1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 62 import com.sun.tools.javac.tree.*; 63 import com.sun.tools.javac.tree.JCTree.*; 64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 65 import com.sun.tools.javac.util.*; 66 import com.sun.tools.javac.util.DefinedBy.Api; 67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 68 import com.sun.tools.javac.util.JCDiagnostic.Error; 69 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 70 import com.sun.tools.javac.util.JCDiagnostic.Warning; 71 import com.sun.tools.javac.util.List; 72 73 import static com.sun.tools.javac.code.Flags.*; 74 import static com.sun.tools.javac.code.Flags.ANNOTATION; 75 import static com.sun.tools.javac.code.Flags.BLOCK; 76 import static com.sun.tools.javac.code.Kinds.*; 77 import static com.sun.tools.javac.code.Kinds.Kind.*; 78 import static com.sun.tools.javac.code.TypeTag.*; 79 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 80 import static com.sun.tools.javac.tree.JCTree.Tag.*; 81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 82 83 /** This is the main context-dependent analysis phase in GJC. It 84 * encompasses name resolution, type checking and constant folding as 85 * subtasks. Some subtasks involve auxiliary classes. 86 * @see Check 87 * @see Resolve 88 * @see ConstFold 89 * @see Infer 90 * 91 * <p><b>This is NOT part of any supported API. 92 * If you write code that depends on this, you do so at your own risk. 93 * This code and its internal interfaces are subject to change or 94 * deletion without notice.</b> 95 */ 96 public class Attr extends JCTree.Visitor { 97 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 98 99 final Names names; 100 final Log log; 101 final Symtab syms; 102 final Resolve rs; 103 final Operators operators; 104 final Infer infer; 105 final Analyzer analyzer; 106 final DeferredAttr deferredAttr; 107 final Check chk; 108 final Flow flow; 109 final MemberEnter memberEnter; 110 final TypeEnter typeEnter; 111 final TreeMaker make; 112 final ConstFold cfolder; 113 final Enter enter; 114 final Target target; 115 final Types types; 116 final Preview preview; 117 final JCDiagnostic.Factory diags; 118 final TypeAnnotations typeAnnotations; 119 final DeferredLintHandler deferredLintHandler; 120 final TypeEnvs typeEnvs; 121 final Dependencies dependencies; 122 final Annotate annotate; 123 final ArgumentAttr argumentAttr; 124 final MatchBindingsComputer matchBindingsComputer; 125 final AttrRecover attrRecover; 126 127 public static Attr instance(Context context) { 128 Attr instance = context.get(attrKey); 129 if (instance == null) 130 instance = new Attr(context); 131 return instance; 132 } 133 134 @SuppressWarnings("this-escape") 135 protected Attr(Context context) { 136 context.put(attrKey, this); 137 138 names = Names.instance(context); 139 log = Log.instance(context); 140 syms = Symtab.instance(context); 141 rs = Resolve.instance(context); 142 operators = Operators.instance(context); 143 chk = Check.instance(context); 144 flow = Flow.instance(context); 145 memberEnter = MemberEnter.instance(context); 146 typeEnter = TypeEnter.instance(context); 147 make = TreeMaker.instance(context); 148 enter = Enter.instance(context); 149 infer = Infer.instance(context); 150 analyzer = Analyzer.instance(context); 151 deferredAttr = DeferredAttr.instance(context); 152 cfolder = ConstFold.instance(context); 153 target = Target.instance(context); 154 types = Types.instance(context); 155 preview = Preview.instance(context); 156 diags = JCDiagnostic.Factory.instance(context); 157 annotate = Annotate.instance(context); 158 typeAnnotations = TypeAnnotations.instance(context); 159 deferredLintHandler = DeferredLintHandler.instance(context); 160 typeEnvs = TypeEnvs.instance(context); 161 dependencies = Dependencies.instance(context); 162 argumentAttr = ArgumentAttr.instance(context); 163 matchBindingsComputer = MatchBindingsComputer.instance(context); 164 attrRecover = AttrRecover.instance(context); 165 166 Options options = Options.instance(context); 167 168 Source source = Source.instance(context); 169 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 170 allowRecords = Feature.RECORDS.allowedInSource(source); 171 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 172 Feature.PATTERN_SWITCH.allowedInSource(source); 173 allowUnconditionalPatternsInstanceOf = 174 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 175 sourceName = source.name; 176 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 177 178 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 179 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 180 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 181 methodAttrInfo = new MethodAttrInfo(); 182 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 183 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 184 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 185 } 186 187 /** Switch: reifiable types in instanceof enabled? 188 */ 189 boolean allowReifiableTypesInInstanceof; 190 191 /** Are records allowed 192 */ 193 private final boolean allowRecords; 194 195 /** Are patterns in switch allowed 196 */ 197 private final boolean allowPatternSwitch; 198 199 /** Are unconditional patterns in instanceof allowed 200 */ 201 private final boolean allowUnconditionalPatternsInstanceOf; 202 203 /** 204 * Switch: warn about use of variable before declaration? 205 * RFE: 6425594 206 */ 207 boolean useBeforeDeclarationWarning; 208 209 /** 210 * Switch: name of source level; used for error reporting. 211 */ 212 String sourceName; 213 214 /** Check kind and type of given tree against protokind and prototype. 215 * If check succeeds, store type in tree and return it. 216 * If check fails, store errType in tree and return it. 217 * No checks are performed if the prototype is a method type. 218 * It is not necessary in this case since we know that kind and type 219 * are correct. 220 * 221 * @param tree The tree whose kind and type is checked 222 * @param found The computed type of the tree 223 * @param ownkind The computed kind of the tree 224 * @param resultInfo The expected result of the tree 225 */ 226 Type check(final JCTree tree, 227 final Type found, 228 final KindSelector ownkind, 229 final ResultInfo resultInfo) { 230 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 231 Type owntype; 232 boolean shouldCheck = !found.hasTag(ERROR) && 233 !resultInfo.pt.hasTag(METHOD) && 234 !resultInfo.pt.hasTag(FORALL); 235 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 236 log.error(tree.pos(), 237 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 238 ownkind.kindNames())); 239 owntype = types.createErrorType(found); 240 } else if (inferenceContext.free(found)) { 241 //delay the check if there are inference variables in the found type 242 //this means we are dealing with a partially inferred poly expression 243 owntype = shouldCheck ? resultInfo.pt : found; 244 if (resultInfo.checkMode.installPostInferenceHook()) { 245 inferenceContext.addFreeTypeListener(List.of(found), 246 instantiatedContext -> { 247 ResultInfo pendingResult = 248 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 249 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 250 }); 251 } 252 } else { 253 owntype = shouldCheck ? 254 resultInfo.check(tree, found) : 255 found; 256 } 257 if (resultInfo.checkMode.updateTreeType()) { 258 tree.type = owntype; 259 } 260 return owntype; 261 } 262 263 /** Is given blank final variable assignable, i.e. in a scope where it 264 * may be assigned to even though it is final? 265 * @param v The blank final variable. 266 * @param env The current environment. 267 */ 268 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 269 Symbol owner = env.info.scope.owner; 270 // owner refers to the innermost variable, method or 271 // initializer block declaration at this point. 272 boolean isAssignable = 273 v.owner == owner 274 || 275 ((owner.name == names.init || // i.e. we are in a constructor 276 owner.kind == VAR || // i.e. we are in a variable initializer 277 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 278 && 279 v.owner == owner.owner 280 && 281 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 282 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 283 return isAssignable & !insideCompactConstructor; 284 } 285 286 /** Check that variable can be assigned to. 287 * @param pos The current source code position. 288 * @param v The assigned variable 289 * @param base If the variable is referred to in a Select, the part 290 * to the left of the `.', null otherwise. 291 * @param env The current environment. 292 */ 293 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 294 if (v.name == names._this) { 295 log.error(pos, Errors.CantAssignValToThis); 296 } else if ((v.flags() & FINAL) != 0 && 297 ((v.flags() & HASINIT) != 0 298 || 299 !((base == null || 300 TreeInfo.isThisQualifier(base)) && 301 isAssignableAsBlankFinal(v, env)))) { 302 if (v.isResourceVariable()) { //TWR resource 303 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 304 } else { 305 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 306 } 307 } 308 } 309 310 /** Does tree represent a static reference to an identifier? 311 * It is assumed that tree is either a SELECT or an IDENT. 312 * We have to weed out selects from non-type names here. 313 * @param tree The candidate tree. 314 */ 315 boolean isStaticReference(JCTree tree) { 316 if (tree.hasTag(SELECT)) { 317 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 318 if (lsym == null || lsym.kind != TYP) { 319 return false; 320 } 321 } 322 return true; 323 } 324 325 /** Is this symbol a type? 326 */ 327 static boolean isType(Symbol sym) { 328 return sym != null && sym.kind == TYP; 329 } 330 331 /** The current `this' symbol. 332 * @param env The current environment. 333 */ 334 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) { 335 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this); 336 } 337 338 /** Attribute a parsed identifier. 339 * @param tree Parsed identifier name 340 * @param topLevel The toplevel to use 341 */ 342 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 343 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 344 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 345 syms.errSymbol.name, 346 null, null, null, null); 347 localEnv.enclClass.sym = syms.errSymbol; 348 return attribIdent(tree, localEnv); 349 } 350 351 /** Attribute a parsed identifier. 352 * @param tree Parsed identifier name 353 * @param env The env to use 354 */ 355 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 356 return tree.accept(identAttributer, env); 357 } 358 // where 359 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 360 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 361 @Override @DefinedBy(Api.COMPILER_TREE) 362 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 363 Symbol site = visit(node.getExpression(), env); 364 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 365 return site; 366 Name name = (Name)node.getIdentifier(); 367 if (site.kind == PCK) { 368 env.toplevel.packge = (PackageSymbol)site; 369 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 370 KindSelector.TYP_PCK); 371 } else { 372 env.enclClass.sym = (ClassSymbol)site; 373 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 374 } 375 } 376 377 @Override @DefinedBy(Api.COMPILER_TREE) 378 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 379 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 380 } 381 } 382 383 public Type coerce(Type etype, Type ttype) { 384 return cfolder.coerce(etype, ttype); 385 } 386 387 public Type attribType(JCTree node, TypeSymbol sym) { 388 Env<AttrContext> env = typeEnvs.get(sym); 389 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 390 return attribTree(node, localEnv, unknownTypeInfo); 391 } 392 393 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 394 // Attribute qualifying package or class. 395 JCFieldAccess s = tree.qualid; 396 return attribTree(s.selected, env, 397 new ResultInfo(tree.staticImport ? 398 KindSelector.TYP : KindSelector.TYP_PCK, 399 Type.noType)); 400 } 401 402 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 403 return attribToTree(expr, env, tree, unknownExprInfo); 404 } 405 406 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 407 return attribToTree(stmt, env, tree, statInfo); 408 } 409 410 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 411 breakTree = tree; 412 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 413 try { 414 deferredAttr.attribSpeculative(root, env, resultInfo, 415 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 416 argumentAttr.withLocalCacheContext()); 417 attrRecover.doRecovery(); 418 } catch (BreakAttr b) { 419 return b.env; 420 } catch (AssertionError ae) { 421 if (ae.getCause() instanceof BreakAttr breakAttr) { 422 return breakAttr.env; 423 } else { 424 throw ae; 425 } 426 } finally { 427 breakTree = null; 428 log.useSource(prev); 429 } 430 return env; 431 } 432 433 private JCTree breakTree = null; 434 435 private static class BreakAttr extends RuntimeException { 436 static final long serialVersionUID = -6924771130405446405L; 437 private transient Env<AttrContext> env; 438 private BreakAttr(Env<AttrContext> env) { 439 this.env = env; 440 } 441 } 442 443 /** 444 * Mode controlling behavior of Attr.Check 445 */ 446 enum CheckMode { 447 448 NORMAL, 449 450 /** 451 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 452 * that the captured var cache in {@code InferenceContext} will be used in read-only 453 * mode when performing inference checks. 454 */ 455 NO_TREE_UPDATE { 456 @Override 457 public boolean updateTreeType() { 458 return false; 459 } 460 }, 461 /** 462 * Mode signalling that caller will manage free types in tree decorations. 463 */ 464 NO_INFERENCE_HOOK { 465 @Override 466 public boolean installPostInferenceHook() { 467 return false; 468 } 469 }; 470 471 public boolean updateTreeType() { 472 return true; 473 } 474 public boolean installPostInferenceHook() { 475 return true; 476 } 477 } 478 479 480 class ResultInfo { 481 final KindSelector pkind; 482 final Type pt; 483 final CheckContext checkContext; 484 final CheckMode checkMode; 485 486 ResultInfo(KindSelector pkind, Type pt) { 487 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 488 } 489 490 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 491 this(pkind, pt, chk.basicHandler, checkMode); 492 } 493 494 protected ResultInfo(KindSelector pkind, 495 Type pt, CheckContext checkContext) { 496 this(pkind, pt, checkContext, CheckMode.NORMAL); 497 } 498 499 protected ResultInfo(KindSelector pkind, 500 Type pt, CheckContext checkContext, CheckMode checkMode) { 501 this.pkind = pkind; 502 this.pt = pt; 503 this.checkContext = checkContext; 504 this.checkMode = checkMode; 505 } 506 507 /** 508 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 509 * @param tree The tree to be type-checked. 510 * @return true if {@code ArgumentAttr} should be used. 511 */ 512 protected boolean needsArgumentAttr(JCTree tree) { return false; } 513 514 protected Type check(final DiagnosticPosition pos, final Type found) { 515 return chk.checkType(pos, found, pt, checkContext); 516 } 517 518 protected ResultInfo dup(Type newPt) { 519 return new ResultInfo(pkind, newPt, checkContext, checkMode); 520 } 521 522 protected ResultInfo dup(CheckContext newContext) { 523 return new ResultInfo(pkind, pt, newContext, checkMode); 524 } 525 526 protected ResultInfo dup(Type newPt, CheckContext newContext) { 527 return new ResultInfo(pkind, newPt, newContext, checkMode); 528 } 529 530 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 531 return new ResultInfo(pkind, newPt, newContext, newMode); 532 } 533 534 protected ResultInfo dup(CheckMode newMode) { 535 return new ResultInfo(pkind, pt, checkContext, newMode); 536 } 537 538 @Override 539 public String toString() { 540 if (pt != null) { 541 return pt.toString(); 542 } else { 543 return ""; 544 } 545 } 546 } 547 548 class MethodAttrInfo extends ResultInfo { 549 public MethodAttrInfo() { 550 this(chk.basicHandler); 551 } 552 553 public MethodAttrInfo(CheckContext checkContext) { 554 super(KindSelector.VAL, Infer.anyPoly, checkContext); 555 } 556 557 @Override 558 protected boolean needsArgumentAttr(JCTree tree) { 559 return true; 560 } 561 562 protected ResultInfo dup(Type newPt) { 563 throw new IllegalStateException(); 564 } 565 566 protected ResultInfo dup(CheckContext newContext) { 567 return new MethodAttrInfo(newContext); 568 } 569 570 protected ResultInfo dup(Type newPt, CheckContext newContext) { 571 throw new IllegalStateException(); 572 } 573 574 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 575 throw new IllegalStateException(); 576 } 577 578 protected ResultInfo dup(CheckMode newMode) { 579 throw new IllegalStateException(); 580 } 581 } 582 583 class RecoveryInfo extends ResultInfo { 584 585 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 586 this(deferredAttrContext, Type.recoveryType); 587 } 588 589 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 590 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 591 @Override 592 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 593 return deferredAttrContext; 594 } 595 @Override 596 public boolean compatible(Type found, Type req, Warner warn) { 597 return true; 598 } 599 @Override 600 public void report(DiagnosticPosition pos, JCDiagnostic details) { 601 boolean needsReport = pt == Type.recoveryType || 602 (details.getDiagnosticPosition() != null && 603 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 604 if (needsReport) { 605 chk.basicHandler.report(pos, details); 606 } 607 } 608 }); 609 } 610 } 611 612 final ResultInfo statInfo; 613 final ResultInfo varAssignmentInfo; 614 final ResultInfo methodAttrInfo; 615 final ResultInfo unknownExprInfo; 616 final ResultInfo unknownTypeInfo; 617 final ResultInfo unknownTypeExprInfo; 618 final ResultInfo recoveryInfo; 619 620 Type pt() { 621 return resultInfo.pt; 622 } 623 624 KindSelector pkind() { 625 return resultInfo.pkind; 626 } 627 628 /* ************************************************************************ 629 * Visitor methods 630 *************************************************************************/ 631 632 /** Visitor argument: the current environment. 633 */ 634 Env<AttrContext> env; 635 636 /** Visitor argument: the currently expected attribution result. 637 */ 638 ResultInfo resultInfo; 639 640 /** Visitor result: the computed type. 641 */ 642 Type result; 643 644 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 645 646 /** Visitor method: attribute a tree, catching any completion failure 647 * exceptions. Return the tree's type. 648 * 649 * @param tree The tree to be visited. 650 * @param env The environment visitor argument. 651 * @param resultInfo The result info visitor argument. 652 */ 653 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 654 Env<AttrContext> prevEnv = this.env; 655 ResultInfo prevResult = this.resultInfo; 656 try { 657 this.env = env; 658 this.resultInfo = resultInfo; 659 if (resultInfo.needsArgumentAttr(tree)) { 660 result = argumentAttr.attribArg(tree, env); 661 } else { 662 tree.accept(this); 663 } 664 matchBindings = matchBindingsComputer.finishBindings(tree, 665 matchBindings); 666 if (tree == breakTree && 667 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 668 breakTreeFound(copyEnv(env)); 669 } 670 return result; 671 } catch (CompletionFailure ex) { 672 tree.type = syms.errType; 673 return chk.completionError(tree.pos(), ex); 674 } finally { 675 this.env = prevEnv; 676 this.resultInfo = prevResult; 677 } 678 } 679 680 protected void breakTreeFound(Env<AttrContext> env) { 681 throw new BreakAttr(env); 682 } 683 684 Env<AttrContext> copyEnv(Env<AttrContext> env) { 685 Env<AttrContext> newEnv = 686 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 687 if (newEnv.outer != null) { 688 newEnv.outer = copyEnv(newEnv.outer); 689 } 690 return newEnv; 691 } 692 693 WriteableScope copyScope(WriteableScope sc) { 694 WriteableScope newScope = WriteableScope.create(sc.owner); 695 List<Symbol> elemsList = List.nil(); 696 for (Symbol sym : sc.getSymbols()) { 697 elemsList = elemsList.prepend(sym); 698 } 699 for (Symbol s : elemsList) { 700 newScope.enter(s); 701 } 702 return newScope; 703 } 704 705 /** Derived visitor method: attribute an expression tree. 706 */ 707 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 708 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 709 } 710 711 /** Derived visitor method: attribute an expression tree with 712 * no constraints on the computed type. 713 */ 714 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 715 return attribTree(tree, env, unknownExprInfo); 716 } 717 718 /** Derived visitor method: attribute a type tree. 719 */ 720 public Type attribType(JCTree tree, Env<AttrContext> env) { 721 Type result = attribType(tree, env, Type.noType); 722 return result; 723 } 724 725 /** Derived visitor method: attribute a type tree. 726 */ 727 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 728 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 729 return result; 730 } 731 732 /** Derived visitor method: attribute a statement or definition tree. 733 */ 734 public Type attribStat(JCTree tree, Env<AttrContext> env) { 735 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 736 Type result = attribTree(tree, env, statInfo); 737 analyzer.analyzeIfNeeded(tree, analyzeEnv); 738 attrRecover.doRecovery(); 739 return result; 740 } 741 742 /** Attribute a list of expressions, returning a list of types. 743 */ 744 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 745 ListBuffer<Type> ts = new ListBuffer<>(); 746 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 747 ts.append(attribExpr(l.head, env, pt)); 748 return ts.toList(); 749 } 750 751 /** Attribute a list of statements, returning nothing. 752 */ 753 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 754 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 755 attribStat(l.head, env); 756 } 757 758 /** Attribute the arguments in a method call, returning the method kind. 759 */ 760 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 761 KindSelector kind = initialKind; 762 for (JCExpression arg : trees) { 763 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 764 if (argtype.hasTag(DEFERRED)) { 765 kind = KindSelector.of(KindSelector.POLY, kind); 766 } 767 argtypes.append(argtype); 768 } 769 return kind; 770 } 771 772 /** Attribute a type argument list, returning a list of types. 773 * Caller is responsible for calling checkRefTypes. 774 */ 775 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 776 ListBuffer<Type> argtypes = new ListBuffer<>(); 777 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 778 argtypes.append(attribType(l.head, env)); 779 return argtypes.toList(); 780 } 781 782 /** Attribute a type argument list, returning a list of types. 783 * Check that all the types are references. 784 */ 785 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 786 List<Type> types = attribAnyTypes(trees, env); 787 return chk.checkRefTypes(trees, types); 788 } 789 790 /** 791 * Attribute type variables (of generic classes or methods). 792 * Compound types are attributed later in attribBounds. 793 * @param typarams the type variables to enter 794 * @param env the current environment 795 */ 796 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 797 for (JCTypeParameter tvar : typarams) { 798 TypeVar a = (TypeVar)tvar.type; 799 a.tsym.flags_field |= UNATTRIBUTED; 800 a.setUpperBound(Type.noType); 801 if (!tvar.bounds.isEmpty()) { 802 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 803 for (JCExpression bound : tvar.bounds.tail) 804 bounds = bounds.prepend(attribType(bound, env)); 805 types.setBounds(a, bounds.reverse()); 806 } else { 807 // if no bounds are given, assume a single bound of 808 // java.lang.Object. 809 types.setBounds(a, List.of(syms.objectType)); 810 } 811 a.tsym.flags_field &= ~UNATTRIBUTED; 812 } 813 if (checkCyclic) { 814 for (JCTypeParameter tvar : typarams) { 815 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 816 } 817 } 818 } 819 820 /** 821 * Attribute the type references in a list of annotations. 822 */ 823 void attribAnnotationTypes(List<JCAnnotation> annotations, 824 Env<AttrContext> env) { 825 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 826 JCAnnotation a = al.head; 827 attribType(a.annotationType, env); 828 } 829 } 830 831 /** 832 * Attribute a "lazy constant value". 833 * @param env The env for the const value 834 * @param variable The initializer for the const value 835 * @param type The expected type, or null 836 * @see VarSymbol#setLazyConstValue 837 */ 838 public Object attribLazyConstantValue(Env<AttrContext> env, 839 JCVariableDecl variable, 840 Type type) { 841 842 DiagnosticPosition prevLintPos 843 = deferredLintHandler.setPos(variable.pos()); 844 845 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 846 try { 847 Type itype = attribExpr(variable.init, env, type); 848 if (variable.isImplicitlyTyped()) { 849 //fixup local variable type 850 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 851 } 852 if (itype.constValue() != null) { 853 return coerce(itype, type).constValue(); 854 } else { 855 return null; 856 } 857 } finally { 858 log.useSource(prevSource); 859 deferredLintHandler.setPos(prevLintPos); 860 } 861 } 862 863 /** Attribute type reference in an `extends' or `implements' clause. 864 * Supertypes of anonymous inner classes are usually already attributed. 865 * 866 * @param tree The tree making up the type reference. 867 * @param env The environment current at the reference. 868 * @param classExpected true if only a class is expected here. 869 * @param interfaceExpected true if only an interface is expected here. 870 */ 871 Type attribBase(JCTree tree, 872 Env<AttrContext> env, 873 boolean classExpected, 874 boolean interfaceExpected, 875 boolean checkExtensible) { 876 Type t = tree.type != null ? 