1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 128 public static Attr instance(Context context) { 129 Attr instance = context.get(attrKey); 130 if (instance == null) 131 instance = new Attr(context); 132 return instance; 133 } 134 135 @SuppressWarnings("this-escape") 136 protected Attr(Context context) { 137 context.put(attrKey, this); 138 139 names = Names.instance(context); 140 log = Log.instance(context); 141 syms = Symtab.instance(context); 142 rs = Resolve.instance(context); 143 operators = Operators.instance(context); 144 chk = Check.instance(context); 145 flow = Flow.instance(context); 146 memberEnter = MemberEnter.instance(context); 147 typeEnter = TypeEnter.instance(context); 148 make = TreeMaker.instance(context); 149 enter = Enter.instance(context); 150 infer = Infer.instance(context); 151 analyzer = Analyzer.instance(context); 152 deferredAttr = DeferredAttr.instance(context); 153 cfolder = ConstFold.instance(context); 154 target = Target.instance(context); 155 types = Types.instance(context); 156 preview = Preview.instance(context); 157 diags = JCDiagnostic.Factory.instance(context); 158 annotate = Annotate.instance(context); 159 typeAnnotations = TypeAnnotations.instance(context); 160 deferredLintHandler = DeferredLintHandler.instance(context); 161 typeEnvs = TypeEnvs.instance(context); 162 dependencies = Dependencies.instance(context); 163 argumentAttr = ArgumentAttr.instance(context); 164 matchBindingsComputer = MatchBindingsComputer.instance(context); 165 attrRecover = AttrRecover.instance(context); 166 167 Options options = Options.instance(context); 168 169 Source source = Source.instance(context); 170 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 171 allowRecords = Feature.RECORDS.allowedInSource(source); 172 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 173 Feature.PATTERN_SWITCH.allowedInSource(source); 174 allowUnconditionalPatternsInstanceOf = 175 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 176 sourceName = source.name; 177 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 178 179 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 180 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 181 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 182 methodAttrInfo = new MethodAttrInfo(); 183 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 184 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 185 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 186 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 187 } 188 189 /** Switch: reifiable types in instanceof enabled? 190 */ 191 boolean allowReifiableTypesInInstanceof; 192 193 /** Are records allowed 194 */ 195 private final boolean allowRecords; 196 197 /** Are patterns in switch allowed 198 */ 199 private final boolean allowPatternSwitch; 200 201 /** Are unconditional patterns in instanceof allowed 202 */ 203 private final boolean allowUnconditionalPatternsInstanceOf; 204 205 /** 206 * Switch: warn about use of variable before declaration? 207 * RFE: 6425594 208 */ 209 boolean useBeforeDeclarationWarning; 210 211 /** 212 * Switch: name of source level; used for error reporting. 213 */ 214 String sourceName; 215 216 /** Check kind and type of given tree against protokind and prototype. 217 * If check succeeds, store type in tree and return it. 218 * If check fails, store errType in tree and return it. 219 * No checks are performed if the prototype is a method type. 220 * It is not necessary in this case since we know that kind and type 221 * are correct. 222 * 223 * @param tree The tree whose kind and type is checked 224 * @param found The computed type of the tree 225 * @param ownkind The computed kind of the tree 226 * @param resultInfo The expected result of the tree 227 */ 228 Type check(final JCTree tree, 229 final Type found, 230 final KindSelector ownkind, 231 final ResultInfo resultInfo) { 232 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 233 Type owntype; 234 boolean shouldCheck = !found.hasTag(ERROR) && 235 !resultInfo.pt.hasTag(METHOD) && 236 !resultInfo.pt.hasTag(FORALL); 237 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 238 log.error(tree.pos(), 239 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 240 ownkind.kindNames())); 241 owntype = types.createErrorType(found); 242 } else if (inferenceContext.free(found)) { 243 //delay the check if there are inference variables in the found type 244 //this means we are dealing with a partially inferred poly expression 245 owntype = shouldCheck ? resultInfo.pt : found; 246 if (resultInfo.checkMode.installPostInferenceHook()) { 247 inferenceContext.addFreeTypeListener(List.of(found), 248 instantiatedContext -> { 249 ResultInfo pendingResult = 250 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 251 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 252 }); 253 } 254 } else { 255 owntype = shouldCheck ? 256 resultInfo.check(tree, found) : 257 found; 258 } 259 if (resultInfo.checkMode.updateTreeType()) { 260 tree.type = owntype; 261 } 262 return owntype; 263 } 264 265 /** Is given blank final variable assignable, i.e. in a scope where it 266 * may be assigned to even though it is final? 267 * @param v The blank final variable. 268 * @param env The current environment. 269 */ 270 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 271 Symbol owner = env.info.scope.owner; 272 // owner refers to the innermost variable, method or 273 // initializer block declaration at this point. 274 boolean isAssignable = 275 v.owner == owner 276 || 277 ((owner.name == names.init || // i.e. we are in a constructor 278 owner.kind == VAR || // i.e. we are in a variable initializer 279 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 280 && 281 v.owner == owner.owner 282 && 283 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 284 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 285 return isAssignable & !insideCompactConstructor; 286 } 287 288 /** Check that variable can be assigned to. 289 * @param pos The current source code position. 290 * @param v The assigned variable 291 * @param base If the variable is referred to in a Select, the part 292 * to the left of the `.', null otherwise. 293 * @param env The current environment. 294 */ 295 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 296 if (v.name == names._this) { 297 log.error(pos, Errors.CantAssignValToThis); 298 return; 299 } 300 if ((v.flags() & FINAL) != 0 && 301 ((v.flags() & HASINIT) != 0 302 || 303 !((base == null || 304 TreeInfo.isThisQualifier(base)) && 305 isAssignableAsBlankFinal(v, env)))) { 306 if (v.isResourceVariable()) { //TWR resource 307 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 308 } else { 309 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 310 } 311 return; 312 } 313 314 // Check instance field assignments that appear in constructor prologues 315 if (rs.isEarlyReference(env, base, v)) { 316 317 // Field may not be inherited from a superclass 318 if (v.owner != env.enclClass.sym) { 319 log.error(pos, Errors.CantRefBeforeCtorCalled(v)); 320 return; 321 } 322 323 // Field may not have an initializer 324 if ((v.flags() & HASINIT) != 0) { 325 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v)); 326 return; 327 } 328 } 329 } 330 331 /** Does tree represent a static reference to an identifier? 332 * It is assumed that tree is either a SELECT or an IDENT. 333 * We have to weed out selects from non-type names here. 334 * @param tree The candidate tree. 335 */ 336 boolean isStaticReference(JCTree tree) { 337 if (tree.hasTag(SELECT)) { 338 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 339 if (lsym == null || lsym.kind != TYP) { 340 return false; 341 } 342 } 343 return true; 344 } 345 346 /** Is this symbol a type? 347 */ 348 static boolean isType(Symbol sym) { 349 return sym != null && sym.kind == TYP; 350 } 351 352 /** Attribute a parsed identifier. 353 * @param tree Parsed identifier name 354 * @param topLevel The toplevel to use 355 */ 356 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 357 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 358 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 359 syms.errSymbol.name, 360 null, null, null, null); 361 localEnv.enclClass.sym = syms.errSymbol; 362 return attribIdent(tree, localEnv); 363 } 364 365 /** Attribute a parsed identifier. 366 * @param tree Parsed identifier name 367 * @param env The env to use 368 */ 369 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 370 return tree.accept(identAttributer, env); 371 } 372 // where 373 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 374 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 375 @Override @DefinedBy(Api.COMPILER_TREE) 376 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 377 Symbol site = visit(node.getExpression(), env); 378 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 379 return site; 380 Name name = (Name)node.getIdentifier(); 381 if (site.kind == PCK) { 382 env.toplevel.packge = (PackageSymbol)site; 383 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 384 KindSelector.TYP_PCK); 385 } else { 386 env.enclClass.sym = (ClassSymbol)site; 387 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 388 } 389 } 390 391 @Override @DefinedBy(Api.COMPILER_TREE) 392 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 393 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 394 } 395 } 396 397 public Type coerce(Type etype, Type ttype) { 398 return cfolder.coerce(etype, ttype); 399 } 400 401 public Type attribType(JCTree node, TypeSymbol sym) { 402 Env<AttrContext> env = typeEnvs.get(sym); 403 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 404 return attribTree(node, localEnv, unknownTypeInfo); 405 } 406 407 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 408 // Attribute qualifying package or class. 409 JCFieldAccess s = tree.qualid; 410 return attribTree(s.selected, env, 411 new ResultInfo(tree.staticImport ? 412 KindSelector.TYP : KindSelector.TYP_PCK, 413 Type.noType)); 414 } 415 416 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 417 return attribToTree(expr, env, tree, unknownExprInfo); 418 } 419 420 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 421 return attribToTree(stmt, env, tree, statInfo); 422 } 423 424 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 425 breakTree = tree; 426 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 427 try { 428 deferredAttr.attribSpeculative(root, env, resultInfo, 429 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 430 argumentAttr.withLocalCacheContext()); 431 attrRecover.doRecovery(); 432 } catch (BreakAttr b) { 433 return b.env; 434 } catch (AssertionError ae) { 435 if (ae.getCause() instanceof BreakAttr breakAttr) { 436 return breakAttr.env; 437 } else { 438 throw ae; 439 } 440 } finally { 441 breakTree = null; 442 log.useSource(prev); 443 } 444 return env; 445 } 446 447 private JCTree breakTree = null; 448 449 private static class BreakAttr extends RuntimeException { 450 static final long serialVersionUID = -6924771130405446405L; 451 private transient Env<AttrContext> env; 452 private BreakAttr(Env<AttrContext> env) { 453 this.env = env; 454 } 455 } 456 457 /** 458 * Mode controlling behavior of Attr.Check 459 */ 460 enum CheckMode { 461 462 NORMAL, 463 464 /** 465 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 466 * that the captured var cache in {@code InferenceContext} will be used in read-only 467 * mode when performing inference checks. 468 */ 469 NO_TREE_UPDATE { 470 @Override 471 public boolean updateTreeType() { 472 return false; 473 } 474 }, 475 /** 476 * Mode signalling that caller will manage free types in tree decorations. 477 */ 478 NO_INFERENCE_HOOK { 479 @Override 480 public boolean installPostInferenceHook() { 481 return false; 482 } 483 }; 484 485 public boolean updateTreeType() { 486 return true; 487 } 488 public boolean installPostInferenceHook() { 489 return true; 490 } 491 } 492 493 494 class ResultInfo { 495 final KindSelector pkind; 496 final Type pt; 497 final CheckContext checkContext; 498 final CheckMode checkMode; 499 500 ResultInfo(KindSelector pkind, Type pt) { 501 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 502 } 503 504 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 505 this(pkind, pt, chk.basicHandler, checkMode); 506 } 507 508 protected ResultInfo(KindSelector pkind, 509 Type pt, CheckContext checkContext) { 510 this(pkind, pt, checkContext, CheckMode.NORMAL); 511 } 512 513 protected ResultInfo(KindSelector pkind, 514 Type pt, CheckContext checkContext, CheckMode checkMode) { 515 this.pkind = pkind; 516 this.pt = pt; 517 this.checkContext = checkContext; 518 this.checkMode = checkMode; 519 } 520 521 /** 522 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 523 * @param tree The tree to be type-checked. 524 * @return true if {@code ArgumentAttr} should be used. 525 */ 526 protected boolean needsArgumentAttr(JCTree tree) { return false; } 527 528 protected Type check(final DiagnosticPosition pos, final Type found) { 529 return chk.checkType(pos, found, pt, checkContext); 530 } 531 532 protected ResultInfo dup(Type newPt) { 533 return new ResultInfo(pkind, newPt, checkContext, checkMode); 534 } 535 536 protected ResultInfo dup(CheckContext newContext) { 537 return new ResultInfo(pkind, pt, newContext, checkMode); 538 } 539 540 protected ResultInfo dup(Type newPt, CheckContext newContext) { 541 return new ResultInfo(pkind, newPt, newContext, checkMode); 542 } 543 544 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 545 return new ResultInfo(pkind, newPt, newContext, newMode); 546 } 547 548 protected ResultInfo dup(CheckMode newMode) { 549 return new ResultInfo(pkind, pt, checkContext, newMode); 550 } 551 552 @Override 553 public String toString() { 554 if (pt != null) { 555 return pt.toString(); 556 } else { 557 return ""; 558 } 559 } 560 } 561 562 class MethodAttrInfo extends ResultInfo { 563 public MethodAttrInfo() { 564 this(chk.basicHandler); 565 } 566 567 public MethodAttrInfo(CheckContext checkContext) { 568 super(KindSelector.VAL, Infer.anyPoly, checkContext); 569 } 570 571 @Override 572 protected boolean needsArgumentAttr(JCTree tree) { 573 return true; 574 } 575 576 protected ResultInfo dup(Type newPt) { 577 throw new IllegalStateException(); 578 } 579 580 protected ResultInfo dup(CheckContext newContext) { 581 return new MethodAttrInfo(newContext); 582 } 583 584 protected ResultInfo dup(Type newPt, CheckContext newContext) { 585 throw new IllegalStateException(); 586 } 587 588 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 589 throw new IllegalStateException(); 590 } 591 592 protected ResultInfo dup(CheckMode newMode) { 593 throw new IllegalStateException(); 594 } 595 } 596 597 class RecoveryInfo extends ResultInfo { 598 599 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 600 this(deferredAttrContext, Type.recoveryType); 601 } 602 603 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 604 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 605 @Override 606 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 607 return deferredAttrContext; 608 } 609 @Override 610 public boolean compatible(Type found, Type req, Warner warn) { 611 return true; 612 } 613 @Override 614 public void report(DiagnosticPosition pos, JCDiagnostic details) { 615 boolean needsReport = pt == Type.recoveryType || 616 (details.getDiagnosticPosition() != null && 617 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 618 if (needsReport) { 619 chk.basicHandler.report(pos, details); 620 } 621 } 622 }); 623 } 624 } 625 626 final ResultInfo statInfo; 627 final ResultInfo varAssignmentInfo; 628 final ResultInfo methodAttrInfo; 629 final ResultInfo unknownExprInfo; 630 final ResultInfo unknownTypeInfo; 631 final ResultInfo unknownTypeExprInfo; 632 final ResultInfo recoveryInfo; 633 final MethodType initBlockType; 634 635 Type pt() { 636 return resultInfo.pt; 637 } 638 639 KindSelector pkind() { 640 return resultInfo.pkind; 641 } 642 643 /* ************************************************************************ 644 * Visitor methods 645 *************************************************************************/ 646 647 /** Visitor argument: the current environment. 648 */ 649 Env<AttrContext> env; 650 651 /** Visitor argument: the currently expected attribution result. 652 */ 653 ResultInfo resultInfo; 654 655 /** Visitor result: the computed type. 656 */ 657 Type result; 658 659 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 660 661 /** Visitor method: attribute a tree, catching any completion failure 662 * exceptions. Return the tree's type. 663 * 664 * @param tree The tree to be visited. 665 * @param env The environment visitor argument. 666 * @param resultInfo The result info visitor argument. 667 */ 668 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 669 Env<AttrContext> prevEnv = this.env; 670 ResultInfo prevResult = this.resultInfo; 671 try { 672 this.env = env; 673 this.resultInfo = resultInfo; 674 if (resultInfo.needsArgumentAttr(tree)) { 675 result = argumentAttr.attribArg(tree, env); 676 } else { 677 tree.accept(this); 678 } 679 matchBindings = matchBindingsComputer.finishBindings(tree, 680 matchBindings); 681 if (tree == breakTree && 682 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 683 breakTreeFound(copyEnv(env)); 684 } 685 return result; 686 } catch (CompletionFailure ex) { 687 tree.type = syms.errType; 688 return chk.completionError(tree.pos(), ex); 689 } finally { 690 this.env = prevEnv; 691 this.resultInfo = prevResult; 692 } 693 } 694 695 protected void breakTreeFound(Env<AttrContext> env) { 696 throw new BreakAttr(env); 697 } 698 699 Env<AttrContext> copyEnv(Env<AttrContext> env) { 700 Env<AttrContext> newEnv = 701 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 702 if (newEnv.outer != null) { 703 newEnv.outer = copyEnv(newEnv.outer); 704 } 705 return newEnv; 706 } 707 708 WriteableScope copyScope(WriteableScope sc) { 709 WriteableScope newScope = WriteableScope.create(sc.owner); 710 List<Symbol> elemsList = List.nil(); 711 for (Symbol sym : sc.getSymbols()) { 712 elemsList = elemsList.prepend(sym); 713 } 714 for (Symbol s : elemsList) { 715 newScope.enter(s); 716 } 717 return newScope; 718 } 719 720 /** Derived visitor method: attribute an expression tree. 721 */ 722 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 723 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 724 } 725 726 /** Derived visitor method: attribute an expression tree with 727 * no constraints on the computed type. 728 */ 729 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 730 return attribTree(tree, env, unknownExprInfo); 731 } 732 733 /** Derived visitor method: attribute a type tree. 734 */ 735 public Type attribType(JCTree tree, Env<AttrContext> env) { 736 Type result = attribType(tree, env, Type.noType); 737 return result; 738 } 739 740 /** Derived visitor method: attribute a type tree. 741 */ 742 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 743 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 744 return result; 745 } 746 747 /** Derived visitor method: attribute a statement or definition tree. 748 */ 749 public Type attribStat(JCTree tree, Env<AttrContext> env) { 750 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 751 Type result = attribTree(tree, env, statInfo); 752 analyzer.analyzeIfNeeded(tree, analyzeEnv); 753 attrRecover.doRecovery(); 754 return result; 755 } 756 757 /** Attribute a list of expressions, returning a list of types. 758 */ 759 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 760 ListBuffer<Type> ts = new ListBuffer<>(); 761 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 762 ts.append(attribExpr(l.head, env, pt)); 763 return ts.toList(); 764 } 765 766 /** Attribute a list of statements, returning nothing. 767 */ 768 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 769 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 770 attribStat(l.head, env); 771 } 772 773 /** Attribute the arguments in a method call, returning the method kind. 774 */ 775 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 776 KindSelector kind = initialKind; 777 for (JCExpression arg : trees) { 778 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 779 if (argtype.hasTag(DEFERRED)) { 780 kind = KindSelector.of(KindSelector.POLY, kind); 781 } 782 argtypes.append(argtype); 783 } 784 return kind; 785 } 786 787 /** Attribute a type argument list, returning a list of types. 788 * Caller is responsible for calling checkRefTypes. 789 */ 790 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 791 ListBuffer<Type> argtypes = new ListBuffer<>(); 792 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 793 argtypes.append(attribType(l.head, env)); 794 return argtypes.toList(); 795 } 796 797 /** Attribute a type argument list, returning a list of types. 798 * Check that all the types are references. 799 */ 800 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 801 List<Type> types = attribAnyTypes(trees, env); 802 return chk.checkRefTypes(trees, types); 803 } 804 805 /** 806 * Attribute type variables (of generic classes or methods). 807 * Compound types are attributed later in attribBounds. 808 * @param typarams the type variables to enter 809 * @param env the current environment 810 */ 811 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 812 for (JCTypeParameter tvar : typarams) { 813 TypeVar a = (TypeVar)tvar.type; 814 a.tsym.flags_field |= UNATTRIBUTED; 815 a.setUpperBound(Type.noType); 816 if (!tvar.bounds.isEmpty()) { 817 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 818 for (JCExpression bound : tvar.bounds.tail) 819 bounds = bounds.prepend(attribType(bound, env)); 820 types.setBounds(a, bounds.reverse()); 821 } else { 822 // if no bounds are given, assume a single bound of 823 // java.lang.Object. 824 types.setBounds(a, List.of(syms.objectType)); 825 } 826 a.tsym.flags_field &= ~UNATTRIBUTED; 827 } 828 if (checkCyclic) { 829 for (JCTypeParameter tvar : typarams) { 830 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 831 } 832 } 833 } 834 835 /** 836 * Attribute the type references in a list of annotations. 837 */ 838 void attribAnnotationTypes(List<JCAnnotation> annotations, 839 Env<AttrContext> env) { 840 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 841 JCAnnotation a = al.head; 842 attribType(a.annotationType, env); 843 } 844 } 845 846 /** 847 * Attribute a "lazy constant value". 848 * @param env The env for the const value 849 * @param variable The initializer for the const value 850 * @param type The expected type, or null 851 * @see VarSymbol#setLazyConstValue 852 */ 853 public Object attribLazyConstantValue(Env<AttrContext> env, 854 Env<AttrContext> enclosingEnv, 855 JCVariableDecl variable, 856 Type type) { 857 deferredLintHandler.push(variable); 858 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 859 try { 860 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 861 Type itype = attribExpr(variable.init, env, type); 862 if (variable.isImplicitlyTyped()) { 863 //fixup local variable type 864 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 865 } 866 if (itype.constValue() != null) { 867 return coerce(itype, type).constValue(); 868 } else { 869 return null; 870 } 871 } finally { 872 log.useSource(prevSource); 873 deferredLintHandler.pop(); 874 } 875 } 876 877 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 878 * Supertypes of anonymous inner classes are usually already attributed. 879 * 880 * @param tree The tree making up the type reference. 881 * @param env The environment current at the reference. 882 * @param classExpected true if only a class is expected here. 883 * @param interfaceExpected true if only an interface is expected here. 884 */ 885 Type attribBase(JCTree tree, 886 Env<AttrContext> env, 887 boolean classExpected, 888 boolean interfaceExpected, 889 boolean checkExtensible) { 890 Type t = tree.type != null ? 891 tree.type : 892 attribType(tree, env); 893 try { 894 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 895 } catch (CompletionFailure ex) { 896 chk.completionError(tree.pos(), ex); 897 return t; 898 } 899 } 900 Type checkBase(Type t, 901 JCTree tree, 902 Env<AttrContext> env, 903 boolean classExpected, 904 boolean interfaceExpected, 905 boolean checkExtensible) { 906 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 907 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 908 if (t.tsym.isAnonymous()) { 909 log.error(pos, Errors.CantInheritFromAnon); 910 return types.createErrorType(t); 911 } 912 if (t.isErroneous()) 913 return t; 914 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 915 // check that type variable is already visible 916 if (t.getUpperBound() == null) { 917 log.error(pos, Errors.IllegalForwardRef); 918 return types.createErrorType(t); 919 } 920 } else { 921 t = chk.checkClassType(pos, t, checkExtensible); 922 } 923 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 924 log.error(pos, Errors.IntfExpectedHere); 925 // return errType is necessary since otherwise there might 926 // be undetected cycles which cause attribution to loop 927 return types.createErrorType(t); 928 } else if (checkExtensible && 929 classExpected && 930 (t.tsym.flags() & INTERFACE) != 0) { 931 log.error(pos, Errors.NoIntfExpectedHere); 932 return types.createErrorType(t); 933 } 934 if (checkExtensible && 935 ((t.tsym.flags() & FINAL) != 0)) { 936 log.error(pos, 937 Errors.CantInheritFromFinal(t.tsym)); 938 } 939 chk.checkNonCyclic(pos, t); 940 return t; 941 } 942 943 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 944 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 945 id.type = env.info.scope.owner.enclClass().type; 946 id.sym = env.info.scope.owner.enclClass(); 947 return id.type; 948 } 949 950 public void visitClassDef(JCClassDecl tree) { 951 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 952 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 953 argumentAttr.withLocalCacheContext() : null); 954 boolean ctorProloguePrev = env.info.ctorPrologue; 955 try { 956 // Local and anonymous classes have not been entered yet, so we need to 957 // do it now. 958 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 959 enter.classEnter(tree, env); 960 } else { 961 // If this class declaration is part of a class level annotation, 962 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 963 // order to simplify later steps and allow for sensible error 964 // messages. 