1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.LintMapper; 45 import com.sun.tools.javac.code.Scope.WriteableScope; 46 import com.sun.tools.javac.code.Source.Feature; 47 import com.sun.tools.javac.code.Symbol.*; 48 import com.sun.tools.javac.code.Type.*; 49 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 50 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 51 import com.sun.tools.javac.comp.Check.CheckContext; 52 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 53 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 54 import com.sun.tools.javac.jvm.*; 55 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 59 60 import com.sun.tools.javac.resources.CompilerProperties.Errors; 61 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 62 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 63 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 64 import com.sun.tools.javac.tree.*; 65 import com.sun.tools.javac.tree.JCTree.*; 66 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 67 import com.sun.tools.javac.util.*; 68 import com.sun.tools.javac.util.DefinedBy.Api; 69 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 70 import com.sun.tools.javac.util.JCDiagnostic.Error; 71 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 72 import com.sun.tools.javac.util.JCDiagnostic.Warning; 73 import com.sun.tools.javac.util.List; 74 75 import static com.sun.tools.javac.code.Flags.*; 76 import static com.sun.tools.javac.code.Flags.ANNOTATION; 77 import static com.sun.tools.javac.code.Flags.BLOCK; 78 import static com.sun.tools.javac.code.Kinds.*; 79 import static com.sun.tools.javac.code.Kinds.Kind.*; 80 import static com.sun.tools.javac.code.TypeTag.*; 81 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 82 import static com.sun.tools.javac.tree.JCTree.Tag.*; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final LintMapper lintMapper; 103 final Symtab syms; 104 final Resolve rs; 105 final Operators operators; 106 final Infer infer; 107 final Analyzer analyzer; 108 final DeferredAttr deferredAttr; 109 final Check chk; 110 final Flow flow; 111 final MemberEnter memberEnter; 112 final TypeEnter typeEnter; 113 final TreeMaker make; 114 final ConstFold cfolder; 115 final Enter enter; 116 final Target target; 117 final Types types; 118 final Preview preview; 119 final JCDiagnostic.Factory diags; 120 final TypeAnnotations typeAnnotations; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 final LocalProxyVarsGen localProxyVarsGen; 128 129 public static Attr instance(Context context) { 130 Attr instance = context.get(attrKey); 131 if (instance == null) 132 instance = new Attr(context); 133 return instance; 134 } 135 136 @SuppressWarnings("this-escape") 137 protected Attr(Context context) { 138 context.put(attrKey, this); 139 140 names = Names.instance(context); 141 log = Log.instance(context); 142 lintMapper = LintMapper.instance(context); 143 syms = Symtab.instance(context); 144 rs = Resolve.instance(context); 145 operators = Operators.instance(context); 146 chk = Check.instance(context); 147 flow = Flow.instance(context); 148 memberEnter = MemberEnter.instance(context); 149 typeEnter = TypeEnter.instance(context); 150 make = TreeMaker.instance(context); 151 enter = Enter.instance(context); 152 infer = Infer.instance(context); 153 analyzer = Analyzer.instance(context); 154 deferredAttr = DeferredAttr.instance(context); 155 cfolder = ConstFold.instance(context); 156 target = Target.instance(context); 157 types = Types.instance(context); 158 preview = Preview.instance(context); 159 diags = JCDiagnostic.Factory.instance(context); 160 annotate = Annotate.instance(context); 161 typeAnnotations = TypeAnnotations.instance(context); 162 typeEnvs = TypeEnvs.instance(context); 163 dependencies = Dependencies.instance(context); 164 argumentAttr = ArgumentAttr.instance(context); 165 matchBindingsComputer = MatchBindingsComputer.instance(context); 166 attrRecover = AttrRecover.instance(context); 167 localProxyVarsGen = LocalProxyVarsGen.instance(context); 168 169 Options options = Options.instance(context); 170 171 Source source = Source.instance(context); 172 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 173 allowRecords = Feature.RECORDS.allowedInSource(source); 174 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 175 Feature.PATTERN_SWITCH.allowedInSource(source); 176 allowUnconditionalPatternsInstanceOf = 177 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 178 sourceName = source.name; 179 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 180 181 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 182 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 183 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 184 methodAttrInfo = new MethodAttrInfo(); 185 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 186 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 187 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 188 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 189 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) && 190 Feature.VALUE_CLASSES.allowedInSource(source); 191 } 192 193 /** Switch: reifiable types in instanceof enabled? 194 */ 195 boolean allowReifiableTypesInInstanceof; 196 197 /** Are records allowed 198 */ 199 private final boolean allowRecords; 200 201 /** Are patterns in switch allowed 202 */ 203 private final boolean allowPatternSwitch; 204 205 /** Are unconditional patterns in instanceof allowed 206 */ 207 private final boolean allowUnconditionalPatternsInstanceOf; 208 209 /** Are value classes allowed 210 */ 211 private final boolean allowValueClasses; 212 213 /** 214 * Switch: warn about use of variable before declaration? 215 * RFE: 6425594 216 */ 217 boolean useBeforeDeclarationWarning; 218 219 /** 220 * Switch: name of source level; used for error reporting. 221 */ 222 String sourceName; 223 224 /** Check kind and type of given tree against protokind and prototype. 225 * If check succeeds, store type in tree and return it. 226 * If check fails, store errType in tree and return it. 227 * No checks are performed if the prototype is a method type. 228 * It is not necessary in this case since we know that kind and type 229 * are correct. 230 * 231 * @param tree The tree whose kind and type is checked 232 * @param found The computed type of the tree 233 * @param ownkind The computed kind of the tree 234 * @param resultInfo The expected result of the tree 235 */ 236 Type check(final JCTree tree, 237 final Type found, 238 final KindSelector ownkind, 239 final ResultInfo resultInfo) { 240 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 241 Type owntype; 242 boolean shouldCheck = !found.hasTag(ERROR) && 243 !resultInfo.pt.hasTag(METHOD) && 244 !resultInfo.pt.hasTag(FORALL); 245 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 246 log.error(tree.pos(), 247 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 248 ownkind.kindNames())); 249 owntype = types.createErrorType(found); 250 } else if (inferenceContext.free(found)) { 251 //delay the check if there are inference variables in the found type 252 //this means we are dealing with a partially inferred poly expression 253 owntype = shouldCheck ? resultInfo.pt : found; 254 if (resultInfo.checkMode.installPostInferenceHook()) { 255 inferenceContext.addFreeTypeListener(List.of(found), 256 instantiatedContext -> { 257 ResultInfo pendingResult = 258 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 259 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 260 }); 261 } 262 } else { 263 owntype = shouldCheck ? 264 resultInfo.check(tree, found) : 265 found; 266 } 267 if (resultInfo.checkMode.updateTreeType()) { 268 tree.type = owntype; 269 } 270 return owntype; 271 } 272 273 /** Is given blank final variable assignable, i.e. in a scope where it 274 * may be assigned to even though it is final? 275 * @param v The blank final variable. 276 * @param env The current environment. 277 */ 278 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 279 Symbol owner = env.info.scope.owner; 280 // owner refers to the innermost variable, method or 281 // initializer block declaration at this point. 282 boolean isAssignable = 283 v.owner == owner 284 || 285 ((owner.name == names.init || // i.e. we are in a constructor 286 owner.kind == VAR || // i.e. we are in a variable initializer 287 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 288 && 289 v.owner == owner.owner 290 && 291 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 292 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 293 return isAssignable & !insideCompactConstructor; 294 } 295 296 /** Check that variable can be assigned to. 297 * @param pos The current source code position. 298 * @param v The assigned variable 299 * @param base If the variable is referred to in a Select, the part 300 * to the left of the `.', null otherwise. 301 * @param env The current environment. 302 */ 303 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 304 if (v.name == names._this) { 305 log.error(pos, Errors.CantAssignValToThis); 306 } else if ((v.flags() & FINAL) != 0 && 307 ((v.flags() & HASINIT) != 0 308 || 309 !((base == null || 310 TreeInfo.isThisQualifier(base)) && 311 isAssignableAsBlankFinal(v, env)))) { 312 if (v.isResourceVariable()) { //TWR resource 313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 314 } else { 315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 316 } 317 } 318 } 319 320 /** Does tree represent a static reference to an identifier? 321 * It is assumed that tree is either a SELECT or an IDENT. 322 * We have to weed out selects from non-type names here. 323 * @param tree The candidate tree. 324 */ 325 boolean isStaticReference(JCTree tree) { 326 if (tree.hasTag(SELECT)) { 327 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 328 if (lsym == null || lsym.kind != TYP) { 329 return false; 330 } 331 } 332 return true; 333 } 334 335 /** Is this symbol a type? 336 */ 337 static boolean isType(Symbol sym) { 338 return sym != null && sym.kind == TYP; 339 } 340 341 /** Attribute a parsed identifier. 342 * @param tree Parsed identifier name 343 * @param topLevel The toplevel to use 344 */ 345 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 346 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 347 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 348 syms.errSymbol.name, 349 null, null, null, null); 350 localEnv.enclClass.sym = syms.errSymbol; 351 return attribIdent(tree, localEnv); 352 } 353 354 /** Attribute a parsed identifier. 355 * @param tree Parsed identifier name 356 * @param env The env to use 357 */ 358 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 359 return tree.accept(identAttributer, env); 360 } 361 // where 362 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 363 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 364 @Override @DefinedBy(Api.COMPILER_TREE) 365 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 366 Symbol site = visit(node.getExpression(), env); 367 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 368 return site; 369 Name name = (Name)node.getIdentifier(); 370 if (site.kind == PCK) { 371 env.toplevel.packge = (PackageSymbol)site; 372 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 373 KindSelector.TYP_PCK); 374 } else { 375 env.enclClass.sym = (ClassSymbol)site; 376 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 377 } 378 } 379 380 @Override @DefinedBy(Api.COMPILER_TREE) 381 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 382 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 383 } 384 } 385 386 public Type coerce(Type etype, Type ttype) { 387 return cfolder.coerce(etype, ttype); 388 } 389 390 public Type attribType(JCTree node, TypeSymbol sym) { 391 Env<AttrContext> env = typeEnvs.get(sym); 392 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 393 return attribTree(node, localEnv, unknownTypeInfo); 394 } 395 396 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 397 // Attribute qualifying package or class. 398 JCFieldAccess s = tree.qualid; 399 return attribTree(s.selected, env, 400 new ResultInfo(tree.staticImport ? 401 KindSelector.TYP : KindSelector.TYP_PCK, 402 Type.noType)); 403 } 404 405 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 406 return attribToTree(expr, env, tree, unknownExprInfo); 407 } 408 409 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 410 return attribToTree(stmt, env, tree, statInfo); 411 } 412 413 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 414 breakTree = tree; 415 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 416 try { 417 deferredAttr.attribSpeculative(root, env, resultInfo, 418 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 419 argumentAttr.withLocalCacheContext()); 420 attrRecover.doRecovery(); 421 } catch (BreakAttr b) { 422 return b.env; 423 } catch (AssertionError ae) { 424 if (ae.getCause() instanceof BreakAttr breakAttr) { 425 return breakAttr.env; 426 } else { 427 throw ae; 428 } 429 } finally { 430 breakTree = null; 431 log.useSource(prev); 432 } 433 return env; 434 } 435 436 private JCTree breakTree = null; 437 438 private static class BreakAttr extends RuntimeException { 439 static final long serialVersionUID = -6924771130405446405L; 440 private transient Env<AttrContext> env; 441 private BreakAttr(Env<AttrContext> env) { 442 this.env = env; 443 } 444 } 445 446 /** 447 * Mode controlling behavior of Attr.Check 448 */ 449 enum CheckMode { 450 451 NORMAL, 452 453 /** 454 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 455 * that the captured var cache in {@code InferenceContext} will be used in read-only 456 * mode when performing inference checks. 457 */ 458 NO_TREE_UPDATE { 459 @Override 460 public boolean updateTreeType() { 461 return false; 462 } 463 }, 464 /** 465 * Mode signalling that caller will manage free types in tree decorations. 466 */ 467 NO_INFERENCE_HOOK { 468 @Override 469 public boolean installPostInferenceHook() { 470 return false; 471 } 472 }; 473 474 public boolean updateTreeType() { 475 return true; 476 } 477 public boolean installPostInferenceHook() { 478 return true; 479 } 480 } 481 482 483 class ResultInfo { 484 final KindSelector pkind; 485 final Type pt; 486 final CheckContext checkContext; 487 final CheckMode checkMode; 488 489 ResultInfo(KindSelector pkind, Type pt) { 490 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 491 } 492 493 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 494 this(pkind, pt, chk.basicHandler, checkMode); 495 } 496 497 protected ResultInfo(KindSelector pkind, 498 Type pt, CheckContext checkContext) { 499 this(pkind, pt, checkContext, CheckMode.NORMAL); 500 } 501 502 protected ResultInfo(KindSelector pkind, 503 Type pt, CheckContext checkContext, CheckMode checkMode) { 504 this.pkind = pkind; 505 this.pt = pt; 506 this.checkContext = checkContext; 507 this.checkMode = checkMode; 508 } 509 510 /** 511 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 512 * @param tree The tree to be type-checked. 513 * @return true if {@code ArgumentAttr} should be used. 514 */ 515 protected boolean needsArgumentAttr(JCTree tree) { return false; } 516 517 protected Type check(final DiagnosticPosition pos, final Type found) { 518 return chk.checkType(pos, found, pt, checkContext); 519 } 520 521 protected ResultInfo dup(Type newPt) { 522 return new ResultInfo(pkind, newPt, checkContext, checkMode); 523 } 524 525 protected ResultInfo dup(CheckContext newContext) { 526 return new ResultInfo(pkind, pt, newContext, checkMode); 527 } 528 529 protected ResultInfo dup(Type newPt, CheckContext newContext) { 530 return new ResultInfo(pkind, newPt, newContext, checkMode); 531 } 532 533 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 534 return new ResultInfo(pkind, newPt, newContext, newMode); 535 } 536 537 protected ResultInfo dup(CheckMode newMode) { 538 return new ResultInfo(pkind, pt, checkContext, newMode); 539 } 540 541 @Override 542 public String toString() { 543 if (pt != null) { 544 return pt.toString(); 545 } else { 546 return ""; 547 } 548 } 549 } 550 551 class MethodAttrInfo extends ResultInfo { 552 public MethodAttrInfo() { 553 this(chk.basicHandler); 554 } 555 556 public MethodAttrInfo(CheckContext checkContext) { 557 super(KindSelector.VAL, Infer.anyPoly, checkContext); 558 } 559 560 @Override 561 protected boolean needsArgumentAttr(JCTree tree) { 562 return true; 563 } 564 565 protected ResultInfo dup(Type newPt) { 566 throw new IllegalStateException(); 567 } 568 569 protected ResultInfo dup(CheckContext newContext) { 570 return new MethodAttrInfo(newContext); 571 } 572 573 protected ResultInfo dup(Type newPt, CheckContext newContext) { 574 throw new IllegalStateException(); 575 } 576 577 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 578 throw new IllegalStateException(); 579 } 580 581 protected ResultInfo dup(CheckMode newMode) { 582 throw new IllegalStateException(); 583 } 584 } 585 586 class RecoveryInfo extends ResultInfo { 587 588 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 589 this(deferredAttrContext, Type.recoveryType); 590 } 591 592 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 593 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 594 @Override 595 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 596 return deferredAttrContext; 597 } 598 @Override 599 public boolean compatible(Type found, Type req, Warner warn) { 600 return true; 601 } 602 @Override 603 public void report(DiagnosticPosition pos, JCDiagnostic details) { 604 boolean needsReport = pt == Type.recoveryType || 605 (details.getDiagnosticPosition() != null && 606 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 607 if (needsReport) { 608 chk.basicHandler.report(pos, details); 609 } 610 } 611 }); 612 } 613 } 614 615 final ResultInfo statInfo; 616 final ResultInfo varAssignmentInfo; 617 final ResultInfo methodAttrInfo; 618 final ResultInfo unknownExprInfo; 619 final ResultInfo unknownTypeInfo; 620 final ResultInfo unknownTypeExprInfo; 621 final ResultInfo recoveryInfo; 622 final MethodType initBlockType; 623 624 Type pt() { 625 return resultInfo.pt; 626 } 627 628 KindSelector pkind() { 629 return resultInfo.pkind; 630 } 631 632 /* ************************************************************************ 633 * Visitor methods 634 *************************************************************************/ 635 636 /** Visitor argument: the current environment. 637 */ 638 Env<AttrContext> env; 639 640 /** Visitor argument: the currently expected attribution result. 641 */ 642 ResultInfo resultInfo; 643 644 /** Visitor result: the computed type. 645 */ 646 Type result; 647 648 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 649 650 /** Visitor method: attribute a tree, catching any completion failure 651 * exceptions. Return the tree's type. 652 * 653 * @param tree The tree to be visited. 654 * @param env The environment visitor argument. 655 * @param resultInfo The result info visitor argument. 