877 tree.type : 878 attribType(tree, env); 879 try { 880 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 881 } catch (CompletionFailure ex) { 882 chk.completionError(tree.pos(), ex); 883 return t; 884 } 885 } 886 Type checkBase(Type t, 887 JCTree tree, 888 Env<AttrContext> env, 889 boolean classExpected, 890 boolean interfaceExpected, 891 boolean checkExtensible) { 892 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 893 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 894 if (t.tsym.isAnonymous()) { 895 log.error(pos, Errors.CantInheritFromAnon); 896 return types.createErrorType(t); 897 } 898 if (t.isErroneous()) 899 return t; 900 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 901 // check that type variable is already visible 902 if (t.getUpperBound() == null) { 903 log.error(pos, Errors.IllegalForwardRef); 904 return types.createErrorType(t); 905 } 906 } else { 907 t = chk.checkClassType(pos, t, checkExtensible); 908 } 909 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 910 log.error(pos, Errors.IntfExpectedHere); 911 // return errType is necessary since otherwise there might 912 // be undetected cycles which cause attribution to loop 913 return types.createErrorType(t); 914 } else if (checkExtensible && 915 classExpected && 916 (t.tsym.flags() & INTERFACE) != 0) { 917 log.error(pos, Errors.NoIntfExpectedHere); 918 return types.createErrorType(t); 919 } 920 if (checkExtensible && 921 ((t.tsym.flags() & FINAL) != 0)) { 922 log.error(pos, 923 Errors.CantInheritFromFinal(t.tsym)); 924 } 925 chk.checkNonCyclic(pos, t); 926 return t; 927 } 928 929 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 930 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 931 id.type = env.info.scope.owner.enclClass().type; 932 id.sym = env.info.scope.owner.enclClass(); 933 return id.type; 934 } 935 936 public void visitClassDef(JCClassDecl tree) { 937 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 938 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 939 argumentAttr.withLocalCacheContext() : null); 940 try { 941 // Local and anonymous classes have not been entered yet, so we need to 942 // do it now. 943 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 944 enter.classEnter(tree, env); 945 } else { 946 // If this class declaration is part of a class level annotation, 947 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 948 // order to simplify later steps and allow for sensible error 949 // messages. 950 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 951 enter.classEnter(tree, env); 952 } 953 954 ClassSymbol c = tree.sym; 955 if (c == null) { 956 // exit in case something drastic went wrong during enter. 957 result = null; 958 } else { 959 // make sure class has been completed: 960 c.complete(); 961 962 // If this class appears as an anonymous class 963 // in a superclass constructor call 964 // disable implicit outer instance from being passed. 965 // (This would be an illegal access to "this before super"). 966 if (env.info.isSelfCall && 967 env.tree.hasTag(NEWCLASS)) { 968 c.flags_field |= NOOUTERTHIS; 969 } 970 attribClass(tree.pos(), c); 971 result = tree.type = c.type; 972 } 973 } finally { 974 localCacheContext.ifPresent(LocalCacheContext::leave); 975 } 976 } 977 978 public void visitMethodDef(JCMethodDecl tree) { 979 MethodSymbol m = tree.sym; 980 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 981 982 Lint lint = env.info.lint.augment(m); 983 Lint prevLint = chk.setLint(lint); 984 MethodSymbol prevMethod = chk.setMethod(m); 985 try { 986 deferredLintHandler.flush(tree.pos()); 987 chk.checkDeprecatedAnnotation(tree.pos(), m); 988 989 990 // Create a new environment with local scope 991 // for attributing the method. 992 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 993 localEnv.info.lint = lint; 994 995 attribStats(tree.typarams, localEnv); 996 997 // If we override any other methods, check that we do so properly. 998 // JLS ??? 999 if (m.isStatic()) { 1000 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1001 } else { 1002 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1003 } 1004 chk.checkOverride(env, tree, m); 1005 1006 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1007 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1008 } 1009 1010 // Enter all type parameters into the local method scope. 1011 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1012 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1013 1014 ClassSymbol owner = env.enclClass.sym; 1015 if ((owner.flags() & ANNOTATION) != 0 && 1016 (tree.params.nonEmpty() || 1017 tree.recvparam != null)) 1018 log.error(tree.params.nonEmpty() ? 1019 tree.params.head.pos() : 1020 tree.recvparam.pos(), 1021 Errors.IntfAnnotationMembersCantHaveParams); 1022 1023 // Attribute all value parameters. 1024 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1025 attribStat(l.head, localEnv); 1026 } 1027 1028 chk.checkVarargsMethodDecl(localEnv, tree); 1029 1030 // Check that type parameters are well-formed. 1031 chk.validate(tree.typarams, localEnv); 1032 1033 // Check that result type is well-formed. 1034 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1035 chk.validate(tree.restype, localEnv); 1036 1037 // Check that receiver type is well-formed. 1038 if (tree.recvparam != null) { 1039 // Use a new environment to check the receiver parameter. 1040 // Otherwise I get "might not have been initialized" errors. 1041 // Is there a better way? 1042 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1043 attribType(tree.recvparam, newEnv); 1044 chk.validate(tree.recvparam, newEnv); 1045 } 1046 1047 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1048 // lets find if this method is an accessor 1049 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1050 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1051 if (recordComponent.isPresent()) { 1052 // the method is a user defined accessor lets check that everything is fine 1053 if (!tree.sym.isPublic()) { 1054 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1055 } 1056 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1057 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1058 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1059 } 1060 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1061 log.error(tree, 1062 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1063 } 1064 if (!tree.typarams.isEmpty()) { 1065 log.error(tree, 1066 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1067 } 1068 if (tree.sym.isStatic()) { 1069 log.error(tree, 1070 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1071 } 1072 } 1073 1074 if (tree.name == names.init) { 1075 // if this a constructor other than the canonical one 1076 if ((tree.sym.flags_field & RECORD) == 0) { 1077 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1078 if (app == null || 1079 TreeInfo.name(app.meth) != names._this || 1080 !checkFirstConstructorStat(app, tree, false)) { 1081 log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor(env.enclClass.sym)); 1082 } 1083 } else { 1084 // but if it is the canonical: 1085 1086 /* if user generated, then it shouldn't: 1087 * - have an accessibility stricter than that of the record type 1088 * - explicitly invoke any other constructor 1089 */ 1090 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1091 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1092 log.error(tree, 1093 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1094 Errors.InvalidCanonicalConstructorInRecord( 1095 Fragments.Canonical, 1096 env.enclClass.sym.name, 1097 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1098 ) : 1099 Errors.InvalidCanonicalConstructorInRecord( 1100 Fragments.Canonical, 1101 env.enclClass.sym.name, 1102 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1103 ) 1104 ); 1105 } 1106 1107 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1108 if (app != null && 1109 (TreeInfo.name(app.meth) == names._this || 1110 TreeInfo.name(app.meth) == names._super) && 1111 checkFirstConstructorStat(app, tree, false)) { 1112 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1113 Fragments.Canonical, env.enclClass.sym.name, 1114 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1115 } 1116 } 1117 1118 // also we want to check that no type variables have been defined 1119 if (!tree.typarams.isEmpty()) { 1120 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1121 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1122 } 1123 1124 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1125 * record components 1126 */ 1127 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1128 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1129 for (JCVariableDecl param: tree.params) { 1130 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1131 if (!types.isSameType(param.type, recordFieldTypes.head) || 1132 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1133 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1134 Fragments.Canonical, env.enclClass.sym.name, 1135 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1136 } 1137 recordComponents = recordComponents.tail; 1138 recordFieldTypes = recordFieldTypes.tail; 1139 } 1140 } 1141 } 1142 } 1143 1144 // annotation method checks 1145 if ((owner.flags() & ANNOTATION) != 0) { 1146 // annotation method cannot have throws clause 1147 if (tree.thrown.nonEmpty()) { 1148 log.error(tree.thrown.head.pos(), 1149 Errors.ThrowsNotAllowedInIntfAnnotation); 1150 } 1151 // annotation method cannot declare type-parameters 1152 if (tree.typarams.nonEmpty()) { 1153 log.error(tree.typarams.head.pos(), 1154 Errors.IntfAnnotationMembersCantHaveTypeParams); 1155 } 1156 // validate annotation method's return type (could be an annotation type) 1157 chk.validateAnnotationType(tree.restype); 1158 // ensure that annotation method does not clash with members of Object/Annotation 1159 chk.validateAnnotationMethod(tree.pos(), m); 1160 } 1161 1162 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1163 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1164 1165 if (tree.body == null) { 1166 // Empty bodies are only allowed for 1167 // abstract, native, or interface methods, or for methods 1168 // in a retrofit signature class. 1169 if (tree.defaultValue != null) { 1170 if ((owner.flags() & ANNOTATION) == 0) 1171 log.error(tree.pos(), 1172 Errors.DefaultAllowedInIntfAnnotationMember); 1173 } 1174 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1175 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1176 } else { 1177 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1178 if ((owner.flags() & INTERFACE) != 0) { 1179 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1180 } else { 1181 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1182 } 1183 } else if ((tree.mods.flags & NATIVE) != 0) { 1184 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1185 } 1186 // Add an implicit super() call unless an explicit call to 1187 // super(...) or this(...) is given 1188 // or we are compiling class java.lang.Object. 1189 if (tree.name == names.init && owner.type != syms.objectType) { 1190 JCBlock body = tree.body; 1191 if (body.stats.isEmpty() || 1192 TreeInfo.getConstructorInvocationName(body.stats, names) == names.empty) { 1193 JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(), 1194 make.Ident(names._super), make.Idents(List.nil()))); 1195 body.stats = body.stats.prepend(supCall); 1196 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1197 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1198 TreeInfo.isSuperCall(body.stats.head)) { 1199 // enum constructors are not allowed to call super 1200 // directly, so make sure there aren't any super calls 1201 // in enum constructors, except in the compiler 1202 // generated one. 1203 log.error(tree.body.stats.head.pos(), 1204 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1205 } 1206 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1207 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1208 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1209 if (!initParamNames.equals(recordComponentNames)) { 1210 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1211 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1212 } 1213 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1214 log.error(tree, 1215 Errors.InvalidCanonicalConstructorInRecord( 1216 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1217 env.enclClass.sym.name, 1218 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1219 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1220 } 1221 } 1222 } 1223 1224 // Attribute all type annotations in the body 1225 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1226 annotate.flush(); 1227 1228 // Attribute method body. 1229 attribStat(tree.body, localEnv); 1230 } 1231 1232 localEnv.info.scope.leave(); 1233 result = tree.type = m.type; 1234 } finally { 1235 chk.setLint(prevLint); 1236 chk.setMethod(prevMethod); 1237 } 1238 } 1239 1240 public void visitVarDef(JCVariableDecl tree) { 1241 // Local variables have not been entered yet, so we need to do it now: 1242 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1243 if (tree.sym != null) { 1244 // parameters have already been entered 1245 env.info.scope.enter(tree.sym); 1246 } else { 1247 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1248 if (tree.init == null) { 1249 //cannot use 'var' without initializer 1250 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1251 tree.vartype = make.Erroneous(); 1252 } else { 1253 Fragment msg = canInferLocalVarType(tree); 1254 if (msg != null) { 1255 //cannot use 'var' with initializer which require an explicit target 1256 //(e.g. lambda, method reference, array initializer). 1257 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1258 tree.vartype = make.Erroneous(); 1259 } 1260 } 1261 } 1262 try { 1263 annotate.blockAnnotations(); 1264 memberEnter.memberEnter(tree, env); 1265 } finally { 1266 annotate.unblockAnnotations(); 1267 } 1268 } 1269 } else { 1270 if (tree.init != null) { 1271 // Field initializer expression need to be entered. 1272 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos()); 1273 annotate.flush(); 1274 } 1275 } 1276 1277 VarSymbol v = tree.sym; 1278 Lint lint = env.info.lint.augment(v); 1279 Lint prevLint = chk.setLint(lint); 1280 1281 // Check that the variable's declared type is well-formed. 1282 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1283 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1284 (tree.sym.flags() & PARAMETER) != 0; 1285 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1286 1287 try { 1288 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1289 deferredLintHandler.flush(tree.pos()); 1290 chk.checkDeprecatedAnnotation(tree.pos(), v); 1291 1292 if (tree.init != null) { 1293 if ((v.flags_field & FINAL) == 0 || 1294 !memberEnter.needsLazyConstValue(tree.init)) { 1295 // Not a compile-time constant 1296 // Attribute initializer in a new environment 1297 // with the declared variable as owner. 1298 // Check that initializer conforms to variable's declared type. 1299 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1300 initEnv.info.lint = lint; 1301 // In order to catch self-references, we set the variable's 1302 // declaration position to maximal possible value, effectively 1303 // marking the variable as undefined. 1304 initEnv.info.enclVar = v; 1305 attribExpr(tree.init, initEnv, v.type); 1306 if (tree.isImplicitlyTyped()) { 1307 //fixup local variable type 1308 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1309 } 1310 } 1311 if (tree.isImplicitlyTyped()) { 1312 setSyntheticVariableType(tree, v.type); 1313 } 1314 } 1315 result = tree.type = v.type; 1316 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1317 if (isNonArgsMethodInObject(v.name)) { 1318 log.error(tree, Errors.IllegalRecordComponentName(v)); 1319 } 1320 } 1321 } 1322 finally { 1323 chk.setLint(prevLint); 1324 } 1325 } 1326 1327 private boolean isNonArgsMethodInObject(Name name) { 1328 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1329 if (s.type.getParameterTypes().isEmpty()) { 1330 return true; 1331 } 1332 } 1333 return false; 1334 } 1335 1336 Fragment canInferLocalVarType(JCVariableDecl tree) { 1337 LocalInitScanner lis = new LocalInitScanner(); 1338 lis.scan(tree.init); 1339 return lis.badInferenceMsg; 1340 } 1341 1342 static class LocalInitScanner extends TreeScanner { 1343 Fragment badInferenceMsg = null; 1344 boolean needsTarget = true; 1345 1346 @Override 1347 public void visitNewArray(JCNewArray tree) { 1348 if (tree.elemtype == null && needsTarget) { 1349 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1350 } 1351 } 1352 1353 @Override 1354 public void visitLambda(JCLambda tree) { 1355 if (needsTarget) { 1356 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1357 } 1358 } 1359 1360 @Override 1361 public void visitTypeCast(JCTypeCast tree) { 1362 boolean prevNeedsTarget = needsTarget; 1363 try { 1364 needsTarget = false; 1365 super.visitTypeCast(tree); 1366 } finally { 1367 needsTarget = prevNeedsTarget; 1368 } 1369 } 1370 1371 @Override 1372 public void visitReference(JCMemberReference tree) { 1373 if (needsTarget) { 1374 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1375 } 1376 } 1377 1378 @Override 1379 public void visitNewClass(JCNewClass tree) { 1380 boolean prevNeedsTarget = needsTarget; 1381 try { 1382 needsTarget = false; 1383 super.visitNewClass(tree); 1384 } finally { 1385 needsTarget = prevNeedsTarget; 1386 } 1387 } 1388 1389 @Override 1390 public void visitApply(JCMethodInvocation tree) { 1391 boolean prevNeedsTarget = needsTarget; 1392 try { 1393 needsTarget = false; 1394 super.visitApply(tree); 1395 } finally { 1396 needsTarget = prevNeedsTarget; 1397 } 1398 } 1399 } 1400 1401 public void visitSkip(JCSkip tree) { 1402 result = null; 1403 } 1404 1405 public void visitBlock(JCBlock tree) { 1406 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1407 // Block is a static or instance initializer; 1408 // let the owner of the environment be a freshly 1409 // created BLOCK-method. 1410 Symbol fakeOwner = 1411 new MethodSymbol(tree.flags | BLOCK | 1412 env.info.scope.owner.flags() & STRICTFP, names.empty, null, 1413 env.info.scope.owner); 1414 final Env<AttrContext> localEnv = 1415 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1416 1417 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; 1418 // Attribute all type annotations in the block 1419 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1420 annotate.flush(); 1421 attribStats(tree.stats, localEnv); 1422 1423 { 1424 // Store init and clinit type annotations with the ClassSymbol 1425 // to allow output in Gen.normalizeDefs. 1426 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1427 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1428 if ((tree.flags & STATIC) != 0) { 1429 cs.appendClassInitTypeAttributes(tas); 1430 } else { 1431 cs.appendInitTypeAttributes(tas); 1432 } 1433 } 1434 } else { 1435 // Create a new local environment with a local scope. 1436 Env<AttrContext> localEnv = 1437 env.dup(tree, env.info.dup(env.info.scope.dup())); 1438 try { 1439 attribStats(tree.stats, localEnv); 1440 } finally { 1441 localEnv.info.scope.leave(); 1442 } 1443 } 1444 result = null; 1445 } 1446 1447 public void visitDoLoop(JCDoWhileLoop tree) { 1448 attribStat(tree.body, env.dup(tree)); 1449 attribExpr(tree.cond, env, syms.booleanType); 1450 handleLoopConditionBindings(matchBindings, tree, tree.body); 1451 result = null; 1452 } 1453 1454 public void visitWhileLoop(JCWhileLoop tree) { 1455 attribExpr(tree.cond, env, syms.booleanType); 1456 MatchBindings condBindings = matchBindings; 1457 // include condition's bindings when true in the body: 1458 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1459 try { 1460 attribStat(tree.body, whileEnv.dup(tree)); 1461 } finally { 1462 whileEnv.info.scope.leave(); 1463 } 1464 handleLoopConditionBindings(condBindings, tree, tree.body); 1465 result = null; 1466 } 1467 1468 public void visitForLoop(JCForLoop tree) { 1469 Env<AttrContext> loopEnv = 1470 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1471 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1472 try { 1473 attribStats(tree.init, loopEnv); 1474 if (tree.cond != null) { 1475 attribExpr(tree.cond, loopEnv, syms.booleanType); 1476 // include condition's bindings when true in the body and step: 1477 condBindings = matchBindings; 1478 } 1479 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1480 try { 1481 bodyEnv.tree = tree; // before, we were not in loop! 1482 attribStats(tree.step, bodyEnv); 1483 attribStat(tree.body, bodyEnv); 1484 } finally { 1485 bodyEnv.info.scope.leave(); 1486 } 1487 result = null; 1488 } 1489 finally { 1490 loopEnv.info.scope.leave(); 1491 } 1492 handleLoopConditionBindings(condBindings, tree, tree.body); 1493 } 1494 1495 /** 1496 * Include condition's bindings when false after the loop, if cannot get out of the loop 1497 */ 1498 private void handleLoopConditionBindings(MatchBindings condBindings, 1499 JCStatement loop, 1500 JCStatement loopBody) { 1501 if (condBindings.bindingsWhenFalse.nonEmpty() && 1502 !breaksTo(env, loop, loopBody)) { 1503 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1504 } 1505 } 1506 1507 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1508 preFlow(body); 1509 return flow.breaksToTree(env, loop, body, make); 1510 } 1511 1512 /** 1513 * Add given bindings to the current scope, unless there's a break to 1514 * an immediately enclosing labeled statement. 1515 */ 1516 private void addBindings2Scope(JCStatement introducingStatement, 1517 List<BindingSymbol> bindings) { 1518 if (bindings.isEmpty()) { 1519 return ; 1520 } 1521 1522 var searchEnv = env; 1523 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1524 labeled.body == introducingStatement) { 1525 if (breaksTo(env, labeled, labeled.body)) { 1526 //breaking to an immediately enclosing labeled statement 1527 return ; 1528 } 1529 searchEnv = searchEnv.next; 1530 introducingStatement = labeled; 1531 } 1532 1533 //include condition's body when false after the while, if cannot get out of the loop 1534 bindings.forEach(env.info.scope::enter); 1535 bindings.forEach(BindingSymbol::preserveBinding); 1536 } 1537 1538 public void visitForeachLoop(JCEnhancedForLoop tree) { 1539 Env<AttrContext> loopEnv = 1540 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1541 try { 1542 //the Formal Parameter of a for-each loop is not in the scope when 1543 //attributing the for-each expression; we mimic this by attributing 1544 //the for-each expression first (against original scope). 1545 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1546 chk.checkNonVoid(tree.pos(), exprType); 1547 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1548 if (elemtype == null) { 1549 // or perhaps expr implements Iterable<T>? 1550 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1551 if (base == null) { 1552 log.error(tree.expr.pos(), 1553 Errors.ForeachNotApplicableToType(exprType, 1554 Fragments.TypeReqArrayOrIterable)); 1555 elemtype = types.createErrorType(exprType); 1556 } else { 1557 List<Type> iterableParams = base.allparams(); 1558 elemtype = iterableParams.isEmpty() 1559 ? syms.objectType 1560 : types.wildUpperBound(iterableParams.head); 1561 1562 // Check the return type of the method iterator(). 