1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package com.sun.tools.javac.comp;
27
28 import java.util.*;
29 import java.util.function.BiConsumer;
30 import java.util.function.Consumer;
31 import java.util.stream.Stream;
32
33 import javax.lang.model.element.ElementKind;
34 import javax.tools.JavaFileObject;
35
36 import com.sun.source.tree.CaseTree;
37 import com.sun.source.tree.IdentifierTree;
38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
39 import com.sun.source.tree.MemberSelectTree;
40 import com.sun.source.tree.TreeVisitor;
41 import com.sun.source.util.SimpleTreeVisitor;
42 import com.sun.tools.javac.code.*;
43 import com.sun.tools.javac.code.Lint.LintCategory;
44 import com.sun.tools.javac.code.LintMapper;
45 import com.sun.tools.javac.code.Scope.WriteableScope;
46 import com.sun.tools.javac.code.Source.Feature;
47 import com.sun.tools.javac.code.Symbol.*;
48 import com.sun.tools.javac.code.Type.*;
49 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
50 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
51 import com.sun.tools.javac.comp.Check.CheckContext;
52 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
53 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
54 import com.sun.tools.javac.jvm.*;
55
56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
59
60 import com.sun.tools.javac.resources.CompilerProperties.Errors;
61 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
62 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
63 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
64 import com.sun.tools.javac.tree.*;
65 import com.sun.tools.javac.tree.JCTree.*;
66 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
67 import com.sun.tools.javac.util.*;
68 import com.sun.tools.javac.util.DefinedBy.Api;
69 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
70 import com.sun.tools.javac.util.JCDiagnostic.Error;
71 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
72 import com.sun.tools.javac.util.JCDiagnostic.Warning;
73 import com.sun.tools.javac.util.List;
74
75 import static com.sun.tools.javac.code.Flags.*;
76 import static com.sun.tools.javac.code.Flags.ANNOTATION;
77 import static com.sun.tools.javac.code.Flags.BLOCK;
78 import static com.sun.tools.javac.code.Kinds.*;
79 import static com.sun.tools.javac.code.Kinds.Kind.*;
80 import static com.sun.tools.javac.code.TypeTag.*;
81 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
82 import static com.sun.tools.javac.tree.JCTree.Tag.*;
83
84 /** This is the main context-dependent analysis phase in GJC. It
85 * encompasses name resolution, type checking and constant folding as
86 * subtasks. Some subtasks involve auxiliary classes.
87 * @see Check
88 * @see Resolve
89 * @see ConstFold
90 * @see Infer
91 *
92 * <p><b>This is NOT part of any supported API.
93 * If you write code that depends on this, you do so at your own risk.
94 * This code and its internal interfaces are subject to change or
95 * deletion without notice.</b>
96 */
97 public class Attr extends JCTree.Visitor {
98 protected static final Context.Key<Attr> attrKey = new Context.Key<>();
99
100 final Names names;
101 final Log log;
102 final LintMapper lintMapper;
103 final Symtab syms;
104 final Resolve rs;
105 final Operators operators;
106 final Infer infer;
107 final Analyzer analyzer;
108 final DeferredAttr deferredAttr;
109 final Check chk;
110 final Flow flow;
111 final MemberEnter memberEnter;
112 final TypeEnter typeEnter;
113 final TreeMaker make;
114 final ConstFold cfolder;
115 final Enter enter;
116 final Target target;
117 final Types types;
118 final Preview preview;
119 final JCDiagnostic.Factory diags;
120 final TypeAnnotations typeAnnotations;
121 final TypeEnvs typeEnvs;
122 final Dependencies dependencies;
123 final Annotate annotate;
124 final ArgumentAttr argumentAttr;
125 final MatchBindingsComputer matchBindingsComputer;
126 final AttrRecover attrRecover;
127 final LocalProxyVarsGen localProxyVarsGen;
128
129 public static Attr instance(Context context) {
130 Attr instance = context.get(attrKey);
131 if (instance == null)
132 instance = new Attr(context);
133 return instance;
134 }
135
136 @SuppressWarnings("this-escape")
137 protected Attr(Context context) {
138 context.put(attrKey, this);
139
140 names = Names.instance(context);
141 log = Log.instance(context);
142 lintMapper = LintMapper.instance(context);
143 syms = Symtab.instance(context);
144 rs = Resolve.instance(context);
145 operators = Operators.instance(context);
146 chk = Check.instance(context);
147 flow = Flow.instance(context);
148 memberEnter = MemberEnter.instance(context);
149 typeEnter = TypeEnter.instance(context);
150 make = TreeMaker.instance(context);
151 enter = Enter.instance(context);
152 infer = Infer.instance(context);
153 analyzer = Analyzer.instance(context);
154 deferredAttr = DeferredAttr.instance(context);
155 cfolder = ConstFold.instance(context);
156 target = Target.instance(context);
157 types = Types.instance(context);
158 preview = Preview.instance(context);
159 diags = JCDiagnostic.Factory.instance(context);
160 annotate = Annotate.instance(context);
161 typeAnnotations = TypeAnnotations.instance(context);
162 typeEnvs = TypeEnvs.instance(context);
163 dependencies = Dependencies.instance(context);
164 argumentAttr = ArgumentAttr.instance(context);
165 matchBindingsComputer = MatchBindingsComputer.instance(context);
166 attrRecover = AttrRecover.instance(context);
167 localProxyVarsGen = LocalProxyVarsGen.instance(context);
168
169 Options options = Options.instance(context);
170
171 Source source = Source.instance(context);
172 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
173 allowRecords = Feature.RECORDS.allowedInSource(source);
174 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
175 Feature.PATTERN_SWITCH.allowedInSource(source);
176 allowUnconditionalPatternsInstanceOf =
177 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
178 sourceName = source.name;
179 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
180
181 statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
182 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
183 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
184 methodAttrInfo = new MethodAttrInfo();
185 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
186 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
187 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
188 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
189 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
190 Feature.VALUE_CLASSES.allowedInSource(source);
191 }
192
193 /** Switch: reifiable types in instanceof enabled?
194 */
195 boolean allowReifiableTypesInInstanceof;
196
197 /** Are records allowed
198 */
199 private final boolean allowRecords;
200
201 /** Are patterns in switch allowed
202 */
203 private final boolean allowPatternSwitch;
204
205 /** Are unconditional patterns in instanceof allowed
206 */
207 private final boolean allowUnconditionalPatternsInstanceOf;
208
209 /** Are value classes allowed
210 */
211 private final boolean allowValueClasses;
212
213 /**
214 * Switch: warn about use of variable before declaration?
215 * RFE: 6425594
216 */
217 boolean useBeforeDeclarationWarning;
218
219 /**
220 * Switch: name of source level; used for error reporting.
221 */
222 String sourceName;
223
224 /** Check kind and type of given tree against protokind and prototype.
225 * If check succeeds, store type in tree and return it.
226 * If check fails, store errType in tree and return it.
227 * No checks are performed if the prototype is a method type.
228 * It is not necessary in this case since we know that kind and type
229 * are correct.
230 *
231 * @param tree The tree whose kind and type is checked
232 * @param found The computed type of the tree
233 * @param ownkind The computed kind of the tree
234 * @param resultInfo The expected result of the tree
235 */
236 Type check(final JCTree tree,
237 final Type found,
238 final KindSelector ownkind,
239 final ResultInfo resultInfo) {
240 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
241 Type owntype;
242 boolean shouldCheck = !found.hasTag(ERROR) &&
243 !resultInfo.pt.hasTag(METHOD) &&
244 !resultInfo.pt.hasTag(FORALL);
245 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
246 log.error(tree.pos(),
247 Errors.UnexpectedType(resultInfo.pkind.kindNames(),
248 ownkind.kindNames()));
249 owntype = types.createErrorType(found);
250 } else if (inferenceContext.free(found)) {
251 //delay the check if there are inference variables in the found type
252 //this means we are dealing with a partially inferred poly expression
253 owntype = shouldCheck ? resultInfo.pt : found;
254 if (resultInfo.checkMode.installPostInferenceHook()) {
255 inferenceContext.addFreeTypeListener(List.of(found),
256 instantiatedContext -> {
257 ResultInfo pendingResult =
258 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
259 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
260 });
261 }
262 } else {
263 owntype = shouldCheck ?
264 resultInfo.check(tree, found) :
265 found;
266 }
267 if (resultInfo.checkMode.updateTreeType()) {
268 tree.type = owntype;
269 }
270 return owntype;
271 }
272
273 /** Is given blank final variable assignable, i.e. in a scope where it
274 * may be assigned to even though it is final?
275 * @param v The blank final variable.
276 * @param env The current environment.
277 */
278 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
279 Symbol owner = env.info.scope.owner;
280 // owner refers to the innermost variable, method or
281 // initializer block declaration at this point.
282 boolean isAssignable =
283 v.owner == owner
284 ||
285 ((owner.name == names.init || // i.e. we are in a constructor
286 owner.kind == VAR || // i.e. we are in a variable initializer
287 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
288 &&
289 v.owner == owner.owner
290 &&
291 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
292 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
293 return isAssignable & !insideCompactConstructor;
294 }
295
296 /** Check that variable can be assigned to.
297 * @param pos The current source code position.
298 * @param v The assigned variable
299 * @param base If the variable is referred to in a Select, the part
300 * to the left of the `.', null otherwise.
301 * @param env The current environment.
302 */
303 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
304 if (v.name == names._this) {
305 log.error(pos, Errors.CantAssignValToThis);
306 } else if ((v.flags() & FINAL) != 0 &&
307 ((v.flags() & HASINIT) != 0
308 ||
309 !((base == null ||
310 TreeInfo.isThisQualifier(base)) &&
311 isAssignableAsBlankFinal(v, env)))) {
312 if (v.isResourceVariable()) { //TWR resource
313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
314 } else {
315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
316 }
317 }
318 }
319
320 /** Does tree represent a static reference to an identifier?
321 * It is assumed that tree is either a SELECT or an IDENT.
322 * We have to weed out selects from non-type names here.
323 * @param tree The candidate tree.
324 */
325 boolean isStaticReference(JCTree tree) {
326 if (tree.hasTag(SELECT)) {
327 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
328 if (lsym == null || lsym.kind != TYP) {
329 return false;
330 }
331 }
332 return true;
333 }
334
335 /** Is this symbol a type?
336 */
337 static boolean isType(Symbol sym) {
338 return sym != null && sym.kind == TYP;
339 }
340
341 /** Attribute a parsed identifier.
342 * @param tree Parsed identifier name
343 * @param topLevel The toplevel to use
344 */
345 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
346 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
347 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
348 syms.errSymbol.name,
349 null, null, null, null);
350 localEnv.enclClass.sym = syms.errSymbol;
351 return attribIdent(tree, localEnv);
352 }
353
354 /** Attribute a parsed identifier.
355 * @param tree Parsed identifier name
356 * @param env The env to use
357 */
358 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
359 return tree.accept(identAttributer, env);
360 }
361 // where
362 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
363 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
364 @Override @DefinedBy(Api.COMPILER_TREE)
365 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
366 Symbol site = visit(node.getExpression(), env);
367 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
368 return site;
369 Name name = (Name)node.getIdentifier();
370 if (site.kind == PCK) {
371 env.toplevel.packge = (PackageSymbol)site;
372 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
373 KindSelector.TYP_PCK);
374 } else {
375 env.enclClass.sym = (ClassSymbol)site;
376 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
377 }
378 }
379
380 @Override @DefinedBy(Api.COMPILER_TREE)
381 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
382 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
383 }
384 }
385
386 public Type coerce(Type etype, Type ttype) {
387 return cfolder.coerce(etype, ttype);
388 }
389
390 public Type attribType(JCTree node, TypeSymbol sym) {
391 Env<AttrContext> env = typeEnvs.get(sym);
392 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
393 return attribTree(node, localEnv, unknownTypeInfo);
394 }
395
396 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
397 // Attribute qualifying package or class.
398 JCFieldAccess s = tree.qualid;
399 return attribTree(s.selected, env,
400 new ResultInfo(tree.staticImport ?
401 KindSelector.TYP : KindSelector.TYP_PCK,
402 Type.noType));
403 }
404
405 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
406 return attribToTree(expr, env, tree, unknownExprInfo);
407 }
408
409 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
410 return attribToTree(stmt, env, tree, statInfo);
411 }
412
413 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
414 breakTree = tree;
415 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
416 try {
417 deferredAttr.attribSpeculative(root, env, resultInfo,
418 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
419 argumentAttr.withLocalCacheContext());
420 attrRecover.doRecovery();
421 } catch (BreakAttr b) {
422 return b.env;
423 } catch (AssertionError ae) {
424 if (ae.getCause() instanceof BreakAttr breakAttr) {
425 return breakAttr.env;
426 } else {
427 throw ae;
428 }
429 } finally {
430 breakTree = null;
431 log.useSource(prev);
432 }
433 return env;
434 }
435
436 private JCTree breakTree = null;
437
438 private static class BreakAttr extends RuntimeException {
439 static final long serialVersionUID = -6924771130405446405L;
440 private transient Env<AttrContext> env;
441 private BreakAttr(Env<AttrContext> env) {
442 this.env = env;
443 }
444 }
445
446 /**
447 * Mode controlling behavior of Attr.Check
448 */
449 enum CheckMode {
450
451 NORMAL,
452
453 /**
454 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
455 * that the captured var cache in {@code InferenceContext} will be used in read-only
456 * mode when performing inference checks.
457 */
458 NO_TREE_UPDATE {
459 @Override
460 public boolean updateTreeType() {
461 return false;
462 }
463 },
464 /**
465 * Mode signalling that caller will manage free types in tree decorations.
466 */
467 NO_INFERENCE_HOOK {
468 @Override
469 public boolean installPostInferenceHook() {
470 return false;
471 }
472 };
473
474 public boolean updateTreeType() {
475 return true;
476 }
477 public boolean installPostInferenceHook() {
478 return true;
479 }
480 }
481
482
483 class ResultInfo {
484 final KindSelector pkind;
485 final Type pt;
486 final CheckContext checkContext;
487 final CheckMode checkMode;
488
489 ResultInfo(KindSelector pkind, Type pt) {
490 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
491 }
492
493 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
494 this(pkind, pt, chk.basicHandler, checkMode);
495 }
496
497 protected ResultInfo(KindSelector pkind,
498 Type pt, CheckContext checkContext) {
499 this(pkind, pt, checkContext, CheckMode.NORMAL);
500 }
501
502 protected ResultInfo(KindSelector pkind,
503 Type pt, CheckContext checkContext, CheckMode checkMode) {
504 this.pkind = pkind;
505 this.pt = pt;
506 this.checkContext = checkContext;
507 this.checkMode = checkMode;
508 }
509
510 /**
511 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
512 * @param tree The tree to be type-checked.
513 * @return true if {@code ArgumentAttr} should be used.
514 */
515 protected boolean needsArgumentAttr(JCTree tree) { return false; }
516
517 protected Type check(final DiagnosticPosition pos, final Type found) {
518 return chk.checkType(pos, found, pt, checkContext);
519 }
520
521 protected ResultInfo dup(Type newPt) {
522 return new ResultInfo(pkind, newPt, checkContext, checkMode);
523 }
524
525 protected ResultInfo dup(CheckContext newContext) {
526 return new ResultInfo(pkind, pt, newContext, checkMode);
527 }
528
529 protected ResultInfo dup(Type newPt, CheckContext newContext) {
530 return new ResultInfo(pkind, newPt, newContext, checkMode);
531 }
532
533 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
534 return new ResultInfo(pkind, newPt, newContext, newMode);
535 }
536
537 protected ResultInfo dup(CheckMode newMode) {
538 return new ResultInfo(pkind, pt, checkContext, newMode);
539 }
540
541 @Override
542 public String toString() {
543 if (pt != null) {
544 return pt.toString();
545 } else {
546 return "";
547 }
548 }
549 }
550
551 class MethodAttrInfo extends ResultInfo {
552 public MethodAttrInfo() {
553 this(chk.basicHandler);
554 }
555
556 public MethodAttrInfo(CheckContext checkContext) {
557 super(KindSelector.VAL, Infer.anyPoly, checkContext);
558 }
559
560 @Override
561 protected boolean needsArgumentAttr(JCTree tree) {
562 return true;
563 }
564
565 protected ResultInfo dup(Type newPt) {
566 throw new IllegalStateException();
567 }
568
569 protected ResultInfo dup(CheckContext newContext) {
570 return new MethodAttrInfo(newContext);
571 }
572
573 protected ResultInfo dup(Type newPt, CheckContext newContext) {
574 throw new IllegalStateException();
575 }
576
577 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
578 throw new IllegalStateException();
579 }
580
581 protected ResultInfo dup(CheckMode newMode) {
582 throw new IllegalStateException();
583 }
584 }
585
586 class RecoveryInfo extends ResultInfo {
587
588 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
589 this(deferredAttrContext, Type.recoveryType);
590 }
591
592 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
593 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
594 @Override
595 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
596 return deferredAttrContext;
597 }
598 @Override
599 public boolean compatible(Type found, Type req, Warner warn) {
600 return true;
601 }
602 @Override
603 public void report(DiagnosticPosition pos, JCDiagnostic details) {
604 boolean needsReport = pt == Type.recoveryType ||
605 (details.getDiagnosticPosition() != null &&
606 details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
607 if (needsReport) {
608 chk.basicHandler.report(pos, details);
609 }
610 }
611 });
612 }
613 }
614
615 final ResultInfo statInfo;
616 final ResultInfo varAssignmentInfo;
617 final ResultInfo methodAttrInfo;
618 final ResultInfo unknownExprInfo;
619 final ResultInfo unknownTypeInfo;
620 final ResultInfo unknownTypeExprInfo;
621 final ResultInfo recoveryInfo;
622 final MethodType initBlockType;
623
624 Type pt() {
625 return resultInfo.pt;
626 }
627
628 KindSelector pkind() {
629 return resultInfo.pkind;
630 }
631
632 /* ************************************************************************
633 * Visitor methods
634 *************************************************************************/
635
636 /** Visitor argument: the current environment.
637 */
638 Env<AttrContext> env;
639
640 /** Visitor argument: the currently expected attribution result.
641 */
642 ResultInfo resultInfo;
643
644 /** Visitor result: the computed type.
645 */
646 Type result;
647
648 MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
649
650 /** Visitor method: attribute a tree, catching any completion failure
651 * exceptions. Return the tree's type.
652 *
653 * @param tree The tree to be visited.
654 * @param env The environment visitor argument.
655 * @param resultInfo The result info visitor argument.
656 */
657 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
658 Env<AttrContext> prevEnv = this.env;
659 ResultInfo prevResult = this.resultInfo;
660 try {
661 this.env = env;
662 this.resultInfo = resultInfo;
663 if (resultInfo.needsArgumentAttr(tree)) {
664 result = argumentAttr.attribArg(tree, env);
665 } else {
666 tree.accept(this);
667 }
668 matchBindings = matchBindingsComputer.finishBindings(tree,
669 matchBindings);
670 if (tree == breakTree &&
671 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
672 breakTreeFound(copyEnv(env));
673 }
674 return result;
675 } catch (CompletionFailure ex) {
676 tree.type = syms.errType;
677 return chk.completionError(tree.pos(), ex);
678 } finally {
679 this.env = prevEnv;
680 this.resultInfo = prevResult;
681 }
682 }
683
684 protected void breakTreeFound(Env<AttrContext> env) {
685 throw new BreakAttr(env);
686 }
687
688 Env<AttrContext> copyEnv(Env<AttrContext> env) {
689 Env<AttrContext> newEnv =
690 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
691 if (newEnv.outer != null) {
692 newEnv.outer = copyEnv(newEnv.outer);
693 }
694 return newEnv;
695 }
696
697 WriteableScope copyScope(WriteableScope sc) {
698 WriteableScope newScope = WriteableScope.create(sc.owner);
699 List<Symbol> elemsList = List.nil();
700 for (Symbol sym : sc.getSymbols()) {
701 elemsList = elemsList.prepend(sym);
702 }
703 for (Symbol s : elemsList) {
704 newScope.enter(s);
705 }
706 return newScope;
707 }
708
709 /** Derived visitor method: attribute an expression tree.
710 */
711 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
712 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
713 }
714
715 /** Derived visitor method: attribute an expression tree with
716 * no constraints on the computed type.
717 */
718 public Type attribExpr(JCTree tree, Env<AttrContext> env) {
719 return attribTree(tree, env, unknownExprInfo);
720 }
721
722 /** Derived visitor method: attribute a type tree.
723 */
724 public Type attribType(JCTree tree, Env<AttrContext> env) {
725 Type result = attribType(tree, env, Type.noType);
726 return result;
727 }
728
729 /** Derived visitor method: attribute a type tree.
730 */
731 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
732 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
733 return result;
734 }
735
736 /** Derived visitor method: attribute a statement or definition tree.
737 */
738 public Type attribStat(JCTree tree, Env<AttrContext> env) {
739 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
740 Type result = attribTree(tree, env, statInfo);
741 analyzer.analyzeIfNeeded(tree, analyzeEnv);
742 attrRecover.doRecovery();
743 return result;
744 }
745
746 /** Attribute a list of expressions, returning a list of types.
747 */
748 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
749 ListBuffer<Type> ts = new ListBuffer<>();
750 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
751 ts.append(attribExpr(l.head, env, pt));
752 return ts.toList();
753 }
754
755 /** Attribute a list of statements, returning nothing.
756 */
757 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
758 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
759 attribStat(l.head, env);
760 }
761
762 /** Attribute the arguments in a method call, returning the method kind.
763 */
764 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
765 KindSelector kind = initialKind;
766 for (JCExpression arg : trees) {
767 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
768 if (argtype.hasTag(DEFERRED)) {
769 kind = KindSelector.of(KindSelector.POLY, kind);
770 }
771 argtypes.append(argtype);
772 }
773 return kind;
774 }
775
776 /** Attribute a type argument list, returning a list of types.
777 * Caller is responsible for calling checkRefTypes.
778 */
779 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
780 ListBuffer<Type> argtypes = new ListBuffer<>();
781 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
782 argtypes.append(attribType(l.head, env));
783 return argtypes.toList();
784 }
785
786 /** Attribute a type argument list, returning a list of types.
787 * Check that all the types are references.
788 */
789 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
790 List<Type> types = attribAnyTypes(trees, env);
791 return chk.checkRefTypes(trees, types);
792 }
793
794 /**
795 * Attribute type variables (of generic classes or methods).
796 * Compound types are attributed later in attribBounds.
797 * @param typarams the type variables to enter
798 * @param env the current environment
799 */
800 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
801 for (JCTypeParameter tvar : typarams) {
802 TypeVar a = (TypeVar)tvar.type;
803 a.tsym.flags_field |= UNATTRIBUTED;
804 a.setUpperBound(Type.noType);
805 if (!tvar.bounds.isEmpty()) {
806 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
807 for (JCExpression bound : tvar.bounds.tail)
808 bounds = bounds.prepend(attribType(bound, env));
809 types.setBounds(a, bounds.reverse());
810 } else {
811 // if no bounds are given, assume a single bound of
812 // java.lang.Object.
813 types.setBounds(a, List.of(syms.objectType));
814 }
815 a.tsym.flags_field &= ~UNATTRIBUTED;
816 }
817 if (checkCyclic) {
818 for (JCTypeParameter tvar : typarams) {
819 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
820 }
821 }
822 }
823
824 /**
825 * Attribute the type references in a list of annotations.
826 */
827 void attribAnnotationTypes(List<JCAnnotation> annotations,
828 Env<AttrContext> env) {
829 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
830 JCAnnotation a = al.head;
831 attribType(a.annotationType, env);
832 }
833 }
834
835 /**
836 * Attribute a "lazy constant value".
837 * @param env The env for the const value
838 * @param variable The initializer for the const value
839 * @param type The expected type, or null
840 * @see VarSymbol#setLazyConstValue
841 */
842 public Object attribLazyConstantValue(Env<AttrContext> env,
843 Env<AttrContext> enclosingEnv,
844 JCVariableDecl variable,
845 Type type) {
846 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
847 try {
848 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv);
849 Type itype = attribExpr(variable.init, env, type);
850 if (variable.isImplicitlyTyped()) {
851 //fixup local variable type
852 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
853 }
854 if (itype.constValue() != null) {
855 return coerce(itype, type).constValue();
856 } else {
857 return null;
858 }
859 } finally {
860 log.useSource(prevSource);
861 }
862 }
863
864 /** Attribute type reference in an `extends', `implements', or 'permits' clause.
865 * Supertypes of anonymous inner classes are usually already attributed.
866 *
867 * @param tree The tree making up the type reference.
868 * @param env The environment current at the reference.
869 * @param classExpected true if only a class is expected here.
870 * @param interfaceExpected true if only an interface is expected here.