656 */ 657 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 658 Env<AttrContext> prevEnv = this.env; 659 ResultInfo prevResult = this.resultInfo; 660 try { 661 this.env = env; 662 this.resultInfo = resultInfo; 663 if (resultInfo.needsArgumentAttr(tree)) { 664 result = argumentAttr.attribArg(tree, env); 665 } else { 666 tree.accept(this); 667 } 668 matchBindings = matchBindingsComputer.finishBindings(tree, 669 matchBindings); 670 if (tree == breakTree && 671 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 672 breakTreeFound(copyEnv(env)); 673 } 674 return result; 675 } catch (CompletionFailure ex) { 676 tree.type = syms.errType; 677 return chk.completionError(tree.pos(), ex); 678 } finally { 679 this.env = prevEnv; 680 this.resultInfo = prevResult; 681 } 682 } 683 684 protected void breakTreeFound(Env<AttrContext> env) { 685 throw new BreakAttr(env); 686 } 687 688 Env<AttrContext> copyEnv(Env<AttrContext> env) { 689 Env<AttrContext> newEnv = 690 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 691 if (newEnv.outer != null) { 692 newEnv.outer = copyEnv(newEnv.outer); 693 } 694 return newEnv; 695 } 696 697 WriteableScope copyScope(WriteableScope sc) { 698 WriteableScope newScope = WriteableScope.create(sc.owner); 699 List<Symbol> elemsList = List.nil(); 700 for (Symbol sym : sc.getSymbols()) { 701 elemsList = elemsList.prepend(sym); 702 } 703 for (Symbol s : elemsList) { 704 newScope.enter(s); 705 } 706 return newScope; 707 } 708 709 /** Derived visitor method: attribute an expression tree. 710 */ 711 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 712 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 713 } 714 715 /** Derived visitor method: attribute an expression tree with 716 * no constraints on the computed type. 717 */ 718 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 719 return attribTree(tree, env, unknownExprInfo); 720 } 721 722 /** Derived visitor method: attribute a type tree. 723 */ 724 public Type attribType(JCTree tree, Env<AttrContext> env) { 725 Type result = attribType(tree, env, Type.noType); 726 return result; 727 } 728 729 /** Derived visitor method: attribute a type tree. 730 */ 731 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 732 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 733 return result; 734 } 735 736 /** Derived visitor method: attribute a statement or definition tree. 737 */ 738 public Type attribStat(JCTree tree, Env<AttrContext> env) { 739 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 740 Type result = attribTree(tree, env, statInfo); 741 analyzer.analyzeIfNeeded(tree, analyzeEnv); 742 attrRecover.doRecovery(); 743 return result; 744 } 745 746 /** Attribute a list of expressions, returning a list of types. 747 */ 748 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 749 ListBuffer<Type> ts = new ListBuffer<>(); 750 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 751 ts.append(attribExpr(l.head, env, pt)); 752 return ts.toList(); 753 } 754 755 /** Attribute a list of statements, returning nothing. 756 */ 757 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 758 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 759 attribStat(l.head, env); 760 } 761 762 /** Attribute the arguments in a method call, returning the method kind. 763 */ 764 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 765 KindSelector kind = initialKind; 766 for (JCExpression arg : trees) { 767 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 768 if (argtype.hasTag(DEFERRED)) { 769 kind = KindSelector.of(KindSelector.POLY, kind); 770 } 771 argtypes.append(argtype); 772 } 773 return kind; 774 } 775 776 /** Attribute a type argument list, returning a list of types. 777 * Caller is responsible for calling checkRefTypes. 778 */ 779 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 780 ListBuffer<Type> argtypes = new ListBuffer<>(); 781 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 782 argtypes.append(attribType(l.head, env)); 783 return argtypes.toList(); 784 } 785 786 /** Attribute a type argument list, returning a list of types. 787 * Check that all the types are references. 788 */ 789 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 790 List<Type> types = attribAnyTypes(trees, env); 791 return chk.checkRefTypes(trees, types); 792 } 793 794 /** 795 * Attribute type variables (of generic classes or methods). 796 * Compound types are attributed later in attribBounds. 797 * @param typarams the type variables to enter 798 * @param env the current environment 799 */ 800 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 801 for (JCTypeParameter tvar : typarams) { 802 TypeVar a = (TypeVar)tvar.type; 803 a.tsym.flags_field |= UNATTRIBUTED; 804 a.setUpperBound(Type.noType); 805 if (!tvar.bounds.isEmpty()) { 806 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 807 for (JCExpression bound : tvar.bounds.tail) 808 bounds = bounds.prepend(attribType(bound, env)); 809 types.setBounds(a, bounds.reverse()); 810 } else { 811 // if no bounds are given, assume a single bound of 812 // java.lang.Object. 813 types.setBounds(a, List.of(syms.objectType)); 814 } 815 a.tsym.flags_field &= ~UNATTRIBUTED; 816 } 817 if (checkCyclic) { 818 for (JCTypeParameter tvar : typarams) { 819 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 820 } 821 } 822 } 823 824 /** 825 * Attribute the type references in a list of annotations. 826 */ 827 void attribAnnotationTypes(List<JCAnnotation> annotations, 828 Env<AttrContext> env) { 829 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 830 JCAnnotation a = al.head; 831 attribType(a.annotationType, env); 832 } 833 } 834 835 /** 836 * Attribute a "lazy constant value". 837 * @param env The env for the const value 838 * @param variable The initializer for the const value 839 * @param type The expected type, or null 840 * @see VarSymbol#setLazyConstValue 841 */ 842 public Object attribLazyConstantValue(Env<AttrContext> env, 843 Env<AttrContext> enclosingEnv, 844 JCVariableDecl variable, 845 Type type) { 846 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 847 try { 848 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 849 Type itype = attribExpr(variable.init, env, type); 850 if (variable.isImplicitlyTyped()) { 851 //fixup local variable type 852 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 853 } 854 if (itype.constValue() != null) { 855 return coerce(itype, type).constValue(); 856 } else { 857 return null; 858 } 859 } finally { 860 log.useSource(prevSource); 861 } 862 } 863 864 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 865 * Supertypes of anonymous inner classes are usually already attributed. 866 * 867 * @param tree The tree making up the type reference. 868 * @param env The environment current at the reference. 869 * @param classExpected true if only a class is expected here. 870 * @param interfaceExpected true if only an interface is expected here. 871 */ 872 Type attribBase(JCTree tree, 873 Env<AttrContext> env, 874 boolean classExpected, 875 boolean interfaceExpected, 876 boolean checkExtensible) { 877 Type t = tree.type != null ? 878 tree.type : 879 attribType(tree, env); 880 try { 881 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 882 } catch (CompletionFailure ex) { 883 chk.completionError(tree.pos(), ex); 884 return t; 885 } 886 } 887 Type checkBase(Type t, 888 JCTree tree, 889 Env<AttrContext> env, 890 boolean classExpected, 891 boolean interfaceExpected, 892 boolean checkExtensible) { 893 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 894 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 895 if (t.tsym.isAnonymous()) { 896 log.error(pos, Errors.CantInheritFromAnon); 897 return types.createErrorType(t); 898 } 899 if (t.isErroneous()) 900 return t; 901 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 902 // check that type variable is already visible 903 if (t.getUpperBound() == null) { 904 log.error(pos, Errors.IllegalForwardRef); 905 return types.createErrorType(t); 906 } 907 } else { 908 t = chk.checkClassType(pos, t, checkExtensible); 909 } 910 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 911 log.error(pos, Errors.IntfExpectedHere); 912 // return errType is necessary since otherwise there might 913 // be undetected cycles which cause attribution to loop 914 return types.createErrorType(t); 915 } else if (checkExtensible && 916 classExpected && 917 (t.tsym.flags() & INTERFACE) != 0) { 918 log.error(pos, Errors.NoIntfExpectedHere); 919 return types.createErrorType(t); 920 } 921 if (checkExtensible && 922 ((t.tsym.flags() & FINAL) != 0)) { 923 log.error(pos, 924 Errors.CantInheritFromFinal(t.tsym)); 925 } 926 chk.checkNonCyclic(pos, t); 927 return t; 928 } 929 930 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 931 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 932 id.type = env.info.scope.owner.enclClass().type; 933 id.sym = env.info.scope.owner.enclClass(); 934 return id.type; 935 } 936 937 public void visitClassDef(JCClassDecl tree) { 938 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 939 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 940 argumentAttr.withLocalCacheContext() : null); 941 boolean ctorProloguePrev = env.info.ctorPrologue; 942 try { 943 // Local and anonymous classes have not been entered yet, so we need to 944 // do it now. 945 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 946 enter.classEnter(tree, env); 947 } else { 948 // If this class declaration is part of a class level annotation, 949 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 950 // order to simplify later steps and allow for sensible error 951 // messages. 952 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 953 enter.classEnter(tree, env); 954 } 955 956 ClassSymbol c = tree.sym; 957 if (c == null) { 958 // exit in case something drastic went wrong during enter. 959 result = null; 960 } else { 961 // make sure class has been completed: 962 c.complete(); 963 964 // If a class declaration appears in a constructor prologue, 965 // that means it's either a local class or an anonymous class. 966 // Either way, there is no immediately enclosing instance. 967 if (ctorProloguePrev) { 968 c.flags_field |= NOOUTERTHIS; 969 } 970 attribClass(tree.pos(), c); 971 result = tree.type = c.type; 972 } 973 } finally { 974 localCacheContext.ifPresent(LocalCacheContext::leave); 975 env.info.ctorPrologue = ctorProloguePrev; 976 } 977 } 978 979 public void visitMethodDef(JCMethodDecl tree) { 980 MethodSymbol m = tree.sym; 981 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 982 983 Lint lint = env.info.lint.augment(m); 984 Lint prevLint = chk.setLint(lint); 985 boolean ctorProloguePrev = env.info.ctorPrologue; 986 Assert.check(!env.info.ctorPrologue); 987 MethodSymbol prevMethod = chk.setMethod(m); 988 try { 989 chk.checkDeprecatedAnnotation(tree.pos(), m); 990 991 992 // Create a new environment with local scope 993 // for attributing the method. 994 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 995 localEnv.info.lint = lint; 996 997 attribStats(tree.typarams, localEnv); 998 999 // If we override any other methods, check that we do so properly. 1000 // JLS ??? 1001 if (m.isStatic()) { 1002 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1003 } else { 1004 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1005 } 1006 chk.checkOverride(env, tree, m); 1007 1008 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1009 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1010 } 1011 1012 // Enter all type parameters into the local method scope. 1013 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1014 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1015 1016 ClassSymbol owner = env.enclClass.sym; 1017 if ((owner.flags() & ANNOTATION) != 0 && 1018 (tree.params.nonEmpty() || 1019 tree.recvparam != null)) 1020 log.error(tree.params.nonEmpty() ? 1021 tree.params.head.pos() : 1022 tree.recvparam.pos(), 1023 Errors.IntfAnnotationMembersCantHaveParams); 1024 1025 // Attribute all value parameters. 1026 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1027 attribStat(l.head, localEnv); 1028 } 1029 1030 chk.checkVarargsMethodDecl(localEnv, tree); 1031 1032 // Check that type parameters are well-formed. 1033 chk.validate(tree.typarams, localEnv); 1034 1035 // Check that result type is well-formed. 1036 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) { 1037 chk.validate(tree.restype, localEnv); 1038 } 1039 chk.checkRequiresIdentity(tree, env.info.lint); 1040 1041 // Check that receiver type is well-formed. 1042 if (tree.recvparam != null) { 1043 // Use a new environment to check the receiver parameter. 1044 // Otherwise I get "might not have been initialized" errors. 1045 // Is there a better way? 1046 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1047 attribType(tree.recvparam, newEnv); 1048 chk.validate(tree.recvparam, newEnv); 1049 } 1050 1051 // Is this method a constructor? 1052 boolean isConstructor = TreeInfo.isConstructor(tree); 1053 1054 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1055 // lets find if this method is an accessor 1056 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1057 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1058 if (recordComponent.isPresent()) { 1059 // the method is a user defined accessor lets check that everything is fine 1060 if (!tree.sym.isPublic()) { 1061 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1062 } 1063 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1064 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1065 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1066 } 1067 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1068 log.error(tree, 1069 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1070 } 1071 if (!tree.typarams.isEmpty()) { 1072 log.error(tree, 1073 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1074 } 1075 if (tree.sym.isStatic()) { 1076 log.error(tree, 1077 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1078 } 1079 } 1080 1081 if (isConstructor) { 1082 // if this a constructor other than the canonical one 1083 if ((tree.sym.flags_field & RECORD) == 0) { 1084 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1085 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1086 } 1087 } else { 1088 // but if it is the canonical: 1089 1090 /* if user generated, then it shouldn't: 1091 * - have an accessibility stricter than that of the record type 1092 * - explicitly invoke any other constructor 1093 */ 1094 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1095 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1096 log.error(tree, 1097 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1098 Errors.InvalidCanonicalConstructorInRecord( 1099 Fragments.Canonical, 1100 env.enclClass.sym.name, 1101 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1102 ) : 1103 Errors.InvalidCanonicalConstructorInRecord( 1104 Fragments.Canonical, 1105 env.enclClass.sym.name, 1106 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1107 ) 1108 ); 1109 } 1110 1111 if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) { 1112 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1113 Fragments.Canonical, env.enclClass.sym.name, 1114 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1115 } 1116 } 1117 1118 // also we want to check that no type variables have been defined 1119 if (!tree.typarams.isEmpty()) { 1120 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1121 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1122 } 1123 1124 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1125 * record components 1126 */ 1127 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1128 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1129 for (JCVariableDecl param: tree.params) { 1130 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1131 if (!types.isSameType(param.type, recordFieldTypes.head) || 1132 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1133 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1134 Fragments.Canonical, env.enclClass.sym.name, 1135 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1136 } 1137 recordComponents = recordComponents.tail; 1138 recordFieldTypes = recordFieldTypes.tail; 1139 } 1140 } 1141 } 1142 } 1143 1144 // annotation method checks 1145 if ((owner.flags() & ANNOTATION) != 0) { 1146 // annotation method cannot have throws clause 1147 if (tree.thrown.nonEmpty()) { 1148 log.error(tree.thrown.head.pos(), 1149 Errors.ThrowsNotAllowedInIntfAnnotation); 1150 } 1151 // annotation method cannot declare type-parameters 1152 if (tree.typarams.nonEmpty()) { 1153 log.error(tree.typarams.head.pos(), 1154 Errors.IntfAnnotationMembersCantHaveTypeParams); 1155 } 1156 // validate annotation method's return type (could be an annotation type) 1157 chk.validateAnnotationType(tree.restype); 1158 // ensure that annotation method does not clash with members of Object/Annotation 1159 chk.validateAnnotationMethod(tree.pos(), m); 1160 } 1161 1162 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1163 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1164 1165 if (tree.body == null) { 1166 // Empty bodies are only allowed for 1167 // abstract, native, or interface methods, or for methods 1168 // in a retrofit signature class. 1169 if (tree.defaultValue != null) { 1170 if ((owner.flags() & ANNOTATION) == 0) 1171 log.error(tree.pos(), 1172 Errors.DefaultAllowedInIntfAnnotationMember); 1173 } 1174 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1175 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1176 } else { 1177 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1178 if ((owner.flags() & INTERFACE) != 0) { 1179 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1180 } else { 1181 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1182 } 1183 } else if ((tree.mods.flags & NATIVE) != 0) { 1184 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1185 } 1186 // Add an implicit super() call unless an explicit call to 1187 // super(...) or this(...) is given 1188 // or we are compiling class java.lang.Object. 1189 boolean addedSuperInIdentityClass = false; 1190 if (isConstructor && owner.type != syms.objectType) { 1191 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1192 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1193 make.Ident(names._super), make.Idents(List.nil()))); 1194 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) { 1195 tree.body.stats = tree.body.stats.append(supCall); 1196 } else { 1197 tree.body.stats = tree.body.stats.prepend(supCall); 1198 addedSuperInIdentityClass = true; 1199 } 1200 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1201 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1202 TreeInfo.hasConstructorCall(tree, names._super)) { 1203 // enum constructors are not allowed to call super 1204 // directly, so make sure there aren't any super calls 1205 // in enum constructors, except in the compiler 1206 // generated one. 1207 log.error(tree.body.stats.head.pos(), 1208 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1209 } 1210 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1211 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1212 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1213 if (!initParamNames.equals(recordComponentNames)) { 1214 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1215 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1216 } 1217 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1218 log.error(tree, 1219 Errors.InvalidCanonicalConstructorInRecord( 1220 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1221 env.enclClass.sym.name, 1222 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1223 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1224 } 1225 } 1226 } 1227 1228 // Attribute all type annotations in the body 1229 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m); 1230 annotate.flush(); 1231 1232 // Start of constructor prologue (if not in java.lang.Object constructor) 1233 localEnv.info.ctorPrologue = isConstructor && owner.type != syms.objectType; 1234 1235 // Attribute method body. 1236 attribStat(tree.body, localEnv); 1237 if (localEnv.info.ctorPrologue) { 1238 boolean thisInvocation = false; 1239 ListBuffer<JCTree> prologueCode = new ListBuffer<>(); 1240 for (JCTree stat : tree.body.stats) { 1241 prologueCode.add(stat); 1242 /* gather all the stats in the body until a `super` or `this` constructor invocation is found, 1243 * including the constructor invocation, that way we don't need to worry in the visitor below if 1244 * if we are dealing or not with prologue code 1245 */ 1246 if (stat instanceof JCExpressionStatement expStmt && 1247 expStmt.expr instanceof JCMethodInvocation mi && 1248 TreeInfo.isConstructorCall(mi)) { 1249 thisInvocation = TreeInfo.name(mi.meth) == names._this; 1250 if (!addedSuperInIdentityClass || !allowValueClasses) { 1251 break; 1252 } 1253 } 1254 } 1255 if (!prologueCode.isEmpty()) { 1256 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv, 1257 addedSuperInIdentityClass && allowValueClasses ? 1258 PrologueVisitorMode.WARNINGS_ONLY : 1259 thisInvocation ? 