965 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 966 enter.classEnter(tree, env); 967 } 968 969 ClassSymbol c = tree.sym; 970 if (c == null) { 971 // exit in case something drastic went wrong during enter. 972 result = null; 973 } else { 974 // make sure class has been completed: 975 c.complete(); 976 977 // If a class declaration appears in a constructor prologue, 978 // that means it's either a local class or an anonymous class. 979 // Either way, there is no immediately enclosing instance. 980 if (ctorProloguePrev) { 981 c.flags_field |= NOOUTERTHIS; 982 } 983 attribClass(tree.pos(), c); 984 result = tree.type = c.type; 985 } 986 } finally { 987 localCacheContext.ifPresent(LocalCacheContext::leave); 988 env.info.ctorPrologue = ctorProloguePrev; 989 } 990 } 991 992 public void visitMethodDef(JCMethodDecl tree) { 993 MethodSymbol m = tree.sym; 994 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 995 996 Lint lint = env.info.lint.augment(m); 997 Lint prevLint = chk.setLint(lint); 998 boolean ctorProloguePrev = env.info.ctorPrologue; 999 Assert.check(!env.info.ctorPrologue); 1000 MethodSymbol prevMethod = chk.setMethod(m); 1001 try { 1002 deferredLintHandler.flush(tree, lint); 1003 chk.checkDeprecatedAnnotation(tree.pos(), m); 1004 1005 1006 // Create a new environment with local scope 1007 // for attributing the method. 1008 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 1009 localEnv.info.lint = lint; 1010 1011 attribStats(tree.typarams, localEnv); 1012 1013 // If we override any other methods, check that we do so properly. 1014 // JLS ??? 1015 if (m.isStatic()) { 1016 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1017 } else { 1018 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1019 } 1020 chk.checkOverride(env, tree, m); 1021 1022 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1023 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1024 } 1025 1026 // Enter all type parameters into the local method scope. 1027 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1028 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1029 1030 ClassSymbol owner = env.enclClass.sym; 1031 if ((owner.flags() & ANNOTATION) != 0 && 1032 (tree.params.nonEmpty() || 1033 tree.recvparam != null)) 1034 log.error(tree.params.nonEmpty() ? 1035 tree.params.head.pos() : 1036 tree.recvparam.pos(), 1037 Errors.IntfAnnotationMembersCantHaveParams); 1038 1039 // Attribute all value parameters. 1040 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1041 attribStat(l.head, localEnv); 1042 } 1043 1044 chk.checkVarargsMethodDecl(localEnv, tree); 1045 1046 // Check that type parameters are well-formed. 1047 chk.validate(tree.typarams, localEnv); 1048 1049 // Check that result type is well-formed. 1050 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1051 chk.validate(tree.restype, localEnv); 1052 1053 // Check that receiver type is well-formed. 1054 if (tree.recvparam != null) { 1055 // Use a new environment to check the receiver parameter. 1056 // Otherwise I get "might not have been initialized" errors. 1057 // Is there a better way? 1058 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1059 attribType(tree.recvparam, newEnv); 1060 chk.validate(tree.recvparam, newEnv); 1061 } 1062 1063 // Is this method a constructor? 1064 boolean isConstructor = TreeInfo.isConstructor(tree); 1065 1066 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1067 // lets find if this method is an accessor 1068 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1069 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1070 if (recordComponent.isPresent()) { 1071 // the method is a user defined accessor lets check that everything is fine 1072 if (!tree.sym.isPublic()) { 1073 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1074 } 1075 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1076 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1077 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1078 } 1079 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1080 log.error(tree, 1081 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1082 } 1083 if (!tree.typarams.isEmpty()) { 1084 log.error(tree, 1085 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1086 } 1087 if (tree.sym.isStatic()) { 1088 log.error(tree, 1089 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1090 } 1091 } 1092 1093 if (isConstructor) { 1094 // if this a constructor other than the canonical one 1095 if ((tree.sym.flags_field & RECORD) == 0) { 1096 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1097 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1098 } 1099 } else { 1100 // but if it is the canonical: 1101 1102 /* if user generated, then it shouldn't: 1103 * - have an accessibility stricter than that of the record type 1104 * - explicitly invoke any other constructor 1105 */ 1106 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1107 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1108 log.error(tree, 1109 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1110 Errors.InvalidCanonicalConstructorInRecord( 1111 Fragments.Canonical, 1112 env.enclClass.sym.name, 1113 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1114 ) : 1115 Errors.InvalidCanonicalConstructorInRecord( 1116 Fragments.Canonical, 1117 env.enclClass.sym.name, 1118 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1119 ) 1120 ); 1121 } 1122 1123 if (TreeInfo.hasAnyConstructorCall(tree)) { 1124 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1125 Fragments.Canonical, env.enclClass.sym.name, 1126 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1127 } 1128 } 1129 1130 // also we want to check that no type variables have been defined 1131 if (!tree.typarams.isEmpty()) { 1132 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1133 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1134 } 1135 1136 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1137 * record components 1138 */ 1139 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1140 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1141 for (JCVariableDecl param: tree.params) { 1142 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1143 if (!types.isSameType(param.type, recordFieldTypes.head) || 1144 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1145 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1146 Fragments.Canonical, env.enclClass.sym.name, 1147 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1148 } 1149 recordComponents = recordComponents.tail; 1150 recordFieldTypes = recordFieldTypes.tail; 1151 } 1152 } 1153 } 1154 } 1155 1156 // annotation method checks 1157 if ((owner.flags() & ANNOTATION) != 0) { 1158 // annotation method cannot have throws clause 1159 if (tree.thrown.nonEmpty()) { 1160 log.error(tree.thrown.head.pos(), 1161 Errors.ThrowsNotAllowedInIntfAnnotation); 1162 } 1163 // annotation method cannot declare type-parameters 1164 if (tree.typarams.nonEmpty()) { 1165 log.error(tree.typarams.head.pos(), 1166 Errors.IntfAnnotationMembersCantHaveTypeParams); 1167 } 1168 // validate annotation method's return type (could be an annotation type) 1169 chk.validateAnnotationType(tree.restype); 1170 // ensure that annotation method does not clash with members of Object/Annotation 1171 chk.validateAnnotationMethod(tree.pos(), m); 1172 } 1173 1174 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1175 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1176 1177 if (tree.body == null) { 1178 // Empty bodies are only allowed for 1179 // abstract, native, or interface methods, or for methods 1180 // in a retrofit signature class. 1181 if (tree.defaultValue != null) { 1182 if ((owner.flags() & ANNOTATION) == 0) 1183 log.error(tree.pos(), 1184 Errors.DefaultAllowedInIntfAnnotationMember); 1185 } 1186 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1187 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1188 } else { 1189 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1190 if ((owner.flags() & INTERFACE) != 0) { 1191 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1192 } else { 1193 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1194 } 1195 } else if ((tree.mods.flags & NATIVE) != 0) { 1196 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1197 } 1198 // Add an implicit super() call unless an explicit call to 1199 // super(...) or this(...) is given 1200 // or we are compiling class java.lang.Object. 1201 if (isConstructor && owner.type != syms.objectType) { 1202 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1203 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1204 make.Ident(names._super), make.Idents(List.nil()))); 1205 if (owner.isValueClass() || owner.hasStrict()) { 1206 tree.body.stats = tree.body.stats.append(supCall); 1207 } else { 1208 tree.body.stats = tree.body.stats.prepend(supCall); 1209 } 1210 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1211 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1212 TreeInfo.hasConstructorCall(tree, names._super)) { 1213 // enum constructors are not allowed to call super 1214 // directly, so make sure there aren't any super calls 1215 // in enum constructors, except in the compiler 1216 // generated one. 1217 log.error(tree.body.stats.head.pos(), 1218 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1219 } 1220 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1221 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1222 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1223 if (!initParamNames.equals(recordComponentNames)) { 1224 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1225 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1226 } 1227 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1228 log.error(tree, 1229 Errors.InvalidCanonicalConstructorInRecord( 1230 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1231 env.enclClass.sym.name, 1232 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1233 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1234 } 1235 } 1236 } 1237 1238 // Attribute all type annotations in the body 1239 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1240 annotate.flush(); 1241 1242 // Start of constructor prologue 1243 localEnv.info.ctorPrologue = isConstructor; 1244 1245 // Attribute method body. 1246 attribStat(tree.body, localEnv); 1247 } 1248 1249 localEnv.info.scope.leave(); 1250 result = tree.type = m.type; 1251 } finally { 1252 chk.setLint(prevLint); 1253 chk.setMethod(prevMethod); 1254 env.info.ctorPrologue = ctorProloguePrev; 1255 } 1256 } 1257 1258 public void visitVarDef(JCVariableDecl tree) { 1259 // Local variables have not been entered yet, so we need to do it now: 1260 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1261 if (tree.sym != null) { 1262 // parameters have already been entered 1263 env.info.scope.enter(tree.sym); 1264 } else { 1265 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1266 if (tree.init == null) { 1267 //cannot use 'var' without initializer 1268 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1269 tree.vartype = make.Erroneous(); 1270 } else { 1271 Fragment msg = canInferLocalVarType(tree); 1272 if (msg != null) { 1273 //cannot use 'var' with initializer which require an explicit target 1274 //(e.g. lambda, method reference, array initializer). 1275 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1276 tree.vartype = make.Erroneous(); 1277 } 1278 } 1279 } 1280 try { 1281 annotate.blockAnnotations(); 1282 memberEnter.memberEnter(tree, env); 1283 } finally { 1284 annotate.unblockAnnotations(); 1285 } 1286 } 1287 } else { 1288 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1289 } 1290 1291 VarSymbol v = tree.sym; 1292 Lint lint = env.info.lint.augment(v); 1293 Lint prevLint = chk.setLint(lint); 1294 1295 // Check that the variable's declared type is well-formed. 1296 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1297 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1298 (tree.sym.flags() & PARAMETER) != 0; 1299 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1300 1301 try { 1302 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1303 deferredLintHandler.flush(tree, lint); 1304 chk.checkDeprecatedAnnotation(tree.pos(), v); 1305 1306 if (tree.init != null) { 1307 if ((v.flags_field & FINAL) == 0 || 1308 !memberEnter.needsLazyConstValue(tree.init)) { 1309 // Not a compile-time constant 1310 // Attribute initializer in a new environment 1311 // with the declared variable as owner. 1312 // Check that initializer conforms to variable's declared type. 1313 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1314 initEnv.info.lint = lint; 1315 // In order to catch self-references, we set the variable's 1316 // declaration position to maximal possible value, effectively 1317 // marking the variable as undefined. 1318 initEnv.info.enclVar = v; 1319 boolean previousCtorPrologue = initEnv.info.ctorPrologue; 1320 try { 1321 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1322 // strict instance initializer in a value class 1323 initEnv.info.ctorPrologue = true; 1324 } 1325 attribExpr(tree.init, initEnv, v.type); 1326 if (tree.isImplicitlyTyped()) { 1327 //fixup local variable type 1328 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1329 } 1330 } finally { 1331 initEnv.info.ctorPrologue = previousCtorPrologue; 1332 } 1333 } 1334 if (tree.isImplicitlyTyped()) { 1335 setSyntheticVariableType(tree, v.type); 1336 } 1337 } 1338 result = tree.type = v.type; 1339 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1340 if (isNonArgsMethodInObject(v.name)) { 1341 log.error(tree, Errors.IllegalRecordComponentName(v)); 1342 } 1343 } 1344 } 1345 finally { 1346 chk.setLint(prevLint); 1347 } 1348 } 1349 1350 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1351 if (tree.init != null && 1352 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1353 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1354 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1355 // Field initializer expression need to be entered. 1356 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1357 annotate.flush(); 1358 } 1359 } 1360 1361 private boolean isNonArgsMethodInObject(Name name) { 1362 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1363 if (s.type.getParameterTypes().isEmpty()) { 1364 return true; 1365 } 1366 } 1367 return false; 1368 } 1369 1370 Fragment canInferLocalVarType(JCVariableDecl tree) { 1371 LocalInitScanner lis = new LocalInitScanner(); 1372 lis.scan(tree.init); 1373 return lis.badInferenceMsg; 1374 } 1375 1376 static class LocalInitScanner extends TreeScanner { 1377 Fragment badInferenceMsg = null; 1378 boolean needsTarget = true; 1379 1380 @Override 1381 public void visitNewArray(JCNewArray tree) { 1382 if (tree.elemtype == null && needsTarget) { 1383 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1384 } 1385 } 1386 1387 @Override 1388 public void visitLambda(JCLambda tree) { 1389 if (needsTarget) { 1390 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1391 } 1392 } 1393 1394 @Override 1395 public void visitTypeCast(JCTypeCast tree) { 1396 boolean prevNeedsTarget = needsTarget; 1397 try { 1398 needsTarget = false; 1399 super.visitTypeCast(tree); 1400 } finally { 1401 needsTarget = prevNeedsTarget; 1402 } 1403 } 1404 1405 @Override 1406 public void visitReference(JCMemberReference tree) { 1407 if (needsTarget) { 1408 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1409 } 1410 } 1411 1412 @Override 1413 public void visitNewClass(JCNewClass tree) { 1414 boolean prevNeedsTarget = needsTarget; 1415 try { 1416 needsTarget = false; 1417 super.visitNewClass(tree); 1418 } finally { 1419 needsTarget = prevNeedsTarget; 1420 } 1421 } 1422 1423 @Override 1424 public void visitApply(JCMethodInvocation tree) { 1425 boolean prevNeedsTarget = needsTarget; 1426 try { 1427 needsTarget = false; 1428 super.visitApply(tree); 1429 } finally { 1430 needsTarget = prevNeedsTarget; 1431 } 1432 } 1433 } 1434 1435 public void visitSkip(JCSkip tree) { 1436 result = null; 1437 } 1438 1439 public void visitBlock(JCBlock tree) { 1440 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1441 // Block is a static or instance initializer; 1442 // let the owner of the environment be a freshly 1443 // created BLOCK-method. 1444 Symbol fakeOwner = 1445 new MethodSymbol(tree.flags | BLOCK | 1446 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1447 env.info.scope.owner); 1448 final Env<AttrContext> localEnv = 1449 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1450 1451 if ((tree.flags & STATIC) != 0) { 1452 localEnv.info.staticLevel++; 1453 } else { 1454 localEnv.info.instanceInitializerBlock = true; 1455 } 1456 // Attribute all type annotations in the block 1457 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1458 annotate.flush(); 1459 attribStats(tree.stats, localEnv); 1460 1461 { 1462 // Store init and clinit type annotations with the ClassSymbol 1463 // to allow output in Gen.normalizeDefs. 1464 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1465 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1466 if ((tree.flags & STATIC) != 0) { 1467 cs.appendClassInitTypeAttributes(tas); 1468 } else { 1469 cs.appendInitTypeAttributes(tas); 1470 } 1471 } 1472 } else { 1473 // Create a new local environment with a local scope. 1474 Env<AttrContext> localEnv = 1475 env.dup(tree, env.info.dup(env.info.scope.dup())); 1476 try { 1477 attribStats(tree.stats, localEnv); 1478 } finally { 1479 localEnv.info.scope.leave(); 1480 } 1481 } 1482 result = null; 1483 } 1484 1485 public void visitDoLoop(JCDoWhileLoop tree) { 1486 attribStat(tree.body, env.dup(tree)); 1487 attribExpr(tree.cond, env, syms.booleanType); 1488 handleLoopConditionBindings(matchBindings, tree, tree.body); 1489 result = null; 1490 } 1491 1492 public void visitWhileLoop(JCWhileLoop tree) { 1493 attribExpr(tree.cond, env, syms.booleanType); 1494 MatchBindings condBindings = matchBindings; 1495 // include condition's bindings when true in the body: 1496 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1497 try { 1498 attribStat(tree.body, whileEnv.dup(tree)); 1499 } finally { 1500 whileEnv.info.scope.leave(); 1501 } 1502 handleLoopConditionBindings(condBindings, tree, tree.body); 1503 result = null; 1504 } 1505 1506 public void visitForLoop(JCForLoop tree) { 1507 Env<AttrContext> loopEnv = 1508 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1509 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1510 try { 1511 attribStats(tree.init, loopEnv); 1512 if (tree.cond != null) { 1513 attribExpr(tree.cond, loopEnv, syms.booleanType); 1514 // include condition's bindings when true in the body and step: 1515 condBindings = matchBindings; 1516 } 1517 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1518 try { 1519 bodyEnv.tree = tree; // before, we were not in loop! 1520 attribStats(tree.step, bodyEnv); 1521 attribStat(tree.body, bodyEnv); 1522 } finally { 1523 bodyEnv.info.scope.leave(); 1524 } 1525 result = null; 1526 } 1527 finally { 1528 loopEnv.info.scope.leave(); 1529 } 1530 handleLoopConditionBindings(condBindings, tree, tree.body); 1531 } 1532 1533 /** 1534 * Include condition's bindings when false after the loop, if cannot get out of the loop 1535 */ 1536 private void handleLoopConditionBindings(MatchBindings condBindings, 1537 JCStatement loop, 1538 JCStatement loopBody) { 1539 if (condBindings.bindingsWhenFalse.nonEmpty() && 1540 !breaksTo(env, loop, loopBody)) { 1541 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1542 } 1543 } 1544 1545 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1546 preFlow(body); 1547 return flow.breaksToTree(env, loop, body, make); 1548 } 1549 1550 /** 1551 * Add given bindings to the current scope, unless there's a break to 1552 * an immediately enclosing labeled statement. 1553 */ 1554 private void addBindings2Scope(JCStatement introducingStatement, 1555 List<BindingSymbol> bindings) { 1556 if (bindings.isEmpty()) { 1557 return ; 1558 } 1559 1560 var searchEnv = env; 1561 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1562 labeled.body == introducingStatement) { 1563 if (breaksTo(env, labeled, labeled.body)) { 1564 //breaking to an immediately enclosing labeled statement 1565 return ; 1566 } 1567 searchEnv = searchEnv.next; 1568 introducingStatement = labeled; 1569 } 1570 1571 //include condition's body when false after the while, if cannot get out of the loop 1572 bindings.forEach(env.info.scope::enter); 1573 bindings.forEach(BindingSymbol::preserveBinding); 1574 } 1575 1576 public void visitForeachLoop(JCEnhancedForLoop tree) { 1577 Env<AttrContext> loopEnv = 1578 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1579 try { 1580 //the Formal Parameter of a for-each loop is not in the scope when 1581 //attributing the for-each expression; we mimic this by attributing 1582 //the for-each expression first (against original scope). 1583 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1584 chk.checkNonVoid(tree.pos(), exprType); 1585 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1586 if (elemtype == null) { 1587 // or perhaps expr implements Iterable<T>? 1588 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1589 if (base == null) { 1590 log.error(tree.expr.pos(), 1591 Errors.ForeachNotApplicableToType(exprType, 1592 Fragments.TypeReqArrayOrIterable)); 1593 elemtype = types.createErrorType(exprType); 1594 } else { 1595 List<Type> iterableParams = base.allparams(); 1596 elemtype = iterableParams.isEmpty() 1597 ? syms.objectType 1598 : types.wildUpperBound(iterableParams.head); 1599 1600 // Check the return type of the method iterator(). 1601 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1602 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1603 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1604 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1605 log.error(tree.pos(), 1606 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1607 } 1608 } 1609 } 1610 if (tree.var.isImplicitlyTyped()) { 1611 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1612 setSyntheticVariableType(tree.var, inferredType); 1613 } 1614 attribStat(tree.var, loopEnv); 1615 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1616 loopEnv.tree = tree; // before, we were not in loop! 1617 attribStat(tree.body, loopEnv); 1618 result = null; 1619 } 1620 finally { 1621 loopEnv.info.scope.leave(); 1622 } 1623 } 1624 1625 public void visitLabelled(JCLabeledStatement tree) { 1626 // Check that label is not used in an enclosing statement 1627 Env<AttrContext> env1 = env; 1628 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1629 if (env1.tree.hasTag(LABELLED) && 1630 ((JCLabeledStatement) env1.tree).label == tree.label) { 1631 log.error(tree.pos(), 1632 Errors.LabelAlreadyInUse(tree.label)); 1633 break; 1634 } 1635 env1 = env1.next; 1636 } 1637 1638 attribStat(tree.body, env.dup(tree)); 1639 result = null; 1640 } 1641 1642 public void visitSwitch(JCSwitch tree) { 1643 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1644 attribStats(c.stats, caseEnv); 1645 }); 1646 result = null; 1647 } 1648 1649 public void visitSwitchExpression(JCSwitchExpression tree) { 1650 boolean wrongContext = false; 1651 1652 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1653 PolyKind.STANDALONE : PolyKind.POLY; 1654 1655 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1656 //this means we are returning a poly conditional from void-compatible lambda expression 1657 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1658 resultInfo = recoveryInfo; 1659 wrongContext = true; 1660 } 1661 1662 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1663 unknownExprInfo : 1664 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1665 1666 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1667 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1668 1669 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1670 caseEnv.info.yieldResult = condInfo; 1671 attribStats(c.stats, caseEnv); 1672 new TreeScanner() { 1673 @Override 1674 public void visitYield(JCYield brk) { 1675 if (brk.target == tree) { 1676 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1677 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1678 } 1679 super.visitYield(brk); 1680 } 1681 1682 @Override public void visitClassDef(JCClassDecl tree) {} 1683 @Override public void visitLambda(JCLambda tree) {} 1684 }.scan(c.stats); 1685 }); 1686 1687 if (tree.cases.isEmpty()) { 1688 log.error(tree.pos(), 1689 Errors.SwitchExpressionEmpty); 1690 } else if (caseTypes.isEmpty()) { 1691 log.error(tree.pos(), 1692 Errors.SwitchExpressionNoResultExpressions); 1693 } 1694 1695 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1696 1697 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1698 } 1699 //where: 1700 CheckContext switchExpressionContext(CheckContext checkContext) { 1701 return new Check.NestedCheckContext(checkContext) { 1702 //this will use enclosing check context to check compatibility of 1703 //subexpression against target type; if we are in a method check context, 1704 //depending on whether boxing is allowed, we could have incompatibilities 1705 @Override 1706 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1707 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1708 } 1709 }; 1710 } 1711 1712 private void handleSwitch(JCTree switchTree, 1713 JCExpression selector, 1714 List<JCCase> cases, 1715 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1716 Type seltype = attribExpr(selector, env); 1717 1718 Env<AttrContext> switchEnv = 1719 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1720 1721 try { 1722 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1723 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1724 boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType); 1725 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1726 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1727 boolean patternSwitch; 1728 if (seltype.isPrimitive() && !intSwitch) { 1729 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1730 patternSwitch = true; 1731 } 1732 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1733 !intSwitch) { 1734 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1735 patternSwitch = true; 1736 } else { 1737 patternSwitch = cases.stream() 1738 .flatMap(c -> c.labels.stream()) 1739 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1740 TreeInfo.isNullCaseLabel(l)); 1741 } 1742 1743 // Attribute all cases and 1744 // check that there are no duplicate case labels or default clauses. 