871 */
872 Type attribBase(JCTree tree,
873 Env<AttrContext> env,
874 boolean classExpected,
875 boolean interfaceExpected,
876 boolean checkExtensible) {
877 Type t = tree.type != null ?
878 tree.type :
879 attribType(tree, env);
880 try {
881 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
882 } catch (CompletionFailure ex) {
883 chk.completionError(tree.pos(), ex);
884 return t;
885 }
886 }
887 Type checkBase(Type t,
888 JCTree tree,
889 Env<AttrContext> env,
890 boolean classExpected,
891 boolean interfaceExpected,
892 boolean checkExtensible) {
893 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
894 (((JCTypeApply) tree).clazz).pos() : tree.pos();
895 if (t.tsym.isAnonymous()) {
896 log.error(pos, Errors.CantInheritFromAnon);
897 return types.createErrorType(t);
898 }
899 if (t.isErroneous())
900 return t;
901 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
902 // check that type variable is already visible
903 if (t.getUpperBound() == null) {
904 log.error(pos, Errors.IllegalForwardRef);
905 return types.createErrorType(t);
906 }
907 } else {
908 t = chk.checkClassType(pos, t, checkExtensible);
909 }
910 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
911 log.error(pos, Errors.IntfExpectedHere);
912 // return errType is necessary since otherwise there might
913 // be undetected cycles which cause attribution to loop
914 return types.createErrorType(t);
915 } else if (checkExtensible &&
916 classExpected &&
917 (t.tsym.flags() & INTERFACE) != 0) {
918 log.error(pos, Errors.NoIntfExpectedHere);
919 return types.createErrorType(t);
920 }
921 if (checkExtensible &&
922 ((t.tsym.flags() & FINAL) != 0)) {
923 log.error(pos,
924 Errors.CantInheritFromFinal(t.tsym));
925 }
926 chk.checkNonCyclic(pos, t);
927 return t;
928 }
929
930 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
931 Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
932 id.type = env.info.scope.owner.enclClass().type;
933 id.sym = env.info.scope.owner.enclClass();
934 return id.type;
935 }
936
937 public void visitClassDef(JCClassDecl tree) {
938 Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
939 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
940 argumentAttr.withLocalCacheContext() : null);
941 boolean ctorProloguePrev = env.info.ctorPrologue;
942 try {
943 // Local and anonymous classes have not been entered yet, so we need to
944 // do it now.
945 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
946 enter.classEnter(tree, env);
947 } else {
948 // If this class declaration is part of a class level annotation,
949 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
950 // order to simplify later steps and allow for sensible error
951 // messages.
952 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
953 enter.classEnter(tree, env);
954 }
955
956 ClassSymbol c = tree.sym;
957 if (c == null) {
958 // exit in case something drastic went wrong during enter.
959 result = null;
960 } else {
961 // make sure class has been completed:
962 c.complete();
963
964 // If a class declaration appears in a constructor prologue,
965 // that means it's either a local class or an anonymous class.
966 // Either way, there is no immediately enclosing instance.
967 if (ctorProloguePrev) {
968 c.flags_field |= NOOUTERTHIS;
969 }
970 attribClass(tree.pos(), c);
971 result = tree.type = c.type;
972 }
973 } finally {
974 localCacheContext.ifPresent(LocalCacheContext::leave);
975 env.info.ctorPrologue = ctorProloguePrev;
976 }
977 }
978
979 public void visitMethodDef(JCMethodDecl tree) {
980 MethodSymbol m = tree.sym;
981 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
982
983 Lint lint = env.info.lint.augment(m);
984 Lint prevLint = chk.setLint(lint);
985 boolean ctorProloguePrev = env.info.ctorPrologue;
986 Assert.check(!env.info.ctorPrologue);
987 MethodSymbol prevMethod = chk.setMethod(m);
988 try {
989 chk.checkDeprecatedAnnotation(tree.pos(), m);
990
991
992 // Create a new environment with local scope
993 // for attributing the method.
994 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
995 localEnv.info.lint = lint;
996
997 attribStats(tree.typarams, localEnv);
998
999 // If we override any other methods, check that we do so properly.
1000 // JLS ???
1001 if (m.isStatic()) {
1002 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1003 } else {
1004 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1005 }
1006 chk.checkOverride(env, tree, m);
1007
1008 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1009 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1010 }
1011
1012 // Enter all type parameters into the local method scope.
1013 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1014 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1015
1016 ClassSymbol owner = env.enclClass.sym;
1017 if ((owner.flags() & ANNOTATION) != 0 &&
1018 (tree.params.nonEmpty() ||
1019 tree.recvparam != null))
1020 log.error(tree.params.nonEmpty() ?
1021 tree.params.head.pos() :
1022 tree.recvparam.pos(),
1023 Errors.IntfAnnotationMembersCantHaveParams);
1024
1025 // Attribute all value parameters.
1026 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1027 attribStat(l.head, localEnv);
1028 }
1029
1030 chk.checkVarargsMethodDecl(localEnv, tree);
1031
1032 // Check that type parameters are well-formed.
1033 chk.validate(tree.typarams, localEnv);
1034
1035 // Check that result type is well-formed.
1036 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) {
1037 chk.validate(tree.restype, localEnv);
1038 }
1039 chk.checkRequiresIdentity(tree, env.info.lint);
1040
1041 // Check that receiver type is well-formed.
1042 if (tree.recvparam != null) {
1043 // Use a new environment to check the receiver parameter.
1044 // Otherwise I get "might not have been initialized" errors.
1045 // Is there a better way?
1046 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1047 attribType(tree.recvparam, newEnv);
1048 chk.validate(tree.recvparam, newEnv);
1049 }
1050
1051 // Is this method a constructor?
1052 boolean isConstructor = TreeInfo.isConstructor(tree);
1053
1054 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1055 // lets find if this method is an accessor
1056 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1057 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1058 if (recordComponent.isPresent()) {
1059 // the method is a user defined accessor lets check that everything is fine
1060 if (!tree.sym.isPublic()) {
1061 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1062 }
1063 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1064 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1065 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1066 }
1067 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1068 log.error(tree,
1069 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1070 }
1071 if (!tree.typarams.isEmpty()) {
1072 log.error(tree,
1073 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1074 }
1075 if (tree.sym.isStatic()) {
1076 log.error(tree,
1077 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1078 }
1079 }
1080
1081 if (isConstructor) {
1082 // if this a constructor other than the canonical one
1083 if ((tree.sym.flags_field & RECORD) == 0) {
1084 if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1085 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1086 }
1087 } else {
1088 // but if it is the canonical:
1089
1090 /* if user generated, then it shouldn't:
1091 * - have an accessibility stricter than that of the record type
1092 * - explicitly invoke any other constructor
1093 */
1094 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1095 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1096 log.error(tree,
1097 (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1098 Errors.InvalidCanonicalConstructorInRecord(
1099 Fragments.Canonical,
1100 env.enclClass.sym.name,
1101 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1102 ) :
1103 Errors.InvalidCanonicalConstructorInRecord(
1104 Fragments.Canonical,
1105 env.enclClass.sym.name,
1106 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1107 )
1108 );
1109 }
1110
1111 if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) {
1112 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1113 Fragments.Canonical, env.enclClass.sym.name,
1114 Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1115 }
1116 }
1117
1118 // also we want to check that no type variables have been defined
1119 if (!tree.typarams.isEmpty()) {
1120 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1121 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1122 }
1123
1124 /* and now we need to check that the constructor's arguments are exactly the same as those of the
1125 * record components
1126 */
1127 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1128 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1129 for (JCVariableDecl param: tree.params) {
1130 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1131 if (!types.isSameType(param.type, recordFieldTypes.head) ||
1132 (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1133 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1134 Fragments.Canonical, env.enclClass.sym.name,
1135 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1136 }
1137 recordComponents = recordComponents.tail;
1138 recordFieldTypes = recordFieldTypes.tail;
1139 }
1140 }
1141 }
1142 }
1143
1144 // annotation method checks
1145 if ((owner.flags() & ANNOTATION) != 0) {
1146 // annotation method cannot have throws clause
1147 if (tree.thrown.nonEmpty()) {
1148 log.error(tree.thrown.head.pos(),
1149 Errors.ThrowsNotAllowedInIntfAnnotation);
1150 }
1151 // annotation method cannot declare type-parameters
1152 if (tree.typarams.nonEmpty()) {
1153 log.error(tree.typarams.head.pos(),
1154 Errors.IntfAnnotationMembersCantHaveTypeParams);
1155 }
1156 // validate annotation method's return type (could be an annotation type)
1157 chk.validateAnnotationType(tree.restype);
1158 // ensure that annotation method does not clash with members of Object/Annotation
1159 chk.validateAnnotationMethod(tree.pos(), m);
1160 }
1161
1162 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1163 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1164
1165 if (tree.body == null) {
1166 // Empty bodies are only allowed for
1167 // abstract, native, or interface methods, or for methods
1168 // in a retrofit signature class.
1169 if (tree.defaultValue != null) {
1170 if ((owner.flags() & ANNOTATION) == 0)
1171 log.error(tree.pos(),
1172 Errors.DefaultAllowedInIntfAnnotationMember);
1173 }
1174 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1175 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1176 } else {
1177 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1178 if ((owner.flags() & INTERFACE) != 0) {
1179 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1180 } else {
1181 log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1182 }
1183 } else if ((tree.mods.flags & NATIVE) != 0) {
1184 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1185 }
1186 // Add an implicit super() call unless an explicit call to
1187 // super(...) or this(...) is given
1188 // or we are compiling class java.lang.Object.
1189 boolean addedSuperInIdentityClass = false;
1190 if (isConstructor && owner.type != syms.objectType) {
1191 if (!TreeInfo.hasAnyConstructorCall(tree)) {
1192 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1193 make.Ident(names._super), make.Idents(List.nil())));
1194 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) {
1195 tree.body.stats = tree.body.stats.append(supCall);
1196 } else {
1197 tree.body.stats = tree.body.stats.prepend(supCall);
1198 addedSuperInIdentityClass = true;
1199 }
1200 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1201 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1202 TreeInfo.hasConstructorCall(tree, names._super)) {
1203 // enum constructors are not allowed to call super
1204 // directly, so make sure there aren't any super calls
1205 // in enum constructors, except in the compiler
1206 // generated one.
1207 log.error(tree.body.stats.head.pos(),
1208 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1209 }
1210 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1211 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1212 List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1213 if (!initParamNames.equals(recordComponentNames)) {
1214 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1215 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1216 }
1217 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1218 log.error(tree,
1219 Errors.InvalidCanonicalConstructorInRecord(
1220 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1221 env.enclClass.sym.name,
1222 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1223 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1224 }
1225 }
1226 }
1227
1228 // Attribute all type annotations in the body
1229 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m);
1230 annotate.flush();
1231
1232 // Start of constructor prologue (if not in java.lang.Object constructor)
1233 localEnv.info.ctorPrologue = isConstructor && owner.type != syms.objectType;
1234
1235 // Attribute method body.
1236 attribStat(tree.body, localEnv);
1237 if (localEnv.info.ctorPrologue) {
1238 boolean thisInvocation = false;
1239 ListBuffer<JCTree> prologueCode = new ListBuffer<>();
1240 for (JCTree stat : tree.body.stats) {
1241 prologueCode.add(stat);
1242 /* gather all the stats in the body until a `super` or `this` constructor invocation is found,
1243 * including the constructor invocation, that way we don't need to worry in the visitor below if
1244 * if we are dealing or not with prologue code
1245 */
1246 if (stat instanceof JCExpressionStatement expStmt &&
1247 expStmt.expr instanceof JCMethodInvocation mi &&
1248 TreeInfo.isConstructorCall(mi)) {
1249 thisInvocation = TreeInfo.name(mi.meth) == names._this;
1250 if (!addedSuperInIdentityClass || !allowValueClasses) {
1251 break;
1252 }
1253 }
1254 }
1255 if (!prologueCode.isEmpty()) {
1256 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv,
1257 addedSuperInIdentityClass && allowValueClasses ?
1258 PrologueVisitorMode.WARNINGS_ONLY :
1259 thisInvocation ?
1260 PrologueVisitorMode.THIS_CONSTRUCTOR :
1261 PrologueVisitorMode.SUPER_CONSTRUCTOR);
1262 ctorPrologueVisitor.scan(prologueCode.toList());
1263 }
1264 }
1265 }
1266
1267 localEnv.info.scope.leave();
1268 result = tree.type = m.type;
1269 } finally {
1270 chk.setLint(prevLint);
1271 chk.setMethod(prevMethod);
1272 env.info.ctorPrologue = ctorProloguePrev;
1273 }
1274 }
1275
1276 enum PrologueVisitorMode {
1277 WARNINGS_ONLY,
1278 SUPER_CONSTRUCTOR,
1279 THIS_CONSTRUCTOR
1280 }
1281
1282 class CtorPrologueVisitor extends TreeScanner {
1283 Env<AttrContext> localEnv;
1284 PrologueVisitorMode mode;
1285
1286 CtorPrologueVisitor(Env<AttrContext> localEnv, PrologueVisitorMode mode) {
1287 this.localEnv = localEnv;
1288 currentClassSym = localEnv.enclClass.sym;
1289 this.mode = mode;
1290 }
1291
1292 boolean insideLambdaOrClassDef = false;
1293
1294 @Override
1295 public void visitLambda(JCLambda lambda) {
1296 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1297 try {
1298 insideLambdaOrClassDef = true;
1299 super.visitLambda(lambda);
1300 } finally {
1301 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1302 }
1303 }
1304
1305 ClassSymbol currentClassSym;
1306
1307 @Override
1308 public void visitClassDef(JCClassDecl classDecl) {
1309 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1310 ClassSymbol previousClassSym = currentClassSym;
1311 try {
1312 insideLambdaOrClassDef = true;
1313 currentClassSym = classDecl.sym;
1314 super.visitClassDef(classDecl);
1315 } finally {
1316 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1317 currentClassSym = previousClassSym;
1318 }
1319 }
1320
1321 private void reportPrologueError(JCTree tree, Symbol sym) {
1322 reportPrologueError(tree, sym, false);
1323 }
1324
1325 private void reportPrologueError(JCTree tree, Symbol sym, boolean hasInit) {
1326 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS);
1327 if (mode != PrologueVisitorMode.WARNINGS_ONLY) {
1328 if (hasInit) {
1329 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym));
1330 } else {
1331 log.error(tree, Errors.CantRefBeforeCtorCalled(sym));
1332 }
1333 } else if (allowValueClasses) {
1334 // issue lint warning
1335 log.warning(tree, LintWarnings.WouldNotBeAllowedInPrologue(sym));
1336 }
1337 }
1338
1339 @Override
1340 public void visitApply(JCMethodInvocation tree) {
1341 super.visitApply(tree);
1342 Name name = TreeInfo.name(tree.meth);
1343 boolean isConstructorCall = name == names._this || name == names._super;
1344 Symbol msym = TreeInfo.symbolFor(tree.meth);
1345 // is this an instance method call or an illegal constructor invocation like: `this.super()`?
1346 if (msym != null && // for erroneous invocations msym can be null, ignore those
1347 (!isConstructorCall ||
1348 isConstructorCall && tree.meth.hasTag(SELECT))) {
1349 if (isEarlyReference(localEnv, tree.meth, msym))
1350 reportPrologueError(tree.meth, msym);
1351 }
1352 }
1353
1354 @Override
1355 public void visitIdent(JCIdent tree) {
1356 analyzeSymbol(tree);
1357 }
1358
1359 boolean isIndexed = false;
1360
1361 @Override
1362 public void visitIndexed(JCArrayAccess tree) {
1363 boolean previousIsIndexed = isIndexed;
1364 try {
1365 isIndexed = true;
1366 scan(tree.indexed);
1367 } finally {
1368 isIndexed = previousIsIndexed;
1369 }
1370 scan(tree.index);
1371 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR && isInstanceField(tree.indexed)) {
1372 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(tree.indexed));
1373 }
1374 }
1375
1376 @Override
1377 public void visitSelect(JCFieldAccess tree) {
1378 SelectScanner ss = new SelectScanner();
1379 ss.scan(tree);
1380 if (ss.scanLater == null) {
1381 analyzeSymbol(tree);
1382 } else {
1383 boolean prevLhs = isInLHS;
1384 try {
1385 isInLHS = false;
1386 scan(ss.scanLater);
1387 } finally {
1388 isInLHS = prevLhs;
1389 }
1390 }
1391 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1392 for (JCTree subtree : ss.selectorTrees) {
1393 if (isInstanceField(subtree)) {
1394 // we need to add a proxy for this one
1395 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(subtree));
1396 }
1397 }
1398 }
1399 }
1400
1401 boolean isInstanceField(JCTree tree) {
1402 Symbol sym = TreeInfo.symbolFor(tree);
1403 return (sym != null &&
1404 !sym.isStatic() &&
1405 sym.kind == VAR &&
1406 sym.owner.kind == TYP &&
1407 sym.name != names._this &&
1408 sym.name != names._super &&
1409 isEarlyReference(localEnv, tree, sym));
1410 }
1411
1412 @Override
1413 public void visitNewClass(JCNewClass tree) {
1414 super.visitNewClass(tree);
1415 checkNewClassAndMethRefs(tree, tree.type);
1416 }
1417
1418 @Override
1419 public void visitReference(JCMemberReference tree) {
1420 super.visitReference(tree);
1421 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) {
1422 checkNewClassAndMethRefs(tree, tree.expr.type);
1423 }
1424 }
1425
1426 void checkNewClassAndMethRefs(JCTree tree, Type t) {
1427 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) &&
1428 !t.tsym.isStatic() &&
1429 !t.tsym.isDirectlyOrIndirectlyLocal()) {
1430 reportPrologueError(tree, t.getEnclosingType().tsym);
1431 }
1432 }
1433
1434 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate
1435 * for a proxy local variable later on
1436 */
1437 boolean isInLHS = false;
1438
1439 @Override
1440 public void visitAssign(JCAssign tree) {
1441 boolean previousIsInLHS = isInLHS;
1442 try {
1443 isInLHS = true;
1444 scan(tree.lhs);
1445 } finally {
1446 isInLHS = previousIsInLHS;
1447 }
1448 scan(tree.rhs);
1449 }
1450
1451 @Override
1452 public void visitMethodDef(JCMethodDecl tree) {
1453 // ignore any declarative part, mainly to avoid scanning receiver parameters
1454 scan(tree.body);
1455 }
1456
1457 void analyzeSymbol(JCTree tree) {
1458 Symbol sym = TreeInfo.symbolFor(tree);
1459 // make sure that there is a symbol and it is not static
1460 if (sym == null || sym.isStatic()) {
1461 return;
1462 }
1463 if (isInLHS && !insideLambdaOrClassDef) {
1464 // Check instance field assignments that appear in constructor prologues
1465 if (isEarlyReference(localEnv, tree, sym)) {
1466 // Field may not be inherited from a superclass
1467 if (sym.owner != localEnv.enclClass.sym) {
1468 reportPrologueError(tree, sym);
1469 return;
1470 }
1471 // Field may not have an initializer
1472 if ((sym.flags() & HASINIT) != 0) {
1473 if (!localEnv.enclClass.sym.isValueClass() || !sym.type.hasTag(ARRAY) || !isIndexed) {
1474 reportPrologueError(tree, sym, true);
1475 }
1476 return;
1477 }
1478 // cant reference an instance field before a this constructor
1479 if (allowValueClasses && mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1480 reportPrologueError(tree, sym);
1481 return;
1482 }
1483 }
1484 return;
1485 }
1486 tree = TreeInfo.skipParens(tree);
1487 if (sym.kind == VAR && sym.owner.kind == TYP) {
1488 if (sym.name == names._this || sym.name == names._super) {
1489 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`?
1490 if (TreeInfo.isExplicitThisReference(
1491 types,
1492 (ClassType)localEnv.enclClass.sym.type,
1493 tree)) {
1494 reportPrologueError(tree, sym);
1495 }
1496 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only
1497 if (sym.owner != localEnv.enclClass.sym) {
1498 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) &&
1499 sym.isInheritedIn(localEnv.enclClass.sym, types)) {
1500 /* if we are dealing with a field that doesn't belong to the current class, but the
1501 * field is inherited, this is an error. Unless, the super class is also an outer
1502 * class and the field's qualifier refers to the outer class
1503 */
1504 if (tree.hasTag(IDENT) ||
1505 TreeInfo.isExplicitThisReference(
1506 types,
1507 (ClassType)localEnv.enclClass.sym.type,
1508 ((JCFieldAccess)tree).selected)) {
1509 reportPrologueError(tree, sym);
1510 }
1511 }
1512 } else if (isEarlyReference(localEnv, tree, sym)) {
1513 /* now this is a `proper` instance field of the current class
1514 * references to fields of identity classes which happen to have initializers are
1515 * not allowed in the prologue
1516 */
1517 if (insideLambdaOrClassDef ||
1518 (!localEnv.enclClass.sym.isValueClass() && (sym.flags_field & HASINIT) != 0))
1519 reportPrologueError(tree, sym);
1520 // we will need to generate a proxy for this field later on
1521 if (!isInLHS) {
1522 if (!allowValueClasses) {
1523 reportPrologueError(tree, sym);
1524 } else {
1525 if (mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1526 reportPrologueError(tree, sym);
1527 } else if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1528 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym);
1529 }
1530 /* we do nothing in warnings only mode, as in that mode we are simulating what
1531 * the compiler would do in case the constructor code would be in the prologue
1532 * phase
1533 */
1534 }
1535 }
1536 }
1537 }
1538 }
1539 }
1540
1541 /**
1542 * Determine if the symbol appearance constitutes an early reference to the current class.
1543 *
1544 * <p>
1545 * This means the symbol is an instance field, or method, of the current class and it appears
1546 * in an early initialization context of it (i.e., one of its constructor prologues).
1547 *
1548 * @param env The current environment
1549 * @param tree the AST referencing the variable
1550 * @param sym The symbol
1551 */
1552 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) {
1553 if ((sym.flags() & STATIC) == 0 &&
1554 (sym.kind == VAR || sym.kind == MTH) &&
1555 sym.isMemberOf(env.enclClass.sym, types)) {
1556 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance
1557 if (tree instanceof JCFieldAccess fa) {
1558 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected);
1559 } else if (currentClassSym != env.enclClass.sym) {
1560 /* so we are inside a class, CI, in the prologue of an outer class, CO, and the symbol being
1561 * analyzed has no qualifier. So if the symbol is a member of CI the reference is allowed,
1562 * otherwise it is not.
1563 * It could be that the reference to CI's member happens inside CI's own prologue, but that
1564 * will be checked separately, when CI's prologue is analyzed.
1565 */
1566 return !sym.isMemberOf(currentClassSym, types);
1567 }
1568 return true;
1569 }
1570 return false;
1571 }
1572
1573 /* scanner for a select expression, anything that is not a select or identifier
1574 * will be stored for further analysis
1575 */
1576 class SelectScanner extends DeferredAttr.FilterScanner {
1577 JCTree scanLater;
1578 java.util.List<JCTree> selectorTrees = new ArrayList<>();
1579
1580 SelectScanner() {
1581 super(Set.of(IDENT, SELECT, PARENS));
1582 }
1583
1584 @Override
1585 public void visitSelect(JCFieldAccess tree) {
1586 super.visitSelect(tree);
1587 selectorTrees.add(tree.selected);
1588 }
1589
1590 @Override
1591 void skip(JCTree tree) {
1592 scanLater = tree;
1593 }
1594 }
1595 }
1596
1597 public void visitVarDef(JCVariableDecl tree) {
1598 // Local variables have not been entered yet, so we need to do it now:
1599 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1600 if (tree.sym != null) {
1601 // parameters have already been entered
1602 env.info.scope.enter(tree.sym);
1603 } else {
1604 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1605 if (tree.init == null) {
1606 //cannot use 'var' without initializer
1607 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1608 tree.vartype = make.at(tree.pos()).Erroneous();
1609 } else {
1610 Fragment msg = canInferLocalVarType(tree);
1611 if (msg != null) {
1612 //cannot use 'var' with initializer which require an explicit target
1613 //(e.g. lambda, method reference, array initializer).
1614 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1615 tree.vartype = make.at(tree.pos()).Erroneous();
1616 }
1617 }
1618 }
1619 try {
1620 annotate.blockAnnotations();
1621 memberEnter.memberEnter(tree, env);
1622 } finally {
1623 annotate.unblockAnnotations();
1624 }
1625 }
1626 } else {
1627 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env);
1628 }
1629
1630 VarSymbol v = tree.sym;
1631 Lint lint = env.info.lint.augment(v);
1632 Lint prevLint = chk.setLint(lint);
1633
1634 // Check that the variable's declared type is well-formed.
1635 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1636 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1637 (tree.sym.flags() & PARAMETER) != 0;
1638 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1639
1640 try {
1641 v.getConstValue(); // ensure compile-time constant initializer is evaluated
1642 chk.checkDeprecatedAnnotation(tree.pos(), v);
1643
1644 if (tree.init != null) {
1645 if ((v.flags_field & FINAL) == 0 ||
1646 !memberEnter.needsLazyConstValue(tree.init)) {
1647 // Not a compile-time constant
1648 // Attribute initializer in a new environment
1649 // with the declared variable as owner.
1650 // Check that initializer conforms to variable's declared type.
1651 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1652 initEnv.info.lint = lint;
1653 // In order to catch self-references, we set the variable's
1654 // declaration position to maximal possible value, effectively
1655 // marking the variable as undefined.
1656 initEnv.info.enclVar = v;
1657 boolean previousCtorPrologue = initEnv.info.ctorPrologue;
1658 try {
1659 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) {
1660 // strict instance initializer in a value class
1661 initEnv.info.ctorPrologue = true;
1662 }
1663 attribExpr(tree.init, initEnv, v.type);
1664 if (tree.isImplicitlyTyped()) {
1665 //fixup local variable type
1666 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1667 }
1668 if (allowValueClasses && v.owner.kind == TYP && !v.isStatic()) {
1669 // strict field initializers are inlined in constructor's prologues
1670 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv,
1671 !v.isStrict() ? PrologueVisitorMode.WARNINGS_ONLY : PrologueVisitorMode.SUPER_CONSTRUCTOR);
1672 ctorPrologueVisitor.scan(tree.init);
1673 }
1674 } finally {
1675 initEnv.info.ctorPrologue = previousCtorPrologue;
1676 }
1677 }
1678 if (tree.isImplicitlyTyped()) {
1679 setSyntheticVariableType(tree, v.type);
1680 }
1681 }
1682 result = tree.type = v.type;
1683 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1684 if (isNonArgsMethodInObject(v.name)) {
1685 log.error(tree, Errors.IllegalRecordComponentName(v));
1686 }
1687 }
1688 chk.checkRequiresIdentity(tree, env.info.lint);
1689 }
1690 finally {
1691 chk.setLint(prevLint);
1692 }
1693 }
1694
1695 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) {
1696 if (tree.init != null &&
1697 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 &&
1698 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) {
1699 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED;
1700 // Field initializer expression need to be entered.
