypes(subType)
5435                                                         .stream()
5436                                                         .anyMatch(d -> d.tsym == c);
5437                             if (!thisIsASuper) {
5438                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5439                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5440                             }
5441                         }
5442                     }
5443                 }
5444 
5445                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5446                                                       .stream()
5447                                                       .filter(s -> s.tsym.isSealed())
5448                                                       .map(s -> (ClassSymbol) s.tsym)
5449                                                       .collect(List.collector());
5450 
5451                 if (sealedSupers.isEmpty()) {
5452                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5453                         boolean hasErrorSuper = false;
5454 
5455                         hasErrorSuper |= types.directSupertypes(c.type)
5456                                               .stream()
5457                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5458 
5459                         ClassType ct = (ClassType) c.type;
5460 
5461                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5462 
5463                         if (!hasErrorSuper) {
5464                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5465                         }
5466                     }
5467                 } else {
5468                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5469                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5470                     }
5471 
5472                     if (!c.type.isCompound()) {
5473                         for (ClassSymbol supertypeSym : sealedSupers) {
5474                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5475                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5476                             }
5477                         }
5478                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5479                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5480                                     c.isInterface() ?
5481                                             Errors.NonSealedOrSealedExpected :
5482                                             Errors.NonSealedSealedOrFinalExpected);
5483                         }
5484                     }
5485                 }
5486 
5487                 deferredLintHandler.flush(env.tree, env.info.lint);
5488                 env.info.returnResult = null;
5489                 // java.lang.Enum may not be subclassed by a non-enum
5490                 if (st.tsym == syms.enumSym &&
5491                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5492                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5493 
5494                 // Enums may not be extended by source-level classes
5495                 if (st.tsym != null &&
5496                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5497                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5498                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5499                 }
5500 
5501                 if (rs.isSerializable(c.type)) {
5502                     env.info.isSerializable = true;
5503                 }
5504 
5505                 attribClassBody(env, c);
5506 
5507                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5508                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5509                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5510                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5511 
5512                 if (c.isImplicit()) {
5513                     chk.checkHasMain(env.tree.pos(), c);
5514                 }
5515             } finally {
5516                 env.info.returnResult = prevReturnRes;
5517                 log.useSource(prev);
5518                 chk.setLint(prevLint);
5519             }
5520 
5521         }
5522     }
5523 
5524     public void visitImport(JCImport tree) {
5525         // nothing to do
5526     }
5527 
5528     public void visitModuleDef(JCModuleDecl tree) {
5529         tree.sym.completeUsesProvides();
5530         ModuleSymbol msym = tree.sym;
5531         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5532         Lint prevLint = chk.setLint(lint);
5533         chk.checkModuleName(tree);
5534         chk.checkDeprecatedAnnotation(tree, msym);
5535 
5536         try {
5537             deferredLintHandler.flush(tree.pos(), lint);
5538         } finally {
5539             chk.setLint(prevLint);
5540         }
5541     }
5542 
5543     /** Finish the attribution of a class. */
5544     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5545         JCClassDecl tree = (JCClassDecl)env.tree;
5546         Assert.check(c == tree.sym);
5547 
5548         // Validate type parameters, supertype and interfaces.
5549         attribStats(tree.typarams, env);
5550         if (!c.isAnonymous()) {
5551             //already checked if anonymous
5552             chk.validate(tree.typarams, env);
5553             chk.validate(tree.extending, env);
5554             chk.validate(tree.implementing, env);
5555         }
5556 
5557         c.markAbstractIfNeeded(types);
5558 
5559         // If this is a non-abstract class, check that it has no abstract
5560         // methods or unimplemented methods of an implemented interface.
