1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 final LocalProxyVarsGen localProxyVarsGen; 128 129 public static Attr instance(Context context) { 130 Attr instance = context.get(attrKey); 131 if (instance == null) 132 instance = new Attr(context); 133 return instance; 134 } 135 136 @SuppressWarnings("this-escape") 137 protected Attr(Context context) { 138 context.put(attrKey, this); 139 140 names = Names.instance(context); 141 log = Log.instance(context); 142 syms = Symtab.instance(context); 143 rs = Resolve.instance(context); 144 operators = Operators.instance(context); 145 chk = Check.instance(context); 146 flow = Flow.instance(context); 147 memberEnter = MemberEnter.instance(context); 148 typeEnter = TypeEnter.instance(context); 149 make = TreeMaker.instance(context); 150 enter = Enter.instance(context); 151 infer = Infer.instance(context); 152 analyzer = Analyzer.instance(context); 153 deferredAttr = DeferredAttr.instance(context); 154 cfolder = ConstFold.instance(context); 155 target = Target.instance(context); 156 types = Types.instance(context); 157 preview = Preview.instance(context); 158 diags = JCDiagnostic.Factory.instance(context); 159 annotate = Annotate.instance(context); 160 typeAnnotations = TypeAnnotations.instance(context); 161 deferredLintHandler = DeferredLintHandler.instance(context); 162 typeEnvs = TypeEnvs.instance(context); 163 dependencies = Dependencies.instance(context); 164 argumentAttr = ArgumentAttr.instance(context); 165 matchBindingsComputer = MatchBindingsComputer.instance(context); 166 attrRecover = AttrRecover.instance(context); 167 localProxyVarsGen = LocalProxyVarsGen.instance(context); 168 169 Options options = Options.instance(context); 170 171 Source source = Source.instance(context); 172 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 173 allowRecords = Feature.RECORDS.allowedInSource(source); 174 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 175 Feature.PATTERN_SWITCH.allowedInSource(source); 176 allowUnconditionalPatternsInstanceOf = 177 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 178 sourceName = source.name; 179 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 180 181 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 182 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 183 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 184 methodAttrInfo = new MethodAttrInfo(); 185 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 186 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 187 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 188 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 189 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) && 190 Feature.VALUE_CLASSES.allowedInSource(source); 191 } 192 193 /** Switch: reifiable types in instanceof enabled? 194 */ 195 boolean allowReifiableTypesInInstanceof; 196 197 /** Are records allowed 198 */ 199 private final boolean allowRecords; 200 201 /** Are patterns in switch allowed 202 */ 203 private final boolean allowPatternSwitch; 204 205 /** Are unconditional patterns in instanceof allowed 206 */ 207 private final boolean allowUnconditionalPatternsInstanceOf; 208 209 /** Are value classes allowed 210 */ 211 private final boolean allowValueClasses; 212 213 /** 214 * Switch: warn about use of variable before declaration? 215 * RFE: 6425594 216 */ 217 boolean useBeforeDeclarationWarning; 218 219 /** 220 * Switch: name of source level; used for error reporting. 221 */ 222 String sourceName; 223 224 /** Check kind and type of given tree against protokind and prototype. 225 * If check succeeds, store type in tree and return it. 226 * If check fails, store errType in tree and return it. 227 * No checks are performed if the prototype is a method type. 228 * It is not necessary in this case since we know that kind and type 229 * are correct. 230 * 231 * @param tree The tree whose kind and type is checked 232 * @param found The computed type of the tree 233 * @param ownkind The computed kind of the tree 234 * @param resultInfo The expected result of the tree 235 */ 236 Type check(final JCTree tree, 237 final Type found, 238 final KindSelector ownkind, 239 final ResultInfo resultInfo) { 240 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 241 Type owntype; 242 boolean shouldCheck = !found.hasTag(ERROR) && 243 !resultInfo.pt.hasTag(METHOD) && 244 !resultInfo.pt.hasTag(FORALL); 245 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 246 log.error(tree.pos(), 247 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 248 ownkind.kindNames())); 249 owntype = types.createErrorType(found); 250 } else if (inferenceContext.free(found)) { 251 //delay the check if there are inference variables in the found type 252 //this means we are dealing with a partially inferred poly expression 253 owntype = shouldCheck ? resultInfo.pt : found; 254 if (resultInfo.checkMode.installPostInferenceHook()) { 255 inferenceContext.addFreeTypeListener(List.of(found), 256 instantiatedContext -> { 257 ResultInfo pendingResult = 258 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 259 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 260 }); 261 } 262 } else { 263 owntype = shouldCheck ? 264 resultInfo.check(tree, found) : 265 found; 266 } 267 if (resultInfo.checkMode.updateTreeType()) { 268 tree.type = owntype; 269 } 270 return owntype; 271 } 272 273 /** Is given blank final variable assignable, i.e. in a scope where it 274 * may be assigned to even though it is final? 275 * @param v The blank final variable. 276 * @param env The current environment. 277 */ 278 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 279 Symbol owner = env.info.scope.owner; 280 // owner refers to the innermost variable, method or 281 // initializer block declaration at this point. 282 boolean isAssignable = 283 v.owner == owner 284 || 285 ((owner.name == names.init || // i.e. we are in a constructor 286 owner.kind == VAR || // i.e. we are in a variable initializer 287 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 288 && 289 v.owner == owner.owner 290 && 291 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 292 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 293 return isAssignable & !insideCompactConstructor; 294 } 295 296 /** Check that variable can be assigned to. 297 * @param pos The current source code position. 298 * @param v The assigned variable 299 * @param base If the variable is referred to in a Select, the part 300 * to the left of the `.', null otherwise. 301 * @param env The current environment. 302 */ 303 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 304 if (v.name == names._this) { 305 log.error(pos, Errors.CantAssignValToThis); 306 } else if ((v.flags() & FINAL) != 0 && 307 ((v.flags() & HASINIT) != 0 308 || 309 !((base == null || 310 TreeInfo.isThisQualifier(base)) && 311 isAssignableAsBlankFinal(v, env)))) { 312 if (v.isResourceVariable()) { //TWR resource 313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 314 } else { 315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 316 } 317 } 318 } 319 320 /** Does tree represent a static reference to an identifier? 321 * It is assumed that tree is either a SELECT or an IDENT. 322 * We have to weed out selects from non-type names here. 323 * @param tree The candidate tree. 324 */ 325 boolean isStaticReference(JCTree tree) { 326 if (tree.hasTag(SELECT)) { 327 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 328 if (lsym == null || lsym.kind != TYP) { 329 return false; 330 } 331 } 332 return true; 333 } 334 335 /** Is this symbol a type? 336 */ 337 static boolean isType(Symbol sym) { 338 return sym != null && sym.kind == TYP; 339 } 340 341 /** Attribute a parsed identifier. 342 * @param tree Parsed identifier name 343 * @param topLevel The toplevel to use 344 */ 345 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 346 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 347 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 348 syms.errSymbol.name, 349 null, null, null, null); 350 localEnv.enclClass.sym = syms.errSymbol; 351 return attribIdent(tree, localEnv); 352 } 353 354 /** Attribute a parsed identifier. 355 * @param tree Parsed identifier name 356 * @param env The env to use 357 */ 358 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 359 return tree.accept(identAttributer, env); 360 } 361 // where 362 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 363 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 364 @Override @DefinedBy(Api.COMPILER_TREE) 365 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 366 Symbol site = visit(node.getExpression(), env); 367 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 368 return site; 369 Name name = (Name)node.getIdentifier(); 370 if (site.kind == PCK) { 371 env.toplevel.packge = (PackageSymbol)site; 372 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 373 KindSelector.TYP_PCK); 374 } else { 375 env.enclClass.sym = (ClassSymbol)site; 376 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 377 } 378 } 379 380 @Override @DefinedBy(Api.COMPILER_TREE) 381 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 382 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 383 } 384 } 385 386 public Type coerce(Type etype, Type ttype) { 387 return cfolder.coerce(etype, ttype); 388 } 389 390 public Type attribType(JCTree node, TypeSymbol sym) { 391 Env<AttrContext> env = typeEnvs.get(sym); 392 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 393 return attribTree(node, localEnv, unknownTypeInfo); 394 } 395 396 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 397 // Attribute qualifying package or class. 398 JCFieldAccess s = tree.qualid; 399 return attribTree(s.selected, env, 400 new ResultInfo(tree.staticImport ? 401 KindSelector.TYP : KindSelector.TYP_PCK, 402 Type.noType)); 403 } 404 405 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 406 return attribToTree(expr, env, tree, unknownExprInfo); 407 } 408 409 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 410 return attribToTree(stmt, env, tree, statInfo); 411 } 412 413 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 414 breakTree = tree; 415 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 416 try { 417 deferredAttr.attribSpeculative(root, env, resultInfo, 418 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 419 argumentAttr.withLocalCacheContext()); 420 attrRecover.doRecovery(); 421 } catch (BreakAttr b) { 422 return b.env; 423 } catch (AssertionError ae) { 424 if (ae.getCause() instanceof BreakAttr breakAttr) { 425 return breakAttr.env; 426 } else { 427 throw ae; 428 } 429 } finally { 430 breakTree = null; 431 log.useSource(prev); 432 } 433 return env; 434 } 435 436 private JCTree breakTree = null; 437 438 private static class BreakAttr extends RuntimeException { 439 static final long serialVersionUID = -6924771130405446405L; 440 private transient Env<AttrContext> env; 441 private BreakAttr(Env<AttrContext> env) { 442 this.env = env; 443 } 444 } 445 446 /** 447 * Mode controlling behavior of Attr.Check 448 */ 449 enum CheckMode { 450 451 NORMAL, 452 453 /** 454 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 455 * that the captured var cache in {@code InferenceContext} will be used in read-only 456 * mode when performing inference checks. 457 */ 458 NO_TREE_UPDATE { 459 @Override 460 public boolean updateTreeType() { 461 return false; 462 } 463 }, 464 /** 465 * Mode signalling that caller will manage free types in tree decorations. 466 */ 467 NO_INFERENCE_HOOK { 468 @Override 469 public boolean installPostInferenceHook() { 470 return false; 471 } 472 }; 473 474 public boolean updateTreeType() { 475 return true; 476 } 477 public boolean installPostInferenceHook() { 478 return true; 479 } 480 } 481 482 483 class ResultInfo { 484 final KindSelector pkind; 485 final Type pt; 486 final CheckContext checkContext; 487 final CheckMode checkMode; 488 489 ResultInfo(KindSelector pkind, Type pt) { 490 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 491 } 492 493 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 494 this(pkind, pt, chk.basicHandler, checkMode); 495 } 496 497 protected ResultInfo(KindSelector pkind, 498 Type pt, CheckContext checkContext) { 499 this(pkind, pt, checkContext, CheckMode.NORMAL); 500 } 501 502 protected ResultInfo(KindSelector pkind, 503 Type pt, CheckContext checkContext, CheckMode checkMode) { 504 this.pkind = pkind; 505 this.pt = pt; 506 this.checkContext = checkContext; 507 this.checkMode = checkMode; 508 } 509 510 /** 511 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 512 * @param tree The tree to be type-checked. 513 * @return true if {@code ArgumentAttr} should be used. 514 */ 515 protected boolean needsArgumentAttr(JCTree tree) { return false; } 516 517 protected Type check(final DiagnosticPosition pos, final Type found) { 518 return chk.checkType(pos, found, pt, checkContext); 519 } 520 521 protected ResultInfo dup(Type newPt) { 522 return new ResultInfo(pkind, newPt, checkContext, checkMode); 523 } 524 525 protected ResultInfo dup(CheckContext newContext) { 526 return new ResultInfo(pkind, pt, newContext, checkMode); 527 } 528 529 protected ResultInfo dup(Type newPt, CheckContext newContext) { 530 return new ResultInfo(pkind, newPt, newContext, checkMode); 531 } 532 533 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 534 return new ResultInfo(pkind, newPt, newContext, newMode); 535 } 536 537 protected ResultInfo dup(CheckMode newMode) { 538 return new ResultInfo(pkind, pt, checkContext, newMode); 539 } 540 541 @Override 542 public String toString() { 543 if (pt != null) { 544 return pt.toString(); 545 } else { 546 return ""; 547 } 548 } 549 } 550 551 class MethodAttrInfo extends ResultInfo { 552 public MethodAttrInfo() { 553 this(chk.basicHandler); 554 } 555 556 public MethodAttrInfo(CheckContext checkContext) { 557 super(KindSelector.VAL, Infer.anyPoly, checkContext); 558 } 559 560 @Override 561 protected boolean needsArgumentAttr(JCTree tree) { 562 return true; 563 } 564 565 protected ResultInfo dup(Type newPt) { 566 throw new IllegalStateException(); 567 } 568 569 protected ResultInfo dup(CheckContext newContext) { 570 return new MethodAttrInfo(newContext); 571 } 572 573 protected ResultInfo dup(Type newPt, CheckContext newContext) { 574 throw new IllegalStateException(); 575 } 576 577 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 578 throw new IllegalStateException(); 579 } 580 581 protected ResultInfo dup(CheckMode newMode) { 582 throw new IllegalStateException(); 583 } 584 } 585 586 class RecoveryInfo extends ResultInfo { 587 588 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 589 this(deferredAttrContext, Type.recoveryType); 590 } 591 592 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 593 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 594 @Override 595 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 596 return deferredAttrContext; 597 } 598 @Override 599 public boolean compatible(Type found, Type req, Warner warn) { 600 return true; 601 } 602 @Override 603 public void report(DiagnosticPosition pos, JCDiagnostic details) { 604 boolean needsReport = pt == Type.recoveryType || 605 (details.getDiagnosticPosition() != null && 606 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 607 if (needsReport) { 608 chk.basicHandler.report(pos, details); 609 } 610 } 611 }); 612 } 613 } 614 615 final ResultInfo statInfo; 616 final ResultInfo varAssignmentInfo; 617 final ResultInfo methodAttrInfo; 618 final ResultInfo unknownExprInfo; 619 final ResultInfo unknownTypeInfo; 620 final ResultInfo unknownTypeExprInfo; 621 final ResultInfo recoveryInfo; 622 final MethodType initBlockType; 623 624 Type pt() { 625 return resultInfo.pt; 626 } 627 628 KindSelector pkind() { 629 return resultInfo.pkind; 630 } 631 632 /* ************************************************************************ 633 * Visitor methods 634 *************************************************************************/ 635 636 /** Visitor argument: the current environment. 637 */ 638 Env<AttrContext> env; 639 640 /** Visitor argument: the currently expected attribution result. 641 */ 642 ResultInfo resultInfo; 643 644 /** Visitor result: the computed type. 645 */ 646 Type result; 647 648 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 649 650 /** Visitor method: attribute a tree, catching any completion failure 651 * exceptions. Return the tree's type. 652 * 653 * @param tree The tree to be visited. 654 * @param env The environment visitor argument. 655 * @param resultInfo The result info visitor argument. 656 */ 657 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 658 Env<AttrContext> prevEnv = this.env; 659 ResultInfo prevResult = this.resultInfo; 660 try { 661 this.env = env; 662 this.resultInfo = resultInfo; 663 if (resultInfo.needsArgumentAttr(tree)) { 664 result = argumentAttr.attribArg(tree, env); 665 } else { 666 tree.accept(this); 667 } 668 matchBindings = matchBindingsComputer.finishBindings(tree, 669 matchBindings); 670 if (tree == breakTree && 671 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 672 breakTreeFound(copyEnv(env)); 673 } 674 return result; 675 } catch (CompletionFailure ex) { 676 tree.type = syms.errType; 677 return chk.completionError(tree.pos(), ex); 678 } finally { 679 this.env = prevEnv; 680 this.resultInfo = prevResult; 681 } 682 } 683 684 protected void breakTreeFound(Env<AttrContext> env) { 685 throw new BreakAttr(env); 686 } 687 688 Env<AttrContext> copyEnv(Env<AttrContext> env) { 689 Env<AttrContext> newEnv = 690 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 691 if (newEnv.outer != null) { 692 newEnv.outer = copyEnv(newEnv.outer); 693 } 694 return newEnv; 695 } 696 697 WriteableScope copyScope(WriteableScope sc) { 698 WriteableScope newScope = WriteableScope.create(sc.owner); 699 List<Symbol> elemsList = List.nil(); 700 for (Symbol sym : sc.getSymbols()) { 701 elemsList = elemsList.prepend(sym); 702 } 703 for (Symbol s : elemsList) { 704 newScope.enter(s); 705 } 706 return newScope; 707 } 708 709 /** Derived visitor method: attribute an expression tree. 710 */ 711 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 712 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 713 } 714 715 /** Derived visitor method: attribute an expression tree with 716 * no constraints on the computed type. 717 */ 718 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 719 return attribTree(tree, env, unknownExprInfo); 720 } 721 722 /** Derived visitor method: attribute a type tree. 723 */ 724 public Type attribType(JCTree tree, Env<AttrContext> env) { 725 Type result = attribType(tree, env, Type.noType); 726 return result; 727 } 728 729 /** Derived visitor method: attribute a type tree. 730 */ 731 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 732 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 733 return result; 734 } 735 736 /** Derived visitor method: attribute a statement or definition tree. 737 */ 738 public Type attribStat(JCTree tree, Env<AttrContext> env) { 739 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 740 Type result = attribTree(tree, env, statInfo); 741 analyzer.analyzeIfNeeded(tree, analyzeEnv); 742 attrRecover.doRecovery(); 743 return result; 744 } 745 746 /** Attribute a list of expressions, returning a list of types. 747 */ 748 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 749 ListBuffer<Type> ts = new ListBuffer<>(); 750 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 751 ts.append(attribExpr(l.head, env, pt)); 752 return ts.toList(); 753 } 754 755 /** Attribute a list of statements, returning nothing. 756 */ 757 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 758 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 759 attribStat(l.head, env); 760 } 761 762 /** Attribute the arguments in a method call, returning the method kind. 763 */ 764 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 765 KindSelector kind = initialKind; 766 for (JCExpression arg : trees) { 767 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 768 if (argtype.hasTag(DEFERRED)) { 769 kind = KindSelector.of(KindSelector.POLY, kind); 770 } 771 argtypes.append(argtype); 772 } 773 return kind; 774 } 775 776 /** Attribute a type argument list, returning a list of types. 777 * Caller is responsible for calling checkRefTypes. 778 */ 779 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 780 ListBuffer<Type> argtypes = new ListBuffer<>(); 781 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 782 argtypes.append(attribType(l.head, env)); 783 return argtypes.toList(); 784 } 785 786 /** Attribute a type argument list, returning a list of types. 787 * Check that all the types are references. 788 */ 789 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 790 List<Type> types = attribAnyTypes(trees, env); 791 return chk.checkRefTypes(trees, types); 792 } 793 794 /** 795 * Attribute type variables (of generic classes or methods). 796 * Compound types are attributed later in attribBounds. 797 * @param typarams the type variables to enter 798 * @param env the current environment 799 */ 800 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 801 for (JCTypeParameter tvar : typarams) { 802 TypeVar a = (TypeVar)tvar.type; 803 a.tsym.flags_field |= UNATTRIBUTED; 804 a.setUpperBound(Type.noType); 805 if (!tvar.bounds.isEmpty()) { 806 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 807 for (JCExpression bound : tvar.bounds.tail) 808 bounds = bounds.prepend(attribType(bound, env)); 809 types.setBounds(a, bounds.reverse()); 810 } else { 811 // if no bounds are given, assume a single bound of 812 // java.lang.Object. 813 types.setBounds(a, List.of(syms.objectType)); 814 } 815 a.tsym.flags_field &= ~UNATTRIBUTED; 816 } 817 if (checkCyclic) { 818 for (JCTypeParameter tvar : typarams) { 819 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 820 } 821 } 822 } 823 824 /** 825 * Attribute the type references in a list of annotations. 826 */ 827 void attribAnnotationTypes(List<JCAnnotation> annotations, 828 Env<AttrContext> env) { 829 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 830 JCAnnotation a = al.head; 831 attribType(a.annotationType, env); 832 } 833 } 834 835 /** 836 * Attribute a "lazy constant value". 837 * @param env The env for the const value 838 * @param variable The initializer for the const value 839 * @param type The expected type, or null 840 * @see VarSymbol#setLazyConstValue 841 */ 842 public Object attribLazyConstantValue(Env<AttrContext> env, 843 Env<AttrContext> enclosingEnv, 844 JCVariableDecl variable, 845 Type type) { 846 deferredLintHandler.push(variable); 847 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 848 try { 849 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 850 Type itype = attribExpr(variable.init, env, type); 851 if (variable.isImplicitlyTyped()) { 852 //fixup local variable type 853 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 854 } 855 if (itype.constValue() != null) { 856 return coerce(itype, type).constValue(); 857 } else { 858 return null; 859 } 860 } finally { 861 log.useSource(prevSource); 862 deferredLintHandler.pop(); 863 } 864 } 865 866 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 867 * Supertypes of anonymous inner classes are usually already attributed. 868 * 869 * @param tree The tree making up the type reference. 870 * @param env The environment current at the reference. 871 * @param classExpected true if only a class is expected here. 872 * @param interfaceExpected true if only an interface is expected here. 873 */ 874 Type attribBase(JCTree tree, 875 Env<AttrContext> env, 876 boolean classExpected, 877 boolean interfaceExpected, 878 boolean checkExtensible) { 879 Type t = tree.type != null ? 880 tree.type : 881 attribType(tree, env); 882 try { 883 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 884 } catch (CompletionFailure ex) { 885 chk.completionError(tree.pos(), ex); 886 return t; 887 } 888 } 889 Type checkBase(Type t, 890 JCTree tree, 891 Env<AttrContext> env, 892 boolean classExpected, 893 boolean interfaceExpected, 894 boolean checkExtensible) { 895 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 896 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 897 if (t.tsym.isAnonymous()) { 898 log.error(pos, Errors.CantInheritFromAnon); 899 return types.createErrorType(t); 900 } 901 if (t.isErroneous()) 902 return t; 903 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 904 // check that type variable is already visible 905 if (t.getUpperBound() == null) { 906 log.error(pos, Errors.IllegalForwardRef); 907 return types.createErrorType(t); 908 } 909 } else { 910 t = chk.checkClassType(pos, t, checkExtensible); 911 } 912 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 913 log.error(pos, Errors.IntfExpectedHere); 914 // return errType is necessary since otherwise there might 915 // be undetected cycles which cause attribution to loop 916 return types.createErrorType(t); 917 } else if (checkExtensible && 918 classExpected && 919 (t.tsym.flags() & INTERFACE) != 0) { 920 log.error(pos, Errors.NoIntfExpectedHere); 921 return types.createErrorType(t); 922 } 923 if (checkExtensible && 924 ((t.tsym.flags() & FINAL) != 0)) { 925 log.error(pos, 926 Errors.CantInheritFromFinal(t.tsym)); 927 } 928 chk.checkNonCyclic(pos, t); 929 return t; 930 } 931 932 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 933 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 934 id.type = env.info.scope.owner.enclClass().type; 935 id.sym = env.info.scope.owner.enclClass(); 936 return id.type; 937 } 938 939 public void visitClassDef(JCClassDecl tree) { 940 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 941 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 942 argumentAttr.withLocalCacheContext() : null); 943 boolean ctorProloguePrev = env.info.ctorPrologue; 944 try { 945 // Local and anonymous classes have not been entered yet, so we need to 946 // do it now. 947 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 948 enter.classEnter(tree, env); 949 } else { 950 // If this class declaration is part of a class level annotation, 951 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 952 // order to simplify later steps and allow for sensible error 953 // messages. 954 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 955 enter.classEnter(tree, env); 956 } 957 958 ClassSymbol c = tree.sym; 959 if (c == null) { 960 // exit in case something drastic went wrong during enter. 961 result = null; 962 } else { 963 // make sure class has been completed: 964 c.complete(); 965 966 // If a class declaration appears in a constructor prologue, 967 // that means it's either a local class or an anonymous class. 968 // Either way, there is no immediately enclosing instance. 