1701 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym);
1702 annotate.flush();
1703 }
1704 }
1705
1706 private boolean isNonArgsMethodInObject(Name name) {
1707 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1708 if (s.type.getParameterTypes().isEmpty()) {
1709 return true;
1710 }
1711 }
1712 return false;
1713 }
1714
1715 Fragment canInferLocalVarType(JCVariableDecl tree) {
1716 LocalInitScanner lis = new LocalInitScanner();
1717 lis.scan(tree.init);
1718 return lis.badInferenceMsg;
1719 }
1720
1721 static class LocalInitScanner extends TreeScanner {
1722 Fragment badInferenceMsg = null;
1723 boolean needsTarget = true;
1724
1725 @Override
1726 public void visitNewArray(JCNewArray tree) {
1727 if (tree.elemtype == null && needsTarget) {
1728 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1729 }
1730 }
1731
1732 @Override
1733 public void visitLambda(JCLambda tree) {
1734 if (needsTarget) {
1735 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1736 }
1737 }
1738
1739 @Override
1740 public void visitTypeCast(JCTypeCast tree) {
1741 boolean prevNeedsTarget = needsTarget;
1742 try {
1743 needsTarget = false;
1744 super.visitTypeCast(tree);
1745 } finally {
1746 needsTarget = prevNeedsTarget;
1747 }
1748 }
1749
1750 @Override
1751 public void visitReference(JCMemberReference tree) {
1752 if (needsTarget) {
1753 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1754 }
1755 }
1756
1757 @Override
1758 public void visitNewClass(JCNewClass tree) {
1759 boolean prevNeedsTarget = needsTarget;
1760 try {
1761 needsTarget = false;
1762 super.visitNewClass(tree);
1763 } finally {
1764 needsTarget = prevNeedsTarget;
1765 }
1766 }
1767
1768 @Override
1769 public void visitApply(JCMethodInvocation tree) {
1770 boolean prevNeedsTarget = needsTarget;
1771 try {
1772 needsTarget = false;
1773 super.visitApply(tree);
1774 } finally {
1775 needsTarget = prevNeedsTarget;
1776 }
1777 }
1778 }
1779
1780 public void visitSkip(JCSkip tree) {
1781 result = null;
1782 }
1783
1784 public void visitBlock(JCBlock tree) {
1785 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1786 // Block is a static or instance initializer;
1787 // let the owner of the environment be a freshly
1788 // created BLOCK-method.
1789 Symbol fakeOwner =
1790 new MethodSymbol(tree.flags | BLOCK |
1791 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1792 env.info.scope.owner);
1793 final Env<AttrContext> localEnv =
1794 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1795
1796 if ((tree.flags & STATIC) != 0) {
1797 localEnv.info.staticLevel++;
1798 } else {
1799 localEnv.info.instanceInitializerBlock = true;
1800 }
1801 // Attribute all type annotations in the block
1802 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner);
1803 annotate.flush();
1804 attribStats(tree.stats, localEnv);
1805
1806 {
1807 // Store init and clinit type annotations with the ClassSymbol
1808 // to allow output in Gen.normalizeDefs.
1809 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1810 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1811 if ((tree.flags & STATIC) != 0) {
1812 cs.appendClassInitTypeAttributes(tas);
1813 } else {
1814 cs.appendInitTypeAttributes(tas);
1815 }
1816 }
1817 } else {
1818 // Create a new local environment with a local scope.
1819 Env<AttrContext> localEnv =
1820 env.dup(tree, env.info.dup(env.info.scope.dup()));
1821 try {
1822 attribStats(tree.stats, localEnv);
1823 } finally {
1824 localEnv.info.scope.leave();
1825 }
1826 }
1827 result = null;
1828 }
1829
1830 public void visitDoLoop(JCDoWhileLoop tree) {
1831 attribStat(tree.body, env.dup(tree));
1832 attribExpr(tree.cond, env, syms.booleanType);
1833 handleLoopConditionBindings(matchBindings, tree, tree.body);
1834 result = null;
1835 }
1836
1837 public void visitWhileLoop(JCWhileLoop tree) {
1838 attribExpr(tree.cond, env, syms.booleanType);
1839 MatchBindings condBindings = matchBindings;
1840 // include condition's bindings when true in the body:
1841 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1842 try {
1843 attribStat(tree.body, whileEnv.dup(tree));
1844 } finally {
1845 whileEnv.info.scope.leave();
1846 }
1847 handleLoopConditionBindings(condBindings, tree, tree.body);
1848 result = null;
1849 }
1850
1851 public void visitForLoop(JCForLoop tree) {
1852 Env<AttrContext> loopEnv =
1853 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1854 MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1855 try {
1856 attribStats(tree.init, loopEnv);
1857 if (tree.cond != null) {
1858 attribExpr(tree.cond, loopEnv, syms.booleanType);
1859 // include condition's bindings when true in the body and step:
1860 condBindings = matchBindings;
1861 }
1862 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1863 try {
1864 bodyEnv.tree = tree; // before, we were not in loop!
1865 attribStats(tree.step, bodyEnv);
1866 attribStat(tree.body, bodyEnv);
1867 } finally {
1868 bodyEnv.info.scope.leave();
1869 }
1870 result = null;
1871 }
1872 finally {
1873 loopEnv.info.scope.leave();
1874 }
1875 handleLoopConditionBindings(condBindings, tree, tree.body);
1876 }
1877
1878 /**
1879 * Include condition's bindings when false after the loop, if cannot get out of the loop
1880 */
1881 private void handleLoopConditionBindings(MatchBindings condBindings,
1882 JCStatement loop,
1883 JCStatement loopBody) {
1884 if (condBindings.bindingsWhenFalse.nonEmpty() &&
1885 !breaksTo(env, loop, loopBody)) {
1886 addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1887 }
1888 }
1889
1890 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1891 preFlow(body);
1892 return flow.breaksToTree(env, loop, body, make);
1893 }
1894
1895 /**
1896 * Add given bindings to the current scope, unless there's a break to
1897 * an immediately enclosing labeled statement.
1898 */
1899 private void addBindings2Scope(JCStatement introducingStatement,
1900 List<BindingSymbol> bindings) {
1901 if (bindings.isEmpty()) {
1902 return ;
1903 }
1904
1905 var searchEnv = env;
1906 while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1907 labeled.body == introducingStatement) {
1908 if (breaksTo(env, labeled, labeled.body)) {
1909 //breaking to an immediately enclosing labeled statement
1910 return ;
1911 }
1912 searchEnv = searchEnv.next;
1913 introducingStatement = labeled;
1914 }
1915
1916 //include condition's body when false after the while, if cannot get out of the loop
1917 bindings.forEach(env.info.scope::enter);
1918 bindings.forEach(BindingSymbol::preserveBinding);
1919 }
1920
1921 public void visitForeachLoop(JCEnhancedForLoop tree) {
1922 Env<AttrContext> loopEnv =
1923 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1924 try {
1925 //the Formal Parameter of a for-each loop is not in the scope when
1926 //attributing the for-each expression; we mimic this by attributing
1927 //the for-each expression first (against original scope).
1928 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1929 chk.checkNonVoid(tree.pos(), exprType);
1930 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1931 if (elemtype == null) {
1932 // or perhaps expr implements Iterable<T>?
1933 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1934 if (base == null) {
1935 log.error(tree.expr.pos(),
1936 Errors.ForeachNotApplicableToType(exprType,
1937 Fragments.TypeReqArrayOrIterable));
1938 elemtype = types.createErrorType(exprType);
1939 } else {
1940 List<Type> iterableParams = base.allparams();
1941 elemtype = iterableParams.isEmpty()
1942 ? syms.objectType
1943 : types.wildUpperBound(iterableParams.head);
1944
1945 // Check the return type of the method iterator().
1946 // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1947 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1948 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1949 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1950 log.error(tree.pos(),
1951 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1952 }
1953 }
1954 }
1955 if (tree.var.isImplicitlyTyped()) {
1956 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1957 setSyntheticVariableType(tree.var, inferredType);
1958 }
1959 attribStat(tree.var, loopEnv);
1960 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1961 loopEnv.tree = tree; // before, we were not in loop!
1962 attribStat(tree.body, loopEnv);
1963 result = null;
1964 }
1965 finally {
1966 loopEnv.info.scope.leave();
1967 }
1968 }
1969
1970 public void visitLabelled(JCLabeledStatement tree) {
1971 // Check that label is not used in an enclosing statement
1972 Env<AttrContext> env1 = env;
1973 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1974 if (env1.tree.hasTag(LABELLED) &&
1975 ((JCLabeledStatement) env1.tree).label == tree.label) {
1976 log.error(tree.pos(),
1977 Errors.LabelAlreadyInUse(tree.label));
1978 break;
1979 }
1980 env1 = env1.next;
1981 }
1982
1983 attribStat(tree.body, env.dup(tree));
1984 result = null;
1985 }
1986
1987 public void visitSwitch(JCSwitch tree) {
1988 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1989 attribStats(c.stats, caseEnv);
1990 });
1991 result = null;
1992 }
1993
1994 public void visitSwitchExpression(JCSwitchExpression tree) {
1995 boolean wrongContext = false;
1996
1997 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1998 PolyKind.STANDALONE : PolyKind.POLY;
1999
2000 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2001 //this means we are returning a poly conditional from void-compatible lambda expression
2002 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
2003 resultInfo = recoveryInfo;
2004 wrongContext = true;
2005 }
2006
2007 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2008 unknownExprInfo :
2009 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
2010
2011 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
2012 ListBuffer<Type> caseTypes = new ListBuffer<>();
2013
2014 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
2015 caseEnv.info.yieldResult = condInfo;
2016 attribStats(c.stats, caseEnv);
2017 new TreeScanner() {
2018 @Override
2019 public void visitYield(JCYield brk) {
2020 if (brk.target == tree) {
2021 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
2022 caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
2023 }
2024 super.visitYield(brk);
2025 }
2026
2027 @Override public void visitClassDef(JCClassDecl tree) {}
2028 @Override public void visitLambda(JCLambda tree) {}
2029 }.scan(c.stats);
2030 });
2031
2032 if (tree.cases.isEmpty()) {
2033 log.error(tree.pos(),
2034 Errors.SwitchExpressionEmpty);
2035 } else if (caseTypes.isEmpty()) {
2036 log.error(tree.pos(),
2037 Errors.SwitchExpressionNoResultExpressions);
2038 }
2039
2040 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
2041
2042 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
2043 }
2044 //where:
2045 CheckContext switchExpressionContext(CheckContext checkContext) {
2046 return new Check.NestedCheckContext(checkContext) {
2047 //this will use enclosing check context to check compatibility of
2048 //subexpression against target type; if we are in a method check context,
2049 //depending on whether boxing is allowed, we could have incompatibilities
2050 @Override
2051 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2052 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
2053 }
2054 };
2055 }
2056
2057 private void handleSwitch(JCTree switchTree,
2058 JCExpression selector,
2059 List<JCCase> cases,
2060 BiConsumer<JCCase, Env<AttrContext>> attribCase) {
2061 Type seltype = attribExpr(selector, env);
2062 Type seltypeUnboxed = types.unboxedTypeOrType(seltype);
2063
2064 Env<AttrContext> switchEnv =
2065 env.dup(switchTree, env.info.dup(env.info.scope.dup()));
2066
2067 try {
2068 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
2069 boolean stringSwitch = types.isSameType(seltype, syms.stringType);
2070 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType);
2071 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
2072 boolean intSwitch = types.isAssignable(seltype, syms.intType);
2073 boolean patternSwitch;
2074 if (seltype.isPrimitive() && !intSwitch) {
2075 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
2076 patternSwitch = true;
2077 }
2078 if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
2079 !intSwitch) {
2080 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
2081 patternSwitch = true;
2082 } else {
2083 patternSwitch = cases.stream()
2084 .flatMap(c -> c.labels.stream())
2085 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
2086 TreeInfo.isNullCaseLabel(l));
2087 }
2088
2089 // Attribute all cases and
2090 // check that there are no duplicate case labels or default clauses.
2091 Set<Object> constants = new HashSet<>(); // The set of case constants.
2092 boolean hasDefault = false; // Is there a default label?
2093 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
2094 boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
2095 boolean hasNullPattern = false; // Is there a null pattern?
2096 CaseTree.CaseKind caseKind = null;
2097 boolean wasError = false;
2098 JCCaseLabel unconditionalCaseLabel = null;
2099 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
2100 JCCase c = l.head;
2101 if (caseKind == null) {
2102 caseKind = c.caseKind;
2103 } else if (caseKind != c.caseKind && !wasError) {
2104 log.error(c.pos(),
2105 Errors.SwitchMixingCaseTypes);
2106 wasError = true;
2107 }
2108 MatchBindings currentBindings = null;
2109 MatchBindings guardBindings = null;
2110 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
2111 JCCaseLabel label = labels.head;
2112 if (label instanceof JCConstantCaseLabel constLabel) {
2113 JCExpression expr = constLabel.expr;
2114 if (TreeInfo.isNull(expr)) {
2115 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
2116 if (hasNullPattern) {
2117 log.error(label.pos(), Errors.DuplicateCaseLabel);
2118 }
2119 hasNullPattern = true;
2120 attribExpr(expr, switchEnv, seltype);
2121 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
2122 } else if (enumSwitch) {
2123 Symbol sym = enumConstant(expr, seltype);
2124 if (sym == null) {
2125 if (allowPatternSwitch) {
2126 attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2127 Symbol enumSym = TreeInfo.symbol(expr);
2128 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
2129 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
2130 } else if (!constants.add(enumSym)) {
2131 log.error(label.pos(), Errors.DuplicateCaseLabel);
2132 }
2133 } else {
2134 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
2135 }
2136 } else if (!constants.add(sym)) {
2137 log.error(label.pos(), Errors.DuplicateCaseLabel);
2138 }
2139 } else if (errorEnumSwitch) {
2140 //error recovery: the selector is erroneous, and all the case labels
2141 //are identifiers. This could be an enum switch - don't report resolve
2142 //error for the case label:
2143 var prevResolveHelper = rs.basicLogResolveHelper;
2144 try {
2145 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
2146 attribExpr(expr, switchEnv, seltype);
2147 } finally {
2148 rs.basicLogResolveHelper = prevResolveHelper;
2149 }
2150 } else {
2151 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2152 if (!pattype.hasTag(ERROR)) {
2153 if (pattype.constValue() == null) {
2154 Symbol s = TreeInfo.symbol(expr);
2155 if (s != null && s.kind == TYP) {
2156 log.error(expr.pos(),
2157 Errors.PatternExpected);
2158 } else if (s == null || !s.isEnum()) {
2159 log.error(expr.pos(),
2160 (stringSwitch ? Errors.StringConstReq
2161 : intSwitch ? Errors.ConstExprReq
2162 : Errors.PatternOrEnumReq));
2163 } else if (!constants.add(s)) {
2164 log.error(label.pos(), Errors.DuplicateCaseLabel);
2165 }
2166 }
2167 else {
2168 boolean isLongFloatDoubleOrBooleanConstant =
2169 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN);
2170 if (isLongFloatDoubleOrBooleanConstant) {
2171 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS);
2172 }
2173 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) {
2174 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
2175 } else if (!constants.add(pattype.constValue())) {
2176 log.error(c.pos(), Errors.DuplicateCaseLabel);
2177 }
2178 }
2179 }
2180 }
2181 } else if (label instanceof JCDefaultCaseLabel def) {
2182 if (hasDefault) {
2183 log.error(label.pos(), Errors.DuplicateDefaultLabel);
2184 } else if (hasUnconditionalPattern) {
2185 log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
2186 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2187 log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
2188 }
2189 hasDefault = true;
2190 matchBindings = MatchBindingsComputer.EMPTY;
2191 } else if (label instanceof JCPatternCaseLabel patternlabel) {
2192 //pattern
2193 JCPattern pat = patternlabel.pat;
2194 attribExpr(pat, switchEnv, seltype);
2195 Type primaryType = TreeInfo.primaryPatternType(pat);
2196
2197 if (primaryType.isPrimitive()) {
2198 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
2199 } else if (!primaryType.hasTag(TYPEVAR)) {
2200 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
2201 }
2202 checkCastablePattern(pat.pos(), seltype, primaryType);
2203 Type patternType = types.erasure(primaryType);
2204 JCExpression guard = c.guard;
2205 if (guardBindings == null && guard != null) {
2206 MatchBindings afterPattern = matchBindings;
2207 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
2208 try {
2209 attribExpr(guard, bodyEnv, syms.booleanType);
2210 } finally {
2211 bodyEnv.info.scope.leave();
2212 }
2213
2214 guardBindings = matchBindings;
2215 matchBindings = afterPattern;
2216
2217 if (TreeInfo.isBooleanWithValue(guard, 0)) {
2218 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
2219 }
2220 }
2221 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
2222 boolean unconditional =
2223 unguarded &&
2224 !patternType.isErroneous() &&
2225 types.isUnconditionallyExact(seltype, patternType);
2226 if (unconditional) {
2227 if (hasUnconditionalPattern) {
2228 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
2229 } else if (hasDefault) {
2230 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
2231 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2232 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
2233 }
2234 hasUnconditionalPattern = true;
2235 unconditionalCaseLabel = label;
2236 }
2237 lastPatternErroneous = patternType.isErroneous();
2238 } else {
2239 Assert.error();
2240 }
2241 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
2242 }
2243
2244 if (guardBindings != null) {
2245 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
2246 }
2247
2248 Env<AttrContext> caseEnv =
2249 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
2250 try {
2251 attribCase.accept(c, caseEnv);
2252 } finally {
2253 caseEnv.info.scope.leave();
2254 }
2255 addVars(c.stats, switchEnv.info.scope);
2256
2257 preFlow(c);
2258 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
2259 }
2260 if (patternSwitch) {
2261 chk.checkSwitchCaseStructure(cases);
2262 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
2263 }
2264 if (switchTree.hasTag(SWITCH)) {
2265 ((JCSwitch) switchTree).hasUnconditionalPattern =
2266 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2267 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
2268 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
2269 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
2270 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2271 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
2272 } else {
2273 Assert.error(switchTree.getTag().name());
2274 }
2275 } finally {
2276 switchEnv.info.scope.leave();
2277 }
2278 }
2279 // where
2280 private ResultInfo caseLabelResultInfo(Type seltype) {
2281 return new ResultInfo(KindSelector.VAL_TYP,
2282 !seltype.hasTag(ERROR) ? seltype
2283 : Type.noType);
2284 }
2285 /** Add any variables defined in stats to the switch scope. */
2286 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
2287 for (;stats.nonEmpty(); stats = stats.tail) {
2288 JCTree stat = stats.head;
2289 if (stat.hasTag(VARDEF))
2290 switchScope.enter(((JCVariableDecl) stat).sym);
2291 }
2292 }
2293 // where
2294 /** Return the selected enumeration constant symbol, or null. */
2295 private Symbol enumConstant(JCTree tree, Type enumType) {
2296 if (tree.hasTag(IDENT)) {
2297 JCIdent ident = (JCIdent)tree;
2298 Name name = ident.name;
2299 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
2300 if (sym.kind == VAR) {
2301 Symbol s = ident.sym = sym;
2302 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
2303 ident.type = s.type;
2304 return ((s.flags_field & Flags.ENUM) == 0)
2305 ? null : s;
2306 }
2307 }
2308 }
2309 return null;
2310 }
2311
2312 public void visitSynchronized(JCSynchronized tree) {
2313 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
2314 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) {
2315 log.warning(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
2316 }
2317 attribStat(tree.body, env);
2318 result = null;
2319 }
2320
2321 public void visitTry(JCTry tree) {
2322 // Create a new local environment with a local
2323 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
2324 try {
2325 boolean isTryWithResource = tree.resources.nonEmpty();
2326 // Create a nested environment for attributing the try block if needed
2327 Env<AttrContext> tryEnv = isTryWithResource ?
2328 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
2329 localEnv;
2330 try {
2331 // Attribute resource declarations
2332 for (JCTree resource : tree.resources) {
2333 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
2334 @Override
2335 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2336 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
2337 }
2338 };
2339 ResultInfo twrResult =
2340 new ResultInfo(KindSelector.VAR,
2341 syms.autoCloseableType,
2342 twrContext);
2343 if (resource.hasTag(VARDEF)) {
2344 attribStat(resource, tryEnv);
2345 twrResult.check(resource, resource.type);
2346
2347 //check that resource type cannot throw InterruptedException
2348 checkAutoCloseable(resource.pos(), localEnv, resource.type);
2349
2350 VarSymbol var = ((JCVariableDecl) resource).sym;
2351
2352 var.flags_field |= Flags.FINAL;
2353 var.setData(ElementKind.RESOURCE_VARIABLE);
2354 } else {
2355 attribTree(resource, tryEnv, twrResult);
2356 }
2357 }
2358 // Attribute body
2359 attribStat(tree.body, tryEnv);
2360 } finally {
2361 if (isTryWithResource)
2362 tryEnv.info.scope.leave();
2363 }
2364
2365 // Attribute catch clauses
2366 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2367 JCCatch c = l.head;
2368 Env<AttrContext> catchEnv =
2369 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2370 try {
2371 Type ctype = attribStat(c.param, catchEnv);
2372 if (TreeInfo.isMultiCatch(c)) {
2373 //multi-catch parameter is implicitly marked as final
2374 c.param.sym.flags_field |= FINAL | UNION;
2375 }
2376 if (c.param.sym.kind == VAR) {
2377 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2378 }
2379 chk.checkType(c.param.vartype.pos(),
2380 chk.checkClassType(c.param.vartype.pos(), ctype),
2381 syms.throwableType);
2382 attribStat(c.body, catchEnv);
2383 } finally {
2384 catchEnv.info.scope.leave();
2385 }
2386 }
2387
2388 // Attribute finalizer
2389 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2390 result = null;
2391 }
2392 finally {
2393 localEnv.info.scope.leave();
2394 }
2395 }
2396
2397 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2398 if (!resource.isErroneous() &&
2399 types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2400 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2401 Symbol close = syms.noSymbol;
2402 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
2403 try {
2404 close = rs.resolveQualifiedMethod(pos,
2405 env,
2406 types.skipTypeVars(resource, false),
2407 names.close,
2408 List.nil(),
2409 List.nil());
2410 }
2411 finally {
2412 log.popDiagnosticHandler(discardHandler);
2413 }
2414 if (close.kind == MTH &&
2415 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2416 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) {
2417 log.warning(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource));
2418 }
2419 }
2420 }
2421
2422 public void visitConditional(JCConditional tree) {
2423 Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2424 MatchBindings condBindings = matchBindings;
2425
2426 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2427 isBooleanOrNumeric(env, tree)) ?
2428 PolyKind.STANDALONE : PolyKind.POLY;
2429
2430 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2431 //this means we are returning a poly conditional from void-compatible lambda expression
2432 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2433 result = tree.type = types.createErrorType(resultInfo.pt);
2434 return;
2435 }
2436
2437 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2438 unknownExprInfo :
2439 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2440
2441
2442 // x ? y : z
2443 // include x's bindings when true in y
2444 // include x's bindings when false in z
2445
2446 Type truetype;
2447 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2448 try {
2449 truetype = attribTree(tree.truepart, trueEnv, condInfo);
2450 } finally {
2451 trueEnv.info.scope.leave();
2452 }
2453
2454 MatchBindings trueBindings = matchBindings;
2455
2456 Type falsetype;
2457 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2458 try {
2459 falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2460 } finally {
2461 falseEnv.info.scope.leave();
2462 }
2463
2464 MatchBindings falseBindings = matchBindings;
2465
2466 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2467 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2468 List.of(truetype, falsetype)) : pt();
2469 if (condtype.constValue() != null &&
2470 truetype.constValue() != null &&
2471 falsetype.constValue() != null &&
2472 !owntype.hasTag(NONE)) {
2473 //constant folding
2474 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2475 }
2476 result = check(tree, owntype, KindSelector.VAL, resultInfo);
2477 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2478 }
2479 //where
2480 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2481 switch (tree.getTag()) {
2482 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2483 ((JCLiteral)tree).typetag == BOOLEAN ||
2484 ((JCLiteral)tree).typetag == BOT;
2485 case LAMBDA: case REFERENCE: return false;
2486 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2487 case CONDEXPR:
2488 JCConditional condTree = (JCConditional)tree;
2489 return isBooleanOrNumeric(env, condTree.truepart) &&
2490 isBooleanOrNumeric(env, condTree.falsepart);
2491 case APPLY:
2492 JCMethodInvocation speculativeMethodTree =
2493 (JCMethodInvocation)deferredAttr.attribSpeculative(
2494 tree, env, unknownExprInfo,
2495 argumentAttr.withLocalCacheContext());
2496 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2497 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2498 env.enclClass.type :
2499 ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2500 Type owntype = types.memberType(receiverType, msym).getReturnType();
2501 return primitiveOrBoxed(owntype);
2502 case NEWCLASS:
2503 JCExpression className =
2504 removeClassParams.translate(((JCNewClass)tree).clazz);
2505 JCExpression speculativeNewClassTree =
2506 (JCExpression)deferredAttr.attribSpeculative(
2507 className, env, unknownTypeInfo,
2508 argumentAttr.withLocalCacheContext());
2509 return primitiveOrBoxed(speculativeNewClassTree.type);
2510 default:
2511 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2512 argumentAttr.withLocalCacheContext()).type;
2513 return primitiveOrBoxed(speculativeType);
2514 }
2515 }
2516 //where
2517 boolean primitiveOrBoxed(Type t) {
2518 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2519 }
2520
2521 TreeTranslator removeClassParams = new TreeTranslator() {
2522 @Override
2523 public void visitTypeApply(JCTypeApply tree) {
2524 result = translate(tree.clazz);
2525 }
2526 };
2527
2528 CheckContext conditionalContext(CheckContext checkContext) {
2529 return new Check.NestedCheckContext(checkContext) {
2530 //this will use enclosing check context to check compatibility of
2531 //subexpression against target type; if we are in a method check context,
2532 //depending on whether boxing is allowed, we could have incompatibilities
2533 @Override
2534 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2535 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2536 }
2537 };
2538 }
2539
2540 /** Compute the type of a conditional expression, after
2541 * checking that it exists. See JLS 15.25. Does not take into
2542 * account the special case where condition and both arms
2543 * are constants.