1260 PrologueVisitorMode.THIS_CONSTRUCTOR : 1261 PrologueVisitorMode.SUPER_CONSTRUCTOR); 1262 ctorPrologueVisitor.scan(prologueCode.toList()); 1263 } 1264 } 1265 } 1266 1267 localEnv.info.scope.leave(); 1268 result = tree.type = m.type; 1269 } finally { 1270 chk.setLint(prevLint); 1271 chk.setMethod(prevMethod); 1272 env.info.ctorPrologue = ctorProloguePrev; 1273 } 1274 } 1275 1276 enum PrologueVisitorMode { 1277 WARNINGS_ONLY, 1278 SUPER_CONSTRUCTOR, 1279 THIS_CONSTRUCTOR 1280 } 1281 1282 class CtorPrologueVisitor extends TreeScanner { 1283 Env<AttrContext> localEnv; 1284 PrologueVisitorMode mode; 1285 1286 CtorPrologueVisitor(Env<AttrContext> localEnv, PrologueVisitorMode mode) { 1287 this.localEnv = localEnv; 1288 currentClassSym = localEnv.enclClass.sym; 1289 this.mode = mode; 1290 } 1291 1292 boolean insideLambdaOrClassDef = false; 1293 1294 @Override 1295 public void visitLambda(JCLambda lambda) { 1296 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1297 try { 1298 insideLambdaOrClassDef = true; 1299 super.visitLambda(lambda); 1300 } finally { 1301 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1302 } 1303 } 1304 1305 ClassSymbol currentClassSym; 1306 1307 @Override 1308 public void visitClassDef(JCClassDecl classDecl) { 1309 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1310 ClassSymbol previousClassSym = currentClassSym; 1311 try { 1312 insideLambdaOrClassDef = true; 1313 currentClassSym = classDecl.sym; 1314 super.visitClassDef(classDecl); 1315 } finally { 1316 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1317 currentClassSym = previousClassSym; 1318 } 1319 } 1320 1321 private void reportPrologueError(JCTree tree, Symbol sym) { 1322 reportPrologueError(tree, sym, false); 1323 } 1324 1325 private void reportPrologueError(JCTree tree, Symbol sym, boolean hasInit) { 1326 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS); 1327 if (mode != PrologueVisitorMode.WARNINGS_ONLY) { 1328 if (hasInit) { 1329 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym)); 1330 } else { 1331 log.error(tree, Errors.CantRefBeforeCtorCalled(sym)); 1332 } 1333 } else if (allowValueClasses) { 1334 // issue lint warning 1335 log.warning(tree, LintWarnings.WouldNotBeAllowedInPrologue(sym)); 1336 } 1337 } 1338 1339 @Override 1340 public void visitApply(JCMethodInvocation tree) { 1341 super.visitApply(tree); 1342 Name name = TreeInfo.name(tree.meth); 1343 boolean isConstructorCall = name == names._this || name == names._super; 1344 Symbol msym = TreeInfo.symbolFor(tree.meth); 1345 // is this an instance method call or an illegal constructor invocation like: `this.super()`? 1346 if (msym != null && // for erroneous invocations msym can be null, ignore those 1347 (!isConstructorCall || 1348 isConstructorCall && tree.meth.hasTag(SELECT))) { 1349 if (isEarlyReference(localEnv, tree.meth, msym)) 1350 reportPrologueError(tree.meth, msym); 1351 } 1352 } 1353 1354 @Override 1355 public void visitIdent(JCIdent tree) { 1356 analyzeSymbol(tree); 1357 } 1358 1359 @Override 1360 public void visitSelect(JCFieldAccess tree) { 1361 SelectScanner ss = new SelectScanner(); 1362 ss.scan(tree); 1363 if (ss.scanLater == null) { 1364 analyzeSymbol(tree); 1365 } else { 1366 boolean prevLhs = isInLHS; 1367 try { 1368 isInLHS = false; 1369 scan(ss.scanLater); 1370 } finally { 1371 isInLHS = prevLhs; 1372 } 1373 } 1374 } 1375 1376 @Override 1377 public void visitNewClass(JCNewClass tree) { 1378 super.visitNewClass(tree); 1379 checkNewClassAndMethRefs(tree, tree.type); 1380 } 1381 1382 @Override 1383 public void visitReference(JCMemberReference tree) { 1384 super.visitReference(tree); 1385 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) { 1386 checkNewClassAndMethRefs(tree, tree.expr.type); 1387 } 1388 } 1389 1390 void checkNewClassAndMethRefs(JCTree tree, Type t) { 1391 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) && 1392 !t.tsym.isStatic() && 1393 !t.tsym.isDirectlyOrIndirectlyLocal()) { 1394 reportPrologueError(tree, t.getEnclosingType().tsym); 1395 } 1396 } 1397 1398 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate 1399 * for a proxy local variable later on 1400 */ 1401 boolean isInLHS = false; 1402 1403 @Override 1404 public void visitAssign(JCAssign tree) { 1405 boolean previousIsInLHS = isInLHS; 1406 try { 1407 isInLHS = true; 1408 scan(tree.lhs); 1409 } finally { 1410 isInLHS = previousIsInLHS; 1411 } 1412 scan(tree.rhs); 1413 } 1414 1415 @Override 1416 public void visitMethodDef(JCMethodDecl tree) { 1417 // ignore any declarative part, mainly to avoid scanning receiver parameters 1418 scan(tree.body); 1419 } 1420 1421 void analyzeSymbol(JCTree tree) { 1422 Symbol sym = TreeInfo.symbolFor(tree); 1423 // make sure that there is a symbol and it is not static 1424 if (sym == null || sym.isStatic()) { 1425 return; 1426 } 1427 if (isInLHS && !insideLambdaOrClassDef) { 1428 // Check instance field assignments that appear in constructor prologues 1429 if (isEarlyReference(localEnv, tree, sym)) { 1430 // Field may not be inherited from a superclass 1431 if (sym.owner != localEnv.enclClass.sym) { 1432 reportPrologueError(tree, sym); 1433 return; 1434 } 1435 // Field may not have an initializer 1436 if ((sym.flags() & HASINIT) != 0) { 1437 reportPrologueError(tree, sym, true); 1438 return; 1439 } 1440 // cant reference an instance field before a this constructor 1441 if (allowValueClasses && mode == PrologueVisitorMode.THIS_CONSTRUCTOR) { 1442 reportPrologueError(tree, sym); 1443 return; 1444 } 1445 } 1446 return; 1447 } 1448 tree = TreeInfo.skipParens(tree); 1449 if (sym.kind == VAR && sym.owner.kind == TYP) { 1450 if (sym.name == names._this || sym.name == names._super) { 1451 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`? 1452 if (TreeInfo.isExplicitThisReference( 1453 types, 1454 (ClassType)localEnv.enclClass.sym.type, 1455 tree)) { 1456 reportPrologueError(tree, sym); 1457 } 1458 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only 1459 if (sym.owner != localEnv.enclClass.sym) { 1460 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) && 1461 sym.isInheritedIn(localEnv.enclClass.sym, types)) { 1462 /* if we are dealing with a field that doesn't belong to the current class, but the 1463 * field is inherited, this is an error. Unless, the super class is also an outer 1464 * class and the field's qualifier refers to the outer class 1465 */ 1466 if (tree.hasTag(IDENT) || 1467 TreeInfo.isExplicitThisReference( 1468 types, 1469 (ClassType)localEnv.enclClass.sym.type, 1470 ((JCFieldAccess)tree).selected)) { 1471 reportPrologueError(tree, sym); 1472 } 1473 } 1474 } else if (isEarlyReference(localEnv, tree, sym)) { 1475 /* now this is a `proper` instance field of the current class 1476 * references to fields of identity classes which happen to have initializers are 1477 * not allowed in the prologue 1478 */ 1479 if (insideLambdaOrClassDef || 1480 (!localEnv.enclClass.sym.isValueClass() && (sym.flags_field & HASINIT) != 0)) 1481 reportPrologueError(tree, sym); 1482 // we will need to generate a proxy for this field later on 1483 if (!isInLHS) { 1484 if (!allowValueClasses) { 1485 reportPrologueError(tree, sym); 1486 } else { 1487 if (mode == PrologueVisitorMode.THIS_CONSTRUCTOR) { 1488 reportPrologueError(tree, sym); 1489 } else if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) { 1490 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym); 1491 } 1492 /* we do nothing in warnings only mode, as in that mode we are simulating what 1493 * the compiler would do in case the constructor code would be in the prologue 1494 * phase 1495 */ 1496 } 1497 } 1498 } 1499 } 1500 } 1501 } 1502 1503 /** 1504 * Determine if the symbol appearance constitutes an early reference to the current class. 1505 * 1506 * <p> 1507 * This means the symbol is an instance field, or method, of the current class and it appears 1508 * in an early initialization context of it (i.e., one of its constructor prologues). 1509 * 1510 * @param env The current environment 1511 * @param tree the AST referencing the variable 1512 * @param sym The symbol 1513 */ 1514 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) { 1515 if ((sym.flags() & STATIC) == 0 && 1516 (sym.kind == VAR || sym.kind == MTH) && 1517 sym.isMemberOf(env.enclClass.sym, types)) { 1518 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance 1519 if (tree instanceof JCFieldAccess fa) { 1520 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected); 1521 } else if (currentClassSym != env.enclClass.sym) { 1522 /* so we are inside a class, CI, in the prologue of an outer class, CO, and the symbol being 1523 * analyzed has no qualifier. So if the symbol is a member of CI the reference is allowed, 1524 * otherwise it is not. 1525 * It could be that the reference to CI's member happens inside CI's own prologue, but that 1526 * will be checked separately, when CI's prologue is analyzed. 1527 */ 1528 return !sym.isMemberOf(currentClassSym, types); 1529 } 1530 return true; 1531 } 1532 return false; 1533 } 1534 1535 /* scanner for a select expression, anything that is not a select or identifier 1536 * will be stored for further analysis 1537 */ 1538 class SelectScanner extends DeferredAttr.FilterScanner { 1539 JCTree scanLater; 1540 1541 SelectScanner() { 1542 super(Set.of(IDENT, SELECT, PARENS)); 1543 } 1544 1545 @Override 1546 void skip(JCTree tree) { 1547 scanLater = tree; 1548 } 1549 } 1550 } 1551 1552 public void visitVarDef(JCVariableDecl tree) { 1553 // Local variables have not been entered yet, so we need to do it now: 1554 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1555 if (tree.sym != null) { 1556 // parameters have already been entered 1557 env.info.scope.enter(tree.sym); 1558 } else { 1559 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1560 if (tree.init == null) { 1561 //cannot use 'var' without initializer 1562 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1563 tree.vartype = make.Erroneous(); 1564 } else { 1565 Fragment msg = canInferLocalVarType(tree); 1566 if (msg != null) { 1567 //cannot use 'var' with initializer which require an explicit target 1568 //(e.g. lambda, method reference, array initializer). 1569 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1570 tree.vartype = make.Erroneous(); 1571 } 1572 } 1573 } 1574 try { 1575 annotate.blockAnnotations(); 1576 memberEnter.memberEnter(tree, env); 1577 } finally { 1578 annotate.unblockAnnotations(); 1579 } 1580 } 1581 } else { 1582 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1583 } 1584 1585 VarSymbol v = tree.sym; 1586 Lint lint = env.info.lint.augment(v); 1587 Lint prevLint = chk.setLint(lint); 1588 1589 // Check that the variable's declared type is well-formed. 1590 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1591 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1592 (tree.sym.flags() & PARAMETER) != 0; 1593 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1594 1595 try { 1596 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1597 chk.checkDeprecatedAnnotation(tree.pos(), v); 1598 1599 if (tree.init != null) { 1600 if ((v.flags_field & FINAL) == 0 || 1601 !memberEnter.needsLazyConstValue(tree.init)) { 1602 // Not a compile-time constant 1603 // Attribute initializer in a new environment 1604 // with the declared variable as owner. 1605 // Check that initializer conforms to variable's declared type. 1606 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1607 initEnv.info.lint = lint; 1608 // In order to catch self-references, we set the variable's 1609 // declaration position to maximal possible value, effectively 1610 // marking the variable as undefined. 1611 initEnv.info.enclVar = v; 1612 boolean previousCtorPrologue = initEnv.info.ctorPrologue; 1613 try { 1614 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1615 // strict instance initializer in a value class 1616 initEnv.info.ctorPrologue = true; 1617 } 1618 attribExpr(tree.init, initEnv, v.type); 1619 if (tree.isImplicitlyTyped()) { 1620 //fixup local variable type 1621 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1622 } 1623 if (allowValueClasses && v.owner.kind == TYP && !v.isStatic()) { 1624 // strict field initializers are inlined in constructor's prologues 1625 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv, 1626 !v.isStrict() ? PrologueVisitorMode.WARNINGS_ONLY : PrologueVisitorMode.SUPER_CONSTRUCTOR); 1627 ctorPrologueVisitor.scan(tree.init); 1628 } 1629 } finally { 1630 initEnv.info.ctorPrologue = previousCtorPrologue; 1631 } 1632 } 1633 if (tree.isImplicitlyTyped()) { 1634 setSyntheticVariableType(tree, v.type); 1635 } 1636 } 1637 result = tree.type = v.type; 1638 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1639 if (isNonArgsMethodInObject(v.name)) { 1640 log.error(tree, Errors.IllegalRecordComponentName(v)); 1641 } 1642 } 1643 chk.checkRequiresIdentity(tree, env.info.lint); 1644 } 1645 finally { 1646 chk.setLint(prevLint); 1647 } 1648 } 1649 1650 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1651 if (tree.init != null && 1652 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1653 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1654 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1655 // Field initializer expression need to be entered. 1656 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym); 1657 annotate.flush(); 1658 } 1659 } 1660 1661 private boolean isNonArgsMethodInObject(Name name) { 1662 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1663 if (s.type.getParameterTypes().isEmpty()) { 1664 return true; 1665 } 1666 } 1667 return false; 1668 } 1669 1670 Fragment canInferLocalVarType(JCVariableDecl tree) { 1671 LocalInitScanner lis = new LocalInitScanner(); 1672 lis.scan(tree.init); 1673 return lis.badInferenceMsg; 1674 } 1675 1676 static class LocalInitScanner extends TreeScanner { 1677 Fragment badInferenceMsg = null; 1678 boolean needsTarget = true; 1679 1680 @Override 1681 public void visitNewArray(JCNewArray tree) { 1682 if (tree.elemtype == null && needsTarget) { 1683 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1684 } 1685 } 1686 1687 @Override 1688 public void visitLambda(JCLambda tree) { 1689 if (needsTarget) { 1690 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1691 } 1692 } 1693 1694 @Override 1695 public void visitTypeCast(JCTypeCast tree) { 1696 boolean prevNeedsTarget = needsTarget; 1697 try { 1698 needsTarget = false; 1699 super.visitTypeCast(tree); 1700 } finally { 1701 needsTarget = prevNeedsTarget; 1702 } 1703 } 1704 1705 @Override 1706 public void visitReference(JCMemberReference tree) { 1707 if (needsTarget) { 1708 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1709 } 1710 } 1711 1712 @Override 1713 public void visitNewClass(JCNewClass tree) { 1714 boolean prevNeedsTarget = needsTarget; 1715 try { 1716 needsTarget = false; 1717 super.visitNewClass(tree); 1718 } finally { 1719 needsTarget = prevNeedsTarget; 1720 } 1721 } 1722 1723 @Override 1724 public void visitApply(JCMethodInvocation tree) { 1725 boolean prevNeedsTarget = needsTarget; 1726 try { 1727 needsTarget = false; 1728 super.visitApply(tree); 1729 } finally { 1730 needsTarget = prevNeedsTarget; 1731 } 1732 } 1733 } 1734 1735 public void visitSkip(JCSkip tree) { 1736 result = null; 1737 } 1738 1739 public void visitBlock(JCBlock tree) { 1740 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1741 // Block is a static or instance initializer; 1742 // let the owner of the environment be a freshly 1743 // created BLOCK-method. 1744 Symbol fakeOwner = 1745 new MethodSymbol(tree.flags | BLOCK | 1746 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1747 env.info.scope.owner); 1748 final Env<AttrContext> localEnv = 1749 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1750 1751 if ((tree.flags & STATIC) != 0) { 1752 localEnv.info.staticLevel++; 1753 } else { 1754 localEnv.info.instanceInitializerBlock = true; 1755 } 1756 // Attribute all type annotations in the block 1757 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner); 1758 annotate.flush(); 1759 attribStats(tree.stats, localEnv); 1760 1761 { 1762 // Store init and clinit type annotations with the ClassSymbol 1763 // to allow output in Gen.normalizeDefs. 1764 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1765 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1766 if ((tree.flags & STATIC) != 0) { 1767 cs.appendClassInitTypeAttributes(tas); 1768 } else { 1769 cs.appendInitTypeAttributes(tas); 1770 } 1771 } 1772 } else { 1773 // Create a new local environment with a local scope. 1774 Env<AttrContext> localEnv = 1775 env.dup(tree, env.info.dup(env.info.scope.dup())); 1776 try { 1777 attribStats(tree.stats, localEnv); 1778 } finally { 1779 localEnv.info.scope.leave(); 1780 } 1781 } 1782 result = null; 1783 } 1784 1785 public void visitDoLoop(JCDoWhileLoop tree) { 1786 attribStat(tree.body, env.dup(tree)); 1787 attribExpr(tree.cond, env, syms.booleanType); 1788 handleLoopConditionBindings(matchBindings, tree, tree.body); 1789 result = null; 1790 } 1791 1792 public void visitWhileLoop(JCWhileLoop tree) { 1793 attribExpr(tree.cond, env, syms.booleanType); 1794 MatchBindings condBindings = matchBindings; 1795 // include condition's bindings when true in the body: 1796 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1797 try { 1798 attribStat(tree.body, whileEnv.dup(tree)); 1799 } finally { 1800 whileEnv.info.scope.leave(); 1801 } 1802 handleLoopConditionBindings(condBindings, tree, tree.body); 1803 result = null; 1804 } 1805 1806 public void visitForLoop(JCForLoop tree) { 1807 Env<AttrContext> loopEnv = 1808 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1809 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1810 try { 1811 attribStats(tree.init, loopEnv); 1812 if (tree.cond != null) { 1813 attribExpr(tree.cond, loopEnv, syms.booleanType); 1814 // include condition's bindings when true in the body and step: 1815 condBindings = matchBindings; 1816 } 1817 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1818 try { 1819 bodyEnv.tree = tree; // before, we were not in loop! 1820 attribStats(tree.step, bodyEnv); 1821 attribStat(tree.body, bodyEnv); 1822 } finally { 1823 bodyEnv.info.scope.leave(); 1824 } 1825 result = null; 1826 } 1827 finally { 1828 loopEnv.info.scope.leave(); 1829 } 1830 handleLoopConditionBindings(condBindings, tree, tree.body); 1831 } 1832 1833 /** 1834 * Include condition's bindings when false after the loop, if cannot get out of the loop 1835 */ 1836 private void handleLoopConditionBindings(MatchBindings condBindings, 1837 JCStatement loop, 1838 JCStatement loopBody) { 1839 if (condBindings.bindingsWhenFalse.nonEmpty() && 1840 !breaksTo(env, loop, loopBody)) { 1841 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1842 } 1843 } 1844 1845 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1846 preFlow(body); 1847 return flow.breaksToTree(env, loop, body, make); 1848 } 1849 1850 /** 1851 * Add given bindings to the current scope, unless there's a break to 1852 * an immediately enclosing labeled statement. 1853 */ 1854 private void addBindings2Scope(JCStatement introducingStatement, 1855 List<BindingSymbol> bindings) { 1856 if (bindings.isEmpty()) { 1857 return ; 1858 } 1859 1860 var searchEnv = env; 1861 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1862 labeled.body == introducingStatement) { 1863 if (breaksTo(env, labeled, labeled.body)) { 1864 //breaking to an immediately enclosing labeled statement 1865 return ; 1866 } 1867 searchEnv = searchEnv.next; 1868 introducingStatement = labeled; 1869 } 1870 1871 //include condition's body when false after the while, if cannot get out of the loop 1872 bindings.forEach(env.info.scope::enter); 1873 bindings.forEach(BindingSymbol::preserveBinding); 1874 } 1875 1876 public void visitForeachLoop(JCEnhancedForLoop tree) { 1877 Env<AttrContext> loopEnv = 1878 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1879 try { 1880 //the Formal Parameter of a for-each loop is not in the scope when 1881 //attributing the for-each expression; we mimic this by attributing 1882 //the for-each expression first (against original scope). 1883 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1884 chk.checkNonVoid(tree.pos(), exprType); 1885 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1886 if (elemtype == null) { 1887 // or perhaps expr implements Iterable<T>? 1888 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1889 if (base == null) { 1890 log.error(tree.expr.pos(), 1891 Errors.ForeachNotApplicableToType(exprType, 1892 Fragments.TypeReqArrayOrIterable)); 1893 elemtype = types.createErrorType(exprType); 1894 } else { 1895 List<Type> iterableParams = base.allparams(); 1896 elemtype = iterableParams.isEmpty() 1897 ? syms.objectType 1898 : types.wildUpperBound(iterableParams.head); 1899 1900 // Check the return type of the method iterator(). 