969 if (ctorProloguePrev) { 970 c.flags_field |= NOOUTERTHIS; 971 } 972 attribClass(tree.pos(), c); 973 result = tree.type = c.type; 974 } 975 } finally { 976 localCacheContext.ifPresent(LocalCacheContext::leave); 977 env.info.ctorPrologue = ctorProloguePrev; 978 } 979 } 980 981 public void visitMethodDef(JCMethodDecl tree) { 982 MethodSymbol m = tree.sym; 983 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 984 985 Lint lint = env.info.lint.augment(m); 986 Lint prevLint = chk.setLint(lint); 987 boolean ctorProloguePrev = env.info.ctorPrologue; 988 Assert.check(!env.info.ctorPrologue); 989 MethodSymbol prevMethod = chk.setMethod(m); 990 try { 991 deferredLintHandler.flush(tree, lint); 992 chk.checkDeprecatedAnnotation(tree.pos(), m); 993 994 995 // Create a new environment with local scope 996 // for attributing the method. 997 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 998 localEnv.info.lint = lint; 999 1000 attribStats(tree.typarams, localEnv); 1001 1002 // If we override any other methods, check that we do so properly. 1003 // JLS ??? 1004 if (m.isStatic()) { 1005 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1006 } else { 1007 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1008 } 1009 chk.checkOverride(env, tree, m); 1010 1011 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1012 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1013 } 1014 1015 // Enter all type parameters into the local method scope. 1016 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1017 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1018 1019 ClassSymbol owner = env.enclClass.sym; 1020 if ((owner.flags() & ANNOTATION) != 0 && 1021 (tree.params.nonEmpty() || 1022 tree.recvparam != null)) 1023 log.error(tree.params.nonEmpty() ? 1024 tree.params.head.pos() : 1025 tree.recvparam.pos(), 1026 Errors.IntfAnnotationMembersCantHaveParams); 1027 1028 // Attribute all value parameters. 1029 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1030 attribStat(l.head, localEnv); 1031 } 1032 1033 chk.checkVarargsMethodDecl(localEnv, tree); 1034 1035 // Check that type parameters are well-formed. 1036 chk.validate(tree.typarams, localEnv); 1037 1038 // Check that result type is well-formed. 1039 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) { 1040 chk.validate(tree.restype, localEnv); 1041 } 1042 chk.checkRequiresIdentity(tree, env.info.lint); 1043 1044 // Check that receiver type is well-formed. 1045 if (tree.recvparam != null) { 1046 // Use a new environment to check the receiver parameter. 1047 // Otherwise I get "might not have been initialized" errors. 1048 // Is there a better way? 1049 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1050 attribType(tree.recvparam, newEnv); 1051 chk.validate(tree.recvparam, newEnv); 1052 } 1053 1054 // Is this method a constructor? 1055 boolean isConstructor = TreeInfo.isConstructor(tree); 1056 1057 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1058 // lets find if this method is an accessor 1059 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1060 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1061 if (recordComponent.isPresent()) { 1062 // the method is a user defined accessor lets check that everything is fine 1063 if (!tree.sym.isPublic()) { 1064 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1065 } 1066 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1067 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1068 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1069 } 1070 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1071 log.error(tree, 1072 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1073 } 1074 if (!tree.typarams.isEmpty()) { 1075 log.error(tree, 1076 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1077 } 1078 if (tree.sym.isStatic()) { 1079 log.error(tree, 1080 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1081 } 1082 } 1083 1084 if (isConstructor) { 1085 // if this a constructor other than the canonical one 1086 if ((tree.sym.flags_field & RECORD) == 0) { 1087 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1088 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1089 } 1090 } else { 1091 // but if it is the canonical: 1092 1093 /* if user generated, then it shouldn't: 1094 * - have an accessibility stricter than that of the record type 1095 * - explicitly invoke any other constructor 1096 */ 1097 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1098 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1099 log.error(tree, 1100 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1101 Errors.InvalidCanonicalConstructorInRecord( 1102 Fragments.Canonical, 1103 env.enclClass.sym.name, 1104 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1105 ) : 1106 Errors.InvalidCanonicalConstructorInRecord( 1107 Fragments.Canonical, 1108 env.enclClass.sym.name, 1109 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1110 ) 1111 ); 1112 } 1113 1114 if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) { 1115 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1116 Fragments.Canonical, env.enclClass.sym.name, 1117 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1118 } 1119 } 1120 1121 // also we want to check that no type variables have been defined 1122 if (!tree.typarams.isEmpty()) { 1123 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1124 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1125 } 1126 1127 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1128 * record components 1129 */ 1130 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1131 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1132 for (JCVariableDecl param: tree.params) { 1133 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1134 if (!types.isSameType(param.type, recordFieldTypes.head) || 1135 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1136 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1137 Fragments.Canonical, env.enclClass.sym.name, 1138 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1139 } 1140 recordComponents = recordComponents.tail; 1141 recordFieldTypes = recordFieldTypes.tail; 1142 } 1143 } 1144 } 1145 } 1146 1147 // annotation method checks 1148 if ((owner.flags() & ANNOTATION) != 0) { 1149 // annotation method cannot have throws clause 1150 if (tree.thrown.nonEmpty()) { 1151 log.error(tree.thrown.head.pos(), 1152 Errors.ThrowsNotAllowedInIntfAnnotation); 1153 } 1154 // annotation method cannot declare type-parameters 1155 if (tree.typarams.nonEmpty()) { 1156 log.error(tree.typarams.head.pos(), 1157 Errors.IntfAnnotationMembersCantHaveTypeParams); 1158 } 1159 // validate annotation method's return type (could be an annotation type) 1160 chk.validateAnnotationType(tree.restype); 1161 // ensure that annotation method does not clash with members of Object/Annotation 1162 chk.validateAnnotationMethod(tree.pos(), m); 1163 } 1164 1165 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1166 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1167 1168 if (tree.body == null) { 1169 // Empty bodies are only allowed for 1170 // abstract, native, or interface methods, or for methods 1171 // in a retrofit signature class. 1172 if (tree.defaultValue != null) { 1173 if ((owner.flags() & ANNOTATION) == 0) 1174 log.error(tree.pos(), 1175 Errors.DefaultAllowedInIntfAnnotationMember); 1176 } 1177 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1178 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1179 } else { 1180 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1181 if ((owner.flags() & INTERFACE) != 0) { 1182 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1183 } else { 1184 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1185 } 1186 } else if ((tree.mods.flags & NATIVE) != 0) { 1187 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1188 } 1189 // Add an implicit super() call unless an explicit call to 1190 // super(...) or this(...) is given 1191 // or we are compiling class java.lang.Object. 1192 if (isConstructor && owner.type != syms.objectType) { 1193 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1194 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1195 make.Ident(names._super), make.Idents(List.nil()))); 1196 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) { 1197 tree.body.stats = tree.body.stats.append(supCall); 1198 } else { 1199 tree.body.stats = tree.body.stats.prepend(supCall); 1200 } 1201 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1202 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1203 TreeInfo.hasConstructorCall(tree, names._super)) { 1204 // enum constructors are not allowed to call super 1205 // directly, so make sure there aren't any super calls 1206 // in enum constructors, except in the compiler 1207 // generated one. 1208 log.error(tree.body.stats.head.pos(), 1209 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1210 } 1211 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1212 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1213 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1214 if (!initParamNames.equals(recordComponentNames)) { 1215 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1216 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1217 } 1218 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1219 log.error(tree, 1220 Errors.InvalidCanonicalConstructorInRecord( 1221 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1222 env.enclClass.sym.name, 1223 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1224 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1225 } 1226 } 1227 } 1228 1229 // Attribute all type annotations in the body 1230 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1231 annotate.flush(); 1232 1233 // Start of constructor prologue 1234 localEnv.info.ctorPrologue = isConstructor; 1235 1236 // Attribute method body. 1237 attribStat(tree.body, localEnv); 1238 if (isConstructor) { 1239 ListBuffer<JCTree> prologueCode = new ListBuffer<>(); 1240 for (JCTree stat : tree.body.stats) { 1241 prologueCode.add(stat); 1242 /* gather all the stats in the body until a `super` or `this` constructor invocation is found, 1243 * including the constructor invocation, that way we don't need to worry in the visitor below if 1244 * if we are dealing or not with prologue code 1245 */ 1246 if (stat instanceof JCExpressionStatement expStmt && 1247 expStmt.expr instanceof JCMethodInvocation mi && 1248 TreeInfo.isConstructorCall(mi)) { 1249 break; 1250 } 1251 } 1252 if (!prologueCode.isEmpty()) { 1253 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv); 1254 ctorPrologueVisitor.scan(prologueCode.toList()); 1255 } 1256 } 1257 } 1258 1259 localEnv.info.scope.leave(); 1260 result = tree.type = m.type; 1261 } finally { 1262 chk.setLint(prevLint); 1263 chk.setMethod(prevMethod); 1264 env.info.ctorPrologue = ctorProloguePrev; 1265 } 1266 } 1267 1268 class CtorPrologueVisitor extends TreeScanner { 1269 Env<AttrContext> localEnv; 1270 CtorPrologueVisitor(Env<AttrContext> localEnv) { 1271 this.localEnv = localEnv; 1272 } 1273 1274 boolean insideLambdaOrClassDef = false; 1275 1276 @Override 1277 public void visitLambda(JCLambda lambda) { 1278 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1279 try { 1280 insideLambdaOrClassDef = true; 1281 super.visitLambda(lambda); 1282 } finally { 1283 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1284 } 1285 } 1286 1287 @Override 1288 public void visitClassDef(JCClassDecl classDecl) { 1289 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1290 try { 1291 insideLambdaOrClassDef = true; 1292 super.visitClassDef(classDecl); 1293 } finally { 1294 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1295 } 1296 } 1297 1298 private void reportPrologueError(JCTree tree, Symbol sym) { 1299 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS); 1300 log.error(tree, Errors.CantRefBeforeCtorCalled(sym)); 1301 } 1302 1303 @Override 1304 public void visitApply(JCMethodInvocation tree) { 1305 super.visitApply(tree); 1306 Name name = TreeInfo.name(tree.meth); 1307 boolean isConstructorCall = name == names._this || name == names._super; 1308 Symbol msym = TreeInfo.symbolFor(tree.meth); 1309 // is this an instance method call or an illegal constructor invocation like: `this.super()`? 1310 if (msym != null && // for erroneous invocations msym can be null, ignore those 1311 (!isConstructorCall || 1312 isConstructorCall && tree.meth.hasTag(SELECT))) { 1313 if (isEarlyReference(localEnv, tree.meth, msym)) 1314 reportPrologueError(tree.meth, msym); 1315 } 1316 } 1317 1318 @Override 1319 public void visitIdent(JCIdent tree) { 1320 analyzeSymbol(tree); 1321 } 1322 1323 @Override 1324 public void visitSelect(JCFieldAccess tree) { 1325 SelectScanner ss = new SelectScanner(); 1326 ss.scan(tree); 1327 if (ss.scanLater == null) { 1328 analyzeSymbol(tree); 1329 } else { 1330 boolean prevLhs = isInLHS; 1331 try { 1332 isInLHS = false; 1333 scan(ss.scanLater); 1334 } finally { 1335 isInLHS = prevLhs; 1336 } 1337 } 1338 } 1339 1340 @Override 1341 public void visitNewClass(JCNewClass tree) { 1342 super.visitNewClass(tree); 1343 checkNewClassAndMethRefs(tree, tree.type); 1344 } 1345 1346 @Override 1347 public void visitReference(JCMemberReference tree) { 1348 super.visitReference(tree); 1349 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) { 1350 checkNewClassAndMethRefs(tree, tree.expr.type); 1351 } 1352 } 1353 1354 void checkNewClassAndMethRefs(JCTree tree, Type t) { 1355 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) && 1356 !t.tsym.isStatic() && 1357 !t.tsym.isDirectlyOrIndirectlyLocal()) { 1358 reportPrologueError(tree, t.getEnclosingType().tsym); 1359 } 1360 } 1361 1362 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate 1363 * for a proxy local variable later on 1364 */ 1365 boolean isInLHS = false; 1366 1367 @Override 1368 public void visitAssign(JCAssign tree) { 1369 boolean previousIsInLHS = isInLHS; 1370 try { 1371 isInLHS = true; 1372 scan(tree.lhs); 1373 } finally { 1374 isInLHS = previousIsInLHS; 1375 } 1376 scan(tree.rhs); 1377 } 1378 1379 @Override 1380 public void visitMethodDef(JCMethodDecl tree) { 1381 // ignore any declarative part, mainly to avoid scanning receiver parameters 1382 scan(tree.body); 1383 } 1384 1385 void analyzeSymbol(JCTree tree) { 1386 Symbol sym = TreeInfo.symbolFor(tree); 1387 if (isInLHS && !insideLambdaOrClassDef) { 1388 // Check instance field assignments that appear in constructor prologues 1389 if (isEarlyReference(localEnv, tree, sym)) { 1390 // Field may not be inherited from a superclass 1391 if (sym.owner != localEnv.enclClass.sym) { 1392 log.error(tree, Errors.CantRefBeforeCtorCalled(sym)); 1393 return; 1394 } 1395 1396 // Field may not have an initializer 1397 if ((sym.flags() & HASINIT) != 0) { 1398 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym)); 1399 return; 1400 } 1401 } 1402 return; 1403 } 1404 tree = TreeInfo.skipParens(tree); 1405 if (sym != null) { 1406 if (!sym.isStatic() && sym.kind == VAR && sym.owner.kind == TYP) { 1407 if (sym.name == names._this || sym.name == names._super) { 1408 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`? 1409 if (TreeInfo.isExplicitThisReference( 1410 types, 1411 (ClassType)localEnv.enclClass.sym.type, 1412 tree)) { 1413 reportPrologueError(tree, sym); 1414 } 1415 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only 1416 if (sym.owner != localEnv.enclClass.sym) { 1417 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) && 1418 sym.isInheritedIn(localEnv.enclClass.sym, types)) { 1419 /* if we are dealing with a field that doesn't belong to the current class, but the 1420 * field is inherited, this is an error. Unless, the super class is also an outer 1421 * class and the field's qualifier refers to the outer class 1422 */ 1423 if (tree.hasTag(IDENT) || 1424 TreeInfo.isExplicitThisReference( 1425 types, 1426 (ClassType)localEnv.enclClass.sym.type, 1427 ((JCFieldAccess)tree).selected)) { 1428 reportPrologueError(tree, sym); 1429 } 1430 } 1431 } else if (isEarlyReference(localEnv, tree, sym)) { 1432 /* now this is a `proper` instance field of the current class 1433 * references to fields of identity classes which happen to have initializers are 1434 * not allowed in the prologue 1435 */ 1436 if (insideLambdaOrClassDef || 1437 (!localEnv.enclClass.sym.isValueClass() && (sym.flags_field & HASINIT) != 0)) 1438 reportPrologueError(tree, sym); 1439 // we will need to generate a proxy for this field later on 1440 if (!isInLHS) { 1441 if (allowValueClasses) { 1442 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym); 1443 } else { 1444 reportPrologueError(tree, sym); 1445 } 1446 } 1447 } 1448 } 1449 } 1450 } 1451 } 1452 1453 /** 1454 * Determine if the symbol appearance constitutes an early reference to the current class. 1455 * 1456 * <p> 1457 * This means the symbol is an instance field, or method, of the current class and it appears 1458 * in an early initialization context of it (i.e., one of its constructor prologues). 1459 * 1460 * @param env The current environment 1461 * @param tree the AST referencing the variable 1462 * @param sym The symbol 1463 */ 1464 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) { 1465 if ((sym.flags() & STATIC) == 0 && 1466 (sym.kind == VAR || sym.kind == MTH) && 1467 sym.isMemberOf(env.enclClass.sym, types)) { 1468 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance 1469 if (tree instanceof JCFieldAccess fa) { 1470 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected); 1471 } 1472 return true; 1473 } 1474 return false; 1475 } 1476 1477 /* scanner for a select expression, anything that is not a select or identifier 1478 * will be stored for further analysis 1479 */ 1480 class SelectScanner extends DeferredAttr.FilterScanner { 1481 JCTree scanLater; 1482 1483 SelectScanner() { 1484 super(Set.of(IDENT, SELECT, PARENS)); 1485 } 1486 1487 @Override 1488 void skip(JCTree tree) { 1489 scanLater = tree; 1490 } 1491 } 1492 } 1493 1494 public void visitVarDef(JCVariableDecl tree) { 1495 // Local variables have not been entered yet, so we need to do it now: 1496 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1497 if (tree.sym != null) { 1498 // parameters have already been entered 1499 env.info.scope.enter(tree.sym); 1500 } else { 1501 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1502 if (tree.init == null) { 1503 //cannot use 'var' without initializer 1504 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1505 tree.vartype = make.Erroneous(); 1506 } else { 1507 Fragment msg = canInferLocalVarType(tree); 1508 if (msg != null) { 1509 //cannot use 'var' with initializer which require an explicit target 1510 //(e.g. lambda, method reference, array initializer). 1511 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1512 tree.vartype = make.Erroneous(); 1513 } 1514 } 1515 } 1516 try { 1517 annotate.blockAnnotations(); 1518 memberEnter.memberEnter(tree, env); 1519 } finally { 1520 annotate.unblockAnnotations(); 1521 } 1522 } 1523 } else { 1524 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1525 } 1526 1527 VarSymbol v = tree.sym; 1528 Lint lint = env.info.lint.augment(v); 1529 Lint prevLint = chk.setLint(lint); 1530 1531 // Check that the variable's declared type is well-formed. 1532 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1533 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1534 (tree.sym.flags() & PARAMETER) != 0; 1535 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1536 1537 try { 1538 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1539 deferredLintHandler.flush(tree, lint); 1540 chk.checkDeprecatedAnnotation(tree.pos(), v); 1541 1542 if (tree.init != null) { 1543 if ((v.flags_field & FINAL) == 0 || 1544 !memberEnter.needsLazyConstValue(tree.init)) { 1545 // Not a compile-time constant 1546 // Attribute initializer in a new environment 1547 // with the declared variable as owner. 1548 // Check that initializer conforms to variable's declared type. 1549 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1550 initEnv.info.lint = lint; 1551 // In order to catch self-references, we set the variable's 1552 // declaration position to maximal possible value, effectively 1553 // marking the variable as undefined. 1554 initEnv.info.enclVar = v; 1555 boolean previousCtorPrologue = initEnv.info.ctorPrologue; 1556 try { 1557 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1558 // strict instance initializer in a value class 1559 initEnv.info.ctorPrologue = true; 1560 } 1561 attribExpr(tree.init, initEnv, v.type); 1562 if (tree.isImplicitlyTyped()) { 1563 //fixup local variable type 1564 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1565 } 1566 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1567 // strict field initializers are inlined in constructor's prologues 1568 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv); 1569 ctorPrologueVisitor.scan(tree.init); 1570 } 1571 } finally { 1572 initEnv.info.ctorPrologue = previousCtorPrologue; 1573 } 1574 } 1575 if (tree.isImplicitlyTyped()) { 1576 setSyntheticVariableType(tree, v.type); 1577 } 1578 } 1579 result = tree.type = v.type; 1580 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1581 if (isNonArgsMethodInObject(v.name)) { 1582 log.error(tree, Errors.IllegalRecordComponentName(v)); 1583 } 1584 } 1585 chk.checkRequiresIdentity(tree, env.info.lint); 1586 } 1587 finally { 1588 chk.setLint(prevLint); 1589 } 1590 } 1591 1592 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1593 if (tree.init != null && 1594 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1595 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1596 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1597 // Field initializer expression need to be entered. 1598 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1599 annotate.flush(); 1600 } 1601 } 1602 1603 private boolean isNonArgsMethodInObject(Name name) { 1604 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1605 if (s.type.getParameterTypes().isEmpty()) { 1606 return true; 1607 } 1608 } 1609 return false; 1610 } 1611 1612 Fragment canInferLocalVarType(JCVariableDecl tree) { 1613 LocalInitScanner lis = new LocalInitScanner(); 1614 lis.scan(tree.init); 1615 return lis.badInferenceMsg; 1616 } 1617 1618 static class LocalInitScanner extends TreeScanner { 1619 Fragment badInferenceMsg = null; 1620 boolean needsTarget = true; 1621 1622 @Override 1623 public void visitNewArray(JCNewArray tree) { 1624 if (tree.elemtype == null && needsTarget) { 1625 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1626 } 1627 } 1628 1629 @Override 1630 public void visitLambda(JCLambda tree) { 1631 if (needsTarget) { 1632 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1633 } 1634 } 1635 1636 @Override 1637 public void visitTypeCast(JCTypeCast tree) { 1638 boolean prevNeedsTarget = needsTarget; 1639 try { 1640 needsTarget = false; 1641 super.visitTypeCast(tree); 1642 } finally { 1643 needsTarget = prevNeedsTarget; 1644 } 1645 } 1646 1647 @Override 1648 public void visitReference(JCMemberReference tree) { 1649 if (needsTarget) { 1650 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1651 } 1652 } 1653 1654 @Override 1655 public void visitNewClass(JCNewClass tree) { 1656 boolean prevNeedsTarget = needsTarget; 1657 try { 1658 needsTarget = false; 1659 super.visitNewClass(tree); 1660 } finally { 1661 needsTarget = prevNeedsTarget; 1662 } 1663 } 1664 1665 @Override 1666 public void visitApply(JCMethodInvocation tree) { 1667 boolean prevNeedsTarget = needsTarget; 1668 try { 1669 needsTarget = false; 1670 super.visitApply(tree); 1671 } finally { 1672 needsTarget = prevNeedsTarget; 1673 } 1674 } 1675 } 1676 1677 public void visitSkip(JCSkip tree) { 1678 result = null; 1679 } 1680 1681 public void visitBlock(JCBlock tree) { 1682 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1683 // Block is a static or instance initializer; 1684 // let the owner of the environment be a freshly 1685 // created BLOCK-method. 1686 Symbol fakeOwner = 1687 new MethodSymbol(tree.flags | BLOCK | 1688 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1689 env.info.scope.owner); 1690 final Env<AttrContext> localEnv = 1691 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1692 1693 if ((tree.flags & STATIC) != 0) { 1694 localEnv.info.staticLevel++; 1695 } else { 1696 localEnv.info.instanceInitializerBlock = true; 1697 } 1698 // Attribute all type annotations in the block 1699 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1700 annotate.flush(); 1701 attribStats(tree.stats, localEnv); 1702 1703 { 1704 // Store init and clinit type annotations with the ClassSymbol 1705 // to allow output in Gen.normalizeDefs. 1706 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1707 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1708 if ((tree.flags & STATIC) != 0) { 1709 cs.appendClassInitTypeAttributes(tas); 1710 } else { 1711 cs.appendInitTypeAttributes(tas); 1712 } 1713 } 1714 } else { 1715 // Create a new local environment with a local scope. 1716 Env<AttrContext> localEnv = 1717 env.dup(tree, env.info.dup(env.info.scope.dup())); 1718 try { 1719 attribStats(tree.stats, localEnv); 1720 } finally { 1721 localEnv.info.scope.leave(); 1722 } 1723 } 1724 result = null; 1725 } 1726 1727 public void visitDoLoop(JCDoWhileLoop tree) { 1728 attribStat(tree.body, env.dup(tree)); 1729 attribExpr(tree.cond, env, syms.booleanType); 1730 handleLoopConditionBindings(matchBindings, tree, tree.body); 1731 result = null; 1732 } 1733 1734 public void visitWhileLoop(JCWhileLoop tree) { 1735 attribExpr(tree.cond, env, syms.booleanType); 1736 MatchBindings condBindings = matchBindings; 1737 // include condition's bindings when true in the body: 1738 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1739 try { 1740 attribStat(tree.body, whileEnv.dup(tree)); 1741 } finally { 1742 whileEnv.info.scope.leave(); 1743 } 1744 handleLoopConditionBindings(condBindings, tree, tree.body); 1745 result = null; 1746 } 1747 1748 public void visitForLoop(JCForLoop tree) { 1749 Env<AttrContext> loopEnv = 1750 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1751 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1752 try { 1753 attribStats(tree.init, loopEnv); 1754 if (tree.cond != null) { 1755 attribExpr(tree.cond, loopEnv, syms.booleanType); 1756 // include condition's bindings when true in the body and step: 1757 condBindings = matchBindings; 1758 } 1759 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1760 try { 1761 bodyEnv.tree = tree; // before, we were not in loop! 1762 attribStats(tree.step, bodyEnv); 1763 attribStat(tree.body, bodyEnv); 1764 } finally { 1765 bodyEnv.info.scope.leave(); 1766 } 1767 result = null; 1768 } 1769 finally { 1770 loopEnv.info.scope.leave(); 1771 } 1772 handleLoopConditionBindings(condBindings, tree, tree.body); 1773 } 1774 1775 /** 1776 * Include condition's bindings when false after the loop, if cannot get out of the loop 1777 */ 1778 private void handleLoopConditionBindings(MatchBindings condBindings, 1779 JCStatement loop, 1780 JCStatement loopBody) { 1781 if (condBindings.bindingsWhenFalse.nonEmpty() && 1782 !breaksTo(env, loop, loopBody)) { 1783 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1784 } 1785 } 1786 1787 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1788 preFlow(body); 1789 return flow.breaksToTree(env, loop, body, make); 1790 } 1791 1792 /** 1793 * Add given bindings to the current scope, unless there's a break to 1794 * an immediately enclosing labeled statement. 