2544 *
2545 * @param pos The source position to be used for error
2546 * diagnostics.
2547 * @param thentype The type of the expression's then-part.
2548 * @param elsetype The type of the expression's else-part.
2549 */
2550 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2551 if (condTypes.isEmpty()) {
2552 return syms.objectType; //TODO: how to handle?
2553 }
2554 Type first = condTypes.head;
2555 // If same type, that is the result
2556 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2557 return first.baseType();
2558
2559 List<Type> unboxedTypes = condTypes.stream()
2560 .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2561 .collect(List.collector());
2562
2563 // Otherwise, if both arms can be converted to a numeric
2564 // type, return the least numeric type that fits both arms
2565 // (i.e. return larger of the two, or return int if one
2566 // arm is short, the other is char).
2567 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2568 // If one arm has an integer subrange type (i.e., byte,
2569 // short, or char), and the other is an integer constant
2570 // that fits into the subrange, return the subrange type.
2571 for (Type type : unboxedTypes) {
2572 if (!type.getTag().isStrictSubRangeOf(INT)) {
2573 continue;
2574 }
2575 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2576 return type.baseType();
2577 }
2578
2579 for (TypeTag tag : primitiveTags) {
2580 Type candidate = syms.typeOfTag[tag.ordinal()];
2581 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2582 return candidate;
2583 }
2584 }
2585 }
2586
2587 // Those were all the cases that could result in a primitive
2588 condTypes = condTypes.stream()
2589 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2590 .collect(List.collector());
2591
2592 for (Type type : condTypes) {
2593 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2594 return type.baseType();
2595 }
2596
2597 Iterator<DiagnosticPosition> posIt = positions.iterator();
2598
2599 condTypes = condTypes.stream()
2600 .map(t -> chk.checkNonVoid(posIt.next(), t))
2601 .collect(List.collector());
2602
2603 // both are known to be reference types. The result is
2604 // lub(thentype,elsetype). This cannot fail, as it will
2605 // always be possible to infer "Object" if nothing better.
2606 return types.lub(condTypes.stream()
2607 .map(t -> t.baseType())
2608 .filter(t -> !t.hasTag(BOT))
2609 .collect(List.collector()));
2610 }
2611
2612 static final TypeTag[] primitiveTags = new TypeTag[]{
2613 BYTE,
2614 CHAR,
2615 SHORT,
2616 INT,
2617 LONG,
2618 FLOAT,
2619 DOUBLE,
2620 BOOLEAN,
2621 };
2622
2623 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2624 return bindingEnv(env, env.tree, bindings);
2625 }
2626
2627 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2628 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2629 bindings.forEach(env1.info.scope::enter);
2630 return env1;
2631 }
2632
2633 public void visitIf(JCIf tree) {
2634 attribExpr(tree.cond, env, syms.booleanType);
2635
2636 // if (x) { y } [ else z ]
2637 // include x's bindings when true in y
2638 // include x's bindings when false in z
2639
2640 MatchBindings condBindings = matchBindings;
2641 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2642
2643 try {
2644 attribStat(tree.thenpart, thenEnv);
2645 } finally {
2646 thenEnv.info.scope.leave();
2647 }
2648
2649 preFlow(tree.thenpart);
2650 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2651 boolean aliveAfterElse;
2652
2653 if (tree.elsepart != null) {
2654 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2655 try {
2656 attribStat(tree.elsepart, elseEnv);
2657 } finally {
2658 elseEnv.info.scope.leave();
2659 }
2660 preFlow(tree.elsepart);
2661 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2662 } else {
2663 aliveAfterElse = true;
2664 }
2665
2666 chk.checkEmptyIf(tree);
2667
2668 List<BindingSymbol> afterIfBindings = List.nil();
2669
2670 if (aliveAfterThen && !aliveAfterElse) {
2671 afterIfBindings = condBindings.bindingsWhenTrue;
2672 } else if (aliveAfterElse && !aliveAfterThen) {
2673 afterIfBindings = condBindings.bindingsWhenFalse;
2674 }
2675
2676 addBindings2Scope(tree, afterIfBindings);
2677
2678 result = null;
2679 }
2680
2681 void preFlow(JCTree tree) {
2682 attrRecover.doRecovery();
2683 new PostAttrAnalyzer() {
2684 @Override
2685 public void scan(JCTree tree) {
2686 if (tree == null ||
2687 (tree.type != null &&
2688 tree.type == Type.stuckType)) {
2689 //don't touch stuck expressions!
2690 return;
2691 }
2692 super.scan(tree);
2693 }
2694
2695 @Override
2696 public void visitClassDef(JCClassDecl that) {
2697 if (that.sym != null) {
2698 // Method preFlow shouldn't visit class definitions
2699 // that have not been entered and attributed.
2700 // See JDK-8254557 and JDK-8203277 for more details.
2701 super.visitClassDef(that);
2702 }
2703 }
2704
2705 @Override
2706 public void visitLambda(JCLambda that) {
2707 if (that.type != null) {
2708 // Method preFlow shouldn't visit lambda expressions
2709 // that have not been entered and attributed.
2710 // See JDK-8254557 and JDK-8203277 for more details.
2711 super.visitLambda(that);
2712 }
2713 }
2714 }.scan(tree);
2715 }
2716
2717 public void visitExec(JCExpressionStatement tree) {
2718 //a fresh environment is required for 292 inference to work properly ---
2719 //see Infer.instantiatePolymorphicSignatureInstance()
2720 Env<AttrContext> localEnv = env.dup(tree);
2721 attribExpr(tree.expr, localEnv);
2722 result = null;
2723 }
2724
2725 public void visitBreak(JCBreak tree) {
2726 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2727 result = null;
2728 }
2729
2730 public void visitYield(JCYield tree) {
2731 if (env.info.yieldResult != null) {
2732 attribTree(tree.value, env, env.info.yieldResult);
2733 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2734 } else {
2735 log.error(tree.pos(), tree.value.hasTag(PARENS)
2736 ? Errors.NoSwitchExpressionQualify
2737 : Errors.NoSwitchExpression);
2738 attribTree(tree.value, env, unknownExprInfo);
2739 }
2740 result = null;
2741 }
2742
2743 public void visitContinue(JCContinue tree) {
2744 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2745 result = null;
2746 }
2747 //where
2748 /** Return the target of a break, continue or yield statement,
2749 * if it exists, report an error if not.
2750 * Note: The target of a labelled break or continue is the
2751 * (non-labelled) statement tree referred to by the label,
2752 * not the tree representing the labelled statement itself.
2753 *
2754 * @param pos The position to be used for error diagnostics
2755 * @param tag The tag of the jump statement. This is either
2756 * Tree.BREAK or Tree.CONTINUE.
2757 * @param label The label of the jump statement, or null if no
2758 * label is given.
2759 * @param env The environment current at the jump statement.
2760 */
2761 private JCTree findJumpTarget(DiagnosticPosition pos,
2762 JCTree.Tag tag,
2763 Name label,
2764 Env<AttrContext> env) {
2765 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2766
2767 if (jumpTarget.snd != null) {
2768 log.error(pos, jumpTarget.snd);
2769 }
2770
2771 return jumpTarget.fst;
2772 }
2773 /** Return the target of a break or continue statement, if it exists,
2774 * report an error if not.
2775 * Note: The target of a labelled break or continue is the
2776 * (non-labelled) statement tree referred to by the label,
2777 * not the tree representing the labelled statement itself.
2778 *
2779 * @param tag The tag of the jump statement. This is either
2780 * Tree.BREAK or Tree.CONTINUE.
2781 * @param label The label of the jump statement, or null if no
2782 * label is given.
2783 * @param env The environment current at the jump statement.
2784 */
2785 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2786 Name label,
2787 Env<AttrContext> env) {
2788 // Search environments outwards from the point of jump.
2789 Env<AttrContext> env1 = env;
2790 JCDiagnostic.Error pendingError = null;
2791 LOOP:
2792 while (env1 != null) {
2793 switch (env1.tree.getTag()) {
2794 case LABELLED:
2795 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2796 if (label == labelled.label) {
2797 // If jump is a continue, check that target is a loop.
2798 if (tag == CONTINUE) {
2799 if (!labelled.body.hasTag(DOLOOP) &&
2800 !labelled.body.hasTag(WHILELOOP) &&
2801 !labelled.body.hasTag(FORLOOP) &&
2802 !labelled.body.hasTag(FOREACHLOOP)) {
2803 pendingError = Errors.NotLoopLabel(label);
2804 }
2805 // Found labelled statement target, now go inwards
2806 // to next non-labelled tree.
2807 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2808 } else {
2809 return Pair.of(labelled, pendingError);
2810 }
2811 }
2812 break;
2813 case DOLOOP:
2814 case WHILELOOP:
2815 case FORLOOP:
2816 case FOREACHLOOP:
2817 if (label == null) return Pair.of(env1.tree, pendingError);
2818 break;
2819 case SWITCH:
2820 if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2821 break;
2822 case SWITCH_EXPRESSION:
2823 if (tag == YIELD) {
2824 return Pair.of(env1.tree, null);
2825 } else if (tag == BREAK) {
2826 pendingError = Errors.BreakOutsideSwitchExpression;
2827 } else {
2828 pendingError = Errors.ContinueOutsideSwitchExpression;
2829 }
2830 break;
2831 case LAMBDA:
2832 case METHODDEF:
2833 case CLASSDEF:
2834 break LOOP;
2835 default:
2836 }
2837 env1 = env1.next;
2838 }
2839 if (label != null)
2840 return Pair.of(null, Errors.UndefLabel(label));
2841 else if (pendingError != null)
2842 return Pair.of(null, pendingError);
2843 else if (tag == CONTINUE)
2844 return Pair.of(null, Errors.ContOutsideLoop);
2845 else
2846 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2847 }
2848
2849 public void visitReturn(JCReturn tree) {
2850 // Check that there is an enclosing method which is
2851 // nested within than the enclosing class.
2852 if (env.info.returnResult == null) {
2853 log.error(tree.pos(), Errors.RetOutsideMeth);
2854 } else if (env.info.yieldResult != null) {
2855 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2856 if (tree.expr != null) {
2857 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2858 }
2859 } else if (!env.info.isLambda &&
2860 env.enclMethod != null &&
2861 TreeInfo.isCompactConstructor(env.enclMethod)) {
2862 log.error(env.enclMethod,
2863 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2864 } else {
2865 // Attribute return expression, if it exists, and check that
2866 // it conforms to result type of enclosing method.
2867 if (tree.expr != null) {
2868 if (env.info.returnResult.pt.hasTag(VOID)) {
2869 env.info.returnResult.checkContext.report(tree.expr.pos(),
2870 diags.fragment(Fragments.UnexpectedRetVal));
2871 }
2872 attribTree(tree.expr, env, env.info.returnResult);
2873 } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2874 !env.info.returnResult.pt.hasTag(NONE)) {
2875 env.info.returnResult.checkContext.report(tree.pos(),
2876 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2877 }
2878 }
2879 result = null;
2880 }
2881
2882 public void visitThrow(JCThrow tree) {
2883 Type owntype = attribExpr(tree.expr, env, Type.noType);
2884 chk.checkType(tree, owntype, syms.throwableType);
2885 result = null;
2886 }
2887
2888 public void visitAssert(JCAssert tree) {
2889 attribExpr(tree.cond, env, syms.booleanType);
2890 if (tree.detail != null) {
2891 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2892 }
2893 result = null;
2894 }
2895
2896 /** Visitor method for method invocations.
2897 * NOTE: The method part of an application will have in its type field
2898 * the return type of the method, not the method's type itself!
2899 */
2900 public void visitApply(JCMethodInvocation tree) {
2901 // The local environment of a method application is
2902 // a new environment nested in the current one.
2903 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2904
2905 // The types of the actual method arguments.
2906 List<Type> argtypes;
2907
2908 // The types of the actual method type arguments.
2909 List<Type> typeargtypes = null;
2910
2911 Name methName = TreeInfo.name(tree.meth);
2912
2913 boolean isConstructorCall =
2914 methName == names._this || methName == names._super;
2915
2916 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2917 if (isConstructorCall) {
2918
2919 // Attribute arguments, yielding list of argument types.
2920 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2921 argtypes = argtypesBuf.toList();
2922 typeargtypes = attribTypes(tree.typeargs, localEnv);
2923
2924 // Done with this()/super() parameters. End of constructor prologue.
2925 env.info.ctorPrologue = false;
2926
2927 // Variable `site' points to the class in which the called
2928 // constructor is defined.
2929 Type site = env.enclClass.sym.type;
2930 if (methName == names._super) {
2931 if (site == syms.objectType) {
2932 log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2933 site = types.createErrorType(syms.objectType);
2934 } else {
2935 site = types.supertype(site);
2936 }
2937 }
2938
2939 if (site.hasTag(CLASS)) {
2940 Type encl = site.getEnclosingType();
2941 while (encl != null && encl.hasTag(TYPEVAR))
2942 encl = encl.getUpperBound();
2943 if (encl.hasTag(CLASS)) {
2944 // we are calling a nested class
2945
2946 if (tree.meth.hasTag(SELECT)) {
2947 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2948
2949 // We are seeing a prefixed call, of the form
2950 // <expr>.super(...).
2951 // Check that the prefix expression conforms
2952 // to the outer instance type of the class.
2953 chk.checkRefType(qualifier.pos(),
2954 attribExpr(qualifier, localEnv,
2955 encl));
2956 }
2957 } else if (tree.meth.hasTag(SELECT)) {
2958 log.error(tree.meth.pos(),
2959 Errors.IllegalQualNotIcls(site.tsym));
2960 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2961 }
2962
2963 if (tree.meth.hasTag(IDENT)) {
2964 // non-qualified super(...) call; check whether explicit constructor
2965 // invocation is well-formed. If the super class is an inner class,
2966 // make sure that an appropriate implicit qualifier exists. If the super
2967 // class is a local class, make sure that the current class is defined
2968 // in the same context as the local class.
2969 checkNewInnerClass(tree.meth.pos(), localEnv, site, true);
2970 }
2971
2972 // if we're calling a java.lang.Enum constructor,
2973 // prefix the implicit String and int parameters
2974 if (site.tsym == syms.enumSym)
2975 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2976
2977 // Resolve the called constructor under the assumption
2978 // that we are referring to a superclass instance of the
2979 // current instance (JLS ???).
2980 boolean selectSuperPrev = localEnv.info.selectSuper;
2981 localEnv.info.selectSuper = true;
2982 localEnv.info.pendingResolutionPhase = null;
2983 Symbol sym = rs.resolveConstructor(
2984 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2985 localEnv.info.selectSuper = selectSuperPrev;
2986
2987 // Set method symbol to resolved constructor...
2988 TreeInfo.setSymbol(tree.meth, sym);
2989
2990 // ...and check that it is legal in the current context.
2991 // (this will also set the tree's type)
2992 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2993 checkId(tree.meth, site, sym, localEnv,
2994 new ResultInfo(kind, mpt));
2995 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2996 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2997 }
2998 // Otherwise, `site' is an error type and we do nothing
2999 result = tree.type = syms.voidType;
3000 } else {
3001 // Otherwise, we are seeing a regular method call.
3002 // Attribute the arguments, yielding list of argument types, ...
3003 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3004 argtypes = argtypesBuf.toList();
3005 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
3006
3007 // ... and attribute the method using as a prototype a methodtype
3008 // whose formal argument types is exactly the list of actual
3009 // arguments (this will also set the method symbol).
3010 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
3011 localEnv.info.pendingResolutionPhase = null;
3012 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
3013
3014 // Compute the result type.
3015 Type restype = mtype.getReturnType();
3016 if (restype.hasTag(WILDCARD))
3017 throw new AssertionError(mtype);
3018
3019 Type qualifier = (tree.meth.hasTag(SELECT))
3020 ? ((JCFieldAccess) tree.meth).selected.type
3021 : env.enclClass.sym.type;
3022 Symbol msym = TreeInfo.symbol(tree.meth);
3023 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
3024
3025 chk.checkRefTypes(tree.typeargs, typeargtypes);
3026
3027 // Check that value of resulting type is admissible in the
3028 // current context. Also, capture the return type
3029 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
3030 result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
3031 }
3032 chk.checkRequiresIdentity(tree, env.info.lint);
3033 chk.validate(tree.typeargs, localEnv);
3034 }
3035 //where
3036 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
3037 if (msym != null &&
3038 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
3039 methodName == names.getClass &&
3040 argtypes.isEmpty()) {
3041 // as a special case, x.getClass() has type Class<? extends |X|>
3042 return new ClassType(restype.getEnclosingType(),
3043 List.of(new WildcardType(types.erasure(qualifierType.baseType()),
3044 BoundKind.EXTENDS,
3045 syms.boundClass)),
3046 restype.tsym,
3047 restype.getMetadata());
3048 } else if (msym != null &&
3049 msym.owner == syms.arrayClass &&
3050 methodName == names.clone &&
3051 types.isArray(qualifierType)) {
3052 // as a special case, array.clone() has a result that is
3053 // the same as static type of the array being cloned
3054 return qualifierType;
3055 } else {
3056 return restype;
3057 }
3058 }
3059
3060 /** Obtain a method type with given argument types.
3061 */
3062 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
3063 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
3064 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
3065 }
3066
3067 public void visitNewClass(final JCNewClass tree) {
3068 Type owntype = types.createErrorType(tree.type);
3069
3070 // The local environment of a class creation is
3071 // a new environment nested in the current one.
3072 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
3073
3074 // The anonymous inner class definition of the new expression,
3075 // if one is defined by it.
3076 JCClassDecl cdef = tree.def;
3077
3078 // If enclosing class is given, attribute it, and
3079 // complete class name to be fully qualified
3080 JCExpression clazz = tree.clazz; // Class field following new
3081 JCExpression clazzid; // Identifier in class field
3082 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid
3083 annoclazzid = null;
3084
3085 if (clazz.hasTag(TYPEAPPLY)) {
3086 clazzid = ((JCTypeApply) clazz).clazz;
3087 if (clazzid.hasTag(ANNOTATED_TYPE)) {
3088 annoclazzid = (JCAnnotatedType) clazzid;
3089 clazzid = annoclazzid.underlyingType;
3090 }
3091 } else {
3092 if (clazz.hasTag(ANNOTATED_TYPE)) {
3093 annoclazzid = (JCAnnotatedType) clazz;
3094 clazzid = annoclazzid.underlyingType;
3095 } else {
3096 clazzid = clazz;
3097 }
3098 }
3099
3100 JCExpression clazzid1 = clazzid; // The same in fully qualified form
3101
3102 if (tree.encl != null) {
3103 // We are seeing a qualified new, of the form
3104 // <expr>.new C <...> (...) ...
3105 // In this case, we let clazz stand for the name of the
3106 // allocated class C prefixed with the type of the qualifier
3107 // expression, so that we can
3108 // resolve it with standard techniques later. I.e., if
3109 // <expr> has type T, then <expr>.new C <...> (...)
3110 // yields a clazz T.C.
3111 Type encltype = chk.checkRefType(tree.encl.pos(),
3112 attribExpr(tree.encl, env));
3113 // TODO 308: in <expr>.new C, do we also want to add the type annotations
3114 // from expr to the combined type, or not? Yes, do this.
3115 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
3116 ((JCIdent) clazzid).name);
3117
3118 EndPosTable endPosTable = this.env.toplevel.endPositions;
3119 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
3120 if (clazz.hasTag(ANNOTATED_TYPE)) {
3121 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
3122 List<JCAnnotation> annos = annoType.annotations;
3123
3124 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
3125 clazzid1 = make.at(tree.pos).
3126 TypeApply(clazzid1,
3127 ((JCTypeApply) clazz).arguments);
3128 }
3129
3130 clazzid1 = make.at(tree.pos).
3131 AnnotatedType(annos, clazzid1);
3132 } else if (clazz.hasTag(TYPEAPPLY)) {
3133 clazzid1 = make.at(tree.pos).
3134 TypeApply(clazzid1,
3135 ((JCTypeApply) clazz).arguments);
3136 }
3137
3138 clazz = clazzid1;
3139 }
3140
3141 // Attribute clazz expression and store
3142 // symbol + type back into the attributed tree.
3143 Type clazztype;
3144
3145 try {
3146 env.info.isAnonymousNewClass = tree.def != null;
3147 clazztype = TreeInfo.isEnumInit(env.tree) ?
3148 attribIdentAsEnumType(env, (JCIdent)clazz) :
3149 attribType(clazz, env);
3150 } finally {
3151 env.info.isAnonymousNewClass = false;
3152 }
3153
3154 clazztype = chk.checkDiamond(tree, clazztype);
3155 chk.validate(clazz, localEnv);
3156 if (tree.encl != null) {
3157 // We have to work in this case to store
3158 // symbol + type back into the attributed tree.
3159 tree.clazz.type = clazztype;
3160 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
3161 clazzid.type = ((JCIdent) clazzid).sym.type;
3162 if (annoclazzid != null) {
3163 annoclazzid.type = clazzid.type;
3164 }
3165 if (!clazztype.isErroneous()) {
3166 if (cdef != null && clazztype.tsym.isInterface()) {
3167 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
3168 } else if (clazztype.tsym.isStatic()) {
3169 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
3170 }
3171 }
3172 } else {
3173 // Check for the existence of an apropos outer instance
3174 checkNewInnerClass(tree.pos(), env, clazztype, false);
3175 }
3176
3177 // Attribute constructor arguments.
3178 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
3179 final KindSelector pkind =
3180 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3181 List<Type> argtypes = argtypesBuf.toList();
3182 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
3183
3184 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
3185 // Enums may not be instantiated except implicitly
3186 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
3187 (!env.tree.hasTag(VARDEF) ||
3188 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
3189 ((JCVariableDecl) env.tree).init != tree))
3190 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
3191
3192 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
3193 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3194 boolean skipNonDiamondPath = false;
3195 // Check that class is not abstract
3196 if (cdef == null && !tree.classDeclRemoved() && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
3197 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
3198 log.error(tree.pos(),
3199 Errors.AbstractCantBeInstantiated(clazztype.tsym));
3200 skipNonDiamondPath = true;
3201 } else if (cdef != null && clazztype.tsym.isInterface()) {
3202 // Check that no constructor arguments are given to
3203 // anonymous classes implementing an interface
3204 if (!argtypes.isEmpty())
3205 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
3206
3207 if (!typeargtypes.isEmpty())
3208 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
3209
3210 // Error recovery: pretend no arguments were supplied.
3211 argtypes = List.nil();
3212 typeargtypes = List.nil();
3213 skipNonDiamondPath = true;
3214 }
3215 if (TreeInfo.isDiamond(tree)) {
3216 ClassType site = new ClassType(clazztype.getEnclosingType(),
3217 clazztype.tsym.type.getTypeArguments(),
3218 clazztype.tsym,
3219 clazztype.getMetadata());
3220
3221 Env<AttrContext> diamondEnv = localEnv.dup(tree);
3222 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
3223 diamondEnv.info.pendingResolutionPhase = null;
3224
3225 //if the type of the instance creation expression is a class type
3226 //apply method resolution inference (JLS 15.12.2.7). The return type
3227 //of the resolved constructor will be a partially instantiated type
3228 Symbol constructor = rs.resolveDiamond(tree.pos(),
3229 diamondEnv,
3230 site,
3231 argtypes,
3232 typeargtypes);
3233 tree.constructor = constructor.baseSymbol();
3234
3235 final TypeSymbol csym = clazztype.tsym;
3236 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
3237 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3238 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
3239 constructorType = checkId(tree, site,
3240 constructor,
3241 diamondEnv,
3242 diamondResult);
3243
3244 tree.clazz.type = types.createErrorType(clazztype);
3245 if (!constructorType.isErroneous()) {
3246 tree.clazz.type = clazz.type = constructorType.getReturnType();
3247 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
3248 }
3249 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
3250 }
3251
3252 // Resolve the called constructor under the assumption
3253 // that we are referring to a superclass instance of the
3254 // current instance (JLS ???).
3255 else if (!skipNonDiamondPath) {
3256 //the following code alters some of the fields in the current
3257 //AttrContext - hence, the current context must be dup'ed in
3258 //order to avoid downstream failures
3259 Env<AttrContext> rsEnv = localEnv.dup(tree);
3260 rsEnv.info.selectSuper = cdef != null;
3261 rsEnv.info.pendingResolutionPhase = null;
3262 tree.constructor = rs.resolveConstructor(
3263 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
3264 if (cdef == null) { //do not check twice!
3265 tree.constructorType = checkId(tree,
3266 clazztype,
3267 tree.constructor,
3268 rsEnv,
3269 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3270 if (rsEnv.info.lastResolveVarargs())
3271 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
3272 }
3273 }
3274
3275 chk.checkRequiresIdentity(tree, env.info.lint);
3276
3277 if (cdef != null) {
3278 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
3279 return;
3280 }
3281
3282 if (tree.constructor != null && tree.constructor.kind == MTH)
3283 owntype = clazztype;
3284 }
3285 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3286 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3287 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
3288 //we need to wait for inference to finish and then replace inference vars in the constructor type
3289 inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
3290 instantiatedContext -> {
3291 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3292 });
3293 }
3294 chk.validate(tree.typeargs, localEnv);
3295 }
3296
3297 // where
3298 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
3299 JCClassDecl cdef, Env<AttrContext> localEnv,
3300 List<Type> argtypes, List<Type> typeargtypes,
3301 KindSelector pkind) {
3302 // We are seeing an anonymous class instance creation.