5561         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5562             chk.checkAllDefined(tree.pos(), c);
5563         }
5564 
5565         if ((c.flags() & ANNOTATION) != 0) {
5566             if (tree.implementing.nonEmpty())
5567                 log.error(tree.implementing.head.pos(),
5568                           Errors.CantExtendIntfAnnotation);
5569             if (tree.typarams.nonEmpty()) {
5570                 log.error(tree.typarams.head.pos(),
5571                           Errors.IntfAnnotationCantHaveTypeParams(c));
5572             }
5573 
5574             // If this annotation type has a @Repeatable, validate
5575             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5576             // If this annotation type has a @Repeatable, validate
5577             if (repeatable != null) {
5578                 // get diagnostic position for error reporting
5579                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5580                 Assert.checkNonNull(cbPos);
5581 
5582                 chk.validateRepeatable(c, repeatable, cbPos);
5583             }
5584         } else {
5585             // Check that all extended classes and interfaces
5586             // are compatible (i.e. no two define methods with same arguments
5587             // yet different return types).  (JLS 8.4.8.3)
5588             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5589             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5590             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5591         }
5592 
5593         // Check that class does not import the same parameterized interface
5594         // with two different argument lists.
5595         chk.checkClassBounds(tree.pos(), c.type);
5596 
5597         tree.type = c.type;
5598 
5599         for (List<JCTypeParameter> l = tree.typarams;
5600              l.nonEmpty(); l = l.tail) {
5601              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5602         }
5603 
5604         // Check that a generic class doesn't extend Throwable
5605         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5606             log.error(tree.extending.pos(), Errors.GenericThrowable);
5607 
5608         // Check that all methods which implement some
5609         // method conform to the method they implement.
5610         chk.checkImplementations(tree);
5611 
5612         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5613         checkAutoCloseable(tree.pos(), env, c.type);
5614 
5615         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5616             // Attribute declaration
5617             attribStat(l.head, env);
5618             // Check that declarations in inner classes are not static (JLS 8.1.2)
5619             // Make an exception for static constants.
5620             if (!allowRecords &&
5621                     c.owner.kind != PCK &&
5622                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5623                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5624                 VarSymbol sym = null;
5625                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5626                 if (sym == null ||
5627                         sym.kind != VAR ||
5628                         sym.getConstValue() == null)
5629                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5630             }
5631         }
5632 
5633         // Check for proper placement of super()/this() calls.
5634         chk.checkSuperInitCalls(tree);
5635 
5636         // Check for cycles among non-initial constructors.
5637         chk.checkCyclicConstructors(tree);
5638 
5639         // Check for cycles among annotation elements.
5640         chk.checkNonCyclicElements(tree);
5641 
5642         // Check for proper use of serialVersionUID and other
5643         // serialization-related fields and methods
5644         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5645                 && rs.isSerializable(c.type)
5646                 && !c.isAnonymous()) {
5647             chk.checkSerialStructure(tree, c);
5648         }
5649         // Correctly organize the positions of the type annotations
5650         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5651 
5652         // Check type annotations applicability rules
5653         validateTypeAnnotations(tree, false);
5654     }
5655         // where
5656         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5657         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5658             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5659                 if (types.isSameType(al.head.annotationType.type, t))
5660                     return al.head.pos();
5661             }
5662 
5663             return null;
5664         }
5665 
5666     private Type capture(Type type) {
5667         return types.capture(type);
5668     }
5669 
5670     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5671         if (type.isErroneous()) {
5672             tree.vartype = make.at(Position.NOPOS).Erroneous();
5673         } else {
5674             tree.vartype = make.at(Position.NOPOS).Type(type);
5675         }
5676     }
5677 
5678     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5679         tree.accept(new TypeAnnotationsValidator(sigOnly));
5680     }
5681     //where
5682     private final class TypeAnnotationsValidator extends TreeScanner {
5683 
5684         private final boolean sigOnly;
5685         public TypeAnnotationsValidator(boolean sigOnly) {
5686             this.sigOnly = sigOnly;
5687         }
5688 
5689         public void visitAnnotation(JCAnnotation tree) {
5690             chk.validateTypeAnnotation(tree, null, false);
5691             super.visitAnnotation(tree);
5692         }
5693         public void visitAnnotatedType(JCAnnotatedType tree) {
5694             if (!tree.underlyingType.type.isErroneous()) {
5695                 super.visitAnnotatedType(tree);
5696             }
5697         }
5698         public void visitTypeParameter(JCTypeParameter tree) {
5699             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5700             scan(tree.bounds);
5701             // Don't call super.