1563 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1564 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1565 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1566 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1567 log.error(tree.pos(), 1568 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1569 } 1570 } 1571 } 1572 if (tree.var.isImplicitlyTyped()) { 1573 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1574 setSyntheticVariableType(tree.var, inferredType); 1575 } 1576 attribStat(tree.var, loopEnv); 1577 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1578 loopEnv.tree = tree; // before, we were not in loop! 1579 attribStat(tree.body, loopEnv); 1580 result = null; 1581 } 1582 finally { 1583 loopEnv.info.scope.leave(); 1584 } 1585 } 1586 1587 public void visitLabelled(JCLabeledStatement tree) { 1588 // Check that label is not used in an enclosing statement 1589 Env<AttrContext> env1 = env; 1590 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1591 if (env1.tree.hasTag(LABELLED) && 1592 ((JCLabeledStatement) env1.tree).label == tree.label) { 1593 log.error(tree.pos(), 1594 Errors.LabelAlreadyInUse(tree.label)); 1595 break; 1596 } 1597 env1 = env1.next; 1598 } 1599 1600 attribStat(tree.body, env.dup(tree)); 1601 result = null; 1602 } 1603 1604 public void visitSwitch(JCSwitch tree) { 1605 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1606 attribStats(c.stats, caseEnv); 1607 }); 1608 result = null; 1609 } 1610 1611 public void visitSwitchExpression(JCSwitchExpression tree) { 1612 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1613 PolyKind.STANDALONE : PolyKind.POLY; 1614 1615 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1616 //this means we are returning a poly conditional from void-compatible lambda expression 1617 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1618 result = tree.type = types.createErrorType(resultInfo.pt); 1619 return; 1620 } 1621 1622 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1623 unknownExprInfo : 1624 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1625 1626 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1627 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1628 1629 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1630 caseEnv.info.yieldResult = condInfo; 1631 attribStats(c.stats, caseEnv); 1632 new TreeScanner() { 1633 @Override 1634 public void visitYield(JCYield brk) { 1635 if (brk.target == tree) { 1636 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1637 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1638 } 1639 super.visitYield(brk); 1640 } 1641 1642 @Override public void visitClassDef(JCClassDecl tree) {} 1643 @Override public void visitLambda(JCLambda tree) {} 1644 }.scan(c.stats); 1645 }); 1646 1647 if (tree.cases.isEmpty()) { 1648 log.error(tree.pos(), 1649 Errors.SwitchExpressionEmpty); 1650 } else if (caseTypes.isEmpty()) { 1651 log.error(tree.pos(), 1652 Errors.SwitchExpressionNoResultExpressions); 1653 } 1654 1655 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1656 1657 result = tree.type = check(tree, owntype, KindSelector.VAL, resultInfo); 1658 } 1659 //where: 1660 CheckContext switchExpressionContext(CheckContext checkContext) { 1661 return new Check.NestedCheckContext(checkContext) { 1662 //this will use enclosing check context to check compatibility of 1663 //subexpression against target type; if we are in a method check context, 1664 //depending on whether boxing is allowed, we could have incompatibilities 1665 @Override 1666 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1667 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1668 } 1669 }; 1670 } 1671 1672 private void handleSwitch(JCTree switchTree, 1673 JCExpression selector, 1674 List<JCCase> cases, 1675 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1676 Type seltype = attribExpr(selector, env); 1677 1678 Env<AttrContext> switchEnv = 1679 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1680 1681 try { 1682 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1683 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1684 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1685 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1686 boolean errorPrimitiveSwitch = seltype.isPrimitive() && !intSwitch; 1687 boolean patternSwitch; 1688 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1689 !intSwitch && !errorPrimitiveSwitch) { 1690 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1691 patternSwitch = true; 1692 } else { 1693 if (errorPrimitiveSwitch) { 1694 log.error(selector.pos(), Errors.SelectorTypeNotAllowed(seltype)); 1695 } 1696 patternSwitch = cases.stream() 1697 .flatMap(c -> c.labels.stream()) 1698 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1699 TreeInfo.isNullCaseLabel(l)); 1700 } 1701 1702 // Attribute all cases and 1703 // check that there are no duplicate case labels or default clauses. 1704 Set<Object> constants = new HashSet<>(); // The set of case constants. 1705 boolean hasDefault = false; // Is there a default label? 1706 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1707 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1708 boolean hasNullPattern = false; // Is there a null pattern? 1709 CaseTree.CaseKind caseKind = null; 1710 boolean wasError = false; 1711 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1712 JCCase c = l.head; 1713 if (caseKind == null) { 1714 caseKind = c.caseKind; 1715 } else if (caseKind != c.caseKind && !wasError) { 1716 log.error(c.pos(), 1717 Errors.SwitchMixingCaseTypes); 1718 wasError = true; 1719 } 1720 MatchBindings currentBindings = null; 1721 MatchBindings guardBindings = null; 1722 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1723 JCCaseLabel label = labels.head; 1724 if (label instanceof JCConstantCaseLabel constLabel) { 1725 JCExpression expr = constLabel.expr; 1726 if (TreeInfo.isNull(expr)) { 1727 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1728 if (hasNullPattern) { 1729 log.error(label.pos(), Errors.DuplicateCaseLabel); 1730 } 1731 hasNullPattern = true; 1732 attribExpr(expr, switchEnv, seltype); 1733 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1734 } else if (enumSwitch) { 1735 Symbol sym = enumConstant(expr, seltype); 1736 if (sym == null) { 1737 if (allowPatternSwitch) { 1738 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1739 Symbol enumSym = TreeInfo.symbol(expr); 1740 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1741 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1742 } else if (!constants.add(enumSym)) { 1743 log.error(label.pos(), Errors.DuplicateCaseLabel); 1744 } 1745 } else { 1746 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1747 } 1748 } else if (!constants.add(sym)) { 1749 log.error(label.pos(), Errors.DuplicateCaseLabel); 1750 } 1751 } else if (errorEnumSwitch) { 1752 //error recovery: the selector is erroneous, and all the case labels 1753 //are identifiers. This could be an enum switch - don't report resolve 1754 //error for the case label: 1755 var prevResolveHelper = rs.basicLogResolveHelper; 1756 try { 1757 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1758 attribExpr(expr, switchEnv, seltype); 1759 } finally { 1760 rs.basicLogResolveHelper = prevResolveHelper; 1761 } 1762 } else { 1763 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1764 if (!pattype.hasTag(ERROR)) { 1765 if (pattype.constValue() == null) { 1766 Symbol s = TreeInfo.symbol(expr); 1767 if (s != null && s.kind == TYP) { 1768 log.error(expr.pos(), 1769 Errors.PatternExpected); 1770 } else if (s == null || !s.isEnum()) { 1771 log.error(expr.pos(), 1772 (stringSwitch ? Errors.StringConstReq 1773 : intSwitch ? Errors.ConstExprReq 1774 : Errors.PatternOrEnumReq)); 1775 } else if (!constants.add(s)) { 1776 log.error(label.pos(), Errors.DuplicateCaseLabel); 1777 } 1778 } else if (!stringSwitch && !intSwitch && !errorPrimitiveSwitch) { 1779 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1780 } else if (!constants.add(pattype.constValue())) { 1781 log.error(c.pos(), Errors.DuplicateCaseLabel); 1782 } 1783 } 1784 } 1785 } else if (label instanceof JCDefaultCaseLabel def) { 1786 if (hasDefault) { 1787 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1788 } else if (hasUnconditionalPattern) { 1789 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1790 } 1791 hasDefault = true; 1792 matchBindings = MatchBindingsComputer.EMPTY; 1793 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1794 //pattern 1795 JCPattern pat = patternlabel.pat; 1796 attribExpr(pat, switchEnv, seltype); 1797 Type primaryType = TreeInfo.primaryPatternType(pat); 1798 if (!primaryType.hasTag(TYPEVAR)) { 1799 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1800 } 1801 if (!errorPrimitiveSwitch) { 1802 checkCastablePattern(pat.pos(), seltype, primaryType); 1803 } 1804 Type patternType = types.erasure(primaryType); 1805 JCExpression guard = c.guard; 1806 if (guardBindings == null && guard != null) { 1807 MatchBindings afterPattern = matchBindings; 1808 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1809 try { 1810 attribExpr(guard, bodyEnv, syms.booleanType); 1811 } finally { 1812 bodyEnv.info.scope.leave(); 1813 } 1814 1815 guardBindings = matchBindings; 1816 matchBindings = afterPattern; 1817 1818 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1819 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1820 } 1821 } 1822 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1823 boolean unconditional = 1824 unguarded && 1825 !patternType.isErroneous() && 1826 types.isSubtype(types.boxedTypeOrType(types.erasure(seltype)), 1827 patternType); 1828 if (unconditional) { 1829 if (hasUnconditionalPattern) { 1830 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1831 } else if (hasDefault) { 1832 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1833 } 1834 hasUnconditionalPattern = true; 1835 } 1836 lastPatternErroneous = patternType.isErroneous(); 1837 } else { 1838 Assert.error(); 1839 } 1840 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1841 } 1842 1843 if (guardBindings != null) { 1844 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1845 } 1846 1847 Env<AttrContext> caseEnv = 1848 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1849 try { 1850 attribCase.accept(c, caseEnv); 1851 } finally { 1852 caseEnv.info.scope.leave(); 1853 } 1854 addVars(c.stats, switchEnv.info.scope); 1855 1856 preFlow(c); 1857 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1858 } 1859 if (patternSwitch) { 1860 chk.checkSwitchCaseStructure(cases); 1861 chk.checkSwitchCaseLabelDominated(cases); 1862 } 1863 if (switchTree.hasTag(SWITCH)) { 1864 ((JCSwitch) switchTree).hasUnconditionalPattern = 1865 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1866 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1867 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1868 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1869 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1870 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1871 } else { 1872 Assert.error(switchTree.getTag().name()); 1873 } 1874 } finally { 1875 switchEnv.info.scope.leave(); 1876 } 1877 } 1878 // where 1879 private ResultInfo caseLabelResultInfo(Type seltype) { 1880 return new ResultInfo(KindSelector.VAL_TYP, 1881 !seltype.hasTag(ERROR) ? seltype 1882 : Type.noType); 1883 } 1884 /** Add any variables defined in stats to the switch scope. */ 1885 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1886 for (;stats.nonEmpty(); stats = stats.tail) { 1887 JCTree stat = stats.head; 1888 if (stat.hasTag(VARDEF)) 1889 switchScope.enter(((JCVariableDecl) stat).sym); 1890 } 1891 } 1892 // where 1893 /** Return the selected enumeration constant symbol, or null. */ 1894 private Symbol enumConstant(JCTree tree, Type enumType) { 1895 if (tree.hasTag(IDENT)) { 1896 JCIdent ident = (JCIdent)tree; 1897 Name name = ident.name; 1898 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1899 if (sym.kind == VAR) { 1900 Symbol s = ident.sym = sym; 1901 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1902 ident.type = s.type; 1903 return ((s.flags_field & Flags.ENUM) == 0) 1904 ? null : s; 1905 } 1906 } 1907 } 1908 return null; 1909 } 1910 1911 public void visitSynchronized(JCSynchronized tree) { 1912 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); 1913 if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) { 1914 log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1915 } 1916 attribStat(tree.body, env); 1917 result = null; 1918 } 1919 // where 1920 private boolean isValueBased(Type t) { 1921 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1922 } 1923 1924 1925 public void visitTry(JCTry tree) { 1926 // Create a new local environment with a local 1927 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1928 try { 1929 boolean isTryWithResource = tree.resources.nonEmpty(); 1930 // Create a nested environment for attributing the try block if needed 1931 Env<AttrContext> tryEnv = isTryWithResource ? 1932 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1933 localEnv; 1934 try { 1935 // Attribute resource declarations 1936 for (JCTree resource : tree.resources) { 1937 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1938 @Override 1939 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1940 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1941 } 1942 }; 1943 ResultInfo twrResult = 1944 new ResultInfo(KindSelector.VAR, 1945 syms.autoCloseableType, 1946 twrContext); 1947 if (resource.hasTag(VARDEF)) { 1948 attribStat(resource, tryEnv); 1949 twrResult.check(resource, resource.type); 1950 1951 //check that resource type cannot throw InterruptedException 1952 checkAutoCloseable(resource.pos(), localEnv, resource.type); 1953 1954 VarSymbol var = ((JCVariableDecl) resource).sym; 1955 1956 var.flags_field |= Flags.FINAL; 1957 var.setData(ElementKind.RESOURCE_VARIABLE); 1958 } else { 1959 attribTree(resource, tryEnv, twrResult); 1960 } 1961 } 1962 // Attribute body 1963 attribStat(tree.body, tryEnv); 1964 } finally { 1965 if (isTryWithResource) 1966 tryEnv.info.scope.leave(); 1967 } 1968 1969 // Attribute catch clauses 1970 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 1971 JCCatch c = l.head; 1972 Env<AttrContext> catchEnv = 1973 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 1974 try { 1975 Type ctype = attribStat(c.param, catchEnv); 1976 if (TreeInfo.isMultiCatch(c)) { 1977 //multi-catch parameter is implicitly marked as final 1978 c.param.sym.flags_field |= FINAL | UNION; 1979 } 1980 if (c.param.sym.kind == VAR) { 1981 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 1982 } 1983 chk.checkType(c.param.vartype.pos(), 1984 chk.checkClassType(c.param.vartype.pos(), ctype), 1985 syms.throwableType); 1986 attribStat(c.body, catchEnv); 1987 } finally { 1988 catchEnv.info.scope.leave(); 1989 } 1990 } 1991 1992 // Attribute finalizer 1993 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 1994 result = null; 1995 } 1996 finally { 1997 localEnv.info.scope.leave(); 1998 } 1999 } 2000 2001 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2002 if (!resource.isErroneous() && 2003 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2004 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2005 Symbol close = syms.noSymbol; 2006 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); 2007 try { 2008 close = rs.resolveQualifiedMethod(pos, 2009 env, 2010 types.skipTypeVars(resource, false), 2011 names.close, 2012 List.nil(), 2013 List.nil()); 2014 } 2015 finally { 2016 log.popDiagnosticHandler(discardHandler); 2017 } 2018 if (close.kind == MTH && 2019 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2020 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) && 2021 env.info.lint.isEnabled(LintCategory.TRY)) { 2022 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource)); 2023 } 2024 } 2025 } 2026 2027 public void visitConditional(JCConditional tree) { 2028 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2029 MatchBindings condBindings = matchBindings; 2030 2031 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2032 isBooleanOrNumeric(env, tree)) ? 2033 PolyKind.STANDALONE : PolyKind.POLY; 2034 2035 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2036 //this means we are returning a poly conditional from void-compatible lambda expression 2037 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2038 result = tree.type = types.createErrorType(resultInfo.pt); 2039 return; 2040 } 2041 2042 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2043 unknownExprInfo : 2044 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2045 2046 2047 // x ? y : z 2048 // include x's bindings when true in y 2049 // include x's bindings when false in z 2050 2051 Type truetype; 2052 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2053 try { 2054 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2055 } finally { 2056 trueEnv.info.scope.leave(); 2057 } 2058 2059 MatchBindings trueBindings = matchBindings; 2060 2061 Type falsetype; 2062 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2063 try { 2064 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2065 } finally { 2066 falseEnv.info.scope.leave(); 2067 } 2068 2069 MatchBindings falseBindings = matchBindings; 2070 2071 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2072 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2073 List.of(truetype, falsetype)) : pt(); 2074 if (condtype.constValue() != null && 2075 truetype.constValue() != null && 2076 falsetype.constValue() != null && 2077 !owntype.hasTag(NONE)) { 2078 //constant folding 2079 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2080 } 2081 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2082 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2083 } 2084 //where 2085 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2086 switch (tree.getTag()) { 2087 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2088 ((JCLiteral)tree).typetag == BOOLEAN || 2089 ((JCLiteral)tree).typetag == BOT; 2090 case LAMBDA: case REFERENCE: return false; 2091 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2092 case CONDEXPR: 2093 JCConditional condTree = (JCConditional)tree; 2094 return isBooleanOrNumeric(env, condTree.truepart) && 2095 isBooleanOrNumeric(env, condTree.falsepart); 2096 case APPLY: 2097 JCMethodInvocation speculativeMethodTree = 2098 (JCMethodInvocation)deferredAttr.attribSpeculative( 2099 tree, env, unknownExprInfo, 2100 argumentAttr.withLocalCacheContext()); 2101 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2102 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2103 env.enclClass.type : 2104 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2105 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2106 return primitiveOrBoxed(owntype); 2107 case NEWCLASS: 2108 JCExpression className = 2109 removeClassParams.translate(((JCNewClass)tree).clazz); 2110 JCExpression speculativeNewClassTree = 2111 (JCExpression)deferredAttr.attribSpeculative( 2112 className, env, unknownTypeInfo, 2113 argumentAttr.withLocalCacheContext()); 2114 return primitiveOrBoxed(speculativeNewClassTree.type); 2115 default: 2116 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2117 argumentAttr.withLocalCacheContext()).type; 2118 return primitiveOrBoxed(speculativeType); 2119 } 2120 } 2121 //where 2122 boolean primitiveOrBoxed(Type t) { 2123 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2124 } 2125 2126 TreeTranslator removeClassParams = new TreeTranslator() { 2127 @Override 2128 public void visitTypeApply(JCTypeApply tree) { 2129 result = translate(tree.clazz); 2130 } 2131 }; 2132 2133 CheckContext conditionalContext(CheckContext checkContext) { 2134 return new Check.NestedCheckContext(checkContext) { 2135 //this will use enclosing check context to check compatibility of 2136 //subexpression against target type; if we are in a method check context, 2137 //depending on whether boxing is allowed, we could have incompatibilities 2138 @Override 2139 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2140 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2141 } 2142 }; 2143 } 2144 2145 /** Compute the type of a conditional expression, after 2146 * checking that it exists. See JLS 15.25. Does not take into 2147 * account the special case where condition and both arms 2148 * are constants. 2149 * 2150 * @param pos The source position to be used for error 2151 * diagnostics. 2152 * @param thentype The type of the expression's then-part. 2153 * @param elsetype The type of the expression's else-part. 2154 */ 2155 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2156 if (condTypes.isEmpty()) { 2157 return syms.objectType; //TODO: how to handle? 2158 } 2159 Type first = condTypes.head; 2160 // If same type, that is the result 2161 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2162 return first.baseType(); 2163 2164 List<Type> unboxedTypes = condTypes.stream() 2165 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2166 .collect(List.collector()); 2167 2168 // Otherwise, if both arms can be converted to a numeric 2169 // type, return the least numeric type that fits both arms 2170 // (i.e. return larger of the two, or return int if one 2171 // arm is short, the other is char). 2172 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2173 // If one arm has an integer subrange type (i.e., byte, 2174 // short, or char), and the other is an integer constant 2175 // that fits into the subrange, return the subrange type. 2176 for (Type type : unboxedTypes) { 2177 if (!type.getTag().isStrictSubRangeOf(INT)) { 2178 continue; 2179 } 2180 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2181 return type.baseType(); 2182 } 2183 2184 for (TypeTag tag : primitiveTags) { 2185 Type candidate = syms.typeOfTag[tag.ordinal()]; 2186 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2187 return candidate; 2188 } 2189 } 2190 } 2191 2192 // Those were all the cases that could result in a primitive 2193 condTypes = condTypes.stream() 2194 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2195 .collect(List.collector()); 2196 2197 for (Type type : condTypes) { 2198 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2199 return type.baseType(); 2200 } 2201 2202 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2203 2204 condTypes = condTypes.stream() 2205 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2206 .collect(List.collector()); 2207 2208 // both are known to be reference types. The result is 2209 // lub(thentype,elsetype). This cannot fail, as it will 2210 // always be possible to infer "Object" if nothing better. 2211 return types.lub(condTypes.stream() 2212 .map(t -> t.baseType()) 2213 .filter(t -> !t.hasTag(BOT)) 2214 .collect(List.collector())); 2215 } 2216 2217 static final TypeTag[] primitiveTags = new TypeTag[]{ 2218 BYTE, 2219 CHAR, 2220 SHORT, 2221 INT, 2222 LONG, 2223 FLOAT, 2224 DOUBLE, 2225 BOOLEAN, 2226 }; 2227 2228 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2229 return bindingEnv(env, env.tree, bindings); 2230 } 2231 2232 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2233 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2234 bindings.forEach(env1.info.scope::enter); 2235 return env1; 2236 } 2237 2238 public void visitIf(JCIf tree) { 2239 attribExpr(tree.cond, env, syms.booleanType); 2240 2241 // if (x) { y } [ else z ] 2242 // include x's bindings when true in y 2243 // include x's bindings when false in z 2244 2245 MatchBindings condBindings = matchBindings; 2246 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2247 2248 try { 2249 attribStat(tree.thenpart, thenEnv); 2250 } finally { 2251 thenEnv.info.scope.leave(); 2252 } 2253 2254 preFlow(tree.thenpart); 2255 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2256 boolean aliveAfterElse; 2257 2258 if (tree.elsepart != null) { 2259 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2260 try { 2261 attribStat(tree.elsepart, elseEnv); 2262 } finally { 2263 elseEnv.info.scope.leave(); 2264 } 2265 preFlow(tree.elsepart); 2266 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2267 } else { 2268 aliveAfterElse = true; 2269 } 2270 2271 chk.checkEmptyIf(tree); 2272 2273 List<BindingSymbol> afterIfBindings = List.nil(); 2274 2275 if (aliveAfterThen && !aliveAfterElse) { 2276 afterIfBindings = condBindings.bindingsWhenTrue; 2277 } else if (aliveAfterElse && !aliveAfterThen) { 2278 afterIfBindings = condBindings.bindingsWhenFalse; 2279 } 2280 2281 addBindings2Scope(tree, afterIfBindings); 2282 2283 result = null; 2284 } 2285 2286 void preFlow(JCTree tree) { 2287 attrRecover.doRecovery(); 2288 new PostAttrAnalyzer() { 2289 @Override 2290 public void scan(JCTree tree) { 2291 if (tree == null || 2292 (tree.type != null && 2293 tree.type == Type.stuckType)) { 2294 //don't touch stuck expressions! 2295 return; 2296 } 2297 super.scan(tree); 2298 } 2299 2300 @Override 2301 public void visitClassDef(JCClassDecl that) { 2302 if (that.sym != null) { 2303 // Method preFlow shouldn't visit class definitions 2304 // that have not been entered and attributed. 2305 // See JDK-8254557 and JDK-8203277 for more details. 2306 super.visitClassDef(that); 2307 } 2308 } 2309 2310 @Override 2311 public void visitLambda(JCLambda that) { 2312 if (that.type != null) { 2313 // Method preFlow shouldn't visit lambda expressions 2314 // that have not been entered and attributed. 2315 // See JDK-8254557 and JDK-8203277 for more details. 2316 super.visitLambda(that); 2317 } 2318 } 2319 }.scan(tree); 2320 } 2321 2322 public void visitExec(JCExpressionStatement tree) { 2323 //a fresh environment is required for 292 inference to work properly --- 2324 //see Infer.instantiatePolymorphicSignatureInstance() 2325 Env<AttrContext> localEnv = env.dup(tree); 2326 attribExpr(tree.expr, localEnv); 2327 result = null; 2328 } 2329 2330 public void visitBreak(JCBreak tree) { 2331 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2332 result = null; 2333 } 2334 2335 public void visitYield(JCYield tree) { 2336 if (env.info.yieldResult != null) { 2337 attribTree(tree.value, env, env.info.yieldResult); 2338 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2339 } else { 2340 log.error(tree.pos(), tree.value.hasTag(PARENS) 2341 ? Errors.NoSwitchExpressionQualify 2342 : Errors.NoSwitchExpression); 2343 attribTree(tree.value, env, unknownExprInfo); 2344 } 2345 result = null; 2346 } 2347 2348 public void visitContinue(JCContinue tree) { 2349 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2350 result = null; 2351 } 2352 //where 2353 /** Return the target of a break, continue or yield statement, 2354 * if it exists, report an error if not. 2355 * Note: The target of a labelled break or continue is the 2356 * (non-labelled) statement tree referred to by the label, 2357 * not the tree representing the labelled statement itself. 2358 * 2359 * @param pos The position to be used for error diagnostics 2360 * @param tag The tag of the jump statement. This is either 2361 * Tree.BREAK or Tree.CONTINUE. 2362 * @param label The label of the jump statement, or null if no 2363 * label is given. 2364 * @param env The environment current at the jump statement. 2365 */ 2366 private JCTree findJumpTarget(DiagnosticPosition pos, 2367 JCTree.Tag tag, 2368 Name label, 2369 Env<AttrContext> env) { 2370 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2371 2372 if (jumpTarget.snd != null) { 2373 log.error(pos, jumpTarget.snd); 2374 } 2375 2376 return jumpTarget.fst; 2377 } 2378 /** Return the target of a break or continue statement, if it exists, 2379 * report an error if not. 2380 * Note: The target of a labelled break or continue is the 2381 * (non-labelled) statement tree referred to by the label, 2382 * not the tree representing the labelled statement itself. 2383 * 2384 * @param tag The tag of the jump statement. This is either 2385 * Tree.BREAK or Tree.CONTINUE. 2386 * @param label The label of the jump statement, or null if no 2387 * label is given. 2388 * @param env The environment current at the jump statement. 