1745 Set<Object> constants = new HashSet<>(); // The set of case constants. 1746 boolean hasDefault = false; // Is there a default label? 1747 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1748 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1749 boolean hasNullPattern = false; // Is there a null pattern? 1750 CaseTree.CaseKind caseKind = null; 1751 boolean wasError = false; 1752 JCCaseLabel unconditionalCaseLabel = null; 1753 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1754 JCCase c = l.head; 1755 if (caseKind == null) { 1756 caseKind = c.caseKind; 1757 } else if (caseKind != c.caseKind && !wasError) { 1758 log.error(c.pos(), 1759 Errors.SwitchMixingCaseTypes); 1760 wasError = true; 1761 } 1762 MatchBindings currentBindings = null; 1763 MatchBindings guardBindings = null; 1764 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1765 JCCaseLabel label = labels.head; 1766 if (label instanceof JCConstantCaseLabel constLabel) { 1767 JCExpression expr = constLabel.expr; 1768 if (TreeInfo.isNull(expr)) { 1769 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1770 if (hasNullPattern) { 1771 log.error(label.pos(), Errors.DuplicateCaseLabel); 1772 } 1773 hasNullPattern = true; 1774 attribExpr(expr, switchEnv, seltype); 1775 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1776 } else if (enumSwitch) { 1777 Symbol sym = enumConstant(expr, seltype); 1778 if (sym == null) { 1779 if (allowPatternSwitch) { 1780 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1781 Symbol enumSym = TreeInfo.symbol(expr); 1782 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1783 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1784 } else if (!constants.add(enumSym)) { 1785 log.error(label.pos(), Errors.DuplicateCaseLabel); 1786 } 1787 } else { 1788 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1789 } 1790 } else if (!constants.add(sym)) { 1791 log.error(label.pos(), Errors.DuplicateCaseLabel); 1792 } 1793 } else if (errorEnumSwitch) { 1794 //error recovery: the selector is erroneous, and all the case labels 1795 //are identifiers. This could be an enum switch - don't report resolve 1796 //error for the case label: 1797 var prevResolveHelper = rs.basicLogResolveHelper; 1798 try { 1799 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1800 attribExpr(expr, switchEnv, seltype); 1801 } finally { 1802 rs.basicLogResolveHelper = prevResolveHelper; 1803 } 1804 } else { 1805 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1806 if (!pattype.hasTag(ERROR)) { 1807 if (pattype.constValue() == null) { 1808 Symbol s = TreeInfo.symbol(expr); 1809 if (s != null && s.kind == TYP) { 1810 log.error(expr.pos(), 1811 Errors.PatternExpected); 1812 } else if (s == null || !s.isEnum()) { 1813 log.error(expr.pos(), 1814 (stringSwitch ? Errors.StringConstReq 1815 : intSwitch ? Errors.ConstExprReq 1816 : Errors.PatternOrEnumReq)); 1817 } else if (!constants.add(s)) { 1818 log.error(label.pos(), Errors.DuplicateCaseLabel); 1819 } 1820 } 1821 else { 1822 if (!stringSwitch && !intSwitch && 1823 !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) && 1824 types.isSameType(types.unboxedTypeOrType(seltype), pattype))) { 1825 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1826 } else if (!constants.add(pattype.constValue())) { 1827 log.error(c.pos(), Errors.DuplicateCaseLabel); 1828 } 1829 } 1830 } 1831 } 1832 } else if (label instanceof JCDefaultCaseLabel def) { 1833 if (hasDefault) { 1834 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1835 } else if (hasUnconditionalPattern) { 1836 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1837 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1838 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 1839 } 1840 hasDefault = true; 1841 matchBindings = MatchBindingsComputer.EMPTY; 1842 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1843 //pattern 1844 JCPattern pat = patternlabel.pat; 1845 attribExpr(pat, switchEnv, seltype); 1846 Type primaryType = TreeInfo.primaryPatternType(pat); 1847 1848 if (primaryType.isPrimitive()) { 1849 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 1850 } else if (!primaryType.hasTag(TYPEVAR)) { 1851 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1852 } 1853 checkCastablePattern(pat.pos(), seltype, primaryType); 1854 Type patternType = types.erasure(primaryType); 1855 JCExpression guard = c.guard; 1856 if (guardBindings == null && guard != null) { 1857 MatchBindings afterPattern = matchBindings; 1858 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1859 try { 1860 attribExpr(guard, bodyEnv, syms.booleanType); 1861 } finally { 1862 bodyEnv.info.scope.leave(); 1863 } 1864 1865 guardBindings = matchBindings; 1866 matchBindings = afterPattern; 1867 1868 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1869 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1870 } 1871 } 1872 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1873 boolean unconditional = 1874 unguarded && 1875 !patternType.isErroneous() && 1876 types.isUnconditionallyExact(seltype, patternType); 1877 if (unconditional) { 1878 if (hasUnconditionalPattern) { 1879 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1880 } else if (hasDefault) { 1881 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1882 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1883 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 1884 } 1885 hasUnconditionalPattern = true; 1886 unconditionalCaseLabel = label; 1887 } 1888 lastPatternErroneous = patternType.isErroneous(); 1889 } else { 1890 Assert.error(); 1891 } 1892 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1893 } 1894 1895 if (guardBindings != null) { 1896 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1897 } 1898 1899 Env<AttrContext> caseEnv = 1900 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1901 try { 1902 attribCase.accept(c, caseEnv); 1903 } finally { 1904 caseEnv.info.scope.leave(); 1905 } 1906 addVars(c.stats, switchEnv.info.scope); 1907 1908 preFlow(c); 1909 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1910 } 1911 if (patternSwitch) { 1912 chk.checkSwitchCaseStructure(cases); 1913 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 1914 } 1915 if (switchTree.hasTag(SWITCH)) { 1916 ((JCSwitch) switchTree).hasUnconditionalPattern = 1917 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1918 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1919 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1920 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1921 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1922 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1923 } else { 1924 Assert.error(switchTree.getTag().name()); 1925 } 1926 } finally { 1927 switchEnv.info.scope.leave(); 1928 } 1929 } 1930 // where 1931 private ResultInfo caseLabelResultInfo(Type seltype) { 1932 return new ResultInfo(KindSelector.VAL_TYP, 1933 !seltype.hasTag(ERROR) ? seltype 1934 : Type.noType); 1935 } 1936 /** Add any variables defined in stats to the switch scope. */ 1937 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1938 for (;stats.nonEmpty(); stats = stats.tail) { 1939 JCTree stat = stats.head; 1940 if (stat.hasTag(VARDEF)) 1941 switchScope.enter(((JCVariableDecl) stat).sym); 1942 } 1943 } 1944 // where 1945 /** Return the selected enumeration constant symbol, or null. */ 1946 private Symbol enumConstant(JCTree tree, Type enumType) { 1947 if (tree.hasTag(IDENT)) { 1948 JCIdent ident = (JCIdent)tree; 1949 Name name = ident.name; 1950 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1951 if (sym.kind == VAR) { 1952 Symbol s = ident.sym = sym; 1953 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1954 ident.type = s.type; 1955 return ((s.flags_field & Flags.ENUM) == 0) 1956 ? null : s; 1957 } 1958 } 1959 } 1960 return null; 1961 } 1962 1963 public void visitSynchronized(JCSynchronized tree) { 1964 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 1965 if (identityType && isValueBased(tree.lock.type)) { 1966 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1967 } 1968 attribStat(tree.body, env); 1969 result = null; 1970 } 1971 // where 1972 private boolean isValueBased(Type t) { 1973 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1974 } 1975 1976 public void visitTry(JCTry tree) { 1977 // Create a new local environment with a local 1978 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1979 try { 1980 boolean isTryWithResource = tree.resources.nonEmpty(); 1981 // Create a nested environment for attributing the try block if needed 1982 Env<AttrContext> tryEnv = isTryWithResource ? 1983 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1984 localEnv; 1985 try { 1986 // Attribute resource declarations 1987 for (JCTree resource : tree.resources) { 1988 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1989 @Override 1990 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1991 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1992 } 1993 }; 1994 ResultInfo twrResult = 1995 new ResultInfo(KindSelector.VAR, 1996 syms.autoCloseableType, 1997 twrContext); 1998 if (resource.hasTag(VARDEF)) { 1999 attribStat(resource, tryEnv); 2000 twrResult.check(resource, resource.type); 2001 2002 //check that resource type cannot throw InterruptedException 2003 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2004 2005 VarSymbol var = ((JCVariableDecl) resource).sym; 2006 2007 var.flags_field |= Flags.FINAL; 2008 var.setData(ElementKind.RESOURCE_VARIABLE); 2009 } else { 2010 attribTree(resource, tryEnv, twrResult); 2011 } 2012 } 2013 // Attribute body 2014 attribStat(tree.body, tryEnv); 2015 } finally { 2016 if (isTryWithResource) 2017 tryEnv.info.scope.leave(); 2018 } 2019 2020 // Attribute catch clauses 2021 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2022 JCCatch c = l.head; 2023 Env<AttrContext> catchEnv = 2024 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2025 try { 2026 Type ctype = attribStat(c.param, catchEnv); 2027 if (TreeInfo.isMultiCatch(c)) { 2028 //multi-catch parameter is implicitly marked as final 2029 c.param.sym.flags_field |= FINAL | UNION; 2030 } 2031 if (c.param.sym.kind == VAR) { 2032 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2033 } 2034 chk.checkType(c.param.vartype.pos(), 2035 chk.checkClassType(c.param.vartype.pos(), ctype), 2036 syms.throwableType); 2037 attribStat(c.body, catchEnv); 2038 } finally { 2039 catchEnv.info.scope.leave(); 2040 } 2041 } 2042 2043 // Attribute finalizer 2044 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2045 result = null; 2046 } 2047 finally { 2048 localEnv.info.scope.leave(); 2049 } 2050 } 2051 2052 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2053 if (!resource.isErroneous() && 2054 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2055 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2056 Symbol close = syms.noSymbol; 2057 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler(); 2058 try { 2059 close = rs.resolveQualifiedMethod(pos, 2060 env, 2061 types.skipTypeVars(resource, false), 2062 names.close, 2063 List.nil(), 2064 List.nil()); 2065 } 2066 finally { 2067 log.popDiagnosticHandler(discardHandler); 2068 } 2069 if (close.kind == MTH && 2070 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2071 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2072 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2073 } 2074 } 2075 } 2076 2077 public void visitConditional(JCConditional tree) { 2078 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2079 MatchBindings condBindings = matchBindings; 2080 2081 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2082 isBooleanOrNumeric(env, tree)) ? 2083 PolyKind.STANDALONE : PolyKind.POLY; 2084 2085 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2086 //this means we are returning a poly conditional from void-compatible lambda expression 2087 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2088 result = tree.type = types.createErrorType(resultInfo.pt); 2089 return; 2090 } 2091 2092 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2093 unknownExprInfo : 2094 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2095 2096 2097 // x ? y : z 2098 // include x's bindings when true in y 2099 // include x's bindings when false in z 2100 2101 Type truetype; 2102 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2103 try { 2104 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2105 } finally { 2106 trueEnv.info.scope.leave(); 2107 } 2108 2109 MatchBindings trueBindings = matchBindings; 2110 2111 Type falsetype; 2112 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2113 try { 2114 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2115 } finally { 2116 falseEnv.info.scope.leave(); 2117 } 2118 2119 MatchBindings falseBindings = matchBindings; 2120 2121 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2122 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2123 List.of(truetype, falsetype)) : pt(); 2124 if (condtype.constValue() != null && 2125 truetype.constValue() != null && 2126 falsetype.constValue() != null && 2127 !owntype.hasTag(NONE)) { 2128 //constant folding 2129 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2130 } 2131 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2132 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2133 } 2134 //where 2135 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2136 switch (tree.getTag()) { 2137 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2138 ((JCLiteral)tree).typetag == BOOLEAN || 2139 ((JCLiteral)tree).typetag == BOT; 2140 case LAMBDA: case REFERENCE: return false; 2141 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2142 case CONDEXPR: 2143 JCConditional condTree = (JCConditional)tree; 2144 return isBooleanOrNumeric(env, condTree.truepart) && 2145 isBooleanOrNumeric(env, condTree.falsepart); 2146 case APPLY: 2147 JCMethodInvocation speculativeMethodTree = 2148 (JCMethodInvocation)deferredAttr.attribSpeculative( 2149 tree, env, unknownExprInfo, 2150 argumentAttr.withLocalCacheContext()); 2151 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2152 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2153 env.enclClass.type : 2154 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2155 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2156 return primitiveOrBoxed(owntype); 2157 case NEWCLASS: 2158 JCExpression className = 2159 removeClassParams.translate(((JCNewClass)tree).clazz); 2160 JCExpression speculativeNewClassTree = 2161 (JCExpression)deferredAttr.attribSpeculative( 2162 className, env, unknownTypeInfo, 2163 argumentAttr.withLocalCacheContext()); 2164 return primitiveOrBoxed(speculativeNewClassTree.type); 2165 default: 2166 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2167 argumentAttr.withLocalCacheContext()).type; 2168 return primitiveOrBoxed(speculativeType); 2169 } 2170 } 2171 //where 2172 boolean primitiveOrBoxed(Type t) { 2173 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2174 } 2175 2176 TreeTranslator removeClassParams = new TreeTranslator() { 2177 @Override 2178 public void visitTypeApply(JCTypeApply tree) { 2179 result = translate(tree.clazz); 2180 } 2181 }; 2182 2183 CheckContext conditionalContext(CheckContext checkContext) { 2184 return new Check.NestedCheckContext(checkContext) { 2185 //this will use enclosing check context to check compatibility of 2186 //subexpression against target type; if we are in a method check context, 2187 //depending on whether boxing is allowed, we could have incompatibilities 2188 @Override 2189 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2190 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2191 } 2192 }; 2193 } 2194 2195 /** Compute the type of a conditional expression, after 2196 * checking that it exists. See JLS 15.25. Does not take into 2197 * account the special case where condition and both arms 2198 * are constants. 2199 * 2200 * @param pos The source position to be used for error 2201 * diagnostics. 2202 * @param thentype The type of the expression's then-part. 2203 * @param elsetype The type of the expression's else-part. 2204 */ 2205 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2206 if (condTypes.isEmpty()) { 2207 return syms.objectType; //TODO: how to handle? 2208 } 2209 Type first = condTypes.head; 2210 // If same type, that is the result 2211 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2212 return first.baseType(); 2213 2214 List<Type> unboxedTypes = condTypes.stream() 2215 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2216 .collect(List.collector()); 2217 2218 // Otherwise, if both arms can be converted to a numeric 2219 // type, return the least numeric type that fits both arms 2220 // (i.e. return larger of the two, or return int if one 2221 // arm is short, the other is char). 2222 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2223 // If one arm has an integer subrange type (i.e., byte, 2224 // short, or char), and the other is an integer constant 2225 // that fits into the subrange, return the subrange type. 2226 for (Type type : unboxedTypes) { 2227 if (!type.getTag().isStrictSubRangeOf(INT)) { 2228 continue; 2229 } 2230 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2231 return type.baseType(); 2232 } 2233 2234 for (TypeTag tag : primitiveTags) { 2235 Type candidate = syms.typeOfTag[tag.ordinal()]; 2236 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2237 return candidate; 2238 } 2239 } 2240 } 2241 2242 // Those were all the cases that could result in a primitive 2243 condTypes = condTypes.stream() 2244 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2245 .collect(List.collector()); 2246 2247 for (Type type : condTypes) { 2248 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2249 return type.baseType(); 2250 } 2251 2252 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2253 2254 condTypes = condTypes.stream() 2255 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2256 .collect(List.collector()); 2257 2258 // both are known to be reference types. The result is 2259 // lub(thentype,elsetype). This cannot fail, as it will 2260 // always be possible to infer "Object" if nothing better. 2261 return types.lub(condTypes.stream() 2262 .map(t -> t.baseType()) 2263 .filter(t -> !t.hasTag(BOT)) 2264 .collect(List.collector())); 2265 } 2266 2267 static final TypeTag[] primitiveTags = new TypeTag[]{ 2268 BYTE, 2269 CHAR, 2270 SHORT, 2271 INT, 2272 LONG, 2273 FLOAT, 2274 DOUBLE, 2275 BOOLEAN, 2276 }; 2277 2278 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2279 return bindingEnv(env, env.tree, bindings); 2280 } 2281 2282 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2283 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2284 bindings.forEach(env1.info.scope::enter); 2285 return env1; 2286 } 2287 2288 public void visitIf(JCIf tree) { 2289 attribExpr(tree.cond, env, syms.booleanType); 2290 2291 // if (x) { y } [ else z ] 2292 // include x's bindings when true in y 2293 // include x's bindings when false in z 2294 2295 MatchBindings condBindings = matchBindings; 2296 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2297 2298 try { 2299 attribStat(tree.thenpart, thenEnv); 2300 } finally { 2301 thenEnv.info.scope.leave(); 2302 } 2303 2304 preFlow(tree.thenpart); 2305 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2306 boolean aliveAfterElse; 2307 2308 if (tree.elsepart != null) { 2309 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2310 try { 2311 attribStat(tree.elsepart, elseEnv); 2312 } finally { 2313 elseEnv.info.scope.leave(); 2314 } 2315 preFlow(tree.elsepart); 2316 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2317 } else { 2318 aliveAfterElse = true; 2319 } 2320 2321 chk.checkEmptyIf(tree); 2322 2323 List<BindingSymbol> afterIfBindings = List.nil(); 2324 2325 if (aliveAfterThen && !aliveAfterElse) { 2326 afterIfBindings = condBindings.bindingsWhenTrue; 2327 } else if (aliveAfterElse && !aliveAfterThen) { 2328 afterIfBindings = condBindings.bindingsWhenFalse; 2329 } 2330 2331 addBindings2Scope(tree, afterIfBindings); 2332 2333 result = null; 2334 } 2335 2336 void preFlow(JCTree tree) { 2337 attrRecover.doRecovery(); 2338 new PostAttrAnalyzer() { 2339 @Override 2340 public void scan(JCTree tree) { 2341 if (tree == null || 2342 (tree.type != null && 2343 tree.type == Type.stuckType)) { 2344 //don't touch stuck expressions! 2345 return; 2346 } 2347 super.scan(tree); 2348 } 2349 2350 @Override 2351 public void visitClassDef(JCClassDecl that) { 2352 if (that.sym != null) { 2353 // Method preFlow shouldn't visit class definitions 2354 // that have not been entered and attributed. 2355 // See JDK-8254557 and JDK-8203277 for more details. 2356 super.visitClassDef(that); 2357 } 2358 } 2359 2360 @Override 2361 public void visitLambda(JCLambda that) { 2362 if (that.type != null) { 2363 // Method preFlow shouldn't visit lambda expressions 2364 // that have not been entered and attributed. 2365 // See JDK-8254557 and JDK-8203277 for more details. 2366 super.visitLambda(that); 2367 } 2368 } 2369 }.scan(tree); 2370 } 2371 2372 public void visitExec(JCExpressionStatement tree) { 2373 //a fresh environment is required for 292 inference to work properly --- 2374 //see Infer.instantiatePolymorphicSignatureInstance() 2375 Env<AttrContext> localEnv = env.dup(tree); 2376 attribExpr(tree.expr, localEnv); 2377 result = null; 2378 } 2379 2380 public void visitBreak(JCBreak tree) { 2381 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2382 result = null; 2383 } 2384 2385 public void visitYield(JCYield tree) { 2386 if (env.info.yieldResult != null) { 2387 attribTree(tree.value, env, env.info.yieldResult); 2388 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2389 } else { 2390 log.error(tree.pos(), tree.value.hasTag(PARENS) 2391 ? Errors.NoSwitchExpressionQualify 2392 : Errors.NoSwitchExpression); 2393 attribTree(tree.value, env, unknownExprInfo); 2394 } 2395 result = null; 2396 } 2397 2398 public void visitContinue(JCContinue tree) { 2399 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2400 result = null; 2401 } 2402 //where 2403 /** Return the target of a break, continue or yield statement, 2404 * if it exists, report an error if not. 2405 * Note: The target of a labelled break or continue is the 2406 * (non-labelled) statement tree referred to by the label, 2407 * not the tree representing the labelled statement itself. 2408 * 2409 * @param pos The position to be used for error diagnostics 2410 * @param tag The tag of the jump statement. This is either 2411 * Tree.BREAK or Tree.CONTINUE. 2412 * @param label The label of the jump statement, or null if no 2413 * label is given. 2414 * @param env The environment current at the jump statement. 2415 */ 2416 private JCTree findJumpTarget(DiagnosticPosition pos, 2417 JCTree.Tag tag, 2418 Name label, 2419 Env<AttrContext> env) { 2420 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2421 2422 if (jumpTarget.snd != null) { 2423 log.error(pos, jumpTarget.snd); 2424 } 2425 2426 return jumpTarget.fst; 2427 } 2428 /** Return the target of a break or continue statement, if it exists, 2429 * report an error if not. 2430 * Note: The target of a labelled break or continue is the 2431 * (non-labelled) statement tree referred to by the label, 2432 * not the tree representing the labelled statement itself. 2433 * 2434 * @param tag The tag of the jump statement. This is either 2435 * Tree.BREAK or Tree.CONTINUE. 2436 * @param label The label of the jump statement, or null if no 2437 * label is given. 2438 * @param env The environment current at the jump statement. 