1795 */ 1796 private void addBindings2Scope(JCStatement introducingStatement, 1797 List<BindingSymbol> bindings) { 1798 if (bindings.isEmpty()) { 1799 return ; 1800 } 1801 1802 var searchEnv = env; 1803 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1804 labeled.body == introducingStatement) { 1805 if (breaksTo(env, labeled, labeled.body)) { 1806 //breaking to an immediately enclosing labeled statement 1807 return ; 1808 } 1809 searchEnv = searchEnv.next; 1810 introducingStatement = labeled; 1811 } 1812 1813 //include condition's body when false after the while, if cannot get out of the loop 1814 bindings.forEach(env.info.scope::enter); 1815 bindings.forEach(BindingSymbol::preserveBinding); 1816 } 1817 1818 public void visitForeachLoop(JCEnhancedForLoop tree) { 1819 Env<AttrContext> loopEnv = 1820 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1821 try { 1822 //the Formal Parameter of a for-each loop is not in the scope when 1823 //attributing the for-each expression; we mimic this by attributing 1824 //the for-each expression first (against original scope). 1825 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1826 chk.checkNonVoid(tree.pos(), exprType); 1827 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1828 if (elemtype == null) { 1829 // or perhaps expr implements Iterable<T>? 1830 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1831 if (base == null) { 1832 log.error(tree.expr.pos(), 1833 Errors.ForeachNotApplicableToType(exprType, 1834 Fragments.TypeReqArrayOrIterable)); 1835 elemtype = types.createErrorType(exprType); 1836 } else { 1837 List<Type> iterableParams = base.allparams(); 1838 elemtype = iterableParams.isEmpty() 1839 ? syms.objectType 1840 : types.wildUpperBound(iterableParams.head); 1841 1842 // Check the return type of the method iterator(). 1843 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1844 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1845 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1846 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1847 log.error(tree.pos(), 1848 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1849 } 1850 } 1851 } 1852 if (tree.var.isImplicitlyTyped()) { 1853 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1854 setSyntheticVariableType(tree.var, inferredType); 1855 } 1856 attribStat(tree.var, loopEnv); 1857 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1858 loopEnv.tree = tree; // before, we were not in loop! 1859 attribStat(tree.body, loopEnv); 1860 result = null; 1861 } 1862 finally { 1863 loopEnv.info.scope.leave(); 1864 } 1865 } 1866 1867 public void visitLabelled(JCLabeledStatement tree) { 1868 // Check that label is not used in an enclosing statement 1869 Env<AttrContext> env1 = env; 1870 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1871 if (env1.tree.hasTag(LABELLED) && 1872 ((JCLabeledStatement) env1.tree).label == tree.label) { 1873 log.error(tree.pos(), 1874 Errors.LabelAlreadyInUse(tree.label)); 1875 break; 1876 } 1877 env1 = env1.next; 1878 } 1879 1880 attribStat(tree.body, env.dup(tree)); 1881 result = null; 1882 } 1883 1884 public void visitSwitch(JCSwitch tree) { 1885 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1886 attribStats(c.stats, caseEnv); 1887 }); 1888 result = null; 1889 } 1890 1891 public void visitSwitchExpression(JCSwitchExpression tree) { 1892 boolean wrongContext = false; 1893 1894 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1895 PolyKind.STANDALONE : PolyKind.POLY; 1896 1897 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1898 //this means we are returning a poly conditional from void-compatible lambda expression 1899 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1900 resultInfo = recoveryInfo; 1901 wrongContext = true; 1902 } 1903 1904 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1905 unknownExprInfo : 1906 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1907 1908 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1909 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1910 1911 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1912 caseEnv.info.yieldResult = condInfo; 1913 attribStats(c.stats, caseEnv); 1914 new TreeScanner() { 1915 @Override 1916 public void visitYield(JCYield brk) { 1917 if (brk.target == tree) { 1918 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1919 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1920 } 1921 super.visitYield(brk); 1922 } 1923 1924 @Override public void visitClassDef(JCClassDecl tree) {} 1925 @Override public void visitLambda(JCLambda tree) {} 1926 }.scan(c.stats); 1927 }); 1928 1929 if (tree.cases.isEmpty()) { 1930 log.error(tree.pos(), 1931 Errors.SwitchExpressionEmpty); 1932 } else if (caseTypes.isEmpty()) { 1933 log.error(tree.pos(), 1934 Errors.SwitchExpressionNoResultExpressions); 1935 } 1936 1937 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1938 1939 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1940 } 1941 //where: 1942 CheckContext switchExpressionContext(CheckContext checkContext) { 1943 return new Check.NestedCheckContext(checkContext) { 1944 //this will use enclosing check context to check compatibility of 1945 //subexpression against target type; if we are in a method check context, 1946 //depending on whether boxing is allowed, we could have incompatibilities 1947 @Override 1948 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1949 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1950 } 1951 }; 1952 } 1953 1954 private void handleSwitch(JCTree switchTree, 1955 JCExpression selector, 1956 List<JCCase> cases, 1957 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1958 Type seltype = attribExpr(selector, env); 1959 Type seltypeUnboxed = types.unboxedTypeOrType(seltype); 1960 1961 Env<AttrContext> switchEnv = 1962 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1963 1964 try { 1965 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1966 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1967 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType); 1968 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1969 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1970 boolean patternSwitch; 1971 if (seltype.isPrimitive() && !intSwitch) { 1972 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1973 patternSwitch = true; 1974 } 1975 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1976 !intSwitch) { 1977 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1978 patternSwitch = true; 1979 } else { 1980 patternSwitch = cases.stream() 1981 .flatMap(c -> c.labels.stream()) 1982 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1983 TreeInfo.isNullCaseLabel(l)); 1984 } 1985 1986 // Attribute all cases and 1987 // check that there are no duplicate case labels or default clauses. 1988 Set<Object> constants = new HashSet<>(); // The set of case constants. 1989 boolean hasDefault = false; // Is there a default label? 1990 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1991 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1992 boolean hasNullPattern = false; // Is there a null pattern? 1993 CaseTree.CaseKind caseKind = null; 1994 boolean wasError = false; 1995 JCCaseLabel unconditionalCaseLabel = null; 1996 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1997 JCCase c = l.head; 1998 if (caseKind == null) { 1999 caseKind = c.caseKind; 2000 } else if (caseKind != c.caseKind && !wasError) { 2001 log.error(c.pos(), 2002 Errors.SwitchMixingCaseTypes); 2003 wasError = true; 2004 } 2005 MatchBindings currentBindings = null; 2006 MatchBindings guardBindings = null; 2007 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 2008 JCCaseLabel label = labels.head; 2009 if (label instanceof JCConstantCaseLabel constLabel) { 2010 JCExpression expr = constLabel.expr; 2011 if (TreeInfo.isNull(expr)) { 2012 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 2013 if (hasNullPattern) { 2014 log.error(label.pos(), Errors.DuplicateCaseLabel); 2015 } 2016 hasNullPattern = true; 2017 attribExpr(expr, switchEnv, seltype); 2018 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 2019 } else if (enumSwitch) { 2020 Symbol sym = enumConstant(expr, seltype); 2021 if (sym == null) { 2022 if (allowPatternSwitch) { 2023 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2024 Symbol enumSym = TreeInfo.symbol(expr); 2025 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 2026 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 2027 } else if (!constants.add(enumSym)) { 2028 log.error(label.pos(), Errors.DuplicateCaseLabel); 2029 } 2030 } else { 2031 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 2032 } 2033 } else if (!constants.add(sym)) { 2034 log.error(label.pos(), Errors.DuplicateCaseLabel); 2035 } 2036 } else if (errorEnumSwitch) { 2037 //error recovery: the selector is erroneous, and all the case labels 2038 //are identifiers. This could be an enum switch - don't report resolve 2039 //error for the case label: 2040 var prevResolveHelper = rs.basicLogResolveHelper; 2041 try { 2042 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 2043 attribExpr(expr, switchEnv, seltype); 2044 } finally { 2045 rs.basicLogResolveHelper = prevResolveHelper; 2046 } 2047 } else { 2048 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2049 if (!pattype.hasTag(ERROR)) { 2050 if (pattype.constValue() == null) { 2051 Symbol s = TreeInfo.symbol(expr); 2052 if (s != null && s.kind == TYP) { 2053 log.error(expr.pos(), 2054 Errors.PatternExpected); 2055 } else if (s == null || !s.isEnum()) { 2056 log.error(expr.pos(), 2057 (stringSwitch ? Errors.StringConstReq 2058 : intSwitch ? Errors.ConstExprReq 2059 : Errors.PatternOrEnumReq)); 2060 } else if (!constants.add(s)) { 2061 log.error(label.pos(), Errors.DuplicateCaseLabel); 2062 } 2063 } 2064 else { 2065 boolean isLongFloatDoubleOrBooleanConstant = 2066 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN); 2067 if (isLongFloatDoubleOrBooleanConstant) { 2068 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS); 2069 } 2070 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) { 2071 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 2072 } else if (!constants.add(pattype.constValue())) { 2073 log.error(c.pos(), Errors.DuplicateCaseLabel); 2074 } 2075 } 2076 } 2077 } 2078 } else if (label instanceof JCDefaultCaseLabel def) { 2079 if (hasDefault) { 2080 log.error(label.pos(), Errors.DuplicateDefaultLabel); 2081 } else if (hasUnconditionalPattern) { 2082 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 2083 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2084 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 2085 } 2086 hasDefault = true; 2087 matchBindings = MatchBindingsComputer.EMPTY; 2088 } else if (label instanceof JCPatternCaseLabel patternlabel) { 2089 //pattern 2090 JCPattern pat = patternlabel.pat; 2091 attribExpr(pat, switchEnv, seltype); 2092 Type primaryType = TreeInfo.primaryPatternType(pat); 2093 2094 if (primaryType.isPrimitive()) { 2095 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 2096 } else if (!primaryType.hasTag(TYPEVAR)) { 2097 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 2098 } 2099 checkCastablePattern(pat.pos(), seltype, primaryType); 2100 Type patternType = types.erasure(primaryType); 2101 JCExpression guard = c.guard; 2102 if (guardBindings == null && guard != null) { 2103 MatchBindings afterPattern = matchBindings; 2104 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 2105 try { 2106 attribExpr(guard, bodyEnv, syms.booleanType); 2107 } finally { 2108 bodyEnv.info.scope.leave(); 2109 } 2110 2111 guardBindings = matchBindings; 2112 matchBindings = afterPattern; 2113 2114 if (TreeInfo.isBooleanWithValue(guard, 0)) { 2115 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 2116 } 2117 } 2118 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 2119 boolean unconditional = 2120 unguarded && 2121 !patternType.isErroneous() && 2122 types.isUnconditionallyExact(seltype, patternType); 2123 if (unconditional) { 2124 if (hasUnconditionalPattern) { 2125 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 2126 } else if (hasDefault) { 2127 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 2128 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2129 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 2130 } 2131 hasUnconditionalPattern = true; 2132 unconditionalCaseLabel = label; 2133 } 2134 lastPatternErroneous = patternType.isErroneous(); 2135 } else { 2136 Assert.error(); 2137 } 2138 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 2139 } 2140 2141 if (guardBindings != null) { 2142 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 2143 } 2144 2145 Env<AttrContext> caseEnv = 2146 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 2147 try { 2148 attribCase.accept(c, caseEnv); 2149 } finally { 2150 caseEnv.info.scope.leave(); 2151 } 2152 addVars(c.stats, switchEnv.info.scope); 2153 2154 preFlow(c); 2155 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 2156 } 2157 if (patternSwitch) { 2158 chk.checkSwitchCaseStructure(cases); 2159 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 2160 } 2161 if (switchTree.hasTag(SWITCH)) { 2162 ((JCSwitch) switchTree).hasUnconditionalPattern = 2163 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2164 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 2165 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 2166 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 2167 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2168 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 2169 } else { 2170 Assert.error(switchTree.getTag().name()); 2171 } 2172 } finally { 2173 switchEnv.info.scope.leave(); 2174 } 2175 } 2176 // where 2177 private ResultInfo caseLabelResultInfo(Type seltype) { 2178 return new ResultInfo(KindSelector.VAL_TYP, 2179 !seltype.hasTag(ERROR) ? seltype 2180 : Type.noType); 2181 } 2182 /** Add any variables defined in stats to the switch scope. */ 2183 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 2184 for (;stats.nonEmpty(); stats = stats.tail) { 2185 JCTree stat = stats.head; 2186 if (stat.hasTag(VARDEF)) 2187 switchScope.enter(((JCVariableDecl) stat).sym); 2188 } 2189 } 2190 // where 2191 /** Return the selected enumeration constant symbol, or null. */ 2192 private Symbol enumConstant(JCTree tree, Type enumType) { 2193 if (tree.hasTag(IDENT)) { 2194 JCIdent ident = (JCIdent)tree; 2195 Name name = ident.name; 2196 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 2197 if (sym.kind == VAR) { 2198 Symbol s = ident.sym = sym; 2199 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 2200 ident.type = s.type; 2201 return ((s.flags_field & Flags.ENUM) == 0) 2202 ? null : s; 2203 } 2204 } 2205 } 2206 return null; 2207 } 2208 2209 public void visitSynchronized(JCSynchronized tree) { 2210 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 2211 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) { 2212 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 2213 } 2214 attribStat(tree.body, env); 2215 result = null; 2216 } 2217 2218 public void visitTry(JCTry tree) { 2219 // Create a new local environment with a local 2220 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 2221 try { 2222 boolean isTryWithResource = tree.resources.nonEmpty(); 2223 // Create a nested environment for attributing the try block if needed 2224 Env<AttrContext> tryEnv = isTryWithResource ? 2225 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 2226 localEnv; 2227 try { 2228 // Attribute resource declarations 2229 for (JCTree resource : tree.resources) { 2230 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 2231 @Override 2232 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2233 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 2234 } 2235 }; 2236 ResultInfo twrResult = 2237 new ResultInfo(KindSelector.VAR, 2238 syms.autoCloseableType, 2239 twrContext); 2240 if (resource.hasTag(VARDEF)) { 2241 attribStat(resource, tryEnv); 2242 twrResult.check(resource, resource.type); 2243 2244 //check that resource type cannot throw InterruptedException 2245 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2246 2247 VarSymbol var = ((JCVariableDecl) resource).sym; 2248 2249 var.flags_field |= Flags.FINAL; 2250 var.setData(ElementKind.RESOURCE_VARIABLE); 2251 } else { 2252 attribTree(resource, tryEnv, twrResult); 2253 } 2254 } 2255 // Attribute body 2256 attribStat(tree.body, tryEnv); 2257 } finally { 2258 if (isTryWithResource) 2259 tryEnv.info.scope.leave(); 2260 } 2261 2262 // Attribute catch clauses 2263 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2264 JCCatch c = l.head; 2265 Env<AttrContext> catchEnv = 2266 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2267 try { 2268 Type ctype = attribStat(c.param, catchEnv); 2269 if (TreeInfo.isMultiCatch(c)) { 2270 //multi-catch parameter is implicitly marked as final 2271 c.param.sym.flags_field |= FINAL | UNION; 2272 } 2273 if (c.param.sym.kind == VAR) { 2274 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2275 } 2276 chk.checkType(c.param.vartype.pos(), 2277 chk.checkClassType(c.param.vartype.pos(), ctype), 2278 syms.throwableType); 2279 attribStat(c.body, catchEnv); 2280 } finally { 2281 catchEnv.info.scope.leave(); 2282 } 2283 } 2284 2285 // Attribute finalizer 2286 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2287 result = null; 2288 } 2289 finally { 2290 localEnv.info.scope.leave(); 2291 } 2292 } 2293 2294 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2295 if (!resource.isErroneous() && 2296 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2297 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2298 Symbol close = syms.noSymbol; 2299 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler(); 2300 try { 2301 close = rs.resolveQualifiedMethod(pos, 2302 env, 2303 types.skipTypeVars(resource, false), 2304 names.close, 2305 List.nil(), 2306 List.nil()); 2307 } 2308 finally { 2309 log.popDiagnosticHandler(discardHandler); 2310 } 2311 if (close.kind == MTH && 2312 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2313 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2314 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2315 } 2316 } 2317 } 2318 2319 public void visitConditional(JCConditional tree) { 2320 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2321 MatchBindings condBindings = matchBindings; 2322 2323 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2324 isBooleanOrNumeric(env, tree)) ? 2325 PolyKind.STANDALONE : PolyKind.POLY; 2326 2327 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2328 //this means we are returning a poly conditional from void-compatible lambda expression 2329 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2330 result = tree.type = types.createErrorType(resultInfo.pt); 2331 return; 2332 } 2333 2334 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2335 unknownExprInfo : 2336 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2337 2338 2339 // x ? y : z 2340 // include x's bindings when true in y 2341 // include x's bindings when false in z 2342 2343 Type truetype; 2344 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2345 try { 2346 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2347 } finally { 2348 trueEnv.info.scope.leave(); 2349 } 2350 2351 MatchBindings trueBindings = matchBindings; 2352 2353 Type falsetype; 2354 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2355 try { 2356 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2357 } finally { 2358 falseEnv.info.scope.leave(); 2359 } 2360 2361 MatchBindings falseBindings = matchBindings; 2362 2363 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2364 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2365 List.of(truetype, falsetype)) : pt(); 2366 if (condtype.constValue() != null && 2367 truetype.constValue() != null && 2368 falsetype.constValue() != null && 2369 !owntype.hasTag(NONE)) { 2370 //constant folding 2371 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2372 } 2373 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2374 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2375 } 2376 //where 2377 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2378 switch (tree.getTag()) { 2379 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2380 ((JCLiteral)tree).typetag == BOOLEAN || 2381 ((JCLiteral)tree).typetag == BOT; 2382 case LAMBDA: case REFERENCE: return false; 2383 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2384 case CONDEXPR: 2385 JCConditional condTree = (JCConditional)tree; 2386 return isBooleanOrNumeric(env, condTree.truepart) && 2387 isBooleanOrNumeric(env, condTree.falsepart); 2388 case APPLY: 2389 JCMethodInvocation speculativeMethodTree = 2390 (JCMethodInvocation)deferredAttr.attribSpeculative( 2391 tree, env, unknownExprInfo, 2392 argumentAttr.withLocalCacheContext()); 2393 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2394 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2395 env.enclClass.type : 2396 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2397 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2398 return primitiveOrBoxed(owntype); 2399 case NEWCLASS: 2400 JCExpression className = 2401 removeClassParams.translate(((JCNewClass)tree).clazz); 2402 JCExpression speculativeNewClassTree = 2403 (JCExpression)deferredAttr.attribSpeculative( 2404 className, env, unknownTypeInfo, 2405 argumentAttr.withLocalCacheContext()); 2406 return primitiveOrBoxed(speculativeNewClassTree.type); 2407 default: 2408 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2409 argumentAttr.withLocalCacheContext()).type; 2410 return primitiveOrBoxed(speculativeType); 2411 } 2412 } 2413 //where 2414 boolean primitiveOrBoxed(Type t) { 2415 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2416 } 2417 2418 TreeTranslator removeClassParams = new TreeTranslator() { 2419 @Override 2420 public void visitTypeApply(JCTypeApply tree) { 2421 result = translate(tree.clazz); 2422 } 2423 }; 2424 2425 CheckContext conditionalContext(CheckContext checkContext) { 2426 return new Check.NestedCheckContext(checkContext) { 2427 //this will use enclosing check context to check compatibility of 2428 //subexpression against target type; if we are in a method check context, 2429 //depending on whether boxing is allowed, we could have incompatibilities 2430 @Override 2431 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2432 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2433 } 2434 }; 2435 } 2436 2437 /** Compute the type of a conditional expression, after 2438 * checking that it exists. See JLS 15.25. Does not take into 2439 * account the special case where condition and both arms 2440 * are constants. 2441 * 2442 * @param pos The source position to be used for error 2443 * diagnostics. 2444 * @param thentype The type of the expression's then-part. 2445 * @param elsetype The type of the expression's else-part. 2446 */ 2447 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2448 if (condTypes.isEmpty()) { 2449 return syms.objectType; //TODO: how to handle? 2450 } 2451 Type first = condTypes.head; 2452 // If same type, that is the result 2453 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2454 return first.baseType(); 2455 2456 List<Type> unboxedTypes = condTypes.stream() 2457 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2458 .collect(List.collector()); 2459 2460 // Otherwise, if both arms can be converted to a numeric 2461 // type, return the least numeric type that fits both arms 2462 // (i.e. return larger of the two, or return int if one 2463 // arm is short, the other is char). 2464 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2465 // If one arm has an integer subrange type (i.e., byte, 2466 // short, or char), and the other is an integer constant 2467 // that fits into the subrange, return the subrange type. 2468 for (Type type : unboxedTypes) { 2469 if (!type.getTag().isStrictSubRangeOf(INT)) { 2470 continue; 2471 } 2472 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2473 return type.baseType(); 2474 } 2475 2476 for (TypeTag tag : primitiveTags) { 2477 Type candidate = syms.typeOfTag[tag.ordinal()]; 2478 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2479 return candidate; 2480 } 2481 } 2482 } 2483 2484 // Those were all the cases that could result in a primitive 2485 condTypes = condTypes.stream() 2486 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2487 .collect(List.collector()); 2488 2489 for (Type type : condTypes) { 2490 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2491 return type.baseType(); 2492 } 2493 2494 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2495 2496 condTypes = condTypes.stream() 2497 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2498 .collect(List.collector()); 2499 2500 // both are known to be reference types. The result is 2501 // lub(thentype,elsetype). This cannot fail, as it will 2502 // always be possible to infer "Object" if nothing better. 