2389 */ 2390 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2391 Name label, 2392 Env<AttrContext> env) { 2393 // Search environments outwards from the point of jump. 2394 Env<AttrContext> env1 = env; 2395 JCDiagnostic.Error pendingError = null; 2396 LOOP: 2397 while (env1 != null) { 2398 switch (env1.tree.getTag()) { 2399 case LABELLED: 2400 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2401 if (label == labelled.label) { 2402 // If jump is a continue, check that target is a loop. 2403 if (tag == CONTINUE) { 2404 if (!labelled.body.hasTag(DOLOOP) && 2405 !labelled.body.hasTag(WHILELOOP) && 2406 !labelled.body.hasTag(FORLOOP) && 2407 !labelled.body.hasTag(FOREACHLOOP)) { 2408 pendingError = Errors.NotLoopLabel(label); 2409 } 2410 // Found labelled statement target, now go inwards 2411 // to next non-labelled tree. 2412 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2413 } else { 2414 return Pair.of(labelled, pendingError); 2415 } 2416 } 2417 break; 2418 case DOLOOP: 2419 case WHILELOOP: 2420 case FORLOOP: 2421 case FOREACHLOOP: 2422 if (label == null) return Pair.of(env1.tree, pendingError); 2423 break; 2424 case SWITCH: 2425 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2426 break; 2427 case SWITCH_EXPRESSION: 2428 if (tag == YIELD) { 2429 return Pair.of(env1.tree, null); 2430 } else if (tag == BREAK) { 2431 pendingError = Errors.BreakOutsideSwitchExpression; 2432 } else { 2433 pendingError = Errors.ContinueOutsideSwitchExpression; 2434 } 2435 break; 2436 case LAMBDA: 2437 case METHODDEF: 2438 case CLASSDEF: 2439 break LOOP; 2440 default: 2441 } 2442 env1 = env1.next; 2443 } 2444 if (label != null) 2445 return Pair.of(null, Errors.UndefLabel(label)); 2446 else if (pendingError != null) 2447 return Pair.of(null, pendingError); 2448 else if (tag == CONTINUE) 2449 return Pair.of(null, Errors.ContOutsideLoop); 2450 else 2451 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2452 } 2453 2454 public void visitReturn(JCReturn tree) { 2455 // Check that there is an enclosing method which is 2456 // nested within than the enclosing class. 2457 if (env.info.returnResult == null) { 2458 log.error(tree.pos(), Errors.RetOutsideMeth); 2459 } else if (env.info.yieldResult != null) { 2460 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2461 } else if (!env.info.isLambda && 2462 !env.info.isNewClass && 2463 env.enclMethod != null && 2464 TreeInfo.isCompactConstructor(env.enclMethod)) { 2465 log.error(env.enclMethod, 2466 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2467 } else { 2468 // Attribute return expression, if it exists, and check that 2469 // it conforms to result type of enclosing method. 2470 if (tree.expr != null) { 2471 if (env.info.returnResult.pt.hasTag(VOID)) { 2472 env.info.returnResult.checkContext.report(tree.expr.pos(), 2473 diags.fragment(Fragments.UnexpectedRetVal)); 2474 } 2475 attribTree(tree.expr, env, env.info.returnResult); 2476 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2477 !env.info.returnResult.pt.hasTag(NONE)) { 2478 env.info.returnResult.checkContext.report(tree.pos(), 2479 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2480 } 2481 } 2482 result = null; 2483 } 2484 2485 public void visitThrow(JCThrow tree) { 2486 Type owntype = attribExpr(tree.expr, env, Type.noType); 2487 chk.checkType(tree, owntype, syms.throwableType); 2488 result = null; 2489 } 2490 2491 public void visitAssert(JCAssert tree) { 2492 attribExpr(tree.cond, env, syms.booleanType); 2493 if (tree.detail != null) { 2494 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2495 } 2496 result = null; 2497 } 2498 2499 /** Visitor method for method invocations. 2500 * NOTE: The method part of an application will have in its type field 2501 * the return type of the method, not the method's type itself! 2502 */ 2503 public void visitApply(JCMethodInvocation tree) { 2504 // The local environment of a method application is 2505 // a new environment nested in the current one. 2506 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2507 2508 // The types of the actual method arguments. 2509 List<Type> argtypes; 2510 2511 // The types of the actual method type arguments. 2512 List<Type> typeargtypes = null; 2513 2514 Name methName = TreeInfo.name(tree.meth); 2515 2516 boolean isConstructorCall = 2517 methName == names._this || methName == names._super; 2518 2519 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2520 if (isConstructorCall) { 2521 // We are seeing a ...this(...) or ...super(...) call. 2522 // Check that this is the first statement in a constructor. 2523 checkFirstConstructorStat(tree, env.enclMethod, true); 2524 2525 // Record the fact 2526 // that this is a constructor call (using isSelfCall). 2527 localEnv.info.isSelfCall = true; 2528 2529 // Attribute arguments, yielding list of argument types. 2530 localEnv.info.constructorArgs = true; 2531 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2532 localEnv.info.constructorArgs = false; 2533 argtypes = argtypesBuf.toList(); 2534 typeargtypes = attribTypes(tree.typeargs, localEnv); 2535 2536 // Variable `site' points to the class in which the called 2537 // constructor is defined. 2538 Type site = env.enclClass.sym.type; 2539 if (methName == names._super) { 2540 if (site == syms.objectType) { 2541 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2542 site = types.createErrorType(syms.objectType); 2543 } else { 2544 site = types.supertype(site); 2545 } 2546 } 2547 2548 if (site.hasTag(CLASS)) { 2549 Type encl = site.getEnclosingType(); 2550 while (encl != null && encl.hasTag(TYPEVAR)) 2551 encl = encl.getUpperBound(); 2552 if (encl.hasTag(CLASS)) { 2553 // we are calling a nested class 2554 2555 if (tree.meth.hasTag(SELECT)) { 2556 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2557 2558 // We are seeing a prefixed call, of the form 2559 // <expr>.super(...). 2560 // Check that the prefix expression conforms 2561 // to the outer instance type of the class. 2562 chk.checkRefType(qualifier.pos(), 2563 attribExpr(qualifier, localEnv, 2564 encl)); 2565 } else if (methName == names._super) { 2566 // qualifier omitted; check for existence 2567 // of an appropriate implicit qualifier. 2568 rs.resolveImplicitThis(tree.meth.pos(), 2569 localEnv, site, true); 2570 } 2571 } else if (tree.meth.hasTag(SELECT)) { 2572 log.error(tree.meth.pos(), 2573 Errors.IllegalQualNotIcls(site.tsym)); 2574 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2575 } 2576 2577 // if we're calling a java.lang.Enum constructor, 2578 // prefix the implicit String and int parameters 2579 if (site.tsym == syms.enumSym) 2580 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2581 2582 // Resolve the called constructor under the assumption 2583 // that we are referring to a superclass instance of the 2584 // current instance (JLS ???). 2585 boolean selectSuperPrev = localEnv.info.selectSuper; 2586 localEnv.info.selectSuper = true; 2587 localEnv.info.pendingResolutionPhase = null; 2588 Symbol sym = rs.resolveConstructor( 2589 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2590 localEnv.info.selectSuper = selectSuperPrev; 2591 2592 // Set method symbol to resolved constructor... 2593 TreeInfo.setSymbol(tree.meth, sym); 2594 2595 // ...and check that it is legal in the current context. 2596 // (this will also set the tree's type) 2597 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2598 checkId(tree.meth, site, sym, localEnv, 2599 new ResultInfo(kind, mpt)); 2600 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2601 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2602 } 2603 // Otherwise, `site' is an error type and we do nothing 2604 result = tree.type = syms.voidType; 2605 } else { 2606 // Otherwise, we are seeing a regular method call. 2607 // Attribute the arguments, yielding list of argument types, ... 2608 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2609 argtypes = argtypesBuf.toList(); 2610 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2611 2612 // ... and attribute the method using as a prototype a methodtype 2613 // whose formal argument types is exactly the list of actual 2614 // arguments (this will also set the method symbol). 2615 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2616 localEnv.info.pendingResolutionPhase = null; 2617 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2618 2619 // Compute the result type. 2620 Type restype = mtype.getReturnType(); 2621 if (restype.hasTag(WILDCARD)) 2622 throw new AssertionError(mtype); 2623 2624 Type qualifier = (tree.meth.hasTag(SELECT)) 2625 ? ((JCFieldAccess) tree.meth).selected.type 2626 : env.enclClass.sym.type; 2627 Symbol msym = TreeInfo.symbol(tree.meth); 2628 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2629 2630 chk.checkRefTypes(tree.typeargs, typeargtypes); 2631 2632 // Check that value of resulting type is admissible in the 2633 // current context. Also, capture the return type 2634 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2635 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2636 } 2637 chk.validate(tree.typeargs, localEnv); 2638 } 2639 //where 2640 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2641 if (msym != null && 2642 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2643 methodName == names.getClass && 2644 argtypes.isEmpty()) { 2645 // as a special case, x.getClass() has type Class<? extends |X|> 2646 return new ClassType(restype.getEnclosingType(), 2647 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2648 BoundKind.EXTENDS, 2649 syms.boundClass)), 2650 restype.tsym, 2651 restype.getMetadata()); 2652 } else if (msym != null && 2653 msym.owner == syms.arrayClass && 2654 methodName == names.clone && 2655 types.isArray(qualifierType)) { 2656 // as a special case, array.clone() has a result that is 2657 // the same as static type of the array being cloned 2658 return qualifierType; 2659 } else { 2660 return restype; 2661 } 2662 } 2663 2664 /** Check that given application node appears as first statement 2665 * in a constructor call. 2666 * @param tree The application node 2667 * @param enclMethod The enclosing method of the application. 2668 * @param error Should an error be issued? 2669 */ 2670 boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) { 2671 if (enclMethod != null && enclMethod.name == names.init) { 2672 JCBlock body = enclMethod.body; 2673 if (body.stats.head.hasTag(EXEC) && 2674 ((JCExpressionStatement) body.stats.head).expr == tree) 2675 return true; 2676 } 2677 if (error) { 2678 log.error(tree.pos(), 2679 Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth))); 2680 } 2681 return false; 2682 } 2683 2684 /** Obtain a method type with given argument types. 2685 */ 2686 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2687 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2688 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2689 } 2690 2691 public void visitNewClass(final JCNewClass tree) { 2692 Type owntype = types.createErrorType(tree.type); 2693 2694 // The local environment of a class creation is 2695 // a new environment nested in the current one. 2696 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2697 2698 // The anonymous inner class definition of the new expression, 2699 // if one is defined by it. 2700 JCClassDecl cdef = tree.def; 2701 2702 // If enclosing class is given, attribute it, and 2703 // complete class name to be fully qualified 2704 JCExpression clazz = tree.clazz; // Class field following new 2705 JCExpression clazzid; // Identifier in class field 2706 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2707 annoclazzid = null; 2708 2709 if (clazz.hasTag(TYPEAPPLY)) { 2710 clazzid = ((JCTypeApply) clazz).clazz; 2711 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2712 annoclazzid = (JCAnnotatedType) clazzid; 2713 clazzid = annoclazzid.underlyingType; 2714 } 2715 } else { 2716 if (clazz.hasTag(ANNOTATED_TYPE)) { 2717 annoclazzid = (JCAnnotatedType) clazz; 2718 clazzid = annoclazzid.underlyingType; 2719 } else { 2720 clazzid = clazz; 2721 } 2722 } 2723 2724 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2725 2726 if (tree.encl != null) { 2727 // We are seeing a qualified new, of the form 2728 // <expr>.new C <...> (...) ... 2729 // In this case, we let clazz stand for the name of the 2730 // allocated class C prefixed with the type of the qualifier 2731 // expression, so that we can 2732 // resolve it with standard techniques later. I.e., if 2733 // <expr> has type T, then <expr>.new C <...> (...) 2734 // yields a clazz T.C. 2735 Type encltype = chk.checkRefType(tree.encl.pos(), 2736 attribExpr(tree.encl, env)); 2737 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2738 // from expr to the combined type, or not? Yes, do this. 2739 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2740 ((JCIdent) clazzid).name); 2741 2742 EndPosTable endPosTable = this.env.toplevel.endPositions; 2743 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2744 if (clazz.hasTag(ANNOTATED_TYPE)) { 2745 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2746 List<JCAnnotation> annos = annoType.annotations; 2747 2748 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2749 clazzid1 = make.at(tree.pos). 2750 TypeApply(clazzid1, 2751 ((JCTypeApply) clazz).arguments); 2752 } 2753 2754 clazzid1 = make.at(tree.pos). 2755 AnnotatedType(annos, clazzid1); 2756 } else if (clazz.hasTag(TYPEAPPLY)) { 2757 clazzid1 = make.at(tree.pos). 2758 TypeApply(clazzid1, 2759 ((JCTypeApply) clazz).arguments); 2760 } 2761 2762 clazz = clazzid1; 2763 } 2764 2765 // Attribute clazz expression and store 2766 // symbol + type back into the attributed tree. 2767 Type clazztype; 2768 2769 try { 2770 env.info.isNewClass = true; 2771 clazztype = TreeInfo.isEnumInit(env.tree) ? 2772 attribIdentAsEnumType(env, (JCIdent)clazz) : 2773 attribType(clazz, env); 2774 } finally { 2775 env.info.isNewClass = false; 2776 } 2777 2778 clazztype = chk.checkDiamond(tree, clazztype); 2779 chk.validate(clazz, localEnv); 2780 if (tree.encl != null) { 2781 // We have to work in this case to store 2782 // symbol + type back into the attributed tree. 2783 tree.clazz.type = clazztype; 2784 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2785 clazzid.type = ((JCIdent) clazzid).sym.type; 2786 if (annoclazzid != null) { 2787 annoclazzid.type = clazzid.type; 2788 } 2789 if (!clazztype.isErroneous()) { 2790 if (cdef != null && clazztype.tsym.isInterface()) { 2791 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2792 } else if (clazztype.tsym.isStatic()) { 2793 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2794 } 2795 } 2796 } else if (!clazztype.tsym.isInterface() && 2797 clazztype.getEnclosingType().hasTag(CLASS)) { 2798 // Check for the existence of an apropos outer instance 2799 rs.resolveImplicitThis(tree.pos(), env, clazztype); 2800 } 2801 2802 // Attribute constructor arguments. 2803 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2804 final KindSelector pkind = 2805 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2806 List<Type> argtypes = argtypesBuf.toList(); 2807 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2808 2809 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2810 // Enums may not be instantiated except implicitly 2811 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2812 (!env.tree.hasTag(VARDEF) || 2813 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2814 ((JCVariableDecl) env.tree).init != tree)) 2815 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2816 2817 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2818 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2819 boolean skipNonDiamondPath = false; 2820 // Check that class is not abstract 2821 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2822 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2823 log.error(tree.pos(), 2824 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2825 skipNonDiamondPath = true; 2826 } else if (cdef != null && clazztype.tsym.isInterface()) { 2827 // Check that no constructor arguments are given to 2828 // anonymous classes implementing an interface 2829 if (!argtypes.isEmpty()) 2830 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2831 2832 if (!typeargtypes.isEmpty()) 2833 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2834 2835 // Error recovery: pretend no arguments were supplied. 2836 argtypes = List.nil(); 2837 typeargtypes = List.nil(); 2838 skipNonDiamondPath = true; 2839 } 2840 if (TreeInfo.isDiamond(tree)) { 2841 ClassType site = new ClassType(clazztype.getEnclosingType(), 2842 clazztype.tsym.type.getTypeArguments(), 2843 clazztype.tsym, 2844 clazztype.getMetadata()); 2845 2846 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2847 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2848 diamondEnv.info.pendingResolutionPhase = null; 2849 2850 //if the type of the instance creation expression is a class type 2851 //apply method resolution inference (JLS 15.12.2.7). The return type 2852 //of the resolved constructor will be a partially instantiated type 2853 Symbol constructor = rs.resolveDiamond(tree.pos(), 2854 diamondEnv, 2855 site, 2856 argtypes, 2857 typeargtypes); 2858 tree.constructor = constructor.baseSymbol(); 2859 2860 final TypeSymbol csym = clazztype.tsym; 2861 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2862 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2863 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2864 constructorType = checkId(tree, site, 2865 constructor, 2866 diamondEnv, 2867 diamondResult); 2868 2869 tree.clazz.type = types.createErrorType(clazztype); 2870 if (!constructorType.isErroneous()) { 2871 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2872 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2873 } 2874 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2875 } 2876 2877 // Resolve the called constructor under the assumption 2878 // that we are referring to a superclass instance of the 2879 // current instance (JLS ???). 2880 else if (!skipNonDiamondPath) { 2881 //the following code alters some of the fields in the current 2882 //AttrContext - hence, the current context must be dup'ed in 2883 //order to avoid downstream failures 2884 Env<AttrContext> rsEnv = localEnv.dup(tree); 2885 rsEnv.info.selectSuper = cdef != null; 2886 rsEnv.info.pendingResolutionPhase = null; 2887 tree.constructor = rs.resolveConstructor( 2888 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2889 if (cdef == null) { //do not check twice! 2890 tree.constructorType = checkId(tree, 2891 clazztype, 2892 tree.constructor, 2893 rsEnv, 2894 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2895 if (rsEnv.info.lastResolveVarargs()) 2896 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2897 } 2898 } 2899 2900 if (cdef != null) { 2901 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2902 return; 2903 } 2904 2905 if (tree.constructor != null && tree.constructor.kind == MTH) 2906 owntype = clazztype; 2907 } 2908 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2909 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2910 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2911 //we need to wait for inference to finish and then replace inference vars in the constructor type 2912 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2913 instantiatedContext -> { 2914 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2915 }); 2916 } 2917 chk.validate(tree.typeargs, localEnv); 2918 } 2919 2920 // where 2921 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2922 JCClassDecl cdef, Env<AttrContext> localEnv, 2923 List<Type> argtypes, List<Type> typeargtypes, 2924 KindSelector pkind) { 2925 // We are seeing an anonymous class instance creation. 2926 // In this case, the class instance creation 2927 // expression 2928 // 2929 // E.new <typeargs1>C<typargs2>(args) { ... } 2930 // 2931 // is represented internally as 2932 // 2933 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2934 // 2935 // This expression is then *transformed* as follows: 2936 // 2937 // (1) add an extends or implements clause 2938 // (2) add a constructor. 2939 // 2940 // For instance, if C is a class, and ET is the type of E, 2941 // the expression 2942 // 2943 // E.new <typeargs1>C<typargs2>(args) { ... } 2944 // 2945 // is translated to (where X is a fresh name and typarams is the 2946 // parameter list of the super constructor): 2947 // 2948 // new <typeargs1>X(<*nullchk*>E, args) where 2949 // X extends C<typargs2> { 2950 // <typarams> X(ET e, args) { 2951 // e.<typeargs1>super(args) 2952 // } 2953 // ... 2954 // } 2955 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2956 Type enclType = clazztype.getEnclosingType(); 2957 if (enclType != null && 2958 enclType.hasTag(CLASS) && 2959 !chk.checkDenotable((ClassType)enclType)) { 2960 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2961 } 2962 final boolean isDiamond = TreeInfo.isDiamond(tree); 2963 if (isDiamond 2964 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2965 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2966 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2967 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 2968 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 2969 instantiatedContext -> { 2970 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2971 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 2972 ResultInfo prevResult = this.resultInfo; 2973 try { 2974 this.resultInfo = resultInfoForClassDefinition; 2975 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 2976 dupLocalEnv, argtypes, typeargtypes, pkind); 2977 } finally { 2978 this.resultInfo = prevResult; 2979 } 2980 }); 2981 } else { 2982 if (isDiamond && clazztype.hasTag(CLASS)) { 2983 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 2984 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 2985 // One or more types inferred in the previous steps is non-denotable. 2986 Fragment fragment = Diamond(clazztype.tsym); 2987 log.error(tree.clazz.pos(), 2988 Errors.CantApplyDiamond1( 2989 fragment, 2990 invalidDiamondArgs.size() > 1 ? 2991 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 2992 DiamondInvalidArg(invalidDiamondArgs, fragment))); 2993 } 2994 // For <>(){}, inferred types must also be accessible. 2995 for (Type t : clazztype.getTypeArguments()) { 2996 rs.checkAccessibleType(env, t); 2997 } 2998 } 2999 3000 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3001 // false for isInterface call even when the original type is an interface. 3002 boolean implementing = clazztype.tsym.isInterface() || 3003 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3004 clazztype.getOriginalType().tsym.isInterface(); 3005 3006 if (implementing) { 3007 cdef.implementing = List.of(clazz); 3008 } else { 3009 cdef.extending = clazz; 3010 } 3011 3012 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3013 rs.isSerializable(clazztype)) { 3014 localEnv.info.isSerializable = true; 3015 } 3016 3017 attribStat(cdef, localEnv); 3018 3019 List<Type> finalargtypes; 3020 // If an outer instance is given, 3021 // prefix it to the constructor arguments 3022 // and delete it from the new expression 3023 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3024 finalargtypes = argtypes.prepend(tree.encl.type); 3025 } else { 3026 finalargtypes = argtypes; 3027 } 3028 3029 // Reassign clazztype and recompute constructor. As this necessarily involves 3030 // another attribution pass for deferred types in the case of <>, replicate 3031 // them. Original arguments have right decorations already. 3032 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3033 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3034 } 3035 3036 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3037 : cdef.sym.type; 3038 Symbol sym = tree.constructor = rs.resolveConstructor( 3039 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3040 Assert.check(!sym.kind.isResolutionError()); 3041 tree.constructor = sym; 3042 tree.constructorType = checkId(tree, 3043 clazztype, 3044 tree.constructor, 3045 localEnv, 3046 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3047 } 3048 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3049 clazztype : types.createErrorType(tree.type); 3050 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3051 chk.validate(tree.typeargs, localEnv); 3052 } 3053 3054 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3055 return new Check.NestedCheckContext(checkContext) { 3056 @Override 3057 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3058 enclosingContext.report(clazz.clazz, 3059 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3060 } 3061 }; 3062 } 3063 3064 /** Make an attributed null check tree. 3065 */ 3066 public JCExpression makeNullCheck(JCExpression arg) { 3067 // optimization: new Outer() can never be null; skip null check 3068 if (arg.getTag() == NEWCLASS) 3069 return arg; 3070 // optimization: X.this is never null; skip null check 3071 Name name = TreeInfo.name(arg); 3072 if (name == names._this || name == names._super) return arg; 3073 3074 JCTree.Tag optag = NULLCHK; 3075 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3076 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3077 tree.type = arg.type; 3078 return tree; 3079 } 3080 3081 public void visitNewArray(JCNewArray tree) { 3082 Type owntype = types.createErrorType(tree.type); 3083 Env<AttrContext> localEnv = env.dup(tree); 3084 Type elemtype; 3085 if (tree.elemtype != null) { 3086 elemtype = attribType(tree.elemtype, localEnv); 3087 chk.validate(tree.elemtype, localEnv); 3088 owntype = elemtype; 3089 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3090 attribExpr(l.head, localEnv, syms.intType); 3091 owntype = new ArrayType(owntype, syms.arrayClass); 3092 } 3093 } else { 3094 // we are seeing an untyped aggregate { ... } 3095 // this is allowed only if the prototype is an array 3096 if (pt().hasTag(ARRAY)) { 3097 elemtype = types.elemtype(pt()); 3098 } else { 3099 if (!pt().hasTag(ERROR) && 3100 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3101 log.error(tree.pos(), 3102 Errors.IllegalInitializerForType(pt())); 3103 } 3104 elemtype = types.createErrorType(pt()); 3105 } 3106 } 3107 if (tree.elems != null) { 3108 attribExprs(tree.elems, localEnv, elemtype); 3109 owntype = new ArrayType(elemtype, syms.arrayClass); 3110 } 3111 if (!types.isReifiable(elemtype)) 3112 log.error(tree.pos(), Errors.GenericArrayCreation); 3113 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3114 } 3115 3116 /* 3117 * A lambda expression can only be attributed when a target-type is available. 