1901 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1902 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1903 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1904 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1905 log.error(tree.pos(), 1906 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1907 } 1908 } 1909 } 1910 if (tree.var.isImplicitlyTyped()) { 1911 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1912 setSyntheticVariableType(tree.var, inferredType); 1913 } 1914 attribStat(tree.var, loopEnv); 1915 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1916 loopEnv.tree = tree; // before, we were not in loop! 1917 attribStat(tree.body, loopEnv); 1918 result = null; 1919 } 1920 finally { 1921 loopEnv.info.scope.leave(); 1922 } 1923 } 1924 1925 public void visitLabelled(JCLabeledStatement tree) { 1926 // Check that label is not used in an enclosing statement 1927 Env<AttrContext> env1 = env; 1928 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1929 if (env1.tree.hasTag(LABELLED) && 1930 ((JCLabeledStatement) env1.tree).label == tree.label) { 1931 log.error(tree.pos(), 1932 Errors.LabelAlreadyInUse(tree.label)); 1933 break; 1934 } 1935 env1 = env1.next; 1936 } 1937 1938 attribStat(tree.body, env.dup(tree)); 1939 result = null; 1940 } 1941 1942 public void visitSwitch(JCSwitch tree) { 1943 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1944 attribStats(c.stats, caseEnv); 1945 }); 1946 result = null; 1947 } 1948 1949 public void visitSwitchExpression(JCSwitchExpression tree) { 1950 boolean wrongContext = false; 1951 1952 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1953 PolyKind.STANDALONE : PolyKind.POLY; 1954 1955 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1956 //this means we are returning a poly conditional from void-compatible lambda expression 1957 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1958 resultInfo = recoveryInfo; 1959 wrongContext = true; 1960 } 1961 1962 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1963 unknownExprInfo : 1964 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1965 1966 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1967 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1968 1969 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1970 caseEnv.info.yieldResult = condInfo; 1971 attribStats(c.stats, caseEnv); 1972 new TreeScanner() { 1973 @Override 1974 public void visitYield(JCYield brk) { 1975 if (brk.target == tree) { 1976 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1977 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1978 } 1979 super.visitYield(brk); 1980 } 1981 1982 @Override public void visitClassDef(JCClassDecl tree) {} 1983 @Override public void visitLambda(JCLambda tree) {} 1984 }.scan(c.stats); 1985 }); 1986 1987 if (tree.cases.isEmpty()) { 1988 log.error(tree.pos(), 1989 Errors.SwitchExpressionEmpty); 1990 } else if (caseTypes.isEmpty()) { 1991 log.error(tree.pos(), 1992 Errors.SwitchExpressionNoResultExpressions); 1993 } 1994 1995 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1996 1997 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1998 } 1999 //where: 2000 CheckContext switchExpressionContext(CheckContext checkContext) { 2001 return new Check.NestedCheckContext(checkContext) { 2002 //this will use enclosing check context to check compatibility of 2003 //subexpression against target type; if we are in a method check context, 2004 //depending on whether boxing is allowed, we could have incompatibilities 2005 @Override 2006 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2007 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 2008 } 2009 }; 2010 } 2011 2012 private void handleSwitch(JCTree switchTree, 2013 JCExpression selector, 2014 List<JCCase> cases, 2015 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 2016 Type seltype = attribExpr(selector, env); 2017 Type seltypeUnboxed = types.unboxedTypeOrType(seltype); 2018 2019 Env<AttrContext> switchEnv = 2020 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 2021 2022 try { 2023 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 2024 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 2025 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType); 2026 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 2027 boolean intSwitch = types.isAssignable(seltype, syms.intType); 2028 boolean patternSwitch; 2029 if (seltype.isPrimitive() && !intSwitch) { 2030 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 2031 patternSwitch = true; 2032 } 2033 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 2034 !intSwitch) { 2035 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 2036 patternSwitch = true; 2037 } else { 2038 patternSwitch = cases.stream() 2039 .flatMap(c -> c.labels.stream()) 2040 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 2041 TreeInfo.isNullCaseLabel(l)); 2042 } 2043 2044 // Attribute all cases and 2045 // check that there are no duplicate case labels or default clauses. 2046 Set<Object> constants = new HashSet<>(); // The set of case constants. 2047 boolean hasDefault = false; // Is there a default label? 2048 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 2049 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 2050 boolean hasNullPattern = false; // Is there a null pattern? 2051 CaseTree.CaseKind caseKind = null; 2052 boolean wasError = false; 2053 JCCaseLabel unconditionalCaseLabel = null; 2054 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 2055 JCCase c = l.head; 2056 if (caseKind == null) { 2057 caseKind = c.caseKind; 2058 } else if (caseKind != c.caseKind && !wasError) { 2059 log.error(c.pos(), 2060 Errors.SwitchMixingCaseTypes); 2061 wasError = true; 2062 } 2063 MatchBindings currentBindings = null; 2064 MatchBindings guardBindings = null; 2065 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 2066 JCCaseLabel label = labels.head; 2067 if (label instanceof JCConstantCaseLabel constLabel) { 2068 JCExpression expr = constLabel.expr; 2069 if (TreeInfo.isNull(expr)) { 2070 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 2071 if (hasNullPattern) { 2072 log.error(label.pos(), Errors.DuplicateCaseLabel); 2073 } 2074 hasNullPattern = true; 2075 attribExpr(expr, switchEnv, seltype); 2076 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 2077 } else if (enumSwitch) { 2078 Symbol sym = enumConstant(expr, seltype); 2079 if (sym == null) { 2080 if (allowPatternSwitch) { 2081 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2082 Symbol enumSym = TreeInfo.symbol(expr); 2083 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 2084 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 2085 } else if (!constants.add(enumSym)) { 2086 log.error(label.pos(), Errors.DuplicateCaseLabel); 2087 } 2088 } else { 2089 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 2090 } 2091 } else if (!constants.add(sym)) { 2092 log.error(label.pos(), Errors.DuplicateCaseLabel); 2093 } 2094 } else if (errorEnumSwitch) { 2095 //error recovery: the selector is erroneous, and all the case labels 2096 //are identifiers. This could be an enum switch - don't report resolve 2097 //error for the case label: 2098 var prevResolveHelper = rs.basicLogResolveHelper; 2099 try { 2100 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 2101 attribExpr(expr, switchEnv, seltype); 2102 } finally { 2103 rs.basicLogResolveHelper = prevResolveHelper; 2104 } 2105 } else { 2106 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2107 if (!pattype.hasTag(ERROR)) { 2108 if (pattype.constValue() == null) { 2109 Symbol s = TreeInfo.symbol(expr); 2110 if (s != null && s.kind == TYP) { 2111 log.error(expr.pos(), 2112 Errors.PatternExpected); 2113 } else if (s == null || !s.isEnum()) { 2114 log.error(expr.pos(), 2115 (stringSwitch ? Errors.StringConstReq 2116 : intSwitch ? Errors.ConstExprReq 2117 : Errors.PatternOrEnumReq)); 2118 } else if (!constants.add(s)) { 2119 log.error(label.pos(), Errors.DuplicateCaseLabel); 2120 } 2121 } 2122 else { 2123 boolean isLongFloatDoubleOrBooleanConstant = 2124 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN); 2125 if (isLongFloatDoubleOrBooleanConstant) { 2126 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS); 2127 } 2128 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) { 2129 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 2130 } else if (!constants.add(pattype.constValue())) { 2131 log.error(c.pos(), Errors.DuplicateCaseLabel); 2132 } 2133 } 2134 } 2135 } 2136 } else if (label instanceof JCDefaultCaseLabel def) { 2137 if (hasDefault) { 2138 log.error(label.pos(), Errors.DuplicateDefaultLabel); 2139 } else if (hasUnconditionalPattern) { 2140 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 2141 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2142 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 2143 } 2144 hasDefault = true; 2145 matchBindings = MatchBindingsComputer.EMPTY; 2146 } else if (label instanceof JCPatternCaseLabel patternlabel) { 2147 //pattern 2148 JCPattern pat = patternlabel.pat; 2149 attribExpr(pat, switchEnv, seltype); 2150 Type primaryType = TreeInfo.primaryPatternType(pat); 2151 2152 if (primaryType.isPrimitive()) { 2153 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 2154 } else if (!primaryType.hasTag(TYPEVAR)) { 2155 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 2156 } 2157 checkCastablePattern(pat.pos(), seltype, primaryType); 2158 Type patternType = types.erasure(primaryType); 2159 JCExpression guard = c.guard; 2160 if (guardBindings == null && guard != null) { 2161 MatchBindings afterPattern = matchBindings; 2162 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 2163 try { 2164 attribExpr(guard, bodyEnv, syms.booleanType); 2165 } finally { 2166 bodyEnv.info.scope.leave(); 2167 } 2168 2169 guardBindings = matchBindings; 2170 matchBindings = afterPattern; 2171 2172 if (TreeInfo.isBooleanWithValue(guard, 0)) { 2173 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 2174 } 2175 } 2176 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 2177 boolean unconditional = 2178 unguarded && 2179 !patternType.isErroneous() && 2180 types.isUnconditionallyExact(seltype, patternType); 2181 if (unconditional) { 2182 if (hasUnconditionalPattern) { 2183 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 2184 } else if (hasDefault) { 2185 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 2186 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2187 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 2188 } 2189 hasUnconditionalPattern = true; 2190 unconditionalCaseLabel = label; 2191 } 2192 lastPatternErroneous = patternType.isErroneous(); 2193 } else { 2194 Assert.error(); 2195 } 2196 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 2197 } 2198 2199 if (guardBindings != null) { 2200 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 2201 } 2202 2203 Env<AttrContext> caseEnv = 2204 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 2205 try { 2206 attribCase.accept(c, caseEnv); 2207 } finally { 2208 caseEnv.info.scope.leave(); 2209 } 2210 addVars(c.stats, switchEnv.info.scope); 2211 2212 preFlow(c); 2213 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 2214 } 2215 if (patternSwitch) { 2216 chk.checkSwitchCaseStructure(cases); 2217 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 2218 } 2219 if (switchTree.hasTag(SWITCH)) { 2220 ((JCSwitch) switchTree).hasUnconditionalPattern = 2221 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2222 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 2223 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 2224 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 2225 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2226 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 2227 } else { 2228 Assert.error(switchTree.getTag().name()); 2229 } 2230 } finally { 2231 switchEnv.info.scope.leave(); 2232 } 2233 } 2234 // where 2235 private ResultInfo caseLabelResultInfo(Type seltype) { 2236 return new ResultInfo(KindSelector.VAL_TYP, 2237 !seltype.hasTag(ERROR) ? seltype 2238 : Type.noType); 2239 } 2240 /** Add any variables defined in stats to the switch scope. */ 2241 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 2242 for (;stats.nonEmpty(); stats = stats.tail) { 2243 JCTree stat = stats.head; 2244 if (stat.hasTag(VARDEF)) 2245 switchScope.enter(((JCVariableDecl) stat).sym); 2246 } 2247 } 2248 // where 2249 /** Return the selected enumeration constant symbol, or null. */ 2250 private Symbol enumConstant(JCTree tree, Type enumType) { 2251 if (tree.hasTag(IDENT)) { 2252 JCIdent ident = (JCIdent)tree; 2253 Name name = ident.name; 2254 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 2255 if (sym.kind == VAR) { 2256 Symbol s = ident.sym = sym; 2257 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 2258 ident.type = s.type; 2259 return ((s.flags_field & Flags.ENUM) == 0) 2260 ? null : s; 2261 } 2262 } 2263 } 2264 return null; 2265 } 2266 2267 public void visitSynchronized(JCSynchronized tree) { 2268 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 2269 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) { 2270 log.warning(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 2271 } 2272 attribStat(tree.body, env); 2273 result = null; 2274 } 2275 2276 public void visitTry(JCTry tree) { 2277 // Create a new local environment with a local 2278 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 2279 try { 2280 boolean isTryWithResource = tree.resources.nonEmpty(); 2281 // Create a nested environment for attributing the try block if needed 2282 Env<AttrContext> tryEnv = isTryWithResource ? 2283 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 2284 localEnv; 2285 try { 2286 // Attribute resource declarations 2287 for (JCTree resource : tree.resources) { 2288 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 2289 @Override 2290 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2291 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 2292 } 2293 }; 2294 ResultInfo twrResult = 2295 new ResultInfo(KindSelector.VAR, 2296 syms.autoCloseableType, 2297 twrContext); 2298 if (resource.hasTag(VARDEF)) { 2299 attribStat(resource, tryEnv); 2300 twrResult.check(resource, resource.type); 2301 2302 //check that resource type cannot throw InterruptedException 2303 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2304 2305 VarSymbol var = ((JCVariableDecl) resource).sym; 2306 2307 var.flags_field |= Flags.FINAL; 2308 var.setData(ElementKind.RESOURCE_VARIABLE); 2309 } else { 2310 attribTree(resource, tryEnv, twrResult); 2311 } 2312 } 2313 // Attribute body 2314 attribStat(tree.body, tryEnv); 2315 } finally { 2316 if (isTryWithResource) 2317 tryEnv.info.scope.leave(); 2318 } 2319 2320 // Attribute catch clauses 2321 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2322 JCCatch c = l.head; 2323 Env<AttrContext> catchEnv = 2324 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2325 try { 2326 Type ctype = attribStat(c.param, catchEnv); 2327 if (TreeInfo.isMultiCatch(c)) { 2328 //multi-catch parameter is implicitly marked as final 2329 c.param.sym.flags_field |= FINAL | UNION; 2330 } 2331 if (c.param.sym.kind == VAR) { 2332 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2333 } 2334 chk.checkType(c.param.vartype.pos(), 2335 chk.checkClassType(c.param.vartype.pos(), ctype), 2336 syms.throwableType); 2337 attribStat(c.body, catchEnv); 2338 } finally { 2339 catchEnv.info.scope.leave(); 2340 } 2341 } 2342 2343 // Attribute finalizer 2344 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2345 result = null; 2346 } 2347 finally { 2348 localEnv.info.scope.leave(); 2349 } 2350 } 2351 2352 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2353 if (!resource.isErroneous() && 2354 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2355 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2356 Symbol close = syms.noSymbol; 2357 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler(); 2358 try { 2359 close = rs.resolveQualifiedMethod(pos, 2360 env, 2361 types.skipTypeVars(resource, false), 2362 names.close, 2363 List.nil(), 2364 List.nil()); 2365 } 2366 finally { 2367 log.popDiagnosticHandler(discardHandler); 2368 } 2369 if (close.kind == MTH && 2370 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2371 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2372 log.warning(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2373 } 2374 } 2375 } 2376 2377 public void visitConditional(JCConditional tree) { 2378 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2379 MatchBindings condBindings = matchBindings; 2380 2381 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2382 isBooleanOrNumeric(env, tree)) ? 2383 PolyKind.STANDALONE : PolyKind.POLY; 2384 2385 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2386 //this means we are returning a poly conditional from void-compatible lambda expression 2387 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2388 result = tree.type = types.createErrorType(resultInfo.pt); 2389 return; 2390 } 2391 2392 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2393 unknownExprInfo : 2394 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2395 2396 2397 // x ? y : z 2398 // include x's bindings when true in y 2399 // include x's bindings when false in z 2400 2401 Type truetype; 2402 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2403 try { 2404 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2405 } finally { 2406 trueEnv.info.scope.leave(); 2407 } 2408 2409 MatchBindings trueBindings = matchBindings; 2410 2411 Type falsetype; 2412 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2413 try { 2414 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2415 } finally { 2416 falseEnv.info.scope.leave(); 2417 } 2418 2419 MatchBindings falseBindings = matchBindings; 2420 2421 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2422 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2423 List.of(truetype, falsetype)) : pt(); 2424 if (condtype.constValue() != null && 2425 truetype.constValue() != null && 2426 falsetype.constValue() != null && 2427 !owntype.hasTag(NONE)) { 2428 //constant folding 2429 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2430 } 2431 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2432 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2433 } 2434 //where 2435 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2436 switch (tree.getTag()) { 2437 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2438 ((JCLiteral)tree).typetag == BOOLEAN || 2439 ((JCLiteral)tree).typetag == BOT; 2440 case LAMBDA: case REFERENCE: return false; 2441 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2442 case CONDEXPR: 2443 JCConditional condTree = (JCConditional)tree; 2444 return isBooleanOrNumeric(env, condTree.truepart) && 2445 isBooleanOrNumeric(env, condTree.falsepart); 2446 case APPLY: 2447 JCMethodInvocation speculativeMethodTree = 2448 (JCMethodInvocation)deferredAttr.attribSpeculative( 2449 tree, env, unknownExprInfo, 2450 argumentAttr.withLocalCacheContext()); 2451 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2452 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2453 env.enclClass.type : 2454 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2455 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2456 return primitiveOrBoxed(owntype); 2457 case NEWCLASS: 2458 JCExpression className = 2459 removeClassParams.translate(((JCNewClass)tree).clazz); 2460 JCExpression speculativeNewClassTree = 2461 (JCExpression)deferredAttr.attribSpeculative( 2462 className, env, unknownTypeInfo, 2463 argumentAttr.withLocalCacheContext()); 2464 return primitiveOrBoxed(speculativeNewClassTree.type); 2465 default: 2466 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2467 argumentAttr.withLocalCacheContext()).type; 2468 return primitiveOrBoxed(speculativeType); 2469 } 2470 } 2471 //where 2472 boolean primitiveOrBoxed(Type t) { 2473 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2474 } 2475 2476 TreeTranslator removeClassParams = new TreeTranslator() { 2477 @Override 2478 public void visitTypeApply(JCTypeApply tree) { 2479 result = translate(tree.clazz); 2480 } 2481 }; 2482 2483 CheckContext conditionalContext(CheckContext checkContext) { 2484 return new Check.NestedCheckContext(checkContext) { 2485 //this will use enclosing check context to check compatibility of 2486 //subexpression against target type; if we are in a method check context, 2487 //depending on whether boxing is allowed, we could have incompatibilities 2488 @Override 2489 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2490 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2491 } 2492 }; 2493 } 2494 2495 /** Compute the type of a conditional expression, after 2496 * checking that it exists. See JLS 15.25. Does not take into 2497 * account the special case where condition and both arms 2498 * are constants. 