2503 return types.lub(condTypes.stream() 2504 .map(t -> t.baseType()) 2505 .filter(t -> !t.hasTag(BOT)) 2506 .collect(List.collector())); 2507 } 2508 2509 static final TypeTag[] primitiveTags = new TypeTag[]{ 2510 BYTE, 2511 CHAR, 2512 SHORT, 2513 INT, 2514 LONG, 2515 FLOAT, 2516 DOUBLE, 2517 BOOLEAN, 2518 }; 2519 2520 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2521 return bindingEnv(env, env.tree, bindings); 2522 } 2523 2524 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2525 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2526 bindings.forEach(env1.info.scope::enter); 2527 return env1; 2528 } 2529 2530 public void visitIf(JCIf tree) { 2531 attribExpr(tree.cond, env, syms.booleanType); 2532 2533 // if (x) { y } [ else z ] 2534 // include x's bindings when true in y 2535 // include x's bindings when false in z 2536 2537 MatchBindings condBindings = matchBindings; 2538 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2539 2540 try { 2541 attribStat(tree.thenpart, thenEnv); 2542 } finally { 2543 thenEnv.info.scope.leave(); 2544 } 2545 2546 preFlow(tree.thenpart); 2547 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2548 boolean aliveAfterElse; 2549 2550 if (tree.elsepart != null) { 2551 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2552 try { 2553 attribStat(tree.elsepart, elseEnv); 2554 } finally { 2555 elseEnv.info.scope.leave(); 2556 } 2557 preFlow(tree.elsepart); 2558 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2559 } else { 2560 aliveAfterElse = true; 2561 } 2562 2563 chk.checkEmptyIf(tree); 2564 2565 List<BindingSymbol> afterIfBindings = List.nil(); 2566 2567 if (aliveAfterThen && !aliveAfterElse) { 2568 afterIfBindings = condBindings.bindingsWhenTrue; 2569 } else if (aliveAfterElse && !aliveAfterThen) { 2570 afterIfBindings = condBindings.bindingsWhenFalse; 2571 } 2572 2573 addBindings2Scope(tree, afterIfBindings); 2574 2575 result = null; 2576 } 2577 2578 void preFlow(JCTree tree) { 2579 attrRecover.doRecovery(); 2580 new PostAttrAnalyzer() { 2581 @Override 2582 public void scan(JCTree tree) { 2583 if (tree == null || 2584 (tree.type != null && 2585 tree.type == Type.stuckType)) { 2586 //don't touch stuck expressions! 2587 return; 2588 } 2589 super.scan(tree); 2590 } 2591 2592 @Override 2593 public void visitClassDef(JCClassDecl that) { 2594 if (that.sym != null) { 2595 // Method preFlow shouldn't visit class definitions 2596 // that have not been entered and attributed. 2597 // See JDK-8254557 and JDK-8203277 for more details. 2598 super.visitClassDef(that); 2599 } 2600 } 2601 2602 @Override 2603 public void visitLambda(JCLambda that) { 2604 if (that.type != null) { 2605 // Method preFlow shouldn't visit lambda expressions 2606 // that have not been entered and attributed. 2607 // See JDK-8254557 and JDK-8203277 for more details. 2608 super.visitLambda(that); 2609 } 2610 } 2611 }.scan(tree); 2612 } 2613 2614 public void visitExec(JCExpressionStatement tree) { 2615 //a fresh environment is required for 292 inference to work properly --- 2616 //see Infer.instantiatePolymorphicSignatureInstance() 2617 Env<AttrContext> localEnv = env.dup(tree); 2618 attribExpr(tree.expr, localEnv); 2619 result = null; 2620 } 2621 2622 public void visitBreak(JCBreak tree) { 2623 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2624 result = null; 2625 } 2626 2627 public void visitYield(JCYield tree) { 2628 if (env.info.yieldResult != null) { 2629 attribTree(tree.value, env, env.info.yieldResult); 2630 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2631 } else { 2632 log.error(tree.pos(), tree.value.hasTag(PARENS) 2633 ? Errors.NoSwitchExpressionQualify 2634 : Errors.NoSwitchExpression); 2635 attribTree(tree.value, env, unknownExprInfo); 2636 } 2637 result = null; 2638 } 2639 2640 public void visitContinue(JCContinue tree) { 2641 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2642 result = null; 2643 } 2644 //where 2645 /** Return the target of a break, continue or yield statement, 2646 * if it exists, report an error if not. 2647 * Note: The target of a labelled break or continue is the 2648 * (non-labelled) statement tree referred to by the label, 2649 * not the tree representing the labelled statement itself. 2650 * 2651 * @param pos The position to be used for error diagnostics 2652 * @param tag The tag of the jump statement. This is either 2653 * Tree.BREAK or Tree.CONTINUE. 2654 * @param label The label of the jump statement, or null if no 2655 * label is given. 2656 * @param env The environment current at the jump statement. 2657 */ 2658 private JCTree findJumpTarget(DiagnosticPosition pos, 2659 JCTree.Tag tag, 2660 Name label, 2661 Env<AttrContext> env) { 2662 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2663 2664 if (jumpTarget.snd != null) { 2665 log.error(pos, jumpTarget.snd); 2666 } 2667 2668 return jumpTarget.fst; 2669 } 2670 /** Return the target of a break or continue statement, if it exists, 2671 * report an error if not. 2672 * Note: The target of a labelled break or continue is the 2673 * (non-labelled) statement tree referred to by the label, 2674 * not the tree representing the labelled statement itself. 2675 * 2676 * @param tag The tag of the jump statement. This is either 2677 * Tree.BREAK or Tree.CONTINUE. 2678 * @param label The label of the jump statement, or null if no 2679 * label is given. 2680 * @param env The environment current at the jump statement. 2681 */ 2682 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2683 Name label, 2684 Env<AttrContext> env) { 2685 // Search environments outwards from the point of jump. 2686 Env<AttrContext> env1 = env; 2687 JCDiagnostic.Error pendingError = null; 2688 LOOP: 2689 while (env1 != null) { 2690 switch (env1.tree.getTag()) { 2691 case LABELLED: 2692 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2693 if (label == labelled.label) { 2694 // If jump is a continue, check that target is a loop. 2695 if (tag == CONTINUE) { 2696 if (!labelled.body.hasTag(DOLOOP) && 2697 !labelled.body.hasTag(WHILELOOP) && 2698 !labelled.body.hasTag(FORLOOP) && 2699 !labelled.body.hasTag(FOREACHLOOP)) { 2700 pendingError = Errors.NotLoopLabel(label); 2701 } 2702 // Found labelled statement target, now go inwards 2703 // to next non-labelled tree. 2704 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2705 } else { 2706 return Pair.of(labelled, pendingError); 2707 } 2708 } 2709 break; 2710 case DOLOOP: 2711 case WHILELOOP: 2712 case FORLOOP: 2713 case FOREACHLOOP: 2714 if (label == null) return Pair.of(env1.tree, pendingError); 2715 break; 2716 case SWITCH: 2717 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2718 break; 2719 case SWITCH_EXPRESSION: 2720 if (tag == YIELD) { 2721 return Pair.of(env1.tree, null); 2722 } else if (tag == BREAK) { 2723 pendingError = Errors.BreakOutsideSwitchExpression; 2724 } else { 2725 pendingError = Errors.ContinueOutsideSwitchExpression; 2726 } 2727 break; 2728 case LAMBDA: 2729 case METHODDEF: 2730 case CLASSDEF: 2731 break LOOP; 2732 default: 2733 } 2734 env1 = env1.next; 2735 } 2736 if (label != null) 2737 return Pair.of(null, Errors.UndefLabel(label)); 2738 else if (pendingError != null) 2739 return Pair.of(null, pendingError); 2740 else if (tag == CONTINUE) 2741 return Pair.of(null, Errors.ContOutsideLoop); 2742 else 2743 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2744 } 2745 2746 public void visitReturn(JCReturn tree) { 2747 // Check that there is an enclosing method which is 2748 // nested within than the enclosing class. 2749 if (env.info.returnResult == null) { 2750 log.error(tree.pos(), Errors.RetOutsideMeth); 2751 } else if (env.info.yieldResult != null) { 2752 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2753 if (tree.expr != null) { 2754 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2755 } 2756 } else if (!env.info.isLambda && 2757 env.enclMethod != null && 2758 TreeInfo.isCompactConstructor(env.enclMethod)) { 2759 log.error(env.enclMethod, 2760 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2761 } else { 2762 // Attribute return expression, if it exists, and check that 2763 // it conforms to result type of enclosing method. 2764 if (tree.expr != null) { 2765 if (env.info.returnResult.pt.hasTag(VOID)) { 2766 env.info.returnResult.checkContext.report(tree.expr.pos(), 2767 diags.fragment(Fragments.UnexpectedRetVal)); 2768 } 2769 attribTree(tree.expr, env, env.info.returnResult); 2770 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2771 !env.info.returnResult.pt.hasTag(NONE)) { 2772 env.info.returnResult.checkContext.report(tree.pos(), 2773 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2774 } 2775 } 2776 result = null; 2777 } 2778 2779 public void visitThrow(JCThrow tree) { 2780 Type owntype = attribExpr(tree.expr, env, Type.noType); 2781 chk.checkType(tree, owntype, syms.throwableType); 2782 result = null; 2783 } 2784 2785 public void visitAssert(JCAssert tree) { 2786 attribExpr(tree.cond, env, syms.booleanType); 2787 if (tree.detail != null) { 2788 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2789 } 2790 result = null; 2791 } 2792 2793 /** Visitor method for method invocations. 2794 * NOTE: The method part of an application will have in its type field 2795 * the return type of the method, not the method's type itself! 2796 */ 2797 public void visitApply(JCMethodInvocation tree) { 2798 // The local environment of a method application is 2799 // a new environment nested in the current one. 2800 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2801 2802 // The types of the actual method arguments. 2803 List<Type> argtypes; 2804 2805 // The types of the actual method type arguments. 2806 List<Type> typeargtypes = null; 2807 2808 Name methName = TreeInfo.name(tree.meth); 2809 2810 boolean isConstructorCall = 2811 methName == names._this || methName == names._super; 2812 2813 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2814 if (isConstructorCall) { 2815 2816 // Attribute arguments, yielding list of argument types. 2817 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2818 argtypes = argtypesBuf.toList(); 2819 typeargtypes = attribTypes(tree.typeargs, localEnv); 2820 2821 // Done with this()/super() parameters. End of constructor prologue. 2822 env.info.ctorPrologue = false; 2823 2824 // Variable `site' points to the class in which the called 2825 // constructor is defined. 2826 Type site = env.enclClass.sym.type; 2827 if (methName == names._super) { 2828 if (site == syms.objectType) { 2829 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2830 site = types.createErrorType(syms.objectType); 2831 } else { 2832 site = types.supertype(site); 2833 } 2834 } 2835 2836 if (site.hasTag(CLASS)) { 2837 Type encl = site.getEnclosingType(); 2838 while (encl != null && encl.hasTag(TYPEVAR)) 2839 encl = encl.getUpperBound(); 2840 if (encl.hasTag(CLASS)) { 2841 // we are calling a nested class 2842 2843 if (tree.meth.hasTag(SELECT)) { 2844 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2845 2846 // We are seeing a prefixed call, of the form 2847 // <expr>.super(...). 2848 // Check that the prefix expression conforms 2849 // to the outer instance type of the class. 2850 chk.checkRefType(qualifier.pos(), 2851 attribExpr(qualifier, localEnv, 2852 encl)); 2853 } 2854 } else if (tree.meth.hasTag(SELECT)) { 2855 log.error(tree.meth.pos(), 2856 Errors.IllegalQualNotIcls(site.tsym)); 2857 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2858 } 2859 2860 if (tree.meth.hasTag(IDENT)) { 2861 // non-qualified super(...) call; check whether explicit constructor 2862 // invocation is well-formed. If the super class is an inner class, 2863 // make sure that an appropriate implicit qualifier exists. If the super 2864 // class is a local class, make sure that the current class is defined 2865 // in the same context as the local class. 2866 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2867 } 2868 2869 // if we're calling a java.lang.Enum constructor, 2870 // prefix the implicit String and int parameters 2871 if (site.tsym == syms.enumSym) 2872 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2873 2874 // Resolve the called constructor under the assumption 2875 // that we are referring to a superclass instance of the 2876 // current instance (JLS ???). 2877 boolean selectSuperPrev = localEnv.info.selectSuper; 2878 localEnv.info.selectSuper = true; 2879 localEnv.info.pendingResolutionPhase = null; 2880 Symbol sym = rs.resolveConstructor( 2881 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2882 localEnv.info.selectSuper = selectSuperPrev; 2883 2884 // Set method symbol to resolved constructor... 2885 TreeInfo.setSymbol(tree.meth, sym); 2886 2887 // ...and check that it is legal in the current context. 2888 // (this will also set the tree's type) 2889 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2890 checkId(tree.meth, site, sym, localEnv, 2891 new ResultInfo(kind, mpt)); 2892 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2893 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2894 } 2895 // Otherwise, `site' is an error type and we do nothing 2896 result = tree.type = syms.voidType; 2897 } else { 2898 // Otherwise, we are seeing a regular method call. 2899 // Attribute the arguments, yielding list of argument types, ... 2900 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2901 argtypes = argtypesBuf.toList(); 2902 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2903 2904 // ... and attribute the method using as a prototype a methodtype 2905 // whose formal argument types is exactly the list of actual 2906 // arguments (this will also set the method symbol). 2907 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2908 localEnv.info.pendingResolutionPhase = null; 2909 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2910 2911 // Compute the result type. 2912 Type restype = mtype.getReturnType(); 2913 if (restype.hasTag(WILDCARD)) 2914 throw new AssertionError(mtype); 2915 2916 Type qualifier = (tree.meth.hasTag(SELECT)) 2917 ? ((JCFieldAccess) tree.meth).selected.type 2918 : env.enclClass.sym.type; 2919 Symbol msym = TreeInfo.symbol(tree.meth); 2920 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2921 2922 chk.checkRefTypes(tree.typeargs, typeargtypes); 2923 2924 // Check that value of resulting type is admissible in the 2925 // current context. Also, capture the return type 2926 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2927 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2928 } 2929 chk.checkRequiresIdentity(tree, env.info.lint); 2930 chk.validate(tree.typeargs, localEnv); 2931 } 2932 //where 2933 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2934 if (msym != null && 2935 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2936 methodName == names.getClass && 2937 argtypes.isEmpty()) { 2938 // as a special case, x.getClass() has type Class<? extends |X|> 2939 return new ClassType(restype.getEnclosingType(), 2940 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2941 BoundKind.EXTENDS, 2942 syms.boundClass)), 2943 restype.tsym, 2944 restype.getMetadata()); 2945 } else if (msym != null && 2946 msym.owner == syms.arrayClass && 2947 methodName == names.clone && 2948 types.isArray(qualifierType)) { 2949 // as a special case, array.clone() has a result that is 2950 // the same as static type of the array being cloned 2951 return qualifierType; 2952 } else { 2953 return restype; 2954 } 2955 } 2956 2957 /** Obtain a method type with given argument types. 2958 */ 2959 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2960 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2961 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2962 } 2963 2964 public void visitNewClass(final JCNewClass tree) { 2965 Type owntype = types.createErrorType(tree.type); 2966 2967 // The local environment of a class creation is 2968 // a new environment nested in the current one. 2969 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2970 2971 // The anonymous inner class definition of the new expression, 2972 // if one is defined by it. 2973 JCClassDecl cdef = tree.def; 2974 2975 // If enclosing class is given, attribute it, and 2976 // complete class name to be fully qualified 2977 JCExpression clazz = tree.clazz; // Class field following new 2978 JCExpression clazzid; // Identifier in class field 2979 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2980 annoclazzid = null; 2981 2982 if (clazz.hasTag(TYPEAPPLY)) { 2983 clazzid = ((JCTypeApply) clazz).clazz; 2984 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2985 annoclazzid = (JCAnnotatedType) clazzid; 2986 clazzid = annoclazzid.underlyingType; 2987 } 2988 } else { 2989 if (clazz.hasTag(ANNOTATED_TYPE)) { 2990 annoclazzid = (JCAnnotatedType) clazz; 2991 clazzid = annoclazzid.underlyingType; 2992 } else { 2993 clazzid = clazz; 2994 } 2995 } 2996 2997 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2998 2999 if (tree.encl != null) { 3000 // We are seeing a qualified new, of the form 3001 // <expr>.new C <...> (...) ... 3002 // In this case, we let clazz stand for the name of the 3003 // allocated class C prefixed with the type of the qualifier 3004 // expression, so that we can 3005 // resolve it with standard techniques later. I.e., if 3006 // <expr> has type T, then <expr>.new C <...> (...) 3007 // yields a clazz T.C. 3008 Type encltype = chk.checkRefType(tree.encl.pos(), 3009 attribExpr(tree.encl, env)); 3010 // TODO 308: in <expr>.new C, do we also want to add the type annotations 3011 // from expr to the combined type, or not? Yes, do this. 3012 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 3013 ((JCIdent) clazzid).name); 3014 3015 EndPosTable endPosTable = this.env.toplevel.endPositions; 3016 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 3017 if (clazz.hasTag(ANNOTATED_TYPE)) { 3018 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 3019 List<JCAnnotation> annos = annoType.annotations; 3020 3021 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 3022 clazzid1 = make.at(tree.pos). 3023 TypeApply(clazzid1, 3024 ((JCTypeApply) clazz).arguments); 3025 } 3026 3027 clazzid1 = make.at(tree.pos). 3028 AnnotatedType(annos, clazzid1); 3029 } else if (clazz.hasTag(TYPEAPPLY)) { 3030 clazzid1 = make.at(tree.pos). 3031 TypeApply(clazzid1, 3032 ((JCTypeApply) clazz).arguments); 3033 } 3034 3035 clazz = clazzid1; 3036 } 3037 3038 // Attribute clazz expression and store 3039 // symbol + type back into the attributed tree. 3040 Type clazztype; 3041 3042 try { 3043 env.info.isAnonymousNewClass = tree.def != null; 3044 clazztype = TreeInfo.isEnumInit(env.tree) ? 3045 attribIdentAsEnumType(env, (JCIdent)clazz) : 3046 attribType(clazz, env); 3047 } finally { 3048 env.info.isAnonymousNewClass = false; 3049 } 3050 3051 clazztype = chk.checkDiamond(tree, clazztype); 3052 chk.validate(clazz, localEnv); 3053 if (tree.encl != null) { 3054 // We have to work in this case to store 3055 // symbol + type back into the attributed tree. 3056 tree.clazz.type = clazztype; 3057 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 3058 clazzid.type = ((JCIdent) clazzid).sym.type; 3059 if (annoclazzid != null) { 3060 annoclazzid.type = clazzid.type; 3061 } 3062 if (!clazztype.isErroneous()) { 3063 if (cdef != null && clazztype.tsym.isInterface()) { 3064 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 3065 } else if (clazztype.tsym.isStatic()) { 3066 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 3067 } 3068 } 3069 } else { 3070 // Check for the existence of an apropos outer instance 3071 checkNewInnerClass(tree.pos(), env, clazztype, false); 3072 } 3073 3074 // Attribute constructor arguments. 3075 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 3076 final KindSelector pkind = 3077 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 3078 List<Type> argtypes = argtypesBuf.toList(); 3079 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 3080 3081 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 3082 // Enums may not be instantiated except implicitly 3083 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 3084 (!env.tree.hasTag(VARDEF) || 3085 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 3086 ((JCVariableDecl) env.tree).init != tree)) 3087 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 3088 3089 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 3090 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3091 boolean skipNonDiamondPath = false; 3092 // Check that class is not abstract 3093 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 3094 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 3095 log.error(tree.pos(), 3096 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 3097 skipNonDiamondPath = true; 3098 } else if (cdef != null && clazztype.tsym.isInterface()) { 3099 // Check that no constructor arguments are given to 3100 // anonymous classes implementing an interface 3101 if (!argtypes.isEmpty()) 3102 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 3103 3104 if (!typeargtypes.isEmpty()) 3105 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 3106 3107 // Error recovery: pretend no arguments were supplied. 3108 argtypes = List.nil(); 3109 typeargtypes = List.nil(); 3110 skipNonDiamondPath = true; 3111 } 3112 if (TreeInfo.isDiamond(tree)) { 3113 ClassType site = new ClassType(clazztype.getEnclosingType(), 3114 clazztype.tsym.type.getTypeArguments(), 3115 clazztype.tsym, 3116 clazztype.getMetadata()); 3117 3118 Env<AttrContext> diamondEnv = localEnv.dup(tree); 3119 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 3120 diamondEnv.info.pendingResolutionPhase = null; 3121 3122 //if the type of the instance creation expression is a class type 3123 //apply method resolution inference (JLS 15.12.2.7). The return type 3124 //of the resolved constructor will be a partially instantiated type 3125 Symbol constructor = rs.resolveDiamond(tree.pos(), 3126 diamondEnv, 3127 site, 3128 argtypes, 3129 typeargtypes); 3130 tree.constructor = constructor.baseSymbol(); 3131 3132 final TypeSymbol csym = clazztype.tsym; 3133 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 3134 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3135 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 3136 constructorType = checkId(tree, site, 3137 constructor, 3138 diamondEnv, 3139 diamondResult); 3140 3141 tree.clazz.type = types.createErrorType(clazztype); 3142 if (!constructorType.isErroneous()) { 3143 tree.clazz.type = clazz.type = constructorType.getReturnType(); 3144 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 3145 } 3146 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 3147 } 3148 3149 // Resolve the called constructor under the assumption 3150 // that we are referring to a superclass instance of the 3151 // current instance (JLS ???). 3152 else if (!skipNonDiamondPath) { 3153 //the following code alters some of the fields in the current 3154 //AttrContext - hence, the current context must be dup'ed in 3155 //order to avoid downstream failures 3156 Env<AttrContext> rsEnv = localEnv.dup(tree); 3157 rsEnv.info.selectSuper = cdef != null; 3158 rsEnv.info.pendingResolutionPhase = null; 3159 tree.constructor = rs.resolveConstructor( 3160 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 3161 if (cdef == null) { //do not check twice! 3162 tree.constructorType = checkId(tree, 3163 clazztype, 3164 tree.constructor, 3165 rsEnv, 3166 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3167 if (rsEnv.info.lastResolveVarargs()) 3168 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 3169 } 3170 } 3171 3172 chk.checkRequiresIdentity(tree, env.info.lint); 3173 3174 if (cdef != null) { 3175 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 3176 return; 3177 } 3178 3179 if (tree.constructor != null && tree.constructor.kind == MTH) 3180 owntype = clazztype; 3181 } 3182 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3183 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3184 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 3185 //we need to wait for inference to finish and then replace inference vars in the constructor type 3186 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 3187 instantiatedContext -> { 3188 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3189 }); 3190 } 3191 chk.validate(tree.typeargs, localEnv); 3192 } 3193 3194 // where 3195 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 3196 JCClassDecl cdef, Env<AttrContext> localEnv, 3197 List<Type> argtypes, List<Type> typeargtypes, 3198 KindSelector pkind) { 3199 // We are seeing an anonymous class instance creation. 3200 // In this case, the class instance creation 3201 // expression 3202 // 3203 // E.new <typeargs1>C<typargs2>(args) { ... } 3204 // 3205 // is represented internally as 3206 // 3207 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 3208 // 3209 // This expression is then *transformed* as follows: 3210 // 3211 // (1) add an extends or implements clause 3212 // (2) add a constructor. 3213 // 3214 // For instance, if C is a class, and ET is the type of E, 3215 // the expression 3216 // 3217 // E.new <typeargs1>C<typargs2>(args) { ... } 3218 // 3219 // is translated to (where X is a fresh name and typarams is the 3220 // parameter list of the super constructor): 3221 // 3222 // new <typeargs1>X(<*nullchk*>E, args) where 3223 // X extends C<typargs2> { 3224 // <typarams> X(ET e, args) { 3225 // e.<typeargs1>super(args) 3226 // } 3227 // ... 3228 // } 3229 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3230 Type enclType = clazztype.getEnclosingType(); 3231 if (enclType != null && 3232 enclType.hasTag(CLASS) && 3233 !chk.checkDenotable((ClassType)enclType)) { 3234 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 3235 } 3236 final boolean isDiamond = TreeInfo.isDiamond(tree); 3237 if (isDiamond 3238 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 3239 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 3240 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 3241 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 3242 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 3243 instantiatedContext -> { 3244 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3245 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3246 ResultInfo prevResult = this.resultInfo; 3247 try { 3248 this.resultInfo = resultInfoForClassDefinition; 3249 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3250 dupLocalEnv, argtypes, typeargtypes, pkind); 3251 } finally { 3252 this.resultInfo = prevResult; 3253 } 3254 }); 3255 } else { 3256 if (isDiamond && clazztype.hasTag(CLASS)) { 3257 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3258 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3259 // One or more types inferred in the previous steps is non-denotable. 3260 Fragment fragment = Diamond(clazztype.tsym); 3261 log.error(tree.clazz.pos(), 3262 Errors.CantApplyDiamond1( 3263 fragment, 3264 invalidDiamondArgs.size() > 1 ? 3265 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3266 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3267 } 3268 // For <>(){}, inferred types must also be accessible. 3269 for (Type t : clazztype.getTypeArguments()) { 3270 rs.checkAccessibleType(env, t); 3271 } 3272 } 3273 3274 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3275 // false for isInterface call even when the original type is an interface. 