3118 * In addition, if the target-type is that of a functional interface whose 3119 * descriptor contains inference variables in argument position the lambda expression 3120 * is 'stuck' (see DeferredAttr). 3121 */ 3122 @Override 3123 public void visitLambda(final JCLambda that) { 3124 boolean wrongContext = false; 3125 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3126 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3127 //lambda only allowed in assignment or method invocation/cast context 3128 log.error(that.pos(), Errors.UnexpectedLambda); 3129 } 3130 resultInfo = recoveryInfo; 3131 wrongContext = true; 3132 } 3133 //create an environment for attribution of the lambda expression 3134 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3135 boolean needsRecovery = 3136 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3137 try { 3138 if (needsRecovery && rs.isSerializable(pt())) { 3139 localEnv.info.isSerializable = true; 3140 localEnv.info.isSerializableLambda = true; 3141 } 3142 List<Type> explicitParamTypes = null; 3143 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3144 //attribute lambda parameters 3145 attribStats(that.params, localEnv); 3146 explicitParamTypes = TreeInfo.types(that.params); 3147 } 3148 3149 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3150 Type currentTarget = targetInfo.target; 3151 Type lambdaType = targetInfo.descriptor; 3152 3153 if (currentTarget.isErroneous()) { 3154 result = that.type = currentTarget; 3155 return; 3156 } 3157 3158 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3159 3160 if (lambdaType.hasTag(FORALL)) { 3161 //lambda expression target desc cannot be a generic method 3162 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3163 kindName(currentTarget.tsym), 3164 currentTarget.tsym); 3165 resultInfo.checkContext.report(that, diags.fragment(msg)); 3166 result = that.type = types.createErrorType(pt()); 3167 return; 3168 } 3169 3170 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3171 //add param type info in the AST 3172 List<Type> actuals = lambdaType.getParameterTypes(); 3173 List<JCVariableDecl> params = that.params; 3174 3175 boolean arityMismatch = false; 3176 3177 while (params.nonEmpty()) { 3178 if (actuals.isEmpty()) { 3179 //not enough actuals to perform lambda parameter inference 3180 arityMismatch = true; 3181 } 3182 //reset previously set info 3183 Type argType = arityMismatch ? 3184 syms.errType : 3185 actuals.head; 3186 if (params.head.isImplicitlyTyped()) { 3187 setSyntheticVariableType(params.head, argType); 3188 } 3189 params.head.sym = null; 3190 actuals = actuals.isEmpty() ? 3191 actuals : 3192 actuals.tail; 3193 params = params.tail; 3194 } 3195 3196 //attribute lambda parameters 3197 attribStats(that.params, localEnv); 3198 3199 if (arityMismatch) { 3200 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3201 result = that.type = types.createErrorType(currentTarget); 3202 return; 3203 } 3204 } 3205 3206 //from this point on, no recovery is needed; if we are in assignment context 3207 //we will be able to attribute the whole lambda body, regardless of errors; 3208 //if we are in a 'check' method context, and the lambda is not compatible 3209 //with the target-type, it will be recovered anyway in Attr.checkId 3210 needsRecovery = false; 3211 3212 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3213 lambdaBodyResult(that, lambdaType, resultInfo); 3214 3215 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3216 attribTree(that.getBody(), localEnv, bodyResultInfo); 3217 } else { 3218 JCBlock body = (JCBlock)that.body; 3219 if (body == breakTree && 3220 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3221 breakTreeFound(copyEnv(localEnv)); 3222 } 3223 attribStats(body.stats, localEnv); 3224 } 3225 3226 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3227 3228 boolean isSpeculativeRound = 3229 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3230 3231 preFlow(that); 3232 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3233 3234 that.type = currentTarget; //avoids recovery at this stage 3235 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3236 3237 if (!isSpeculativeRound) { 3238 //add thrown types as bounds to the thrown types free variables if needed: 3239 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3240 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3241 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3242 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3243 } 3244 } 3245 3246 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3247 } 3248 result = wrongContext ? that.type = types.createErrorType(pt()) 3249 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3250 } catch (Types.FunctionDescriptorLookupError ex) { 3251 JCDiagnostic cause = ex.getDiagnostic(); 3252 resultInfo.checkContext.report(that, cause); 3253 result = that.type = types.createErrorType(pt()); 3254 return; 3255 } catch (CompletionFailure cf) { 3256 chk.completionError(that.pos(), cf); 3257 } catch (Throwable t) { 3258 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3259 //as that would likely cause the same exception again. 3260 needsRecovery = false; 3261 throw t; 3262 } finally { 3263 localEnv.info.scope.leave(); 3264 if (needsRecovery) { 3265 Type prevResult = result; 3266 try { 3267 attribTree(that, env, recoveryInfo); 3268 } finally { 3269 if (result == Type.recoveryType) { 3270 result = prevResult; 3271 } 3272 } 3273 } 3274 } 3275 } 3276 //where 3277 class TargetInfo { 3278 Type target; 3279 Type descriptor; 3280 3281 public TargetInfo(Type target, Type descriptor) { 3282 this.target = target; 3283 this.descriptor = descriptor; 3284 } 3285 } 3286 3287 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3288 Type lambdaType; 3289 Type currentTarget = resultInfo.pt; 3290 if (resultInfo.pt != Type.recoveryType) { 3291 /* We need to adjust the target. If the target is an 3292 * intersection type, for example: SAM & I1 & I2 ... 3293 * the target will be updated to SAM 3294 */ 3295 currentTarget = targetChecker.visit(currentTarget, that); 3296 if (!currentTarget.isIntersection()) { 3297 if (explicitParamTypes != null) { 3298 currentTarget = infer.instantiateFunctionalInterface(that, 3299 currentTarget, explicitParamTypes, resultInfo.checkContext); 3300 } 3301 currentTarget = types.removeWildcards(currentTarget); 3302 lambdaType = types.findDescriptorType(currentTarget); 3303 } else { 3304 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3305 ListBuffer<Type> components = new ListBuffer<>(); 3306 for (Type bound : ict.getExplicitComponents()) { 3307 if (explicitParamTypes != null) { 3308 try { 3309 bound = infer.instantiateFunctionalInterface(that, 3310 bound, explicitParamTypes, resultInfo.checkContext); 3311 } catch (FunctionDescriptorLookupError t) { 3312 // do nothing 3313 } 3314 } 3315 bound = types.removeWildcards(bound); 3316 components.add(bound); 3317 } 3318 currentTarget = types.makeIntersectionType(components.toList()); 3319 currentTarget.tsym.flags_field |= INTERFACE; 3320 lambdaType = types.findDescriptorType(currentTarget); 3321 } 3322 3323 } else { 3324 currentTarget = Type.recoveryType; 3325 lambdaType = fallbackDescriptorType(that); 3326 } 3327 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3328 //lambda expression target desc cannot be a generic method 3329 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3330 kindName(currentTarget.tsym), 3331 currentTarget.tsym); 3332 resultInfo.checkContext.report(that, diags.fragment(msg)); 3333 currentTarget = types.createErrorType(pt()); 3334 } 3335 return new TargetInfo(currentTarget, lambdaType); 3336 } 3337 3338 void preFlow(JCLambda tree) { 3339 attrRecover.doRecovery(); 3340 new PostAttrAnalyzer() { 3341 @Override 3342 public void scan(JCTree tree) { 3343 if (tree == null || 3344 (tree.type != null && 3345 tree.type == Type.stuckType)) { 3346 //don't touch stuck expressions! 3347 return; 3348 } 3349 super.scan(tree); 3350 } 3351 3352 @Override 3353 public void visitClassDef(JCClassDecl that) { 3354 // or class declaration trees! 3355 } 3356 3357 public void visitLambda(JCLambda that) { 3358 // or lambda expressions! 3359 } 3360 }.scan(tree.body); 3361 } 3362 3363 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3364 3365 @Override 3366 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3367 return t.isIntersection() ? 3368 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3369 } 3370 3371 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3372 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3373 return ict; 3374 } 3375 3376 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3377 ListBuffer<Type> targs = new ListBuffer<>(); 3378 ListBuffer<Type> supertypes = new ListBuffer<>(); 3379 for (Type i : ict.interfaces_field) { 3380 if (i.isParameterized()) { 3381 targs.appendList(i.tsym.type.allparams()); 3382 } 3383 supertypes.append(i.tsym.type); 3384 } 3385 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3386 notionalIntf.allparams_field = targs.toList(); 3387 notionalIntf.tsym.flags_field |= INTERFACE; 3388 return notionalIntf.tsym; 3389 } 3390 }; 3391 3392 private Type fallbackDescriptorType(JCExpression tree) { 3393 switch (tree.getTag()) { 3394 case LAMBDA: 3395 JCLambda lambda = (JCLambda)tree; 3396 List<Type> argtypes = List.nil(); 3397 for (JCVariableDecl param : lambda.params) { 3398 argtypes = param.vartype != null && param.vartype.type != null ? 3399 argtypes.append(param.vartype.type) : 3400 argtypes.append(syms.errType); 3401 } 3402 return new MethodType(argtypes, Type.recoveryType, 3403 List.of(syms.throwableType), syms.methodClass); 3404 case REFERENCE: 3405 return new MethodType(List.nil(), Type.recoveryType, 3406 List.of(syms.throwableType), syms.methodClass); 3407 default: 3408 Assert.error("Cannot get here!"); 3409 } 3410 return null; 3411 } 3412 3413 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3414 final InferenceContext inferenceContext, final Type... ts) { 3415 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3416 } 3417 3418 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3419 final InferenceContext inferenceContext, final List<Type> ts) { 3420 if (inferenceContext.free(ts)) { 3421 inferenceContext.addFreeTypeListener(ts, 3422 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3423 } else { 3424 for (Type t : ts) { 3425 rs.checkAccessibleType(env, t); 3426 } 3427 } 3428 } 3429 3430 /** 3431 * Lambda/method reference have a special check context that ensures 3432 * that i.e. a lambda return type is compatible with the expected 3433 * type according to both the inherited context and the assignment 3434 * context. 3435 */ 3436 class FunctionalReturnContext extends Check.NestedCheckContext { 3437 3438 FunctionalReturnContext(CheckContext enclosingContext) { 3439 super(enclosingContext); 3440 } 3441 3442 @Override 3443 public boolean compatible(Type found, Type req, Warner warn) { 3444 //return type must be compatible in both current context and assignment context 3445 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3446 } 3447 3448 @Override 3449 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3450 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3451 } 3452 } 3453 3454 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3455 3456 JCExpression expr; 3457 boolean expStmtExpected; 3458 3459 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3460 super(enclosingContext); 3461 this.expr = expr; 3462 } 3463 3464 @Override 3465 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3466 if (expStmtExpected) { 3467 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3468 } else { 3469 super.report(pos, details); 3470 } 3471 } 3472 3473 @Override 3474 public boolean compatible(Type found, Type req, Warner warn) { 3475 //a void return is compatible with an expression statement lambda 3476 if (req.hasTag(VOID)) { 3477 expStmtExpected = true; 3478 return TreeInfo.isExpressionStatement(expr); 3479 } else { 3480 return super.compatible(found, req, warn); 3481 } 3482 } 3483 } 3484 3485 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3486 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3487 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3488 new FunctionalReturnContext(resultInfo.checkContext); 3489 3490 return descriptor.getReturnType() == Type.recoveryType ? 3491 recoveryInfo : 3492 new ResultInfo(KindSelector.VAL, 3493 descriptor.getReturnType(), funcContext); 3494 } 3495 3496 /** 3497 * Lambda compatibility. Check that given return types, thrown types, parameter types 3498 * are compatible with the expected functional interface descriptor. This means that: 3499 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3500 * types must be compatible with the return type of the expected descriptor. 3501 */ 3502 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3503 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3504 3505 //return values have already been checked - but if lambda has no return 3506 //values, we must ensure that void/value compatibility is correct; 3507 //this amounts at checking that, if a lambda body can complete normally, 3508 //the descriptor's return type must be void 3509 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3510 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3511 Fragment msg = 3512 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3513 checkContext.report(tree, 3514 diags.fragment(msg)); 3515 } 3516 3517 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3518 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3519 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3520 } 3521 } 3522 3523 /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a 3524 * static field and that lambda has type annotations, these annotations will 3525 * also be stored at these fake clinit methods. 3526 * 3527 * LambdaToMethod also use fake clinit methods so they can be reused. 3528 * Also as LTM is a phase subsequent to attribution, the methods from 3529 * clinits can be safely removed by LTM to save memory. 3530 */ 3531 private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>(); 3532 3533 public MethodSymbol removeClinit(ClassSymbol sym) { 3534 return clinits.remove(sym); 3535 } 3536 3537 /* This method returns an environment to be used to attribute a lambda 3538 * expression. 3539 * 3540 * The owner of this environment is a method symbol. If the current owner 3541 * is not a method, for example if the lambda is used to initialize 3542 * a field, then if the field is: 3543 * 3544 * - an instance field, we use the first constructor. 3545 * - a static field, we create a fake clinit method. 3546 */ 3547 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3548 Env<AttrContext> lambdaEnv; 3549 Symbol owner = env.info.scope.owner; 3550 if (owner.kind == VAR && owner.owner.kind == TYP) { 3551 //field initializer 3552 ClassSymbol enclClass = owner.enclClass(); 3553 Symbol newScopeOwner = env.info.scope.owner; 3554 /* if the field isn't static, then we can get the first constructor 3555 * and use it as the owner of the environment. This is what 3556 * LTM code is doing to look for type annotations so we are fine. 3557 */ 3558 if ((owner.flags() & STATIC) == 0) { 3559 for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) { 3560 newScopeOwner = s; 3561 break; 3562 } 3563 } else { 3564 /* if the field is static then we need to create a fake clinit 3565 * method, this method can later be reused by LTM. 3566 */ 3567 MethodSymbol clinit = clinits.get(enclClass); 3568 if (clinit == null) { 3569 Type clinitType = new MethodType(List.nil(), 3570 syms.voidType, List.nil(), syms.methodClass); 3571 clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE, 3572 names.clinit, clinitType, enclClass); 3573 clinit.params = List.nil(); 3574 clinits.put(enclClass, clinit); 3575 } 3576 newScopeOwner = clinit; 3577 } 3578 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner))); 3579 } else { 3580 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3581 } 3582 lambdaEnv.info.yieldResult = null; 3583 lambdaEnv.info.isLambda = true; 3584 return lambdaEnv; 3585 } 3586 3587 @Override 3588 public void visitReference(final JCMemberReference that) { 3589 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3590 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3591 //method reference only allowed in assignment or method invocation/cast context 3592 log.error(that.pos(), Errors.UnexpectedMref); 3593 } 3594 result = that.type = types.createErrorType(pt()); 3595 return; 3596 } 3597 final Env<AttrContext> localEnv = env.dup(that); 3598 try { 3599 //attribute member reference qualifier - if this is a constructor 3600 //reference, the expected kind must be a type 3601 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3602 3603 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3604 exprType = chk.checkConstructorRefType(that.expr, exprType); 3605 if (!exprType.isErroneous() && 3606 exprType.isRaw() && 3607 that.typeargs != null) { 3608 log.error(that.expr.pos(), 3609 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3610 Fragments.MrefInferAndExplicitParams)); 3611 exprType = types.createErrorType(exprType); 3612 } 3613 } 3614 3615 if (exprType.isErroneous()) { 3616 //if the qualifier expression contains problems, 3617 //give up attribution of method reference 3618 result = that.type = exprType; 3619 return; 3620 } 3621 3622 if (TreeInfo.isStaticSelector(that.expr, names)) { 3623 //if the qualifier is a type, validate it; raw warning check is 3624 //omitted as we don't know at this stage as to whether this is a 3625 //raw selector (because of inference) 3626 chk.validate(that.expr, env, false); 3627 } else { 3628 Symbol lhsSym = TreeInfo.symbol(that.expr); 3629 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3630 } 3631 //attrib type-arguments 3632 List<Type> typeargtypes = List.nil(); 3633 if (that.typeargs != null) { 3634 typeargtypes = attribTypes(that.typeargs, localEnv); 3635 } 3636 3637 boolean isTargetSerializable = 3638 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3639 rs.isSerializable(pt()); 3640 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3641 Type currentTarget = targetInfo.target; 3642 Type desc = targetInfo.descriptor; 3643 3644 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3645 List<Type> argtypes = desc.getParameterTypes(); 3646 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3647 3648 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3649 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3650 } 3651 3652 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3653 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3654 try { 3655 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3656 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3657 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3658 } finally { 3659 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3660 } 3661 3662 Symbol refSym = refResult.fst; 3663 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3664 3665 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3666 * JDK-8075541 3667 */ 3668 if (refSym.kind != MTH) { 3669 boolean targetError; 3670 switch (refSym.kind) { 3671 case ABSENT_MTH: 3672 case MISSING_ENCL: 3673 targetError = false; 3674 break; 3675 case WRONG_MTH: 3676 case WRONG_MTHS: 3677 case AMBIGUOUS: 3678 case HIDDEN: 3679 case STATICERR: 3680 targetError = true; 3681 break; 3682 default: 3683 Assert.error("unexpected result kind " + refSym.kind); 3684 targetError = false; 3685 } 3686 3687 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3688 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3689 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3690 3691 JCDiagnostic diag = diags.create(log.currentSource(), that, 3692 targetError ? 3693 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3694 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3695 3696 if (targetError && currentTarget == Type.recoveryType) { 3697 //a target error doesn't make sense during recovery stage 3698 //as we don't know what actual parameter types are 3699 result = that.type = currentTarget; 3700 return; 3701 } else { 3702 if (targetError) { 3703 resultInfo.checkContext.report(that, diag); 3704 } else { 3705 log.report(diag); 3706 } 3707 result = that.type = types.createErrorType(currentTarget); 3708 return; 3709 } 3710 } 3711 3712 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3713 that.kind = lookupHelper.referenceKind(that.sym); 3714 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3715 3716 if (desc.getReturnType() == Type.recoveryType) { 3717 // stop here 3718 result = that.type = currentTarget; 3719 return; 3720 } 3721 3722 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3723 Type enclosingType = exprType.getEnclosingType(); 3724 if (enclosingType != null && enclosingType.hasTag(CLASS)) { 3725 // Check for the existence of an appropriate outer instance 3726 rs.resolveImplicitThis(that.pos(), env, exprType); 3727 } 3728 } 3729 3730 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3731 3732 if (that.getMode() == ReferenceMode.INVOKE && 3733 TreeInfo.isStaticSelector(that.expr, names) && 3734 that.kind.isUnbound() && 3735 lookupHelper.site.isRaw()) { 3736 chk.checkRaw(that.expr, localEnv); 3737 } 3738 3739 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3740 exprType.getTypeArguments().nonEmpty()) { 3741 //static ref with class type-args 3742 log.error(that.expr.pos(), 3743 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3744 Fragments.StaticMrefWithTargs)); 3745 result = that.type = types.createErrorType(currentTarget); 3746 return; 3747 } 3748 3749 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3750 // Check that super-qualified symbols are not abstract (JLS) 3751 rs.checkNonAbstract(that.pos(), that.sym); 3752 } 3753 3754 if (isTargetSerializable) { 3755 chk.checkAccessFromSerializableElement(that, true); 3756 } 3757 } 3758 3759 ResultInfo checkInfo = 3760 resultInfo.dup(newMethodTemplate( 3761 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3762 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3763 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3764 3765 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3766 3767 if (that.kind.isUnbound() && 3768 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3769 //re-generate inference constraints for unbound receiver 3770 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3771 //cannot happen as this has already been checked - we just need 3772 //to regenerate the inference constraints, as that has been lost 3773 //as a result of the call to inferenceContext.save() 3774 Assert.error("Can't get here"); 3775 } 3776 } 3777 3778 if (!refType.isErroneous()) { 3779 refType = types.createMethodTypeWithReturn(refType, 3780 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3781 } 3782 3783 //go ahead with standard method reference compatibility check - note that param check 3784 //is a no-op (as this has been taken care during method applicability) 3785 boolean isSpeculativeRound = 3786 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3787 3788 that.type = currentTarget; //avoids recovery at this stage 3789 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3790 if (!isSpeculativeRound) { 3791 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3792 } 3793 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3794 } catch (Types.FunctionDescriptorLookupError ex) { 3795 JCDiagnostic cause = ex.getDiagnostic(); 3796 resultInfo.checkContext.report(that, cause); 3797 result = that.type = types.createErrorType(pt()); 3798 return; 3799 } 3800 } 3801 //where 3802 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3803 //if this is a constructor reference, the expected kind must be a type 3804 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3805 KindSelector.VAL_TYP : KindSelector.TYP, 3806 Type.noType); 3807 } 3808 3809 3810 @SuppressWarnings("fallthrough") 3811 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3812 InferenceContext inferenceContext = checkContext.inferenceContext(); 3813 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3814 3815 Type resType; 3816 switch (tree.getMode()) { 3817 case NEW: 3818 if (!tree.expr.type.isRaw()) { 3819 resType = tree.expr.type; 3820 break; 3821 } 3822 default: 3823 resType = refType.getReturnType(); 3824 } 3825 3826 Type incompatibleReturnType = resType; 3827 3828 if (returnType.hasTag(VOID)) { 3829 incompatibleReturnType = null; 3830 } 3831 3832 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3833 if (resType.isErroneous() || 3834 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3835 checkContext.checkWarner(tree, resType, returnType))) { 3836 incompatibleReturnType = null; 3837 } 3838 } 3839 3840 if (incompatibleReturnType != null) { 3841 Fragment msg = 3842 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3843 checkContext.report(tree, diags.fragment(msg)); 3844 } else { 3845 if (inferenceContext.free(refType)) { 3846 // we need to wait for inference to finish and then replace inference vars in the referent type 3847 inferenceContext.addFreeTypeListener(List.of(refType), 3848 instantiatedContext -> { 3849 tree.referentType = instantiatedContext.asInstType(refType); 3850 }); 3851 } else { 3852 tree.referentType = refType; 3853 } 3854 } 3855 3856 if (!speculativeAttr) { 3857 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3858 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3859 } 3860 } 3861 } 3862 3863 boolean checkExConstraints( 3864 List<Type> thrownByFuncExpr, 3865 List<Type> thrownAtFuncType, 3866 InferenceContext inferenceContext) { 3867 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3868 * are not proper types 3869 */ 3870 List<Type> nonProperList = thrownAtFuncType.stream() 3871 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3872 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3873 3874 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3875 * in the throws clause of the invocation type of the method reference's compile-time 3876 * declaration 3877 */ 3878 List<Type> checkedList = thrownByFuncExpr.stream() 3879 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3880 3881 /** If n = 0 (the function type's throws clause consists only of proper types), then 3882 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3883 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3884 * reduces to true 3885 */ 3886 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3887 for (Type checked : checkedList) { 3888 boolean isSubtype = false; 3889 for (Type proper : properList) { 3890 if (types.isSubtype(checked, proper)) { 3891 isSubtype = true; 3892 break; 3893 } 3894 } 3895 if (!isSubtype) { 3896 uncaughtByProperTypes.add(checked); 3897 } 3898 } 3899 3900 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3901 return false; 3902 } 3903 3904 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3905 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3906 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3907 */ 3908 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3909 uncaughtByProperTypes.forEach(checkedEx -> { 3910 nonProperAsUndet.forEach(nonProper -> { 3911 types.isSubtype(checkedEx, nonProper); 3912 }); 3913 }); 3914 3915 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3916 */ 3917 nonProperAsUndet.stream() 3918 .filter(t -> t.hasTag(UNDETVAR)) 3919 .forEach(t -> ((UndetVar)t).setThrow()); 3920 return true; 3921 } 3922 3923 /** 3924 * Set functional type info on the underlying AST. Note: as the target descriptor 3925 * might contain inference variables, we might need to register an hook in the 3926 * current inference context. 