2439 */ 2440 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2441 Name label, 2442 Env<AttrContext> env) { 2443 // Search environments outwards from the point of jump. 2444 Env<AttrContext> env1 = env; 2445 JCDiagnostic.Error pendingError = null; 2446 LOOP: 2447 while (env1 != null) { 2448 switch (env1.tree.getTag()) { 2449 case LABELLED: 2450 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2451 if (label == labelled.label) { 2452 // If jump is a continue, check that target is a loop. 2453 if (tag == CONTINUE) { 2454 if (!labelled.body.hasTag(DOLOOP) && 2455 !labelled.body.hasTag(WHILELOOP) && 2456 !labelled.body.hasTag(FORLOOP) && 2457 !labelled.body.hasTag(FOREACHLOOP)) { 2458 pendingError = Errors.NotLoopLabel(label); 2459 } 2460 // Found labelled statement target, now go inwards 2461 // to next non-labelled tree. 2462 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2463 } else { 2464 return Pair.of(labelled, pendingError); 2465 } 2466 } 2467 break; 2468 case DOLOOP: 2469 case WHILELOOP: 2470 case FORLOOP: 2471 case FOREACHLOOP: 2472 if (label == null) return Pair.of(env1.tree, pendingError); 2473 break; 2474 case SWITCH: 2475 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2476 break; 2477 case SWITCH_EXPRESSION: 2478 if (tag == YIELD) { 2479 return Pair.of(env1.tree, null); 2480 } else if (tag == BREAK) { 2481 pendingError = Errors.BreakOutsideSwitchExpression; 2482 } else { 2483 pendingError = Errors.ContinueOutsideSwitchExpression; 2484 } 2485 break; 2486 case LAMBDA: 2487 case METHODDEF: 2488 case CLASSDEF: 2489 break LOOP; 2490 default: 2491 } 2492 env1 = env1.next; 2493 } 2494 if (label != null) 2495 return Pair.of(null, Errors.UndefLabel(label)); 2496 else if (pendingError != null) 2497 return Pair.of(null, pendingError); 2498 else if (tag == CONTINUE) 2499 return Pair.of(null, Errors.ContOutsideLoop); 2500 else 2501 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2502 } 2503 2504 public void visitReturn(JCReturn tree) { 2505 // Check that there is an enclosing method which is 2506 // nested within than the enclosing class. 2507 if (env.info.returnResult == null) { 2508 log.error(tree.pos(), Errors.RetOutsideMeth); 2509 } else if (env.info.yieldResult != null) { 2510 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2511 if (tree.expr != null) { 2512 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2513 } 2514 } else if (!env.info.isLambda && 2515 env.enclMethod != null && 2516 TreeInfo.isCompactConstructor(env.enclMethod)) { 2517 log.error(env.enclMethod, 2518 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2519 } else { 2520 // Attribute return expression, if it exists, and check that 2521 // it conforms to result type of enclosing method. 2522 if (tree.expr != null) { 2523 if (env.info.returnResult.pt.hasTag(VOID)) { 2524 env.info.returnResult.checkContext.report(tree.expr.pos(), 2525 diags.fragment(Fragments.UnexpectedRetVal)); 2526 } 2527 attribTree(tree.expr, env, env.info.returnResult); 2528 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2529 !env.info.returnResult.pt.hasTag(NONE)) { 2530 env.info.returnResult.checkContext.report(tree.pos(), 2531 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2532 } 2533 } 2534 result = null; 2535 } 2536 2537 public void visitThrow(JCThrow tree) { 2538 Type owntype = attribExpr(tree.expr, env, Type.noType); 2539 chk.checkType(tree, owntype, syms.throwableType); 2540 result = null; 2541 } 2542 2543 public void visitAssert(JCAssert tree) { 2544 attribExpr(tree.cond, env, syms.booleanType); 2545 if (tree.detail != null) { 2546 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2547 } 2548 result = null; 2549 } 2550 2551 /** Visitor method for method invocations. 2552 * NOTE: The method part of an application will have in its type field 2553 * the return type of the method, not the method's type itself! 2554 */ 2555 public void visitApply(JCMethodInvocation tree) { 2556 // The local environment of a method application is 2557 // a new environment nested in the current one. 2558 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2559 2560 // The types of the actual method arguments. 2561 List<Type> argtypes; 2562 2563 // The types of the actual method type arguments. 2564 List<Type> typeargtypes = null; 2565 2566 Name methName = TreeInfo.name(tree.meth); 2567 2568 boolean isConstructorCall = 2569 methName == names._this || methName == names._super; 2570 2571 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2572 if (isConstructorCall) { 2573 2574 // Attribute arguments, yielding list of argument types. 2575 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2576 argtypes = argtypesBuf.toList(); 2577 typeargtypes = attribTypes(tree.typeargs, localEnv); 2578 2579 // Done with this()/super() parameters. End of constructor prologue. 2580 env.info.ctorPrologue = false; 2581 2582 // Variable `site' points to the class in which the called 2583 // constructor is defined. 2584 Type site = env.enclClass.sym.type; 2585 if (methName == names._super) { 2586 if (site == syms.objectType) { 2587 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2588 site = types.createErrorType(syms.objectType); 2589 } else { 2590 site = types.supertype(site); 2591 } 2592 } 2593 2594 if (site.hasTag(CLASS)) { 2595 Type encl = site.getEnclosingType(); 2596 while (encl != null && encl.hasTag(TYPEVAR)) 2597 encl = encl.getUpperBound(); 2598 if (encl.hasTag(CLASS)) { 2599 // we are calling a nested class 2600 2601 if (tree.meth.hasTag(SELECT)) { 2602 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2603 2604 // We are seeing a prefixed call, of the form 2605 // <expr>.super(...). 2606 // Check that the prefix expression conforms 2607 // to the outer instance type of the class. 2608 chk.checkRefType(qualifier.pos(), 2609 attribExpr(qualifier, localEnv, 2610 encl)); 2611 } 2612 } else if (tree.meth.hasTag(SELECT)) { 2613 log.error(tree.meth.pos(), 2614 Errors.IllegalQualNotIcls(site.tsym)); 2615 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2616 } 2617 2618 if (tree.meth.hasTag(IDENT)) { 2619 // non-qualified super(...) call; check whether explicit constructor 2620 // invocation is well-formed. If the super class is an inner class, 2621 // make sure that an appropriate implicit qualifier exists. If the super 2622 // class is a local class, make sure that the current class is defined 2623 // in the same context as the local class. 2624 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2625 } 2626 2627 // if we're calling a java.lang.Enum constructor, 2628 // prefix the implicit String and int parameters 2629 if (site.tsym == syms.enumSym) 2630 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2631 2632 // Resolve the called constructor under the assumption 2633 // that we are referring to a superclass instance of the 2634 // current instance (JLS ???). 2635 boolean selectSuperPrev = localEnv.info.selectSuper; 2636 localEnv.info.selectSuper = true; 2637 localEnv.info.pendingResolutionPhase = null; 2638 Symbol sym = rs.resolveConstructor( 2639 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2640 localEnv.info.selectSuper = selectSuperPrev; 2641 2642 // Set method symbol to resolved constructor... 2643 TreeInfo.setSymbol(tree.meth, sym); 2644 2645 // ...and check that it is legal in the current context. 2646 // (this will also set the tree's type) 2647 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2648 checkId(tree.meth, site, sym, localEnv, 2649 new ResultInfo(kind, mpt)); 2650 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2651 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2652 } 2653 // Otherwise, `site' is an error type and we do nothing 2654 result = tree.type = syms.voidType; 2655 } else { 2656 // Otherwise, we are seeing a regular method call. 2657 // Attribute the arguments, yielding list of argument types, ... 2658 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2659 argtypes = argtypesBuf.toList(); 2660 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2661 2662 // ... and attribute the method using as a prototype a methodtype 2663 // whose formal argument types is exactly the list of actual 2664 // arguments (this will also set the method symbol). 2665 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2666 localEnv.info.pendingResolutionPhase = null; 2667 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2668 2669 // Compute the result type. 2670 Type restype = mtype.getReturnType(); 2671 if (restype.hasTag(WILDCARD)) 2672 throw new AssertionError(mtype); 2673 2674 Type qualifier = (tree.meth.hasTag(SELECT)) 2675 ? ((JCFieldAccess) tree.meth).selected.type 2676 : env.enclClass.sym.type; 2677 Symbol msym = TreeInfo.symbol(tree.meth); 2678 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2679 2680 chk.checkRefTypes(tree.typeargs, typeargtypes); 2681 2682 // Check that value of resulting type is admissible in the 2683 // current context. Also, capture the return type 2684 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2685 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2686 } 2687 chk.validate(tree.typeargs, localEnv); 2688 } 2689 //where 2690 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2691 if (msym != null && 2692 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2693 methodName == names.getClass && 2694 argtypes.isEmpty()) { 2695 // as a special case, x.getClass() has type Class<? extends |X|> 2696 return new ClassType(restype.getEnclosingType(), 2697 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2698 BoundKind.EXTENDS, 2699 syms.boundClass)), 2700 restype.tsym, 2701 restype.getMetadata()); 2702 } else if (msym != null && 2703 msym.owner == syms.arrayClass && 2704 methodName == names.clone && 2705 types.isArray(qualifierType)) { 2706 // as a special case, array.clone() has a result that is 2707 // the same as static type of the array being cloned 2708 return qualifierType; 2709 } else { 2710 return restype; 2711 } 2712 } 2713 2714 /** Obtain a method type with given argument types. 2715 */ 2716 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2717 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2718 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2719 } 2720 2721 public void visitNewClass(final JCNewClass tree) { 2722 Type owntype = types.createErrorType(tree.type); 2723 2724 // The local environment of a class creation is 2725 // a new environment nested in the current one. 2726 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2727 2728 // The anonymous inner class definition of the new expression, 2729 // if one is defined by it. 2730 JCClassDecl cdef = tree.def; 2731 2732 // If enclosing class is given, attribute it, and 2733 // complete class name to be fully qualified 2734 JCExpression clazz = tree.clazz; // Class field following new 2735 JCExpression clazzid; // Identifier in class field 2736 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2737 annoclazzid = null; 2738 2739 if (clazz.hasTag(TYPEAPPLY)) { 2740 clazzid = ((JCTypeApply) clazz).clazz; 2741 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2742 annoclazzid = (JCAnnotatedType) clazzid; 2743 clazzid = annoclazzid.underlyingType; 2744 } 2745 } else { 2746 if (clazz.hasTag(ANNOTATED_TYPE)) { 2747 annoclazzid = (JCAnnotatedType) clazz; 2748 clazzid = annoclazzid.underlyingType; 2749 } else { 2750 clazzid = clazz; 2751 } 2752 } 2753 2754 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2755 2756 if (tree.encl != null) { 2757 // We are seeing a qualified new, of the form 2758 // <expr>.new C <...> (...) ... 2759 // In this case, we let clazz stand for the name of the 2760 // allocated class C prefixed with the type of the qualifier 2761 // expression, so that we can 2762 // resolve it with standard techniques later. I.e., if 2763 // <expr> has type T, then <expr>.new C <...> (...) 2764 // yields a clazz T.C. 2765 Type encltype = chk.checkRefType(tree.encl.pos(), 2766 attribExpr(tree.encl, env)); 2767 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2768 // from expr to the combined type, or not? Yes, do this. 2769 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2770 ((JCIdent) clazzid).name); 2771 2772 EndPosTable endPosTable = this.env.toplevel.endPositions; 2773 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2774 if (clazz.hasTag(ANNOTATED_TYPE)) { 2775 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2776 List<JCAnnotation> annos = annoType.annotations; 2777 2778 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2779 clazzid1 = make.at(tree.pos). 2780 TypeApply(clazzid1, 2781 ((JCTypeApply) clazz).arguments); 2782 } 2783 2784 clazzid1 = make.at(tree.pos). 2785 AnnotatedType(annos, clazzid1); 2786 } else if (clazz.hasTag(TYPEAPPLY)) { 2787 clazzid1 = make.at(tree.pos). 2788 TypeApply(clazzid1, 2789 ((JCTypeApply) clazz).arguments); 2790 } 2791 2792 clazz = clazzid1; 2793 } 2794 2795 // Attribute clazz expression and store 2796 // symbol + type back into the attributed tree. 2797 Type clazztype; 2798 2799 try { 2800 env.info.isAnonymousNewClass = tree.def != null; 2801 clazztype = TreeInfo.isEnumInit(env.tree) ? 2802 attribIdentAsEnumType(env, (JCIdent)clazz) : 2803 attribType(clazz, env); 2804 } finally { 2805 env.info.isAnonymousNewClass = false; 2806 } 2807 2808 clazztype = chk.checkDiamond(tree, clazztype); 2809 chk.validate(clazz, localEnv); 2810 if (tree.encl != null) { 2811 // We have to work in this case to store 2812 // symbol + type back into the attributed tree. 2813 tree.clazz.type = clazztype; 2814 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2815 clazzid.type = ((JCIdent) clazzid).sym.type; 2816 if (annoclazzid != null) { 2817 annoclazzid.type = clazzid.type; 2818 } 2819 if (!clazztype.isErroneous()) { 2820 if (cdef != null && clazztype.tsym.isInterface()) { 2821 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2822 } else if (clazztype.tsym.isStatic()) { 2823 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2824 } 2825 } 2826 } else { 2827 // Check for the existence of an apropos outer instance 2828 checkNewInnerClass(tree.pos(), env, clazztype, false); 2829 } 2830 2831 // Attribute constructor arguments. 2832 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2833 final KindSelector pkind = 2834 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2835 List<Type> argtypes = argtypesBuf.toList(); 2836 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2837 2838 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2839 // Enums may not be instantiated except implicitly 2840 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2841 (!env.tree.hasTag(VARDEF) || 2842 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2843 ((JCVariableDecl) env.tree).init != tree)) 2844 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2845 2846 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2847 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2848 boolean skipNonDiamondPath = false; 2849 // Check that class is not abstract 2850 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2851 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2852 log.error(tree.pos(), 2853 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2854 skipNonDiamondPath = true; 2855 } else if (cdef != null && clazztype.tsym.isInterface()) { 2856 // Check that no constructor arguments are given to 2857 // anonymous classes implementing an interface 2858 if (!argtypes.isEmpty()) 2859 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2860 2861 if (!typeargtypes.isEmpty()) 2862 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2863 2864 // Error recovery: pretend no arguments were supplied. 2865 argtypes = List.nil(); 2866 typeargtypes = List.nil(); 2867 skipNonDiamondPath = true; 2868 } 2869 if (TreeInfo.isDiamond(tree)) { 2870 ClassType site = new ClassType(clazztype.getEnclosingType(), 2871 clazztype.tsym.type.getTypeArguments(), 2872 clazztype.tsym, 2873 clazztype.getMetadata()); 2874 2875 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2876 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2877 diamondEnv.info.pendingResolutionPhase = null; 2878 2879 //if the type of the instance creation expression is a class type 2880 //apply method resolution inference (JLS 15.12.2.7). The return type 2881 //of the resolved constructor will be a partially instantiated type 2882 Symbol constructor = rs.resolveDiamond(tree.pos(), 2883 diamondEnv, 2884 site, 2885 argtypes, 2886 typeargtypes); 2887 tree.constructor = constructor.baseSymbol(); 2888 2889 final TypeSymbol csym = clazztype.tsym; 2890 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2891 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2892 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2893 constructorType = checkId(tree, site, 2894 constructor, 2895 diamondEnv, 2896 diamondResult); 2897 2898 tree.clazz.type = types.createErrorType(clazztype); 2899 if (!constructorType.isErroneous()) { 2900 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2901 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2902 } 2903 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2904 } 2905 2906 // Resolve the called constructor under the assumption 2907 // that we are referring to a superclass instance of the 2908 // current instance (JLS ???). 2909 else if (!skipNonDiamondPath) { 2910 //the following code alters some of the fields in the current 2911 //AttrContext - hence, the current context must be dup'ed in 2912 //order to avoid downstream failures 2913 Env<AttrContext> rsEnv = localEnv.dup(tree); 2914 rsEnv.info.selectSuper = cdef != null; 2915 rsEnv.info.pendingResolutionPhase = null; 2916 tree.constructor = rs.resolveConstructor( 2917 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2918 if (cdef == null) { //do not check twice! 2919 tree.constructorType = checkId(tree, 2920 clazztype, 2921 tree.constructor, 2922 rsEnv, 2923 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2924 if (rsEnv.info.lastResolveVarargs()) 2925 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2926 } 2927 } 2928 2929 if (cdef != null) { 2930 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2931 return; 2932 } 2933 2934 if (tree.constructor != null && tree.constructor.kind == MTH) 2935 owntype = clazztype; 2936 } 2937 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2938 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2939 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2940 //we need to wait for inference to finish and then replace inference vars in the constructor type 2941 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2942 instantiatedContext -> { 2943 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2944 }); 2945 } 2946 chk.validate(tree.typeargs, localEnv); 2947 } 2948 2949 // where 2950 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2951 JCClassDecl cdef, Env<AttrContext> localEnv, 2952 List<Type> argtypes, List<Type> typeargtypes, 2953 KindSelector pkind) { 2954 // We are seeing an anonymous class instance creation. 2955 // In this case, the class instance creation 2956 // expression 2957 // 2958 // E.new <typeargs1>C<typargs2>(args) { ... } 2959 // 2960 // is represented internally as 2961 // 2962 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2963 // 2964 // This expression is then *transformed* as follows: 2965 // 2966 // (1) add an extends or implements clause 2967 // (2) add a constructor. 2968 // 2969 // For instance, if C is a class, and ET is the type of E, 2970 // the expression 2971 // 2972 // E.new <typeargs1>C<typargs2>(args) { ... } 2973 // 2974 // is translated to (where X is a fresh name and typarams is the 2975 // parameter list of the super constructor): 2976 // 2977 // new <typeargs1>X(<*nullchk*>E, args) where 2978 // X extends C<typargs2> { 2979 // <typarams> X(ET e, args) { 2980 // e.<typeargs1>super(args) 2981 // } 2982 // ... 2983 // } 2984 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2985 Type enclType = clazztype.getEnclosingType(); 2986 if (enclType != null && 2987 enclType.hasTag(CLASS) && 2988 !chk.checkDenotable((ClassType)enclType)) { 2989 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2990 } 2991 final boolean isDiamond = TreeInfo.isDiamond(tree); 2992 if (isDiamond 2993 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2994 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2995 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2996 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 2997 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 2998 instantiatedContext -> { 2999 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3000 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3001 ResultInfo prevResult = this.resultInfo; 3002 try { 3003 this.resultInfo = resultInfoForClassDefinition; 3004 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3005 dupLocalEnv, argtypes, typeargtypes, pkind); 3006 } finally { 3007 this.resultInfo = prevResult; 3008 } 3009 }); 3010 } else { 3011 if (isDiamond && clazztype.hasTag(CLASS)) { 3012 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3013 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3014 // One or more types inferred in the previous steps is non-denotable. 3015 Fragment fragment = Diamond(clazztype.tsym); 3016 log.error(tree.clazz.pos(), 3017 Errors.CantApplyDiamond1( 3018 fragment, 3019 invalidDiamondArgs.size() > 1 ? 3020 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3021 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3022 } 3023 // For <>(){}, inferred types must also be accessible. 3024 for (Type t : clazztype.getTypeArguments()) { 3025 rs.checkAccessibleType(env, t); 3026 } 3027 } 3028 3029 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3030 // false for isInterface call even when the original type is an interface. 3031 boolean implementing = clazztype.tsym.isInterface() || 3032 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3033 clazztype.getOriginalType().tsym.isInterface(); 3034 3035 if (implementing) { 3036 cdef.implementing = List.of(clazz); 3037 } else { 3038 cdef.extending = clazz; 3039 } 3040 3041 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3042 rs.isSerializable(clazztype)) { 3043 localEnv.info.isSerializable = true; 3044 } 3045 3046 attribStat(cdef, localEnv); 3047 3048 List<Type> finalargtypes; 3049 // If an outer instance is given, 3050 // prefix it to the constructor arguments 3051 // and delete it from the new expression 3052 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3053 finalargtypes = argtypes.prepend(tree.encl.type); 3054 } else { 3055 finalargtypes = argtypes; 3056 } 3057 3058 // Reassign clazztype and recompute constructor. As this necessarily involves 3059 // another attribution pass for deferred types in the case of <>, replicate 3060 // them. Original arguments have right decorations already. 3061 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3062 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3063 } 3064 3065 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3066 : cdef.sym.type; 3067 Symbol sym = tree.constructor = rs.resolveConstructor( 3068 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3069 Assert.check(!sym.kind.isResolutionError()); 3070 tree.constructor = sym; 3071 tree.constructorType = checkId(tree, 3072 clazztype, 3073 tree.constructor, 3074 localEnv, 3075 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3076 } 3077 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3078 clazztype : types.createErrorType(tree.type); 3079 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3080 chk.validate(tree.typeargs, localEnv); 3081 } 3082 3083 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3084 return new Check.NestedCheckContext(checkContext) { 3085 @Override 3086 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3087 enclosingContext.report(clazz.clazz, 3088 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3089 } 3090 }; 3091 } 3092 3093 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3094 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3095 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3096 (!isLocal && !type.tsym.isInner()) || 3097 (isSuper && env.enclClass.sym.isAnonymous())) { 3098 // nothing to check 3099 return; 3100 } 3101 Symbol res = isLocal ? 3102 rs.findLocalClassOwner(env, type.tsym) : 3103 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3104 if (res.exists()) { 3105 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3106 } else { 3107 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3108 } 3109 } 3110 3111 /** Make an attributed null check tree. 3112 */ 3113 public JCExpression makeNullCheck(JCExpression arg) { 3114 // optimization: new Outer() can never be null; skip null check 3115 if (arg.getTag() == NEWCLASS) 3116 return arg; 3117 // optimization: X.this is never null; skip null check 3118 Name name = TreeInfo.name(arg); 3119 if (name == names._this || name == names._super) return arg; 3120 3121 JCTree.Tag optag = NULLCHK; 3122 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3123 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3124 tree.type = arg.type; 3125 return tree; 3126 } 3127 3128 public void visitNewArray(JCNewArray tree) { 3129 Type owntype = types.createErrorType(tree.type); 3130 Env<AttrContext> localEnv = env.dup(tree); 3131 Type elemtype; 3132 if (tree.elemtype != null) { 3133 elemtype = attribType(tree.elemtype, localEnv); 3134 chk.validate(tree.elemtype, localEnv); 3135 owntype = elemtype; 3136 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3137 attribExpr(l.head, localEnv, syms.intType); 3138 owntype = new ArrayType(owntype, syms.arrayClass); 3139 } 3140 } else { 3141 // we are seeing an untyped aggregate { ... } 3142 // this is allowed only if the prototype is an array 3143 if (pt().hasTag(ARRAY)) { 3144 elemtype = types.elemtype(pt()); 3145 } else { 3146 if (!pt().hasTag(ERROR) && 3147 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3148 log.error(tree.pos(), 3149 Errors.IllegalInitializerForType(pt())); 3150 } 3151 elemtype = types.createErrorType(pt()); 3152 } 3153 } 3154 if (tree.elems != null) { 3155 attribExprs(tree.elems, localEnv, elemtype); 3156 owntype = new ArrayType(elemtype, syms.arrayClass); 3157 } 3158 if (!types.isReifiable(elemtype)) 3159 log.error(tree.pos(), Errors.GenericArrayCreation); 3160 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3161 } 3162 3163 /* 3164 * A lambda expression can only be attributed when a target-type is available. 