3276 boolean implementing = clazztype.tsym.isInterface() || 3277 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3278 clazztype.getOriginalType().tsym.isInterface(); 3279 3280 if (implementing) { 3281 cdef.implementing = List.of(clazz); 3282 } else { 3283 cdef.extending = clazz; 3284 } 3285 3286 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3287 rs.isSerializable(clazztype)) { 3288 localEnv.info.isSerializable = true; 3289 } 3290 3291 attribStat(cdef, localEnv); 3292 3293 List<Type> finalargtypes; 3294 // If an outer instance is given, 3295 // prefix it to the constructor arguments 3296 // and delete it from the new expression 3297 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3298 finalargtypes = argtypes.prepend(tree.encl.type); 3299 } else { 3300 finalargtypes = argtypes; 3301 } 3302 3303 // Reassign clazztype and recompute constructor. As this necessarily involves 3304 // another attribution pass for deferred types in the case of <>, replicate 3305 // them. Original arguments have right decorations already. 3306 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3307 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3308 } 3309 3310 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3311 : cdef.sym.type; 3312 Symbol sym = tree.constructor = rs.resolveConstructor( 3313 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3314 Assert.check(!sym.kind.isResolutionError()); 3315 tree.constructor = sym; 3316 tree.constructorType = checkId(tree, 3317 clazztype, 3318 tree.constructor, 3319 localEnv, 3320 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3321 } 3322 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3323 clazztype : types.createErrorType(tree.type); 3324 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3325 chk.validate(tree.typeargs, localEnv); 3326 } 3327 3328 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3329 return new Check.NestedCheckContext(checkContext) { 3330 @Override 3331 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3332 enclosingContext.report(clazz.clazz, 3333 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3334 } 3335 }; 3336 } 3337 3338 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3339 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3340 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3341 (!isLocal && !type.tsym.isInner()) || 3342 (isSuper && env.enclClass.sym.isAnonymous())) { 3343 // nothing to check 3344 return; 3345 } 3346 Symbol res = isLocal ? 3347 rs.findLocalClassOwner(env, type.tsym) : 3348 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3349 if (res.exists()) { 3350 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3351 } else { 3352 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3353 } 3354 } 3355 3356 /** Make an attributed null check tree. 3357 */ 3358 public JCExpression makeNullCheck(JCExpression arg) { 3359 // optimization: new Outer() can never be null; skip null check 3360 if (arg.getTag() == NEWCLASS) 3361 return arg; 3362 // optimization: X.this is never null; skip null check 3363 Name name = TreeInfo.name(arg); 3364 if (name == names._this || name == names._super) return arg; 3365 3366 JCTree.Tag optag = NULLCHK; 3367 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3368 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3369 tree.type = arg.type; 3370 return tree; 3371 } 3372 3373 public void visitNewArray(JCNewArray tree) { 3374 Type owntype = types.createErrorType(tree.type); 3375 Env<AttrContext> localEnv = env.dup(tree); 3376 Type elemtype; 3377 if (tree.elemtype != null) { 3378 elemtype = attribType(tree.elemtype, localEnv); 3379 chk.validate(tree.elemtype, localEnv); 3380 owntype = elemtype; 3381 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3382 attribExpr(l.head, localEnv, syms.intType); 3383 owntype = new ArrayType(owntype, syms.arrayClass); 3384 } 3385 } else { 3386 // we are seeing an untyped aggregate { ... } 3387 // this is allowed only if the prototype is an array 3388 if (pt().hasTag(ARRAY)) { 3389 elemtype = types.elemtype(pt()); 3390 } else { 3391 if (!pt().hasTag(ERROR) && 3392 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3393 log.error(tree.pos(), 3394 Errors.IllegalInitializerForType(pt())); 3395 } 3396 elemtype = types.createErrorType(pt()); 3397 } 3398 } 3399 if (tree.elems != null) { 3400 attribExprs(tree.elems, localEnv, elemtype); 3401 owntype = new ArrayType(elemtype, syms.arrayClass); 3402 } 3403 if (!types.isReifiable(elemtype)) 3404 log.error(tree.pos(), Errors.GenericArrayCreation); 3405 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3406 } 3407 3408 /* 3409 * A lambda expression can only be attributed when a target-type is available. 3410 * In addition, if the target-type is that of a functional interface whose 3411 * descriptor contains inference variables in argument position the lambda expression 3412 * is 'stuck' (see DeferredAttr). 3413 */ 3414 @Override 3415 public void visitLambda(final JCLambda that) { 3416 boolean wrongContext = false; 3417 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3418 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3419 //lambda only allowed in assignment or method invocation/cast context 3420 log.error(that.pos(), Errors.UnexpectedLambda); 3421 } 3422 resultInfo = recoveryInfo; 3423 wrongContext = true; 3424 } 3425 //create an environment for attribution of the lambda expression 3426 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3427 boolean needsRecovery = 3428 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3429 try { 3430 if (needsRecovery && rs.isSerializable(pt())) { 3431 localEnv.info.isSerializable = true; 3432 localEnv.info.isSerializableLambda = true; 3433 } 3434 List<Type> explicitParamTypes = null; 3435 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3436 //attribute lambda parameters 3437 attribStats(that.params, localEnv); 3438 explicitParamTypes = TreeInfo.types(that.params); 3439 } 3440 3441 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3442 Type currentTarget = targetInfo.target; 3443 Type lambdaType = targetInfo.descriptor; 3444 3445 if (currentTarget.isErroneous()) { 3446 result = that.type = currentTarget; 3447 return; 3448 } 3449 3450 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3451 3452 if (lambdaType.hasTag(FORALL)) { 3453 //lambda expression target desc cannot be a generic method 3454 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3455 kindName(currentTarget.tsym), 3456 currentTarget.tsym); 3457 resultInfo.checkContext.report(that, diags.fragment(msg)); 3458 result = that.type = types.createErrorType(pt()); 3459 return; 3460 } 3461 3462 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3463 //add param type info in the AST 3464 List<Type> actuals = lambdaType.getParameterTypes(); 3465 List<JCVariableDecl> params = that.params; 3466 3467 boolean arityMismatch = false; 3468 3469 while (params.nonEmpty()) { 3470 if (actuals.isEmpty()) { 3471 //not enough actuals to perform lambda parameter inference 3472 arityMismatch = true; 3473 } 3474 //reset previously set info 3475 Type argType = arityMismatch ? 3476 syms.errType : 3477 actuals.head; 3478 if (params.head.isImplicitlyTyped()) { 3479 setSyntheticVariableType(params.head, argType); 3480 } 3481 params.head.sym = null; 3482 actuals = actuals.isEmpty() ? 3483 actuals : 3484 actuals.tail; 3485 params = params.tail; 3486 } 3487 3488 //attribute lambda parameters 3489 attribStats(that.params, localEnv); 3490 3491 if (arityMismatch) { 3492 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3493 result = that.type = types.createErrorType(currentTarget); 3494 return; 3495 } 3496 } 3497 3498 //from this point on, no recovery is needed; if we are in assignment context 3499 //we will be able to attribute the whole lambda body, regardless of errors; 3500 //if we are in a 'check' method context, and the lambda is not compatible 3501 //with the target-type, it will be recovered anyway in Attr.checkId 3502 needsRecovery = false; 3503 3504 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3505 lambdaBodyResult(that, lambdaType, resultInfo); 3506 3507 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3508 attribTree(that.getBody(), localEnv, bodyResultInfo); 3509 } else { 3510 JCBlock body = (JCBlock)that.body; 3511 if (body == breakTree && 3512 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3513 breakTreeFound(copyEnv(localEnv)); 3514 } 3515 attribStats(body.stats, localEnv); 3516 } 3517 3518 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3519 3520 boolean isSpeculativeRound = 3521 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3522 3523 preFlow(that); 3524 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3525 3526 that.type = currentTarget; //avoids recovery at this stage 3527 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3528 3529 if (!isSpeculativeRound) { 3530 //add thrown types as bounds to the thrown types free variables if needed: 3531 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3532 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3533 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3534 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3535 } 3536 } 3537 3538 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3539 } 3540 result = wrongContext ? that.type = types.createErrorType(pt()) 3541 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3542 } catch (Types.FunctionDescriptorLookupError ex) { 3543 JCDiagnostic cause = ex.getDiagnostic(); 3544 resultInfo.checkContext.report(that, cause); 3545 result = that.type = types.createErrorType(pt()); 3546 return; 3547 } catch (CompletionFailure cf) { 3548 chk.completionError(that.pos(), cf); 3549 } catch (Throwable t) { 3550 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3551 //as that would likely cause the same exception again. 3552 needsRecovery = false; 3553 throw t; 3554 } finally { 3555 localEnv.info.scope.leave(); 3556 if (needsRecovery) { 3557 Type prevResult = result; 3558 try { 3559 attribTree(that, env, recoveryInfo); 3560 } finally { 3561 if (result == Type.recoveryType) { 3562 result = prevResult; 3563 } 3564 } 3565 } 3566 } 3567 } 3568 //where 3569 class TargetInfo { 3570 Type target; 3571 Type descriptor; 3572 3573 public TargetInfo(Type target, Type descriptor) { 3574 this.target = target; 3575 this.descriptor = descriptor; 3576 } 3577 } 3578 3579 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3580 Type lambdaType; 3581 Type currentTarget = resultInfo.pt; 3582 if (resultInfo.pt != Type.recoveryType) { 3583 /* We need to adjust the target. If the target is an 3584 * intersection type, for example: SAM & I1 & I2 ... 3585 * the target will be updated to SAM 3586 */ 3587 currentTarget = targetChecker.visit(currentTarget, that); 3588 if (!currentTarget.isIntersection()) { 3589 if (explicitParamTypes != null) { 3590 currentTarget = infer.instantiateFunctionalInterface(that, 3591 currentTarget, explicitParamTypes, resultInfo.checkContext); 3592 } 3593 currentTarget = types.removeWildcards(currentTarget); 3594 lambdaType = types.findDescriptorType(currentTarget); 3595 } else { 3596 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3597 ListBuffer<Type> components = new ListBuffer<>(); 3598 for (Type bound : ict.getExplicitComponents()) { 3599 if (explicitParamTypes != null) { 3600 try { 3601 bound = infer.instantiateFunctionalInterface(that, 3602 bound, explicitParamTypes, resultInfo.checkContext); 3603 } catch (FunctionDescriptorLookupError t) { 3604 // do nothing 3605 } 3606 } 3607 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) { 3608 // bound must be j.l.Object or an interface, but not an annotation 3609 reportIntersectionError(that, "not.an.intf.component", bound); 3610 } 3611 bound = types.removeWildcards(bound); 3612 components.add(bound); 3613 } 3614 currentTarget = types.makeIntersectionType(components.toList()); 3615 currentTarget.tsym.flags_field |= INTERFACE; 3616 lambdaType = types.findDescriptorType(currentTarget); 3617 } 3618 3619 } else { 3620 currentTarget = Type.recoveryType; 3621 lambdaType = fallbackDescriptorType(that); 3622 } 3623 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3624 //lambda expression target desc cannot be a generic method 3625 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3626 kindName(currentTarget.tsym), 3627 currentTarget.tsym); 3628 resultInfo.checkContext.report(that, diags.fragment(msg)); 3629 currentTarget = types.createErrorType(pt()); 3630 } 3631 return new TargetInfo(currentTarget, lambdaType); 3632 } 3633 3634 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) { 3635 resultInfo.checkContext.report(pos, 3636 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args)))); 3637 } 3638 3639 void preFlow(JCLambda tree) { 3640 attrRecover.doRecovery(); 3641 new PostAttrAnalyzer() { 3642 @Override 3643 public void scan(JCTree tree) { 3644 if (tree == null || 3645 (tree.type != null && 3646 tree.type == Type.stuckType)) { 3647 //don't touch stuck expressions! 3648 return; 3649 } 3650 super.scan(tree); 3651 } 3652 3653 @Override 3654 public void visitClassDef(JCClassDecl that) { 3655 // or class declaration trees! 3656 } 3657 3658 public void visitLambda(JCLambda that) { 3659 // or lambda expressions! 3660 } 3661 }.scan(tree.body); 3662 } 3663 3664 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3665 3666 @Override 3667 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3668 return t.isIntersection() ? 3669 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3670 } 3671 3672 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3673 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3674 return ict; 3675 } 3676 3677 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3678 ListBuffer<Type> targs = new ListBuffer<>(); 3679 ListBuffer<Type> supertypes = new ListBuffer<>(); 3680 for (Type i : ict.interfaces_field) { 3681 if (i.isParameterized()) { 3682 targs.appendList(i.tsym.type.allparams()); 3683 } 3684 supertypes.append(i.tsym.type); 3685 } 3686 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3687 notionalIntf.allparams_field = targs.toList(); 3688 notionalIntf.tsym.flags_field |= INTERFACE; 3689 return notionalIntf.tsym; 3690 } 3691 }; 3692 3693 private Type fallbackDescriptorType(JCExpression tree) { 3694 switch (tree.getTag()) { 3695 case LAMBDA: 3696 JCLambda lambda = (JCLambda)tree; 3697 List<Type> argtypes = List.nil(); 3698 for (JCVariableDecl param : lambda.params) { 3699 argtypes = param.vartype != null && param.vartype.type != null ? 3700 argtypes.append(param.vartype.type) : 3701 argtypes.append(syms.errType); 3702 } 3703 return new MethodType(argtypes, Type.recoveryType, 3704 List.of(syms.throwableType), syms.methodClass); 3705 case REFERENCE: 3706 return new MethodType(List.nil(), Type.recoveryType, 3707 List.of(syms.throwableType), syms.methodClass); 3708 default: 3709 Assert.error("Cannot get here!"); 3710 } 3711 return null; 3712 } 3713 3714 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3715 final InferenceContext inferenceContext, final Type... ts) { 3716 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3717 } 3718 3719 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3720 final InferenceContext inferenceContext, final List<Type> ts) { 3721 if (inferenceContext.free(ts)) { 3722 inferenceContext.addFreeTypeListener(ts, 3723 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3724 } else { 3725 for (Type t : ts) { 3726 rs.checkAccessibleType(env, t); 3727 } 3728 } 3729 } 3730 3731 /** 3732 * Lambda/method reference have a special check context that ensures 3733 * that i.e. a lambda return type is compatible with the expected 3734 * type according to both the inherited context and the assignment 3735 * context. 3736 */ 3737 class FunctionalReturnContext extends Check.NestedCheckContext { 3738 3739 FunctionalReturnContext(CheckContext enclosingContext) { 3740 super(enclosingContext); 3741 } 3742 3743 @Override 3744 public boolean compatible(Type found, Type req, Warner warn) { 3745 //return type must be compatible in both current context and assignment context 3746 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3747 } 3748 3749 @Override 3750 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3751 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3752 } 3753 } 3754 3755 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3756 3757 JCExpression expr; 3758 boolean expStmtExpected; 3759 3760 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3761 super(enclosingContext); 3762 this.expr = expr; 3763 } 3764 3765 @Override 3766 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3767 if (expStmtExpected) { 3768 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3769 } else { 3770 super.report(pos, details); 3771 } 3772 } 3773 3774 @Override 3775 public boolean compatible(Type found, Type req, Warner warn) { 3776 //a void return is compatible with an expression statement lambda 3777 if (req.hasTag(VOID)) { 3778 expStmtExpected = true; 3779 return TreeInfo.isExpressionStatement(expr); 3780 } else { 3781 return super.compatible(found, req, warn); 3782 } 3783 } 3784 } 3785 3786 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3787 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3788 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3789 new FunctionalReturnContext(resultInfo.checkContext); 3790 3791 return descriptor.getReturnType() == Type.recoveryType ? 3792 recoveryInfo : 3793 new ResultInfo(KindSelector.VAL, 3794 descriptor.getReturnType(), funcContext); 3795 } 3796 3797 /** 3798 * Lambda compatibility. Check that given return types, thrown types, parameter types 3799 * are compatible with the expected functional interface descriptor. This means that: 3800 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3801 * types must be compatible with the return type of the expected descriptor. 3802 */ 3803 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3804 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3805 3806 //return values have already been checked - but if lambda has no return 3807 //values, we must ensure that void/value compatibility is correct; 3808 //this amounts at checking that, if a lambda body can complete normally, 3809 //the descriptor's return type must be void 3810 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3811 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3812 Fragment msg = 3813 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3814 checkContext.report(tree, 3815 diags.fragment(msg)); 3816 } 3817 3818 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3819 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3820 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3821 } 3822 } 3823 3824 /* This method returns an environment to be used to attribute a lambda 3825 * expression. 3826 * 3827 * The owner of this environment is a method symbol. If the current owner 3828 * is not a method (e.g. if the lambda occurs in a field initializer), then 3829 * a synthetic method symbol owner is created. 3830 */ 3831 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3832 Env<AttrContext> lambdaEnv; 3833 Symbol owner = env.info.scope.owner; 3834 if (owner.kind == VAR && owner.owner.kind == TYP) { 3835 // If the lambda is nested in a field initializer, we need to create a fake init method. 3836 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3837 // init symbol's owner). 3838 ClassSymbol enclClass = owner.enclClass(); 3839 Name initName = owner.isStatic() ? names.clinit : names.init; 3840 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3841 initName, initBlockType, enclClass); 3842 initSym.params = List.nil(); 3843 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3844 } else { 3845 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3846 } 3847 lambdaEnv.info.yieldResult = null; 3848 lambdaEnv.info.isLambda = true; 3849 return lambdaEnv; 3850 } 3851 3852 @Override 3853 public void visitReference(final JCMemberReference that) { 3854 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3855 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3856 //method reference only allowed in assignment or method invocation/cast context 3857 log.error(that.pos(), Errors.UnexpectedMref); 3858 } 3859 result = that.type = types.createErrorType(pt()); 3860 return; 3861 } 3862 final Env<AttrContext> localEnv = env.dup(that); 3863 try { 3864 //attribute member reference qualifier - if this is a constructor 3865 //reference, the expected kind must be a type 3866 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3867 3868 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3869 exprType = chk.checkConstructorRefType(that.expr, exprType); 3870 if (!exprType.isErroneous() && 3871 exprType.isRaw() && 3872 that.typeargs != null) { 3873 log.error(that.expr.pos(), 3874 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3875 Fragments.MrefInferAndExplicitParams)); 3876 exprType = types.createErrorType(exprType); 3877 } 3878 } 3879 3880 if (exprType.isErroneous()) { 3881 //if the qualifier expression contains problems, 3882 //give up attribution of method reference 3883 result = that.type = exprType; 3884 return; 3885 } 3886 3887 if (TreeInfo.isStaticSelector(that.expr, names)) { 3888 //if the qualifier is a type, validate it; raw warning check is 3889 //omitted as we don't know at this stage as to whether this is a 3890 //raw selector (because of inference) 3891 chk.validate(that.expr, env, false); 3892 } else { 3893 Symbol lhsSym = TreeInfo.symbol(that.expr); 3894 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3895 } 3896 //attrib type-arguments 3897 List<Type> typeargtypes = List.nil(); 3898 if (that.typeargs != null) { 3899 typeargtypes = attribTypes(that.typeargs, localEnv); 3900 } 3901 3902 boolean isTargetSerializable = 3903 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3904 rs.isSerializable(pt()); 3905 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3906 Type currentTarget = targetInfo.target; 3907 Type desc = targetInfo.descriptor; 3908 3909 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3910 List<Type> argtypes = desc.getParameterTypes(); 3911 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3912 3913 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3914 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3915 } 3916 3917 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3918 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3919 try { 3920 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3921 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3922 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3923 } finally { 3924 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3925 } 3926 3927 Symbol refSym = refResult.fst; 3928 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3929 3930 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3931 * JDK-8075541 3932 */ 3933 if (refSym.kind != MTH) { 3934 boolean targetError; 3935 switch (refSym.kind) { 3936 case ABSENT_MTH: 3937 targetError = false; 3938 break; 3939 case WRONG_MTH: 3940 case WRONG_MTHS: 3941 case AMBIGUOUS: 3942 case HIDDEN: 3943 case STATICERR: 3944 targetError = true; 3945 break; 3946 default: 3947 Assert.error("unexpected result kind " + refSym.kind); 3948 targetError = false; 3949 } 3950 3951 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3952 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3953 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3954 3955 JCDiagnostic diag = diags.create(log.currentSource(), that, 3956 targetError ? 