3927 */ 3928 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3929 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3930 if (checkContext.inferenceContext().free(descriptorType)) { 3931 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3932 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3933 inferenceContext.asInstType(primaryTarget), checkContext)); 3934 } else { 3935 if (pt.hasTag(CLASS)) { 3936 fExpr.target = primaryTarget; 3937 } 3938 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3939 pt != Type.recoveryType) { 3940 //check that functional interface class is well-formed 3941 try { 3942 /* Types.makeFunctionalInterfaceClass() may throw an exception 3943 * when it's executed post-inference. See the listener code 3944 * above. 3945 */ 3946 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3947 names.empty, fExpr.target, ABSTRACT); 3948 if (csym != null) { 3949 chk.checkImplementations(env.tree, csym, csym); 3950 try { 3951 //perform an additional functional interface check on the synthetic class, 3952 //as there may be spurious errors for raw targets - because of existing issues 3953 //with membership and inheritance (see JDK-8074570). 3954 csym.flags_field |= INTERFACE; 3955 types.findDescriptorType(csym.type); 3956 } catch (FunctionDescriptorLookupError err) { 3957 resultInfo.checkContext.report(fExpr, 3958 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 3959 } 3960 } 3961 } catch (Types.FunctionDescriptorLookupError ex) { 3962 JCDiagnostic cause = ex.getDiagnostic(); 3963 resultInfo.checkContext.report(env.tree, cause); 3964 } 3965 } 3966 } 3967 } 3968 3969 public void visitParens(JCParens tree) { 3970 Type owntype = attribTree(tree.expr, env, resultInfo); 3971 result = check(tree, owntype, pkind(), resultInfo); 3972 Symbol sym = TreeInfo.symbol(tree); 3973 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 3974 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 3975 } 3976 3977 public void visitAssign(JCAssign tree) { 3978 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 3979 Type capturedType = capture(owntype); 3980 attribExpr(tree.rhs, env, owntype); 3981 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 3982 } 3983 3984 public void visitAssignop(JCAssignOp tree) { 3985 // Attribute arguments. 3986 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 3987 Type operand = attribExpr(tree.rhs, env); 3988 // Find operator. 3989 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 3990 if (operator != operators.noOpSymbol && 3991 !owntype.isErroneous() && 3992 !operand.isErroneous()) { 3993 chk.checkDivZero(tree.rhs.pos(), operator, operand); 3994 chk.checkCastable(tree.rhs.pos(), 3995 operator.type.getReturnType(), 3996 owntype); 3997 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 3998 } 3999 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4000 } 4001 4002 public void visitUnary(JCUnary tree) { 4003 // Attribute arguments. 4004 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4005 ? attribTree(tree.arg, env, varAssignmentInfo) 4006 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4007 4008 // Find operator. 4009 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4010 Type owntype = types.createErrorType(tree.type); 4011 if (operator != operators.noOpSymbol && 4012 !argtype.isErroneous()) { 4013 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4014 ? tree.arg.type 4015 : operator.type.getReturnType(); 4016 int opc = operator.opcode; 4017 4018 // If the argument is constant, fold it. 4019 if (argtype.constValue() != null) { 4020 Type ctype = cfolder.fold1(opc, argtype); 4021 if (ctype != null) { 4022 owntype = cfolder.coerce(ctype, owntype); 4023 } 4024 } 4025 } 4026 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4027 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4028 } 4029 4030 public void visitBinary(JCBinary tree) { 4031 // Attribute arguments. 4032 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4033 // x && y 4034 // include x's bindings when true in y 4035 4036 // x || y 4037 // include x's bindings when false in y 4038 4039 MatchBindings lhsBindings = matchBindings; 4040 List<BindingSymbol> propagatedBindings; 4041 switch (tree.getTag()) { 4042 case AND: 4043 propagatedBindings = lhsBindings.bindingsWhenTrue; 4044 break; 4045 case OR: 4046 propagatedBindings = lhsBindings.bindingsWhenFalse; 4047 break; 4048 default: 4049 propagatedBindings = List.nil(); 4050 break; 4051 } 4052 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4053 Type right; 4054 try { 4055 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4056 } finally { 4057 rhsEnv.info.scope.leave(); 4058 } 4059 4060 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4061 4062 // Find operator. 4063 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4064 Type owntype = types.createErrorType(tree.type); 4065 if (operator != operators.noOpSymbol && 4066 !left.isErroneous() && 4067 !right.isErroneous()) { 4068 owntype = operator.type.getReturnType(); 4069 int opc = operator.opcode; 4070 // If both arguments are constants, fold them. 4071 if (left.constValue() != null && right.constValue() != null) { 4072 Type ctype = cfolder.fold2(opc, left, right); 4073 if (ctype != null) { 4074 owntype = cfolder.coerce(ctype, owntype); 4075 } 4076 } 4077 4078 // Check that argument types of a reference ==, != are 4079 // castable to each other, (JLS 15.21). Note: unboxing 4080 // comparisons will not have an acmp* opc at this point. 4081 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4082 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4083 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4084 } 4085 } 4086 4087 chk.checkDivZero(tree.rhs.pos(), operator, right); 4088 } 4089 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4090 } 4091 4092 public void visitTypeCast(final JCTypeCast tree) { 4093 Type clazztype = attribType(tree.clazz, env); 4094 chk.validate(tree.clazz, env, false); 4095 //a fresh environment is required for 292 inference to work properly --- 4096 //see Infer.instantiatePolymorphicSignatureInstance() 4097 Env<AttrContext> localEnv = env.dup(tree); 4098 //should we propagate the target type? 4099 final ResultInfo castInfo; 4100 JCExpression expr = TreeInfo.skipParens(tree.expr); 4101 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4102 if (isPoly) { 4103 //expression is a poly - we need to propagate target type info 4104 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4105 new Check.NestedCheckContext(resultInfo.checkContext) { 4106 @Override 4107 public boolean compatible(Type found, Type req, Warner warn) { 4108 return types.isCastable(found, req, warn); 4109 } 4110 }); 4111 } else { 4112 //standalone cast - target-type info is not propagated 4113 castInfo = unknownExprInfo; 4114 } 4115 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4116 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4117 if (exprtype.constValue() != null) 4118 owntype = cfolder.coerce(exprtype, owntype); 4119 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4120 if (!isPoly) 4121 chk.checkRedundantCast(localEnv, tree); 4122 } 4123 4124 public void visitTypeTest(JCInstanceOf tree) { 4125 Type exprtype = chk.checkNullOrRefType( 4126 tree.expr.pos(), attribExpr(tree.expr, env)); 4127 Type clazztype; 4128 JCTree typeTree; 4129 if (tree.pattern.getTag() == BINDINGPATTERN || 4130 tree.pattern.getTag() == RECORDPATTERN) { 4131 attribExpr(tree.pattern, env, exprtype); 4132 clazztype = tree.pattern.type; 4133 if (types.isSubtype(exprtype, clazztype) && 4134 !exprtype.isErroneous() && !clazztype.isErroneous() && 4135 tree.pattern.getTag() != RECORDPATTERN) { 4136 if (!allowUnconditionalPatternsInstanceOf) { 4137 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4138 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4139 } 4140 } 4141 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4142 } else { 4143 clazztype = attribType(tree.pattern, env); 4144 typeTree = tree.pattern; 4145 chk.validate(typeTree, env, false); 4146 } 4147 if (!clazztype.hasTag(TYPEVAR)) { 4148 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4149 } 4150 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4151 boolean valid = false; 4152 if (allowReifiableTypesInInstanceof) { 4153 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4154 } else { 4155 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4156 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4157 allowReifiableTypesInInstanceof = true; 4158 } 4159 if (!valid) { 4160 clazztype = types.createErrorType(clazztype); 4161 } 4162 } 4163 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4164 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4165 } 4166 4167 private boolean checkCastablePattern(DiagnosticPosition pos, 4168 Type exprType, 4169 Type pattType) { 4170 Warner warner = new Warner(); 4171 // if any type is erroneous, the problem is reported elsewhere 4172 if (exprType.isErroneous() || pattType.isErroneous()) { 4173 return false; 4174 } 4175 if (!types.isCastable(exprType, pattType, warner)) { 4176 chk.basicHandler.report(pos, 4177 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4178 return false; 4179 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4180 (!exprType.isPrimitive() || 4181 !pattType.isPrimitive() || 4182 !types.isSameType(exprType, pattType))) { 4183 chk.basicHandler.report(pos, 4184 diags.fragment(Fragments.NotApplicableTypes(exprType, pattType))); 4185 return false; 4186 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4187 log.error(pos, 4188 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4189 return false; 4190 } else { 4191 return true; 4192 } 4193 } 4194 4195 @Override 4196 public void visitAnyPattern(JCAnyPattern tree) { 4197 result = tree.type = resultInfo.pt; 4198 } 4199 4200 public void visitBindingPattern(JCBindingPattern tree) { 4201 Type type; 4202 if (tree.var.vartype != null) { 4203 type = attribType(tree.var.vartype, env); 4204 } else { 4205 type = resultInfo.pt; 4206 } 4207 tree.type = tree.var.type = type; 4208 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4209 v.pos = tree.pos; 4210 tree.var.sym = v; 4211 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4212 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4213 } 4214 if (tree.var.vartype != null) { 4215 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos()); 4216 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos()); 4217 annotate.flush(); 4218 } 4219 chk.validate(tree.var.vartype, env, true); 4220 result = tree.type; 4221 if (v.isUnnamedVariable()) { 4222 matchBindings = MatchBindingsComputer.EMPTY; 4223 } else { 4224 matchBindings = new MatchBindings(List.of(v), List.nil()); 4225 } 4226 } 4227 4228 @Override 4229 public void visitRecordPattern(JCRecordPattern tree) { 4230 Type site; 4231 4232 if (tree.deconstructor == null) { 4233 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4234 tree.record = syms.errSymbol; 4235 site = tree.type = types.createErrorType(tree.record.type); 4236 } else { 4237 Type type = attribType(tree.deconstructor, env); 4238 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4239 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4240 if (inferred == null) { 4241 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4242 } else { 4243 type = inferred; 4244 } 4245 } 4246 tree.type = tree.deconstructor.type = type; 4247 site = types.capture(tree.type); 4248 } 4249 4250 List<Type> expectedRecordTypes; 4251 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4252 ClassSymbol record = (ClassSymbol) site.tsym; 4253 expectedRecordTypes = record.getRecordComponents() 4254 .stream() 4255 .map(rc -> types.memberType(site, rc)) 4256 .map(t -> types.upward(t, types.captures(t)).baseType()) 4257 .collect(List.collector()); 4258 tree.record = record; 4259 } else { 4260 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4261 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4262 .limit(tree.nested.size()) 4263 .collect(List.collector()); 4264 tree.record = syms.errSymbol; 4265 } 4266 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4267 List<Type> recordTypes = expectedRecordTypes; 4268 List<JCPattern> nestedPatterns = tree.nested; 4269 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4270 try { 4271 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4272 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4273 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4274 outBindings.addAll(matchBindings.bindingsWhenTrue); 4275 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4276 nestedPatterns = nestedPatterns.tail; 4277 recordTypes = recordTypes.tail; 4278 } 4279 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4280 while (nestedPatterns.nonEmpty()) { 4281 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4282 nestedPatterns = nestedPatterns.tail; 4283 } 4284 List<Type> nestedTypes = 4285 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4286 log.error(tree.pos(), 4287 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4288 nestedTypes)); 4289 } 4290 } finally { 4291 localEnv.info.scope.leave(); 4292 } 4293 chk.validate(tree.deconstructor, env, true); 4294 result = tree.type; 4295 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4296 } 4297 4298 public void visitIndexed(JCArrayAccess tree) { 4299 Type owntype = types.createErrorType(tree.type); 4300 Type atype = attribExpr(tree.indexed, env); 4301 attribExpr(tree.index, env, syms.intType); 4302 if (types.isArray(atype)) 4303 owntype = types.elemtype(atype); 4304 else if (!atype.hasTag(ERROR)) 4305 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4306 if (!pkind().contains(KindSelector.VAL)) 4307 owntype = capture(owntype); 4308 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4309 } 4310 4311 public void visitIdent(JCIdent tree) { 4312 Symbol sym; 4313 4314 // Find symbol 4315 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4316 // If we are looking for a method, the prototype `pt' will be a 4317 // method type with the type of the call's arguments as parameters. 4318 env.info.pendingResolutionPhase = null; 4319 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4320 } else if (tree.sym != null && tree.sym.kind != VAR) { 4321 sym = tree.sym; 4322 } else { 4323 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4324 } 4325 tree.sym = sym; 4326 4327 // Also find the environment current for the class where 4328 // sym is defined (`symEnv'). 4329 Env<AttrContext> symEnv = env; 4330 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4331 sym.kind.matches(KindSelector.VAL_MTH) && 4332 sym.owner.kind == TYP && 4333 tree.name != names._this && tree.name != names._super) { 4334 4335 // Find environment in which identifier is defined. 4336 while (symEnv.outer != null && 4337 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4338 symEnv = symEnv.outer; 4339 } 4340 } 4341 4342 // If symbol is a variable, ... 4343 if (sym.kind == VAR) { 4344 VarSymbol v = (VarSymbol)sym; 4345 4346 // ..., evaluate its initializer, if it has one, and check for 4347 // illegal forward reference. 4348 checkInit(tree, env, v, false); 4349 4350 // If we are expecting a variable (as opposed to a value), check 4351 // that the variable is assignable in the current environment. 4352 if (KindSelector.ASG.subset(pkind())) 4353 checkAssignable(tree.pos(), v, null, env); 4354 } 4355 4356 // In a constructor body, 4357 // if symbol is a field or instance method, check that it is 4358 // not accessed before the supertype constructor is called. 4359 if (symEnv.info.isSelfCall && 4360 sym.kind.matches(KindSelector.VAL_MTH) && 4361 sym.owner.kind == TYP && 4362 (sym.flags() & STATIC) == 0) { 4363 chk.earlyRefError(tree.pos(), sym.kind == VAR ? 4364 sym : thisSym(tree.pos(), env)); 4365 } 4366 Env<AttrContext> env1 = env; 4367 if (sym.kind != ERR && sym.kind != TYP && 4368 sym.owner != null && sym.owner != env1.enclClass.sym) { 4369 // If the found symbol is inaccessible, then it is 4370 // accessed through an enclosing instance. Locate this 4371 // enclosing instance: 4372 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4373 env1 = env1.outer; 4374 } 4375 4376 if (env.info.isSerializable) { 4377 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4378 } 4379 4380 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4381 } 4382 4383 public void visitSelect(JCFieldAccess tree) { 4384 // Determine the expected kind of the qualifier expression. 4385 KindSelector skind = KindSelector.NIL; 4386 if (tree.name == names._this || tree.name == names._super || 4387 tree.name == names._class) 4388 { 4389 skind = KindSelector.TYP; 4390 } else { 4391 if (pkind().contains(KindSelector.PCK)) 4392 skind = KindSelector.of(skind, KindSelector.PCK); 4393 if (pkind().contains(KindSelector.TYP)) 4394 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4395 if (pkind().contains(KindSelector.VAL_MTH)) 4396 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4397 } 4398 4399 // Attribute the qualifier expression, and determine its symbol (if any). 4400 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4401 if (!pkind().contains(KindSelector.TYP_PCK)) 4402 site = capture(site); // Capture field access 4403 4404 // don't allow T.class T[].class, etc 4405 if (skind == KindSelector.TYP) { 4406 Type elt = site; 4407 while (elt.hasTag(ARRAY)) 4408 elt = ((ArrayType)elt).elemtype; 4409 if (elt.hasTag(TYPEVAR)) { 4410 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4411 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4412 tree.sym = tree.type.tsym; 4413 return ; 4414 } 4415 } 4416 4417 // If qualifier symbol is a type or `super', assert `selectSuper' 4418 // for the selection. This is relevant for determining whether 4419 // protected symbols are accessible. 4420 Symbol sitesym = TreeInfo.symbol(tree.selected); 4421 boolean selectSuperPrev = env.info.selectSuper; 4422 env.info.selectSuper = 4423 sitesym != null && 4424 sitesym.name == names._super; 4425 4426 // Determine the symbol represented by the selection. 4427 env.info.pendingResolutionPhase = null; 4428 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4429 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4430 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4431 sym = syms.errSymbol; 4432 } 4433 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4434 site = capture(site); 4435 sym = selectSym(tree, sitesym, site, env, resultInfo); 4436 } 4437 boolean varArgs = env.info.lastResolveVarargs(); 4438 tree.sym = sym; 4439 4440 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4441 site = types.skipTypeVars(site, true); 4442 } 4443 4444 // If that symbol is a variable, ... 4445 if (sym.kind == VAR) { 4446 VarSymbol v = (VarSymbol)sym; 4447 4448 // ..., evaluate its initializer, if it has one, and check for 4449 // illegal forward reference. 4450 checkInit(tree, env, v, true); 4451 4452 // If we are expecting a variable (as opposed to a value), check 4453 // that the variable is assignable in the current environment. 4454 if (KindSelector.ASG.subset(pkind())) 4455 checkAssignable(tree.pos(), v, tree.selected, env); 4456 } 4457 4458 if (sitesym != null && 4459 sitesym.kind == VAR && 4460 ((VarSymbol)sitesym).isResourceVariable() && 4461 sym.kind == MTH && 4462 sym.name.equals(names.close) && 4463 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) && 4464 env.info.lint.isEnabled(LintCategory.TRY)) { 4465 log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall); 4466 } 4467 4468 // Disallow selecting a type from an expression 4469 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4470 tree.type = check(tree.selected, pt(), 4471 sitesym == null ? 4472 KindSelector.VAL : sitesym.kind.toSelector(), 4473 new ResultInfo(KindSelector.TYP_PCK, pt())); 4474 } 4475 4476 if (isType(sitesym)) { 4477 if (sym.name == names._this || sym.name == names._super) { 4478 // If `C' is the currently compiled class, check that 4479 // `C.this' does not appear in an explicit call to a constructor 4480 // also make sure that `super` is not used in constructor invocations 4481 if (env.info.isSelfCall && 4482 ((sym.name == names._this && 4483 site.tsym == env.enclClass.sym) || 4484 sym.name == names._super && env.info.constructorArgs && 4485 (sitesym.isInterface() || site.tsym == env.enclClass.sym))) { 4486 chk.earlyRefError(tree.pos(), sym); 4487 } 4488 } else { 4489 // Check if type-qualified fields or methods are static (JLS) 4490 if ((sym.flags() & STATIC) == 0 && 4491 sym.name != names._super && 4492 (sym.kind == VAR || sym.kind == MTH)) { 4493 rs.accessBase(rs.new StaticError(sym), 4494 tree.pos(), site, sym.name, true); 4495 } 4496 } 4497 } else if (sym.kind != ERR && 4498 (sym.flags() & STATIC) != 0 && 4499 sym.name != names._class) { 4500 // If the qualified item is not a type and the selected item is static, report 4501 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4502 if (!sym.owner.isAnonymous()) { 4503 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4504 } else { 4505 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4506 } 4507 } 4508 4509 // If we are selecting an instance member via a `super', ... 4510 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4511 4512 // Check that super-qualified symbols are not abstract (JLS) 4513 rs.checkNonAbstract(tree.pos(), sym); 4514 4515 if (site.isRaw()) { 4516 // Determine argument types for site. 4517 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4518 if (site1 != null) site = site1; 4519 } 4520 } 4521 4522 if (env.info.isSerializable) { 4523 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4524 } 4525 4526 env.info.selectSuper = selectSuperPrev; 4527 result = checkId(tree, site, sym, env, resultInfo); 4528 } 4529 //where 4530 /** Determine symbol referenced by a Select expression, 4531 * 4532 * @param tree The select tree. 4533 * @param site The type of the selected expression, 4534 * @param env The current environment. 4535 * @param resultInfo The current result. 4536 */ 4537 private Symbol selectSym(JCFieldAccess tree, 4538 Symbol location, 4539 Type site, 4540 Env<AttrContext> env, 4541 ResultInfo resultInfo) { 4542 DiagnosticPosition pos = tree.pos(); 4543 Name name = tree.name; 4544 switch (site.getTag()) { 4545 case PACKAGE: 4546 return rs.accessBase( 4547 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4548 pos, location, site, name, true); 4549 case ARRAY: 4550 case CLASS: 4551 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4552 return rs.resolveQualifiedMethod( 4553 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4554 } else if (name == names._this || name == names._super) { 4555 return rs.resolveSelf(pos, env, site.tsym, name); 4556 } else if (name == names._class) { 4557 // In this case, we have already made sure in 4558 // visitSelect that qualifier expression is a type. 4559 return syms.getClassField(site, types); 4560 } else { 4561 // We are seeing a plain identifier as selector. 