3303 // In this case, the class instance creation
3304 // expression
3305 //
3306 // E.new <typeargs1>C<typargs2>(args) { ... }
3307 //
3308 // is represented internally as
3309 //
3310 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
3311 //
3312 // This expression is then *transformed* as follows:
3313 //
3314 // (1) add an extends or implements clause
3315 // (2) add a constructor.
3316 //
3317 // For instance, if C is a class, and ET is the type of E,
3318 // the expression
3319 //
3320 // E.new <typeargs1>C<typargs2>(args) { ... }
3321 //
3322 // is translated to (where X is a fresh name and typarams is the
3323 // parameter list of the super constructor):
3324 //
3325 // new <typeargs1>X(<*nullchk*>E, args) where
3326 // X extends C<typargs2> {
3327 // <typarams> X(ET e, args) {
3328 // e.<typeargs1>super(args)
3329 // }
3330 // ...
3331 // }
3332 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3333 Type enclType = clazztype.getEnclosingType();
3334 if (enclType != null &&
3335 enclType.hasTag(CLASS) &&
3336 !chk.checkDenotable((ClassType)enclType)) {
3337 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
3338 }
3339 final boolean isDiamond = TreeInfo.isDiamond(tree);
3340 if (isDiamond
3341 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
3342 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3343 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3344 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3345 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3346 instantiatedContext -> {
3347 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3348 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3349 ResultInfo prevResult = this.resultInfo;
3350 try {
3351 this.resultInfo = resultInfoForClassDefinition;
3352 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3353 dupLocalEnv, argtypes, typeargtypes, pkind);
3354 } finally {
3355 this.resultInfo = prevResult;
3356 }
3357 });
3358 } else {
3359 if (isDiamond && clazztype.hasTag(CLASS)) {
3360 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3361 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3362 // One or more types inferred in the previous steps is non-denotable.
3363 Fragment fragment = Diamond(clazztype.tsym);
3364 log.error(tree.clazz.pos(),
3365 Errors.CantApplyDiamond1(
3366 fragment,
3367 invalidDiamondArgs.size() > 1 ?
3368 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3369 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3370 }
3371 // For <>(){}, inferred types must also be accessible.
3372 for (Type t : clazztype.getTypeArguments()) {
3373 rs.checkAccessibleType(env, t);
3374 }
3375 }
3376
3377 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3378 // false for isInterface call even when the original type is an interface.
3379 boolean implementing = clazztype.tsym.isInterface() ||
3380 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3381 clazztype.getOriginalType().tsym.isInterface();
3382
3383 if (implementing) {
3384 cdef.implementing = List.of(clazz);
3385 } else {
3386 cdef.extending = clazz;
3387 }
3388
3389 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3390 rs.isSerializable(clazztype)) {
3391 localEnv.info.isSerializable = true;
3392 }
3393
3394 attribStat(cdef, localEnv);
3395
3396 List<Type> finalargtypes;
3397 // If an outer instance is given,
3398 // prefix it to the constructor arguments
3399 // and delete it from the new expression
3400 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3401 finalargtypes = argtypes.prepend(tree.encl.type);
3402 } else {
3403 finalargtypes = argtypes;
3404 }
3405
3406 // Reassign clazztype and recompute constructor. As this necessarily involves
3407 // another attribution pass for deferred types in the case of <>, replicate
3408 // them. Original arguments have right decorations already.
3409 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3410 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3411 }
3412
3413 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3414 : cdef.sym.type;
3415 Symbol sym = tree.constructor = rs.resolveConstructor(
3416 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3417 Assert.check(!sym.kind.isResolutionError());
3418 tree.constructor = sym;
3419 tree.constructorType = checkId(tree,
3420 clazztype,
3421 tree.constructor,
3422 localEnv,
3423 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3424 }
3425 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3426 clazztype : types.createErrorType(tree.type);
3427 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3428 chk.validate(tree.typeargs, localEnv);
3429 }
3430
3431 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3432 return new Check.NestedCheckContext(checkContext) {
3433 @Override
3434 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3435 enclosingContext.report(clazz.clazz,
3436 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3437 }
3438 };
3439 }
3440
3441 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) {
3442 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH;
3443 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 ||
3444 (!isLocal && !type.tsym.isInner()) ||
3445 (isSuper && env.enclClass.sym.isAnonymous())) {
3446 // nothing to check
3447 return;
3448 }
3449 Symbol res = isLocal ?
3450 rs.findLocalClassOwner(env, type.tsym) :
3451 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper);
3452 if (res.exists()) {
3453 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true);
3454 } else {
3455 log.error(pos, Errors.EnclClassRequired(type.tsym));
3456 }
3457 }
3458
3459 /** Make an attributed null check tree.
3460 */
3461 public JCExpression makeNullCheck(JCExpression arg) {
3462 // optimization: new Outer() can never be null; skip null check
3463 if (arg.getTag() == NEWCLASS)
3464 return arg;
3465 // optimization: X.this is never null; skip null check
3466 Name name = TreeInfo.name(arg);
3467 if (name == names._this || name == names._super) return arg;
3468
3469 JCTree.Tag optag = NULLCHK;
3470 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3471 tree.operator = operators.resolveUnary(arg, optag, arg.type);
3472 tree.type = arg.type;
3473 return tree;
3474 }
3475
3476 public void visitNewArray(JCNewArray tree) {
3477 Type owntype = types.createErrorType(tree.type);
3478 Env<AttrContext> localEnv = env.dup(tree);
3479 Type elemtype;
3480 if (tree.elemtype != null) {
3481 elemtype = attribType(tree.elemtype, localEnv);
3482 chk.validate(tree.elemtype, localEnv);
3483 owntype = elemtype;
3484 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3485 attribExpr(l.head, localEnv, syms.intType);
3486 owntype = new ArrayType(owntype, syms.arrayClass);
3487 }
3488 } else {
3489 // we are seeing an untyped aggregate { ... }
3490 // this is allowed only if the prototype is an array
3491 if (pt().hasTag(ARRAY)) {
3492 elemtype = types.elemtype(pt());
3493 } else {
3494 if (!pt().hasTag(ERROR) &&
3495 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3496 log.error(tree.pos(),
3497 Errors.IllegalInitializerForType(pt()));
3498 }
3499 elemtype = types.createErrorType(pt());
3500 }
3501 }
3502 if (tree.elems != null) {
3503 attribExprs(tree.elems, localEnv, elemtype);
3504 owntype = new ArrayType(elemtype, syms.arrayClass);
3505 }
3506 if (!types.isReifiable(elemtype))
3507 log.error(tree.pos(), Errors.GenericArrayCreation);
3508 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3509 }
3510
3511 /*
3512 * A lambda expression can only be attributed when a target-type is available.
3513 * In addition, if the target-type is that of a functional interface whose
3514 * descriptor contains inference variables in argument position the lambda expression
3515 * is 'stuck' (see DeferredAttr).
3516 */
3517 @Override
3518 public void visitLambda(final JCLambda that) {
3519 boolean wrongContext = false;
3520 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3521 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3522 //lambda only allowed in assignment or method invocation/cast context
3523 log.error(that.pos(), Errors.UnexpectedLambda);
3524 }
3525 resultInfo = recoveryInfo;
3526 wrongContext = true;
3527 }
3528 //create an environment for attribution of the lambda expression
3529 final Env<AttrContext> localEnv = lambdaEnv(that, env);
3530 boolean needsRecovery =
3531 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3532 try {
3533 if (needsRecovery && rs.isSerializable(pt())) {
3534 localEnv.info.isSerializable = true;
3535 localEnv.info.isSerializableLambda = true;
3536 }
3537 List<Type> explicitParamTypes = null;
3538 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3539 //attribute lambda parameters
3540 attribStats(that.params, localEnv);
3541 explicitParamTypes = TreeInfo.types(that.params);
3542 }
3543
3544 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3545 Type currentTarget = targetInfo.target;
3546 Type lambdaType = targetInfo.descriptor;
3547
3548 if (currentTarget.isErroneous()) {
3549 result = that.type = currentTarget;
3550 return;
3551 }
3552
3553 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3554
3555 if (lambdaType.hasTag(FORALL)) {
3556 //lambda expression target desc cannot be a generic method
3557 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3558 kindName(currentTarget.tsym),
3559 currentTarget.tsym);
3560 resultInfo.checkContext.report(that, diags.fragment(msg));
3561 result = that.type = types.createErrorType(pt());
3562 return;
3563 }
3564
3565 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3566 //add param type info in the AST
3567 List<Type> actuals = lambdaType.getParameterTypes();
3568 List<JCVariableDecl> params = that.params;
3569
3570 boolean arityMismatch = false;
3571
3572 while (params.nonEmpty()) {
3573 if (actuals.isEmpty()) {
3574 //not enough actuals to perform lambda parameter inference
3575 arityMismatch = true;
3576 }
3577 //reset previously set info
3578 Type argType = arityMismatch ?
3579 syms.errType :
3580 actuals.head;
3581 if (params.head.isImplicitlyTyped()) {
3582 setSyntheticVariableType(params.head, argType);
3583 }
3584 params.head.sym = null;
3585 actuals = actuals.isEmpty() ?
3586 actuals :
3587 actuals.tail;
3588 params = params.tail;
3589 }
3590
3591 //attribute lambda parameters
3592 attribStats(that.params, localEnv);
3593
3594 if (arityMismatch) {
3595 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3596 result = that.type = types.createErrorType(currentTarget);
3597 return;
3598 }
3599 }
3600
3601 //from this point on, no recovery is needed; if we are in assignment context
3602 //we will be able to attribute the whole lambda body, regardless of errors;
3603 //if we are in a 'check' method context, and the lambda is not compatible
3604 //with the target-type, it will be recovered anyway in Attr.checkId
3605 needsRecovery = false;
3606
3607 ResultInfo bodyResultInfo = localEnv.info.returnResult =
3608 lambdaBodyResult(that, lambdaType, resultInfo);
3609
3610 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3611 attribTree(that.getBody(), localEnv, bodyResultInfo);
3612 } else {
3613 JCBlock body = (JCBlock)that.body;
3614 if (body == breakTree &&
3615 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3616 breakTreeFound(copyEnv(localEnv));
3617 }
3618 attribStats(body.stats, localEnv);
3619 }
3620
3621 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3622
3623 boolean isSpeculativeRound =
3624 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3625
3626 preFlow(that);
3627 flow.analyzeLambda(env, that, make, isSpeculativeRound);
3628
3629 that.type = currentTarget; //avoids recovery at this stage
3630 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3631
3632 if (!isSpeculativeRound) {
3633 //add thrown types as bounds to the thrown types free variables if needed:
3634 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3635 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3636 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3637 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3638 }
3639 }
3640
3641 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3642 }
3643 result = wrongContext ? that.type = types.createErrorType(pt())
3644 : check(that, currentTarget, KindSelector.VAL, resultInfo);
3645 } catch (Types.FunctionDescriptorLookupError ex) {
3646 JCDiagnostic cause = ex.getDiagnostic();
3647 resultInfo.checkContext.report(that, cause);
3648 result = that.type = types.createErrorType(pt());
3649 return;
3650 } catch (CompletionFailure cf) {
3651 chk.completionError(that.pos(), cf);
3652 } catch (Throwable t) {
3653 //when an unexpected exception happens, avoid attempts to attribute the same tree again
3654 //as that would likely cause the same exception again.
3655 needsRecovery = false;
3656 throw t;
3657 } finally {
3658 localEnv.info.scope.leave();
3659 if (needsRecovery) {
3660 Type prevResult = result;
3661 try {
3662 attribTree(that, env, recoveryInfo);
3663 } finally {
3664 if (result == Type.recoveryType) {
3665 result = prevResult;
3666 }
3667 }
3668 }
3669 }
3670 }
3671 //where
3672 class TargetInfo {
3673 Type target;
3674 Type descriptor;
3675
3676 public TargetInfo(Type target, Type descriptor) {
3677 this.target = target;
3678 this.descriptor = descriptor;
3679 }
3680 }
3681
3682 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3683 Type lambdaType;
3684 Type currentTarget = resultInfo.pt;
3685 if (resultInfo.pt != Type.recoveryType) {
3686 /* We need to adjust the target. If the target is an
3687 * intersection type, for example: SAM & I1 & I2 ...
3688 * the target will be updated to SAM
3689 */
3690 currentTarget = targetChecker.visit(currentTarget, that);
3691 if (!currentTarget.isIntersection()) {
3692 if (explicitParamTypes != null) {
3693 currentTarget = infer.instantiateFunctionalInterface(that,
3694 currentTarget, explicitParamTypes, resultInfo.checkContext);
3695 }
3696 currentTarget = types.removeWildcards(currentTarget);
3697 lambdaType = types.findDescriptorType(currentTarget);
3698 } else {
3699 IntersectionClassType ict = (IntersectionClassType)currentTarget;
3700 ListBuffer<Type> components = new ListBuffer<>();
3701 for (Type bound : ict.getExplicitComponents()) {
3702 if (explicitParamTypes != null) {
3703 try {
3704 bound = infer.instantiateFunctionalInterface(that,
3705 bound, explicitParamTypes, resultInfo.checkContext);
3706 } catch (FunctionDescriptorLookupError t) {
3707 // do nothing
3708 }
3709 }
3710 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) {
3711 // bound must be j.l.Object or an interface, but not an annotation
3712 reportIntersectionError(that, "not.an.intf.component", bound);
3713 }
3714 bound = types.removeWildcards(bound);
3715 components.add(bound);
3716 }
3717 currentTarget = types.makeIntersectionType(components.toList());
3718 currentTarget.tsym.flags_field |= INTERFACE;
3719 lambdaType = types.findDescriptorType(currentTarget);
3720 }
3721
3722 } else {
3723 currentTarget = Type.recoveryType;
3724 lambdaType = fallbackDescriptorType(that);
3725 }
3726 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3727 //lambda expression target desc cannot be a generic method
3728 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3729 kindName(currentTarget.tsym),
3730 currentTarget.tsym);
3731 resultInfo.checkContext.report(that, diags.fragment(msg));
3732 currentTarget = types.createErrorType(pt());
3733 }
3734 return new TargetInfo(currentTarget, lambdaType);
3735 }
3736
3737 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
3738 resultInfo.checkContext.report(pos,
3739 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
3740 }
3741
3742 void preFlow(JCLambda tree) {
3743 attrRecover.doRecovery();
3744 new PostAttrAnalyzer() {
3745 @Override
3746 public void scan(JCTree tree) {
3747 if (tree == null ||
3748 (tree.type != null &&
3749 tree.type == Type.stuckType)) {
3750 //don't touch stuck expressions!
3751 return;
3752 }
3753 super.scan(tree);
3754 }
3755
3756 @Override
3757 public void visitClassDef(JCClassDecl that) {
3758 // or class declaration trees!
3759 }
3760
3761 public void visitLambda(JCLambda that) {
3762 // or lambda expressions!
3763 }
3764 }.scan(tree.body);
3765 }
3766
3767 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3768
3769 @Override
3770 public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3771 return t.isIntersection() ?
3772 visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3773 }
3774
3775 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3776 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3777 return ict;
3778 }
3779
3780 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3781 ListBuffer<Type> targs = new ListBuffer<>();
3782 ListBuffer<Type> supertypes = new ListBuffer<>();
3783 for (Type i : ict.interfaces_field) {
3784 if (i.isParameterized()) {
3785 targs.appendList(i.tsym.type.allparams());
3786 }
3787 supertypes.append(i.tsym.type);
3788 }
3789 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3790 notionalIntf.allparams_field = targs.toList();
3791 notionalIntf.tsym.flags_field |= INTERFACE;
3792 return notionalIntf.tsym;
3793 }
3794 };
3795
3796 private Type fallbackDescriptorType(JCExpression tree) {
3797 switch (tree.getTag()) {
3798 case LAMBDA:
3799 JCLambda lambda = (JCLambda)tree;
3800 List<Type> argtypes = List.nil();
3801 for (JCVariableDecl param : lambda.params) {
3802 argtypes = param.vartype != null && param.vartype.type != null ?
3803 argtypes.append(param.vartype.type) :
3804 argtypes.append(syms.errType);
3805 }
3806 return new MethodType(argtypes, Type.recoveryType,
3807 List.of(syms.throwableType), syms.methodClass);
3808 case REFERENCE:
3809 return new MethodType(List.nil(), Type.recoveryType,
3810 List.of(syms.throwableType), syms.methodClass);
3811 default:
3812 Assert.error("Cannot get here!");
3813 }
3814 return null;
3815 }
3816
3817 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3818 final InferenceContext inferenceContext, final Type... ts) {
3819 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3820 }
3821
3822 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3823 final InferenceContext inferenceContext, final List<Type> ts) {
3824 if (inferenceContext.free(ts)) {
3825 inferenceContext.addFreeTypeListener(ts,
3826 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3827 } else {
3828 for (Type t : ts) {
3829 rs.checkAccessibleType(env, t);
3830 }
3831 }
3832 }
3833
3834 /**
3835 * Lambda/method reference have a special check context that ensures
3836 * that i.e. a lambda return type is compatible with the expected
3837 * type according to both the inherited context and the assignment
3838 * context.
3839 */
3840 class FunctionalReturnContext extends Check.NestedCheckContext {
3841
3842 FunctionalReturnContext(CheckContext enclosingContext) {
3843 super(enclosingContext);
3844 }
3845
3846 @Override
3847 public boolean compatible(Type found, Type req, Warner warn) {
3848 //return type must be compatible in both current context and assignment context
3849 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3850 }
3851
3852 @Override
3853 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3854 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3855 }
3856 }
3857
3858 class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3859
3860 JCExpression expr;
3861 boolean expStmtExpected;
3862
3863 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3864 super(enclosingContext);
3865 this.expr = expr;
3866 }
3867
3868 @Override
3869 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3870 if (expStmtExpected) {
3871 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3872 } else {
3873 super.report(pos, details);
3874 }
3875 }
3876
3877 @Override
3878 public boolean compatible(Type found, Type req, Warner warn) {
3879 //a void return is compatible with an expression statement lambda
3880 if (req.hasTag(VOID)) {
3881 expStmtExpected = true;
3882 return TreeInfo.isExpressionStatement(expr);
3883 } else {
3884 return super.compatible(found, req, warn);
3885 }
3886 }
3887 }
3888
3889 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3890 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3891 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3892 new FunctionalReturnContext(resultInfo.checkContext);
3893
3894 return descriptor.getReturnType() == Type.recoveryType ?
3895 recoveryInfo :
3896 new ResultInfo(KindSelector.VAL,
3897 descriptor.getReturnType(), funcContext);
3898 }
3899
3900 /**
3901 * Lambda compatibility. Check that given return types, thrown types, parameter types
3902 * are compatible with the expected functional interface descriptor. This means that:
3903 * (i) parameter types must be identical to those of the target descriptor; (ii) return
3904 * types must be compatible with the return type of the expected descriptor.
3905 */
3906 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3907 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3908
3909 //return values have already been checked - but if lambda has no return
3910 //values, we must ensure that void/value compatibility is correct;
3911 //this amounts at checking that, if a lambda body can complete normally,
3912 //the descriptor's return type must be void
3913 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3914 !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3915 Fragment msg =
3916 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3917 checkContext.report(tree,
3918 diags.fragment(msg));
3919 }
3920
3921 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3922 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3923 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3924 }
3925 }
3926
3927 /* This method returns an environment to be used to attribute a lambda
3928 * expression.
3929 *
3930 * The owner of this environment is a method symbol. If the current owner
3931 * is not a method (e.g. if the lambda occurs in a field initializer), then
3932 * a synthetic method symbol owner is created.
3933 */
3934 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3935 Env<AttrContext> lambdaEnv;
3936 Symbol owner = env.info.scope.owner;
3937 if (owner.kind == VAR && owner.owner.kind == TYP) {
3938 // If the lambda is nested in a field initializer, we need to create a fake init method.
3939 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3940 // init symbol's owner).
3941 ClassSymbol enclClass = owner.enclClass();
3942 Name initName = owner.isStatic() ? names.clinit : names.init;
3943 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3944 initName, initBlockType, enclClass);
3945 initSym.params = List.nil();
3946 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3947 } else {
3948 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3949 }
3950 lambdaEnv.info.yieldResult = null;
3951 lambdaEnv.info.isLambda = true;
3952 return lambdaEnv;
3953 }
3954
3955 @Override
3956 public void visitReference(final JCMemberReference that) {
3957 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3958 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3959 //method reference only allowed in assignment or method invocation/cast context
3960 log.error(that.pos(), Errors.UnexpectedMref);
3961 }
3962 result = that.type = types.createErrorType(pt());
3963 return;
3964 }
3965 final Env<AttrContext> localEnv = env.dup(that);
3966 try {
3967 //attribute member reference qualifier - if this is a constructor
3968 //reference, the expected kind must be a type
3969 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3970
3971 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3972 exprType = chk.checkConstructorRefType(that.expr, exprType);
3973 if (!exprType.isErroneous() &&
3974 exprType.isRaw() &&
3975 that.typeargs != null) {
3976 log.error(that.expr.pos(),
3977 Errors.InvalidMref(Kinds.kindName(that.getMode()),
3978 Fragments.MrefInferAndExplicitParams));
3979 exprType = types.createErrorType(exprType);
3980 }
3981 }
3982
3983 if (exprType.isErroneous()) {
3984 //if the qualifier expression contains problems,
3985 //give up attribution of method reference
3986 result = that.type = exprType;
3987 return;
3988 }
3989
3990 if (TreeInfo.isStaticSelector(that.expr, names)) {
3991 //if the qualifier is a type, validate it; raw warning check is
3992 //omitted as we don't know at this stage as to whether this is a
3993 //raw selector (because of inference)
3994 chk.validate(that.expr, env, false);
3995 } else {
3996 Symbol lhsSym = TreeInfo.symbol(that.expr);
3997 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3998 }
3999 //attrib type-arguments
4000 List<Type> typeargtypes = List.nil();
4001 if (that.typeargs != null) {
4002 typeargtypes = attribTypes(that.typeargs, localEnv);
4003 }
4004
4005 boolean isTargetSerializable =
4006 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4007 rs.isSerializable(pt());
4008 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
4009 Type currentTarget = targetInfo.target;
4010 Type desc = targetInfo.descriptor;
4011
4012 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
4013 List<Type> argtypes = desc.getParameterTypes();
4014 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
4015
4016 if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
4017 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
4018 }
4019
4020 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
4021 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
4022 try {
4023 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
4024 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
4025 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
4026 } finally {
4027 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
4028 }
4029
4030 Symbol refSym = refResult.fst;
4031 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
4032
4033 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
4034 * JDK-8075541
4035 */
4036 if (refSym.kind != MTH) {
4037 boolean targetError;
4038 switch (refSym.kind) {
4039 case ABSENT_MTH:
4040 targetError = false;
4041 break;
4042 case WRONG_MTH:
4043 case WRONG_MTHS:
4044 case AMBIGUOUS:
4045 case HIDDEN:
4046 case STATICERR:
4047 targetError = true;
4048 break;
4049 default:
4050 Assert.error("unexpected result kind " + refSym.kind);
4051 targetError = false;
4052 }
4053
4054 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
4055 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
4056 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
4057
4058 JCDiagnostic diag = diags.create(log.currentSource(), that,
4059 targetError ?