3165 * In addition, if the target-type is that of a functional interface whose 3166 * descriptor contains inference variables in argument position the lambda expression 3167 * is 'stuck' (see DeferredAttr). 3168 */ 3169 @Override 3170 public void visitLambda(final JCLambda that) { 3171 boolean wrongContext = false; 3172 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3173 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3174 //lambda only allowed in assignment or method invocation/cast context 3175 log.error(that.pos(), Errors.UnexpectedLambda); 3176 } 3177 resultInfo = recoveryInfo; 3178 wrongContext = true; 3179 } 3180 //create an environment for attribution of the lambda expression 3181 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3182 boolean needsRecovery = 3183 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3184 try { 3185 if (needsRecovery && rs.isSerializable(pt())) { 3186 localEnv.info.isSerializable = true; 3187 localEnv.info.isSerializableLambda = true; 3188 } 3189 List<Type> explicitParamTypes = null; 3190 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3191 //attribute lambda parameters 3192 attribStats(that.params, localEnv); 3193 explicitParamTypes = TreeInfo.types(that.params); 3194 } 3195 3196 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3197 Type currentTarget = targetInfo.target; 3198 Type lambdaType = targetInfo.descriptor; 3199 3200 if (currentTarget.isErroneous()) { 3201 result = that.type = currentTarget; 3202 return; 3203 } 3204 3205 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3206 3207 if (lambdaType.hasTag(FORALL)) { 3208 //lambda expression target desc cannot be a generic method 3209 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3210 kindName(currentTarget.tsym), 3211 currentTarget.tsym); 3212 resultInfo.checkContext.report(that, diags.fragment(msg)); 3213 result = that.type = types.createErrorType(pt()); 3214 return; 3215 } 3216 3217 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3218 //add param type info in the AST 3219 List<Type> actuals = lambdaType.getParameterTypes(); 3220 List<JCVariableDecl> params = that.params; 3221 3222 boolean arityMismatch = false; 3223 3224 while (params.nonEmpty()) { 3225 if (actuals.isEmpty()) { 3226 //not enough actuals to perform lambda parameter inference 3227 arityMismatch = true; 3228 } 3229 //reset previously set info 3230 Type argType = arityMismatch ? 3231 syms.errType : 3232 actuals.head; 3233 if (params.head.isImplicitlyTyped()) { 3234 setSyntheticVariableType(params.head, argType); 3235 } 3236 params.head.sym = null; 3237 actuals = actuals.isEmpty() ? 3238 actuals : 3239 actuals.tail; 3240 params = params.tail; 3241 } 3242 3243 //attribute lambda parameters 3244 attribStats(that.params, localEnv); 3245 3246 if (arityMismatch) { 3247 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3248 result = that.type = types.createErrorType(currentTarget); 3249 return; 3250 } 3251 } 3252 3253 //from this point on, no recovery is needed; if we are in assignment context 3254 //we will be able to attribute the whole lambda body, regardless of errors; 3255 //if we are in a 'check' method context, and the lambda is not compatible 3256 //with the target-type, it will be recovered anyway in Attr.checkId 3257 needsRecovery = false; 3258 3259 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3260 lambdaBodyResult(that, lambdaType, resultInfo); 3261 3262 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3263 attribTree(that.getBody(), localEnv, bodyResultInfo); 3264 } else { 3265 JCBlock body = (JCBlock)that.body; 3266 if (body == breakTree && 3267 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3268 breakTreeFound(copyEnv(localEnv)); 3269 } 3270 attribStats(body.stats, localEnv); 3271 } 3272 3273 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3274 3275 boolean isSpeculativeRound = 3276 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3277 3278 preFlow(that); 3279 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3280 3281 that.type = currentTarget; //avoids recovery at this stage 3282 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3283 3284 if (!isSpeculativeRound) { 3285 //add thrown types as bounds to the thrown types free variables if needed: 3286 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3287 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3288 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3289 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3290 } 3291 } 3292 3293 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3294 } 3295 result = wrongContext ? that.type = types.createErrorType(pt()) 3296 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3297 } catch (Types.FunctionDescriptorLookupError ex) { 3298 JCDiagnostic cause = ex.getDiagnostic(); 3299 resultInfo.checkContext.report(that, cause); 3300 result = that.type = types.createErrorType(pt()); 3301 return; 3302 } catch (CompletionFailure cf) { 3303 chk.completionError(that.pos(), cf); 3304 } catch (Throwable t) { 3305 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3306 //as that would likely cause the same exception again. 3307 needsRecovery = false; 3308 throw t; 3309 } finally { 3310 localEnv.info.scope.leave(); 3311 if (needsRecovery) { 3312 Type prevResult = result; 3313 try { 3314 attribTree(that, env, recoveryInfo); 3315 } finally { 3316 if (result == Type.recoveryType) { 3317 result = prevResult; 3318 } 3319 } 3320 } 3321 } 3322 } 3323 //where 3324 class TargetInfo { 3325 Type target; 3326 Type descriptor; 3327 3328 public TargetInfo(Type target, Type descriptor) { 3329 this.target = target; 3330 this.descriptor = descriptor; 3331 } 3332 } 3333 3334 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3335 Type lambdaType; 3336 Type currentTarget = resultInfo.pt; 3337 if (resultInfo.pt != Type.recoveryType) { 3338 /* We need to adjust the target. If the target is an 3339 * intersection type, for example: SAM & I1 & I2 ... 3340 * the target will be updated to SAM 3341 */ 3342 currentTarget = targetChecker.visit(currentTarget, that); 3343 if (!currentTarget.isIntersection()) { 3344 if (explicitParamTypes != null) { 3345 currentTarget = infer.instantiateFunctionalInterface(that, 3346 currentTarget, explicitParamTypes, resultInfo.checkContext); 3347 } 3348 currentTarget = types.removeWildcards(currentTarget); 3349 lambdaType = types.findDescriptorType(currentTarget); 3350 } else { 3351 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3352 ListBuffer<Type> components = new ListBuffer<>(); 3353 for (Type bound : ict.getExplicitComponents()) { 3354 if (explicitParamTypes != null) { 3355 try { 3356 bound = infer.instantiateFunctionalInterface(that, 3357 bound, explicitParamTypes, resultInfo.checkContext); 3358 } catch (FunctionDescriptorLookupError t) { 3359 // do nothing 3360 } 3361 } 3362 bound = types.removeWildcards(bound); 3363 components.add(bound); 3364 } 3365 currentTarget = types.makeIntersectionType(components.toList()); 3366 currentTarget.tsym.flags_field |= INTERFACE; 3367 lambdaType = types.findDescriptorType(currentTarget); 3368 } 3369 3370 } else { 3371 currentTarget = Type.recoveryType; 3372 lambdaType = fallbackDescriptorType(that); 3373 } 3374 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3375 //lambda expression target desc cannot be a generic method 3376 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3377 kindName(currentTarget.tsym), 3378 currentTarget.tsym); 3379 resultInfo.checkContext.report(that, diags.fragment(msg)); 3380 currentTarget = types.createErrorType(pt()); 3381 } 3382 return new TargetInfo(currentTarget, lambdaType); 3383 } 3384 3385 void preFlow(JCLambda tree) { 3386 attrRecover.doRecovery(); 3387 new PostAttrAnalyzer() { 3388 @Override 3389 public void scan(JCTree tree) { 3390 if (tree == null || 3391 (tree.type != null && 3392 tree.type == Type.stuckType)) { 3393 //don't touch stuck expressions! 3394 return; 3395 } 3396 super.scan(tree); 3397 } 3398 3399 @Override 3400 public void visitClassDef(JCClassDecl that) { 3401 // or class declaration trees! 3402 } 3403 3404 public void visitLambda(JCLambda that) { 3405 // or lambda expressions! 3406 } 3407 }.scan(tree.body); 3408 } 3409 3410 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3411 3412 @Override 3413 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3414 return t.isIntersection() ? 3415 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3416 } 3417 3418 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3419 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3420 return ict; 3421 } 3422 3423 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3424 ListBuffer<Type> targs = new ListBuffer<>(); 3425 ListBuffer<Type> supertypes = new ListBuffer<>(); 3426 for (Type i : ict.interfaces_field) { 3427 if (i.isParameterized()) { 3428 targs.appendList(i.tsym.type.allparams()); 3429 } 3430 supertypes.append(i.tsym.type); 3431 } 3432 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3433 notionalIntf.allparams_field = targs.toList(); 3434 notionalIntf.tsym.flags_field |= INTERFACE; 3435 return notionalIntf.tsym; 3436 } 3437 }; 3438 3439 private Type fallbackDescriptorType(JCExpression tree) { 3440 switch (tree.getTag()) { 3441 case LAMBDA: 3442 JCLambda lambda = (JCLambda)tree; 3443 List<Type> argtypes = List.nil(); 3444 for (JCVariableDecl param : lambda.params) { 3445 argtypes = param.vartype != null && param.vartype.type != null ? 3446 argtypes.append(param.vartype.type) : 3447 argtypes.append(syms.errType); 3448 } 3449 return new MethodType(argtypes, Type.recoveryType, 3450 List.of(syms.throwableType), syms.methodClass); 3451 case REFERENCE: 3452 return new MethodType(List.nil(), Type.recoveryType, 3453 List.of(syms.throwableType), syms.methodClass); 3454 default: 3455 Assert.error("Cannot get here!"); 3456 } 3457 return null; 3458 } 3459 3460 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3461 final InferenceContext inferenceContext, final Type... ts) { 3462 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3463 } 3464 3465 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3466 final InferenceContext inferenceContext, final List<Type> ts) { 3467 if (inferenceContext.free(ts)) { 3468 inferenceContext.addFreeTypeListener(ts, 3469 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3470 } else { 3471 for (Type t : ts) { 3472 rs.checkAccessibleType(env, t); 3473 } 3474 } 3475 } 3476 3477 /** 3478 * Lambda/method reference have a special check context that ensures 3479 * that i.e. a lambda return type is compatible with the expected 3480 * type according to both the inherited context and the assignment 3481 * context. 3482 */ 3483 class FunctionalReturnContext extends Check.NestedCheckContext { 3484 3485 FunctionalReturnContext(CheckContext enclosingContext) { 3486 super(enclosingContext); 3487 } 3488 3489 @Override 3490 public boolean compatible(Type found, Type req, Warner warn) { 3491 //return type must be compatible in both current context and assignment context 3492 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3493 } 3494 3495 @Override 3496 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3497 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3498 } 3499 } 3500 3501 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3502 3503 JCExpression expr; 3504 boolean expStmtExpected; 3505 3506 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3507 super(enclosingContext); 3508 this.expr = expr; 3509 } 3510 3511 @Override 3512 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3513 if (expStmtExpected) { 3514 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3515 } else { 3516 super.report(pos, details); 3517 } 3518 } 3519 3520 @Override 3521 public boolean compatible(Type found, Type req, Warner warn) { 3522 //a void return is compatible with an expression statement lambda 3523 if (req.hasTag(VOID)) { 3524 expStmtExpected = true; 3525 return TreeInfo.isExpressionStatement(expr); 3526 } else { 3527 return super.compatible(found, req, warn); 3528 } 3529 } 3530 } 3531 3532 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3533 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3534 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3535 new FunctionalReturnContext(resultInfo.checkContext); 3536 3537 return descriptor.getReturnType() == Type.recoveryType ? 3538 recoveryInfo : 3539 new ResultInfo(KindSelector.VAL, 3540 descriptor.getReturnType(), funcContext); 3541 } 3542 3543 /** 3544 * Lambda compatibility. Check that given return types, thrown types, parameter types 3545 * are compatible with the expected functional interface descriptor. This means that: 3546 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3547 * types must be compatible with the return type of the expected descriptor. 3548 */ 3549 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3550 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3551 3552 //return values have already been checked - but if lambda has no return 3553 //values, we must ensure that void/value compatibility is correct; 3554 //this amounts at checking that, if a lambda body can complete normally, 3555 //the descriptor's return type must be void 3556 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3557 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3558 Fragment msg = 3559 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3560 checkContext.report(tree, 3561 diags.fragment(msg)); 3562 } 3563 3564 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3565 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3566 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3567 } 3568 } 3569 3570 /* This method returns an environment to be used to attribute a lambda 3571 * expression. 3572 * 3573 * The owner of this environment is a method symbol. If the current owner 3574 * is not a method (e.g. if the lambda occurs in a field initializer), then 3575 * a synthetic method symbol owner is created. 3576 */ 3577 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3578 Env<AttrContext> lambdaEnv; 3579 Symbol owner = env.info.scope.owner; 3580 if (owner.kind == VAR && owner.owner.kind == TYP) { 3581 // If the lambda is nested in a field initializer, we need to create a fake init method. 3582 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3583 // init symbol's owner). 3584 ClassSymbol enclClass = owner.enclClass(); 3585 Name initName = owner.isStatic() ? names.clinit : names.init; 3586 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3587 initName, initBlockType, enclClass); 3588 initSym.params = List.nil(); 3589 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3590 } else { 3591 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3592 } 3593 lambdaEnv.info.yieldResult = null; 3594 lambdaEnv.info.isLambda = true; 3595 return lambdaEnv; 3596 } 3597 3598 @Override 3599 public void visitReference(final JCMemberReference that) { 3600 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3601 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3602 //method reference only allowed in assignment or method invocation/cast context 3603 log.error(that.pos(), Errors.UnexpectedMref); 3604 } 3605 result = that.type = types.createErrorType(pt()); 3606 return; 3607 } 3608 final Env<AttrContext> localEnv = env.dup(that); 3609 try { 3610 //attribute member reference qualifier - if this is a constructor 3611 //reference, the expected kind must be a type 3612 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3613 3614 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3615 exprType = chk.checkConstructorRefType(that.expr, exprType); 3616 if (!exprType.isErroneous() && 3617 exprType.isRaw() && 3618 that.typeargs != null) { 3619 log.error(that.expr.pos(), 3620 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3621 Fragments.MrefInferAndExplicitParams)); 3622 exprType = types.createErrorType(exprType); 3623 } 3624 } 3625 3626 if (exprType.isErroneous()) { 3627 //if the qualifier expression contains problems, 3628 //give up attribution of method reference 3629 result = that.type = exprType; 3630 return; 3631 } 3632 3633 if (TreeInfo.isStaticSelector(that.expr, names)) { 3634 //if the qualifier is a type, validate it; raw warning check is 3635 //omitted as we don't know at this stage as to whether this is a 3636 //raw selector (because of inference) 3637 chk.validate(that.expr, env, false); 3638 } else { 3639 Symbol lhsSym = TreeInfo.symbol(that.expr); 3640 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3641 } 3642 //attrib type-arguments 3643 List<Type> typeargtypes = List.nil(); 3644 if (that.typeargs != null) { 3645 typeargtypes = attribTypes(that.typeargs, localEnv); 3646 } 3647 3648 boolean isTargetSerializable = 3649 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3650 rs.isSerializable(pt()); 3651 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3652 Type currentTarget = targetInfo.target; 3653 Type desc = targetInfo.descriptor; 3654 3655 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3656 List<Type> argtypes = desc.getParameterTypes(); 3657 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3658 3659 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3660 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3661 } 3662 3663 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3664 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3665 try { 3666 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3667 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3668 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3669 } finally { 3670 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3671 } 3672 3673 Symbol refSym = refResult.fst; 3674 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3675 3676 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3677 * JDK-8075541 3678 */ 3679 if (refSym.kind != MTH) { 3680 boolean targetError; 3681 switch (refSym.kind) { 3682 case ABSENT_MTH: 3683 targetError = false; 3684 break; 3685 case WRONG_MTH: 3686 case WRONG_MTHS: 3687 case AMBIGUOUS: 3688 case HIDDEN: 3689 case STATICERR: 3690 targetError = true; 3691 break; 3692 default: 3693 Assert.error("unexpected result kind " + refSym.kind); 3694 targetError = false; 3695 } 3696 3697 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3698 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3699 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3700 3701 JCDiagnostic diag = diags.create(log.currentSource(), that, 3702 targetError ? 3703 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3704 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3705 3706 if (targetError && currentTarget == Type.recoveryType) { 3707 //a target error doesn't make sense during recovery stage 3708 //as we don't know what actual parameter types are 3709 result = that.type = currentTarget; 3710 return; 3711 } else { 3712 if (targetError) { 3713 resultInfo.checkContext.report(that, diag); 3714 } else { 3715 log.report(diag); 3716 } 3717 result = that.type = types.createErrorType(currentTarget); 3718 return; 3719 } 3720 } 3721 3722 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3723 that.kind = lookupHelper.referenceKind(that.sym); 3724 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3725 3726 if (desc.getReturnType() == Type.recoveryType) { 3727 // stop here 3728 result = that.type = currentTarget; 3729 return; 3730 } 3731 3732 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3733 checkNewInnerClass(that.pos(), env, exprType, false); 3734 } 3735 3736 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3737 3738 if (that.getMode() == ReferenceMode.INVOKE && 3739 TreeInfo.isStaticSelector(that.expr, names) && 3740 that.kind.isUnbound() && 3741 lookupHelper.site.isRaw()) { 3742 chk.checkRaw(that.expr, localEnv); 3743 } 3744 3745 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3746 exprType.getTypeArguments().nonEmpty()) { 3747 //static ref with class type-args 3748 log.error(that.expr.pos(), 3749 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3750 Fragments.StaticMrefWithTargs)); 3751 result = that.type = types.createErrorType(currentTarget); 3752 return; 3753 } 3754 3755 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3756 // Check that super-qualified symbols are not abstract (JLS) 3757 rs.checkNonAbstract(that.pos(), that.sym); 3758 } 3759 3760 if (isTargetSerializable) { 3761 chk.checkAccessFromSerializableElement(that, true); 3762 } 3763 } 3764 3765 ResultInfo checkInfo = 3766 resultInfo.dup(newMethodTemplate( 3767 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3768 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3769 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3770 3771 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3772 3773 if (that.kind.isUnbound() && 3774 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3775 //re-generate inference constraints for unbound receiver 3776 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3777 //cannot happen as this has already been checked - we just need 3778 //to regenerate the inference constraints, as that has been lost 3779 //as a result of the call to inferenceContext.save() 3780 Assert.error("Can't get here"); 3781 } 3782 } 3783 3784 if (!refType.isErroneous()) { 3785 refType = types.createMethodTypeWithReturn(refType, 3786 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3787 } 3788 3789 //go ahead with standard method reference compatibility check - note that param check 3790 //is a no-op (as this has been taken care during method applicability) 3791 boolean isSpeculativeRound = 3792 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3793 3794 that.type = currentTarget; //avoids recovery at this stage 3795 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3796 if (!isSpeculativeRound) { 3797 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3798 } 3799 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3800 } catch (Types.FunctionDescriptorLookupError ex) { 3801 JCDiagnostic cause = ex.getDiagnostic(); 3802 resultInfo.checkContext.report(that, cause); 3803 result = that.type = types.createErrorType(pt()); 3804 return; 3805 } 3806 } 3807 //where 3808 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3809 //if this is a constructor reference, the expected kind must be a type 3810 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3811 KindSelector.VAL_TYP : KindSelector.TYP, 3812 Type.noType); 3813 } 3814 3815 3816 @SuppressWarnings("fallthrough") 3817 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3818 InferenceContext inferenceContext = checkContext.inferenceContext(); 3819 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3820 3821 Type resType; 3822 switch (tree.getMode()) { 3823 case NEW: 3824 if (!tree.expr.type.isRaw()) { 3825 resType = tree.expr.type; 3826 break; 3827 } 3828 default: 3829 resType = refType.getReturnType(); 3830 } 3831 3832 Type incompatibleReturnType = resType; 3833 3834 if (returnType.hasTag(VOID)) { 3835 incompatibleReturnType = null; 3836 } 3837 3838 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3839 if (resType.isErroneous() || 3840 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3841 checkContext.checkWarner(tree, resType, returnType))) { 3842 incompatibleReturnType = null; 3843 } 3844 } 3845 3846 if (incompatibleReturnType != null) { 3847 Fragment msg = 3848 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3849 checkContext.report(tree, diags.fragment(msg)); 3850 } else { 3851 if (inferenceContext.free(refType)) { 3852 // we need to wait for inference to finish and then replace inference vars in the referent type 3853 inferenceContext.addFreeTypeListener(List.of(refType), 3854 instantiatedContext -> { 3855 tree.referentType = instantiatedContext.asInstType(refType); 3856 }); 3857 } else { 3858 tree.referentType = refType; 3859 } 3860 } 3861 3862 if (!speculativeAttr) { 3863 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3864 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3865 } 3866 } 3867 } 3868 3869 boolean checkExConstraints( 3870 List<Type> thrownByFuncExpr, 3871 List<Type> thrownAtFuncType, 3872 InferenceContext inferenceContext) { 3873 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3874 * are not proper types 3875 */ 3876 List<Type> nonProperList = thrownAtFuncType.stream() 3877 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3878 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3879 3880 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3881 * in the throws clause of the invocation type of the method reference's compile-time 3882 * declaration 3883 */ 3884 List<Type> checkedList = thrownByFuncExpr.stream() 3885 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3886 3887 /** If n = 0 (the function type's throws clause consists only of proper types), then 3888 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3889 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3890 * reduces to true 3891 */ 3892 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3893 for (Type checked : checkedList) { 3894 boolean isSubtype = false; 3895 for (Type proper : properList) { 3896 if (types.isSubtype(checked, proper)) { 3897 isSubtype = true; 3898 break; 3899 } 3900 } 3901 if (!isSubtype) { 3902 uncaughtByProperTypes.add(checked); 3903 } 3904 } 3905 3906 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3907 return false; 3908 } 3909 3910 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3911 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3912 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3913 */ 3914 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3915 uncaughtByProperTypes.forEach(checkedEx -> { 3916 nonProperAsUndet.forEach(nonProper -> { 3917 types.isSubtype(checkedEx, nonProper); 3918 }); 3919 }); 3920 3921 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3922 */ 3923 nonProperAsUndet.stream() 3924 .filter(t -> t.hasTag(UNDETVAR)) 3925 .forEach(t -> ((UndetVar)t).setThrow()); 3926 return true; 3927 } 3928 3929 /** 3930 * Set functional type info on the underlying AST. Note: as the target descriptor 3931 * might contain inference variables, we might need to register an hook in the 3932 * current inference context. 