5702             // This is needed because above we call validateTypeAnnotation with
5703             // false, which would forbid annotations on type parameters.
5704             // super.visitTypeParameter(tree);
5705         }
5706         public void visitMethodDef(JCMethodDecl tree) {
5707             if (tree.recvparam != null &&
5708                     !tree.recvparam.vartype.type.isErroneous()) {
5709                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5710             }
5711             if (tree.restype != null && tree.restype.type != null) {
5712                 validateAnnotatedType(tree.restype, tree.restype.type);
5713             }
5714             if (sigOnly) {
5715                 scan(tree.mods);
5716                 scan(tree.restype);
5717                 scan(tree.typarams);
5718                 scan(tree.recvparam);
5719                 scan(tree.params);
5720                 scan(tree.thrown);
5721             } else {
5722                 scan(tree.defaultValue);
5723                 scan(tree.body);
5724             }
5725         }
5726         public void visitVarDef(final JCVariableDecl tree) {
5727             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5728             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5729                 validateAnnotatedType(tree.vartype, tree.sym.type);
5730             scan(tree.mods);
5731             scan(tree.vartype);
5732             if (!sigOnly) {
5733                 scan(tree.init);
5734             }
5735         }
5736         public void visitTypeCast(JCTypeCast tree) {
5737             if (tree.clazz != null && tree.clazz.type != null)
5738                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5739             super.visitTypeCast(tree);
5740         }
5741         public void visitTypeTest(JCInstanceOf tree) {
5742             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5743                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5744             super.visitTypeTest(tree);
5745         }
5746         public void visitNewClass(JCNewClass tree) {
5747             if (tree.clazz != null && tree.clazz.type != null) {
5748                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5749                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5750                             tree.clazz.type.tsym);
5751                 }
5752                 if (tree.def != null) {
5753                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5754                 }
5755 
5756                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5757             }
5758             super.visitNewClass(tree);
5759         }
5760         public void visitNewArray(JCNewArray tree) {
5761             if (tree.elemtype != null && tree.elemtype.type != null) {
5762                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5763                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5764                             tree.elemtype.type.tsym);
5765                 }
5766                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5767             }
5768             super.visitNewArray(tree);
5769         }
5770         public void visitClassDef(JCClassDecl tree) {
5771             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5772             if (sigOnly) {
5773                 scan(tree.mods);
5774                 scan(tree.typarams);
5775                 scan(tree.extending);
5776                 scan(tree.implementing);
5777             }
5778             for (JCTree member : tree.defs) {
5779                 if (member.hasTag(Tag.CLASSDEF)) {
5780                     continue;
5781                 }
5782                 scan(member);
5783             }
5784         }
5785         public void visitBlock(JCBlock tree) {
5786             if (!sigOnly) {
5787                 scan(tree.stats);
5788             }
5789         }
5790 
5791         /* I would want to model this after
5792          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5793          * and override visitSelect and visitTypeApply.
5794          * However, we only set the annotated type in the top-level type
5795          * of the symbol.
5796          * Therefore, we need to override each individual location where a type
5797          * can occur.
5798          */
5799         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5800             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5801 
5802             if (type.isPrimitiveOrVoid()) {
5803                 return;
5804             }
5805 
5806             JCTree enclTr = errtree;
5807             Type enclTy = type;
5808 
5809             boolean repeat = true;
5810             while (repeat) {
5811                 if (enclTr.hasTag(TYPEAPPLY)) {
5812                     List<Type> tyargs = enclTy.getTypeArguments();
5813                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5814                     if (trargs.length() > 0) {
5815                         // Nothing to do for diamonds
5816                         if (tyargs.length() == trargs.length()) {
5817                             for (int i = 0; i < tyargs.length(); ++i) {
5818                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5819                             }
5820                         }
5821                         // If the lengths don't match, it's either a diamond
5822                         // or some nested type that redundantly provides
5823                         // type arguments in the tree.