3957 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3958 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3959 3960 if (targetError && currentTarget == Type.recoveryType) { 3961 //a target error doesn't make sense during recovery stage 3962 //as we don't know what actual parameter types are 3963 result = that.type = currentTarget; 3964 return; 3965 } else { 3966 if (targetError) { 3967 resultInfo.checkContext.report(that, diag); 3968 } else { 3969 log.report(diag); 3970 } 3971 result = that.type = types.createErrorType(currentTarget); 3972 return; 3973 } 3974 } 3975 3976 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3977 that.kind = lookupHelper.referenceKind(that.sym); 3978 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3979 3980 if (desc.getReturnType() == Type.recoveryType) { 3981 // stop here 3982 result = that.type = currentTarget; 3983 return; 3984 } 3985 3986 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3987 checkNewInnerClass(that.pos(), env, exprType, false); 3988 } 3989 3990 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3991 3992 if (that.getMode() == ReferenceMode.INVOKE && 3993 TreeInfo.isStaticSelector(that.expr, names) && 3994 that.kind.isUnbound() && 3995 lookupHelper.site.isRaw()) { 3996 chk.checkRaw(that.expr, localEnv); 3997 } 3998 3999 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 4000 exprType.getTypeArguments().nonEmpty()) { 4001 //static ref with class type-args 4002 log.error(that.expr.pos(), 4003 Errors.InvalidMref(Kinds.kindName(that.getMode()), 4004 Fragments.StaticMrefWithTargs)); 4005 result = that.type = types.createErrorType(currentTarget); 4006 return; 4007 } 4008 4009 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 4010 // Check that super-qualified symbols are not abstract (JLS) 4011 rs.checkNonAbstract(that.pos(), that.sym); 4012 } 4013 4014 if (isTargetSerializable) { 4015 chk.checkAccessFromSerializableElement(that, true); 4016 } 4017 } 4018 4019 ResultInfo checkInfo = 4020 resultInfo.dup(newMethodTemplate( 4021 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 4022 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 4023 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 4024 4025 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 4026 4027 if (that.kind.isUnbound() && 4028 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 4029 //re-generate inference constraints for unbound receiver 4030 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 4031 //cannot happen as this has already been checked - we just need 4032 //to regenerate the inference constraints, as that has been lost 4033 //as a result of the call to inferenceContext.save() 4034 Assert.error("Can't get here"); 4035 } 4036 } 4037 4038 if (!refType.isErroneous()) { 4039 refType = types.createMethodTypeWithReturn(refType, 4040 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 4041 } 4042 4043 //go ahead with standard method reference compatibility check - note that param check 4044 //is a no-op (as this has been taken care during method applicability) 4045 boolean isSpeculativeRound = 4046 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 4047 4048 that.type = currentTarget; //avoids recovery at this stage 4049 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 4050 if (!isSpeculativeRound) { 4051 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 4052 } 4053 chk.checkRequiresIdentity(that, localEnv.info.lint); 4054 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 4055 } catch (Types.FunctionDescriptorLookupError ex) { 4056 JCDiagnostic cause = ex.getDiagnostic(); 4057 resultInfo.checkContext.report(that, cause); 4058 result = that.type = types.createErrorType(pt()); 4059 return; 4060 } 4061 } 4062 //where 4063 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 4064 //if this is a constructor reference, the expected kind must be a type 4065 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 4066 KindSelector.VAL_TYP : KindSelector.TYP, 4067 Type.noType); 4068 } 4069 4070 4071 @SuppressWarnings("fallthrough") 4072 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 4073 InferenceContext inferenceContext = checkContext.inferenceContext(); 4074 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 4075 4076 Type resType; 4077 switch (tree.getMode()) { 4078 case NEW: 4079 if (!tree.expr.type.isRaw()) { 4080 resType = tree.expr.type; 4081 break; 4082 } 4083 default: 4084 resType = refType.getReturnType(); 4085 } 4086 4087 Type incompatibleReturnType = resType; 4088 4089 if (returnType.hasTag(VOID)) { 4090 incompatibleReturnType = null; 4091 } 4092 4093 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 4094 if (resType.isErroneous() || 4095 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 4096 checkContext.checkWarner(tree, resType, returnType))) { 4097 incompatibleReturnType = null; 4098 } 4099 } 4100 4101 if (incompatibleReturnType != null) { 4102 Fragment msg = 4103 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 4104 checkContext.report(tree, diags.fragment(msg)); 4105 } else { 4106 if (inferenceContext.free(refType)) { 4107 // we need to wait for inference to finish and then replace inference vars in the referent type 4108 inferenceContext.addFreeTypeListener(List.of(refType), 4109 instantiatedContext -> { 4110 tree.referentType = instantiatedContext.asInstType(refType); 4111 }); 4112 } else { 4113 tree.referentType = refType; 4114 } 4115 } 4116 4117 if (!speculativeAttr) { 4118 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 4119 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 4120 } 4121 } 4122 } 4123 4124 boolean checkExConstraints( 4125 List<Type> thrownByFuncExpr, 4126 List<Type> thrownAtFuncType, 4127 InferenceContext inferenceContext) { 4128 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 4129 * are not proper types 4130 */ 4131 List<Type> nonProperList = thrownAtFuncType.stream() 4132 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 4133 List<Type> properList = thrownAtFuncType.diff(nonProperList); 4134 4135 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 4136 * in the throws clause of the invocation type of the method reference's compile-time 4137 * declaration 4138 */ 4139 List<Type> checkedList = thrownByFuncExpr.stream() 4140 .filter(e -> chk.isChecked(e)).collect(List.collector()); 4141 4142 /** If n = 0 (the function type's throws clause consists only of proper types), then 4143 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 4144 * in the throws clause, the constraint reduces to false; otherwise, the constraint 4145 * reduces to true 4146 */ 4147 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 4148 for (Type checked : checkedList) { 4149 boolean isSubtype = false; 4150 for (Type proper : properList) { 4151 if (types.isSubtype(checked, proper)) { 4152 isSubtype = true; 4153 break; 4154 } 4155 } 4156 if (!isSubtype) { 4157 uncaughtByProperTypes.add(checked); 4158 } 4159 } 4160 4161 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 4162 return false; 4163 } 4164 4165 /** If n > 0, the constraint reduces to a set of subtyping constraints: 4166 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 4167 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 4168 */ 4169 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 4170 uncaughtByProperTypes.forEach(checkedEx -> { 4171 nonProperAsUndet.forEach(nonProper -> { 4172 types.isSubtype(checkedEx, nonProper); 4173 }); 4174 }); 4175 4176 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 4177 */ 4178 nonProperAsUndet.stream() 4179 .filter(t -> t.hasTag(UNDETVAR)) 4180 .forEach(t -> ((UndetVar)t).setThrow()); 4181 return true; 4182 } 4183 4184 /** 4185 * Set functional type info on the underlying AST. Note: as the target descriptor 4186 * might contain inference variables, we might need to register an hook in the 4187 * current inference context. 4188 */ 4189 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 4190 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 4191 if (checkContext.inferenceContext().free(descriptorType)) { 4192 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 4193 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 4194 inferenceContext.asInstType(primaryTarget), checkContext)); 4195 } else { 4196 fExpr.owner = env.info.scope.owner; 4197 if (pt.hasTag(CLASS)) { 4198 fExpr.target = primaryTarget; 4199 } 4200 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 4201 pt != Type.recoveryType) { 4202 //check that functional interface class is well-formed 4203 try { 4204 /* Types.makeFunctionalInterfaceClass() may throw an exception 4205 * when it's executed post-inference. See the listener code 4206 * above. 4207 */ 4208 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 4209 names.empty, fExpr.target, ABSTRACT); 4210 if (csym != null) { 4211 chk.checkImplementations(env.tree, csym, csym); 4212 try { 4213 //perform an additional functional interface check on the synthetic class, 4214 //as there may be spurious errors for raw targets - because of existing issues 4215 //with membership and inheritance (see JDK-8074570). 4216 csym.flags_field |= INTERFACE; 4217 types.findDescriptorType(csym.type); 4218 } catch (FunctionDescriptorLookupError err) { 4219 resultInfo.checkContext.report(fExpr, 4220 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 4221 } 4222 } 4223 } catch (Types.FunctionDescriptorLookupError ex) { 4224 JCDiagnostic cause = ex.getDiagnostic(); 4225 resultInfo.checkContext.report(env.tree, cause); 4226 } 4227 } 4228 } 4229 } 4230 4231 public void visitParens(JCParens tree) { 4232 Type owntype = attribTree(tree.expr, env, resultInfo); 4233 result = check(tree, owntype, pkind(), resultInfo); 4234 Symbol sym = TreeInfo.symbol(tree); 4235 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 4236 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 4237 } 4238 4239 public void visitAssign(JCAssign tree) { 4240 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 4241 Type capturedType = capture(owntype); 4242 attribExpr(tree.rhs, env, owntype); 4243 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 4244 } 4245 4246 public void visitAssignop(JCAssignOp tree) { 4247 // Attribute arguments. 4248 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 4249 Type operand = attribExpr(tree.rhs, env); 4250 // Find operator. 4251 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 4252 if (operator != operators.noOpSymbol && 4253 !owntype.isErroneous() && 4254 !operand.isErroneous()) { 4255 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4256 chk.checkCastable(tree.rhs.pos(), 4257 operator.type.getReturnType(), 4258 owntype); 4259 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4260 } 4261 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4262 } 4263 4264 public void visitUnary(JCUnary tree) { 4265 // Attribute arguments. 4266 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4267 ? attribTree(tree.arg, env, varAssignmentInfo) 4268 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4269 4270 // Find operator. 4271 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4272 Type owntype = types.createErrorType(tree.type); 4273 if (operator != operators.noOpSymbol && 4274 !argtype.isErroneous()) { 4275 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4276 ? tree.arg.type 4277 : operator.type.getReturnType(); 4278 int opc = operator.opcode; 4279 4280 // If the argument is constant, fold it. 4281 if (argtype.constValue() != null) { 4282 Type ctype = cfolder.fold1(opc, argtype); 4283 if (ctype != null) { 4284 owntype = cfolder.coerce(ctype, owntype); 4285 } 4286 } 4287 } 4288 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4289 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4290 } 4291 4292 public void visitBinary(JCBinary tree) { 4293 // Attribute arguments. 4294 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4295 // x && y 4296 // include x's bindings when true in y 4297 4298 // x || y 4299 // include x's bindings when false in y 4300 4301 MatchBindings lhsBindings = matchBindings; 4302 List<BindingSymbol> propagatedBindings; 4303 switch (tree.getTag()) { 4304 case AND: 4305 propagatedBindings = lhsBindings.bindingsWhenTrue; 4306 break; 4307 case OR: 4308 propagatedBindings = lhsBindings.bindingsWhenFalse; 4309 break; 4310 default: 4311 propagatedBindings = List.nil(); 4312 break; 4313 } 4314 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4315 Type right; 4316 try { 4317 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4318 } finally { 4319 rhsEnv.info.scope.leave(); 4320 } 4321 4322 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4323 4324 // Find operator. 4325 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4326 Type owntype = types.createErrorType(tree.type); 4327 if (operator != operators.noOpSymbol && 4328 !left.isErroneous() && 4329 !right.isErroneous()) { 4330 owntype = operator.type.getReturnType(); 4331 int opc = operator.opcode; 4332 // If both arguments are constants, fold them. 4333 if (left.constValue() != null && right.constValue() != null) { 4334 Type ctype = cfolder.fold2(opc, left, right); 4335 if (ctype != null) { 4336 owntype = cfolder.coerce(ctype, owntype); 4337 } 4338 } 4339 4340 // Check that argument types of a reference ==, != are 4341 // castable to each other, (JLS 15.21). Note: unboxing 4342 // comparisons will not have an acmp* opc at this point. 4343 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4344 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4345 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4346 } 4347 } 4348 4349 chk.checkDivZero(tree.rhs.pos(), operator, right); 4350 } 4351 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4352 } 4353 4354 public void visitTypeCast(final JCTypeCast tree) { 4355 Type clazztype = attribType(tree.clazz, env); 4356 chk.validate(tree.clazz, env, false); 4357 chk.checkRequiresIdentity(tree, env.info.lint); 4358 //a fresh environment is required for 292 inference to work properly --- 4359 //see Infer.instantiatePolymorphicSignatureInstance() 4360 Env<AttrContext> localEnv = env.dup(tree); 4361 //should we propagate the target type? 4362 final ResultInfo castInfo; 4363 JCExpression expr = TreeInfo.skipParens(tree.expr); 4364 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4365 if (isPoly) { 4366 //expression is a poly - we need to propagate target type info 4367 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4368 new Check.NestedCheckContext(resultInfo.checkContext) { 4369 @Override 4370 public boolean compatible(Type found, Type req, Warner warn) { 4371 return types.isCastable(found, req, warn); 4372 } 4373 }); 4374 } else { 4375 //standalone cast - target-type info is not propagated 4376 castInfo = unknownExprInfo; 4377 } 4378 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4379 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4380 if (exprtype.constValue() != null) 4381 owntype = cfolder.coerce(exprtype, owntype); 4382 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4383 if (!isPoly) 4384 chk.checkRedundantCast(localEnv, tree); 4385 } 4386 4387 public void visitTypeTest(JCInstanceOf tree) { 4388 Type exprtype = attribExpr(tree.expr, env); 4389 if (exprtype.isPrimitive()) { 4390 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4391 } else { 4392 exprtype = chk.checkNullOrRefType( 4393 tree.expr.pos(), exprtype); 4394 } 4395 Type clazztype; 4396 JCTree typeTree; 4397 if (tree.pattern.getTag() == BINDINGPATTERN || 4398 tree.pattern.getTag() == RECORDPATTERN) { 4399 attribExpr(tree.pattern, env, exprtype); 4400 clazztype = tree.pattern.type; 4401 if (types.isSubtype(exprtype, clazztype) && 4402 !exprtype.isErroneous() && !clazztype.isErroneous() && 4403 tree.pattern.getTag() != RECORDPATTERN) { 4404 if (!allowUnconditionalPatternsInstanceOf) { 4405 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4406 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4407 } 4408 } 4409 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4410 } else { 4411 clazztype = attribType(tree.pattern, env); 4412 typeTree = tree.pattern; 4413 chk.validate(typeTree, env, false); 4414 } 4415 if (clazztype.isPrimitive()) { 4416 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4417 } else { 4418 if (!clazztype.hasTag(TYPEVAR)) { 4419 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4420 } 4421 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4422 boolean valid = false; 4423 if (allowReifiableTypesInInstanceof) { 4424 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4425 } else { 4426 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4427 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4428 allowReifiableTypesInInstanceof = true; 4429 } 4430 if (!valid) { 4431 clazztype = types.createErrorType(clazztype); 4432 } 4433 } 4434 } 4435 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4436 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4437 } 4438 4439 private boolean checkCastablePattern(DiagnosticPosition pos, 4440 Type exprType, 4441 Type pattType) { 4442 Warner warner = new Warner(); 4443 // if any type is erroneous, the problem is reported elsewhere 4444 if (exprType.isErroneous() || pattType.isErroneous()) { 4445 return false; 4446 } 4447 if (!types.isCastable(exprType, pattType, warner)) { 4448 chk.basicHandler.report(pos, 4449 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4450 return false; 4451 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4452 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4453 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4454 return true; 4455 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4456 log.error(pos, 4457 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4458 return false; 4459 } else { 4460 return true; 4461 } 4462 } 4463 4464 @Override 4465 public void visitAnyPattern(JCAnyPattern tree) { 4466 result = tree.type = resultInfo.pt; 4467 } 4468 4469 public void visitBindingPattern(JCBindingPattern tree) { 4470 Type type; 4471 if (tree.var.vartype != null) { 4472 type = attribType(tree.var.vartype, env); 4473 } else { 4474 type = resultInfo.pt; 4475 } 4476 tree.type = tree.var.type = type; 4477 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4478 v.pos = tree.pos; 4479 tree.var.sym = v; 4480 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4481 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4482 } 4483 chk.validate(tree.var.vartype, env, true); 4484 if (tree.var.isImplicitlyTyped()) { 4485 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4486 : type); 4487 } 4488 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4489 if (!tree.var.isImplicitlyTyped()) { 4490 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4491 } 4492 annotate.flush(); 4493 result = tree.type; 4494 if (v.isUnnamedVariable()) { 4495 matchBindings = MatchBindingsComputer.EMPTY; 4496 } else { 4497 matchBindings = new MatchBindings(List.of(v), List.nil()); 4498 } 4499 chk.checkRequiresIdentity(tree, env.info.lint); 4500 } 4501 4502 @Override 4503 public void visitRecordPattern(JCRecordPattern tree) { 4504 Type site; 4505 4506 if (tree.deconstructor == null) { 4507 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4508 tree.record = syms.errSymbol; 4509 site = tree.type = types.createErrorType(tree.record.type); 4510 } else { 4511 Type type = attribType(tree.deconstructor, env); 4512 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4513 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4514 if (inferred == null) { 4515 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4516 } else { 4517 type = inferred; 4518 } 4519 } 4520 tree.type = tree.deconstructor.type = type; 4521 site = types.capture(tree.type); 4522 } 4523 4524 List<Type> expectedRecordTypes; 4525 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4526 ClassSymbol record = (ClassSymbol) site.tsym; 4527 expectedRecordTypes = record.getRecordComponents() 4528 .stream() 4529 .map(rc -> types.memberType(site, rc)) 4530 .map(t -> types.upward(t, types.captures(t)).baseType()) 4531 .collect(List.collector()); 4532 tree.record = record; 4533 } else { 4534 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4535 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4536 .limit(tree.nested.size()) 4537 .collect(List.collector()); 4538 tree.record = syms.errSymbol; 4539 } 4540 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4541 List<Type> recordTypes = expectedRecordTypes; 4542 List<JCPattern> nestedPatterns = tree.nested; 4543 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4544 try { 4545 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4546 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4547 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4548 outBindings.addAll(matchBindings.bindingsWhenTrue); 4549 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4550 nestedPatterns = nestedPatterns.tail; 4551 recordTypes = recordTypes.tail; 4552 } 4553 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4554 while (nestedPatterns.nonEmpty()) { 4555 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4556 nestedPatterns = nestedPatterns.tail; 4557 } 4558 List<Type> nestedTypes = 4559 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4560 log.error(tree.pos(), 4561 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4562 nestedTypes)); 4563 } 4564 } finally { 4565 localEnv.info.scope.leave(); 4566 } 4567 chk.validate(tree.deconstructor, env, true); 4568 result = tree.type; 4569 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4570 } 4571 4572 public void visitIndexed(JCArrayAccess tree) { 4573 Type owntype = types.createErrorType(tree.type); 4574 Type atype = attribExpr(tree.indexed, env); 4575 attribExpr(tree.index, env, syms.intType); 4576 if (types.isArray(atype)) 4577 owntype = types.elemtype(atype); 4578 else if (!atype.hasTag(ERROR)) 4579 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4580 if (!pkind().contains(KindSelector.VAL)) 4581 owntype = capture(owntype); 4582 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4583 } 4584 4585 public void visitIdent(JCIdent tree) { 4586 Symbol sym; 4587 4588 // Find symbol 4589 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4590 // If we are looking for a method, the prototype `pt' will be a 4591 // method type with the type of the call's arguments as parameters. 4592 env.info.pendingResolutionPhase = null; 4593 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4594 } else if (tree.sym != null && tree.sym.kind != VAR) { 4595 sym = tree.sym; 4596 } else { 4597 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4598 } 4599 tree.sym = sym; 4600 4601 // Also find the environment current for the class where 4602 // sym is defined (`symEnv'). 4603 Env<AttrContext> symEnv = env; 4604 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4605 sym.kind.matches(KindSelector.VAL_MTH) && 4606 sym.owner.kind == TYP && 4607 tree.name != names._this && tree.name != names._super) { 4608 4609 // Find environment in which identifier is defined. 4610 while (symEnv.outer != null && 4611 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4612 symEnv = symEnv.outer; 4613 } 4614 } 4615 4616 // If symbol is a variable, ... 4617 if (sym.kind == VAR) { 4618 VarSymbol v = (VarSymbol)sym; 4619 4620 // ..., evaluate its initializer, if it has one, and check for 4621 // illegal forward reference. 4622 checkInit(tree, env, v, false); 4623 4624 // If we are expecting a variable (as opposed to a value), check 4625 // that the variable is assignable in the current environment. 4626 if (KindSelector.ASG.subset(pkind())) 4627 checkAssignable(tree.pos(), v, null, env); 4628 } 4629 4630 Env<AttrContext> env1 = env; 4631 if (sym.kind != ERR && sym.kind != TYP && 4632 sym.owner != null && sym.owner != env1.enclClass.sym) { 4633 // If the found symbol is inaccessible, then it is 4634 // accessed through an enclosing instance. Locate this 4635 // enclosing instance: 4636 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4637 env1 = env1.outer; 4638 } 4639 4640 if (env.info.isSerializable) { 4641 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4642 } 4643 4644 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4645 } 4646 4647 public void visitSelect(JCFieldAccess tree) { 4648 // Determine the expected kind of the qualifier expression. 4649 KindSelector skind = KindSelector.NIL; 4650 if (tree.name == names._this || tree.name == names._super || 4651 tree.name == names._class) 4652 { 4653 skind = KindSelector.TYP; 4654 } else { 4655 if (pkind().contains(KindSelector.PCK)) 4656 skind = KindSelector.of(skind, KindSelector.PCK); 4657 if (pkind().contains(KindSelector.TYP)) 4658 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4659 if (pkind().contains(KindSelector.VAL_MTH)) 4660 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4661 } 4662 4663 // Attribute the qualifier expression, and determine its symbol (if any). 4664 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4665 Assert.check(site == tree.selected.type); 4666 if (!pkind().contains(KindSelector.TYP_PCK)) 4667 site = capture(site); // Capture field access 4668 4669 // don't allow T.class T[].class, etc 4670 if (skind == KindSelector.TYP) { 4671 Type elt = site; 4672 while (elt.hasTag(ARRAY)) 4673 elt = ((ArrayType)elt).elemtype; 4674 if (elt.hasTag(TYPEVAR)) { 4675 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4676 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4677 tree.sym = tree.type.tsym; 4678 return ; 4679 } 4680 } 4681 4682 // If qualifier symbol is a type or `super', assert `selectSuper' 4683 // for the selection. This is relevant for determining whether 4684 // protected symbols are accessible. 4685 Symbol sitesym = TreeInfo.symbol(tree.selected); 4686 boolean selectSuperPrev = env.info.selectSuper; 4687 env.info.selectSuper = 4688 sitesym != null && 4689 sitesym.name == names._super; 4690 4691 // Determine the symbol represented by the selection. 4692 env.info.pendingResolutionPhase = null; 4693 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4694 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4695 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4696 sym = syms.errSymbol; 4697 } 4698 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4699 site = capture(site); 4700 sym = selectSym(tree, sitesym, site, env, resultInfo); 4701 } 4702 boolean varArgs = env.info.lastResolveVarargs(); 4703 tree.sym = sym; 4704 4705 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4706 site = types.skipTypeVars(site, true); 4707 } 4708 4709 // If that symbol is a variable, ... 4710 if (sym.kind == VAR) { 4711 VarSymbol v = (VarSymbol)sym; 4712 4713 // ..., evaluate its initializer, if it has one, and check for 4714 // illegal forward reference. 4715 checkInit(tree, env, v, true); 4716 4717 // If we are expecting a variable (as opposed to a value), check 4718 // that the variable is assignable in the current environment. 4719 if (KindSelector.ASG.subset(pkind())) 4720 checkAssignable(tree.pos(), v, tree.selected, env); 4721 } 4722 4723 if (sitesym != null && 4724 sitesym.kind == VAR && 4725 ((VarSymbol)sitesym).isResourceVariable() && 4726 sym.kind == MTH && 4727 sym.name.equals(names.close) && 4728 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4729 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4730 } 4731 4732 // Disallow selecting a type from an expression 4733 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4734 tree.type = check(tree.selected, pt(), 4735 sitesym == null ? 4736 KindSelector.VAL : sitesym.kind.toSelector(), 4737 new ResultInfo(KindSelector.TYP_PCK, pt())); 4738 } 4739 4740 if (isType(sitesym)) { 4741 if (sym.name != names._this && sym.name != names._super) { 4742 // Check if type-qualified fields or methods are static (JLS) 4743 if ((sym.flags() & STATIC) == 0 && 4744 sym.name != names._super && 4745 (sym.kind == VAR || sym.kind == MTH)) { 4746 rs.accessBase(rs.new StaticError(sym), 4747 tree.pos(), site, sym.name, true); 4748 } 4749 } 4750 } else if (sym.kind != ERR && 4751 (sym.flags() & STATIC) != 0 && 4752 sym.name != names._class) { 4753 // If the qualified item is not a type and the selected item is static, report 4754 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4755 if (!sym.owner.isAnonymous()) { 4756 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4757 } else { 4758 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4759 } 4760 } 4761 4762 // If we are selecting an instance member via a `super', ... 4763 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4764 4765 // Check that super-qualified symbols are not abstract (JLS) 4766 rs.checkNonAbstract(tree.pos(), sym); 4767 4768 if (site.isRaw()) { 4769 // Determine argument types for site. 4770 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4771 if (site1 != null) site = site1; 4772 } 4773 } 4774 4775 if (env.info.isSerializable) { 4776 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4777 } 4778 4779 env.info.selectSuper = selectSuperPrev; 4780 result = checkId(tree, site, sym, env, resultInfo); 4781 } 4782 //where 4783 /** Determine symbol referenced by a Select expression, 4784 * 4785 * @param tree The select tree. 4786 * @param site The type of the selected expression, 4787 * @param env The current environment. 4788 * @param resultInfo The current result. 4789 */ 4790 private Symbol selectSym(JCFieldAccess tree, 4791 Symbol location, 4792 Type site, 4793 Env<AttrContext> env, 4794 ResultInfo resultInfo) { 4795 DiagnosticPosition pos = tree.pos(); 4796 Name name = tree.name; 4797 switch (site.getTag()) { 4798 case PACKAGE: 4799 return rs.accessBase( 4800 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4801 pos, location, site, name, true); 4802 case ARRAY: 4803 case CLASS: 4804 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4805 return rs.resolveQualifiedMethod( 4806 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4807 } else if (name == names._this || name == names._super) { 4808 return rs.resolveSelf(pos, env, site.tsym, tree); 4809 } else if (name == names._class) { 4810 // In this case, we have already made sure in 4811 // visitSelect that qualifier expression is a type. 4812 return syms.getClassField(site, types); 4813 } else { 4814 // We are seeing a plain identifier as selector. 