3933 */ 3934 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3935 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3936 if (checkContext.inferenceContext().free(descriptorType)) { 3937 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3938 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3939 inferenceContext.asInstType(primaryTarget), checkContext)); 3940 } else { 3941 fExpr.owner = env.info.scope.owner; 3942 if (pt.hasTag(CLASS)) { 3943 fExpr.target = primaryTarget; 3944 } 3945 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3946 pt != Type.recoveryType) { 3947 //check that functional interface class is well-formed 3948 try { 3949 /* Types.makeFunctionalInterfaceClass() may throw an exception 3950 * when it's executed post-inference. See the listener code 3951 * above. 3952 */ 3953 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3954 names.empty, fExpr.target, ABSTRACT); 3955 if (csym != null) { 3956 chk.checkImplementations(env.tree, csym, csym); 3957 try { 3958 //perform an additional functional interface check on the synthetic class, 3959 //as there may be spurious errors for raw targets - because of existing issues 3960 //with membership and inheritance (see JDK-8074570). 3961 csym.flags_field |= INTERFACE; 3962 types.findDescriptorType(csym.type); 3963 } catch (FunctionDescriptorLookupError err) { 3964 resultInfo.checkContext.report(fExpr, 3965 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 3966 } 3967 } 3968 } catch (Types.FunctionDescriptorLookupError ex) { 3969 JCDiagnostic cause = ex.getDiagnostic(); 3970 resultInfo.checkContext.report(env.tree, cause); 3971 } 3972 } 3973 } 3974 } 3975 3976 public void visitParens(JCParens tree) { 3977 Type owntype = attribTree(tree.expr, env, resultInfo); 3978 result = check(tree, owntype, pkind(), resultInfo); 3979 Symbol sym = TreeInfo.symbol(tree); 3980 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 3981 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 3982 } 3983 3984 public void visitAssign(JCAssign tree) { 3985 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 3986 Type capturedType = capture(owntype); 3987 attribExpr(tree.rhs, env, owntype); 3988 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 3989 } 3990 3991 public void visitAssignop(JCAssignOp tree) { 3992 // Attribute arguments. 3993 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 3994 Type operand = attribExpr(tree.rhs, env); 3995 // Find operator. 3996 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 3997 if (operator != operators.noOpSymbol && 3998 !owntype.isErroneous() && 3999 !operand.isErroneous()) { 4000 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4001 chk.checkCastable(tree.rhs.pos(), 4002 operator.type.getReturnType(), 4003 owntype); 4004 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4005 } 4006 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4007 } 4008 4009 public void visitUnary(JCUnary tree) { 4010 // Attribute arguments. 4011 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4012 ? attribTree(tree.arg, env, varAssignmentInfo) 4013 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4014 4015 // Find operator. 4016 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4017 Type owntype = types.createErrorType(tree.type); 4018 if (operator != operators.noOpSymbol && 4019 !argtype.isErroneous()) { 4020 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4021 ? tree.arg.type 4022 : operator.type.getReturnType(); 4023 int opc = operator.opcode; 4024 4025 // If the argument is constant, fold it. 4026 if (argtype.constValue() != null) { 4027 Type ctype = cfolder.fold1(opc, argtype); 4028 if (ctype != null) { 4029 owntype = cfolder.coerce(ctype, owntype); 4030 } 4031 } 4032 } 4033 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4034 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4035 } 4036 4037 public void visitBinary(JCBinary tree) { 4038 // Attribute arguments. 4039 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4040 // x && y 4041 // include x's bindings when true in y 4042 4043 // x || y 4044 // include x's bindings when false in y 4045 4046 MatchBindings lhsBindings = matchBindings; 4047 List<BindingSymbol> propagatedBindings; 4048 switch (tree.getTag()) { 4049 case AND: 4050 propagatedBindings = lhsBindings.bindingsWhenTrue; 4051 break; 4052 case OR: 4053 propagatedBindings = lhsBindings.bindingsWhenFalse; 4054 break; 4055 default: 4056 propagatedBindings = List.nil(); 4057 break; 4058 } 4059 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4060 Type right; 4061 try { 4062 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4063 } finally { 4064 rhsEnv.info.scope.leave(); 4065 } 4066 4067 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4068 4069 // Find operator. 4070 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4071 Type owntype = types.createErrorType(tree.type); 4072 if (operator != operators.noOpSymbol && 4073 !left.isErroneous() && 4074 !right.isErroneous()) { 4075 owntype = operator.type.getReturnType(); 4076 int opc = operator.opcode; 4077 // If both arguments are constants, fold them. 4078 if (left.constValue() != null && right.constValue() != null) { 4079 Type ctype = cfolder.fold2(opc, left, right); 4080 if (ctype != null) { 4081 owntype = cfolder.coerce(ctype, owntype); 4082 } 4083 } 4084 4085 // Check that argument types of a reference ==, != are 4086 // castable to each other, (JLS 15.21). Note: unboxing 4087 // comparisons will not have an acmp* opc at this point. 4088 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4089 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4090 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4091 } 4092 } 4093 4094 chk.checkDivZero(tree.rhs.pos(), operator, right); 4095 } 4096 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4097 } 4098 4099 public void visitTypeCast(final JCTypeCast tree) { 4100 Type clazztype = attribType(tree.clazz, env); 4101 chk.validate(tree.clazz, env, false); 4102 //a fresh environment is required for 292 inference to work properly --- 4103 //see Infer.instantiatePolymorphicSignatureInstance() 4104 Env<AttrContext> localEnv = env.dup(tree); 4105 //should we propagate the target type? 4106 final ResultInfo castInfo; 4107 JCExpression expr = TreeInfo.skipParens(tree.expr); 4108 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4109 if (isPoly) { 4110 //expression is a poly - we need to propagate target type info 4111 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4112 new Check.NestedCheckContext(resultInfo.checkContext) { 4113 @Override 4114 public boolean compatible(Type found, Type req, Warner warn) { 4115 return types.isCastable(found, req, warn); 4116 } 4117 }); 4118 } else { 4119 //standalone cast - target-type info is not propagated 4120 castInfo = unknownExprInfo; 4121 } 4122 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4123 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4124 if (exprtype.constValue() != null) 4125 owntype = cfolder.coerce(exprtype, owntype); 4126 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4127 if (!isPoly) 4128 chk.checkRedundantCast(localEnv, tree); 4129 } 4130 4131 public void visitTypeTest(JCInstanceOf tree) { 4132 Type exprtype = attribExpr(tree.expr, env); 4133 if (exprtype.isPrimitive()) { 4134 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4135 } else { 4136 exprtype = chk.checkNullOrRefType( 4137 tree.expr.pos(), exprtype); 4138 } 4139 Type clazztype; 4140 JCTree typeTree; 4141 if (tree.pattern.getTag() == BINDINGPATTERN || 4142 tree.pattern.getTag() == RECORDPATTERN) { 4143 attribExpr(tree.pattern, env, exprtype); 4144 clazztype = tree.pattern.type; 4145 if (types.isSubtype(exprtype, clazztype) && 4146 !exprtype.isErroneous() && !clazztype.isErroneous() && 4147 tree.pattern.getTag() != RECORDPATTERN) { 4148 if (!allowUnconditionalPatternsInstanceOf) { 4149 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4150 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4151 } 4152 } 4153 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4154 } else { 4155 clazztype = attribType(tree.pattern, env); 4156 typeTree = tree.pattern; 4157 chk.validate(typeTree, env, false); 4158 } 4159 if (clazztype.isPrimitive()) { 4160 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4161 } else { 4162 if (!clazztype.hasTag(TYPEVAR)) { 4163 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4164 } 4165 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4166 boolean valid = false; 4167 if (allowReifiableTypesInInstanceof) { 4168 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4169 } else { 4170 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4171 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4172 allowReifiableTypesInInstanceof = true; 4173 } 4174 if (!valid) { 4175 clazztype = types.createErrorType(clazztype); 4176 } 4177 } 4178 } 4179 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4180 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4181 } 4182 4183 private boolean checkCastablePattern(DiagnosticPosition pos, 4184 Type exprType, 4185 Type pattType) { 4186 Warner warner = new Warner(); 4187 // if any type is erroneous, the problem is reported elsewhere 4188 if (exprType.isErroneous() || pattType.isErroneous()) { 4189 return false; 4190 } 4191 if (!types.isCastable(exprType, pattType, warner)) { 4192 chk.basicHandler.report(pos, 4193 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4194 return false; 4195 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4196 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4197 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4198 return true; 4199 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4200 log.error(pos, 4201 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4202 return false; 4203 } else { 4204 return true; 4205 } 4206 } 4207 4208 @Override 4209 public void visitAnyPattern(JCAnyPattern tree) { 4210 result = tree.type = resultInfo.pt; 4211 } 4212 4213 public void visitBindingPattern(JCBindingPattern tree) { 4214 Type type; 4215 if (tree.var.vartype != null) { 4216 type = attribType(tree.var.vartype, env); 4217 } else { 4218 type = resultInfo.pt; 4219 } 4220 tree.type = tree.var.type = type; 4221 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4222 v.pos = tree.pos; 4223 tree.var.sym = v; 4224 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4225 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4226 } 4227 chk.validate(tree.var.vartype, env, true); 4228 if (tree.var.isImplicitlyTyped()) { 4229 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4230 : type); 4231 } 4232 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4233 if (!tree.var.isImplicitlyTyped()) { 4234 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4235 } 4236 annotate.flush(); 4237 result = tree.type; 4238 if (v.isUnnamedVariable()) { 4239 matchBindings = MatchBindingsComputer.EMPTY; 4240 } else { 4241 matchBindings = new MatchBindings(List.of(v), List.nil()); 4242 } 4243 } 4244 4245 @Override 4246 public void visitRecordPattern(JCRecordPattern tree) { 4247 Type site; 4248 4249 if (tree.deconstructor == null) { 4250 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4251 tree.record = syms.errSymbol; 4252 site = tree.type = types.createErrorType(tree.record.type); 4253 } else { 4254 Type type = attribType(tree.deconstructor, env); 4255 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4256 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4257 if (inferred == null) { 4258 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4259 } else { 4260 type = inferred; 4261 } 4262 } 4263 tree.type = tree.deconstructor.type = type; 4264 site = types.capture(tree.type); 4265 } 4266 4267 List<Type> expectedRecordTypes; 4268 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4269 ClassSymbol record = (ClassSymbol) site.tsym; 4270 expectedRecordTypes = record.getRecordComponents() 4271 .stream() 4272 .map(rc -> types.memberType(site, rc)) 4273 .map(t -> types.upward(t, types.captures(t)).baseType()) 4274 .collect(List.collector()); 4275 tree.record = record; 4276 } else { 4277 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4278 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4279 .limit(tree.nested.size()) 4280 .collect(List.collector()); 4281 tree.record = syms.errSymbol; 4282 } 4283 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4284 List<Type> recordTypes = expectedRecordTypes; 4285 List<JCPattern> nestedPatterns = tree.nested; 4286 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4287 try { 4288 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4289 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4290 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4291 outBindings.addAll(matchBindings.bindingsWhenTrue); 4292 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4293 nestedPatterns = nestedPatterns.tail; 4294 recordTypes = recordTypes.tail; 4295 } 4296 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4297 while (nestedPatterns.nonEmpty()) { 4298 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4299 nestedPatterns = nestedPatterns.tail; 4300 } 4301 List<Type> nestedTypes = 4302 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4303 log.error(tree.pos(), 4304 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4305 nestedTypes)); 4306 } 4307 } finally { 4308 localEnv.info.scope.leave(); 4309 } 4310 chk.validate(tree.deconstructor, env, true); 4311 result = tree.type; 4312 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4313 } 4314 4315 public void visitIndexed(JCArrayAccess tree) { 4316 Type owntype = types.createErrorType(tree.type); 4317 Type atype = attribExpr(tree.indexed, env); 4318 attribExpr(tree.index, env, syms.intType); 4319 if (types.isArray(atype)) 4320 owntype = types.elemtype(atype); 4321 else if (!atype.hasTag(ERROR)) 4322 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4323 if (!pkind().contains(KindSelector.VAL)) 4324 owntype = capture(owntype); 4325 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4326 } 4327 4328 public void visitIdent(JCIdent tree) { 4329 Symbol sym; 4330 4331 // Find symbol 4332 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4333 // If we are looking for a method, the prototype `pt' will be a 4334 // method type with the type of the call's arguments as parameters. 4335 env.info.pendingResolutionPhase = null; 4336 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4337 } else if (tree.sym != null && tree.sym.kind != VAR) { 4338 sym = tree.sym; 4339 } else { 4340 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4341 } 4342 tree.sym = sym; 4343 4344 // Also find the environment current for the class where 4345 // sym is defined (`symEnv'). 4346 Env<AttrContext> symEnv = env; 4347 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4348 sym.kind.matches(KindSelector.VAL_MTH) && 4349 sym.owner.kind == TYP && 4350 tree.name != names._this && tree.name != names._super) { 4351 4352 // Find environment in which identifier is defined. 4353 while (symEnv.outer != null && 4354 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4355 symEnv = symEnv.outer; 4356 } 4357 } 4358 4359 // If symbol is a variable, ... 4360 if (sym.kind == VAR) { 4361 VarSymbol v = (VarSymbol)sym; 4362 4363 // ..., evaluate its initializer, if it has one, and check for 4364 // illegal forward reference. 4365 checkInit(tree, env, v, false); 4366 4367 // If we are expecting a variable (as opposed to a value), check 4368 // that the variable is assignable in the current environment. 4369 if (KindSelector.ASG.subset(pkind())) 4370 checkAssignable(tree.pos(), v, null, env); 4371 } 4372 4373 Env<AttrContext> env1 = env; 4374 if (sym.kind != ERR && sym.kind != TYP && 4375 sym.owner != null && sym.owner != env1.enclClass.sym) { 4376 // If the found symbol is inaccessible, then it is 4377 // accessed through an enclosing instance. Locate this 4378 // enclosing instance: 4379 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4380 env1 = env1.outer; 4381 } 4382 4383 if (env.info.isSerializable) { 4384 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4385 } 4386 4387 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4388 } 4389 4390 public void visitSelect(JCFieldAccess tree) { 4391 // Determine the expected kind of the qualifier expression. 4392 KindSelector skind = KindSelector.NIL; 4393 if (tree.name == names._this || tree.name == names._super || 4394 tree.name == names._class) 4395 { 4396 skind = KindSelector.TYP; 4397 } else { 4398 if (pkind().contains(KindSelector.PCK)) 4399 skind = KindSelector.of(skind, KindSelector.PCK); 4400 if (pkind().contains(KindSelector.TYP)) 4401 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4402 if (pkind().contains(KindSelector.VAL_MTH)) 4403 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4404 } 4405 4406 // Attribute the qualifier expression, and determine its symbol (if any). 4407 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4408 Assert.check(site == tree.selected.type); 4409 if (!pkind().contains(KindSelector.TYP_PCK)) 4410 site = capture(site); // Capture field access 4411 4412 // don't allow T.class T[].class, etc 4413 if (skind == KindSelector.TYP) { 4414 Type elt = site; 4415 while (elt.hasTag(ARRAY)) 4416 elt = ((ArrayType)elt).elemtype; 4417 if (elt.hasTag(TYPEVAR)) { 4418 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4419 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4420 tree.sym = tree.type.tsym; 4421 return ; 4422 } 4423 } 4424 4425 // If qualifier symbol is a type or `super', assert `selectSuper' 4426 // for the selection. This is relevant for determining whether 4427 // protected symbols are accessible. 4428 Symbol sitesym = TreeInfo.symbol(tree.selected); 4429 boolean selectSuperPrev = env.info.selectSuper; 4430 env.info.selectSuper = 4431 sitesym != null && 4432 sitesym.name == names._super; 4433 4434 // Determine the symbol represented by the selection. 4435 env.info.pendingResolutionPhase = null; 4436 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4437 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4438 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4439 sym = syms.errSymbol; 4440 } 4441 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4442 site = capture(site); 4443 sym = selectSym(tree, sitesym, site, env, resultInfo); 4444 } 4445 boolean varArgs = env.info.lastResolveVarargs(); 4446 tree.sym = sym; 4447 4448 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4449 site = types.skipTypeVars(site, true); 4450 } 4451 4452 // If that symbol is a variable, ... 4453 if (sym.kind == VAR) { 4454 VarSymbol v = (VarSymbol)sym; 4455 4456 // ..., evaluate its initializer, if it has one, and check for 4457 // illegal forward reference. 4458 checkInit(tree, env, v, true); 4459 4460 // If we are expecting a variable (as opposed to a value), check 4461 // that the variable is assignable in the current environment. 4462 if (KindSelector.ASG.subset(pkind())) 4463 checkAssignable(tree.pos(), v, tree.selected, env); 4464 } 4465 4466 if (sitesym != null && 4467 sitesym.kind == VAR && 4468 ((VarSymbol)sitesym).isResourceVariable() && 4469 sym.kind == MTH && 4470 sym.name.equals(names.close) && 4471 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4472 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4473 } 4474 4475 // Disallow selecting a type from an expression 4476 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4477 tree.type = check(tree.selected, pt(), 4478 sitesym == null ? 4479 KindSelector.VAL : sitesym.kind.toSelector(), 4480 new ResultInfo(KindSelector.TYP_PCK, pt())); 4481 } 4482 4483 if (isType(sitesym)) { 4484 if (sym.name != names._this && sym.name != names._super) { 4485 // Check if type-qualified fields or methods are static (JLS) 4486 if ((sym.flags() & STATIC) == 0 && 4487 sym.name != names._super && 4488 (sym.kind == VAR || sym.kind == MTH)) { 4489 rs.accessBase(rs.new StaticError(sym), 4490 tree.pos(), site, sym.name, true); 4491 } 4492 } 4493 } else if (sym.kind != ERR && 4494 (sym.flags() & STATIC) != 0 && 4495 sym.name != names._class) { 4496 // If the qualified item is not a type and the selected item is static, report 4497 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4498 if (!sym.owner.isAnonymous()) { 4499 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4500 } else { 4501 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4502 } 4503 } 4504 4505 // If we are selecting an instance member via a `super', ... 4506 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4507 4508 // Check that super-qualified symbols are not abstract (JLS) 4509 rs.checkNonAbstract(tree.pos(), sym); 4510 4511 if (site.isRaw()) { 4512 // Determine argument types for site. 4513 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4514 if (site1 != null) site = site1; 4515 } 4516 } 4517 4518 if (env.info.isSerializable) { 4519 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4520 } 4521 4522 env.info.selectSuper = selectSuperPrev; 4523 result = checkId(tree, site, sym, env, resultInfo); 4524 } 4525 //where 4526 /** Determine symbol referenced by a Select expression, 4527 * 4528 * @param tree The select tree. 4529 * @param site The type of the selected expression, 4530 * @param env The current environment. 4531 * @param resultInfo The current result. 4532 */ 4533 private Symbol selectSym(JCFieldAccess tree, 4534 Symbol location, 4535 Type site, 4536 Env<AttrContext> env, 4537 ResultInfo resultInfo) { 4538 DiagnosticPosition pos = tree.pos(); 4539 Name name = tree.name; 4540 switch (site.getTag()) { 4541 case PACKAGE: 4542 return rs.accessBase( 4543 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4544 pos, location, site, name, true); 4545 case ARRAY: 4546 case CLASS: 4547 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4548 return rs.resolveQualifiedMethod( 4549 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4550 } else if (name == names._this || name == names._super) { 4551 return rs.resolveSelf(pos, env, site.tsym, name); 4552 } else if (name == names._class) { 4553 // In this case, we have already made sure in 4554 // visitSelect that qualifier expression is a type. 4555 return syms.getClassField(site, types); 4556 } else { 4557 // We are seeing a plain identifier as selector. 4558 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4559 sym = rs.accessBase(sym, pos, location, site, name, true); 4560 return sym; 4561 } 4562 case WILDCARD: 4563 throw new AssertionError(tree); 4564 case TYPEVAR: 4565 // Normally, site.getUpperBound() shouldn't be null. 4566 // It should only happen during memberEnter/attribBase 4567 // when determining the supertype which *must* be 4568 // done before attributing the type variables. In 4569 // other words, we are seeing this illegal program: 4570 // class B<T> extends A<T.foo> {} 4571 Symbol sym = (site.getUpperBound() != null) 4572 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4573 : null; 4574 if (sym == null) { 4575 log.error(pos, Errors.TypeVarCantBeDeref); 4576 return syms.errSymbol; 4577 } else { 4578 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4579 rs.new AccessError(env, site, sym) : 4580 sym; 4581 rs.accessBase(sym2, pos, location, site, name, true); 4582 return sym; 4583 } 4584 case ERROR: 4585 // preserve identifier names through errors 4586 return types.createErrorType(name, site.tsym, site).tsym; 4587 default: 4588 // The qualifier expression is of a primitive type -- only 4589 // .class is allowed for these. 4590 if (name == names._class) { 4591 // In this case, we have already made sure in Select that 4592 // qualifier expression is a type. 4593 return syms.getClassField(site, types); 4594 } else { 4595 log.error(pos, Errors.CantDeref(site)); 4596 return syms.errSymbol; 4597 } 4598 } 4599 } 4600 4601 /** Determine type of identifier or select expression and check that 4602 * (1) the referenced symbol is not deprecated 4603 * (2) the symbol's type is safe (@see checkSafe) 4604 * (3) if symbol is a variable, check that its type and kind are 4605 * compatible with the prototype and protokind. 4606 * (4) if symbol is an instance field of a raw type, 4607 * which is being assigned to, issue an unchecked warning if its 4608 * type changes under erasure. 4609 * (5) if symbol is an instance method of a raw type, issue an 4610 * unchecked warning if its argument types change under erasure. 