4562 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4563 sym = rs.accessBase(sym, pos, location, site, name, true); 4564 return sym; 4565 } 4566 case WILDCARD: 4567 throw new AssertionError(tree); 4568 case TYPEVAR: 4569 // Normally, site.getUpperBound() shouldn't be null. 4570 // It should only happen during memberEnter/attribBase 4571 // when determining the supertype which *must* be 4572 // done before attributing the type variables. In 4573 // other words, we are seeing this illegal program: 4574 // class B<T> extends A<T.foo> {} 4575 Symbol sym = (site.getUpperBound() != null) 4576 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4577 : null; 4578 if (sym == null) { 4579 log.error(pos, Errors.TypeVarCantBeDeref); 4580 return syms.errSymbol; 4581 } else { 4582 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4583 rs.new AccessError(env, site, sym) : 4584 sym; 4585 rs.accessBase(sym2, pos, location, site, name, true); 4586 return sym; 4587 } 4588 case ERROR: 4589 // preserve identifier names through errors 4590 return types.createErrorType(name, site.tsym, site).tsym; 4591 default: 4592 // The qualifier expression is of a primitive type -- only 4593 // .class is allowed for these. 4594 if (name == names._class) { 4595 // In this case, we have already made sure in Select that 4596 // qualifier expression is a type. 4597 return syms.getClassField(site, types); 4598 } else { 4599 log.error(pos, Errors.CantDeref(site)); 4600 return syms.errSymbol; 4601 } 4602 } 4603 } 4604 4605 /** Determine type of identifier or select expression and check that 4606 * (1) the referenced symbol is not deprecated 4607 * (2) the symbol's type is safe (@see checkSafe) 4608 * (3) if symbol is a variable, check that its type and kind are 4609 * compatible with the prototype and protokind. 4610 * (4) if symbol is an instance field of a raw type, 4611 * which is being assigned to, issue an unchecked warning if its 4612 * type changes under erasure. 4613 * (5) if symbol is an instance method of a raw type, issue an 4614 * unchecked warning if its argument types change under erasure. 4615 * If checks succeed: 4616 * If symbol is a constant, return its constant type 4617 * else if symbol is a method, return its result type 4618 * otherwise return its type. 4619 * Otherwise return errType. 4620 * 4621 * @param tree The syntax tree representing the identifier 4622 * @param site If this is a select, the type of the selected 4623 * expression, otherwise the type of the current class. 4624 * @param sym The symbol representing the identifier. 4625 * @param env The current environment. 4626 * @param resultInfo The expected result 4627 */ 4628 Type checkId(JCTree tree, 4629 Type site, 4630 Symbol sym, 4631 Env<AttrContext> env, 4632 ResultInfo resultInfo) { 4633 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4634 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4635 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4636 } 4637 4638 Type checkMethodIdInternal(JCTree tree, 4639 Type site, 4640 Symbol sym, 4641 Env<AttrContext> env, 4642 ResultInfo resultInfo) { 4643 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4644 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4645 } else { 4646 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4647 } 4648 } 4649 4650 Type checkIdInternal(JCTree tree, 4651 Type site, 4652 Symbol sym, 4653 Type pt, 4654 Env<AttrContext> env, 4655 ResultInfo resultInfo) { 4656 if (pt.isErroneous()) { 4657 return types.createErrorType(site); 4658 } 4659 Type owntype; // The computed type of this identifier occurrence. 4660 switch (sym.kind) { 4661 case TYP: 4662 // For types, the computed type equals the symbol's type, 4663 // except for two situations: 4664 owntype = sym.type; 4665 if (owntype.hasTag(CLASS)) { 4666 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4667 Type ownOuter = owntype.getEnclosingType(); 4668 4669 // (a) If the symbol's type is parameterized, erase it 4670 // because no type parameters were given. 4671 // We recover generic outer type later in visitTypeApply. 4672 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4673 owntype = types.erasure(owntype); 4674 } 4675 4676 // (b) If the symbol's type is an inner class, then 4677 // we have to interpret its outer type as a superclass 4678 // of the site type. Example: 4679 // 4680 // class Tree<A> { class Visitor { ... } } 4681 // class PointTree extends Tree<Point> { ... } 4682 // ...PointTree.Visitor... 4683 // 4684 // Then the type of the last expression above is 4685 // Tree<Point>.Visitor. 4686 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4687 Type normOuter = site; 4688 if (normOuter.hasTag(CLASS)) { 4689 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4690 } 4691 if (normOuter == null) // perhaps from an import 4692 normOuter = types.erasure(ownOuter); 4693 if (normOuter != ownOuter) 4694 owntype = new ClassType( 4695 normOuter, List.nil(), owntype.tsym, 4696 owntype.getMetadata()); 4697 } 4698 } 4699 break; 4700 case VAR: 4701 VarSymbol v = (VarSymbol)sym; 4702 4703 if (env.info.enclVar != null 4704 && v.type.hasTag(NONE)) { 4705 //self reference to implicitly typed variable declaration 4706 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4707 return tree.type = v.type = types.createErrorType(v.type); 4708 } 4709 4710 // Test (4): if symbol is an instance field of a raw type, 4711 // which is being assigned to, issue an unchecked warning if 4712 // its type changes under erasure. 4713 if (KindSelector.ASG.subset(pkind()) && 4714 v.owner.kind == TYP && 4715 (v.flags() & STATIC) == 0 && 4716 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4717 Type s = types.asOuterSuper(site, v.owner); 4718 if (s != null && 4719 s.isRaw() && 4720 !types.isSameType(v.type, v.erasure(types))) { 4721 chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s)); 4722 } 4723 } 4724 // The computed type of a variable is the type of the 4725 // variable symbol, taken as a member of the site type. 4726 owntype = (sym.owner.kind == TYP && 4727 sym.name != names._this && sym.name != names._super) 4728 ? types.memberType(site, sym) 4729 : sym.type; 4730 4731 // If the variable is a constant, record constant value in 4732 // computed type. 4733 if (v.getConstValue() != null && isStaticReference(tree)) 4734 owntype = owntype.constType(v.getConstValue()); 4735 4736 if (resultInfo.pkind == KindSelector.VAL) { 4737 owntype = capture(owntype); // capture "names as expressions" 4738 } 4739 break; 4740 case MTH: { 4741 owntype = checkMethod(site, sym, 4742 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4743 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4744 resultInfo.pt.getTypeArguments()); 4745 break; 4746 } 4747 case PCK: case ERR: 4748 owntype = sym.type; 4749 break; 4750 default: 4751 throw new AssertionError("unexpected kind: " + sym.kind + 4752 " in tree " + tree); 4753 } 4754 4755 // Emit a `deprecation' warning if symbol is deprecated. 4756 // (for constructors (but not for constructor references), the error 4757 // was given when the constructor was resolved) 4758 4759 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4760 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4761 chk.checkSunAPI(tree.pos(), sym); 4762 chk.checkProfile(tree.pos(), sym); 4763 chk.checkPreview(tree.pos(), env.info.scope.owner, sym); 4764 } 4765 4766 // If symbol is a variable, check that its type and 4767 // kind are compatible with the prototype and protokind. 4768 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4769 } 4770 4771 /** Check that variable is initialized and evaluate the variable's 4772 * initializer, if not yet done. Also check that variable is not 4773 * referenced before it is defined. 4774 * @param tree The tree making up the variable reference. 4775 * @param env The current environment. 4776 * @param v The variable's symbol. 4777 */ 4778 private void checkInit(JCTree tree, 4779 Env<AttrContext> env, 4780 VarSymbol v, 4781 boolean onlyWarning) { 4782 // A forward reference is diagnosed if the declaration position 4783 // of the variable is greater than the current tree position 4784 // and the tree and variable definition occur in the same class 4785 // definition. Note that writes don't count as references. 4786 // This check applies only to class and instance 4787 // variables. Local variables follow different scope rules, 4788 // and are subject to definite assignment checking. 4789 Env<AttrContext> initEnv = enclosingInitEnv(env); 4790 if (initEnv != null && 4791 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4792 v.owner.kind == TYP && 4793 v.owner == env.info.scope.owner.enclClass() && 4794 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4795 (!env.tree.hasTag(ASSIGN) || 4796 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4797 if (!onlyWarning || isStaticEnumField(v)) { 4798 Error errkey = (initEnv.info.enclVar == v) ? 4799 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4800 log.error(tree.pos(), errkey); 4801 } else if (useBeforeDeclarationWarning) { 4802 Warning warnkey = (initEnv.info.enclVar == v) ? 4803 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4804 log.warning(tree.pos(), warnkey); 4805 } 4806 } 4807 4808 v.getConstValue(); // ensure initializer is evaluated 4809 4810 checkEnumInitializer(tree, env, v); 4811 } 4812 4813 /** 4814 * Returns the enclosing init environment associated with this env (if any). An init env 4815 * can be either a field declaration env or a static/instance initializer env. 4816 */ 4817 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4818 while (true) { 4819 switch (env.tree.getTag()) { 4820 case VARDEF: 4821 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4822 if (vdecl.sym.owner.kind == TYP) { 4823 //field 4824 return env; 4825 } 4826 break; 4827 case BLOCK: 4828 if (env.next.tree.hasTag(CLASSDEF)) { 4829 //instance/static initializer 4830 return env; 4831 } 4832 break; 4833 case METHODDEF: 4834 case CLASSDEF: 4835 case TOPLEVEL: 4836 return null; 4837 } 4838 Assert.checkNonNull(env.next); 4839 env = env.next; 4840 } 4841 } 4842 4843 /** 4844 * Check for illegal references to static members of enum. In 4845 * an enum type, constructors and initializers may not 4846 * reference its static members unless they are constant. 4847 * 4848 * @param tree The tree making up the variable reference. 4849 * @param env The current environment. 4850 * @param v The variable's symbol. 4851 * @jls 8.9 Enum Types 4852 */ 4853 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4854 // JLS: 4855 // 4856 // "It is a compile-time error to reference a static field 4857 // of an enum type that is not a compile-time constant 4858 // (15.28) from constructors, instance initializer blocks, 4859 // or instance variable initializer expressions of that 4860 // type. It is a compile-time error for the constructors, 4861 // instance initializer blocks, or instance variable 4862 // initializer expressions of an enum constant e to refer 4863 // to itself or to an enum constant of the same type that 4864 // is declared to the right of e." 4865 if (isStaticEnumField(v)) { 4866 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4867 4868 if (enclClass == null || enclClass.owner == null) 4869 return; 4870 4871 // See if the enclosing class is the enum (or a 4872 // subclass thereof) declaring v. If not, this 4873 // reference is OK. 4874 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4875 return; 4876 4877 // If the reference isn't from an initializer, then 4878 // the reference is OK. 4879 if (!Resolve.isInitializer(env)) 4880 return; 4881 4882 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4883 } 4884 } 4885 4886 /** Is the given symbol a static, non-constant field of an Enum? 4887 * Note: enum literals should not be regarded as such 4888 */ 4889 private boolean isStaticEnumField(VarSymbol v) { 4890 return Flags.isEnum(v.owner) && 4891 Flags.isStatic(v) && 4892 !Flags.isConstant(v) && 4893 v.name != names._class; 4894 } 4895 4896 /** 4897 * Check that method arguments conform to its instantiation. 4898 **/ 4899 public Type checkMethod(Type site, 4900 final Symbol sym, 4901 ResultInfo resultInfo, 4902 Env<AttrContext> env, 4903 final List<JCExpression> argtrees, 4904 List<Type> argtypes, 4905 List<Type> typeargtypes) { 4906 // Test (5): if symbol is an instance method of a raw type, issue 4907 // an unchecked warning if its argument types change under erasure. 4908 if ((sym.flags() & STATIC) == 0 && 4909 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4910 Type s = types.asOuterSuper(site, sym.owner); 4911 if (s != null && s.isRaw() && 4912 !types.isSameTypes(sym.type.getParameterTypes(), 4913 sym.erasure(types).getParameterTypes())) { 4914 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s)); 4915 } 4916 } 4917 4918 if (env.info.defaultSuperCallSite != null) { 4919 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4920 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4921 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4922 List<MethodSymbol> icand_sup = 4923 types.interfaceCandidates(sup, (MethodSymbol)sym); 4924 if (icand_sup.nonEmpty() && 4925 icand_sup.head != sym && 4926 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4927 log.error(env.tree.pos(), 4928 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4929 break; 4930 } 4931 } 4932 env.info.defaultSuperCallSite = null; 4933 } 4934 4935 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 4936 JCMethodInvocation app = (JCMethodInvocation)env.tree; 4937 if (app.meth.hasTag(SELECT) && 4938 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 4939 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 4940 } 4941 } 4942 4943 // Compute the identifier's instantiated type. 4944 // For methods, we need to compute the instance type by 4945 // Resolve.instantiate from the symbol's type as well as 4946 // any type arguments and value arguments. 4947 Warner noteWarner = new Warner(); 4948 try { 4949 Type owntype = rs.checkMethod( 4950 env, 4951 site, 4952 sym, 4953 resultInfo, 4954 argtypes, 4955 typeargtypes, 4956 noteWarner); 4957 4958 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 4959 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 4960 4961 argtypes = argtypes.map(checkDeferredMap); 4962 4963 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 4964 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym), 4965 sym.name, 4966 rs.methodArguments(sym.type.getParameterTypes()), 4967 rs.methodArguments(argtypes.map(checkDeferredMap)), 4968 kindName(sym.location()), 4969 sym.location())); 4970 if (resultInfo.pt != Infer.anyPoly || 4971 !owntype.hasTag(METHOD) || 4972 !owntype.isPartial()) { 4973 //if this is not a partially inferred method type, erase return type. Otherwise, 4974 //erasure is carried out in PartiallyInferredMethodType.check(). 4975 owntype = new MethodType(owntype.getParameterTypes(), 4976 types.erasure(owntype.getReturnType()), 4977 types.erasure(owntype.getThrownTypes()), 4978 syms.methodClass); 4979 } 4980 } 4981 4982 PolyKind pkind = (sym.type.hasTag(FORALL) && 4983 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 4984 PolyKind.POLY : PolyKind.STANDALONE; 4985 TreeInfo.setPolyKind(env.tree, pkind); 4986 4987 return (resultInfo.pt == Infer.anyPoly) ? 4988 owntype : 4989 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 4990 resultInfo.checkContext.inferenceContext()); 4991 } catch (Infer.InferenceException ex) { 4992 //invalid target type - propagate exception outwards or report error 4993 //depending on the current check context 4994 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 4995 return types.createErrorType(site); 4996 } catch (Resolve.InapplicableMethodException ex) { 4997 final JCDiagnostic diag = ex.getDiagnostic(); 4998 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 4999 @Override 5000 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5001 return new Pair<>(sym, diag); 5002 } 5003 }; 5004 List<Type> argtypes2 = argtypes.map( 5005 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5006 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5007 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5008 log.report(errDiag); 5009 return types.createErrorType(site); 5010 } 5011 } 5012 5013 public void visitLiteral(JCLiteral tree) { 5014 result = check(tree, litType(tree.typetag).constType(tree.value), 5015 KindSelector.VAL, resultInfo); 5016 } 5017 //where 5018 /** Return the type of a literal with given type tag. 5019 */ 5020 Type litType(TypeTag tag) { 5021 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5022 } 5023 5024 public void visitStringTemplate(JCStringTemplate tree) { 5025 JCExpression processor = tree.processor; 5026 Type resultType = syms.stringTemplateType; 5027 5028 if (processor != null) { 5029 resultType = attribTree(processor, env, new ResultInfo(KindSelector.VAL, Type.noType)); 5030 resultType = chk.checkProcessorType(processor, resultType, env); 5031 } 5032 5033 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 5034 5035 for (JCExpression arg : tree.expressions) { 5036 chk.checkNonVoid(arg.pos(), attribExpr(arg, localEnv)); 5037 } 5038 5039 tree.type = resultType; 5040 result = resultType; 5041 5042 check(tree, resultType, KindSelector.VAL, resultInfo); 5043 } 5044 5045 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5046 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5047 } 5048 5049 public void visitTypeArray(JCArrayTypeTree tree) { 5050 Type etype = attribType(tree.elemtype, env); 5051 Type type = new ArrayType(etype, syms.arrayClass); 5052 result = check(tree, type, KindSelector.TYP, resultInfo); 5053 } 5054 5055 /** Visitor method for parameterized types. 5056 * Bound checking is left until later, since types are attributed 5057 * before supertype structure is completely known 5058 */ 5059 public void visitTypeApply(JCTypeApply tree) { 5060 Type owntype = types.createErrorType(tree.type); 5061 5062 // Attribute functor part of application and make sure it's a class. 5063 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5064 5065 // Attribute type parameters 5066 List<Type> actuals = attribTypes(tree.arguments, env); 5067 5068 if (clazztype.hasTag(CLASS)) { 5069 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5070 if (actuals.isEmpty()) //diamond 5071 actuals = formals; 5072 5073 if (actuals.length() == formals.length()) { 5074 List<Type> a = actuals; 5075 List<Type> f = formals; 5076 while (a.nonEmpty()) { 5077 a.head = a.head.withTypeVar(f.head); 5078 a = a.tail; 5079 f = f.tail; 5080 } 5081 // Compute the proper generic outer 5082 Type clazzOuter = clazztype.getEnclosingType(); 5083 if (clazzOuter.hasTag(CLASS)) { 5084 Type site; 5085 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5086 if (clazz.hasTag(IDENT)) { 5087 site = env.enclClass.sym.type; 5088 } else if (clazz.hasTag(SELECT)) { 5089 site = ((JCFieldAccess) clazz).selected.type; 5090 } else throw new AssertionError(""+tree); 5091 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5092 if (site.hasTag(CLASS)) 5093 site = types.asOuterSuper(site, clazzOuter.tsym); 5094 if (site == null) 5095 site = types.erasure(clazzOuter); 5096 clazzOuter = site; 5097 } 5098 } 5099 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5100 clazztype.getMetadata()); 5101 } else { 5102 if (formals.length() != 0) { 5103 log.error(tree.pos(), 5104 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5105 } else { 5106 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5107 } 5108 owntype = types.createErrorType(tree.type); 5109 } 5110 } 5111 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5112 } 5113 5114 public void visitTypeUnion(JCTypeUnion tree) { 5115 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5116 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5117 for (JCExpression typeTree : tree.alternatives) { 5118 Type ctype = attribType(typeTree, env); 5119 ctype = chk.checkType(typeTree.pos(), 5120 chk.checkClassType(typeTree.pos(), ctype), 5121 syms.throwableType); 5122 if (!ctype.isErroneous()) { 5123 //check that alternatives of a union type are pairwise 5124 //unrelated w.r.t. subtyping 5125 if (chk.intersects(ctype, multicatchTypes.toList())) { 5126 for (Type t : multicatchTypes) { 5127 boolean sub = types.isSubtype(ctype, t); 5128 boolean sup = types.isSubtype(t, ctype); 5129 if (sub || sup) { 5130 //assume 'a' <: 'b' 5131 Type a = sub ? ctype : t; 5132 Type b = sub ? t : ctype; 5133 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5134 } 5135 } 5136 } 5137 multicatchTypes.append(ctype); 5138 if (all_multicatchTypes != null) 5139 all_multicatchTypes.append(ctype); 5140 } else { 5141 if (all_multicatchTypes == null) { 5142 all_multicatchTypes = new ListBuffer<>(); 5143 all_multicatchTypes.appendList(multicatchTypes); 5144 } 5145 all_multicatchTypes.append(ctype); 5146 } 5147 } 5148 Type t = check(tree, types.lub(multicatchTypes.toList()), 5149 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5150 if (t.hasTag(CLASS)) { 5151 List<Type> alternatives = 5152 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5153 t = new UnionClassType((ClassType) t, alternatives); 5154 } 5155 tree.type = result = t; 5156 } 5157 5158 public void visitTypeIntersection(JCTypeIntersection tree) { 5159 attribTypes(tree.bounds, env); 5160 tree.type = result = checkIntersection(tree, tree.bounds); 5161 } 5162 5163 public void visitTypeParameter(JCTypeParameter tree) { 5164 TypeVar typeVar = (TypeVar) tree.type; 5165 5166 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5167 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5168 } 5169 5170 if (!typeVar.getUpperBound().isErroneous()) { 5171 //fixup type-parameter bound computed in 'attribTypeVariables' 5172 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5173 } 5174 } 5175 5176 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5177 Set<Symbol> boundSet = new HashSet<>(); 5178 if (bounds.nonEmpty()) { 5179 // accept class or interface or typevar as first bound. 5180 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5181 boundSet.add(types.erasure(bounds.head.type).tsym); 5182 if (bounds.head.type.isErroneous()) { 5183 return bounds.head.type; 5184 } 5185 else if (bounds.head.type.hasTag(TYPEVAR)) { 5186 // if first bound was a typevar, do not accept further bounds. 5187 if (bounds.tail.nonEmpty()) { 5188 log.error(bounds.tail.head.pos(), 5189 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5190 return bounds.head.type; 5191 } 5192 } else { 5193 // if first bound was a class or interface, accept only interfaces 5194 // as further bounds. 5195 for (JCExpression bound : bounds.tail) { 5196 bound.type = checkBase(bound.type, bound, env, false, true, false); 5197 if (bound.type.isErroneous()) { 5198 bounds = List.of(bound); 5199 } 5200 else if (bound.type.hasTag(CLASS)) { 5201 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5202 } 5203 } 5204 } 5205 } 5206 5207 if (bounds.length() == 0) { 5208 return syms.objectType; 5209 } else if (bounds.length() == 1) { 5210 return bounds.head.type; 5211 } else { 5212 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5213 // ... the variable's bound is a class type flagged COMPOUND 5214 // (see comment for TypeVar.bound). 5215 // In this case, generate a class tree that represents the 5216 // bound class, ... 5217 JCExpression extending; 5218 List<JCExpression> implementing; 5219 if (!bounds.head.type.isInterface()) { 5220 extending = bounds.head; 5221 implementing = bounds.tail; 5222 } else { 5223 extending = null; 5224 implementing = bounds; 5225 } 5226 JCClassDecl cd = make.at(tree).ClassDef( 5227 make.Modifiers(PUBLIC | ABSTRACT), 5228 names.empty, List.nil(), 5229 extending, implementing, List.nil()); 5230 5231 ClassSymbol c = (ClassSymbol)owntype.tsym; 5232 Assert.check((c.flags() & COMPOUND) != 0); 5233 cd.sym = c; 5234 c.sourcefile = env.toplevel.sourcefile; 5235 5236 // ... and attribute the bound class 5237 c.flags_field |= UNATTRIBUTED; 5238 Env<AttrContext> cenv = enter.classEnv(cd, env); 5239 typeEnvs.put(c, cenv); 5240 attribClass(c); 5241 return owntype; 5242 } 5243 } 5244 5245 public void visitWildcard(JCWildcard tree) { 5246 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5247 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5248 ? syms.objectType 5249 : attribType(tree.inner, env); 5250 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5251 tree.kind.kind, 5252 syms.boundClass), 5253 KindSelector.TYP, resultInfo); 5254 } 5255 5256 public void visitAnnotation(JCAnnotation tree) { 5257 Assert.error("should be handled in annotate"); 5258 } 5259 5260 @Override 5261 public void visitModifiers(JCModifiers tree) { 5262 //error recovery only: 5263 Assert.check(resultInfo.pkind == KindSelector.ERR); 5264 5265 attribAnnotationTypes(tree.annotations, env); 5266 } 5267 5268 public void visitAnnotatedType(JCAnnotatedType tree) { 5269 attribAnnotationTypes(tree.annotations, env); 5270 Type underlyingType = attribType(tree.underlyingType, env); 5271 Type annotatedType = underlyingType.preannotatedType(); 5272 5273 if (!env.info.isNewClass) 5274 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5275 result = tree.type = annotatedType; 5276 } 5277 5278 public void visitErroneous(JCErroneous tree) { 5279 if (tree.errs != null) { 5280 Env<AttrContext> errEnv = env.dup(env.tree, env.info.dup()); 5281 errEnv.info.returnResult = unknownExprInfo; 5282 for (JCTree err : tree.errs) 5283 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5284 } 5285 result = tree.type = syms.errType; 5286 } 5287 5288 /** Default visitor method for all other trees. 5289 */ 5290 public void visitTree(JCTree tree) { 5291 throw new AssertionError(); 5292 } 5293 5294 /** 5295 * Attribute an env for either a top level tree or class or module declaration. 