5824                     }
5825 
5826                     // Look at the clazz part of a generic type
5827                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5828                 }
5829 
5830                 if (enclTr.hasTag(SELECT)) {
5831                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5832                     if (enclTy != null &&
5833                             !enclTy.hasTag(NONE)) {
5834                         enclTy = enclTy.getEnclosingType();
5835                     }
5836                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5837                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5838                     if (enclTy == null || enclTy.hasTag(NONE)) {
5839                         ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
5840                         for (JCAnnotation an : at.getAnnotations()) {
5841                             if (chk.isTypeAnnotation(an, false)) {
5842                                 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
5843                             }
5844                         }
5845                         List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
5846                         if (!onlyTypeAnnotations.isEmpty()) {
5847                             Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
5848                                     Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
5849                                     Fragments.TypeAnnotation(onlyTypeAnnotations);
5850                             JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
5851                                     type.stripMetadata().annotatedType(onlyTypeAnnotations));
5852                             log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
5853                                     type.tsym.owner, annotatedType));
5854                         }
5855                         repeat = false;
5856                     }
5857                     enclTr = at.underlyingType;
5858                     // enclTy doesn't need to be changed
5859                 } else if (enclTr.hasTag(IDENT)) {
5860                     repeat = false;
5861                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5862                     JCWildcard wc = (JCWildcard) enclTr;
5863                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5864                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5865                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5866                     } else {
5867                         // Nothing to do for UNBOUND
5868                     }
5869                     repeat = false;
5870                 } else if (enclTr.hasTag(TYPEARRAY)) {
5871                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5872                     validateAnnotatedType(art.getType(), art.elemtype.type);
5873                     repeat = false;
5874                 } else if (enclTr.hasTag(TYPEUNION)) {
5875                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5876                     for (JCTree t : ut.getTypeAlternatives()) {
5877                         validateAnnotatedType(t, t.type);
5878                     }
5879                     repeat = false;
5880                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5881                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5882                     for (JCTree t : it.getBounds()) {
5883                         validateAnnotatedType(t, t.type);
5884                     }
5885                     repeat = false;
5886                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5887                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5888                     repeat = false;
5889                 } else {
5890                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5891                             " within: "+ errtree + " with kind: " + errtree.getKind());
5892                 }
5893             }
5894         }
5895 
5896         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5897                 Symbol sym) {
5898             // Ensure that no declaration annotations are present.
5899             // Note that a tree type might be an AnnotatedType with
5900             // empty annotations, if only declaration annotations were given.
5901             // This method will raise an error for such a type.
5902             for (JCAnnotation ai : annotations) {
5903                 if (!ai.type.isErroneous() &&
5904                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5905                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5906                 }
5907             }
5908         }
5909     }
5910 
5911     // <editor-fold desc="post-attribution visitor">
5912 
5913     /**
5914      * Handle missing types/symbols in an AST. This routine is useful when
5915      * the compiler has encountered some errors (which might have ended up
5916      * terminating attribution abruptly); if the compiler is used in fail-over
5917      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5918      * prevents NPE to be propagated during subsequent compilation steps.
5919      */
5920     public void postAttr(JCTree tree) {
5921         new PostAttrAnalyzer().scan(tree);
5922     }
5923 
5924     class PostAttrAnalyzer extends TreeScanner {
5925 
5926         private void initTypeIfNeeded(JCTree that) {
5927             if (that.type == null) {
5928                 if (that.hasTag(METHODDEF)) {
5929                     that.type = dummyMethodType((JCMethodDecl)that);
5930                 } else {
5931                     that.type = syms.unknownType;
5932                 }
5933             }
5934         }
5935 
5936         /* Construct a dummy method type. If we have a method declaration,
5937          * and the declared return type is void, then use that return type
5938          * instead of UNKNOWN to avoid spurious error messages in lambda
5939          * bodies (see:JDK-8041704).