4060 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
4061 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
4062
4063 if (targetError && currentTarget == Type.recoveryType) {
4064 //a target error doesn't make sense during recovery stage
4065 //as we don't know what actual parameter types are
4066 result = that.type = currentTarget;
4067 return;
4068 } else {
4069 if (targetError) {
4070 resultInfo.checkContext.report(that, diag);
4071 } else {
4072 log.report(diag);
4073 }
4074 result = that.type = types.createErrorType(currentTarget);
4075 return;
4076 }
4077 }
4078
4079 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
4080 that.kind = lookupHelper.referenceKind(that.sym);
4081 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
4082
4083 if (desc.getReturnType() == Type.recoveryType) {
4084 // stop here
4085 result = that.type = currentTarget;
4086 return;
4087 }
4088
4089 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
4090 checkNewInnerClass(that.pos(), env, exprType, false);
4091 }
4092
4093 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
4094
4095 if (that.getMode() == ReferenceMode.INVOKE &&
4096 TreeInfo.isStaticSelector(that.expr, names) &&
4097 that.kind.isUnbound() &&
4098 lookupHelper.site.isRaw()) {
4099 chk.checkRaw(that.expr, localEnv);
4100 }
4101
4102 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
4103 exprType.getTypeArguments().nonEmpty()) {
4104 //static ref with class type-args
4105 log.error(that.expr.pos(),
4106 Errors.InvalidMref(Kinds.kindName(that.getMode()),
4107 Fragments.StaticMrefWithTargs));
4108 result = that.type = types.createErrorType(currentTarget);
4109 return;
4110 }
4111
4112 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
4113 // Check that super-qualified symbols are not abstract (JLS)
4114 rs.checkNonAbstract(that.pos(), that.sym);
4115 }
4116
4117 if (isTargetSerializable) {
4118 chk.checkAccessFromSerializableElement(that, true);
4119 }
4120 }
4121
4122 ResultInfo checkInfo =
4123 resultInfo.dup(newMethodTemplate(
4124 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
4125 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
4126 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
4127
4128 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
4129
4130 if (that.kind.isUnbound() &&
4131 resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
4132 //re-generate inference constraints for unbound receiver
4133 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
4134 //cannot happen as this has already been checked - we just need
4135 //to regenerate the inference constraints, as that has been lost
4136 //as a result of the call to inferenceContext.save()
4137 Assert.error("Can't get here");
4138 }
4139 }
4140
4141 if (!refType.isErroneous()) {
4142 refType = types.createMethodTypeWithReturn(refType,
4143 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
4144 }
4145
4146 //go ahead with standard method reference compatibility check - note that param check
4147 //is a no-op (as this has been taken care during method applicability)
4148 boolean isSpeculativeRound =
4149 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
4150
4151 that.type = currentTarget; //avoids recovery at this stage
4152 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
4153 if (!isSpeculativeRound) {
4154 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
4155 }
4156 chk.checkRequiresIdentity(that, localEnv.info.lint);
4157 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
4158 } catch (Types.FunctionDescriptorLookupError ex) {
4159 JCDiagnostic cause = ex.getDiagnostic();
4160 resultInfo.checkContext.report(that, cause);
4161 result = that.type = types.createErrorType(pt());
4162 return;
4163 }
4164 }
4165 //where
4166 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
4167 //if this is a constructor reference, the expected kind must be a type
4168 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
4169 KindSelector.VAL_TYP : KindSelector.TYP,
4170 Type.noType);
4171 }
4172
4173
4174 @SuppressWarnings("fallthrough")
4175 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
4176 InferenceContext inferenceContext = checkContext.inferenceContext();
4177 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
4178
4179 Type resType;
4180 switch (tree.getMode()) {
4181 case NEW:
4182 if (!tree.expr.type.isRaw()) {
4183 resType = tree.expr.type;
4184 break;
4185 }
4186 default:
4187 resType = refType.getReturnType();
4188 }
4189
4190 Type incompatibleReturnType = resType;
4191
4192 if (returnType.hasTag(VOID)) {
4193 incompatibleReturnType = null;
4194 }
4195
4196 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
4197 if (resType.isErroneous() ||
4198 new FunctionalReturnContext(checkContext).compatible(resType, returnType,
4199 checkContext.checkWarner(tree, resType, returnType))) {
4200 incompatibleReturnType = null;
4201 }
4202 }
4203
4204 if (incompatibleReturnType != null) {
4205 Fragment msg =
4206 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
4207 checkContext.report(tree, diags.fragment(msg));
4208 } else {
4209 if (inferenceContext.free(refType)) {
4210 // we need to wait for inference to finish and then replace inference vars in the referent type
4211 inferenceContext.addFreeTypeListener(List.of(refType),
4212 instantiatedContext -> {
4213 tree.referentType = instantiatedContext.asInstType(refType);
4214 });
4215 } else {
4216 tree.referentType = refType;
4217 }
4218 }
4219
4220 if (!speculativeAttr) {
4221 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
4222 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
4223 }
4224 }
4225 }
4226
4227 boolean checkExConstraints(
4228 List<Type> thrownByFuncExpr,
4229 List<Type> thrownAtFuncType,
4230 InferenceContext inferenceContext) {
4231 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
4232 * are not proper types
4233 */
4234 List<Type> nonProperList = thrownAtFuncType.stream()
4235 .filter(e -> inferenceContext.free(e)).collect(List.collector());
4236 List<Type> properList = thrownAtFuncType.diff(nonProperList);
4237
4238 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
4239 * in the throws clause of the invocation type of the method reference's compile-time
4240 * declaration
4241 */
4242 List<Type> checkedList = thrownByFuncExpr.stream()
4243 .filter(e -> chk.isChecked(e)).collect(List.collector());
4244
4245 /** If n = 0 (the function type's throws clause consists only of proper types), then
4246 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
4247 * in the throws clause, the constraint reduces to false; otherwise, the constraint
4248 * reduces to true
4249 */
4250 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
4251 for (Type checked : checkedList) {
4252 boolean isSubtype = false;
4253 for (Type proper : properList) {
4254 if (types.isSubtype(checked, proper)) {
4255 isSubtype = true;
4256 break;
4257 }
4258 }
4259 if (!isSubtype) {
4260 uncaughtByProperTypes.add(checked);
4261 }
4262 }
4263
4264 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
4265 return false;
4266 }
4267
4268 /** If n > 0, the constraint reduces to a set of subtyping constraints:
4269 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
4270 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
4271 */
4272 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
4273 uncaughtByProperTypes.forEach(checkedEx -> {
4274 nonProperAsUndet.forEach(nonProper -> {
4275 types.isSubtype(checkedEx, nonProper);
4276 });
4277 });
4278
4279 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
4280 */
4281 nonProperAsUndet.stream()
4282 .filter(t -> t.hasTag(UNDETVAR))
4283 .forEach(t -> ((UndetVar)t).setThrow());
4284 return true;
4285 }
4286
4287 /**
4288 * Set functional type info on the underlying AST. Note: as the target descriptor
4289 * might contain inference variables, we might need to register an hook in the
4290 * current inference context.
4291 */
4292 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
4293 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
4294 if (checkContext.inferenceContext().free(descriptorType)) {
4295 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
4296 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
4297 inferenceContext.asInstType(primaryTarget), checkContext));
4298 } else {
4299 fExpr.owner = env.info.scope.owner;
4300 if (pt.hasTag(CLASS)) {
4301 fExpr.target = primaryTarget;
4302 }
4303 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4304 pt != Type.recoveryType) {
4305 //check that functional interface class is well-formed
4306 try {
4307 /* Types.makeFunctionalInterfaceClass() may throw an exception
4308 * when it's executed post-inference. See the listener code
4309 * above.
4310 */
4311 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
4312 names.empty, fExpr.target, ABSTRACT);
4313 if (csym != null) {
4314 chk.checkImplementations(env.tree, csym, csym);
4315 try {
4316 //perform an additional functional interface check on the synthetic class,
4317 //as there may be spurious errors for raw targets - because of existing issues
4318 //with membership and inheritance (see JDK-8074570).
4319 csym.flags_field |= INTERFACE;
4320 types.findDescriptorType(csym.type);
4321 } catch (FunctionDescriptorLookupError err) {
4322 resultInfo.checkContext.report(fExpr,
4323 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
4324 }
4325 }
4326 } catch (Types.FunctionDescriptorLookupError ex) {
4327 JCDiagnostic cause = ex.getDiagnostic();
4328 resultInfo.checkContext.report(env.tree, cause);
4329 }
4330 }
4331 }
4332 }
4333
4334 public void visitParens(JCParens tree) {
4335 Type owntype = attribTree(tree.expr, env, resultInfo);
4336 result = check(tree, owntype, pkind(), resultInfo);
4337 Symbol sym = TreeInfo.symbol(tree);
4338 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
4339 log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
4340 }
4341
4342 public void visitAssign(JCAssign tree) {
4343 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
4344 Type capturedType = capture(owntype);
4345 attribExpr(tree.rhs, env, owntype);
4346 result = check(tree, capturedType, KindSelector.VAL, resultInfo);
4347 }
4348
4349 public void visitAssignop(JCAssignOp tree) {
4350 // Attribute arguments.
4351 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4352 Type operand = attribExpr(tree.rhs, env);
4353 // Find operator.
4354 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4355 if (operator != operators.noOpSymbol &&
4356 !owntype.isErroneous() &&
4357 !operand.isErroneous()) {
4358 chk.checkDivZero(tree.rhs.pos(), operator, operand);
4359 chk.checkCastable(tree.rhs.pos(),
4360 operator.type.getReturnType(),
4361 owntype);
4362 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4363 }
4364 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4365 }
4366
4367 public void visitUnary(JCUnary tree) {
4368 // Attribute arguments.
4369 Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4370 ? attribTree(tree.arg, env, varAssignmentInfo)
4371 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4372
4373 // Find operator.
4374 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4375 Type owntype = types.createErrorType(tree.type);
4376 if (operator != operators.noOpSymbol &&
4377 !argtype.isErroneous()) {
4378 owntype = (tree.getTag().isIncOrDecUnaryOp())
4379 ? tree.arg.type
4380 : operator.type.getReturnType();
4381 int opc = operator.opcode;
4382
4383 // If the argument is constant, fold it.
4384 if (argtype.constValue() != null) {
4385 Type ctype = cfolder.fold1(opc, argtype);
4386 if (ctype != null) {
4387 owntype = cfolder.coerce(ctype, owntype);
4388 }
4389 }
4390 }
4391 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4392 matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4393 }
4394
4395 public void visitBinary(JCBinary tree) {
4396 // Attribute arguments.
4397 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4398 // x && y
4399 // include x's bindings when true in y
4400
4401 // x || y
4402 // include x's bindings when false in y
4403
4404 MatchBindings lhsBindings = matchBindings;
4405 List<BindingSymbol> propagatedBindings;
4406 switch (tree.getTag()) {
4407 case AND:
4408 propagatedBindings = lhsBindings.bindingsWhenTrue;
4409 break;
4410 case OR:
4411 propagatedBindings = lhsBindings.bindingsWhenFalse;
4412 break;
4413 default:
4414 propagatedBindings = List.nil();
4415 break;
4416 }
4417 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4418 Type right;
4419 try {
4420 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4421 } finally {
4422 rhsEnv.info.scope.leave();
4423 }
4424
4425 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4426
4427 // Find operator.
4428 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4429 Type owntype = types.createErrorType(tree.type);
4430 if (operator != operators.noOpSymbol &&
4431 !left.isErroneous() &&
4432 !right.isErroneous()) {
4433 owntype = operator.type.getReturnType();
4434 int opc = operator.opcode;
4435 // If both arguments are constants, fold them.
4436 if (left.constValue() != null && right.constValue() != null) {
4437 Type ctype = cfolder.fold2(opc, left, right);
4438 if (ctype != null) {
4439 owntype = cfolder.coerce(ctype, owntype);
4440 }
4441 }
4442
4443 // Check that argument types of a reference ==, != are
4444 // castable to each other, (JLS 15.21). Note: unboxing
4445 // comparisons will not have an acmp* opc at this point.
4446 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4447 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4448 log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4449 }
4450 }
4451
4452 chk.checkDivZero(tree.rhs.pos(), operator, right);
4453 }
4454 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4455 }
4456
4457 public void visitTypeCast(final JCTypeCast tree) {
4458 Type clazztype = attribType(tree.clazz, env);
4459 chk.validate(tree.clazz, env, false);
4460 chk.checkRequiresIdentity(tree, env.info.lint);
4461 //a fresh environment is required for 292 inference to work properly ---
4462 //see Infer.instantiatePolymorphicSignatureInstance()
4463 Env<AttrContext> localEnv = env.dup(tree);
4464 //should we propagate the target type?
4465 final ResultInfo castInfo;
4466 JCExpression expr = TreeInfo.skipParens(tree.expr);
4467 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4468 if (isPoly) {
4469 //expression is a poly - we need to propagate target type info
4470 castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4471 new Check.NestedCheckContext(resultInfo.checkContext) {
4472 @Override
4473 public boolean compatible(Type found, Type req, Warner warn) {
4474 return types.isCastable(found, req, warn);
4475 }
4476 });
4477 } else {
4478 //standalone cast - target-type info is not propagated
4479 castInfo = unknownExprInfo;
4480 }
4481 Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4482 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4483 if (exprtype.constValue() != null)
4484 owntype = cfolder.coerce(exprtype, owntype);
4485 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4486 if (!isPoly)
4487 chk.checkRedundantCast(localEnv, tree);
4488 }
4489
4490 public void visitTypeTest(JCInstanceOf tree) {
4491 Type exprtype = attribExpr(tree.expr, env);
4492 if (exprtype.isPrimitive()) {
4493 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4494 } else {
4495 exprtype = chk.checkNullOrRefType(
4496 tree.expr.pos(), exprtype);
4497 }
4498 Type clazztype;
4499 JCTree typeTree;
4500 if (tree.pattern.getTag() == BINDINGPATTERN ||
4501 tree.pattern.getTag() == RECORDPATTERN) {
4502 attribExpr(tree.pattern, env, exprtype);
4503 clazztype = tree.pattern.type;
4504 if (types.isSubtype(exprtype, clazztype) &&
4505 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4506 tree.pattern.getTag() != RECORDPATTERN) {
4507 if (!allowUnconditionalPatternsInstanceOf) {
4508 log.error(tree.pos(), Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4509 }
4510 }
4511 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4512 } else {
4513 clazztype = attribType(tree.pattern, env);
4514 typeTree = tree.pattern;
4515 chk.validate(typeTree, env, false);
4516 }
4517 if (clazztype.isPrimitive()) {
4518 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4519 } else {
4520 if (!clazztype.hasTag(TYPEVAR)) {
4521 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4522 }
4523 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4524 boolean valid = false;
4525 if (allowReifiableTypesInInstanceof) {
4526 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4527 } else {
4528 log.error(tree.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4529 allowReifiableTypesInInstanceof = true;
4530 }
4531 if (!valid) {
4532 clazztype = types.createErrorType(clazztype);
4533 }
4534 }
4535 }
4536 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4537 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4538 }
4539
4540 private boolean checkCastablePattern(DiagnosticPosition pos,
4541 Type exprType,
4542 Type pattType) {
4543 Warner warner = new Warner();
4544 // if any type is erroneous, the problem is reported elsewhere
4545 if (exprType.isErroneous() || pattType.isErroneous()) {
4546 return false;
4547 }
4548 if (!types.isCastable(exprType, pattType, warner)) {
4549 chk.basicHandler.report(pos,
4550 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4551 return false;
4552 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4553 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4554 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4555 return true;
4556 } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4557 log.error(pos,
4558 Errors.InstanceofReifiableNotSafe(exprType, pattType));
4559 return false;
4560 } else {
4561 return true;
4562 }
4563 }
4564
4565 @Override
4566 public void visitAnyPattern(JCAnyPattern tree) {
4567 result = tree.type = resultInfo.pt;
4568 }
4569
4570 public void visitBindingPattern(JCBindingPattern tree) {
4571 Type type;
4572 if (tree.var.vartype != null) {
4573 type = attribType(tree.var.vartype, env);
4574 } else {
4575 type = resultInfo.pt;
4576 }
4577 tree.type = tree.var.type = type;
4578 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4579 v.pos = tree.pos;
4580 tree.var.sym = v;
4581 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4582 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4583 }
4584 chk.validate(tree.var.vartype, env, true);
4585 if (tree.var.isImplicitlyTyped()) {
4586 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4587 : type);
4588 }
4589 annotate.annotateLater(tree.var.mods.annotations, env, v);
4590 if (!tree.var.isImplicitlyTyped()) {
4591 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v);
4592 }
4593 annotate.flush();
4594 result = tree.type;
4595 if (v.isUnnamedVariable()) {
4596 matchBindings = MatchBindingsComputer.EMPTY;
4597 } else {
4598 matchBindings = new MatchBindings(List.of(v), List.nil());
4599 }
4600 chk.checkRequiresIdentity(tree, env.info.lint);
4601 }
4602
4603 @Override
4604 public void visitRecordPattern(JCRecordPattern tree) {
4605 Type site;
4606
4607 if (tree.deconstructor == null) {
4608 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4609 tree.record = syms.errSymbol;
4610 site = tree.type = types.createErrorType(tree.record.type);
4611 } else {
4612 Type type = attribType(tree.deconstructor, env);
4613 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4614 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4615 if (inferred == null) {
4616 log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4617 } else {
4618 type = inferred;
4619 }
4620 }
4621 tree.type = tree.deconstructor.type = type;
4622 site = types.capture(tree.type);
4623 }
4624
4625 List<Type> expectedRecordTypes;
4626 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4627 ClassSymbol record = (ClassSymbol) site.tsym;
4628 expectedRecordTypes = record.getRecordComponents()
4629 .stream()
4630 .map(rc -> types.memberType(site, rc))
4631 .map(t -> types.upward(t, types.captures(t)).baseType())
4632 .collect(List.collector());
4633 tree.record = record;
4634 } else {
4635 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4636 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4637 .limit(tree.nested.size())
4638 .collect(List.collector());
4639 tree.record = syms.errSymbol;
4640 }
4641 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4642 List<Type> recordTypes = expectedRecordTypes;
4643 List<JCPattern> nestedPatterns = tree.nested;
4644 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4645 try {
4646 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4647 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4648 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4649 outBindings.addAll(matchBindings.bindingsWhenTrue);
4650 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4651 nestedPatterns = nestedPatterns.tail;
4652 recordTypes = recordTypes.tail;
4653 }
4654 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4655 while (nestedPatterns.nonEmpty()) {
4656 attribExpr(nestedPatterns.head, localEnv, Type.noType);
4657 nestedPatterns = nestedPatterns.tail;
4658 }
4659 List<Type> nestedTypes =
4660 tree.nested.stream().map(p -> p.type).collect(List.collector());
4661 log.error(tree.pos(),
4662 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4663 nestedTypes));
4664 }
4665 } finally {
4666 localEnv.info.scope.leave();
4667 }
4668 chk.validate(tree.deconstructor, env, true);
4669 result = tree.type;
4670 matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4671 }
4672
4673 public void visitIndexed(JCArrayAccess tree) {
4674 Type owntype = types.createErrorType(tree.type);
4675 Type atype = attribExpr(tree.indexed, env);
4676 attribExpr(tree.index, env, syms.intType);
4677 if (types.isArray(atype))
4678 owntype = types.elemtype(atype);
4679 else if (!atype.hasTag(ERROR))
4680 log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4681 if (!pkind().contains(KindSelector.VAL))
4682 owntype = capture(owntype);
4683 result = check(tree, owntype, KindSelector.VAR, resultInfo);
4684 }
4685
4686 public void visitIdent(JCIdent tree) {
4687 Symbol sym;
4688
4689 // Find symbol
4690 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4691 // If we are looking for a method, the prototype `pt' will be a
4692 // method type with the type of the call's arguments as parameters.
4693 env.info.pendingResolutionPhase = null;
4694 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4695 } else if (tree.sym != null && tree.sym.kind != VAR) {
4696 sym = tree.sym;
4697 } else {
4698 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4699 }
4700 tree.sym = sym;
4701
4702 // Also find the environment current for the class where
4703 // sym is defined (`symEnv').
4704 Env<AttrContext> symEnv = env;
4705 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4706 sym.kind.matches(KindSelector.VAL_MTH) &&
4707 sym.owner.kind == TYP &&
4708 tree.name != names._this && tree.name != names._super) {
4709
4710 // Find environment in which identifier is defined.
4711 while (symEnv.outer != null &&
4712 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4713 symEnv = symEnv.outer;
4714 }
4715 }
4716
4717 // If symbol is a variable, ...
4718 if (sym.kind == VAR) {
4719 VarSymbol v = (VarSymbol)sym;
4720
4721 // ..., evaluate its initializer, if it has one, and check for
4722 // illegal forward reference.
4723 checkInit(tree, env, v, false);
4724
4725 // If we are expecting a variable (as opposed to a value), check
4726 // that the variable is assignable in the current environment.
4727 if (KindSelector.ASG.subset(pkind()))
4728 checkAssignable(tree.pos(), v, null, env);
4729 }
4730
4731 Env<AttrContext> env1 = env;
4732 if (sym.kind != ERR && sym.kind != TYP &&
4733 sym.owner != null && sym.owner != env1.enclClass.sym) {
4734 // If the found symbol is inaccessible, then it is
4735 // accessed through an enclosing instance. Locate this
4736 // enclosing instance:
4737 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4738 env1 = env1.outer;
4739 }
4740
4741 if (env.info.isSerializable) {
4742 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4743 }
4744
4745 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4746 }
4747
4748 public void visitSelect(JCFieldAccess tree) {
4749 // Determine the expected kind of the qualifier expression.
4750 KindSelector skind = KindSelector.NIL;
4751 if (tree.name == names._this || tree.name == names._super ||
4752 tree.name == names._class)
4753 {
4754 skind = KindSelector.TYP;
4755 } else {
4756 if (pkind().contains(KindSelector.PCK))
4757 skind = KindSelector.of(skind, KindSelector.PCK);
4758 if (pkind().contains(KindSelector.TYP))
4759 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4760 if (pkind().contains(KindSelector.VAL_MTH))
4761 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4762 }
4763
4764 // Attribute the qualifier expression, and determine its symbol (if any).
4765 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4766 Assert.check(site == tree.selected.type);
4767 if (!pkind().contains(KindSelector.TYP_PCK))
4768 site = capture(site); // Capture field access
4769
4770 // don't allow T.class T[].class, etc
4771 if (skind == KindSelector.TYP) {
4772 Type elt = site;
4773 while (elt.hasTag(ARRAY))
4774 elt = ((ArrayType)elt).elemtype;
4775 if (elt.hasTag(TYPEVAR)) {
4776 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4777 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4778 tree.sym = tree.type.tsym;
4779 return ;
4780 }
4781 }
4782
4783 // If qualifier symbol is a type or `super', assert `selectSuper'
4784 // for the selection. This is relevant for determining whether
4785 // protected symbols are accessible.
4786 Symbol sitesym = TreeInfo.symbol(tree.selected);
4787 boolean selectSuperPrev = env.info.selectSuper;
4788 env.info.selectSuper =
4789 sitesym != null &&
4790 sitesym.name == names._super;
4791
4792 // Determine the symbol represented by the selection.
4793 env.info.pendingResolutionPhase = null;
4794 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4795 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4796 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4797 sym = syms.errSymbol;
4798 }
4799 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4800 site = capture(site);
4801 sym = selectSym(tree, sitesym, site, env, resultInfo);
4802 }
4803 boolean varArgs = env.info.lastResolveVarargs();
4804 tree.sym = sym;
4805
4806 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4807 site = types.skipTypeVars(site, true);
4808 }
4809
4810 // If that symbol is a variable, ...
4811 if (sym.kind == VAR) {
4812 VarSymbol v = (VarSymbol)sym;
4813
4814 // ..., evaluate its initializer, if it has one, and check for
4815 // illegal forward reference.
4816 checkInit(tree, env, v, true);
4817
4818 // If we are expecting a variable (as opposed to a value), check
4819 // that the variable is assignable in the current environment.
4820 if (KindSelector.ASG.subset(pkind()))
4821 checkAssignable(tree.pos(), v, tree.selected, env);
4822 }
4823
4824 if (sitesym != null &&
4825 sitesym.kind == VAR &&
4826 ((VarSymbol)sitesym).isResourceVariable() &&
4827 sym.kind == MTH &&
4828 sym.name.equals(names.close) &&
4829 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) {
4830 log.warning(tree, LintWarnings.TryExplicitCloseCall);
4831 }
4832
4833 // Disallow selecting a type from an expression
4834 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4835 tree.type = check(tree.selected, pt(),
4836 sitesym == null ?
4837 KindSelector.VAL : sitesym.kind.toSelector(),
4838 new ResultInfo(KindSelector.TYP_PCK, pt()));
4839 }
4840
4841 if (isType(sitesym)) {
4842 if (sym.name != names._this && sym.name != names._super) {
4843 // Check if type-qualified fields or methods are static (JLS)
4844 if ((sym.flags() & STATIC) == 0 &&
4845 sym.name != names._super &&
4846 (sym.kind == VAR || sym.kind == MTH)) {
4847 rs.accessBase(rs.new StaticError(sym),
4848 tree.pos(), site, sym.name, true);
4849 }
4850 }
4851 } else if (sym.kind != ERR &&
4852 (sym.flags() & STATIC) != 0 &&
4853 sym.name != names._class) {
4854 // If the qualified item is not a type and the selected item is static, report
4855 // a warning. Make allowance for the class of an array type e.g. Object[].class)
4856 if (!sym.owner.isAnonymous()) {
4857 log.warning(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4858 } else {
4859 log.warning(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4860 }
4861 }
4862
4863 // If we are selecting an instance member via a `super', ...
4864 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4865
4866 // Check that super-qualified symbols are not abstract (JLS)
4867 rs.checkNonAbstract(tree.pos(), sym);
4868
4869 if (site.isRaw()) {
4870 // Determine argument types for site.
4871 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4872 if (site1 != null) site = site1;
4873 }
4874 }
4875
4876 if (env.info.isSerializable) {
4877 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4878 }
4879
4880 env.info.selectSuper = selectSuperPrev;
4881 result = checkId(tree, site, sym, env, resultInfo);
4882 }
4883 //where
4884 /** Determine symbol referenced by a Select expression,
4885 *
4886 * @param tree The select tree.
4887 * @param site The type of the selected expression,
4888 * @param env The current environment.
4889 * @param resultInfo The current result.
4890 */
4891 private Symbol selectSym(JCFieldAccess tree,
4892 Symbol location,
4893 Type site,
4894 Env<AttrContext> env,
4895 ResultInfo resultInfo) {
4896 DiagnosticPosition pos = tree.pos();
4897 Name name = tree.name;
4898 switch (site.getTag()) {
4899 case PACKAGE:
4900 return rs.accessBase(
4901 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4902 pos, location, site, name, true);
4903 case ARRAY:
4904 case CLASS:
4905 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4906 return rs.resolveQualifiedMethod(
4907 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4908 } else if (name == names._this || name == names._super) {
4909 return rs.resolveSelf(pos, env, site.tsym, tree);
4910 } else if (name == names._class) {
4911 // In this case, we have already made sure in
4912 // visitSelect that qualifier expression is a type.
4913 return syms.getClassField(site, types);
4914 } else {
4915 // We are seeing a plain identifier as selector.
4916 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4917 sym = rs.accessBase(sym, pos, location, site, name, true);
4918 return sym;
4919 }
4920 case WILDCARD:
4921 throw new AssertionError(tree);
4922 case TYPEVAR:
4923 // Normally, site.getUpperBound() shouldn't be null.
4924 // It should only happen during memberEnter/attribBase
4925 // when determining the supertype which *must* be
4926 // done before attributing the type variables. In
4927 // other words, we are seeing this illegal program:
4928 // class B<T> extends A<T.foo> {}
4929 Symbol sym = (site.getUpperBound() != null)
4930 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4931 : null;
4932 if (sym == null) {
4933 log.error(pos, Errors.TypeVarCantBeDeref);
4934 return syms.errSymbol;
4935 } else {
4936 // JLS 4.9 specifies the members are derived by inheritance.