2499 * 2500 * @param pos The source position to be used for error 2501 * diagnostics. 2502 * @param thentype The type of the expression's then-part. 2503 * @param elsetype The type of the expression's else-part. 2504 */ 2505 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2506 if (condTypes.isEmpty()) { 2507 return syms.objectType; //TODO: how to handle? 2508 } 2509 Type first = condTypes.head; 2510 // If same type, that is the result 2511 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2512 return first.baseType(); 2513 2514 List<Type> unboxedTypes = condTypes.stream() 2515 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2516 .collect(List.collector()); 2517 2518 // Otherwise, if both arms can be converted to a numeric 2519 // type, return the least numeric type that fits both arms 2520 // (i.e. return larger of the two, or return int if one 2521 // arm is short, the other is char). 2522 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2523 // If one arm has an integer subrange type (i.e., byte, 2524 // short, or char), and the other is an integer constant 2525 // that fits into the subrange, return the subrange type. 2526 for (Type type : unboxedTypes) { 2527 if (!type.getTag().isStrictSubRangeOf(INT)) { 2528 continue; 2529 } 2530 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2531 return type.baseType(); 2532 } 2533 2534 for (TypeTag tag : primitiveTags) { 2535 Type candidate = syms.typeOfTag[tag.ordinal()]; 2536 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2537 return candidate; 2538 } 2539 } 2540 } 2541 2542 // Those were all the cases that could result in a primitive 2543 condTypes = condTypes.stream() 2544 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2545 .collect(List.collector()); 2546 2547 for (Type type : condTypes) { 2548 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2549 return type.baseType(); 2550 } 2551 2552 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2553 2554 condTypes = condTypes.stream() 2555 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2556 .collect(List.collector()); 2557 2558 // both are known to be reference types. The result is 2559 // lub(thentype,elsetype). This cannot fail, as it will 2560 // always be possible to infer "Object" if nothing better. 2561 return types.lub(condTypes.stream() 2562 .map(t -> t.baseType()) 2563 .filter(t -> !t.hasTag(BOT)) 2564 .collect(List.collector())); 2565 } 2566 2567 static final TypeTag[] primitiveTags = new TypeTag[]{ 2568 BYTE, 2569 CHAR, 2570 SHORT, 2571 INT, 2572 LONG, 2573 FLOAT, 2574 DOUBLE, 2575 BOOLEAN, 2576 }; 2577 2578 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2579 return bindingEnv(env, env.tree, bindings); 2580 } 2581 2582 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2583 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2584 bindings.forEach(env1.info.scope::enter); 2585 return env1; 2586 } 2587 2588 public void visitIf(JCIf tree) { 2589 attribExpr(tree.cond, env, syms.booleanType); 2590 2591 // if (x) { y } [ else z ] 2592 // include x's bindings when true in y 2593 // include x's bindings when false in z 2594 2595 MatchBindings condBindings = matchBindings; 2596 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2597 2598 try { 2599 attribStat(tree.thenpart, thenEnv); 2600 } finally { 2601 thenEnv.info.scope.leave(); 2602 } 2603 2604 preFlow(tree.thenpart); 2605 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2606 boolean aliveAfterElse; 2607 2608 if (tree.elsepart != null) { 2609 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2610 try { 2611 attribStat(tree.elsepart, elseEnv); 2612 } finally { 2613 elseEnv.info.scope.leave(); 2614 } 2615 preFlow(tree.elsepart); 2616 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2617 } else { 2618 aliveAfterElse = true; 2619 } 2620 2621 chk.checkEmptyIf(tree); 2622 2623 List<BindingSymbol> afterIfBindings = List.nil(); 2624 2625 if (aliveAfterThen && !aliveAfterElse) { 2626 afterIfBindings = condBindings.bindingsWhenTrue; 2627 } else if (aliveAfterElse && !aliveAfterThen) { 2628 afterIfBindings = condBindings.bindingsWhenFalse; 2629 } 2630 2631 addBindings2Scope(tree, afterIfBindings); 2632 2633 result = null; 2634 } 2635 2636 void preFlow(JCTree tree) { 2637 attrRecover.doRecovery(); 2638 new PostAttrAnalyzer() { 2639 @Override 2640 public void scan(JCTree tree) { 2641 if (tree == null || 2642 (tree.type != null && 2643 tree.type == Type.stuckType)) { 2644 //don't touch stuck expressions! 2645 return; 2646 } 2647 super.scan(tree); 2648 } 2649 2650 @Override 2651 public void visitClassDef(JCClassDecl that) { 2652 if (that.sym != null) { 2653 // Method preFlow shouldn't visit class definitions 2654 // that have not been entered and attributed. 2655 // See JDK-8254557 and JDK-8203277 for more details. 2656 super.visitClassDef(that); 2657 } 2658 } 2659 2660 @Override 2661 public void visitLambda(JCLambda that) { 2662 if (that.type != null) { 2663 // Method preFlow shouldn't visit lambda expressions 2664 // that have not been entered and attributed. 2665 // See JDK-8254557 and JDK-8203277 for more details. 2666 super.visitLambda(that); 2667 } 2668 } 2669 }.scan(tree); 2670 } 2671 2672 public void visitExec(JCExpressionStatement tree) { 2673 //a fresh environment is required for 292 inference to work properly --- 2674 //see Infer.instantiatePolymorphicSignatureInstance() 2675 Env<AttrContext> localEnv = env.dup(tree); 2676 attribExpr(tree.expr, localEnv); 2677 result = null; 2678 } 2679 2680 public void visitBreak(JCBreak tree) { 2681 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2682 result = null; 2683 } 2684 2685 public void visitYield(JCYield tree) { 2686 if (env.info.yieldResult != null) { 2687 attribTree(tree.value, env, env.info.yieldResult); 2688 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2689 } else { 2690 log.error(tree.pos(), tree.value.hasTag(PARENS) 2691 ? Errors.NoSwitchExpressionQualify 2692 : Errors.NoSwitchExpression); 2693 attribTree(tree.value, env, unknownExprInfo); 2694 } 2695 result = null; 2696 } 2697 2698 public void visitContinue(JCContinue tree) { 2699 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2700 result = null; 2701 } 2702 //where 2703 /** Return the target of a break, continue or yield statement, 2704 * if it exists, report an error if not. 2705 * Note: The target of a labelled break or continue is the 2706 * (non-labelled) statement tree referred to by the label, 2707 * not the tree representing the labelled statement itself. 2708 * 2709 * @param pos The position to be used for error diagnostics 2710 * @param tag The tag of the jump statement. This is either 2711 * Tree.BREAK or Tree.CONTINUE. 2712 * @param label The label of the jump statement, or null if no 2713 * label is given. 2714 * @param env The environment current at the jump statement. 2715 */ 2716 private JCTree findJumpTarget(DiagnosticPosition pos, 2717 JCTree.Tag tag, 2718 Name label, 2719 Env<AttrContext> env) { 2720 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2721 2722 if (jumpTarget.snd != null) { 2723 log.error(pos, jumpTarget.snd); 2724 } 2725 2726 return jumpTarget.fst; 2727 } 2728 /** Return the target of a break or continue statement, if it exists, 2729 * report an error if not. 2730 * Note: The target of a labelled break or continue is the 2731 * (non-labelled) statement tree referred to by the label, 2732 * not the tree representing the labelled statement itself. 2733 * 2734 * @param tag The tag of the jump statement. This is either 2735 * Tree.BREAK or Tree.CONTINUE. 2736 * @param label The label of the jump statement, or null if no 2737 * label is given. 2738 * @param env The environment current at the jump statement. 2739 */ 2740 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2741 Name label, 2742 Env<AttrContext> env) { 2743 // Search environments outwards from the point of jump. 2744 Env<AttrContext> env1 = env; 2745 JCDiagnostic.Error pendingError = null; 2746 LOOP: 2747 while (env1 != null) { 2748 switch (env1.tree.getTag()) { 2749 case LABELLED: 2750 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2751 if (label == labelled.label) { 2752 // If jump is a continue, check that target is a loop. 2753 if (tag == CONTINUE) { 2754 if (!labelled.body.hasTag(DOLOOP) && 2755 !labelled.body.hasTag(WHILELOOP) && 2756 !labelled.body.hasTag(FORLOOP) && 2757 !labelled.body.hasTag(FOREACHLOOP)) { 2758 pendingError = Errors.NotLoopLabel(label); 2759 } 2760 // Found labelled statement target, now go inwards 2761 // to next non-labelled tree. 2762 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2763 } else { 2764 return Pair.of(labelled, pendingError); 2765 } 2766 } 2767 break; 2768 case DOLOOP: 2769 case WHILELOOP: 2770 case FORLOOP: 2771 case FOREACHLOOP: 2772 if (label == null) return Pair.of(env1.tree, pendingError); 2773 break; 2774 case SWITCH: 2775 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2776 break; 2777 case SWITCH_EXPRESSION: 2778 if (tag == YIELD) { 2779 return Pair.of(env1.tree, null); 2780 } else if (tag == BREAK) { 2781 pendingError = Errors.BreakOutsideSwitchExpression; 2782 } else { 2783 pendingError = Errors.ContinueOutsideSwitchExpression; 2784 } 2785 break; 2786 case LAMBDA: 2787 case METHODDEF: 2788 case CLASSDEF: 2789 break LOOP; 2790 default: 2791 } 2792 env1 = env1.next; 2793 } 2794 if (label != null) 2795 return Pair.of(null, Errors.UndefLabel(label)); 2796 else if (pendingError != null) 2797 return Pair.of(null, pendingError); 2798 else if (tag == CONTINUE) 2799 return Pair.of(null, Errors.ContOutsideLoop); 2800 else 2801 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2802 } 2803 2804 public void visitReturn(JCReturn tree) { 2805 // Check that there is an enclosing method which is 2806 // nested within than the enclosing class. 2807 if (env.info.returnResult == null) { 2808 log.error(tree.pos(), Errors.RetOutsideMeth); 2809 } else if (env.info.yieldResult != null) { 2810 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2811 if (tree.expr != null) { 2812 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2813 } 2814 } else if (!env.info.isLambda && 2815 env.enclMethod != null && 2816 TreeInfo.isCompactConstructor(env.enclMethod)) { 2817 log.error(env.enclMethod, 2818 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2819 } else { 2820 // Attribute return expression, if it exists, and check that 2821 // it conforms to result type of enclosing method. 2822 if (tree.expr != null) { 2823 if (env.info.returnResult.pt.hasTag(VOID)) { 2824 env.info.returnResult.checkContext.report(tree.expr.pos(), 2825 diags.fragment(Fragments.UnexpectedRetVal)); 2826 } 2827 attribTree(tree.expr, env, env.info.returnResult); 2828 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2829 !env.info.returnResult.pt.hasTag(NONE)) { 2830 env.info.returnResult.checkContext.report(tree.pos(), 2831 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2832 } 2833 } 2834 result = null; 2835 } 2836 2837 public void visitThrow(JCThrow tree) { 2838 Type owntype = attribExpr(tree.expr, env, Type.noType); 2839 chk.checkType(tree, owntype, syms.throwableType); 2840 result = null; 2841 } 2842 2843 public void visitAssert(JCAssert tree) { 2844 attribExpr(tree.cond, env, syms.booleanType); 2845 if (tree.detail != null) { 2846 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2847 } 2848 result = null; 2849 } 2850 2851 /** Visitor method for method invocations. 2852 * NOTE: The method part of an application will have in its type field 2853 * the return type of the method, not the method's type itself! 2854 */ 2855 public void visitApply(JCMethodInvocation tree) { 2856 // The local environment of a method application is 2857 // a new environment nested in the current one. 2858 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2859 2860 // The types of the actual method arguments. 2861 List<Type> argtypes; 2862 2863 // The types of the actual method type arguments. 2864 List<Type> typeargtypes = null; 2865 2866 Name methName = TreeInfo.name(tree.meth); 2867 2868 boolean isConstructorCall = 2869 methName == names._this || methName == names._super; 2870 2871 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2872 if (isConstructorCall) { 2873 2874 // Attribute arguments, yielding list of argument types. 2875 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2876 argtypes = argtypesBuf.toList(); 2877 typeargtypes = attribTypes(tree.typeargs, localEnv); 2878 2879 // Done with this()/super() parameters. End of constructor prologue. 2880 env.info.ctorPrologue = false; 2881 2882 // Variable `site' points to the class in which the called 2883 // constructor is defined. 2884 Type site = env.enclClass.sym.type; 2885 if (methName == names._super) { 2886 if (site == syms.objectType) { 2887 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2888 site = types.createErrorType(syms.objectType); 2889 } else { 2890 site = types.supertype(site); 2891 } 2892 } 2893 2894 if (site.hasTag(CLASS)) { 2895 Type encl = site.getEnclosingType(); 2896 while (encl != null && encl.hasTag(TYPEVAR)) 2897 encl = encl.getUpperBound(); 2898 if (encl.hasTag(CLASS)) { 2899 // we are calling a nested class 2900 2901 if (tree.meth.hasTag(SELECT)) { 2902 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2903 2904 // We are seeing a prefixed call, of the form 2905 // <expr>.super(...). 2906 // Check that the prefix expression conforms 2907 // to the outer instance type of the class. 2908 chk.checkRefType(qualifier.pos(), 2909 attribExpr(qualifier, localEnv, 2910 encl)); 2911 } 2912 } else if (tree.meth.hasTag(SELECT)) { 2913 log.error(tree.meth.pos(), 2914 Errors.IllegalQualNotIcls(site.tsym)); 2915 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2916 } 2917 2918 if (tree.meth.hasTag(IDENT)) { 2919 // non-qualified super(...) call; check whether explicit constructor 2920 // invocation is well-formed. If the super class is an inner class, 2921 // make sure that an appropriate implicit qualifier exists. If the super 2922 // class is a local class, make sure that the current class is defined 2923 // in the same context as the local class. 2924 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2925 } 2926 2927 // if we're calling a java.lang.Enum constructor, 2928 // prefix the implicit String and int parameters 2929 if (site.tsym == syms.enumSym) 2930 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2931 2932 // Resolve the called constructor under the assumption 2933 // that we are referring to a superclass instance of the 2934 // current instance (JLS ???). 2935 boolean selectSuperPrev = localEnv.info.selectSuper; 2936 localEnv.info.selectSuper = true; 2937 localEnv.info.pendingResolutionPhase = null; 2938 Symbol sym = rs.resolveConstructor( 2939 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2940 localEnv.info.selectSuper = selectSuperPrev; 2941 2942 // Set method symbol to resolved constructor... 2943 TreeInfo.setSymbol(tree.meth, sym); 2944 2945 // ...and check that it is legal in the current context. 2946 // (this will also set the tree's type) 2947 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2948 checkId(tree.meth, site, sym, localEnv, 2949 new ResultInfo(kind, mpt)); 2950 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2951 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2952 } 2953 // Otherwise, `site' is an error type and we do nothing 2954 result = tree.type = syms.voidType; 2955 } else { 2956 // Otherwise, we are seeing a regular method call. 2957 // Attribute the arguments, yielding list of argument types, ... 2958 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2959 argtypes = argtypesBuf.toList(); 2960 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2961 2962 // ... and attribute the method using as a prototype a methodtype 2963 // whose formal argument types is exactly the list of actual 2964 // arguments (this will also set the method symbol). 2965 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2966 localEnv.info.pendingResolutionPhase = null; 2967 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2968 2969 // Compute the result type. 2970 Type restype = mtype.getReturnType(); 2971 if (restype.hasTag(WILDCARD)) 2972 throw new AssertionError(mtype); 2973 2974 Type qualifier = (tree.meth.hasTag(SELECT)) 2975 ? ((JCFieldAccess) tree.meth).selected.type 2976 : env.enclClass.sym.type; 2977 Symbol msym = TreeInfo.symbol(tree.meth); 2978 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2979 2980 chk.checkRefTypes(tree.typeargs, typeargtypes); 2981 2982 // Check that value of resulting type is admissible in the 2983 // current context. Also, capture the return type 2984 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2985 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2986 } 2987 chk.checkRequiresIdentity(tree, env.info.lint); 2988 chk.validate(tree.typeargs, localEnv); 2989 } 2990 //where 2991 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2992 if (msym != null && 2993 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2994 methodName == names.getClass && 2995 argtypes.isEmpty()) { 2996 // as a special case, x.getClass() has type Class<? extends |X|> 2997 return new ClassType(restype.getEnclosingType(), 2998 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2999 BoundKind.EXTENDS, 3000 syms.boundClass)), 3001 restype.tsym, 3002 restype.getMetadata()); 3003 } else if (msym != null && 3004 msym.owner == syms.arrayClass && 3005 methodName == names.clone && 3006 types.isArray(qualifierType)) { 3007 // as a special case, array.clone() has a result that is 3008 // the same as static type of the array being cloned 3009 return qualifierType; 3010 } else { 3011 return restype; 3012 } 3013 } 3014 3015 /** Obtain a method type with given argument types. 3016 */ 3017 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 3018 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 3019 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 3020 } 3021 3022 public void visitNewClass(final JCNewClass tree) { 3023 Type owntype = types.createErrorType(tree.type); 3024 3025 // The local environment of a class creation is 3026 // a new environment nested in the current one. 3027 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 3028 3029 // The anonymous inner class definition of the new expression, 3030 // if one is defined by it. 3031 JCClassDecl cdef = tree.def; 3032 3033 // If enclosing class is given, attribute it, and 3034 // complete class name to be fully qualified 3035 JCExpression clazz = tree.clazz; // Class field following new 3036 JCExpression clazzid; // Identifier in class field 3037 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 3038 annoclazzid = null; 3039 3040 if (clazz.hasTag(TYPEAPPLY)) { 3041 clazzid = ((JCTypeApply) clazz).clazz; 3042 if (clazzid.hasTag(ANNOTATED_TYPE)) { 3043 annoclazzid = (JCAnnotatedType) clazzid; 3044 clazzid = annoclazzid.underlyingType; 3045 } 3046 } else { 3047 if (clazz.hasTag(ANNOTATED_TYPE)) { 3048 annoclazzid = (JCAnnotatedType) clazz; 3049 clazzid = annoclazzid.underlyingType; 3050 } else { 3051 clazzid = clazz; 3052 } 3053 } 3054 3055 JCExpression clazzid1 = clazzid; // The same in fully qualified form 3056 3057 if (tree.encl != null) { 3058 // We are seeing a qualified new, of the form 3059 // <expr>.new C <...> (...) ... 