5940          */
5941         private Type dummyMethodType(JCMethodDecl md) {
5942             Type restype = syms.unknownType;
5943             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5944                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5945                 if (prim.typetag == VOID)
5946                     restype = syms.voidType;
5947             }
5948             return new MethodType(List.nil(), restype,
5949                                   List.nil(), syms.methodClass);
5950         }
5951         private Type dummyMethodType() {
5952             return dummyMethodType(null);
5953         }
5954 
5955         @Override
5956         public void scan(JCTree tree) {
5957             if (tree == null) return;
5958             if (tree instanceof JCExpression) {
5959                 initTypeIfNeeded(tree);
5960             }
5961             super.scan(tree);
5962         }
5963 
5964         @Override
5965         public void visitIdent(JCIdent that) {
5966             if (that.sym == null) {
5967                 that.sym = syms.unknownSymbol;
5968             }
5969         }
5970 
5971         @Override
5972         public void visitSelect(JCFieldAccess that) {
5973             if (that.sym == null) {
5974                 that.sym = syms.unknownSymbol;
5975             }
5976             super.visitSelect(that);
5977         }
5978 
5979         @Override
5980         public void visitClassDef(JCClassDecl that) {
5981             initTypeIfNeeded(that);
5982             if (that.sym == null) {
5983                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5984             }
5985             super.visitClassDef(that);
5986         }
5987 
5988         @Override
5989         public void visitMethodDef(JCMethodDecl that) {
5990             initTypeIfNeeded(that);
5991             if (that.sym == null) {
5992                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5993             }
5994             super.visitMethodDef(that);
5995         }
5996 
5997         @Override
5998         public void visitVarDef(JCVariableDecl that) {
5999             initTypeIfNeeded(that);
6000             if (that.sym == null) {
6001                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6002                 that.sym.adr = 0;
6003             }
6004             if (that.vartype == null) {
6005                 that.vartype = make.at(Position.NOPOS).Erroneous();
6006             }
6007             super.visitVarDef(that);
6008         }
6009 
6010         @Override
6011         public void visitBindingPattern(JCBindingPattern that) {
6012             initTypeIfNeeded(that);
6013             initTypeIfNeeded(that.var);
6014             if (that.var.sym == null) {
6015                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6016                 that.var.sym.adr = 0;
6017             }
6018             super.visitBindingPattern(that);
6019         }
6020 
6021         @Override
6022         public void visitRecordPattern(JCRecordPattern that) {
6023             initTypeIfNeeded(that);
6024             if (that.record == null) {
6025                 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6026                                               that.type, syms.noSymbol);
6027             }
6028             if (that.fullComponentTypes == null) {
6029                 that.fullComponentTypes = List.nil();
6030             }
6031             super.visitRecordPattern(that);
6032         }
6033 
6034         @Override
6035         public void visitNewClass(JCNewClass that) {
6036             if (that.constructor == null) {
6037                 that.constructor = new MethodSymbol(0, names.init,
6038                         dummyMethodType(), syms.noSymbol);
6039             }
6040             if (that.constructorType == null) {
6041                 that.constructorType = syms.unknownType;
6042             }
6043             super.visitNewClass(that);
6044         }
6045 
6046         @Override
6047         public void visitAssignop(JCAssignOp that) {
6048             if (that.operator == null) {
6049                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6050                         -1, syms.noSymbol);
6051             }
6052             super.visitAssignop(that);
6053         }
6054 
6055         @Override
6056         public void visitBinary(JCBinary that) {
6057             if (that.operator == null) {
6058                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6059                         -1, syms.noSymbol);
6060             }
6061             super.visitBinary(that);
6062         }
6063 
6064         @Override
6065         public void visitUnary(JCUnary that) {
6066             if (that.operator == null) {
6067                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6068                         -1, syms.noSymbol);
6069             }
6070             super.visitUnary(that);
6071         }
6072 
6073         @Override
6074         public void visitReference(JCMemberReference that) {
6075             super.visitReference(that);
6076             if (that.sym == null) {
6077                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6078                         syms.noSymbol);
6079             }
6080         }
6081     }
6082     // </editor-fold>
6083 
6084     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6085         new TreeScanner() {
6086             Symbol packge = pkg;
6087             @Override
6088             public void visitIdent(JCIdent that) {
6089                 that.sym = packge;
6090             }
6091 
6092             @Override
6093             public void visitSelect(JCFieldAccess that) {
6094                 that.sym = packge;
6095                 packge = packge.owner;
6096                 super.visitSelect(that);
6097             }
6098         }.scan(pid);
6099     }
6100 
6101 }