4611 * If checks succeed: 4612 * If symbol is a constant, return its constant type 4613 * else if symbol is a method, return its result type 4614 * otherwise return its type. 4615 * Otherwise return errType. 4616 * 4617 * @param tree The syntax tree representing the identifier 4618 * @param site If this is a select, the type of the selected 4619 * expression, otherwise the type of the current class. 4620 * @param sym The symbol representing the identifier. 4621 * @param env The current environment. 4622 * @param resultInfo The expected result 4623 */ 4624 Type checkId(JCTree tree, 4625 Type site, 4626 Symbol sym, 4627 Env<AttrContext> env, 4628 ResultInfo resultInfo) { 4629 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4630 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4631 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4632 } 4633 4634 Type checkMethodIdInternal(JCTree tree, 4635 Type site, 4636 Symbol sym, 4637 Env<AttrContext> env, 4638 ResultInfo resultInfo) { 4639 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4640 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4641 } else { 4642 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4643 } 4644 } 4645 4646 Type checkIdInternal(JCTree tree, 4647 Type site, 4648 Symbol sym, 4649 Type pt, 4650 Env<AttrContext> env, 4651 ResultInfo resultInfo) { 4652 Type owntype; // The computed type of this identifier occurrence. 4653 switch (sym.kind) { 4654 case TYP: 4655 // For types, the computed type equals the symbol's type, 4656 // except for two situations: 4657 owntype = sym.type; 4658 if (owntype.hasTag(CLASS)) { 4659 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4660 Type ownOuter = owntype.getEnclosingType(); 4661 4662 // (a) If the symbol's type is parameterized, erase it 4663 // because no type parameters were given. 4664 // We recover generic outer type later in visitTypeApply. 4665 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4666 owntype = types.erasure(owntype); 4667 } 4668 4669 // (b) If the symbol's type is an inner class, then 4670 // we have to interpret its outer type as a superclass 4671 // of the site type. Example: 4672 // 4673 // class Tree<A> { class Visitor { ... } } 4674 // class PointTree extends Tree<Point> { ... } 4675 // ...PointTree.Visitor... 4676 // 4677 // Then the type of the last expression above is 4678 // Tree<Point>.Visitor. 4679 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4680 Type normOuter = site; 4681 if (normOuter.hasTag(CLASS)) { 4682 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4683 } 4684 if (normOuter == null) // perhaps from an import 4685 normOuter = types.erasure(ownOuter); 4686 if (normOuter != ownOuter) 4687 owntype = new ClassType( 4688 normOuter, List.nil(), owntype.tsym, 4689 owntype.getMetadata()); 4690 } 4691 } 4692 break; 4693 case VAR: 4694 VarSymbol v = (VarSymbol)sym; 4695 4696 if (env.info.enclVar != null 4697 && v.type.hasTag(NONE)) { 4698 //self reference to implicitly typed variable declaration 4699 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4700 return tree.type = v.type = types.createErrorType(v.type); 4701 } 4702 4703 // Test (4): if symbol is an instance field of a raw type, 4704 // which is being assigned to, issue an unchecked warning if 4705 // its type changes under erasure. 4706 if (KindSelector.ASG.subset(pkind()) && 4707 v.owner.kind == TYP && 4708 (v.flags() & STATIC) == 0 && 4709 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4710 Type s = types.asOuterSuper(site, v.owner); 4711 if (s != null && 4712 s.isRaw() && 4713 !types.isSameType(v.type, v.erasure(types))) { 4714 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4715 } 4716 } 4717 // The computed type of a variable is the type of the 4718 // variable symbol, taken as a member of the site type. 4719 owntype = (sym.owner.kind == TYP && 4720 sym.name != names._this && sym.name != names._super) 4721 ? types.memberType(site, sym) 4722 : sym.type; 4723 4724 // If the variable is a constant, record constant value in 4725 // computed type. 4726 if (v.getConstValue() != null && isStaticReference(tree)) 4727 owntype = owntype.constType(v.getConstValue()); 4728 4729 if (resultInfo.pkind == KindSelector.VAL) { 4730 owntype = capture(owntype); // capture "names as expressions" 4731 } 4732 break; 4733 case MTH: { 4734 owntype = checkMethod(site, sym, 4735 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4736 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4737 resultInfo.pt.getTypeArguments()); 4738 chk.checkRestricted(tree.pos(), sym); 4739 break; 4740 } 4741 case PCK: case ERR: 4742 owntype = sym.type; 4743 break; 4744 default: 4745 throw new AssertionError("unexpected kind: " + sym.kind + 4746 " in tree " + tree); 4747 } 4748 4749 // Emit a `deprecation' warning if symbol is deprecated. 4750 // (for constructors (but not for constructor references), the error 4751 // was given when the constructor was resolved) 4752 4753 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4754 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4755 chk.checkSunAPI(tree.pos(), sym); 4756 chk.checkProfile(tree.pos(), sym); 4757 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 4758 } 4759 4760 if (pt.isErroneous()) { 4761 owntype = types.createErrorType(owntype); 4762 } 4763 4764 // If symbol is a variable, check that its type and 4765 // kind are compatible with the prototype and protokind. 4766 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4767 } 4768 4769 /** Check that variable is initialized and evaluate the variable's 4770 * initializer, if not yet done. Also check that variable is not 4771 * referenced before it is defined. 4772 * @param tree The tree making up the variable reference. 4773 * @param env The current environment. 4774 * @param v The variable's symbol. 4775 */ 4776 private void checkInit(JCTree tree, 4777 Env<AttrContext> env, 4778 VarSymbol v, 4779 boolean onlyWarning) { 4780 // A forward reference is diagnosed if the declaration position 4781 // of the variable is greater than the current tree position 4782 // and the tree and variable definition occur in the same class 4783 // definition. Note that writes don't count as references. 4784 // This check applies only to class and instance 4785 // variables. Local variables follow different scope rules, 4786 // and are subject to definite assignment checking. 4787 Env<AttrContext> initEnv = enclosingInitEnv(env); 4788 if (initEnv != null && 4789 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4790 v.owner.kind == TYP && 4791 v.owner == env.info.scope.owner.enclClass() && 4792 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4793 (!env.tree.hasTag(ASSIGN) || 4794 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4795 if (!onlyWarning || isStaticEnumField(v)) { 4796 Error errkey = (initEnv.info.enclVar == v) ? 4797 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4798 log.error(tree.pos(), errkey); 4799 } else if (useBeforeDeclarationWarning) { 4800 Warning warnkey = (initEnv.info.enclVar == v) ? 4801 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4802 log.warning(tree.pos(), warnkey); 4803 } 4804 } 4805 4806 v.getConstValue(); // ensure initializer is evaluated 4807 4808 checkEnumInitializer(tree, env, v); 4809 } 4810 4811 /** 4812 * Returns the enclosing init environment associated with this env (if any). An init env 4813 * can be either a field declaration env or a static/instance initializer env. 4814 */ 4815 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4816 while (true) { 4817 switch (env.tree.getTag()) { 4818 case VARDEF: 4819 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4820 if (vdecl.sym.owner.kind == TYP) { 4821 //field 4822 return env; 4823 } 4824 break; 4825 case BLOCK: 4826 if (env.next.tree.hasTag(CLASSDEF)) { 4827 //instance/static initializer 4828 return env; 4829 } 4830 break; 4831 case METHODDEF: 4832 case CLASSDEF: 4833 case TOPLEVEL: 4834 return null; 4835 } 4836 Assert.checkNonNull(env.next); 4837 env = env.next; 4838 } 4839 } 4840 4841 /** 4842 * Check for illegal references to static members of enum. In 4843 * an enum type, constructors and initializers may not 4844 * reference its static members unless they are constant. 4845 * 4846 * @param tree The tree making up the variable reference. 4847 * @param env The current environment. 4848 * @param v The variable's symbol. 4849 * @jls 8.9 Enum Types 4850 */ 4851 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4852 // JLS: 4853 // 4854 // "It is a compile-time error to reference a static field 4855 // of an enum type that is not a compile-time constant 4856 // (15.28) from constructors, instance initializer blocks, 4857 // or instance variable initializer expressions of that 4858 // type. It is a compile-time error for the constructors, 4859 // instance initializer blocks, or instance variable 4860 // initializer expressions of an enum constant e to refer 4861 // to itself or to an enum constant of the same type that 4862 // is declared to the right of e." 4863 if (isStaticEnumField(v)) { 4864 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4865 4866 if (enclClass == null || enclClass.owner == null) 4867 return; 4868 4869 // See if the enclosing class is the enum (or a 4870 // subclass thereof) declaring v. If not, this 4871 // reference is OK. 4872 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4873 return; 4874 4875 // If the reference isn't from an initializer, then 4876 // the reference is OK. 4877 if (!Resolve.isInitializer(env)) 4878 return; 4879 4880 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4881 } 4882 } 4883 4884 /** Is the given symbol a static, non-constant field of an Enum? 4885 * Note: enum literals should not be regarded as such 4886 */ 4887 private boolean isStaticEnumField(VarSymbol v) { 4888 return Flags.isEnum(v.owner) && 4889 Flags.isStatic(v) && 4890 !Flags.isConstant(v) && 4891 v.name != names._class; 4892 } 4893 4894 /** 4895 * Check that method arguments conform to its instantiation. 4896 **/ 4897 public Type checkMethod(Type site, 4898 final Symbol sym, 4899 ResultInfo resultInfo, 4900 Env<AttrContext> env, 4901 final List<JCExpression> argtrees, 4902 List<Type> argtypes, 4903 List<Type> typeargtypes) { 4904 // Test (5): if symbol is an instance method of a raw type, issue 4905 // an unchecked warning if its argument types change under erasure. 4906 if ((sym.flags() & STATIC) == 0 && 4907 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4908 Type s = types.asOuterSuper(site, sym.owner); 4909 if (s != null && s.isRaw() && 4910 !types.isSameTypes(sym.type.getParameterTypes(), 4911 sym.erasure(types).getParameterTypes())) { 4912 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 4913 } 4914 } 4915 4916 if (env.info.defaultSuperCallSite != null) { 4917 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4918 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4919 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4920 List<MethodSymbol> icand_sup = 4921 types.interfaceCandidates(sup, (MethodSymbol)sym); 4922 if (icand_sup.nonEmpty() && 4923 icand_sup.head != sym && 4924 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4925 log.error(env.tree.pos(), 4926 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4927 break; 4928 } 4929 } 4930 env.info.defaultSuperCallSite = null; 4931 } 4932 4933 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 4934 JCMethodInvocation app = (JCMethodInvocation)env.tree; 4935 if (app.meth.hasTag(SELECT) && 4936 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 4937 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 4938 } 4939 } 4940 4941 // Compute the identifier's instantiated type. 4942 // For methods, we need to compute the instance type by 4943 // Resolve.instantiate from the symbol's type as well as 4944 // any type arguments and value arguments. 4945 Warner noteWarner = new Warner(); 4946 try { 4947 Type owntype = rs.checkMethod( 4948 env, 4949 site, 4950 sym, 4951 resultInfo, 4952 argtypes, 4953 typeargtypes, 4954 noteWarner); 4955 4956 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 4957 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 4958 4959 argtypes = argtypes.map(checkDeferredMap); 4960 4961 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 4962 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 4963 sym.name, 4964 rs.methodArguments(sym.type.getParameterTypes()), 4965 rs.methodArguments(argtypes.map(checkDeferredMap)), 4966 kindName(sym.location()), 4967 sym.location())); 4968 if (resultInfo.pt != Infer.anyPoly || 4969 !owntype.hasTag(METHOD) || 4970 !owntype.isPartial()) { 4971 //if this is not a partially inferred method type, erase return type. Otherwise, 4972 //erasure is carried out in PartiallyInferredMethodType.check(). 4973 owntype = new MethodType(owntype.getParameterTypes(), 4974 types.erasure(owntype.getReturnType()), 4975 types.erasure(owntype.getThrownTypes()), 4976 syms.methodClass); 4977 } 4978 } 4979 4980 PolyKind pkind = (sym.type.hasTag(FORALL) && 4981 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 4982 PolyKind.POLY : PolyKind.STANDALONE; 4983 TreeInfo.setPolyKind(env.tree, pkind); 4984 4985 return (resultInfo.pt == Infer.anyPoly) ? 4986 owntype : 4987 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 4988 resultInfo.checkContext.inferenceContext()); 4989 } catch (Infer.InferenceException ex) { 4990 //invalid target type - propagate exception outwards or report error 4991 //depending on the current check context 4992 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 4993 return types.createErrorType(site); 4994 } catch (Resolve.InapplicableMethodException ex) { 4995 final JCDiagnostic diag = ex.getDiagnostic(); 4996 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 4997 @Override 4998 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4999 return new Pair<>(sym, diag); 5000 } 5001 }; 5002 List<Type> argtypes2 = argtypes.map( 5003 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5004 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5005 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5006 log.report(errDiag); 5007 return types.createErrorType(site); 5008 } 5009 } 5010 5011 public void visitLiteral(JCLiteral tree) { 5012 result = check(tree, litType(tree.typetag).constType(tree.value), 5013 KindSelector.VAL, resultInfo); 5014 } 5015 //where 5016 /** Return the type of a literal with given type tag. 5017 */ 5018 Type litType(TypeTag tag) { 5019 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5020 } 5021 5022 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5023 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5024 } 5025 5026 public void visitTypeArray(JCArrayTypeTree tree) { 5027 Type etype = attribType(tree.elemtype, env); 5028 Type type = new ArrayType(etype, syms.arrayClass); 5029 result = check(tree, type, KindSelector.TYP, resultInfo); 5030 } 5031 5032 /** Visitor method for parameterized types. 5033 * Bound checking is left until later, since types are attributed 5034 * before supertype structure is completely known 5035 */ 5036 public void visitTypeApply(JCTypeApply tree) { 5037 Type owntype = types.createErrorType(tree.type); 5038 5039 // Attribute functor part of application and make sure it's a class. 5040 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5041 5042 // Attribute type parameters 5043 List<Type> actuals = attribTypes(tree.arguments, env); 5044 5045 if (clazztype.hasTag(CLASS)) { 5046 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5047 if (actuals.isEmpty()) //diamond 5048 actuals = formals; 5049 5050 if (actuals.length() == formals.length()) { 5051 List<Type> a = actuals; 5052 List<Type> f = formals; 5053 while (a.nonEmpty()) { 5054 a.head = a.head.withTypeVar(f.head); 5055 a = a.tail; 5056 f = f.tail; 5057 } 5058 // Compute the proper generic outer 5059 Type clazzOuter = clazztype.getEnclosingType(); 5060 if (clazzOuter.hasTag(CLASS)) { 5061 Type site; 5062 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5063 if (clazz.hasTag(IDENT)) { 5064 site = env.enclClass.sym.type; 5065 } else if (clazz.hasTag(SELECT)) { 5066 site = ((JCFieldAccess) clazz).selected.type; 5067 } else throw new AssertionError(""+tree); 5068 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5069 if (site.hasTag(CLASS)) 5070 site = types.asOuterSuper(site, clazzOuter.tsym); 5071 if (site == null) 5072 site = types.erasure(clazzOuter); 5073 clazzOuter = site; 5074 } 5075 } 5076 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5077 clazztype.getMetadata()); 5078 } else { 5079 if (formals.length() != 0) { 5080 log.error(tree.pos(), 5081 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5082 } else { 5083 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5084 } 5085 owntype = types.createErrorType(tree.type); 5086 } 5087 } else if (clazztype.hasTag(ERROR)) { 5088 ErrorType parameterizedErroneous = 5089 new ErrorType(clazztype.getOriginalType(), 5090 clazztype.tsym, 5091 clazztype.getMetadata()); 5092 5093 parameterizedErroneous.typarams_field = actuals; 5094 owntype = parameterizedErroneous; 5095 } 5096 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5097 } 5098 5099 public void visitTypeUnion(JCTypeUnion tree) { 5100 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5101 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5102 for (JCExpression typeTree : tree.alternatives) { 5103 Type ctype = attribType(typeTree, env); 5104 ctype = chk.checkType(typeTree.pos(), 5105 chk.checkClassType(typeTree.pos(), ctype), 5106 syms.throwableType); 5107 if (!ctype.isErroneous()) { 5108 //check that alternatives of a union type are pairwise 5109 //unrelated w.r.t. subtyping 5110 if (chk.intersects(ctype, multicatchTypes.toList())) { 5111 for (Type t : multicatchTypes) { 5112 boolean sub = types.isSubtype(ctype, t); 5113 boolean sup = types.isSubtype(t, ctype); 5114 if (sub || sup) { 5115 //assume 'a' <: 'b' 5116 Type a = sub ? ctype : t; 5117 Type b = sub ? t : ctype; 5118 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5119 } 5120 } 5121 } 5122 multicatchTypes.append(ctype); 5123 if (all_multicatchTypes != null) 5124 all_multicatchTypes.append(ctype); 5125 } else { 5126 if (all_multicatchTypes == null) { 5127 all_multicatchTypes = new ListBuffer<>(); 5128 all_multicatchTypes.appendList(multicatchTypes); 5129 } 5130 all_multicatchTypes.append(ctype); 5131 } 5132 } 5133 Type t = check(tree, types.lub(multicatchTypes.toList()), 5134 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5135 if (t.hasTag(CLASS)) { 5136 List<Type> alternatives = 5137 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5138 t = new UnionClassType((ClassType) t, alternatives); 5139 } 5140 tree.type = result = t; 5141 } 5142 5143 public void visitTypeIntersection(JCTypeIntersection tree) { 5144 attribTypes(tree.bounds, env); 5145 tree.type = result = checkIntersection(tree, tree.bounds); 5146 } 5147 5148 public void visitTypeParameter(JCTypeParameter tree) { 5149 TypeVar typeVar = (TypeVar) tree.type; 5150 5151 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5152 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5153 } 5154 5155 if (!typeVar.getUpperBound().isErroneous()) { 5156 //fixup type-parameter bound computed in 'attribTypeVariables' 5157 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5158 } 5159 } 5160 5161 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5162 Set<Symbol> boundSet = new HashSet<>(); 5163 if (bounds.nonEmpty()) { 5164 // accept class or interface or typevar as first bound. 5165 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5166 boundSet.add(types.erasure(bounds.head.type).tsym); 5167 if (bounds.head.type.isErroneous()) { 5168 return bounds.head.type; 5169 } 5170 else if (bounds.head.type.hasTag(TYPEVAR)) { 5171 // if first bound was a typevar, do not accept further bounds. 5172 if (bounds.tail.nonEmpty()) { 5173 log.error(bounds.tail.head.pos(), 5174 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5175 return bounds.head.type; 5176 } 5177 } else { 5178 // if first bound was a class or interface, accept only interfaces 5179 // as further bounds. 5180 for (JCExpression bound : bounds.tail) { 5181 bound.type = checkBase(bound.type, bound, env, false, true, false); 5182 if (bound.type.isErroneous()) { 5183 bounds = List.of(bound); 5184 } 5185 else if (bound.type.hasTag(CLASS)) { 5186 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5187 } 5188 } 5189 } 5190 } 5191 5192 if (bounds.length() == 0) { 5193 return syms.objectType; 5194 } else if (bounds.length() == 1) { 5195 return bounds.head.type; 5196 } else { 5197 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5198 // ... the variable's bound is a class type flagged COMPOUND 5199 // (see comment for TypeVar.bound). 5200 // In this case, generate a class tree that represents the 5201 // bound class, ... 5202 JCExpression extending; 5203 List<JCExpression> implementing; 5204 if (!bounds.head.type.isInterface()) { 5205 extending = bounds.head; 5206 implementing = bounds.tail; 5207 } else { 5208 extending = null; 5209 implementing = bounds; 5210 } 5211 JCClassDecl cd = make.at(tree).ClassDef( 5212 make.Modifiers(PUBLIC | ABSTRACT), 5213 names.empty, List.nil(), 5214 extending, implementing, List.nil()); 5215 5216 ClassSymbol c = (ClassSymbol)owntype.tsym; 5217 Assert.check((c.flags() & COMPOUND) != 0); 5218 cd.sym = c; 5219 c.sourcefile = env.toplevel.sourcefile; 5220 5221 // ... and attribute the bound class 5222 c.flags_field |= UNATTRIBUTED; 5223 Env<AttrContext> cenv = enter.classEnv(cd, env); 5224 typeEnvs.put(c, cenv); 5225 attribClass(c); 5226 return owntype; 5227 } 5228 } 5229 5230 public void visitWildcard(JCWildcard tree) { 5231 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5232 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5233 ? syms.objectType 5234 : attribType(tree.inner, env); 5235 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5236 tree.kind.kind, 5237 syms.boundClass), 5238 KindSelector.TYP, resultInfo); 5239 } 5240 5241 public void visitAnnotation(JCAnnotation tree) { 5242 Assert.error("should be handled in annotate"); 5243 } 5244 5245 @Override 5246 public void visitModifiers(JCModifiers tree) { 5247 //error recovery only: 5248 Assert.check(resultInfo.pkind == KindSelector.ERR); 5249 5250 attribAnnotationTypes(tree.annotations, env); 5251 } 5252 5253 public void visitAnnotatedType(JCAnnotatedType tree) { 5254 attribAnnotationTypes(tree.annotations, env); 5255 Type underlyingType = attribType(tree.underlyingType, env); 5256 Type annotatedType = underlyingType.preannotatedType(); 5257 5258 if (!env.info.isAnonymousNewClass) 5259 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5260 result = tree.type = annotatedType; 5261 } 5262 5263 public void visitErroneous(JCErroneous tree) { 5264 if (tree.errs != null) { 5265 WriteableScope newScope = env.info.scope; 5266 5267 if (env.tree instanceof JCClassDecl) { 5268 Symbol fakeOwner = 5269 new MethodSymbol(BLOCK, names.empty, null, 5270 env.info.scope.owner); 5271 newScope = newScope.dupUnshared(fakeOwner); 5272 } 5273 5274 Env<AttrContext> errEnv = 5275 env.dup(env.tree, 5276 env.info.dup(newScope)); 5277 errEnv.info.returnResult = unknownExprInfo; 5278 for (JCTree err : tree.errs) 5279 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5280 } 5281 result = tree.type = syms.errType; 5282 } 5283 5284 /** Default visitor method for all other trees. 5285 */ 5286 public void visitTree(JCTree tree) { 5287 throw new AssertionError(); 5288 } 5289 5290 /** 5291 * Attribute an env for either a top level tree or class or module declaration. 5292 */ 5293 public void attrib(Env<AttrContext> env) { 5294 switch (env.tree.getTag()) { 5295 case MODULEDEF: 5296 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5297 break; 5298 case PACKAGEDEF: 5299 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5300 break; 5301 default: 5302 attribClass(env.tree.pos(), env.enclClass.sym); 5303 } 5304 5305 annotate.flush(); 5306 } 5307 5308 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5309 try { 5310 annotate.flush(); 5311 attribPackage(p); 5312 } catch (CompletionFailure ex) { 5313 chk.completionError(pos, ex); 5314 } 5315 } 5316 5317 void attribPackage(PackageSymbol p) { 5318 attribWithLint(p, 5319 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5320 } 5321 5322 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5323 try { 5324 annotate.flush(); 5325 attribModule(m); 5326 } catch (CompletionFailure ex) { 5327 chk.completionError(pos, ex); 5328 } 5329 } 5330 5331 void attribModule(ModuleSymbol m) { 5332 attribWithLint(m, env -> attribStat(env.tree, env)); 5333 } 5334 5335 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5336 Env<AttrContext> env = typeEnvs.get(sym); 5337 5338 Env<AttrContext> lintEnv = env; 5339 while (lintEnv.info.lint == null) 5340 lintEnv = lintEnv.next; 5341 5342 Lint lint = lintEnv.info.lint.augment(sym); 5343 5344 Lint prevLint = chk.setLint(lint); 5345 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5346 5347 try { 5348 deferredLintHandler.flush(env.tree, lint); 5349 attrib.accept(env); 5350 } finally { 5351 log.useSource(prev); 5352 chk.setLint(prevLint); 5353 } 5354 } 5355 5356 /** Main method: attribute class definition associated with given class symbol. 5357 * reporting completion failures at the given position. 5358 * @param pos The source position at which completion errors are to be 5359 * reported. 5360 * @param c The class symbol whose definition will be attributed. 