5296 */ 5297 public void attrib(Env<AttrContext> env) { 5298 switch (env.tree.getTag()) { 5299 case MODULEDEF: 5300 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5301 break; 5302 case PACKAGEDEF: 5303 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5304 break; 5305 default: 5306 attribClass(env.tree.pos(), env.enclClass.sym); 5307 } 5308 } 5309 5310 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5311 try { 5312 annotate.flush(); 5313 attribPackage(p); 5314 } catch (CompletionFailure ex) { 5315 chk.completionError(pos, ex); 5316 } 5317 } 5318 5319 void attribPackage(PackageSymbol p) { 5320 attribWithLint(p, 5321 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5322 } 5323 5324 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5325 try { 5326 annotate.flush(); 5327 attribModule(m); 5328 } catch (CompletionFailure ex) { 5329 chk.completionError(pos, ex); 5330 } 5331 } 5332 5333 void attribModule(ModuleSymbol m) { 5334 attribWithLint(m, env -> attribStat(env.tree, env)); 5335 } 5336 5337 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5338 Env<AttrContext> env = typeEnvs.get(sym); 5339 5340 Env<AttrContext> lintEnv = env; 5341 while (lintEnv.info.lint == null) 5342 lintEnv = lintEnv.next; 5343 5344 Lint lint = lintEnv.info.lint.augment(sym); 5345 5346 Lint prevLint = chk.setLint(lint); 5347 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5348 5349 try { 5350 deferredLintHandler.flush(env.tree.pos()); 5351 attrib.accept(env); 5352 } finally { 5353 log.useSource(prev); 5354 chk.setLint(prevLint); 5355 } 5356 } 5357 5358 /** Main method: attribute class definition associated with given class symbol. 5359 * reporting completion failures at the given position. 5360 * @param pos The source position at which completion errors are to be 5361 * reported. 5362 * @param c The class symbol whose definition will be attributed. 5363 */ 5364 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5365 try { 5366 annotate.flush(); 5367 attribClass(c); 5368 } catch (CompletionFailure ex) { 5369 chk.completionError(pos, ex); 5370 } 5371 } 5372 5373 /** Attribute class definition associated with given class symbol. 5374 * @param c The class symbol whose definition will be attributed. 5375 */ 5376 void attribClass(ClassSymbol c) throws CompletionFailure { 5377 if (c.type.hasTag(ERROR)) return; 5378 5379 // Check for cycles in the inheritance graph, which can arise from 5380 // ill-formed class files. 5381 chk.checkNonCyclic(null, c.type); 5382 5383 Type st = types.supertype(c.type); 5384 if ((c.flags_field & Flags.COMPOUND) == 0 && 5385 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5386 // First, attribute superclass. 5387 if (st.hasTag(CLASS)) 5388 attribClass((ClassSymbol)st.tsym); 5389 5390 // Next attribute owner, if it is a class. 5391 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5392 attribClass((ClassSymbol)c.owner); 5393 5394 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5395 } 5396 5397 // The previous operations might have attributed the current class 5398 // if there was a cycle. So we test first whether the class is still 5399 // UNATTRIBUTED. 5400 if ((c.flags_field & UNATTRIBUTED) != 0) { 5401 c.flags_field &= ~UNATTRIBUTED; 5402 5403 // Get environment current at the point of class definition. 5404 Env<AttrContext> env = typeEnvs.get(c); 5405 5406 if (c.isSealed() && 5407 !c.isEnum() && 5408 !c.isPermittedExplicit && 5409 c.permitted.isEmpty()) { 5410 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5411 } 5412 5413 if (c.isSealed()) { 5414 Set<Symbol> permittedTypes = new HashSet<>(); 5415 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5416 for (Symbol subTypeSym : c.permitted) { 5417 boolean isTypeVar = false; 5418 if (subTypeSym.type.getTag() == TYPEVAR) { 5419 isTypeVar = true; //error recovery 5420 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5421 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subTypeSym.type))); 5422 } 5423 if (subTypeSym.isAnonymous() && !c.isEnum()) { 5424 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5425 } 5426 if (permittedTypes.contains(subTypeSym)) { 5427 DiagnosticPosition pos = 5428 env.enclClass.permitting.stream() 5429 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subTypeSym, permittedExpr, true) != null) 5430 .limit(2).collect(List.collector()).get(1); 5431 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subTypeSym.type))); 5432 } else { 5433 permittedTypes.add(subTypeSym); 5434 } 5435 if (sealedInUnnamed) { 5436 if (subTypeSym.packge() != c.packge()) { 5437 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5438 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5439 ); 5440 } 5441 } else if (subTypeSym.packge().modle != c.packge().modle) { 5442 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5443 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5444 ); 5445 } 5446 if (subTypeSym == c.type.tsym || types.isSuperType(subTypeSym.type, c.type)) { 5447 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, ((JCClassDecl)env.tree).permitting), 5448 Errors.InvalidPermitsClause( 5449 subTypeSym == c.type.tsym ? 5450 Fragments.MustNotBeSameClass : 5451 Fragments.MustNotBeSupertype(subTypeSym.type) 5452 ) 5453 ); 5454 } else if (!isTypeVar) { 5455 boolean thisIsASuper = types.directSupertypes(subTypeSym.type) 5456 .stream() 5457 .anyMatch(d -> d.tsym == c); 5458 if (!thisIsASuper) { 5459 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5460 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subTypeSym.type))); 5461 } 5462 } 5463 } 5464 } 5465 5466 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5467 .stream() 5468 .filter(s -> s.tsym.isSealed()) 5469 .map(s -> (ClassSymbol) s.tsym) 5470 .collect(List.collector()); 5471 5472 if (sealedSupers.isEmpty()) { 5473 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5474 boolean hasErrorSuper = false; 5475 5476 hasErrorSuper |= types.directSupertypes(c.type) 5477 .stream() 5478 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5479 5480 ClassType ct = (ClassType) c.type; 5481 5482 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5483 5484 if (!hasErrorSuper) { 5485 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5486 } 5487 } 5488 } else { 5489 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5490 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5491 } 5492 5493 if (!c.type.isCompound()) { 5494 for (ClassSymbol supertypeSym : sealedSupers) { 5495 if (!supertypeSym.permitted.contains(c.type.tsym)) { 5496 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5497 } 5498 } 5499 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5500 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5501 c.isInterface() ? 5502 Errors.NonSealedOrSealedExpected : 5503 Errors.NonSealedSealedOrFinalExpected); 5504 } 5505 } 5506 } 5507 5508 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5509 // because the annotations were not available at the time the env was created. Therefore, 5510 // we look up the environment chain for the first enclosing environment for which the 5511 // lint value is set. Typically, this is the parent env, but might be further if there 5512 // are any envs created as a result of TypeParameter nodes. 5513 Env<AttrContext> lintEnv = env; 5514 while (lintEnv.info.lint == null) 5515 lintEnv = lintEnv.next; 5516 5517 // Having found the enclosing lint value, we can initialize the lint value for this class 5518 env.info.lint = lintEnv.info.lint.augment(c); 5519 5520 Lint prevLint = chk.setLint(env.info.lint); 5521 JavaFileObject prev = log.useSource(c.sourcefile); 5522 ResultInfo prevReturnRes = env.info.returnResult; 5523 5524 try { 5525 deferredLintHandler.flush(env.tree); 5526 env.info.returnResult = null; 5527 // java.lang.Enum may not be subclassed by a non-enum 5528 if (st.tsym == syms.enumSym && 5529 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5530 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5531 5532 // Enums may not be extended by source-level classes 5533 if (st.tsym != null && 5534 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5535 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5536 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5537 } 5538 5539 if (rs.isSerializable(c.type)) { 5540 env.info.isSerializable = true; 5541 } 5542 5543 attribClassBody(env, c); 5544 5545 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5546 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5547 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5548 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5549 5550 if ((c.flags_field & Flags.UNNAMED_CLASS) != 0) { 5551 chk.checkHasMain(env.tree.pos(), c); 5552 } 5553 } finally { 5554 env.info.returnResult = prevReturnRes; 5555 log.useSource(prev); 5556 chk.setLint(prevLint); 5557 } 5558 5559 } 5560 } 5561 5562 public void visitImport(JCImport tree) { 5563 // nothing to do 5564 } 5565 5566 public void visitModuleDef(JCModuleDecl tree) { 5567 tree.sym.completeUsesProvides(); 5568 ModuleSymbol msym = tree.sym; 5569 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5570 Lint prevLint = chk.setLint(lint); 5571 chk.checkModuleName(tree); 5572 chk.checkDeprecatedAnnotation(tree, msym); 5573 5574 try { 5575 deferredLintHandler.flush(tree.pos()); 5576 } finally { 5577 chk.setLint(prevLint); 5578 } 5579 } 5580 5581 /** Finish the attribution of a class. */ 5582 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5583 JCClassDecl tree = (JCClassDecl)env.tree; 5584 Assert.check(c == tree.sym); 5585 5586 // Validate type parameters, supertype and interfaces. 5587 attribStats(tree.typarams, env); 5588 if (!c.isAnonymous()) { 5589 //already checked if anonymous 5590 chk.validate(tree.typarams, env); 5591 chk.validate(tree.extending, env); 5592 chk.validate(tree.implementing, env); 5593 } 5594 5595 c.markAbstractIfNeeded(types); 5596 5597 // If this is a non-abstract class, check that it has no abstract 5598 // methods or unimplemented methods of an implemented interface. 5599 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5600 chk.checkAllDefined(tree.pos(), c); 5601 } 5602 5603 if ((c.flags() & ANNOTATION) != 0) { 5604 if (tree.implementing.nonEmpty()) 5605 log.error(tree.implementing.head.pos(), 5606 Errors.CantExtendIntfAnnotation); 5607 if (tree.typarams.nonEmpty()) { 5608 log.error(tree.typarams.head.pos(), 5609 Errors.IntfAnnotationCantHaveTypeParams(c)); 5610 } 5611 5612 // If this annotation type has a @Repeatable, validate 5613 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5614 // If this annotation type has a @Repeatable, validate 5615 if (repeatable != null) { 5616 // get diagnostic position for error reporting 5617 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5618 Assert.checkNonNull(cbPos); 5619 5620 chk.validateRepeatable(c, repeatable, cbPos); 5621 } 5622 } else { 5623 // Check that all extended classes and interfaces 5624 // are compatible (i.e. no two define methods with same arguments 5625 // yet different return types). (JLS 8.4.8.3) 5626 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5627 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5628 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5629 } 5630 5631 // Check that class does not import the same parameterized interface 5632 // with two different argument lists. 5633 chk.checkClassBounds(tree.pos(), c.type); 5634 5635 tree.type = c.type; 5636 5637 for (List<JCTypeParameter> l = tree.typarams; 5638 l.nonEmpty(); l = l.tail) { 5639 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5640 } 5641 5642 // Check that a generic class doesn't extend Throwable 5643 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5644 log.error(tree.extending.pos(), Errors.GenericThrowable); 5645 5646 // Check that all methods which implement some 5647 // method conform to the method they implement. 5648 chk.checkImplementations(tree); 5649 5650 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5651 checkAutoCloseable(tree.pos(), env, c.type); 5652 5653 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5654 // Attribute declaration 5655 attribStat(l.head, env); 5656 // Check that declarations in inner classes are not static (JLS 8.1.2) 5657 // Make an exception for static constants. 5658 if (!allowRecords && 5659 c.owner.kind != PCK && 5660 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5661 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5662 VarSymbol sym = null; 5663 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5664 if (sym == null || 5665 sym.kind != VAR || 5666 sym.getConstValue() == null) 5667 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5668 } 5669 } 5670 5671 // Check for cycles among non-initial constructors. 5672 chk.checkCyclicConstructors(tree); 5673 5674 // Check for cycles among annotation elements. 5675 chk.checkNonCyclicElements(tree); 5676 5677 // Check for proper use of serialVersionUID and other 5678 // serialization-related fields and methods 5679 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5680 && rs.isSerializable(c.type) 5681 && !c.isAnonymous()) { 5682 chk.checkSerialStructure(tree, c); 5683 } 5684 // Correctly organize the positions of the type annotations 5685 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5686 5687 // Check type annotations applicability rules 5688 validateTypeAnnotations(tree, false); 5689 } 5690 // where 5691 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5692 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5693 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5694 if (types.isSameType(al.head.annotationType.type, t)) 5695 return al.head.pos(); 5696 } 5697 5698 return null; 5699 } 5700 5701 private Type capture(Type type) { 5702 return types.capture(type); 5703 } 5704 5705 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5706 if (type.isErroneous()) { 5707 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5708 } else { 5709 tree.vartype = make.at(Position.NOPOS).Type(type); 5710 } 5711 } 5712 5713 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5714 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5715 } 5716 //where 5717 private final class TypeAnnotationsValidator extends TreeScanner { 5718 5719 private final boolean sigOnly; 5720 public TypeAnnotationsValidator(boolean sigOnly) { 5721 this.sigOnly = sigOnly; 5722 } 5723 5724 public void visitAnnotation(JCAnnotation tree) { 5725 chk.validateTypeAnnotation(tree, null, false); 5726 super.visitAnnotation(tree); 5727 } 5728 public void visitAnnotatedType(JCAnnotatedType tree) { 5729 if (!tree.underlyingType.type.isErroneous()) { 5730 super.visitAnnotatedType(tree); 5731 } 5732 } 5733 public void visitTypeParameter(JCTypeParameter tree) { 5734 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5735 scan(tree.bounds); 5736 // Don't call super. 5737 // This is needed because above we call validateTypeAnnotation with 5738 // false, which would forbid annotations on type parameters. 5739 // super.visitTypeParameter(tree); 5740 } 5741 public void visitMethodDef(JCMethodDecl tree) { 5742 if (tree.recvparam != null && 5743 !tree.recvparam.vartype.type.isErroneous()) { 5744 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5745 } 5746 if (tree.restype != null && tree.restype.type != null) { 5747 validateAnnotatedType(tree.restype, tree.restype.type); 5748 } 5749 if (sigOnly) { 5750 scan(tree.mods); 5751 scan(tree.restype); 5752 scan(tree.typarams); 5753 scan(tree.recvparam); 5754 scan(tree.params); 5755 scan(tree.thrown); 5756 } else { 5757 scan(tree.defaultValue); 5758 scan(tree.body); 5759 } 5760 } 5761 public void visitVarDef(final JCVariableDecl tree) { 5762 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5763 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5764 validateAnnotatedType(tree.vartype, tree.sym.type); 5765 scan(tree.mods); 5766 scan(tree.vartype); 5767 if (!sigOnly) { 5768 scan(tree.init); 5769 } 5770 } 5771 public void visitTypeCast(JCTypeCast tree) { 5772 if (tree.clazz != null && tree.clazz.type != null) 5773 validateAnnotatedType(tree.clazz, tree.clazz.type); 5774 super.visitTypeCast(tree); 5775 } 5776 public void visitTypeTest(JCInstanceOf tree) { 5777 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5778 validateAnnotatedType(tree.pattern, tree.pattern.type); 5779 super.visitTypeTest(tree); 5780 } 5781 public void visitNewClass(JCNewClass tree) { 5782 if (tree.clazz != null && tree.clazz.type != null) { 5783 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5784 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5785 tree.clazz.type.tsym); 5786 } 5787 if (tree.def != null) { 5788 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5789 } 5790 5791 validateAnnotatedType(tree.clazz, tree.clazz.type); 5792 } 5793 super.visitNewClass(tree); 5794 } 5795 public void visitNewArray(JCNewArray tree) { 5796 if (tree.elemtype != null && tree.elemtype.type != null) { 5797 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5798 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5799 tree.elemtype.type.tsym); 5800 } 5801 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5802 } 5803 super.visitNewArray(tree); 5804 } 5805 public void visitClassDef(JCClassDecl tree) { 5806 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5807 if (sigOnly) { 5808 scan(tree.mods); 5809 scan(tree.typarams); 5810 scan(tree.extending); 5811 scan(tree.implementing); 5812 } 5813 for (JCTree member : tree.defs) { 5814 if (member.hasTag(Tag.CLASSDEF)) { 5815 continue; 5816 } 5817 scan(member); 5818 } 5819 } 5820 public void visitBlock(JCBlock tree) { 5821 if (!sigOnly) { 5822 scan(tree.stats); 5823 } 5824 } 5825 5826 /* I would want to model this after 5827 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5828 * and override visitSelect and visitTypeApply. 5829 * However, we only set the annotated type in the top-level type 5830 * of the symbol. 5831 * Therefore, we need to override each individual location where a type 5832 * can occur. 5833 */ 5834 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5835 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5836 5837 if (type.isPrimitiveOrVoid()) { 5838 return; 5839 } 5840 5841 JCTree enclTr = errtree; 5842 Type enclTy = type; 5843 5844 boolean repeat = true; 5845 while (repeat) { 5846 if (enclTr.hasTag(TYPEAPPLY)) { 5847 List<Type> tyargs = enclTy.getTypeArguments(); 5848 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5849 if (trargs.length() > 0) { 5850 // Nothing to do for diamonds 5851 if (tyargs.length() == trargs.length()) { 5852 for (int i = 0; i < tyargs.length(); ++i) { 5853 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5854 } 5855 } 5856 // If the lengths don't match, it's either a diamond 5857 // or some nested type that redundantly provides 5858 // type arguments in the tree. 5859 } 5860 5861 // Look at the clazz part of a generic type 5862 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5863 } 5864 5865 if (enclTr.hasTag(SELECT)) { 5866 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5867 if (enclTy != null && 5868 !enclTy.hasTag(NONE)) { 5869 enclTy = enclTy.getEnclosingType(); 5870 } 5871 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5872 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5873 if (enclTy == null || enclTy.hasTag(NONE)) { 5874 if (at.getAnnotations().size() == 1) { 5875 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute)); 5876 } else { 5877 ListBuffer<Attribute.Compound> comps = new ListBuffer<>(); 5878 for (JCAnnotation an : at.getAnnotations()) { 5879 comps.add(an.attribute); 5880 } 5881 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList())); 5882 } 5883 repeat = false; 5884 } 5885 enclTr = at.underlyingType; 5886 // enclTy doesn't need to be changed 5887 } else if (enclTr.hasTag(IDENT)) { 5888 repeat = false; 5889 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5890 JCWildcard wc = (JCWildcard) enclTr; 5891 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 5892 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 5893 validateAnnotatedType(wc.getBound(), wc.getBound().type); 5894 } else { 5895 // Nothing to do for UNBOUND 5896 } 5897 repeat = false; 5898 } else if (enclTr.hasTag(TYPEARRAY)) { 5899 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 5900 validateAnnotatedType(art.getType(), art.elemtype.type); 5901 repeat = false; 5902 } else if (enclTr.hasTag(TYPEUNION)) { 5903 JCTypeUnion ut = (JCTypeUnion) enclTr; 5904 for (JCTree t : ut.getTypeAlternatives()) { 5905 validateAnnotatedType(t, t.type); 5906 } 5907 repeat = false; 5908 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 5909 JCTypeIntersection it = (JCTypeIntersection) enclTr; 5910 for (JCTree t : it.getBounds()) { 5911 validateAnnotatedType(t, t.type); 5912 } 5913 repeat = false; 5914 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 5915 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 5916 repeat = false; 5917 } else { 5918 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 5919 " within: "+ errtree + " with kind: " + errtree.getKind()); 5920 } 5921 } 5922 } 5923 5924 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 5925 Symbol sym) { 5926 // Ensure that no declaration annotations are present. 5927 // Note that a tree type might be an AnnotatedType with 5928 // empty annotations, if only declaration annotations were given. 5929 // This method will raise an error for such a type. 5930 for (JCAnnotation ai : annotations) { 5931 if (!ai.type.isErroneous() && 5932 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 5933 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 5934 } 5935 } 5936 } 5937 } 5938 5939 // <editor-fold desc="post-attribution visitor"> 5940 5941 /** 5942 * Handle missing types/symbols in an AST. This routine is useful when 5943 * the compiler has encountered some errors (which might have ended up 5944 * terminating attribution abruptly); if the compiler is used in fail-over 5945 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 5946 * prevents NPE to be propagated during subsequent compilation steps. 5947 */ 5948 public void postAttr(JCTree tree) { 5949 new PostAttrAnalyzer().scan(tree); 5950 } 5951 5952 class PostAttrAnalyzer extends TreeScanner { 5953 5954 private void initTypeIfNeeded(JCTree that) { 5955 if (that.type == null) { 5956 if (that.hasTag(METHODDEF)) { 5957 that.type = dummyMethodType((JCMethodDecl)that); 5958 } else { 5959 that.type = syms.unknownType; 5960 } 5961 } 5962 } 5963 5964 /* Construct a dummy method type. If we have a method declaration, 5965 * and the declared return type is void, then use that return type 5966 * instead of UNKNOWN to avoid spurious error messages in lambda 5967 * bodies (see:JDK-8041704). 5968 */ 5969 private Type dummyMethodType(JCMethodDecl md) { 5970 Type restype = syms.unknownType; 5971 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 5972 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 5973 if (prim.typetag == VOID) 5974 restype = syms.voidType; 5975 } 5976 return new MethodType(List.nil(), restype, 5977 List.nil(), syms.methodClass); 5978 } 5979 private Type dummyMethodType() { 5980 return dummyMethodType(null); 5981 } 5982 5983 @Override 5984 public void scan(JCTree tree) { 5985 if (tree == null) return; 5986 if (tree instanceof JCExpression) { 5987 initTypeIfNeeded(tree); 5988 } 5989 super.scan(tree); 5990 } 5991 5992 @Override 5993 public void visitIdent(JCIdent that) { 5994 if (that.sym == null) { 5995 that.sym = syms.unknownSymbol; 5996 } 5997 } 5998 5999 @Override 6000 public void visitSelect(JCFieldAccess that) { 6001 if (that.sym == null) { 6002 that.sym = syms.unknownSymbol; 6003 } 6004 super.visitSelect(that); 6005 } 6006 6007 @Override 6008 public void visitClassDef(JCClassDecl that) { 6009 initTypeIfNeeded(that); 6010 if (that.sym == null) { 6011 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6012 } 6013 super.visitClassDef(that); 6014 } 6015 6016 @Override 6017 public void visitMethodDef(JCMethodDecl that) { 6018 initTypeIfNeeded(that); 6019 if (that.sym == null) { 6020 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6021 } 6022 super.visitMethodDef(that); 6023 } 6024 6025 @Override 6026 public void visitVarDef(JCVariableDecl that) { 6027 initTypeIfNeeded(that); 6028 if (that.sym == null) { 6029 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6030 that.sym.adr = 0; 6031 } 6032 if (that.vartype == null) { 6033 that.vartype = make.at(Position.NOPOS).Erroneous(); 6034 } 6035 super.visitVarDef(that); 6036 } 6037 6038 @Override 6039 public void visitBindingPattern(JCBindingPattern that) { 6040 initTypeIfNeeded(that); 6041 initTypeIfNeeded(that.var); 6042 if (that.var.sym == null) { 6043 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6044 that.var.sym.adr = 0; 6045 } 6046 super.visitBindingPattern(that); 6047 } 6048 6049 @Override 6050 public void visitNewClass(JCNewClass that) { 6051 if (that.constructor == null) { 6052 that.constructor = new MethodSymbol(0, names.init, 6053 dummyMethodType(), syms.noSymbol); 6054 } 6055 if (that.constructorType == null) { 6056 that.constructorType = syms.unknownType; 6057 } 6058 super.visitNewClass(that); 6059 } 6060 6061 @Override 6062 public void visitAssignop(JCAssignOp that) { 6063 if (that.operator == null) { 6064 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6065 -1, syms.noSymbol); 6066 } 6067 super.visitAssignop(that); 6068 } 6069 6070 @Override 6071 public void visitBinary(JCBinary that) { 6072 if (that.operator == null) { 6073 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6074 -1, syms.noSymbol); 6075 } 6076 super.visitBinary(that); 6077 } 6078 6079 @Override 6080 public void visitUnary(JCUnary that) { 6081 if (that.operator == null) { 6082 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6083 -1, syms.noSymbol); 6084 } 6085 super.visitUnary(that); 6086 } 6087 6088 @Override 6089 public void visitReference(JCMemberReference that) { 6090 super.visitReference(that); 6091 if (that.sym == null) { 6092 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6093 syms.noSymbol); 6094 } 6095 } 6096 } 6097 // </editor-fold> 6098 6099 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6100 new TreeScanner() { 6101 Symbol packge = pkg; 6102 @Override 6103 public void visitIdent(JCIdent that) { 6104 that.sym = packge; 6105 } 6106 6107 @Override 6108 public void visitSelect(JCFieldAccess that) { 6109 that.sym = packge; 6110 packge = packge.owner; 6111 super.visitSelect(that); 6112 } 6113 }.scan(pid); 6114 } 6115 6116 }