4815 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4816 sym = rs.accessBase(sym, pos, location, site, name, true); 4817 return sym; 4818 } 4819 case WILDCARD: 4820 throw new AssertionError(tree); 4821 case TYPEVAR: 4822 // Normally, site.getUpperBound() shouldn't be null. 4823 // It should only happen during memberEnter/attribBase 4824 // when determining the supertype which *must* be 4825 // done before attributing the type variables. In 4826 // other words, we are seeing this illegal program: 4827 // class B<T> extends A<T.foo> {} 4828 Symbol sym = (site.getUpperBound() != null) 4829 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4830 : null; 4831 if (sym == null) { 4832 log.error(pos, Errors.TypeVarCantBeDeref); 4833 return syms.errSymbol; 4834 } else { 4835 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4836 rs.new AccessError(env, site, sym) : 4837 sym; 4838 rs.accessBase(sym2, pos, location, site, name, true); 4839 return sym; 4840 } 4841 case ERROR: 4842 // preserve identifier names through errors 4843 return types.createErrorType(name, site.tsym, site).tsym; 4844 default: 4845 // The qualifier expression is of a primitive type -- only 4846 // .class is allowed for these. 4847 if (name == names._class) { 4848 // In this case, we have already made sure in Select that 4849 // qualifier expression is a type. 4850 return syms.getClassField(site, types); 4851 } else { 4852 log.error(pos, Errors.CantDeref(site)); 4853 return syms.errSymbol; 4854 } 4855 } 4856 } 4857 4858 /** Determine type of identifier or select expression and check that 4859 * (1) the referenced symbol is not deprecated 4860 * (2) the symbol's type is safe (@see checkSafe) 4861 * (3) if symbol is a variable, check that its type and kind are 4862 * compatible with the prototype and protokind. 4863 * (4) if symbol is an instance field of a raw type, 4864 * which is being assigned to, issue an unchecked warning if its 4865 * type changes under erasure. 4866 * (5) if symbol is an instance method of a raw type, issue an 4867 * unchecked warning if its argument types change under erasure. 4868 * If checks succeed: 4869 * If symbol is a constant, return its constant type 4870 * else if symbol is a method, return its result type 4871 * otherwise return its type. 4872 * Otherwise return errType. 4873 * 4874 * @param tree The syntax tree representing the identifier 4875 * @param site If this is a select, the type of the selected 4876 * expression, otherwise the type of the current class. 4877 * @param sym The symbol representing the identifier. 4878 * @param env The current environment. 4879 * @param resultInfo The expected result 4880 */ 4881 Type checkId(JCTree tree, 4882 Type site, 4883 Symbol sym, 4884 Env<AttrContext> env, 4885 ResultInfo resultInfo) { 4886 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4887 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4888 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4889 } 4890 4891 Type checkMethodIdInternal(JCTree tree, 4892 Type site, 4893 Symbol sym, 4894 Env<AttrContext> env, 4895 ResultInfo resultInfo) { 4896 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4897 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4898 } else { 4899 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4900 } 4901 } 4902 4903 Type checkIdInternal(JCTree tree, 4904 Type site, 4905 Symbol sym, 4906 Type pt, 4907 Env<AttrContext> env, 4908 ResultInfo resultInfo) { 4909 Type owntype; // The computed type of this identifier occurrence. 4910 switch (sym.kind) { 4911 case TYP: 4912 // For types, the computed type equals the symbol's type, 4913 // except for two situations: 4914 owntype = sym.type; 4915 if (owntype.hasTag(CLASS)) { 4916 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4917 Type ownOuter = owntype.getEnclosingType(); 4918 4919 // (a) If the symbol's type is parameterized, erase it 4920 // because no type parameters were given. 4921 // We recover generic outer type later in visitTypeApply. 4922 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4923 owntype = types.erasure(owntype); 4924 } 4925 4926 // (b) If the symbol's type is an inner class, then 4927 // we have to interpret its outer type as a superclass 4928 // of the site type. Example: 4929 // 4930 // class Tree<A> { class Visitor { ... } } 4931 // class PointTree extends Tree<Point> { ... } 4932 // ...PointTree.Visitor... 4933 // 4934 // Then the type of the last expression above is 4935 // Tree<Point>.Visitor. 4936 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4937 Type normOuter = site; 4938 if (normOuter.hasTag(CLASS)) { 4939 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4940 } 4941 if (normOuter == null) // perhaps from an import 4942 normOuter = types.erasure(ownOuter); 4943 if (normOuter != ownOuter) 4944 owntype = new ClassType( 4945 normOuter, List.nil(), owntype.tsym, 4946 owntype.getMetadata()); 4947 } 4948 } 4949 break; 4950 case VAR: 4951 VarSymbol v = (VarSymbol)sym; 4952 4953 if (env.info.enclVar != null 4954 && v.type.hasTag(NONE)) { 4955 //self reference to implicitly typed variable declaration 4956 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4957 return tree.type = v.type = types.createErrorType(v.type); 4958 } 4959 4960 // Test (4): if symbol is an instance field of a raw type, 4961 // which is being assigned to, issue an unchecked warning if 4962 // its type changes under erasure. 4963 if (KindSelector.ASG.subset(pkind()) && 4964 v.owner.kind == TYP && 4965 (v.flags() & STATIC) == 0 && 4966 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4967 Type s = types.asOuterSuper(site, v.owner); 4968 if (s != null && 4969 s.isRaw() && 4970 !types.isSameType(v.type, v.erasure(types))) { 4971 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4972 } 4973 } 4974 // The computed type of a variable is the type of the 4975 // variable symbol, taken as a member of the site type. 4976 owntype = (sym.owner.kind == TYP && 4977 sym.name != names._this && sym.name != names._super) 4978 ? types.memberType(site, sym) 4979 : sym.type; 4980 4981 // If the variable is a constant, record constant value in 4982 // computed type. 4983 if (v.getConstValue() != null && isStaticReference(tree)) 4984 owntype = owntype.constType(v.getConstValue()); 4985 4986 if (resultInfo.pkind == KindSelector.VAL) { 4987 owntype = capture(owntype); // capture "names as expressions" 4988 } 4989 break; 4990 case MTH: { 4991 owntype = checkMethod(site, sym, 4992 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4993 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4994 resultInfo.pt.getTypeArguments()); 4995 chk.checkRestricted(tree.pos(), sym); 4996 break; 4997 } 4998 case PCK: case ERR: 4999 owntype = sym.type; 5000 break; 5001 default: 5002 throw new AssertionError("unexpected kind: " + sym.kind + 5003 " in tree " + tree); 5004 } 5005 5006 // Emit a `deprecation' warning if symbol is deprecated. 5007 // (for constructors (but not for constructor references), the error 5008 // was given when the constructor was resolved) 5009 5010 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 5011 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 5012 chk.checkSunAPI(tree.pos(), sym); 5013 chk.checkProfile(tree.pos(), sym); 5014 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 5015 } 5016 5017 if (pt.isErroneous()) { 5018 owntype = types.createErrorType(owntype); 5019 } 5020 5021 // If symbol is a variable, check that its type and 5022 // kind are compatible with the prototype and protokind. 5023 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 5024 } 5025 5026 /** Check that variable is initialized and evaluate the variable's 5027 * initializer, if not yet done. Also check that variable is not 5028 * referenced before it is defined. 5029 * @param tree The tree making up the variable reference. 5030 * @param env The current environment. 5031 * @param v The variable's symbol. 5032 */ 5033 private void checkInit(JCTree tree, 5034 Env<AttrContext> env, 5035 VarSymbol v, 5036 boolean onlyWarning) { 5037 // A forward reference is diagnosed if the declaration position 5038 // of the variable is greater than the current tree position 5039 // and the tree and variable definition occur in the same class 5040 // definition. Note that writes don't count as references. 5041 // This check applies only to class and instance 5042 // variables. Local variables follow different scope rules, 5043 // and are subject to definite assignment checking. 5044 Env<AttrContext> initEnv = enclosingInitEnv(env); 5045 if (initEnv != null && 5046 (initEnv.info.enclVar == v || v.pos > tree.pos) && 5047 v.owner.kind == TYP && 5048 v.owner == env.info.scope.owner.enclClass() && 5049 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 5050 (!env.tree.hasTag(ASSIGN) || 5051 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 5052 if (!onlyWarning || isStaticEnumField(v)) { 5053 Error errkey = (initEnv.info.enclVar == v) ? 5054 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 5055 log.error(tree.pos(), errkey); 5056 } else if (useBeforeDeclarationWarning) { 5057 Warning warnkey = (initEnv.info.enclVar == v) ? 5058 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 5059 log.warning(tree.pos(), warnkey); 5060 } 5061 } 5062 5063 v.getConstValue(); // ensure initializer is evaluated 5064 5065 checkEnumInitializer(tree, env, v); 5066 } 5067 5068 /** 5069 * Returns the enclosing init environment associated with this env (if any). An init env 5070 * can be either a field declaration env or a static/instance initializer env. 5071 */ 5072 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 5073 while (true) { 5074 switch (env.tree.getTag()) { 5075 case VARDEF: 5076 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 5077 if (vdecl.sym.owner.kind == TYP) { 5078 //field 5079 return env; 5080 } 5081 break; 5082 case BLOCK: 5083 if (env.next.tree.hasTag(CLASSDEF)) { 5084 //instance/static initializer 5085 return env; 5086 } 5087 break; 5088 case METHODDEF: 5089 case CLASSDEF: 5090 case TOPLEVEL: 5091 return null; 5092 } 5093 Assert.checkNonNull(env.next); 5094 env = env.next; 5095 } 5096 } 5097 5098 /** 5099 * Check for illegal references to static members of enum. In 5100 * an enum type, constructors and initializers may not 5101 * reference its static members unless they are constant. 5102 * 5103 * @param tree The tree making up the variable reference. 5104 * @param env The current environment. 5105 * @param v The variable's symbol. 5106 * @jls 8.9 Enum Types 5107 */ 5108 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 5109 // JLS: 5110 // 5111 // "It is a compile-time error to reference a static field 5112 // of an enum type that is not a compile-time constant 5113 // (15.28) from constructors, instance initializer blocks, 5114 // or instance variable initializer expressions of that 5115 // type. It is a compile-time error for the constructors, 5116 // instance initializer blocks, or instance variable 5117 // initializer expressions of an enum constant e to refer 5118 // to itself or to an enum constant of the same type that 5119 // is declared to the right of e." 5120 if (isStaticEnumField(v)) { 5121 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 5122 5123 if (enclClass == null || enclClass.owner == null) 5124 return; 5125 5126 // See if the enclosing class is the enum (or a 5127 // subclass thereof) declaring v. If not, this 5128 // reference is OK. 5129 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 5130 return; 5131 5132 // If the reference isn't from an initializer, then 5133 // the reference is OK. 5134 if (!Resolve.isInitializer(env)) 5135 return; 5136 5137 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 5138 } 5139 } 5140 5141 /** Is the given symbol a static, non-constant field of an Enum? 5142 * Note: enum literals should not be regarded as such 5143 */ 5144 private boolean isStaticEnumField(VarSymbol v) { 5145 return Flags.isEnum(v.owner) && 5146 Flags.isStatic(v) && 5147 !Flags.isConstant(v) && 5148 v.name != names._class; 5149 } 5150 5151 /** 5152 * Check that method arguments conform to its instantiation. 5153 **/ 5154 public Type checkMethod(Type site, 5155 final Symbol sym, 5156 ResultInfo resultInfo, 5157 Env<AttrContext> env, 5158 final List<JCExpression> argtrees, 5159 List<Type> argtypes, 5160 List<Type> typeargtypes) { 5161 // Test (5): if symbol is an instance method of a raw type, issue 5162 // an unchecked warning if its argument types change under erasure. 5163 if ((sym.flags() & STATIC) == 0 && 5164 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 5165 Type s = types.asOuterSuper(site, sym.owner); 5166 if (s != null && s.isRaw() && 5167 !types.isSameTypes(sym.type.getParameterTypes(), 5168 sym.erasure(types).getParameterTypes())) { 5169 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 5170 } 5171 } 5172 5173 if (env.info.defaultSuperCallSite != null) { 5174 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 5175 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 5176 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 5177 List<MethodSymbol> icand_sup = 5178 types.interfaceCandidates(sup, (MethodSymbol)sym); 5179 if (icand_sup.nonEmpty() && 5180 icand_sup.head != sym && 5181 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 5182 log.error(env.tree.pos(), 5183 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 5184 break; 5185 } 5186 } 5187 env.info.defaultSuperCallSite = null; 5188 } 5189 5190 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 5191 JCMethodInvocation app = (JCMethodInvocation)env.tree; 5192 if (app.meth.hasTag(SELECT) && 5193 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 5194 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 5195 } 5196 } 5197 5198 // Compute the identifier's instantiated type. 5199 // For methods, we need to compute the instance type by 5200 // Resolve.instantiate from the symbol's type as well as 5201 // any type arguments and value arguments. 5202 Warner noteWarner = new Warner(); 5203 try { 5204 Type owntype = rs.checkMethod( 5205 env, 5206 site, 5207 sym, 5208 resultInfo, 5209 argtypes, 5210 typeargtypes, 5211 noteWarner); 5212 5213 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 5214 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 5215 5216 argtypes = argtypes.map(checkDeferredMap); 5217 5218 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 5219 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 5220 sym.name, 5221 rs.methodArguments(sym.type.getParameterTypes()), 5222 rs.methodArguments(argtypes.map(checkDeferredMap)), 5223 kindName(sym.location()), 5224 sym.location())); 5225 if (resultInfo.pt != Infer.anyPoly || 5226 !owntype.hasTag(METHOD) || 5227 !owntype.isPartial()) { 5228 //if this is not a partially inferred method type, erase return type. Otherwise, 5229 //erasure is carried out in PartiallyInferredMethodType.check(). 5230 owntype = new MethodType(owntype.getParameterTypes(), 5231 types.erasure(owntype.getReturnType()), 5232 types.erasure(owntype.getThrownTypes()), 5233 syms.methodClass); 5234 } 5235 } 5236 5237 PolyKind pkind = (sym.type.hasTag(FORALL) && 5238 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 5239 PolyKind.POLY : PolyKind.STANDALONE; 5240 TreeInfo.setPolyKind(env.tree, pkind); 5241 5242 return (resultInfo.pt == Infer.anyPoly) ? 5243 owntype : 5244 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 5245 resultInfo.checkContext.inferenceContext()); 5246 } catch (Infer.InferenceException ex) { 5247 //invalid target type - propagate exception outwards or report error 5248 //depending on the current check context 5249 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 5250 return types.createErrorType(site); 5251 } catch (Resolve.InapplicableMethodException ex) { 5252 final JCDiagnostic diag = ex.getDiagnostic(); 5253 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 5254 @Override 5255 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5256 return new Pair<>(sym, diag); 5257 } 5258 }; 5259 List<Type> argtypes2 = argtypes.map( 5260 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5261 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5262 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5263 log.report(errDiag); 5264 return types.createErrorType(site); 5265 } 5266 } 5267 5268 public void visitLiteral(JCLiteral tree) { 5269 result = check(tree, litType(tree.typetag).constType(tree.value), 5270 KindSelector.VAL, resultInfo); 5271 } 5272 //where 5273 /** Return the type of a literal with given type tag. 5274 */ 5275 Type litType(TypeTag tag) { 5276 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5277 } 5278 5279 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5280 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5281 } 5282 5283 public void visitTypeArray(JCArrayTypeTree tree) { 5284 Type etype = attribType(tree.elemtype, env); 5285 Type type = new ArrayType(etype, syms.arrayClass); 5286 result = check(tree, type, KindSelector.TYP, resultInfo); 5287 } 5288 5289 /** Visitor method for parameterized types. 5290 * Bound checking is left until later, since types are attributed 5291 * before supertype structure is completely known 5292 */ 5293 public void visitTypeApply(JCTypeApply tree) { 5294 Type owntype = types.createErrorType(tree.type); 5295 5296 // Attribute functor part of application and make sure it's a class. 5297 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5298 5299 // Attribute type parameters 5300 List<Type> actuals = attribTypes(tree.arguments, env); 5301 5302 if (clazztype.hasTag(CLASS)) { 5303 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5304 if (actuals.isEmpty()) //diamond 5305 actuals = formals; 5306 5307 if (actuals.length() == formals.length()) { 5308 List<Type> a = actuals; 5309 List<Type> f = formals; 5310 while (a.nonEmpty()) { 5311 a.head = a.head.withTypeVar(f.head); 5312 a = a.tail; 5313 f = f.tail; 5314 } 5315 // Compute the proper generic outer 5316 Type clazzOuter = clazztype.getEnclosingType(); 5317 if (clazzOuter.hasTag(CLASS)) { 5318 Type site; 5319 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5320 if (clazz.hasTag(IDENT)) { 5321 site = env.enclClass.sym.type; 5322 } else if (clazz.hasTag(SELECT)) { 5323 site = ((JCFieldAccess) clazz).selected.type; 5324 } else throw new AssertionError(""+tree); 5325 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5326 if (site.hasTag(CLASS)) 5327 site = types.asOuterSuper(site, clazzOuter.tsym); 5328 if (site == null) 5329 site = types.erasure(clazzOuter); 5330 clazzOuter = site; 5331 } 5332 } 5333 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5334 clazztype.getMetadata()); 5335 } else { 5336 if (formals.length() != 0) { 5337 log.error(tree.pos(), 5338 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5339 } else { 5340 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5341 } 5342 owntype = types.createErrorType(tree.type); 5343 } 5344 } else if (clazztype.hasTag(ERROR)) { 5345 ErrorType parameterizedErroneous = 5346 new ErrorType(clazztype.getOriginalType(), 5347 clazztype.tsym, 5348 clazztype.getMetadata()); 5349 5350 parameterizedErroneous.typarams_field = actuals; 5351 owntype = parameterizedErroneous; 5352 } 5353 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5354 } 5355 5356 public void visitTypeUnion(JCTypeUnion tree) { 5357 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5358 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5359 for (JCExpression typeTree : tree.alternatives) { 5360 Type ctype = attribType(typeTree, env); 5361 ctype = chk.checkType(typeTree.pos(), 5362 chk.checkClassType(typeTree.pos(), ctype), 5363 syms.throwableType); 5364 if (!ctype.isErroneous()) { 5365 //check that alternatives of a union type are pairwise 5366 //unrelated w.r.t. subtyping 5367 if (chk.intersects(ctype, multicatchTypes.toList())) { 5368 for (Type t : multicatchTypes) { 5369 boolean sub = types.isSubtype(ctype, t); 5370 boolean sup = types.isSubtype(t, ctype); 5371 if (sub || sup) { 5372 //assume 'a' <: 'b' 5373 Type a = sub ? ctype : t; 5374 Type b = sub ? t : ctype; 5375 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5376 } 5377 } 5378 } 5379 multicatchTypes.append(ctype); 5380 if (all_multicatchTypes != null) 5381 all_multicatchTypes.append(ctype); 5382 } else { 5383 if (all_multicatchTypes == null) { 5384 all_multicatchTypes = new ListBuffer<>(); 5385 all_multicatchTypes.appendList(multicatchTypes); 5386 } 5387 all_multicatchTypes.append(ctype); 5388 } 5389 } 5390 Type t = check(tree, types.lub(multicatchTypes.toList()), 5391 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5392 if (t.hasTag(CLASS)) { 5393 List<Type> alternatives = 5394 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5395 t = new UnionClassType((ClassType) t, alternatives); 5396 } 5397 tree.type = result = t; 5398 } 5399 5400 public void visitTypeIntersection(JCTypeIntersection tree) { 5401 attribTypes(tree.bounds, env); 5402 tree.type = result = checkIntersection(tree, tree.bounds); 5403 } 5404 5405 public void visitTypeParameter(JCTypeParameter tree) { 5406 TypeVar typeVar = (TypeVar) tree.type; 5407 5408 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5409 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5410 } 5411 5412 if (!typeVar.getUpperBound().isErroneous()) { 5413 //fixup type-parameter bound computed in 'attribTypeVariables' 5414 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5415 } 5416 } 5417 5418 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5419 Set<Symbol> boundSet = new HashSet<>(); 5420 if (bounds.nonEmpty()) { 5421 // accept class or interface or typevar as first bound. 5422 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5423 boundSet.add(types.erasure(bounds.head.type).tsym); 5424 if (bounds.head.type.isErroneous()) { 5425 return bounds.head.type; 5426 } 5427 else if (bounds.head.type.hasTag(TYPEVAR)) { 5428 // if first bound was a typevar, do not accept further bounds. 5429 if (bounds.tail.nonEmpty()) { 5430 log.error(bounds.tail.head.pos(), 5431 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5432 return bounds.head.type; 5433 } 5434 } else { 5435 // if first bound was a class or interface, accept only interfaces 5436 // as further bounds. 5437 for (JCExpression bound : bounds.tail) { 5438 bound.type = checkBase(bound.type, bound, env, false, true, false); 5439 if (bound.type.isErroneous()) { 5440 bounds = List.of(bound); 5441 } 5442 else if (bound.type.hasTag(CLASS)) { 5443 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5444 } 5445 } 5446 } 5447 } 5448 5449 if (bounds.length() == 0) { 5450 return syms.objectType; 5451 } else if (bounds.length() == 1) { 5452 return bounds.head.type; 5453 } else { 5454 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5455 // ... the variable's bound is a class type flagged COMPOUND 5456 // (see comment for TypeVar.bound). 5457 // In this case, generate a class tree that represents the 5458 // bound class, ... 5459 JCExpression extending; 5460 List<JCExpression> implementing; 5461 if (!bounds.head.type.isInterface()) { 5462 extending = bounds.head; 5463 implementing = bounds.tail; 5464 } else { 5465 extending = null; 5466 implementing = bounds; 5467 } 5468 JCClassDecl cd = make.at(tree).ClassDef( 5469 make.Modifiers(PUBLIC | ABSTRACT), 5470 names.empty, List.nil(), 5471 extending, implementing, List.nil()); 5472 5473 ClassSymbol c = (ClassSymbol)owntype.tsym; 5474 Assert.check((c.flags() & COMPOUND) != 0); 5475 cd.sym = c; 5476 c.sourcefile = env.toplevel.sourcefile; 5477 5478 // ... and attribute the bound class 5479 c.flags_field |= UNATTRIBUTED; 5480 Env<AttrContext> cenv = enter.classEnv(cd, env); 5481 typeEnvs.put(c, cenv); 5482 attribClass(c); 5483 return owntype; 5484 } 5485 } 5486 5487 public void visitWildcard(JCWildcard tree) { 5488 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5489 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5490 ? syms.objectType 5491 : attribType(tree.inner, env); 5492 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5493 tree.kind.kind, 5494 syms.boundClass), 5495 KindSelector.TYP, resultInfo); 5496 } 5497 5498 public void visitAnnotation(JCAnnotation tree) { 5499 Assert.error("should be handled in annotate"); 5500 } 5501 5502 @Override 5503 public void visitModifiers(JCModifiers tree) { 5504 //error recovery only: 5505 Assert.check(resultInfo.pkind == KindSelector.ERR); 5506 5507 attribAnnotationTypes(tree.annotations, env); 5508 } 5509 5510 public void visitAnnotatedType(JCAnnotatedType tree) { 5511 attribAnnotationTypes(tree.annotations, env); 5512 Type underlyingType = attribType(tree.underlyingType, env); 5513 Type annotatedType = underlyingType.preannotatedType(); 5514 5515 if (!env.info.isAnonymousNewClass) 5516 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5517 result = tree.type = annotatedType; 5518 } 5519 5520 public void visitErroneous(JCErroneous tree) { 5521 if (tree.errs != null) { 5522 WriteableScope newScope = env.info.scope; 5523 5524 if (env.tree instanceof JCClassDecl) { 5525 Symbol fakeOwner = 5526 new MethodSymbol(BLOCK, names.empty, null, 5527 env.info.scope.owner); 5528 newScope = newScope.dupUnshared(fakeOwner); 5529 } 5530 5531 Env<AttrContext> errEnv = 5532 env.dup(env.tree, 5533 env.info.dup(newScope)); 5534 errEnv.info.returnResult = unknownExprInfo; 5535 for (JCTree err : tree.errs) 5536 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5537 } 5538 result = tree.type = syms.errType; 5539 } 5540 5541 /** Default visitor method for all other trees. 5542 */ 5543 public void visitTree(JCTree tree) { 5544 throw new AssertionError(); 5545 } 5546 5547 /** 5548 * Attribute an env for either a top level tree or class or module declaration. 5549 */ 5550 public void attrib(Env<AttrContext> env) { 5551 switch (env.tree.getTag()) { 5552 case MODULEDEF: 5553 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5554 break; 5555 case PACKAGEDEF: 5556 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5557 break; 5558 default: 5559 attribClass(env.tree.pos(), env.enclClass.sym); 5560 } 5561 5562 annotate.flush(); 5563 } 5564 5565 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5566 try { 5567 annotate.flush(); 5568 attribPackage(p); 5569 } catch (CompletionFailure ex) { 5570 chk.completionError(pos, ex); 5571 } 5572 } 5573 5574 void attribPackage(PackageSymbol p) { 5575 attribWithLint(p, 5576 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5577 } 5578 5579 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5580 try { 5581 annotate.flush(); 5582 attribModule(m); 5583 } catch (CompletionFailure ex) { 5584 chk.completionError(pos, ex); 5585 } 5586 } 5587 5588 void attribModule(ModuleSymbol m) { 5589 attribWithLint(m, env -> attribStat(env.tree, env)); 5590 } 5591 5592 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5593 Env<AttrContext> env = typeEnvs.get(sym); 5594 5595 Env<AttrContext> lintEnv = env; 5596 while (lintEnv.info.lint == null) 5597 lintEnv = lintEnv.next; 5598 5599 Lint lint = lintEnv.info.lint.augment(sym); 5600 5601 Lint prevLint = chk.setLint(lint); 5602 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5603 5604 try { 5605 deferredLintHandler.flush(env.tree, lint); 5606 attrib.accept(env); 5607 } finally { 5608 log.useSource(prev); 5609 chk.setLint(prevLint); 5610 } 5611 } 5612 5613 /** Main method: attribute class definition associated with given class symbol. 