3060 // In this case, we let clazz stand for the name of the 3061 // allocated class C prefixed with the type of the qualifier 3062 // expression, so that we can 3063 // resolve it with standard techniques later. I.e., if 3064 // <expr> has type T, then <expr>.new C <...> (...) 3065 // yields a clazz T.C. 3066 Type encltype = chk.checkRefType(tree.encl.pos(), 3067 attribExpr(tree.encl, env)); 3068 // TODO 308: in <expr>.new C, do we also want to add the type annotations 3069 // from expr to the combined type, or not? Yes, do this. 3070 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 3071 ((JCIdent) clazzid).name); 3072 3073 EndPosTable endPosTable = this.env.toplevel.endPositions; 3074 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 3075 if (clazz.hasTag(ANNOTATED_TYPE)) { 3076 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 3077 List<JCAnnotation> annos = annoType.annotations; 3078 3079 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 3080 clazzid1 = make.at(tree.pos). 3081 TypeApply(clazzid1, 3082 ((JCTypeApply) clazz).arguments); 3083 } 3084 3085 clazzid1 = make.at(tree.pos). 3086 AnnotatedType(annos, clazzid1); 3087 } else if (clazz.hasTag(TYPEAPPLY)) { 3088 clazzid1 = make.at(tree.pos). 3089 TypeApply(clazzid1, 3090 ((JCTypeApply) clazz).arguments); 3091 } 3092 3093 clazz = clazzid1; 3094 } 3095 3096 // Attribute clazz expression and store 3097 // symbol + type back into the attributed tree. 3098 Type clazztype; 3099 3100 try { 3101 env.info.isAnonymousNewClass = tree.def != null; 3102 clazztype = TreeInfo.isEnumInit(env.tree) ? 3103 attribIdentAsEnumType(env, (JCIdent)clazz) : 3104 attribType(clazz, env); 3105 } finally { 3106 env.info.isAnonymousNewClass = false; 3107 } 3108 3109 clazztype = chk.checkDiamond(tree, clazztype); 3110 chk.validate(clazz, localEnv); 3111 if (tree.encl != null) { 3112 // We have to work in this case to store 3113 // symbol + type back into the attributed tree. 3114 tree.clazz.type = clazztype; 3115 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 3116 clazzid.type = ((JCIdent) clazzid).sym.type; 3117 if (annoclazzid != null) { 3118 annoclazzid.type = clazzid.type; 3119 } 3120 if (!clazztype.isErroneous()) { 3121 if (cdef != null && clazztype.tsym.isInterface()) { 3122 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 3123 } else if (clazztype.tsym.isStatic()) { 3124 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 3125 } 3126 } 3127 } else { 3128 // Check for the existence of an apropos outer instance 3129 checkNewInnerClass(tree.pos(), env, clazztype, false); 3130 } 3131 3132 // Attribute constructor arguments. 3133 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 3134 final KindSelector pkind = 3135 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 3136 List<Type> argtypes = argtypesBuf.toList(); 3137 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 3138 3139 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 3140 // Enums may not be instantiated except implicitly 3141 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 3142 (!env.tree.hasTag(VARDEF) || 3143 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 3144 ((JCVariableDecl) env.tree).init != tree)) 3145 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 3146 3147 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 3148 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3149 boolean skipNonDiamondPath = false; 3150 // Check that class is not abstract 3151 if (cdef == null && !tree.classDeclRemoved() && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 3152 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 3153 log.error(tree.pos(), 3154 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 3155 skipNonDiamondPath = true; 3156 } else if (cdef != null && clazztype.tsym.isInterface()) { 3157 // Check that no constructor arguments are given to 3158 // anonymous classes implementing an interface 3159 if (!argtypes.isEmpty()) 3160 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 3161 3162 if (!typeargtypes.isEmpty()) 3163 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 3164 3165 // Error recovery: pretend no arguments were supplied. 3166 argtypes = List.nil(); 3167 typeargtypes = List.nil(); 3168 skipNonDiamondPath = true; 3169 } 3170 if (TreeInfo.isDiamond(tree)) { 3171 ClassType site = new ClassType(clazztype.getEnclosingType(), 3172 clazztype.tsym.type.getTypeArguments(), 3173 clazztype.tsym, 3174 clazztype.getMetadata()); 3175 3176 Env<AttrContext> diamondEnv = localEnv.dup(tree); 3177 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 3178 diamondEnv.info.pendingResolutionPhase = null; 3179 3180 //if the type of the instance creation expression is a class type 3181 //apply method resolution inference (JLS 15.12.2.7). The return type 3182 //of the resolved constructor will be a partially instantiated type 3183 Symbol constructor = rs.resolveDiamond(tree.pos(), 3184 diamondEnv, 3185 site, 3186 argtypes, 3187 typeargtypes); 3188 tree.constructor = constructor.baseSymbol(); 3189 3190 final TypeSymbol csym = clazztype.tsym; 3191 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 3192 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3193 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 3194 constructorType = checkId(tree, site, 3195 constructor, 3196 diamondEnv, 3197 diamondResult); 3198 3199 tree.clazz.type = types.createErrorType(clazztype); 3200 if (!constructorType.isErroneous()) { 3201 tree.clazz.type = clazz.type = constructorType.getReturnType(); 3202 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 3203 } 3204 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 3205 } 3206 3207 // Resolve the called constructor under the assumption 3208 // that we are referring to a superclass instance of the 3209 // current instance (JLS ???). 3210 else if (!skipNonDiamondPath) { 3211 //the following code alters some of the fields in the current 3212 //AttrContext - hence, the current context must be dup'ed in 3213 //order to avoid downstream failures 3214 Env<AttrContext> rsEnv = localEnv.dup(tree); 3215 rsEnv.info.selectSuper = cdef != null; 3216 rsEnv.info.pendingResolutionPhase = null; 3217 tree.constructor = rs.resolveConstructor( 3218 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 3219 if (cdef == null) { //do not check twice! 3220 tree.constructorType = checkId(tree, 3221 clazztype, 3222 tree.constructor, 3223 rsEnv, 3224 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3225 if (rsEnv.info.lastResolveVarargs()) 3226 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 3227 } 3228 } 3229 3230 chk.checkRequiresIdentity(tree, env.info.lint); 3231 3232 if (cdef != null) { 3233 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 3234 return; 3235 } 3236 3237 if (tree.constructor != null && tree.constructor.kind == MTH) 3238 owntype = clazztype; 3239 } 3240 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3241 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3242 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 3243 //we need to wait for inference to finish and then replace inference vars in the constructor type 3244 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 3245 instantiatedContext -> { 3246 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3247 }); 3248 } 3249 chk.validate(tree.typeargs, localEnv); 3250 } 3251 3252 // where 3253 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 3254 JCClassDecl cdef, Env<AttrContext> localEnv, 3255 List<Type> argtypes, List<Type> typeargtypes, 3256 KindSelector pkind) { 3257 // We are seeing an anonymous class instance creation. 3258 // In this case, the class instance creation 3259 // expression 3260 // 3261 // E.new <typeargs1>C<typargs2>(args) { ... } 3262 // 3263 // is represented internally as 3264 // 3265 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 3266 // 3267 // This expression is then *transformed* as follows: 3268 // 3269 // (1) add an extends or implements clause 3270 // (2) add a constructor. 3271 // 3272 // For instance, if C is a class, and ET is the type of E, 3273 // the expression 3274 // 3275 // E.new <typeargs1>C<typargs2>(args) { ... } 3276 // 3277 // is translated to (where X is a fresh name and typarams is the 3278 // parameter list of the super constructor): 3279 // 3280 // new <typeargs1>X(<*nullchk*>E, args) where 3281 // X extends C<typargs2> { 3282 // <typarams> X(ET e, args) { 3283 // e.<typeargs1>super(args) 3284 // } 3285 // ... 3286 // } 3287 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3288 Type enclType = clazztype.getEnclosingType(); 3289 if (enclType != null && 3290 enclType.hasTag(CLASS) && 3291 !chk.checkDenotable((ClassType)enclType)) { 3292 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 3293 } 3294 final boolean isDiamond = TreeInfo.isDiamond(tree); 3295 if (isDiamond 3296 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 3297 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 3298 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 3299 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 3300 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 3301 instantiatedContext -> { 3302 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3303 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3304 ResultInfo prevResult = this.resultInfo; 3305 try { 3306 this.resultInfo = resultInfoForClassDefinition; 3307 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3308 dupLocalEnv, argtypes, typeargtypes, pkind); 3309 } finally { 3310 this.resultInfo = prevResult; 3311 } 3312 }); 3313 } else { 3314 if (isDiamond && clazztype.hasTag(CLASS)) { 3315 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3316 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3317 // One or more types inferred in the previous steps is non-denotable. 3318 Fragment fragment = Diamond(clazztype.tsym); 3319 log.error(tree.clazz.pos(), 3320 Errors.CantApplyDiamond1( 3321 fragment, 3322 invalidDiamondArgs.size() > 1 ? 3323 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3324 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3325 } 3326 // For <>(){}, inferred types must also be accessible. 3327 for (Type t : clazztype.getTypeArguments()) { 3328 rs.checkAccessibleType(env, t); 3329 } 3330 } 3331 3332 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3333 // false for isInterface call even when the original type is an interface. 3334 boolean implementing = clazztype.tsym.isInterface() || 3335 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3336 clazztype.getOriginalType().tsym.isInterface(); 3337 3338 if (implementing) { 3339 cdef.implementing = List.of(clazz); 3340 } else { 3341 cdef.extending = clazz; 3342 } 3343 3344 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3345 rs.isSerializable(clazztype)) { 3346 localEnv.info.isSerializable = true; 3347 } 3348 3349 attribStat(cdef, localEnv); 3350 3351 List<Type> finalargtypes; 3352 // If an outer instance is given, 3353 // prefix it to the constructor arguments 3354 // and delete it from the new expression 3355 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3356 finalargtypes = argtypes.prepend(tree.encl.type); 3357 } else { 3358 finalargtypes = argtypes; 3359 } 3360 3361 // Reassign clazztype and recompute constructor. As this necessarily involves 3362 // another attribution pass for deferred types in the case of <>, replicate 3363 // them. Original arguments have right decorations already. 3364 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3365 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3366 } 3367 3368 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3369 : cdef.sym.type; 3370 Symbol sym = tree.constructor = rs.resolveConstructor( 3371 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3372 Assert.check(!sym.kind.isResolutionError()); 3373 tree.constructor = sym; 3374 tree.constructorType = checkId(tree, 3375 clazztype, 3376 tree.constructor, 3377 localEnv, 3378 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3379 } 3380 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3381 clazztype : types.createErrorType(tree.type); 3382 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3383 chk.validate(tree.typeargs, localEnv); 3384 } 3385 3386 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3387 return new Check.NestedCheckContext(checkContext) { 3388 @Override 3389 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3390 enclosingContext.report(clazz.clazz, 3391 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3392 } 3393 }; 3394 } 3395 3396 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3397 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3398 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3399 (!isLocal && !type.tsym.isInner()) || 3400 (isSuper && env.enclClass.sym.isAnonymous())) { 3401 // nothing to check 3402 return; 3403 } 3404 Symbol res = isLocal ? 3405 rs.findLocalClassOwner(env, type.tsym) : 3406 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3407 if (res.exists()) { 3408 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3409 } else { 3410 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3411 } 3412 } 3413 3414 /** Make an attributed null check tree. 3415 */ 3416 public JCExpression makeNullCheck(JCExpression arg) { 3417 // optimization: new Outer() can never be null; skip null check 3418 if (arg.getTag() == NEWCLASS) 3419 return arg; 3420 // optimization: X.this is never null; skip null check 3421 Name name = TreeInfo.name(arg); 3422 if (name == names._this || name == names._super) return arg; 3423 3424 JCTree.Tag optag = NULLCHK; 3425 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3426 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3427 tree.type = arg.type; 3428 return tree; 3429 } 3430 3431 public void visitNewArray(JCNewArray tree) { 3432 Type owntype = types.createErrorType(tree.type); 3433 Env<AttrContext> localEnv = env.dup(tree); 3434 Type elemtype; 3435 if (tree.elemtype != null) { 3436 elemtype = attribType(tree.elemtype, localEnv); 3437 chk.validate(tree.elemtype, localEnv); 3438 owntype = elemtype; 3439 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3440 attribExpr(l.head, localEnv, syms.intType); 3441 owntype = new ArrayType(owntype, syms.arrayClass); 3442 } 3443 } else { 3444 // we are seeing an untyped aggregate { ... } 3445 // this is allowed only if the prototype is an array 3446 if (pt().hasTag(ARRAY)) { 3447 elemtype = types.elemtype(pt()); 3448 } else { 3449 if (!pt().hasTag(ERROR) && 3450 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3451 log.error(tree.pos(), 3452 Errors.IllegalInitializerForType(pt())); 3453 } 3454 elemtype = types.createErrorType(pt()); 3455 } 3456 } 3457 if (tree.elems != null) { 3458 attribExprs(tree.elems, localEnv, elemtype); 3459 owntype = new ArrayType(elemtype, syms.arrayClass); 3460 } 3461 if (!types.isReifiable(elemtype)) 3462 log.error(tree.pos(), Errors.GenericArrayCreation); 3463 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3464 } 3465 3466 /* 3467 * A lambda expression can only be attributed when a target-type is available. 3468 * In addition, if the target-type is that of a functional interface whose 3469 * descriptor contains inference variables in argument position the lambda expression 3470 * is 'stuck' (see DeferredAttr). 3471 */ 3472 @Override 3473 public void visitLambda(final JCLambda that) { 3474 boolean wrongContext = false; 3475 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3476 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3477 //lambda only allowed in assignment or method invocation/cast context 3478 log.error(that.pos(), Errors.UnexpectedLambda); 3479 } 3480 resultInfo = recoveryInfo; 3481 wrongContext = true; 3482 } 3483 //create an environment for attribution of the lambda expression 3484 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3485 boolean needsRecovery = 3486 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3487 try { 3488 if (needsRecovery && rs.isSerializable(pt())) { 3489 localEnv.info.isSerializable = true; 3490 localEnv.info.isSerializableLambda = true; 3491 } 3492 List<Type> explicitParamTypes = null; 3493 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3494 //attribute lambda parameters 3495 attribStats(that.params, localEnv); 3496 explicitParamTypes = TreeInfo.types(that.params); 3497 } 3498 3499 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3500 Type currentTarget = targetInfo.target; 3501 Type lambdaType = targetInfo.descriptor; 3502 3503 if (currentTarget.isErroneous()) { 3504 result = that.type = currentTarget; 3505 return; 3506 } 3507 3508 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3509 3510 if (lambdaType.hasTag(FORALL)) { 3511 //lambda expression target desc cannot be a generic method 3512 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3513 kindName(currentTarget.tsym), 3514 currentTarget.tsym); 3515 resultInfo.checkContext.report(that, diags.fragment(msg)); 3516 result = that.type = types.createErrorType(pt()); 3517 return; 3518 } 3519 3520 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3521 //add param type info in the AST 3522 List<Type> actuals = lambdaType.getParameterTypes(); 3523 List<JCVariableDecl> params = that.params; 3524 3525 boolean arityMismatch = false; 3526 3527 while (params.nonEmpty()) { 3528 if (actuals.isEmpty()) { 3529 //not enough actuals to perform lambda parameter inference 3530 arityMismatch = true; 3531 } 3532 //reset previously set info 3533 Type argType = arityMismatch ? 3534 syms.errType : 3535 actuals.head; 3536 if (params.head.isImplicitlyTyped()) { 3537 setSyntheticVariableType(params.head, argType); 3538 } 3539 params.head.sym = null; 3540 actuals = actuals.isEmpty() ? 3541 actuals : 3542 actuals.tail; 3543 params = params.tail; 3544 } 3545 3546 //attribute lambda parameters 3547 attribStats(that.params, localEnv); 3548 3549 if (arityMismatch) { 3550 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3551 result = that.type = types.createErrorType(currentTarget); 3552 return; 3553 } 3554 } 3555 3556 //from this point on, no recovery is needed; if we are in assignment context 3557 //we will be able to attribute the whole lambda body, regardless of errors; 3558 //if we are in a 'check' method context, and the lambda is not compatible 3559 //with the target-type, it will be recovered anyway in Attr.checkId 3560 needsRecovery = false; 3561 3562 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3563 lambdaBodyResult(that, lambdaType, resultInfo); 3564 3565 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3566 attribTree(that.getBody(), localEnv, bodyResultInfo); 3567 } else { 3568 JCBlock body = (JCBlock)that.body; 3569 if (body == breakTree && 3570 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3571 breakTreeFound(copyEnv(localEnv)); 3572 } 3573 attribStats(body.stats, localEnv); 3574 } 3575 3576 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3577 3578 boolean isSpeculativeRound = 3579 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3580 3581 preFlow(that); 3582 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3583 3584 that.type = currentTarget; //avoids recovery at this stage 3585 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3586 3587 if (!isSpeculativeRound) { 3588 //add thrown types as bounds to the thrown types free variables if needed: 3589 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3590 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3591 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3592 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3593 } 3594 } 3595 3596 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3597 } 3598 result = wrongContext ? that.type = types.createErrorType(pt()) 3599 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3600 } catch (Types.FunctionDescriptorLookupError ex) { 3601 JCDiagnostic cause = ex.getDiagnostic(); 3602 resultInfo.checkContext.report(that, cause); 3603 result = that.type = types.createErrorType(pt()); 3604 return; 3605 } catch (CompletionFailure cf) { 3606 chk.completionError(that.pos(), cf); 3607 } catch (Throwable t) { 3608 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3609 //as that would likely cause the same exception again. 