4937 // We skip inducing a whole class by filtering members that
4938 // can never be inherited:
4939 Symbol sym2;
4940 if (sym.isPrivate()) {
4941 // Private members
4942 sym2 = rs.new AccessError(env, site, sym);
4943 } else if (sym.owner.isInterface() && sym.kind == MTH && (sym.flags() & STATIC) != 0) {
4944 // Interface static methods
4945 sym2 = rs.new SymbolNotFoundError(ABSENT_MTH);
4946 } else {
4947 sym2 = sym;
4948 }
4949 rs.accessBase(sym2, pos, location, site, name, true);
4950 return sym;
4951 }
4952 case ERROR:
4953 // preserve identifier names through errors
4954 return types.createErrorType(name, site.tsym, site).tsym;
4955 default:
4956 // The qualifier expression is of a primitive type -- only
4957 // .class is allowed for these.
4958 if (name == names._class) {
4959 // In this case, we have already made sure in Select that
4960 // qualifier expression is a type.
4961 return syms.getClassField(site, types);
4962 } else {
4963 log.error(pos, Errors.CantDeref(site));
4964 return syms.errSymbol;
4965 }
4966 }
4967 }
4968
4969 /** Determine type of identifier or select expression and check that
4970 * (1) the referenced symbol is not deprecated
4971 * (2) the symbol's type is safe (@see checkSafe)
4972 * (3) if symbol is a variable, check that its type and kind are
4973 * compatible with the prototype and protokind.
4974 * (4) if symbol is an instance field of a raw type,
4975 * which is being assigned to, issue an unchecked warning if its
4976 * type changes under erasure.
4977 * (5) if symbol is an instance method of a raw type, issue an
4978 * unchecked warning if its argument types change under erasure.
4979 * If checks succeed:
4980 * If symbol is a constant, return its constant type
4981 * else if symbol is a method, return its result type
4982 * otherwise return its type.
4983 * Otherwise return errType.
4984 *
4985 * @param tree The syntax tree representing the identifier
4986 * @param site If this is a select, the type of the selected
4987 * expression, otherwise the type of the current class.
4988 * @param sym The symbol representing the identifier.
4989 * @param env The current environment.
4990 * @param resultInfo The expected result
4991 */
4992 Type checkId(JCTree tree,
4993 Type site,
4994 Symbol sym,
4995 Env<AttrContext> env,
4996 ResultInfo resultInfo) {
4997 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4998 checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4999 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5000 }
5001
5002 Type checkMethodIdInternal(JCTree tree,
5003 Type site,
5004 Symbol sym,
5005 Env<AttrContext> env,
5006 ResultInfo resultInfo) {
5007 if (resultInfo.pkind.contains(KindSelector.POLY)) {
5008 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
5009 } else {
5010 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5011 }
5012 }
5013
5014 Type checkIdInternal(JCTree tree,
5015 Type site,
5016 Symbol sym,
5017 Type pt,
5018 Env<AttrContext> env,
5019 ResultInfo resultInfo) {
5020 Type owntype; // The computed type of this identifier occurrence.
5021 switch (sym.kind) {
5022 case TYP:
5023 // For types, the computed type equals the symbol's type,
5024 // except for two situations:
5025 owntype = sym.type;
5026 if (owntype.hasTag(CLASS)) {
5027 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
5028 Type ownOuter = owntype.getEnclosingType();
5029
5030 // (a) If the symbol's type is parameterized, erase it
5031 // because no type parameters were given.
5032 // We recover generic outer type later in visitTypeApply.
5033 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
5034 owntype = types.erasure(owntype);
5035 }
5036
5037 // (b) If the symbol's type is an inner class, then
5038 // we have to interpret its outer type as a superclass
5039 // of the site type. Example:
5040 //
5041 // class Tree<A> { class Visitor { ... } }
5042 // class PointTree extends Tree<Point> { ... }
5043 // ...PointTree.Visitor...
5044 //
5045 // Then the type of the last expression above is
5046 // Tree<Point>.Visitor.
5047 else if ((ownOuter.hasTag(CLASS) || ownOuter.hasTag(TYPEVAR)) && site != ownOuter) {
5048 Type normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
5049 if (normOuter == null) // perhaps from an import
5050 normOuter = types.erasure(ownOuter);
5051 if (normOuter != ownOuter)
5052 owntype = new ClassType(
5053 normOuter, List.nil(), owntype.tsym,
5054 owntype.getMetadata());
5055 }
5056 }
5057 break;
5058 case VAR:
5059 VarSymbol v = (VarSymbol)sym;
5060
5061 if (env.info.enclVar != null
5062 && v.type.hasTag(NONE)) {
5063 //self reference to implicitly typed variable declaration
5064 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
5065 return tree.type = v.type = types.createErrorType(v.type);
5066 }
5067
5068 // Test (4): if symbol is an instance field of a raw type,
5069 // which is being assigned to, issue an unchecked warning if
5070 // its type changes under erasure.
5071 if (KindSelector.ASG.subset(pkind()) &&
5072 v.owner.kind == TYP &&
5073 (v.flags() & STATIC) == 0 &&
5074 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5075 Type s = types.asOuterSuper(site, v.owner);
5076 if (s != null &&
5077 s.isRaw() &&
5078 !types.isSameType(v.type, v.erasure(types))) {
5079 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s));
5080 }
5081 }
5082 // The computed type of a variable is the type of the
5083 // variable symbol, taken as a member of the site type.
5084 owntype = (sym.owner.kind == TYP &&
5085 sym.name != names._this && sym.name != names._super)
5086 ? types.memberType(site, sym)
5087 : sym.type;
5088
5089 // If the variable is a constant, record constant value in
5090 // computed type.
5091 if (v.getConstValue() != null && isStaticReference(tree))
5092 owntype = owntype.constType(v.getConstValue());
5093
5094 if (resultInfo.pkind == KindSelector.VAL) {
5095 owntype = capture(owntype); // capture "names as expressions"
5096 }
5097 break;
5098 case MTH: {
5099 owntype = checkMethod(site, sym,
5100 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
5101 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
5102 resultInfo.pt.getTypeArguments());
5103 chk.checkRestricted(tree.pos(), sym);
5104 break;
5105 }
5106 case PCK: case ERR:
5107 owntype = sym.type;
5108 break;
5109 default:
5110 throw new AssertionError("unexpected kind: " + sym.kind +
5111 " in tree " + tree);
5112 }
5113
5114 // Emit a `deprecation' warning if symbol is deprecated.
5115 // (for constructors (but not for constructor references), the error
5116 // was given when the constructor was resolved)
5117
5118 if (sym.name != names.init || tree.hasTag(REFERENCE)) {
5119 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
5120 chk.checkSunAPI(tree.pos(), sym);
5121 chk.checkProfile(tree.pos(), sym);
5122 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym);
5123 }
5124
5125 if (pt.isErroneous()) {
5126 owntype = types.createErrorType(owntype);
5127 }
5128
5129 // If symbol is a variable, check that its type and
5130 // kind are compatible with the prototype and protokind.
5131 return check(tree, owntype, sym.kind.toSelector(), resultInfo);
5132 }
5133
5134 /** Check that variable is initialized and evaluate the variable's
5135 * initializer, if not yet done. Also check that variable is not
5136 * referenced before it is defined.
5137 * @param tree The tree making up the variable reference.
5138 * @param env The current environment.
5139 * @param v The variable's symbol.
5140 */
5141 private void checkInit(JCTree tree,
5142 Env<AttrContext> env,
5143 VarSymbol v,
5144 boolean onlyWarning) {
5145 // A forward reference is diagnosed if the declaration position
5146 // of the variable is greater than the current tree position
5147 // and the tree and variable definition occur in the same class
5148 // definition. Note that writes don't count as references.
5149 // This check applies only to class and instance
5150 // variables. Local variables follow different scope rules,
5151 // and are subject to definite assignment checking.
5152 Env<AttrContext> initEnv = enclosingInitEnv(env);
5153 if (initEnv != null &&
5154 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
5155 v.owner.kind == TYP &&
5156 v.owner == env.info.scope.owner.enclClass() &&
5157 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
5158 (!env.tree.hasTag(ASSIGN) ||
5159 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
5160 if (!onlyWarning || isStaticEnumField(v)) {
5161 Error errkey = (initEnv.info.enclVar == v) ?
5162 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
5163 log.error(tree.pos(), errkey);
5164 } else if (useBeforeDeclarationWarning) {
5165 Warning warnkey = (initEnv.info.enclVar == v) ?
5166 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
5167 log.warning(tree.pos(), warnkey);
5168 }
5169 }
5170
5171 v.getConstValue(); // ensure initializer is evaluated
5172
5173 checkEnumInitializer(tree, env, v);
5174 }
5175
5176 /**
5177 * Returns the enclosing init environment associated with this env (if any). An init env
5178 * can be either a field declaration env or a static/instance initializer env.
5179 */
5180 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
5181 while (true) {
5182 switch (env.tree.getTag()) {
5183 case VARDEF:
5184 JCVariableDecl vdecl = (JCVariableDecl)env.tree;
5185 if (vdecl.sym.owner.kind == TYP) {
5186 //field
5187 return env;
5188 }
5189 break;
5190 case BLOCK:
5191 if (env.next.tree.hasTag(CLASSDEF)) {
5192 //instance/static initializer
5193 return env;
5194 }
5195 break;
5196 case METHODDEF:
5197 case CLASSDEF:
5198 case TOPLEVEL:
5199 return null;
5200 }
5201 Assert.checkNonNull(env.next);
5202 env = env.next;
5203 }
5204 }
5205
5206 /**
5207 * Check for illegal references to static members of enum. In
5208 * an enum type, constructors and initializers may not
5209 * reference its static members unless they are constant.
5210 *
5211 * @param tree The tree making up the variable reference.
5212 * @param env The current environment.
5213 * @param v The variable's symbol.
5214 * @jls 8.9 Enum Types
5215 */
5216 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
5217 // JLS:
5218 //
5219 // "It is a compile-time error to reference a static field
5220 // of an enum type that is not a compile-time constant
5221 // (15.28) from constructors, instance initializer blocks,
5222 // or instance variable initializer expressions of that
5223 // type. It is a compile-time error for the constructors,
5224 // instance initializer blocks, or instance variable
5225 // initializer expressions of an enum constant e to refer
5226 // to itself or to an enum constant of the same type that
5227 // is declared to the right of e."
5228 if (isStaticEnumField(v)) {
5229 ClassSymbol enclClass = env.info.scope.owner.enclClass();
5230
5231 if (enclClass == null || enclClass.owner == null)
5232 return;
5233
5234 // See if the enclosing class is the enum (or a
5235 // subclass thereof) declaring v. If not, this
5236 // reference is OK.
5237 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
5238 return;
5239
5240 // If the reference isn't from an initializer, then
5241 // the reference is OK.
5242 if (!Resolve.isInitializer(env))
5243 return;
5244
5245 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
5246 }
5247 }
5248
5249 /** Is the given symbol a static, non-constant field of an Enum?
5250 * Note: enum literals should not be regarded as such
5251 */
5252 private boolean isStaticEnumField(VarSymbol v) {
5253 return Flags.isEnum(v.owner) &&
5254 Flags.isStatic(v) &&
5255 !Flags.isConstant(v) &&
5256 v.name != names._class;
5257 }
5258
5259 /**
5260 * Check that method arguments conform to its instantiation.
5261 **/
5262 public Type checkMethod(Type site,
5263 final Symbol sym,
5264 ResultInfo resultInfo,
5265 Env<AttrContext> env,
5266 final List<JCExpression> argtrees,
5267 List<Type> argtypes,
5268 List<Type> typeargtypes) {
5269 // Test (5): if symbol is an instance method of a raw type, issue
5270 // an unchecked warning if its argument types change under erasure.
5271 if ((sym.flags() & STATIC) == 0 &&
5272 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5273 Type s = types.asOuterSuper(site, sym.owner);
5274 if (s != null && s.isRaw() &&
5275 !types.isSameTypes(sym.type.getParameterTypes(),
5276 sym.erasure(types).getParameterTypes())) {
5277 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s));
5278 }
5279 }
5280
5281 if (env.info.defaultSuperCallSite != null) {
5282 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
5283 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
5284 types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
5285 List<MethodSymbol> icand_sup =
5286 types.interfaceCandidates(sup, (MethodSymbol)sym);
5287 if (icand_sup.nonEmpty() &&
5288 icand_sup.head != sym &&
5289 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
5290 log.error(env.tree.pos(),
5291 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
5292 break;
5293 }
5294 }
5295 env.info.defaultSuperCallSite = null;
5296 }
5297
5298 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
5299 JCMethodInvocation app = (JCMethodInvocation)env.tree;
5300 if (app.meth.hasTag(SELECT) &&
5301 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
5302 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
5303 }
5304 }
5305
5306 // Compute the identifier's instantiated type.
5307 // For methods, we need to compute the instance type by
5308 // Resolve.instantiate from the symbol's type as well as
5309 // any type arguments and value arguments.
5310 Warner noteWarner = new Warner();
5311 try {
5312 Type owntype = rs.checkMethod(
5313 env,
5314 site,
5315 sym,
5316 resultInfo,
5317 argtypes,
5318 typeargtypes,
5319 noteWarner);
5320
5321 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
5322 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
5323
5324 argtypes = argtypes.map(checkDeferredMap);
5325
5326 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
5327 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym),
5328 sym.name,
5329 rs.methodArguments(sym.type.getParameterTypes()),
5330 rs.methodArguments(argtypes.map(checkDeferredMap)),
5331 kindName(sym.location()),
5332 sym.location()));
5333 if (resultInfo.pt != Infer.anyPoly ||
5334 !owntype.hasTag(METHOD) ||
5335 !owntype.isPartial()) {
5336 //if this is not a partially inferred method type, erase return type. Otherwise,
5337 //erasure is carried out in PartiallyInferredMethodType.check().
5338 owntype = new MethodType(owntype.getParameterTypes(),
5339 types.erasure(owntype.getReturnType()),
5340 types.erasure(owntype.getThrownTypes()),
5341 syms.methodClass);
5342 }
5343 }
5344
5345 PolyKind pkind = (sym.type.hasTag(FORALL) &&
5346 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
5347 PolyKind.POLY : PolyKind.STANDALONE;
5348 TreeInfo.setPolyKind(env.tree, pkind);
5349
5350 return (resultInfo.pt == Infer.anyPoly) ?
5351 owntype :
5352 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
5353 resultInfo.checkContext.inferenceContext());
5354 } catch (Infer.InferenceException ex) {
5355 //invalid target type - propagate exception outwards or report error
5356 //depending on the current check context
5357 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5358 return types.createErrorType(site);
5359 } catch (Resolve.InapplicableMethodException ex) {
5360 final JCDiagnostic diag = ex.getDiagnostic();
5361 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5362 @Override
5363 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5364 return new Pair<>(sym, diag);
5365 }
5366 };
5367 List<Type> argtypes2 = argtypes.map(
5368 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5369 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5370 env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5371 log.report(errDiag);
5372 return types.createErrorType(site);
5373 }
5374 }
5375
5376 public void visitLiteral(JCLiteral tree) {
5377 result = check(tree, litType(tree.typetag).constType(tree.value),
5378 KindSelector.VAL, resultInfo);
5379 }
5380 //where
5381 /** Return the type of a literal with given type tag.
5382 */
5383 Type litType(TypeTag tag) {
5384 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5385 }
5386
5387 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5388 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5389 }
5390
5391 public void visitTypeArray(JCArrayTypeTree tree) {
5392 Type etype = attribType(tree.elemtype, env);
5393 Type type = new ArrayType(etype, syms.arrayClass);
5394 result = check(tree, type, KindSelector.TYP, resultInfo);
5395 }
5396
5397 /** Visitor method for parameterized types.
5398 * Bound checking is left until later, since types are attributed
5399 * before supertype structure is completely known
5400 */
5401 public void visitTypeApply(JCTypeApply tree) {
5402 Type owntype = types.createErrorType(tree.type);
5403
5404 // Attribute functor part of application and make sure it's a class.
5405 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5406
5407 // Attribute type parameters
5408 List<Type> actuals = attribTypes(tree.arguments, env);
5409
5410 if (clazztype.hasTag(CLASS)) {
5411 List<Type> formals = clazztype.tsym.type.getTypeArguments();
5412 if (actuals.isEmpty()) //diamond
5413 actuals = formals;
5414
5415 if (actuals.length() == formals.length()) {
5416 List<Type> a = actuals;
5417 List<Type> f = formals;
5418 while (a.nonEmpty()) {
5419 a.head = a.head.withTypeVar(f.head);
5420 a = a.tail;
5421 f = f.tail;
5422 }
5423 // Compute the proper generic outer
5424 Type clazzOuter = clazztype.getEnclosingType();
5425 if (clazzOuter.hasTag(CLASS)) {
5426 Type site;
5427 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5428 if (clazz.hasTag(IDENT)) {
5429 site = env.enclClass.sym.type;
5430 } else if (clazz.hasTag(SELECT)) {
5431 site = ((JCFieldAccess) clazz).selected.type;
5432 } else throw new AssertionError(""+tree);
5433 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5434 if (site.hasTag(CLASS) || site.hasTag(TYPEVAR))
5435 site = types.asEnclosingSuper(site, clazzOuter.tsym);
5436 if (site == null)
5437 site = types.erasure(clazzOuter);
5438 clazzOuter = site;
5439 }
5440 }
5441 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5442 clazztype.getMetadata());
5443 } else {
5444 if (formals.length() != 0) {
5445 log.error(tree.pos(),
5446 Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5447 } else {
5448 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5449 }
5450 owntype = types.createErrorType(tree.type);
5451 }
5452 } else if (clazztype.hasTag(ERROR)) {
5453 ErrorType parameterizedErroneous =
5454 new ErrorType(clazztype.getOriginalType(),
5455 clazztype.tsym,
5456 clazztype.getMetadata());
5457
5458 parameterizedErroneous.typarams_field = actuals;
5459 owntype = parameterizedErroneous;
5460 }
5461 result = check(tree, owntype, KindSelector.TYP, resultInfo);
5462 }
5463
5464 public void visitTypeUnion(JCTypeUnion tree) {
5465 ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5466 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5467 for (JCExpression typeTree : tree.alternatives) {
5468 Type ctype = attribType(typeTree, env);
5469 ctype = chk.checkType(typeTree.pos(),
5470 chk.checkClassType(typeTree.pos(), ctype),
5471 syms.throwableType);
5472 if (!ctype.isErroneous()) {
5473 //check that alternatives of a union type are pairwise
5474 //unrelated w.r.t. subtyping
5475 if (chk.intersects(ctype, multicatchTypes.toList())) {
5476 for (Type t : multicatchTypes) {
5477 boolean sub = types.isSubtype(ctype, t);
5478 boolean sup = types.isSubtype(t, ctype);
5479 if (sub || sup) {
5480 //assume 'a' <: 'b'
5481 Type a = sub ? ctype : t;
5482 Type b = sub ? t : ctype;
5483 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5484 }
5485 }
5486 }
5487 multicatchTypes.append(ctype);
5488 if (all_multicatchTypes != null)
5489 all_multicatchTypes.append(ctype);
5490 } else {
5491 if (all_multicatchTypes == null) {
5492 all_multicatchTypes = new ListBuffer<>();
5493 all_multicatchTypes.appendList(multicatchTypes);
5494 }
5495 all_multicatchTypes.append(ctype);
5496 }
5497 }
5498 Type t = check(tree, types.lub(multicatchTypes.toList()),
5499 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5500 if (t.hasTag(CLASS)) {
5501 List<Type> alternatives =
5502 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5503 t = new UnionClassType((ClassType) t, alternatives);
5504 }
5505 tree.type = result = t;
5506 }
5507
5508 public void visitTypeIntersection(JCTypeIntersection tree) {
5509 attribTypes(tree.bounds, env);
5510 tree.type = result = checkIntersection(tree, tree.bounds);
5511 }
5512
5513 public void visitTypeParameter(JCTypeParameter tree) {
5514 TypeVar typeVar = (TypeVar) tree.type;
5515
5516 if (tree.annotations != null && tree.annotations.nonEmpty()) {
5517 annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5518 }
5519
5520 if (!typeVar.getUpperBound().isErroneous()) {
5521 //fixup type-parameter bound computed in 'attribTypeVariables'
5522 typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5523 }
5524 }
5525
5526 Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5527 Set<Symbol> boundSet = new HashSet<>();
5528 if (bounds.nonEmpty()) {
5529 // accept class or interface or typevar as first bound.
5530 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5531 boundSet.add(types.erasure(bounds.head.type).tsym);
5532 if (bounds.head.type.isErroneous()) {
5533 return bounds.head.type;
5534 }
5535 else if (bounds.head.type.hasTag(TYPEVAR)) {
5536 // if first bound was a typevar, do not accept further bounds.
5537 if (bounds.tail.nonEmpty()) {
5538 log.error(bounds.tail.head.pos(),
5539 Errors.TypeVarMayNotBeFollowedByOtherBounds);
5540 return bounds.head.type;
5541 }
5542 } else {
5543 // if first bound was a class or interface, accept only interfaces
5544 // as further bounds.
5545 for (JCExpression bound : bounds.tail) {
5546 bound.type = checkBase(bound.type, bound, env, false, true, false);
5547 if (bound.type.isErroneous()) {
5548 bounds = List.of(bound);
5549 }
5550 else if (bound.type.hasTag(CLASS)) {
5551 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5552 }
5553 }
5554 }
5555 }
5556
5557 if (bounds.length() == 0) {
5558 return syms.objectType;
5559 } else if (bounds.length() == 1) {
5560 return bounds.head.type;
5561 } else {
5562 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5563 // ... the variable's bound is a class type flagged COMPOUND
5564 // (see comment for TypeVar.bound).
5565 // In this case, generate a class tree that represents the
5566 // bound class, ...
5567 JCExpression extending;
5568 List<JCExpression> implementing;
5569 if (!bounds.head.type.isInterface()) {
5570 extending = bounds.head;
5571 implementing = bounds.tail;
5572 } else {
5573 extending = null;
5574 implementing = bounds;
5575 }
5576 JCClassDecl cd = make.at(tree).ClassDef(
5577 make.Modifiers(PUBLIC | ABSTRACT),
5578 names.empty, List.nil(),
5579 extending, implementing, List.nil());
5580
5581 ClassSymbol c = (ClassSymbol)owntype.tsym;
5582 Assert.check((c.flags() & COMPOUND) != 0);
5583 cd.sym = c;
5584 c.sourcefile = env.toplevel.sourcefile;
5585
5586 // ... and attribute the bound class
5587 c.flags_field |= UNATTRIBUTED;
5588 Env<AttrContext> cenv = enter.classEnv(cd, env);
5589 typeEnvs.put(c, cenv);
5590 attribClass(c);
5591 return owntype;
5592 }
5593 }
5594
5595 public void visitWildcard(JCWildcard tree) {
5596 //- System.err.println("visitWildcard("+tree+");");//DEBUG
5597 Type type = (tree.kind.kind == BoundKind.UNBOUND)
5598 ? syms.objectType
5599 : attribType(tree.inner, env);
5600 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5601 tree.kind.kind,
5602 syms.boundClass),
5603 KindSelector.TYP, resultInfo);
5604 }
5605
5606 public void visitAnnotation(JCAnnotation tree) {
5607 Assert.error("should be handled in annotate");
5608 }
5609
5610 @Override
5611 public void visitModifiers(JCModifiers tree) {
5612 //error recovery only:
5613 Assert.check(resultInfo.pkind == KindSelector.ERR);
5614
5615 attribAnnotationTypes(tree.annotations, env);
5616 }
5617
5618 public void visitAnnotatedType(JCAnnotatedType tree) {
5619 attribAnnotationTypes(tree.annotations, env);
5620 Type underlyingType = attribType(tree.underlyingType, env);
5621 Type annotatedType = underlyingType.preannotatedType();
5622
5623 if (!env.info.isAnonymousNewClass)
5624 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5625 result = tree.type = annotatedType;
5626 }
5627
5628 public void visitErroneous(JCErroneous tree) {
5629 if (tree.errs != null) {
5630 WriteableScope newScope = env.info.scope;
5631
5632 if (env.tree instanceof JCClassDecl) {
5633 Symbol fakeOwner =
5634 new MethodSymbol(BLOCK, names.empty, null,
5635 env.info.scope.owner);
5636 newScope = newScope.dupUnshared(fakeOwner);
5637 }
5638
5639 Env<AttrContext> errEnv =
5640 env.dup(env.tree,
5641 env.info.dup(newScope));
5642 errEnv.info.returnResult = unknownExprInfo;
5643 for (JCTree err : tree.errs)
5644 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5645 }
5646 result = tree.type = syms.errType;
5647 }
5648
5649 /** Default visitor method for all other trees.
5650 */
5651 public void visitTree(JCTree tree) {
5652 throw new AssertionError();
5653 }
5654
5655 /**
5656 * Attribute an env for either a top level tree or class or module declaration.