5614 * reporting completion failures at the given position. 5615 * @param pos The source position at which completion errors are to be 5616 * reported. 5617 * @param c The class symbol whose definition will be attributed. 5618 */ 5619 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5620 try { 5621 annotate.flush(); 5622 attribClass(c); 5623 } catch (CompletionFailure ex) { 5624 chk.completionError(pos, ex); 5625 } 5626 } 5627 5628 /** Attribute class definition associated with given class symbol. 5629 * @param c The class symbol whose definition will be attributed. 5630 */ 5631 void attribClass(ClassSymbol c) throws CompletionFailure { 5632 if (c.type.hasTag(ERROR)) return; 5633 5634 // Check for cycles in the inheritance graph, which can arise from 5635 // ill-formed class files. 5636 chk.checkNonCyclic(null, c.type); 5637 5638 Type st = types.supertype(c.type); 5639 if ((c.flags_field & Flags.COMPOUND) == 0 && 5640 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5641 // First, attribute superclass. 5642 if (st.hasTag(CLASS)) 5643 attribClass((ClassSymbol)st.tsym); 5644 5645 // Next attribute owner, if it is a class. 5646 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5647 attribClass((ClassSymbol)c.owner); 5648 5649 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5650 } 5651 5652 // The previous operations might have attributed the current class 5653 // if there was a cycle. So we test first whether the class is still 5654 // UNATTRIBUTED. 5655 if ((c.flags_field & UNATTRIBUTED) != 0) { 5656 c.flags_field &= ~UNATTRIBUTED; 5657 5658 // Get environment current at the point of class definition. 5659 Env<AttrContext> env = typeEnvs.get(c); 5660 5661 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5662 // because the annotations were not available at the time the env was created. Therefore, 5663 // we look up the environment chain for the first enclosing environment for which the 5664 // lint value is set. Typically, this is the parent env, but might be further if there 5665 // are any envs created as a result of TypeParameter nodes. 5666 Env<AttrContext> lintEnv = env; 5667 while (lintEnv.info.lint == null) 5668 lintEnv = lintEnv.next; 5669 5670 // Having found the enclosing lint value, we can initialize the lint value for this class 5671 env.info.lint = lintEnv.info.lint.augment(c); 5672 5673 Lint prevLint = chk.setLint(env.info.lint); 5674 JavaFileObject prev = log.useSource(c.sourcefile); 5675 ResultInfo prevReturnRes = env.info.returnResult; 5676 5677 try { 5678 if (c.isSealed() && 5679 !c.isEnum() && 5680 !c.isPermittedExplicit && 5681 c.getPermittedSubclasses().isEmpty()) { 5682 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5683 } 5684 5685 if (c.isSealed()) { 5686 Set<Symbol> permittedTypes = new HashSet<>(); 5687 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5688 for (Type subType : c.getPermittedSubclasses()) { 5689 if (subType.isErroneous()) { 5690 // the type already caused errors, don't produce more potentially misleading errors 5691 continue; 5692 } 5693 boolean isTypeVar = false; 5694 if (subType.getTag() == TYPEVAR) { 5695 isTypeVar = true; //error recovery 5696 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5697 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5698 } 5699 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5700 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5701 } 5702 if (permittedTypes.contains(subType.tsym)) { 5703 DiagnosticPosition pos = 5704 env.enclClass.permitting.stream() 5705 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5706 .limit(2).collect(List.collector()).get(1); 5707 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5708 } else { 5709 permittedTypes.add(subType.tsym); 5710 } 5711 if (sealedInUnnamed) { 5712 if (subType.tsym.packge() != c.packge()) { 5713 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5714 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5715 ); 5716 } 5717 } else if (subType.tsym.packge().modle != c.packge().modle) { 5718 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5719 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5720 ); 5721 } 5722 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5723 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5724 Errors.InvalidPermitsClause( 5725 subType.tsym == c.type.tsym ? 5726 Fragments.MustNotBeSameClass : 5727 Fragments.MustNotBeSupertype(subType) 5728 ) 5729 ); 5730 } else if (!isTypeVar) { 5731 boolean thisIsASuper = types.directSupertypes(subType) 5732 .stream() 5733 .anyMatch(d -> d.tsym == c); 5734 if (!thisIsASuper) { 5735 if(c.isInterface()) { 5736 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5737 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType))); 5738 } else { 5739 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5740 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5741 } 5742 } 5743 } 5744 } 5745 } 5746 5747 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5748 .stream() 5749 .filter(s -> s.tsym.isSealed()) 5750 .map(s -> (ClassSymbol) s.tsym) 5751 .collect(List.collector()); 5752 5753 if (sealedSupers.isEmpty()) { 5754 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5755 boolean hasErrorSuper = false; 5756 5757 hasErrorSuper |= types.directSupertypes(c.type) 5758 .stream() 5759 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5760 5761 ClassType ct = (ClassType) c.type; 5762 5763 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5764 5765 if (!hasErrorSuper) { 5766 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5767 } 5768 } 5769 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5770 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5771 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5772 } 5773 5774 if (!c.type.isCompound()) { 5775 for (ClassSymbol supertypeSym : sealedSupers) { 5776 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5777 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5778 } 5779 } 5780 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5781 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5782 c.isInterface() ? 5783 Errors.NonSealedOrSealedExpected : 5784 Errors.NonSealedSealedOrFinalExpected); 5785 } 5786 } 5787 } 5788 5789 deferredLintHandler.flush(env.tree, env.info.lint); 5790 env.info.returnResult = null; 5791 // java.lang.Enum may not be subclassed by a non-enum 5792 if (st.tsym == syms.enumSym && 5793 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5794 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5795 5796 // Enums may not be extended by source-level classes 5797 if (st.tsym != null && 5798 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5799 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5800 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5801 } 5802 5803 if (rs.isSerializable(c.type)) { 5804 env.info.isSerializable = true; 5805 } 5806 5807 if (c.isValueClass()) { 5808 Assert.check(env.tree.hasTag(CLASSDEF)); 5809 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c); 5810 } 5811 5812 attribClassBody(env, c); 5813 5814 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5815 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5816 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5817 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5818 5819 if (c.isImplicit()) { 5820 chk.checkHasMain(env.tree.pos(), c); 5821 } 5822 } finally { 5823 env.info.returnResult = prevReturnRes; 5824 log.useSource(prev); 5825 chk.setLint(prevLint); 5826 } 5827 5828 } 5829 } 5830 5831 public void visitImport(JCImport tree) { 5832 // nothing to do 5833 } 5834 5835 public void visitModuleDef(JCModuleDecl tree) { 5836 tree.sym.completeUsesProvides(); 5837 ModuleSymbol msym = tree.sym; 5838 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5839 Lint prevLint = chk.setLint(lint); 5840 chk.checkModuleName(tree); 5841 chk.checkDeprecatedAnnotation(tree, msym); 5842 5843 try { 5844 deferredLintHandler.flush(tree, lint); 5845 } finally { 5846 chk.setLint(prevLint); 5847 } 5848 } 5849 5850 /** Finish the attribution of a class. */ 5851 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5852 JCClassDecl tree = (JCClassDecl)env.tree; 5853 Assert.check(c == tree.sym); 5854 5855 // Validate type parameters, supertype and interfaces. 5856 attribStats(tree.typarams, env); 5857 if (!c.isAnonymous()) { 5858 //already checked if anonymous 5859 chk.validate(tree.typarams, env); 5860 chk.validate(tree.extending, env); 5861 chk.validate(tree.implementing, env); 5862 } 5863 5864 chk.checkRequiresIdentity(tree, env.info.lint); 5865 5866 c.markAbstractIfNeeded(types); 5867 5868 // If this is a non-abstract class, check that it has no abstract 5869 // methods or unimplemented methods of an implemented interface. 5870 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5871 chk.checkAllDefined(tree.pos(), c); 5872 } 5873 5874 if ((c.flags() & ANNOTATION) != 0) { 5875 if (tree.implementing.nonEmpty()) 5876 log.error(tree.implementing.head.pos(), 5877 Errors.CantExtendIntfAnnotation); 5878 if (tree.typarams.nonEmpty()) { 5879 log.error(tree.typarams.head.pos(), 5880 Errors.IntfAnnotationCantHaveTypeParams(c)); 5881 } 5882 5883 // If this annotation type has a @Repeatable, validate 5884 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5885 // If this annotation type has a @Repeatable, validate 5886 if (repeatable != null) { 5887 // get diagnostic position for error reporting 5888 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5889 Assert.checkNonNull(cbPos); 5890 5891 chk.validateRepeatable(c, repeatable, cbPos); 5892 } 5893 } else { 5894 // Check that all extended classes and interfaces 5895 // are compatible (i.e. no two define methods with same arguments 5896 // yet different return types). (JLS 8.4.8.3) 5897 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5898 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5899 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5900 } 5901 5902 // Check that class does not import the same parameterized interface 5903 // with two different argument lists. 5904 chk.checkClassBounds(tree.pos(), c.type); 5905 5906 tree.type = c.type; 5907 5908 for (List<JCTypeParameter> l = tree.typarams; 5909 l.nonEmpty(); l = l.tail) { 5910 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5911 } 5912 5913 // Check that a generic class doesn't extend Throwable 5914 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5915 log.error(tree.extending.pos(), Errors.GenericThrowable); 5916 5917 // Check that all methods which implement some 5918 // method conform to the method they implement. 5919 chk.checkImplementations(tree); 5920 5921 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5922 checkAutoCloseable(tree.pos(), env, c.type); 5923 5924 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5925 // Attribute declaration 5926 attribStat(l.head, env); 5927 // Check that declarations in inner classes are not static (JLS 8.1.2) 5928 // Make an exception for static constants. 5929 if (!allowRecords && 5930 c.owner.kind != PCK && 5931 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5932 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5933 VarSymbol sym = null; 5934 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5935 if (sym == null || 5936 sym.kind != VAR || 5937 sym.getConstValue() == null) 5938 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5939 } 5940 } 5941 5942 // Check for proper placement of super()/this() calls. 5943 chk.checkSuperInitCalls(tree); 5944 5945 // Check for cycles among non-initial constructors. 5946 chk.checkCyclicConstructors(tree); 5947 5948 // Check for cycles among annotation elements. 5949 chk.checkNonCyclicElements(tree); 5950 5951 // Check for proper use of serialVersionUID and other 5952 // serialization-related fields and methods 5953 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5954 && rs.isSerializable(c.type) 5955 && !c.isAnonymous()) { 5956 chk.checkSerialStructure(env, tree, c); 5957 } 5958 // Correctly organize the positions of the type annotations 5959 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5960 5961 // Check type annotations applicability rules 5962 validateTypeAnnotations(tree, false); 5963 } 5964 // where 5965 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5966 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5967 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5968 if (types.isSameType(al.head.annotationType.type, t)) 5969 return al.head.pos(); 5970 } 5971 5972 return null; 5973 } 5974 5975 private Type capture(Type type) { 5976 return types.capture(type); 5977 } 5978 5979 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5980 if (type.isErroneous()) { 5981 tree.vartype = make.at(tree.pos()).Erroneous(); 5982 } else { 5983 tree.vartype = make.at(tree.pos()).Type(type); 5984 } 5985 } 5986 5987 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5988 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5989 } 5990 //where 5991 private final class TypeAnnotationsValidator extends TreeScanner { 5992 5993 private final boolean sigOnly; 5994 public TypeAnnotationsValidator(boolean sigOnly) { 5995 this.sigOnly = sigOnly; 5996 } 5997 5998 public void visitAnnotation(JCAnnotation tree) { 5999 chk.validateTypeAnnotation(tree, null, false); 6000 super.visitAnnotation(tree); 6001 } 6002 public void visitAnnotatedType(JCAnnotatedType tree) { 6003 if (!tree.underlyingType.type.isErroneous()) { 6004 super.visitAnnotatedType(tree); 6005 } 6006 } 6007 public void visitTypeParameter(JCTypeParameter tree) { 6008 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 6009 scan(tree.bounds); 6010 // Don't call super. 6011 // This is needed because above we call validateTypeAnnotation with 6012 // false, which would forbid annotations on type parameters. 6013 // super.visitTypeParameter(tree); 6014 } 6015 public void visitMethodDef(JCMethodDecl tree) { 6016 if (tree.recvparam != null && 6017 !tree.recvparam.vartype.type.isErroneous()) { 6018 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 6019 } 6020 if (tree.restype != null && tree.restype.type != null) { 6021 validateAnnotatedType(tree.restype, tree.restype.type); 6022 } 6023 if (sigOnly) { 6024 scan(tree.mods); 6025 scan(tree.restype); 6026 scan(tree.typarams); 6027 scan(tree.recvparam); 6028 scan(tree.params); 6029 scan(tree.thrown); 6030 } else { 6031 scan(tree.defaultValue); 6032 scan(tree.body); 6033 } 6034 } 6035 public void visitVarDef(final JCVariableDecl tree) { 6036 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 6037 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 6038 validateAnnotatedType(tree.vartype, tree.sym.type); 6039 scan(tree.mods); 6040 scan(tree.vartype); 6041 if (!sigOnly) { 6042 scan(tree.init); 6043 } 6044 } 6045 public void visitTypeCast(JCTypeCast tree) { 6046 if (tree.clazz != null && tree.clazz.type != null) 6047 validateAnnotatedType(tree.clazz, tree.clazz.type); 6048 super.visitTypeCast(tree); 6049 } 6050 public void visitTypeTest(JCInstanceOf tree) { 6051 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 6052 validateAnnotatedType(tree.pattern, tree.pattern.type); 6053 super.visitTypeTest(tree); 6054 } 6055 public void visitNewClass(JCNewClass tree) { 6056 if (tree.clazz != null && tree.clazz.type != null) { 6057 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 6058 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 6059 tree.clazz.type.tsym); 6060 } 6061 if (tree.def != null) { 6062 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 6063 } 6064 6065 validateAnnotatedType(tree.clazz, tree.clazz.type); 6066 } 6067 super.visitNewClass(tree); 6068 } 6069 public void visitNewArray(JCNewArray tree) { 6070 if (tree.elemtype != null && tree.elemtype.type != null) { 6071 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 6072 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 6073 tree.elemtype.type.tsym); 6074 } 6075 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 6076 } 6077 super.visitNewArray(tree); 6078 } 6079 public void visitClassDef(JCClassDecl tree) { 6080 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 6081 if (sigOnly) { 6082 scan(tree.mods); 6083 scan(tree.typarams); 6084 scan(tree.extending); 6085 scan(tree.implementing); 6086 } 6087 for (JCTree member : tree.defs) { 6088 if (member.hasTag(Tag.CLASSDEF)) { 6089 continue; 6090 } 6091 scan(member); 6092 } 6093 } 6094 public void visitBlock(JCBlock tree) { 6095 if (!sigOnly) { 6096 scan(tree.stats); 6097 } 6098 } 6099 6100 /* I would want to model this after 6101 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 6102 * and override visitSelect and visitTypeApply. 6103 * However, we only set the annotated type in the top-level type 6104 * of the symbol. 6105 * Therefore, we need to override each individual location where a type 6106 * can occur. 6107 */ 6108 private void validateAnnotatedType(final JCTree errtree, final Type type) { 6109 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 6110 6111 if (type.isPrimitiveOrVoid()) { 6112 return; 6113 } 6114 6115 JCTree enclTr = errtree; 6116 Type enclTy = type; 6117 6118 boolean repeat = true; 6119 while (repeat) { 6120 if (enclTr.hasTag(TYPEAPPLY)) { 6121 List<Type> tyargs = enclTy.getTypeArguments(); 6122 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 6123 if (trargs.length() > 0) { 6124 // Nothing to do for diamonds 6125 if (tyargs.length() == trargs.length()) { 6126 for (int i = 0; i < tyargs.length(); ++i) { 6127 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 6128 } 6129 } 6130 // If the lengths don't match, it's either a diamond 6131 // or some nested type that redundantly provides 6132 // type arguments in the tree. 6133 } 6134 6135 // Look at the clazz part of a generic type 6136 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 6137 } 6138 6139 if (enclTr.hasTag(SELECT)) { 6140 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 6141 if (enclTy != null && 6142 !enclTy.hasTag(NONE)) { 6143 enclTy = enclTy.getEnclosingType(); 6144 } 6145 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 6146 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 6147 if (enclTy == null || enclTy.hasTag(NONE)) { 6148 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 6149 for (JCAnnotation an : at.getAnnotations()) { 6150 if (chk.isTypeAnnotation(an, false)) { 6151 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 6152 } 6153 } 6154 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 6155 if (!onlyTypeAnnotations.isEmpty()) { 6156 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 6157 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 6158 Fragments.TypeAnnotation(onlyTypeAnnotations); 6159 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 6160 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 6161 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 6162 type.tsym.owner, annotatedType)); 6163 } 6164 repeat = false; 6165 } 6166 enclTr = at.underlyingType; 6167 // enclTy doesn't need to be changed 6168 } else if (enclTr.hasTag(IDENT)) { 6169 repeat = false; 6170 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 6171 JCWildcard wc = (JCWildcard) enclTr; 6172 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 6173 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 6174 validateAnnotatedType(wc.getBound(), wc.getBound().type); 6175 } else { 6176 // Nothing to do for UNBOUND 6177 } 6178 repeat = false; 6179 } else if (enclTr.hasTag(TYPEARRAY)) { 6180 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 6181 validateAnnotatedType(art.getType(), art.elemtype.type); 6182 repeat = false; 6183 } else if (enclTr.hasTag(TYPEUNION)) { 6184 JCTypeUnion ut = (JCTypeUnion) enclTr; 6185 for (JCTree t : ut.getTypeAlternatives()) { 6186 validateAnnotatedType(t, t.type); 6187 } 6188 repeat = false; 6189 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 6190 JCTypeIntersection it = (JCTypeIntersection) enclTr; 6191 for (JCTree t : it.getBounds()) { 6192 validateAnnotatedType(t, t.type); 6193 } 6194 repeat = false; 6195 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 6196 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 6197 repeat = false; 6198 } else { 6199 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 6200 " within: "+ errtree + " with kind: " + errtree.getKind()); 6201 } 6202 } 6203 } 6204 6205 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 6206 Symbol sym) { 6207 // Ensure that no declaration annotations are present. 6208 // Note that a tree type might be an AnnotatedType with 6209 // empty annotations, if only declaration annotations were given. 6210 // This method will raise an error for such a type. 6211 for (JCAnnotation ai : annotations) { 6212 if (!ai.type.isErroneous() && 6213 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 6214 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 6215 } 6216 } 6217 } 6218 } 6219 6220 // <editor-fold desc="post-attribution visitor"> 6221 6222 /** 6223 * Handle missing types/symbols in an AST. This routine is useful when 6224 * the compiler has encountered some errors (which might have ended up 6225 * terminating attribution abruptly); if the compiler is used in fail-over 6226 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 6227 * prevents NPE to be propagated during subsequent compilation steps. 6228 */ 6229 public void postAttr(JCTree tree) { 6230 new PostAttrAnalyzer().scan(tree); 6231 } 6232 6233 class PostAttrAnalyzer extends TreeScanner { 6234 6235 private void initTypeIfNeeded(JCTree that) { 6236 if (that.type == null) { 6237 if (that.hasTag(METHODDEF)) { 6238 that.type = dummyMethodType((JCMethodDecl)that); 6239 } else { 6240 that.type = syms.unknownType; 6241 } 6242 } 6243 } 6244 6245 /* Construct a dummy method type. If we have a method declaration, 6246 * and the declared return type is void, then use that return type 6247 * instead of UNKNOWN to avoid spurious error messages in lambda 6248 * bodies (see:JDK-8041704). 6249 */ 6250 private Type dummyMethodType(JCMethodDecl md) { 6251 Type restype = syms.unknownType; 6252 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 6253 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 6254 if (prim.typetag == VOID) 6255 restype = syms.voidType; 6256 } 6257 return new MethodType(List.nil(), restype, 6258 List.nil(), syms.methodClass); 6259 } 6260 private Type dummyMethodType() { 6261 return dummyMethodType(null); 6262 } 6263 6264 @Override 6265 public void scan(JCTree tree) { 6266 if (tree == null) return; 6267 if (tree instanceof JCExpression) { 6268 initTypeIfNeeded(tree); 6269 } 6270 super.scan(tree); 6271 } 6272 6273 @Override 6274 public void visitIdent(JCIdent that) { 6275 if (that.sym == null) { 6276 that.sym = syms.unknownSymbol; 6277 } 6278 } 6279 6280 @Override 6281 public void visitSelect(JCFieldAccess that) { 6282 if (that.sym == null) { 6283 that.sym = syms.unknownSymbol; 6284 } 6285 super.visitSelect(that); 6286 } 6287 6288 @Override 6289 public void visitClassDef(JCClassDecl that) { 6290 initTypeIfNeeded(that); 6291 if (that.sym == null) { 6292 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6293 } 6294 super.visitClassDef(that); 6295 } 6296 6297 @Override 6298 public void visitMethodDef(JCMethodDecl that) { 6299 initTypeIfNeeded(that); 6300 if (that.sym == null) { 6301 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6302 } 6303 super.visitMethodDef(that); 6304 } 6305 6306 @Override 6307 public void visitVarDef(JCVariableDecl that) { 6308 initTypeIfNeeded(that); 6309 if (that.sym == null) { 6310 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6311 that.sym.adr = 0; 6312 } 6313 if (that.vartype == null) { 6314 that.vartype = make.at(Position.NOPOS).Erroneous(); 6315 } 6316 super.visitVarDef(that); 6317 } 6318 6319 @Override 6320 public void visitBindingPattern(JCBindingPattern that) { 6321 initTypeIfNeeded(that); 6322 initTypeIfNeeded(that.var); 6323 if (that.var.sym == null) { 6324 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6325 that.var.sym.adr = 0; 6326 } 6327 super.visitBindingPattern(that); 6328 } 6329 6330 @Override 6331 public void visitRecordPattern(JCRecordPattern that) { 6332 initTypeIfNeeded(that); 6333 if (that.record == null) { 6334 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6335 that.type, syms.noSymbol); 6336 } 6337 if (that.fullComponentTypes == null) { 6338 that.fullComponentTypes = List.nil(); 6339 } 6340 super.visitRecordPattern(that); 6341 } 6342 6343 @Override 6344 public void visitNewClass(JCNewClass that) { 6345 if (that.constructor == null) { 6346 that.constructor = new MethodSymbol(0, names.init, 6347 dummyMethodType(), syms.noSymbol); 6348 } 6349 if (that.constructorType == null) { 6350 that.constructorType = syms.unknownType; 6351 } 6352 super.visitNewClass(that); 6353 } 6354 6355 @Override 6356 public void visitAssignop(JCAssignOp that) { 6357 if (that.operator == null) { 6358 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6359 -1, syms.noSymbol); 6360 } 6361 super.visitAssignop(that); 6362 } 6363 6364 @Override 6365 public void visitBinary(JCBinary that) { 6366 if (that.operator == null) { 6367 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6368 -1, syms.noSymbol); 6369 } 6370 super.visitBinary(that); 6371 } 6372 6373 @Override 6374 public void visitUnary(JCUnary that) { 6375 if (that.operator == null) { 6376 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6377 -1, syms.noSymbol); 6378 } 6379 super.visitUnary(that); 6380 } 6381 6382 @Override 6383 public void visitReference(JCMemberReference that) { 6384 super.visitReference(that); 6385 if (that.sym == null) { 6386 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6387 syms.noSymbol); 6388 } 6389 } 6390 } 6391 // </editor-fold> 6392 6393 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6394 new TreeScanner() { 6395 Symbol packge = pkg; 6396 @Override 6397 public void visitIdent(JCIdent that) { 6398 that.sym = packge; 6399 } 6400 6401 @Override 6402 public void visitSelect(JCFieldAccess that) { 6403 that.sym = packge; 6404 packge = packge.owner; 6405 super.visitSelect(that); 6406 } 6407 }.scan(pid); 6408 } 6409 6410 }