5361 */ 5362 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5363 try { 5364 annotate.flush(); 5365 attribClass(c); 5366 } catch (CompletionFailure ex) { 5367 chk.completionError(pos, ex); 5368 } 5369 } 5370 5371 /** Attribute class definition associated with given class symbol. 5372 * @param c The class symbol whose definition will be attributed. 5373 */ 5374 void attribClass(ClassSymbol c) throws CompletionFailure { 5375 if (c.type.hasTag(ERROR)) return; 5376 5377 // Check for cycles in the inheritance graph, which can arise from 5378 // ill-formed class files. 5379 chk.checkNonCyclic(null, c.type); 5380 5381 Type st = types.supertype(c.type); 5382 if ((c.flags_field & Flags.COMPOUND) == 0 && 5383 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5384 // First, attribute superclass. 5385 if (st.hasTag(CLASS)) 5386 attribClass((ClassSymbol)st.tsym); 5387 5388 // Next attribute owner, if it is a class. 5389 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5390 attribClass((ClassSymbol)c.owner); 5391 5392 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5393 } 5394 5395 // The previous operations might have attributed the current class 5396 // if there was a cycle. So we test first whether the class is still 5397 // UNATTRIBUTED. 5398 if ((c.flags_field & UNATTRIBUTED) != 0) { 5399 c.flags_field &= ~UNATTRIBUTED; 5400 5401 // Get environment current at the point of class definition. 5402 Env<AttrContext> env = typeEnvs.get(c); 5403 5404 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5405 // because the annotations were not available at the time the env was created. Therefore, 5406 // we look up the environment chain for the first enclosing environment for which the 5407 // lint value is set. Typically, this is the parent env, but might be further if there 5408 // are any envs created as a result of TypeParameter nodes. 5409 Env<AttrContext> lintEnv = env; 5410 while (lintEnv.info.lint == null) 5411 lintEnv = lintEnv.next; 5412 5413 // Having found the enclosing lint value, we can initialize the lint value for this class 5414 env.info.lint = lintEnv.info.lint.augment(c); 5415 5416 Lint prevLint = chk.setLint(env.info.lint); 5417 JavaFileObject prev = log.useSource(c.sourcefile); 5418 ResultInfo prevReturnRes = env.info.returnResult; 5419 5420 try { 5421 if (c.isSealed() && 5422 !c.isEnum() && 5423 !c.isPermittedExplicit && 5424 c.getPermittedSubclasses().isEmpty()) { 5425 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5426 } 5427 5428 if (c.isSealed()) { 5429 Set<Symbol> permittedTypes = new HashSet<>(); 5430 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5431 for (Type subType : c.getPermittedSubclasses()) { 5432 if (subType.isErroneous()) { 5433 // the type already caused errors, don't produce more potentially misleading errors 5434 continue; 5435 } 5436 boolean isTypeVar = false; 5437 if (subType.getTag() == TYPEVAR) { 5438 isTypeVar = true; //error recovery 5439 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5440 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5441 } 5442 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5443 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5444 } 5445 if (permittedTypes.contains(subType.tsym)) { 5446 DiagnosticPosition pos = 5447 env.enclClass.permitting.stream() 5448 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5449 .limit(2).collect(List.collector()).get(1); 5450 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5451 } else { 5452 permittedTypes.add(subType.tsym); 5453 } 5454 if (sealedInUnnamed) { 5455 if (subType.tsym.packge() != c.packge()) { 5456 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5457 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5458 ); 5459 } 5460 } else if (subType.tsym.packge().modle != c.packge().modle) { 5461 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5462 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5463 ); 5464 } 5465 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5466 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5467 Errors.InvalidPermitsClause( 5468 subType.tsym == c.type.tsym ? 5469 Fragments.MustNotBeSameClass : 5470 Fragments.MustNotBeSupertype(subType) 5471 ) 5472 ); 5473 } else if (!isTypeVar) { 5474 boolean thisIsASuper = types.directSupertypes(subType) 5475 .stream() 5476 .anyMatch(d -> d.tsym == c); 5477 if (!thisIsASuper) { 5478 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5479 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5480 } 5481 } 5482 } 5483 } 5484 5485 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5486 .stream() 5487 .filter(s -> s.tsym.isSealed()) 5488 .map(s -> (ClassSymbol) s.tsym) 5489 .collect(List.collector()); 5490 5491 if (sealedSupers.isEmpty()) { 5492 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5493 boolean hasErrorSuper = false; 5494 5495 hasErrorSuper |= types.directSupertypes(c.type) 5496 .stream() 5497 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5498 5499 ClassType ct = (ClassType) c.type; 5500 5501 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5502 5503 if (!hasErrorSuper) { 5504 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5505 } 5506 } 5507 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5508 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5509 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5510 } 5511 5512 if (!c.type.isCompound()) { 5513 for (ClassSymbol supertypeSym : sealedSupers) { 5514 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5515 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5516 } 5517 } 5518 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5519 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5520 c.isInterface() ? 5521 Errors.NonSealedOrSealedExpected : 5522 Errors.NonSealedSealedOrFinalExpected); 5523 } 5524 } 5525 } 5526 5527 deferredLintHandler.flush(env.tree, env.info.lint); 5528 env.info.returnResult = null; 5529 // java.lang.Enum may not be subclassed by a non-enum 5530 if (st.tsym == syms.enumSym && 5531 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5532 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5533 5534 // Enums may not be extended by source-level classes 5535 if (st.tsym != null && 5536 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5537 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5538 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5539 } 5540 5541 if (rs.isSerializable(c.type)) { 5542 env.info.isSerializable = true; 5543 } 5544 5545 if (c.isValueClass()) { 5546 Assert.check(env.tree.hasTag(CLASSDEF)); 5547 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c); 5548 } 5549 5550 attribClassBody(env, c); 5551 5552 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5553 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5554 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5555 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5556 5557 if (c.isImplicit()) { 5558 chk.checkHasMain(env.tree.pos(), c); 5559 } 5560 } finally { 5561 env.info.returnResult = prevReturnRes; 5562 log.useSource(prev); 5563 chk.setLint(prevLint); 5564 } 5565 5566 } 5567 } 5568 5569 public void visitImport(JCImport tree) { 5570 // nothing to do 5571 } 5572 5573 public void visitModuleDef(JCModuleDecl tree) { 5574 tree.sym.completeUsesProvides(); 5575 ModuleSymbol msym = tree.sym; 5576 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5577 Lint prevLint = chk.setLint(lint); 5578 chk.checkModuleName(tree); 5579 chk.checkDeprecatedAnnotation(tree, msym); 5580 5581 try { 5582 deferredLintHandler.flush(tree, lint); 5583 } finally { 5584 chk.setLint(prevLint); 5585 } 5586 } 5587 5588 /** Finish the attribution of a class. */ 5589 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5590 JCClassDecl tree = (JCClassDecl)env.tree; 5591 Assert.check(c == tree.sym); 5592 5593 // Validate type parameters, supertype and interfaces. 5594 attribStats(tree.typarams, env); 5595 if (!c.isAnonymous()) { 5596 //already checked if anonymous 5597 chk.validate(tree.typarams, env); 5598 chk.validate(tree.extending, env); 5599 chk.validate(tree.implementing, env); 5600 } 5601 5602 c.markAbstractIfNeeded(types); 5603 5604 // If this is a non-abstract class, check that it has no abstract 5605 // methods or unimplemented methods of an implemented interface. 5606 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5607 chk.checkAllDefined(tree.pos(), c); 5608 } 5609 5610 if ((c.flags() & ANNOTATION) != 0) { 5611 if (tree.implementing.nonEmpty()) 5612 log.error(tree.implementing.head.pos(), 5613 Errors.CantExtendIntfAnnotation); 5614 if (tree.typarams.nonEmpty()) { 5615 log.error(tree.typarams.head.pos(), 5616 Errors.IntfAnnotationCantHaveTypeParams(c)); 5617 } 5618 5619 // If this annotation type has a @Repeatable, validate 5620 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5621 // If this annotation type has a @Repeatable, validate 5622 if (repeatable != null) { 5623 // get diagnostic position for error reporting 5624 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5625 Assert.checkNonNull(cbPos); 5626 5627 chk.validateRepeatable(c, repeatable, cbPos); 5628 } 5629 } else { 5630 // Check that all extended classes and interfaces 5631 // are compatible (i.e. no two define methods with same arguments 5632 // yet different return types). (JLS 8.4.8.3) 5633 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5634 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5635 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5636 } 5637 5638 // Check that class does not import the same parameterized interface 5639 // with two different argument lists. 5640 chk.checkClassBounds(tree.pos(), c.type); 5641 5642 tree.type = c.type; 5643 5644 for (List<JCTypeParameter> l = tree.typarams; 5645 l.nonEmpty(); l = l.tail) { 5646 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5647 } 5648 5649 // Check that a generic class doesn't extend Throwable 5650 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5651 log.error(tree.extending.pos(), Errors.GenericThrowable); 5652 5653 // Check that all methods which implement some 5654 // method conform to the method they implement. 5655 chk.checkImplementations(tree); 5656 5657 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5658 checkAutoCloseable(tree.pos(), env, c.type); 5659 5660 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5661 // Attribute declaration 5662 attribStat(l.head, env); 5663 // Check that declarations in inner classes are not static (JLS 8.1.2) 5664 // Make an exception for static constants. 5665 if (!allowRecords && 5666 c.owner.kind != PCK && 5667 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5668 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5669 VarSymbol sym = null; 5670 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5671 if (sym == null || 5672 sym.kind != VAR || 5673 sym.getConstValue() == null) 5674 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5675 } 5676 } 5677 5678 // Check for proper placement of super()/this() calls. 5679 chk.checkSuperInitCalls(tree); 5680 5681 // Check for cycles among non-initial constructors. 5682 chk.checkCyclicConstructors(tree); 5683 5684 // Check for cycles among annotation elements. 5685 chk.checkNonCyclicElements(tree); 5686 5687 // Check for proper use of serialVersionUID and other 5688 // serialization-related fields and methods 5689 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5690 && rs.isSerializable(c.type) 5691 && !c.isAnonymous()) { 5692 chk.checkSerialStructure(env, tree, c); 5693 } 5694 // Correctly organize the positions of the type annotations 5695 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5696 5697 // Check type annotations applicability rules 5698 validateTypeAnnotations(tree, false); 5699 } 5700 // where 5701 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5702 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5703 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5704 if (types.isSameType(al.head.annotationType.type, t)) 5705 return al.head.pos(); 5706 } 5707 5708 return null; 5709 } 5710 5711 private Type capture(Type type) { 5712 return types.capture(type); 5713 } 5714 5715 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5716 if (type.isErroneous()) { 5717 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5718 } else { 5719 tree.vartype = make.at(Position.NOPOS).Type(type); 5720 } 5721 } 5722 5723 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5724 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5725 } 5726 //where 5727 private final class TypeAnnotationsValidator extends TreeScanner { 5728 5729 private final boolean sigOnly; 5730 public TypeAnnotationsValidator(boolean sigOnly) { 5731 this.sigOnly = sigOnly; 5732 } 5733 5734 public void visitAnnotation(JCAnnotation tree) { 5735 chk.validateTypeAnnotation(tree, null, false); 5736 super.visitAnnotation(tree); 5737 } 5738 public void visitAnnotatedType(JCAnnotatedType tree) { 5739 if (!tree.underlyingType.type.isErroneous()) { 5740 super.visitAnnotatedType(tree); 5741 } 5742 } 5743 public void visitTypeParameter(JCTypeParameter tree) { 5744 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5745 scan(tree.bounds); 5746 // Don't call super. 5747 // This is needed because above we call validateTypeAnnotation with 5748 // false, which would forbid annotations on type parameters. 5749 // super.visitTypeParameter(tree); 5750 } 5751 public void visitMethodDef(JCMethodDecl tree) { 5752 if (tree.recvparam != null && 5753 !tree.recvparam.vartype.type.isErroneous()) { 5754 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5755 } 5756 if (tree.restype != null && tree.restype.type != null) { 5757 validateAnnotatedType(tree.restype, tree.restype.type); 5758 } 5759 if (sigOnly) { 5760 scan(tree.mods); 5761 scan(tree.restype); 5762 scan(tree.typarams); 5763 scan(tree.recvparam); 5764 scan(tree.params); 5765 scan(tree.thrown); 5766 } else { 5767 scan(tree.defaultValue); 5768 scan(tree.body); 5769 } 5770 } 5771 public void visitVarDef(final JCVariableDecl tree) { 5772 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5773 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5774 validateAnnotatedType(tree.vartype, tree.sym.type); 5775 scan(tree.mods); 5776 scan(tree.vartype); 5777 if (!sigOnly) { 5778 scan(tree.init); 5779 } 5780 } 5781 public void visitTypeCast(JCTypeCast tree) { 5782 if (tree.clazz != null && tree.clazz.type != null) 5783 validateAnnotatedType(tree.clazz, tree.clazz.type); 5784 super.visitTypeCast(tree); 5785 } 5786 public void visitTypeTest(JCInstanceOf tree) { 5787 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5788 validateAnnotatedType(tree.pattern, tree.pattern.type); 5789 super.visitTypeTest(tree); 5790 } 5791 public void visitNewClass(JCNewClass tree) { 5792 if (tree.clazz != null && tree.clazz.type != null) { 5793 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5794 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5795 tree.clazz.type.tsym); 5796 } 5797 if (tree.def != null) { 5798 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5799 } 5800 5801 validateAnnotatedType(tree.clazz, tree.clazz.type); 5802 } 5803 super.visitNewClass(tree); 5804 } 5805 public void visitNewArray(JCNewArray tree) { 5806 if (tree.elemtype != null && tree.elemtype.type != null) { 5807 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5808 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5809 tree.elemtype.type.tsym); 5810 } 5811 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5812 } 5813 super.visitNewArray(tree); 5814 } 5815 public void visitClassDef(JCClassDecl tree) { 5816 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5817 if (sigOnly) { 5818 scan(tree.mods); 5819 scan(tree.typarams); 5820 scan(tree.extending); 5821 scan(tree.implementing); 5822 } 5823 for (JCTree member : tree.defs) { 5824 if (member.hasTag(Tag.CLASSDEF)) { 5825 continue; 5826 } 5827 scan(member); 5828 } 5829 } 5830 public void visitBlock(JCBlock tree) { 5831 if (!sigOnly) { 5832 scan(tree.stats); 5833 } 5834 } 5835 5836 /* I would want to model this after 5837 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5838 * and override visitSelect and visitTypeApply. 5839 * However, we only set the annotated type in the top-level type 5840 * of the symbol. 5841 * Therefore, we need to override each individual location where a type 5842 * can occur. 5843 */ 5844 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5845 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5846 5847 if (type.isPrimitiveOrVoid()) { 5848 return; 5849 } 5850 5851 JCTree enclTr = errtree; 5852 Type enclTy = type; 5853 5854 boolean repeat = true; 5855 while (repeat) { 5856 if (enclTr.hasTag(TYPEAPPLY)) { 5857 List<Type> tyargs = enclTy.getTypeArguments(); 5858 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5859 if (trargs.length() > 0) { 5860 // Nothing to do for diamonds 5861 if (tyargs.length() == trargs.length()) { 5862 for (int i = 0; i < tyargs.length(); ++i) { 5863 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5864 } 5865 } 5866 // If the lengths don't match, it's either a diamond 5867 // or some nested type that redundantly provides 5868 // type arguments in the tree. 5869 } 5870 5871 // Look at the clazz part of a generic type 5872 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5873 } 5874 5875 if (enclTr.hasTag(SELECT)) { 5876 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5877 if (enclTy != null && 5878 !enclTy.hasTag(NONE)) { 5879 enclTy = enclTy.getEnclosingType(); 5880 } 5881 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5882 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5883 if (enclTy == null || enclTy.hasTag(NONE)) { 5884 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 5885 for (JCAnnotation an : at.getAnnotations()) { 5886 if (chk.isTypeAnnotation(an, false)) { 5887 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 5888 } 5889 } 5890 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 5891 if (!onlyTypeAnnotations.isEmpty()) { 5892 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 5893 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 5894 Fragments.TypeAnnotation(onlyTypeAnnotations); 5895 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 5896 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 5897 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 5898 type.tsym.owner, annotatedType)); 5899 } 5900 repeat = false; 5901 } 5902 enclTr = at.underlyingType; 5903 // enclTy doesn't need to be changed 5904 } else if (enclTr.hasTag(IDENT)) { 5905 repeat = false; 5906 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5907 JCWildcard wc = (JCWildcard) enclTr; 5908 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 5909 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 5910 validateAnnotatedType(wc.getBound(), wc.getBound().type); 5911 } else { 5912 // Nothing to do for UNBOUND 5913 } 5914 repeat = false; 5915 } else if (enclTr.hasTag(TYPEARRAY)) { 5916 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 5917 validateAnnotatedType(art.getType(), art.elemtype.type); 5918 repeat = false; 5919 } else if (enclTr.hasTag(TYPEUNION)) { 5920 JCTypeUnion ut = (JCTypeUnion) enclTr; 5921 for (JCTree t : ut.getTypeAlternatives()) { 5922 validateAnnotatedType(t, t.type); 5923 } 5924 repeat = false; 5925 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 5926 JCTypeIntersection it = (JCTypeIntersection) enclTr; 5927 for (JCTree t : it.getBounds()) { 5928 validateAnnotatedType(t, t.type); 5929 } 5930 repeat = false; 5931 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 5932 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 5933 repeat = false; 5934 } else { 5935 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 5936 " within: "+ errtree + " with kind: " + errtree.getKind()); 5937 } 5938 } 5939 } 5940 5941 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 5942 Symbol sym) { 5943 // Ensure that no declaration annotations are present. 5944 // Note that a tree type might be an AnnotatedType with 5945 // empty annotations, if only declaration annotations were given. 5946 // This method will raise an error for such a type. 5947 for (JCAnnotation ai : annotations) { 5948 if (!ai.type.isErroneous() && 5949 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 5950 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 5951 } 5952 } 5953 } 5954 } 5955 5956 // <editor-fold desc="post-attribution visitor"> 5957 5958 /** 5959 * Handle missing types/symbols in an AST. This routine is useful when 5960 * the compiler has encountered some errors (which might have ended up 5961 * terminating attribution abruptly); if the compiler is used in fail-over 5962 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 5963 * prevents NPE to be propagated during subsequent compilation steps. 5964 */ 5965 public void postAttr(JCTree tree) { 5966 new PostAttrAnalyzer().scan(tree); 5967 } 5968 5969 class PostAttrAnalyzer extends TreeScanner { 5970 5971 private void initTypeIfNeeded(JCTree that) { 5972 if (that.type == null) { 5973 if (that.hasTag(METHODDEF)) { 5974 that.type = dummyMethodType((JCMethodDecl)that); 5975 } else { 5976 that.type = syms.unknownType; 5977 } 5978 } 5979 } 5980 5981 /* Construct a dummy method type. If we have a method declaration, 5982 * and the declared return type is void, then use that return type 5983 * instead of UNKNOWN to avoid spurious error messages in lambda 5984 * bodies (see:JDK-8041704). 5985 */ 5986 private Type dummyMethodType(JCMethodDecl md) { 5987 Type restype = syms.unknownType; 5988 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 5989 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 5990 if (prim.typetag == VOID) 5991 restype = syms.voidType; 5992 } 5993 return new MethodType(List.nil(), restype, 5994 List.nil(), syms.methodClass); 5995 } 5996 private Type dummyMethodType() { 5997 return dummyMethodType(null); 5998 } 5999 6000 @Override 6001 public void scan(JCTree tree) { 6002 if (tree == null) return; 6003 if (tree instanceof JCExpression) { 6004 initTypeIfNeeded(tree); 6005 } 6006 super.scan(tree); 6007 } 6008 6009 @Override 6010 public void visitIdent(JCIdent that) { 6011 if (that.sym == null) { 6012 that.sym = syms.unknownSymbol; 6013 } 6014 } 6015 6016 @Override 6017 public void visitSelect(JCFieldAccess that) { 6018 if (that.sym == null) { 6019 that.sym = syms.unknownSymbol; 6020 } 6021 super.visitSelect(that); 6022 } 6023 6024 @Override 6025 public void visitClassDef(JCClassDecl that) { 6026 initTypeIfNeeded(that); 6027 if (that.sym == null) { 6028 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6029 } 6030 super.visitClassDef(that); 6031 } 6032 6033 @Override 6034 public void visitMethodDef(JCMethodDecl that) { 6035 initTypeIfNeeded(that); 6036 if (that.sym == null) { 6037 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6038 } 6039 super.visitMethodDef(that); 6040 } 6041 6042 @Override 6043 public void visitVarDef(JCVariableDecl that) { 6044 initTypeIfNeeded(that); 6045 if (that.sym == null) { 6046 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6047 that.sym.adr = 0; 6048 } 6049 if (that.vartype == null) { 6050 that.vartype = make.at(Position.NOPOS).Erroneous(); 6051 } 6052 super.visitVarDef(that); 6053 } 6054 6055 @Override 6056 public void visitBindingPattern(JCBindingPattern that) { 6057 initTypeIfNeeded(that); 6058 initTypeIfNeeded(that.var); 6059 if (that.var.sym == null) { 6060 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6061 that.var.sym.adr = 0; 6062 } 6063 super.visitBindingPattern(that); 6064 } 6065 6066 @Override 6067 public void visitRecordPattern(JCRecordPattern that) { 6068 initTypeIfNeeded(that); 6069 if (that.record == null) { 6070 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6071 that.type, syms.noSymbol); 6072 } 6073 if (that.fullComponentTypes == null) { 6074 that.fullComponentTypes = List.nil(); 6075 } 6076 super.visitRecordPattern(that); 6077 } 6078 6079 @Override 6080 public void visitNewClass(JCNewClass that) { 6081 if (that.constructor == null) { 6082 that.constructor = new MethodSymbol(0, names.init, 6083 dummyMethodType(), syms.noSymbol); 6084 } 6085 if (that.constructorType == null) { 6086 that.constructorType = syms.unknownType; 6087 } 6088 super.visitNewClass(that); 6089 } 6090 6091 @Override 6092 public void visitAssignop(JCAssignOp that) { 6093 if (that.operator == null) { 6094 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6095 -1, syms.noSymbol); 6096 } 6097 super.visitAssignop(that); 6098 } 6099 6100 @Override 6101 public void visitBinary(JCBinary that) { 6102 if (that.operator == null) { 6103 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6104 -1, syms.noSymbol); 6105 } 6106 super.visitBinary(that); 6107 } 6108 6109 @Override 6110 public void visitUnary(JCUnary that) { 6111 if (that.operator == null) { 6112 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6113 -1, syms.noSymbol); 6114 } 6115 super.visitUnary(that); 6116 } 6117 6118 @Override 6119 public void visitReference(JCMemberReference that) { 6120 super.visitReference(that); 6121 if (that.sym == null) { 6122 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6123 syms.noSymbol); 6124 } 6125 } 6126 } 6127 // </editor-fold> 6128 6129 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6130 new TreeScanner() { 6131 Symbol packge = pkg; 6132 @Override 6133 public void visitIdent(JCIdent that) { 6134 that.sym = packge; 6135 } 6136 6137 @Override 6138 public void visitSelect(JCFieldAccess that) { 6139 that.sym = packge; 6140 packge = packge.owner; 6141 super.visitSelect(that); 6142 } 6143 }.scan(pid); 6144 } 6145 6146 }