5657 */
5658 public void attrib(Env<AttrContext> env) {
5659 switch (env.tree.getTag()) {
5660 case MODULEDEF:
5661 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5662 break;
5663 case PACKAGEDEF:
5664 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5665 break;
5666 default:
5667 attribClass(env.tree.pos(), env.enclClass.sym);
5668 }
5669
5670 annotate.flush();
5671
5672 // Now that this tree is attributed, we can calculate the Lint configuration everywhere within it
5673 lintMapper.calculateLints(env.toplevel.sourcefile, env.tree, env.toplevel.endPositions);
5674 }
5675
5676 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5677 try {
5678 annotate.flush();
5679 attribPackage(p);
5680 } catch (CompletionFailure ex) {
5681 chk.completionError(pos, ex);
5682 }
5683 }
5684
5685 void attribPackage(PackageSymbol p) {
5686 attribWithLint(p,
5687 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5688 }
5689
5690 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5691 try {
5692 annotate.flush();
5693 attribModule(m);
5694 } catch (CompletionFailure ex) {
5695 chk.completionError(pos, ex);
5696 }
5697 }
5698
5699 void attribModule(ModuleSymbol m) {
5700 attribWithLint(m, env -> attribStat(env.tree, env));
5701 }
5702
5703 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5704 Env<AttrContext> env = typeEnvs.get(sym);
5705
5706 Env<AttrContext> lintEnv = env;
5707 while (lintEnv.info.lint == null)
5708 lintEnv = lintEnv.next;
5709
5710 Lint lint = lintEnv.info.lint.augment(sym);
5711
5712 Lint prevLint = chk.setLint(lint);
5713 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5714
5715 try {
5716 attrib.accept(env);
5717 } finally {
5718 log.useSource(prev);
5719 chk.setLint(prevLint);
5720 }
5721 }
5722
5723 /** Main method: attribute class definition associated with given class symbol.
5724 * reporting completion failures at the given position.
5725 * @param pos The source position at which completion errors are to be
5726 * reported.
5727 * @param c The class symbol whose definition will be attributed.
5728 */
5729 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5730 try {
5731 annotate.flush();
5732 attribClass(c);
5733 } catch (CompletionFailure ex) {
5734 chk.completionError(pos, ex);
5735 }
5736 }
5737
5738 /** Attribute class definition associated with given class symbol.
5739 * @param c The class symbol whose definition will be attributed.
5740 */
5741 void attribClass(ClassSymbol c) throws CompletionFailure {
5742 if (c.type.hasTag(ERROR)) return;
5743
5744 // Check for cycles in the inheritance graph, which can arise from
5745 // ill-formed class files.
5746 chk.checkNonCyclic(null, c.type);
5747
5748 Type st = types.supertype(c.type);
5749 if ((c.flags_field & Flags.COMPOUND) == 0 &&
5750 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5751 // First, attribute superclass.
5752 if (st.hasTag(CLASS))
5753 attribClass((ClassSymbol)st.tsym);
5754
5755 // Next attribute owner, if it is a class.
5756 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5757 attribClass((ClassSymbol)c.owner);
5758
5759 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5760 }
5761
5762 // The previous operations might have attributed the current class
5763 // if there was a cycle. So we test first whether the class is still
5764 // UNATTRIBUTED.
5765 if ((c.flags_field & UNATTRIBUTED) != 0) {
5766 c.flags_field &= ~UNATTRIBUTED;
5767
5768 // Get environment current at the point of class definition.
5769 Env<AttrContext> env = typeEnvs.get(c);
5770
5771 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5772 // because the annotations were not available at the time the env was created. Therefore,
5773 // we look up the environment chain for the first enclosing environment for which the
5774 // lint value is set. Typically, this is the parent env, but might be further if there
5775 // are any envs created as a result of TypeParameter nodes.
5776 Env<AttrContext> lintEnv = env;
5777 while (lintEnv.info.lint == null)
5778 lintEnv = lintEnv.next;
5779
5780 // Having found the enclosing lint value, we can initialize the lint value for this class
5781 env.info.lint = lintEnv.info.lint.augment(c);
5782
5783 Lint prevLint = chk.setLint(env.info.lint);
5784 JavaFileObject prev = log.useSource(c.sourcefile);
5785 ResultInfo prevReturnRes = env.info.returnResult;
5786
5787 try {
5788 if (c.isSealed() &&
5789 !c.isEnum() &&
5790 !c.isPermittedExplicit &&
5791 c.getPermittedSubclasses().isEmpty()) {
5792 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5793 }
5794
5795 if (c.isSealed()) {
5796 Set<Symbol> permittedTypes = new HashSet<>();
5797 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5798 for (Type subType : c.getPermittedSubclasses()) {
5799 if (subType.isErroneous()) {
5800 // the type already caused errors, don't produce more potentially misleading errors
5801 continue;
5802 }
5803 boolean isTypeVar = false;
5804 if (subType.getTag() == TYPEVAR) {
5805 isTypeVar = true; //error recovery
5806 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5807 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5808 }
5809 if (subType.tsym.isAnonymous() && !c.isEnum()) {
5810 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5811 }
5812 if (permittedTypes.contains(subType.tsym)) {
5813 DiagnosticPosition pos =
5814 env.enclClass.permitting.stream()
5815 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5816 .limit(2).collect(List.collector()).get(1);
5817 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5818 } else {
5819 permittedTypes.add(subType.tsym);
5820 }
5821 if (sealedInUnnamed) {
5822 if (subType.tsym.packge() != c.packge()) {
5823 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5824 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5825 );
5826 }
5827 } else if (subType.tsym.packge().modle != c.packge().modle) {
5828 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5829 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5830 );
5831 }
5832 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5833 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5834 Errors.InvalidPermitsClause(
5835 subType.tsym == c.type.tsym ?
5836 Fragments.MustNotBeSameClass :
5837 Fragments.MustNotBeSupertype(subType)
5838 )
5839 );
5840 } else if (!isTypeVar) {
5841 boolean thisIsASuper = types.directSupertypes(subType)
5842 .stream()
5843 .anyMatch(d -> d.tsym == c);
5844 if (!thisIsASuper) {
5845 if(c.isInterface()) {
5846 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5847 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType)));
5848 } else {
5849 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5850 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5851 }
5852 }
5853 }
5854 }
5855 }
5856
5857 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5858 .stream()
5859 .filter(s -> s.tsym.isSealed())
5860 .map(s -> (ClassSymbol) s.tsym)
5861 .collect(List.collector());
5862
5863 if (sealedSupers.isEmpty()) {
5864 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5865 boolean hasErrorSuper = false;
5866
5867 hasErrorSuper |= types.directSupertypes(c.type)
5868 .stream()
5869 .anyMatch(s -> s.tsym.kind == Kind.ERR);
5870
5871 ClassType ct = (ClassType) c.type;
5872
5873 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5874
5875 if (!hasErrorSuper) {
5876 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5877 }
5878 }
5879 } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5880 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5881 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5882 }
5883
5884 if (!c.type.isCompound()) {
5885 for (ClassSymbol supertypeSym : sealedSupers) {
5886 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5887 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5888 }
5889 }
5890 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5891 log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5892 c.isInterface() ?
5893 Errors.NonSealedOrSealedExpected :
5894 Errors.NonSealedSealedOrFinalExpected);
5895 }
5896 }
5897 }
5898
5899 env.info.returnResult = null;
5900 // java.lang.Enum may not be subclassed by a non-enum
5901 if (st.tsym == syms.enumSym &&
5902 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5903 log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5904
5905 // Enums may not be extended by source-level classes
5906 if (st.tsym != null &&
5907 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5908 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5909 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5910 }
5911
5912 if (rs.isSerializable(c.type)) {
5913 env.info.isSerializable = true;
5914 }
5915
5916 if (c.isValueClass()) {
5917 Assert.check(env.tree.hasTag(CLASSDEF));
5918 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c);
5919 }
5920
5921 attribClassBody(env, c);
5922
5923 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5924 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5925 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5926 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5927
5928 if (c.isImplicit()) {
5929 chk.checkHasMain(env.tree.pos(), c);
5930 }
5931 } finally {
5932 env.info.returnResult = prevReturnRes;
5933 log.useSource(prev);
5934 chk.setLint(prevLint);
5935 }
5936
5937 }
5938 }
5939
5940 public void visitImport(JCImport tree) {
5941 // nothing to do
5942 }
5943
5944 public void visitModuleDef(JCModuleDecl tree) {
5945 tree.sym.completeUsesProvides();
5946 ModuleSymbol msym = tree.sym;
5947 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5948 Lint prevLint = chk.setLint(lint);
5949 try {
5950 chk.checkModuleName(tree);
5951 chk.checkDeprecatedAnnotation(tree, msym);
5952 } finally {
5953 chk.setLint(prevLint);
5954 }
5955 }
5956
5957 /** Finish the attribution of a class. */
5958 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5959 JCClassDecl tree = (JCClassDecl)env.tree;
5960 Assert.check(c == tree.sym);
5961
5962 // Validate type parameters, supertype and interfaces.
5963 attribStats(tree.typarams, env);
5964 if (!c.isAnonymous()) {
5965 //already checked if anonymous
5966 chk.validate(tree.typarams, env);
5967 chk.validate(tree.extending, env);
5968 chk.validate(tree.implementing, env);
5969 }
5970
5971 chk.checkRequiresIdentity(tree, env.info.lint);
5972
5973 c.markAbstractIfNeeded(types);
5974
5975 // If this is a non-abstract class, check that it has no abstract
5976 // methods or unimplemented methods of an implemented interface.
5977 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5978 chk.checkAllDefined(tree.pos(), c);
5979 }
5980
5981 if ((c.flags() & ANNOTATION) != 0) {
5982 if (tree.implementing.nonEmpty())
5983 log.error(tree.implementing.head.pos(),
5984 Errors.CantExtendIntfAnnotation);
5985 if (tree.typarams.nonEmpty()) {
5986 log.error(tree.typarams.head.pos(),
5987 Errors.IntfAnnotationCantHaveTypeParams(c));
5988 }
5989
5990 // If this annotation type has a @Repeatable, validate
5991 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5992 // If this annotation type has a @Repeatable, validate
5993 if (repeatable != null) {
5994 // get diagnostic position for error reporting
5995 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5996 Assert.checkNonNull(cbPos);
5997
5998 chk.validateRepeatable(c, repeatable, cbPos);
5999 }
6000 } else {
6001 // Check that all extended classes and interfaces
6002 // are compatible (i.e. no two define methods with same arguments
6003 // yet different return types). (JLS 8.4.8.3)
6004 chk.checkCompatibleSupertypes(tree.pos(), c.type);
6005 chk.checkDefaultMethodClashes(tree.pos(), c.type);
6006 chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
6007 }
6008
6009 // Check that class does not import the same parameterized interface
6010 // with two different argument lists.
6011 chk.checkClassBounds(tree.pos(), c.type);
6012
6013 tree.type = c.type;
6014
6015 for (List<JCTypeParameter> l = tree.typarams;
6016 l.nonEmpty(); l = l.tail) {
6017 Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
6018 }
6019
6020 // Check that a generic class doesn't extend Throwable
6021 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
6022 log.error(tree.extending.pos(), Errors.GenericThrowable);
6023
6024 // Check that all methods which implement some
6025 // method conform to the method they implement.
6026 chk.checkImplementations(tree);
6027
6028 //check that a resource implementing AutoCloseable cannot throw InterruptedException
6029 checkAutoCloseable(tree.pos(), env, c.type);
6030
6031 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
6032 // Attribute declaration
6033 attribStat(l.head, env);
6034 // Check that declarations in inner classes are not static (JLS 8.1.2)
6035 // Make an exception for static constants.
6036 if (!allowRecords &&
6037 c.owner.kind != PCK &&
6038 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
6039 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
6040 VarSymbol sym = null;
6041 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
6042 if (sym == null ||
6043 sym.kind != VAR ||
6044 sym.getConstValue() == null)
6045 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
6046 }
6047 }
6048
6049 // Check for proper placement of super()/this() calls.
6050 chk.checkSuperInitCalls(tree);
6051
6052 // Check for cycles among non-initial constructors.
6053 chk.checkCyclicConstructors(tree);
6054
6055 // Check for cycles among annotation elements.
6056 chk.checkNonCyclicElements(tree);
6057
6058 // Check for proper use of serialVersionUID and other
6059 // serialization-related fields and methods
6060 if (env.info.lint.isEnabled(LintCategory.SERIAL)
6061 && rs.isSerializable(c.type)
6062 && !c.isAnonymous()) {
6063 chk.checkSerialStructure(env, tree, c);
6064 }
6065 // Correctly organize the positions of the type annotations
6066 typeAnnotations.organizeTypeAnnotationsBodies(tree);
6067
6068 // Check type annotations applicability rules
6069 validateTypeAnnotations(tree, false);
6070 }
6071 // where
6072 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
6073 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
6074 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
6075 if (types.isSameType(al.head.annotationType.type, t))
6076 return al.head.pos();
6077 }
6078
6079 return null;
6080 }
6081
6082 private Type capture(Type type) {
6083 return types.capture(type);
6084 }
6085
6086 private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
6087 if (type.isErroneous()) {
6088 tree.vartype = make.at(tree.pos()).Erroneous();
6089 } else if (tree.declaredUsingVar()) {
6090 Assert.check(tree.typePos != Position.NOPOS);
6091 tree.vartype = make.at(tree.typePos).Type(type);
6092 } else {
6093 tree.vartype = make.at(tree.pos()).Type(type);
6094 }
6095 }
6096
6097 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
6098 tree.accept(new TypeAnnotationsValidator(sigOnly));
6099 }
6100 //where
6101 private final class TypeAnnotationsValidator extends TreeScanner {
6102
6103 private final boolean sigOnly;
6104 public TypeAnnotationsValidator(boolean sigOnly) {
6105 this.sigOnly = sigOnly;
6106 }
6107
6108 public void visitAnnotation(JCAnnotation tree) {
6109 chk.validateTypeAnnotation(tree, null, false);
6110 super.visitAnnotation(tree);
6111 }
6112 public void visitAnnotatedType(JCAnnotatedType tree) {
6113 if (!tree.underlyingType.type.isErroneous()) {
6114 super.visitAnnotatedType(tree);
6115 }
6116 }
6117 public void visitTypeParameter(JCTypeParameter tree) {
6118 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
6119 scan(tree.bounds);
6120 // Don't call super.
6121 // This is needed because above we call validateTypeAnnotation with
6122 // false, which would forbid annotations on type parameters.
6123 // super.visitTypeParameter(tree);
6124 }
6125 public void visitMethodDef(JCMethodDecl tree) {
6126 if (tree.recvparam != null &&
6127 !tree.recvparam.vartype.type.isErroneous()) {
6128 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
6129 }
6130 if (tree.restype != null && tree.restype.type != null) {
6131 validateAnnotatedType(tree.restype, tree.restype.type);
6132 }
6133 if (sigOnly) {
6134 scan(tree.mods);
6135 scan(tree.restype);
6136 scan(tree.typarams);
6137 scan(tree.recvparam);
6138 scan(tree.params);
6139 scan(tree.thrown);
6140 } else {
6141 scan(tree.defaultValue);
6142 scan(tree.body);
6143 }
6144 }
6145 public void visitVarDef(final JCVariableDecl tree) {
6146 //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
6147 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
6148 validateAnnotatedType(tree.vartype, tree.sym.type);
6149 scan(tree.mods);
6150 scan(tree.vartype);
6151 if (!sigOnly) {
6152 scan(tree.init);
6153 }
6154 }
6155 public void visitTypeCast(JCTypeCast tree) {
6156 if (tree.clazz != null && tree.clazz.type != null)
6157 validateAnnotatedType(tree.clazz, tree.clazz.type);
6158 super.visitTypeCast(tree);
6159 }
6160 public void visitTypeTest(JCInstanceOf tree) {
6161 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
6162 validateAnnotatedType(tree.pattern, tree.pattern.type);
6163 super.visitTypeTest(tree);
6164 }
6165 public void visitNewClass(JCNewClass tree) {
6166 if (tree.clazz != null && tree.clazz.type != null) {
6167 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
6168 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
6169 tree.clazz.type.tsym);
6170 }
6171 if (tree.def != null) {
6172 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
6173 }
6174
6175 validateAnnotatedType(tree.clazz, tree.clazz.type);
6176 }
6177 super.visitNewClass(tree);
6178 }
6179 public void visitNewArray(JCNewArray tree) {
6180 if (tree.elemtype != null && tree.elemtype.type != null) {
6181 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
6182 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
6183 tree.elemtype.type.tsym);
6184 }
6185 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
6186 }
6187 super.visitNewArray(tree);
6188 }
6189 public void visitClassDef(JCClassDecl tree) {
6190 //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
6191 if (sigOnly) {
6192 scan(tree.mods);
6193 scan(tree.typarams);
6194 scan(tree.extending);
6195 scan(tree.implementing);
6196 }
6197 for (JCTree member : tree.defs) {
6198 if (member.hasTag(Tag.CLASSDEF)) {
6199 continue;
6200 }
6201 scan(member);
6202 }
6203 }
6204 public void visitBlock(JCBlock tree) {
6205 if (!sigOnly) {
6206 scan(tree.stats);
6207 }
6208 }
6209
6210 /* I would want to model this after
6211 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
6212 * and override visitSelect and visitTypeApply.
6213 * However, we only set the annotated type in the top-level type
6214 * of the symbol.
6215 * Therefore, we need to override each individual location where a type
6216 * can occur.
6217 */
6218 private void validateAnnotatedType(final JCTree errtree, final Type type) {
6219 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
6220
6221 if (type.isPrimitiveOrVoid()) {
6222 return;
6223 }
6224
6225 JCTree enclTr = errtree;
6226 Type enclTy = type;
6227
6228 boolean repeat = true;
6229 while (repeat) {
6230 if (enclTr.hasTag(TYPEAPPLY)) {
6231 List<Type> tyargs = enclTy.getTypeArguments();
6232 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
6233 if (trargs.length() > 0) {
6234 // Nothing to do for diamonds
6235 if (tyargs.length() == trargs.length()) {
6236 for (int i = 0; i < tyargs.length(); ++i) {
6237 validateAnnotatedType(trargs.get(i), tyargs.get(i));
6238 }
6239 }
6240 // If the lengths don't match, it's either a diamond
6241 // or some nested type that redundantly provides
6242 // type arguments in the tree.
6243 }
6244
6245 // Look at the clazz part of a generic type
6246 enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
6247 }
6248
6249 if (enclTr.hasTag(SELECT)) {
6250 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
6251 if (enclTy != null &&
6252 !enclTy.hasTag(NONE)) {
6253 enclTy = enclTy.getEnclosingType();
6254 }
6255 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
6256 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
6257 if (enclTy == null || enclTy.hasTag(NONE)) {
6258 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
6259 for (JCAnnotation an : at.getAnnotations()) {
6260 if (chk.isTypeAnnotation(an, false)) {
6261 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
6262 }
6263 }
6264 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
6265 if (!onlyTypeAnnotations.isEmpty()) {
6266 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
6267 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
6268 Fragments.TypeAnnotation(onlyTypeAnnotations);
6269 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
6270 type.stripMetadata().annotatedType(onlyTypeAnnotations));
6271 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
6272 type.tsym.owner, annotatedType));
6273 }
6274 repeat = false;
6275 }
6276 enclTr = at.underlyingType;
6277 // enclTy doesn't need to be changed
6278 } else if (enclTr.hasTag(IDENT)) {
6279 repeat = false;
6280 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
6281 JCWildcard wc = (JCWildcard) enclTr;
6282 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
6283 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
6284 validateAnnotatedType(wc.getBound(), wc.getBound().type);
6285 } else {
6286 // Nothing to do for UNBOUND
6287 }
6288 repeat = false;
6289 } else if (enclTr.hasTag(TYPEARRAY)) {
6290 JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
6291 validateAnnotatedType(art.getType(), art.elemtype.type);
6292 repeat = false;
6293 } else if (enclTr.hasTag(TYPEUNION)) {
6294 JCTypeUnion ut = (JCTypeUnion) enclTr;
6295 for (JCTree t : ut.getTypeAlternatives()) {
6296 validateAnnotatedType(t, t.type);
6297 }
6298 repeat = false;
6299 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
6300 JCTypeIntersection it = (JCTypeIntersection) enclTr;
6301 for (JCTree t : it.getBounds()) {
6302 validateAnnotatedType(t, t.type);
6303 }
6304 repeat = false;
6305 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
6306 enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
6307 repeat = false;
6308 } else {
6309 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
6310 " within: "+ errtree + " with kind: " + errtree.getKind());
6311 }
6312 }
6313 }
6314
6315 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
6316 Symbol sym) {
6317 // Ensure that no declaration annotations are present.
6318 // Note that a tree type might be an AnnotatedType with
6319 // empty annotations, if only declaration annotations were given.
6320 // This method will raise an error for such a type.
6321 for (JCAnnotation ai : annotations) {
6322 if (!ai.type.isErroneous() &&
6323 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
6324 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
6325 }
6326 }
6327 }
6328 }
6329
6330 // <editor-fold desc="post-attribution visitor">
6331
6332 /**
6333 * Handle missing types/symbols in an AST. This routine is useful when
6334 * the compiler has encountered some errors (which might have ended up
6335 * terminating attribution abruptly); if the compiler is used in fail-over
6336 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
6337 * prevents NPE to be propagated during subsequent compilation steps.
6338 */
6339 public void postAttr(JCTree tree) {
6340 new PostAttrAnalyzer().scan(tree);
6341 }
6342
6343 class PostAttrAnalyzer extends TreeScanner {
6344
6345 private void initTypeIfNeeded(JCTree that) {
6346 if (that.type == null) {
6347 if (that.hasTag(METHODDEF)) {
6348 that.type = dummyMethodType((JCMethodDecl)that);
6349 } else {
6350 that.type = syms.unknownType;
6351 }
6352 }
6353 }
6354
6355 /* Construct a dummy method type. If we have a method declaration,
6356 * and the declared return type is void, then use that return type
6357 * instead of UNKNOWN to avoid spurious error messages in lambda
6358 * bodies (see:JDK-8041704).
6359 */
6360 private Type dummyMethodType(JCMethodDecl md) {
6361 Type restype = syms.unknownType;
6362 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
6363 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
6364 if (prim.typetag == VOID)
6365 restype = syms.voidType;
6366 }
6367 return new MethodType(List.nil(), restype,
6368 List.nil(), syms.methodClass);
6369 }
6370 private Type dummyMethodType() {
6371 return dummyMethodType(null);
6372 }
6373
6374 @Override
6375 public void scan(JCTree tree) {
6376 if (tree == null) return;
6377 if (tree instanceof JCExpression) {
6378 initTypeIfNeeded(tree);
6379 }
6380 super.scan(tree);
6381 }
6382
6383 @Override
6384 public void visitIdent(JCIdent that) {
6385 if (that.sym == null) {
6386 that.sym = syms.unknownSymbol;
6387 }
6388 }
6389
6390 @Override
6391 public void visitSelect(JCFieldAccess that) {
6392 if (that.sym == null) {
6393 that.sym = syms.unknownSymbol;
6394 }
6395 super.visitSelect(that);
6396 }
6397
6398 @Override
6399 public void visitClassDef(JCClassDecl that) {
6400 initTypeIfNeeded(that);
6401 if (that.sym == null) {
6402 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6403 }
6404 super.visitClassDef(that);
6405 }
6406
6407 @Override
6408 public void visitMethodDef(JCMethodDecl that) {
6409 initTypeIfNeeded(that);
6410 if (that.sym == null) {
6411 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6412 }
6413 super.visitMethodDef(that);
6414 }
6415
6416 @Override
6417 public void visitVarDef(JCVariableDecl that) {
6418 initTypeIfNeeded(that);
6419 if (that.sym == null) {
6420 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6421 that.sym.adr = 0;
6422 }
6423 if (that.vartype == null) {
6424 that.vartype = make.at(Position.NOPOS).Erroneous();
6425 }
6426 super.visitVarDef(that);
6427 }
6428
6429 @Override
6430 public void visitBindingPattern(JCBindingPattern that) {
6431 initTypeIfNeeded(that);
6432 initTypeIfNeeded(that.var);
6433 if (that.var.sym == null) {
6434 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6435 that.var.sym.adr = 0;
6436 }
6437 super.visitBindingPattern(that);
6438 }
6439
6440 @Override
6441 public void visitRecordPattern(JCRecordPattern that) {
6442 initTypeIfNeeded(that);
6443 if (that.record == null) {
6444 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6445 that.type, syms.noSymbol);
6446 }
6447 if (that.fullComponentTypes == null) {
6448 that.fullComponentTypes = List.nil();
6449 }
6450 super.visitRecordPattern(that);
6451 }
6452
6453 @Override
6454 public void visitNewClass(JCNewClass that) {
6455 if (that.constructor == null) {
6456 that.constructor = new MethodSymbol(0, names.init,
6457 dummyMethodType(), syms.noSymbol);
6458 }
6459 if (that.constructorType == null) {
6460 that.constructorType = syms.unknownType;
6461 }
6462 super.visitNewClass(that);
6463 }
6464
6465 @Override
6466 public void visitAssignop(JCAssignOp that) {
6467 if (that.operator == null) {
6468 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6469 -1, syms.noSymbol);
6470 }
6471 super.visitAssignop(that);
6472 }
6473
6474 @Override
6475 public void visitBinary(JCBinary that) {
6476 if (that.operator == null) {
6477 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6478 -1, syms.noSymbol);
6479 }
6480 super.visitBinary(that);
6481 }
6482
6483 @Override
6484 public void visitUnary(JCUnary that) {
6485 if (that.operator == null) {
6486 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6487 -1, syms.noSymbol);
6488 }
6489 super.visitUnary(that);
6490 }
6491
6492 @Override
6493 public void visitReference(JCMemberReference that) {
6494 super.visitReference(that);
6495 if (that.sym == null) {
6496 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6497 syms.noSymbol);
6498 }
6499 }
6500 }
6501 // </editor-fold>
6502
6503 public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6504 new TreeScanner() {
6505 Symbol packge = pkg;
6506 @Override
6507 public void visitIdent(JCIdent that) {
6508 that.sym = packge;
6509 }
6510
6511 @Override
6512 public void visitSelect(JCFieldAccess that) {
6513 that.sym = packge;
6514 packge = packge.owner;
6515 super.visitSelect(that);
6516 }
6517 }.scan(pid);
6518 }
6519
6520 }