3610 needsRecovery = false; 3611 throw t; 3612 } finally { 3613 localEnv.info.scope.leave(); 3614 if (needsRecovery) { 3615 Type prevResult = result; 3616 try { 3617 attribTree(that, env, recoveryInfo); 3618 } finally { 3619 if (result == Type.recoveryType) { 3620 result = prevResult; 3621 } 3622 } 3623 } 3624 } 3625 } 3626 //where 3627 class TargetInfo { 3628 Type target; 3629 Type descriptor; 3630 3631 public TargetInfo(Type target, Type descriptor) { 3632 this.target = target; 3633 this.descriptor = descriptor; 3634 } 3635 } 3636 3637 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3638 Type lambdaType; 3639 Type currentTarget = resultInfo.pt; 3640 if (resultInfo.pt != Type.recoveryType) { 3641 /* We need to adjust the target. If the target is an 3642 * intersection type, for example: SAM & I1 & I2 ... 3643 * the target will be updated to SAM 3644 */ 3645 currentTarget = targetChecker.visit(currentTarget, that); 3646 if (!currentTarget.isIntersection()) { 3647 if (explicitParamTypes != null) { 3648 currentTarget = infer.instantiateFunctionalInterface(that, 3649 currentTarget, explicitParamTypes, resultInfo.checkContext); 3650 } 3651 currentTarget = types.removeWildcards(currentTarget); 3652 lambdaType = types.findDescriptorType(currentTarget); 3653 } else { 3654 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3655 ListBuffer<Type> components = new ListBuffer<>(); 3656 for (Type bound : ict.getExplicitComponents()) { 3657 if (explicitParamTypes != null) { 3658 try { 3659 bound = infer.instantiateFunctionalInterface(that, 3660 bound, explicitParamTypes, resultInfo.checkContext); 3661 } catch (FunctionDescriptorLookupError t) { 3662 // do nothing 3663 } 3664 } 3665 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) { 3666 // bound must be j.l.Object or an interface, but not an annotation 3667 reportIntersectionError(that, "not.an.intf.component", bound); 3668 } 3669 bound = types.removeWildcards(bound); 3670 components.add(bound); 3671 } 3672 currentTarget = types.makeIntersectionType(components.toList()); 3673 currentTarget.tsym.flags_field |= INTERFACE; 3674 lambdaType = types.findDescriptorType(currentTarget); 3675 } 3676 3677 } else { 3678 currentTarget = Type.recoveryType; 3679 lambdaType = fallbackDescriptorType(that); 3680 } 3681 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3682 //lambda expression target desc cannot be a generic method 3683 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3684 kindName(currentTarget.tsym), 3685 currentTarget.tsym); 3686 resultInfo.checkContext.report(that, diags.fragment(msg)); 3687 currentTarget = types.createErrorType(pt()); 3688 } 3689 return new TargetInfo(currentTarget, lambdaType); 3690 } 3691 3692 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) { 3693 resultInfo.checkContext.report(pos, 3694 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args)))); 3695 } 3696 3697 void preFlow(JCLambda tree) { 3698 attrRecover.doRecovery(); 3699 new PostAttrAnalyzer() { 3700 @Override 3701 public void scan(JCTree tree) { 3702 if (tree == null || 3703 (tree.type != null && 3704 tree.type == Type.stuckType)) { 3705 //don't touch stuck expressions! 3706 return; 3707 } 3708 super.scan(tree); 3709 } 3710 3711 @Override 3712 public void visitClassDef(JCClassDecl that) { 3713 // or class declaration trees! 3714 } 3715 3716 public void visitLambda(JCLambda that) { 3717 // or lambda expressions! 3718 } 3719 }.scan(tree.body); 3720 } 3721 3722 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3723 3724 @Override 3725 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3726 return t.isIntersection() ? 3727 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3728 } 3729 3730 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3731 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3732 return ict; 3733 } 3734 3735 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3736 ListBuffer<Type> targs = new ListBuffer<>(); 3737 ListBuffer<Type> supertypes = new ListBuffer<>(); 3738 for (Type i : ict.interfaces_field) { 3739 if (i.isParameterized()) { 3740 targs.appendList(i.tsym.type.allparams()); 3741 } 3742 supertypes.append(i.tsym.type); 3743 } 3744 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3745 notionalIntf.allparams_field = targs.toList(); 3746 notionalIntf.tsym.flags_field |= INTERFACE; 3747 return notionalIntf.tsym; 3748 } 3749 }; 3750 3751 private Type fallbackDescriptorType(JCExpression tree) { 3752 switch (tree.getTag()) { 3753 case LAMBDA: 3754 JCLambda lambda = (JCLambda)tree; 3755 List<Type> argtypes = List.nil(); 3756 for (JCVariableDecl param : lambda.params) { 3757 argtypes = param.vartype != null && param.vartype.type != null ? 3758 argtypes.append(param.vartype.type) : 3759 argtypes.append(syms.errType); 3760 } 3761 return new MethodType(argtypes, Type.recoveryType, 3762 List.of(syms.throwableType), syms.methodClass); 3763 case REFERENCE: 3764 return new MethodType(List.nil(), Type.recoveryType, 3765 List.of(syms.throwableType), syms.methodClass); 3766 default: 3767 Assert.error("Cannot get here!"); 3768 } 3769 return null; 3770 } 3771 3772 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3773 final InferenceContext inferenceContext, final Type... ts) { 3774 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3775 } 3776 3777 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3778 final InferenceContext inferenceContext, final List<Type> ts) { 3779 if (inferenceContext.free(ts)) { 3780 inferenceContext.addFreeTypeListener(ts, 3781 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3782 } else { 3783 for (Type t : ts) { 3784 rs.checkAccessibleType(env, t); 3785 } 3786 } 3787 } 3788 3789 /** 3790 * Lambda/method reference have a special check context that ensures 3791 * that i.e. a lambda return type is compatible with the expected 3792 * type according to both the inherited context and the assignment 3793 * context. 3794 */ 3795 class FunctionalReturnContext extends Check.NestedCheckContext { 3796 3797 FunctionalReturnContext(CheckContext enclosingContext) { 3798 super(enclosingContext); 3799 } 3800 3801 @Override 3802 public boolean compatible(Type found, Type req, Warner warn) { 3803 //return type must be compatible in both current context and assignment context 3804 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3805 } 3806 3807 @Override 3808 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3809 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3810 } 3811 } 3812 3813 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3814 3815 JCExpression expr; 3816 boolean expStmtExpected; 3817 3818 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3819 super(enclosingContext); 3820 this.expr = expr; 3821 } 3822 3823 @Override 3824 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3825 if (expStmtExpected) { 3826 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3827 } else { 3828 super.report(pos, details); 3829 } 3830 } 3831 3832 @Override 3833 public boolean compatible(Type found, Type req, Warner warn) { 3834 //a void return is compatible with an expression statement lambda 3835 if (req.hasTag(VOID)) { 3836 expStmtExpected = true; 3837 return TreeInfo.isExpressionStatement(expr); 3838 } else { 3839 return super.compatible(found, req, warn); 3840 } 3841 } 3842 } 3843 3844 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3845 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3846 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3847 new FunctionalReturnContext(resultInfo.checkContext); 3848 3849 return descriptor.getReturnType() == Type.recoveryType ? 3850 recoveryInfo : 3851 new ResultInfo(KindSelector.VAL, 3852 descriptor.getReturnType(), funcContext); 3853 } 3854 3855 /** 3856 * Lambda compatibility. Check that given return types, thrown types, parameter types 3857 * are compatible with the expected functional interface descriptor. This means that: 3858 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3859 * types must be compatible with the return type of the expected descriptor. 3860 */ 3861 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3862 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3863 3864 //return values have already been checked - but if lambda has no return 3865 //values, we must ensure that void/value compatibility is correct; 3866 //this amounts at checking that, if a lambda body can complete normally, 3867 //the descriptor's return type must be void 3868 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3869 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3870 Fragment msg = 3871 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3872 checkContext.report(tree, 3873 diags.fragment(msg)); 3874 } 3875 3876 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3877 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3878 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3879 } 3880 } 3881 3882 /* This method returns an environment to be used to attribute a lambda 3883 * expression. 3884 * 3885 * The owner of this environment is a method symbol. If the current owner 3886 * is not a method (e.g. if the lambda occurs in a field initializer), then 3887 * a synthetic method symbol owner is created. 3888 */ 3889 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3890 Env<AttrContext> lambdaEnv; 3891 Symbol owner = env.info.scope.owner; 3892 if (owner.kind == VAR && owner.owner.kind == TYP) { 3893 // If the lambda is nested in a field initializer, we need to create a fake init method. 3894 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3895 // init symbol's owner). 3896 ClassSymbol enclClass = owner.enclClass(); 3897 Name initName = owner.isStatic() ? names.clinit : names.init; 3898 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3899 initName, initBlockType, enclClass); 3900 initSym.params = List.nil(); 3901 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3902 } else { 3903 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3904 } 3905 lambdaEnv.info.yieldResult = null; 3906 lambdaEnv.info.isLambda = true; 3907 return lambdaEnv; 3908 } 3909 3910 @Override 3911 public void visitReference(final JCMemberReference that) { 3912 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3913 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3914 //method reference only allowed in assignment or method invocation/cast context 3915 log.error(that.pos(), Errors.UnexpectedMref); 3916 } 3917 result = that.type = types.createErrorType(pt()); 3918 return; 3919 } 3920 final Env<AttrContext> localEnv = env.dup(that); 3921 try { 3922 //attribute member reference qualifier - if this is a constructor 3923 //reference, the expected kind must be a type 3924 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3925 3926 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3927 exprType = chk.checkConstructorRefType(that.expr, exprType); 3928 if (!exprType.isErroneous() && 3929 exprType.isRaw() && 3930 that.typeargs != null) { 3931 log.error(that.expr.pos(), 3932 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3933 Fragments.MrefInferAndExplicitParams)); 3934 exprType = types.createErrorType(exprType); 3935 } 3936 } 3937 3938 if (exprType.isErroneous()) { 3939 //if the qualifier expression contains problems, 3940 //give up attribution of method reference 3941 result = that.type = exprType; 3942 return; 3943 } 3944 3945 if (TreeInfo.isStaticSelector(that.expr, names)) { 3946 //if the qualifier is a type, validate it; raw warning check is 3947 //omitted as we don't know at this stage as to whether this is a 3948 //raw selector (because of inference) 3949 chk.validate(that.expr, env, false); 3950 } else { 3951 Symbol lhsSym = TreeInfo.symbol(that.expr); 3952 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3953 } 3954 //attrib type-arguments 3955 List<Type> typeargtypes = List.nil(); 3956 if (that.typeargs != null) { 3957 typeargtypes = attribTypes(that.typeargs, localEnv); 3958 } 3959 3960 boolean isTargetSerializable = 3961 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3962 rs.isSerializable(pt()); 3963 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3964 Type currentTarget = targetInfo.target; 3965 Type desc = targetInfo.descriptor; 3966 3967 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3968 List<Type> argtypes = desc.getParameterTypes(); 3969 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3970 3971 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3972 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3973 } 3974 3975 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3976 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3977 try { 3978 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3979 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3980 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3981 } finally { 3982 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3983 } 3984 3985 Symbol refSym = refResult.fst; 3986 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3987 3988 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3989 * JDK-8075541 3990 */ 3991 if (refSym.kind != MTH) { 3992 boolean targetError; 3993 switch (refSym.kind) { 3994 case ABSENT_MTH: 3995 targetError = false; 3996 break; 3997 case WRONG_MTH: 3998 case WRONG_MTHS: 3999 case AMBIGUOUS: 4000 case HIDDEN: 4001 case STATICERR: 4002 targetError = true; 4003 break; 4004 default: 4005 Assert.error("unexpected result kind " + refSym.kind); 4006 targetError = false; 4007 } 4008 4009 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 4010 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 4011 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 4012 4013 JCDiagnostic diag = diags.create(log.currentSource(), that, 4014 targetError ? 4015 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 4016 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 4017 4018 if (targetError && currentTarget == Type.recoveryType) { 4019 //a target error doesn't make sense during recovery stage 4020 //as we don't know what actual parameter types are 4021 result = that.type = currentTarget; 4022 return; 4023 } else { 4024 if (targetError) { 4025 resultInfo.checkContext.report(that, diag); 4026 } else { 4027 log.report(diag); 4028 } 4029 result = that.type = types.createErrorType(currentTarget); 4030 return; 4031 } 4032 } 4033 4034 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 4035 that.kind = lookupHelper.referenceKind(that.sym); 4036 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 4037 4038 if (desc.getReturnType() == Type.recoveryType) { 4039 // stop here 4040 result = that.type = currentTarget; 4041 return; 4042 } 4043 4044 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 4045 checkNewInnerClass(that.pos(), env, exprType, false); 4046 } 4047 4048 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 4049 4050 if (that.getMode() == ReferenceMode.INVOKE && 4051 TreeInfo.isStaticSelector(that.expr, names) && 4052 that.kind.isUnbound() && 4053 lookupHelper.site.isRaw()) { 4054 chk.checkRaw(that.expr, localEnv); 4055 } 4056 4057 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 4058 exprType.getTypeArguments().nonEmpty()) { 4059 //static ref with class type-args 4060 log.error(that.expr.pos(), 4061 Errors.InvalidMref(Kinds.kindName(that.getMode()), 4062 Fragments.StaticMrefWithTargs)); 4063 result = that.type = types.createErrorType(currentTarget); 4064 return; 4065 } 4066 4067 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 4068 // Check that super-qualified symbols are not abstract (JLS) 4069 rs.checkNonAbstract(that.pos(), that.sym); 4070 } 4071 4072 if (isTargetSerializable) { 4073 chk.checkAccessFromSerializableElement(that, true); 4074 } 4075 } 4076 4077 ResultInfo checkInfo = 4078 resultInfo.dup(newMethodTemplate( 4079 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 4080 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 4081 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 4082 4083 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 4084 4085 if (that.kind.isUnbound() && 4086 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 4087 //re-generate inference constraints for unbound receiver 4088 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 4089 //cannot happen as this has already been checked - we just need 4090 //to regenerate the inference constraints, as that has been lost 4091 //as a result of the call to inferenceContext.save() 4092 Assert.error("Can't get here"); 4093 } 4094 } 4095 4096 if (!refType.isErroneous()) { 4097 refType = types.createMethodTypeWithReturn(refType, 4098 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 4099 } 4100 4101 //go ahead with standard method reference compatibility check - note that param check 4102 //is a no-op (as this has been taken care during method applicability) 4103 boolean isSpeculativeRound = 4104 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 4105 4106 that.type = currentTarget; //avoids recovery at this stage 4107 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 4108 if (!isSpeculativeRound) { 4109 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 4110 } 4111 chk.checkRequiresIdentity(that, localEnv.info.lint); 4112 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 4113 } catch (Types.FunctionDescriptorLookupError ex) { 4114 JCDiagnostic cause = ex.getDiagnostic(); 4115 resultInfo.checkContext.report(that, cause); 4116 result = that.type = types.createErrorType(pt()); 4117 return; 4118 } 4119 } 4120 //where 4121 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 4122 //if this is a constructor reference, the expected kind must be a type 4123 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 4124 KindSelector.VAL_TYP : KindSelector.TYP, 4125 Type.noType); 4126 } 4127 4128 4129 @SuppressWarnings("fallthrough") 4130 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 4131 InferenceContext inferenceContext = checkContext.inferenceContext(); 4132 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 4133 4134 Type resType; 4135 switch (tree.getMode()) { 4136 case NEW: 4137 if (!tree.expr.type.isRaw()) { 4138 resType = tree.expr.type; 4139 break; 4140 } 4141 default: 4142 resType = refType.getReturnType(); 4143 } 4144 4145 Type incompatibleReturnType = resType; 4146 4147 if (returnType.hasTag(VOID)) { 4148 incompatibleReturnType = null; 4149 } 4150 4151 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 4152 if (resType.isErroneous() || 4153 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 4154 checkContext.checkWarner(tree, resType, returnType))) { 4155 incompatibleReturnType = null; 4156 } 4157 } 4158 4159 if (incompatibleReturnType != null) { 4160 Fragment msg = 4161 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 4162 checkContext.report(tree, diags.fragment(msg)); 4163 } else { 4164 if (inferenceContext.free(refType)) { 4165 // we need to wait for inference to finish and then replace inference vars in the referent type 4166 inferenceContext.addFreeTypeListener(List.of(refType), 4167 instantiatedContext -> { 4168 tree.referentType = instantiatedContext.asInstType(refType); 4169 }); 4170 } else { 4171 tree.referentType = refType; 4172 } 4173 } 4174 4175 if (!speculativeAttr) { 4176 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 4177 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 4178 } 4179 } 4180 } 4181 4182 boolean checkExConstraints( 4183 List<Type> thrownByFuncExpr, 4184 List<Type> thrownAtFuncType, 4185 InferenceContext inferenceContext) { 4186 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 4187 * are not proper types 4188 */ 4189 List<Type> nonProperList = thrownAtFuncType.stream() 4190 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 4191 List<Type> properList = thrownAtFuncType.diff(nonProperList); 4192 4193 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 4194 * in the throws clause of the invocation type of the method reference's compile-time 4195 * declaration 4196 */ 4197 List<Type> checkedList = thrownByFuncExpr.stream() 4198 .filter(e -> chk.isChecked(e)).collect(List.collector()); 4199 4200 /** If n = 0 (the function type's throws clause consists only of proper types), then 4201 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 4202 * in the throws clause, the constraint reduces to false; otherwise, the constraint 4203 * reduces to true 4204 */ 4205 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 4206 for (Type checked : checkedList) { 4207 boolean isSubtype = false; 4208 for (Type proper : properList) { 4209 if (types.isSubtype(checked, proper)) { 4210 isSubtype = true; 4211 break; 4212 } 4213 } 4214 if (!isSubtype) { 4215 uncaughtByProperTypes.add(checked); 4216 } 4217 } 4218 4219 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 4220 return false; 4221 } 4222 4223 /** If n > 0, the constraint reduces to a set of subtyping constraints: 4224 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 4225 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 4226 */ 4227 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 4228 uncaughtByProperTypes.forEach(checkedEx -> { 4229 nonProperAsUndet.forEach(nonProper -> { 4230 types.isSubtype(checkedEx, nonProper); 4231 }); 4232 }); 4233 4234 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 4235 */ 4236 nonProperAsUndet.stream() 4237 .filter(t -> t.hasTag(UNDETVAR)) 4238 .forEach(t -> ((UndetVar)t).setThrow()); 4239 return true; 4240 } 4241 4242 /** 4243 * Set functional type info on the underlying AST. Note: as the target descriptor 4244 * might contain inference variables, we might need to register an hook in the 4245 * current inference context. 4246 */ 4247 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 4248 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 4249 if (checkContext.inferenceContext().free(descriptorType)) { 4250 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 4251 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 4252 inferenceContext.asInstType(primaryTarget), checkContext)); 4253 } else { 4254 fExpr.owner = env.info.scope.owner; 4255 if (pt.hasTag(CLASS)) { 4256 fExpr.target = primaryTarget; 4257 } 4258 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 4259 pt != Type.recoveryType) { 4260 //check that functional interface class is well-formed 4261 try { 4262 /* Types.makeFunctionalInterfaceClass() may throw an exception 4263 * when it's executed post-inference. See the listener code 4264 * above. 4265 */ 4266 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 4267 names.empty, fExpr.target, ABSTRACT); 4268 if (csym != null) { 4269 chk.checkImplementations(env.tree, csym, csym); 4270 try { 4271 //perform an additional functional interface check on the synthetic class, 4272 //as there may be spurious errors for raw targets - because of existing issues 4273 //with membership and inheritance (see JDK-8074570). 4274 csym.flags_field |= INTERFACE; 4275 types.findDescriptorType(csym.type); 4276 } catch (FunctionDescriptorLookupError err) { 4277 resultInfo.checkContext.report(fExpr, 4278 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 4279 } 4280 } 4281 } catch (Types.FunctionDescriptorLookupError ex) { 4282 JCDiagnostic cause = ex.getDiagnostic(); 4283 resultInfo.checkContext.report(env.tree, cause); 4284 } 4285 } 4286 } 4287 } 4288 4289 public void visitParens(JCParens tree) { 4290 Type owntype = attribTree(tree.expr, env, resultInfo); 4291 result = check(tree, owntype, pkind(), resultInfo); 4292 Symbol sym = TreeInfo.symbol(tree); 4293 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 4294 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 4295 } 4296 4297 public void visitAssign(JCAssign tree) { 4298 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 4299 Type capturedType = capture(owntype); 4300 attribExpr(tree.rhs, env, owntype); 4301 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 4302 } 4303 4304 public void visitAssignop(JCAssignOp tree) { 4305 // Attribute arguments. 4306 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 4307 Type operand = attribExpr(tree.rhs, env); 4308 // Find operator. 4309 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 4310 if (operator != operators.noOpSymbol && 4311 !owntype.isErroneous() && 4312 !operand.isErroneous()) { 4313 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4314 chk.checkCastable(tree.rhs.pos(), 4315 operator.type.getReturnType(), 4316 owntype); 4317 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4318 } 4319 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4320 } 4321 4322 public void visitUnary(JCUnary tree) { 4323 // Attribute arguments. 4324 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4325 ? attribTree(tree.arg, env, varAssignmentInfo) 4326 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4327 4328 // Find operator. 4329 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4330 Type owntype = types.createErrorType(tree.type); 4331 if (operator != operators.noOpSymbol && 4332 !argtype.isErroneous()) { 4333 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4334 ? tree.arg.type 4335 : operator.type.getReturnType(); 4336 int opc = operator.opcode; 4337 4338 // If the argument is constant, fold it. 4339 if (argtype.constValue() != null) { 4340 Type ctype = cfolder.fold1(opc, argtype); 4341 if (ctype != null) { 4342 owntype = cfolder.coerce(ctype, owntype); 4343 } 4344 } 4345 } 4346 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4347 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4348 } 4349 4350 public void visitBinary(JCBinary tree) { 4351 // Attribute arguments. 4352 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4353 // x && y 4354 // include x's bindings when true in y 4355 4356 // x || y 4357 // include x's bindings when false in y 4358 4359 MatchBindings lhsBindings = matchBindings; 4360 List<BindingSymbol> propagatedBindings; 4361 switch (tree.getTag()) { 4362 case AND: 4363 propagatedBindings = lhsBindings.bindingsWhenTrue; 4364 break; 4365 case OR: 4366 propagatedBindings = lhsBindings.bindingsWhenFalse; 4367 break; 4368 default: 4369 propagatedBindings = List.nil(); 4370 break; 4371 } 4372 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4373 Type right; 4374 try { 4375 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4376 } finally { 4377 rhsEnv.info.scope.leave(); 4378 } 4379 4380 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4381 4382 // Find operator. 4383 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4384 Type owntype = types.createErrorType(tree.type); 4385 if (operator != operators.noOpSymbol && 4386 !left.isErroneous() && 4387 !right.isErroneous()) { 4388 owntype = operator.type.getReturnType(); 4389 int opc = operator.opcode; 4390 // If both arguments are constants, fold them. 4391 if (left.constValue() != null && right.constValue() != null) { 4392 Type ctype = cfolder.fold2(opc, left, right); 4393 if (ctype != null) { 4394 owntype = cfolder.coerce(ctype, owntype); 4395 } 4396 } 4397 4398 // Check that argument types of a reference ==, != are 4399 // castable to each other, (JLS 15.21). Note: unboxing 4400 // comparisons will not have an acmp* opc at this point. 4401 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4402 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4403 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4404 } 4405 } 4406 4407 chk.checkDivZero(tree.rhs.pos(), operator, right); 4408 } 4409 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4410 } 4411 4412 public void visitTypeCast(final JCTypeCast tree) { 4413 Type clazztype = attribType(tree.clazz, env); 4414 chk.validate(tree.clazz, env, false); 4415 chk.checkRequiresIdentity(tree, env.info.lint); 4416 //a fresh environment is required for 292 inference to work properly --- 4417 //see Infer.instantiatePolymorphicSignatureInstance() 4418 Env<AttrContext> localEnv = env.dup(tree); 4419 //should we propagate the target type? 4420 final ResultInfo castInfo; 4421 JCExpression expr = TreeInfo.skipParens(tree.expr); 4422 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4423 if (isPoly) { 4424 //expression is a poly - we need to propagate target type info 4425 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4426 new Check.NestedCheckContext(resultInfo.checkContext) { 4427 @Override 4428 public boolean compatible(Type found, Type req, Warner warn) { 4429 return types.isCastable(found, req, warn); 4430 } 4431 }); 4432 } else { 4433 //standalone cast - target-type info is not propagated 4434 castInfo = unknownExprInfo; 4435 } 4436 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4437 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4438 if (exprtype.constValue() != null) 4439 owntype = cfolder.coerce(exprtype, owntype); 4440 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4441 if (!isPoly) 4442 chk.checkRedundantCast(localEnv, tree); 4443 } 4444 4445 public void visitTypeTest(JCInstanceOf tree) { 4446 Type exprtype = attribExpr(tree.expr, env); 4447 if (exprtype.isPrimitive()) { 4448 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4449 } else { 4450 exprtype = chk.checkNullOrRefType( 4451 tree.expr.pos(), exprtype); 4452 } 4453 Type clazztype; 4454 JCTree typeTree; 4455 if (tree.pattern.getTag() == BINDINGPATTERN || 4456 tree.pattern.getTag() == RECORDPATTERN) { 4457 attribExpr(tree.pattern, env, exprtype); 4458 clazztype = tree.pattern.type; 4459 if (types.isSubtype(exprtype, clazztype) && 4460 !exprtype.isErroneous() && !clazztype.isErroneous() && 4461 tree.pattern.getTag() != RECORDPATTERN) { 4462 if (!allowUnconditionalPatternsInstanceOf) { 4463 log.error(tree.pos(), Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4464 } 4465 } 4466 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4467 } else { 4468 clazztype = attribType(tree.pattern, env); 4469 typeTree = tree.pattern; 4470 chk.validate(typeTree, env, false); 4471 } 4472 if (clazztype.isPrimitive()) { 4473 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4474 } else { 4475 if (!clazztype.hasTag(TYPEVAR)) { 4476 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4477 } 4478 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4479 boolean valid = false; 4480 if (allowReifiableTypesInInstanceof) { 4481 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4482 } else { 4483 log.error(tree.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4484 allowReifiableTypesInInstanceof = true; 4485 } 4486 if (!valid) { 4487 clazztype = types.createErrorType(clazztype); 4488 } 4489 } 4490 } 4491 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4492 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4493 } 4494 4495 private boolean checkCastablePattern(DiagnosticPosition pos, 4496 Type exprType, 4497 Type pattType) { 4498 Warner warner = new Warner(); 4499 // if any type is erroneous, the problem is reported elsewhere 4500 if (exprType.isErroneous() || pattType.isErroneous()) { 4501 return false; 4502 } 4503 if (!types.isCastable(exprType, pattType, warner)) { 4504 chk.basicHandler.report(pos, 4505 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4506 return false; 4507 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4508 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4509 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4510 return true; 4511 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4512 log.error(pos, 4513 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4514 return false; 4515 } else { 4516 return true; 4517 } 4518 } 4519 4520 @Override 4521 public void visitAnyPattern(JCAnyPattern tree) { 4522 result = tree.type = resultInfo.pt; 4523 } 4524 4525 public void visitBindingPattern(JCBindingPattern tree) { 4526 Type type; 4527 if (tree.var.vartype != null) { 4528 type = attribType(tree.var.vartype, env); 4529 } else { 4530 type = resultInfo.pt; 4531 } 4532 tree.type = tree.var.type = type; 4533 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4534 v.pos = tree.pos; 4535 tree.var.sym = v; 4536 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4537 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4538 } 4539 chk.validate(tree.var.vartype, env, true); 4540 if (tree.var.isImplicitlyTyped()) { 4541 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4542 : type); 4543 } 4544 annotate.annotateLater(tree.var.mods.annotations, env, v); 4545 if (!tree.var.isImplicitlyTyped()) { 4546 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v); 4547 } 4548 annotate.flush(); 4549 result = tree.type; 4550 if (v.isUnnamedVariable()) { 4551 matchBindings = MatchBindingsComputer.EMPTY; 4552 } else { 4553 matchBindings = new MatchBindings(List.of(v), List.nil()); 4554 } 4555 chk.checkRequiresIdentity(tree, env.info.lint); 4556 } 4557 4558 @Override 4559 public void visitRecordPattern(JCRecordPattern tree) { 4560 Type site; 4561 4562 if (tree.deconstructor == null) { 4563 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4564 tree.record = syms.errSymbol; 4565 site = tree.type = types.createErrorType(tree.record.type); 4566 } else { 4567 Type type = attribType(tree.deconstructor, env); 4568 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4569 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4570 if (inferred == null) { 4571 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4572 } else { 4573 type = inferred; 4574 } 4575 } 4576 tree.type = tree.deconstructor.type = type; 4577 site = types.capture(tree.type); 4578 } 4579 4580 List<Type> expectedRecordTypes; 4581 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4582 ClassSymbol record = (ClassSymbol) site.tsym; 4583 expectedRecordTypes = record.getRecordComponents() 4584 .stream() 4585 .map(rc -> types.memberType(site, rc)) 4586 .map(t -> types.upward(t, types.captures(t)).baseType()) 4587 .collect(List.collector()); 4588 tree.record = record; 4589 } else { 4590 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4591 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4592 .limit(tree.nested.size()) 4593 .collect(List.collector()); 4594 tree.record = syms.errSymbol; 4595 } 4596 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4597 List<Type> recordTypes = expectedRecordTypes; 4598 List<JCPattern> nestedPatterns = tree.nested; 4599 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4600 try { 4601 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4602 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4603 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4604 outBindings.addAll(matchBindings.bindingsWhenTrue); 4605 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4606 nestedPatterns = nestedPatterns.tail; 4607 recordTypes = recordTypes.tail; 4608 } 4609 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4610 while (nestedPatterns.nonEmpty()) { 4611 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4612 nestedPatterns = nestedPatterns.tail; 4613 } 4614 List<Type> nestedTypes = 4615 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4616 log.error(tree.pos(), 4617 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4618 nestedTypes)); 4619 } 4620 } finally { 4621 localEnv.info.scope.leave(); 4622 } 4623 chk.validate(tree.deconstructor, env, true); 4624 result = tree.type; 4625 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4626 } 4627 4628 public void visitIndexed(JCArrayAccess tree) { 4629 Type owntype = types.createErrorType(tree.type); 4630 Type atype = attribExpr(tree.indexed, env); 4631 attribExpr(tree.index, env, syms.intType); 4632 if (types.isArray(atype)) 4633 owntype = types.elemtype(atype); 4634 else if (!atype.hasTag(ERROR)) 4635 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4636 if (!pkind().contains(KindSelector.VAL)) 4637 owntype = capture(owntype); 4638 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4639 } 4640 4641 public void visitIdent(JCIdent tree) { 4642 Symbol sym; 4643 4644 // Find symbol 4645 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4646 // If we are looking for a method, the prototype `pt' will be a 4647 // method type with the type of the call's arguments as parameters. 4648 env.info.pendingResolutionPhase = null; 4649 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4650 } else if (tree.sym != null && tree.sym.kind != VAR) { 4651 sym = tree.sym; 4652 } else { 4653 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4654 } 4655 tree.sym = sym; 4656 4657 // Also find the environment current for the class where 4658 // sym is defined (`symEnv'). 4659 Env<AttrContext> symEnv = env; 4660 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4661 sym.kind.matches(KindSelector.VAL_MTH) && 4662 sym.owner.kind == TYP && 4663 tree.name != names._this && tree.name != names._super) { 4664 4665 // Find environment in which identifier is defined. 4666 while (symEnv.outer != null && 4667 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4668 symEnv = symEnv.outer; 4669 } 4670 } 4671 4672 // If symbol is a variable, ... 4673 if (sym.kind == VAR) { 4674 VarSymbol v = (VarSymbol)sym; 4675 4676 // ..., evaluate its initializer, if it has one, and check for 4677 // illegal forward reference. 4678 checkInit(tree, env, v, false); 4679 4680 // If we are expecting a variable (as opposed to a value), check 4681 // that the variable is assignable in the current environment. 4682 if (KindSelector.ASG.subset(pkind())) 4683 checkAssignable(tree.pos(), v, null, env); 4684 } 4685 4686 Env<AttrContext> env1 = env; 4687 if (sym.kind != ERR && sym.kind != TYP && 4688 sym.owner != null && sym.owner != env1.enclClass.sym) { 4689 // If the found symbol is inaccessible, then it is 4690 // accessed through an enclosing instance. Locate this 4691 // enclosing instance: 4692 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4693 env1 = env1.outer; 4694 } 4695 4696 if (env.info.isSerializable) { 4697 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4698 } 4699 4700 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4701 } 4702 4703 public void visitSelect(JCFieldAccess tree) { 4704 // Determine the expected kind of the qualifier expression. 4705 KindSelector skind = KindSelector.NIL; 4706 if (tree.name == names._this || tree.name == names._super || 4707 tree.name == names._class) 4708 { 4709 skind = KindSelector.TYP; 4710 } else { 4711 if (pkind().contains(KindSelector.PCK)) 4712 skind = KindSelector.of(skind, KindSelector.PCK); 4713 if (pkind().contains(KindSelector.TYP)) 4714 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4715 if (pkind().contains(KindSelector.VAL_MTH)) 4716 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4717 } 4718 4719 // Attribute the qualifier expression, and determine its symbol (if any). 4720 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4721 Assert.check(site == tree.selected.type); 4722 if (!pkind().contains(KindSelector.TYP_PCK)) 4723 site = capture(site); // Capture field access 4724 4725 // don't allow T.class T[].class, etc 4726 if (skind == KindSelector.TYP) { 4727 Type elt = site; 4728 while (elt.hasTag(ARRAY)) 4729 elt = ((ArrayType)elt).elemtype; 4730 if (elt.hasTag(TYPEVAR)) { 4731 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4732 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4733 tree.sym = tree.type.tsym; 4734 return ; 4735 } 4736 } 4737 4738 // If qualifier symbol is a type or `super', assert `selectSuper' 4739 // for the selection. This is relevant for determining whether 4740 // protected symbols are accessible. 4741 Symbol sitesym = TreeInfo.symbol(tree.selected); 4742 boolean selectSuperPrev = env.info.selectSuper; 4743 env.info.selectSuper = 4744 sitesym != null && 4745 sitesym.name == names._super; 4746 4747 // Determine the symbol represented by the selection. 4748 env.info.pendingResolutionPhase = null; 4749 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4750 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4751 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4752 sym = syms.errSymbol; 4753 } 4754 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4755 site = capture(site); 4756 sym = selectSym(tree, sitesym, site, env, resultInfo); 4757 } 4758 boolean varArgs = env.info.lastResolveVarargs(); 4759 tree.sym = sym; 4760 4761 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4762 site = types.skipTypeVars(site, true); 4763 } 4764 4765 // If that symbol is a variable, ... 4766 if (sym.kind == VAR) { 4767 VarSymbol v = (VarSymbol)sym; 4768 4769 // ..., evaluate its initializer, if it has one, and check for 4770 // illegal forward reference. 4771 checkInit(tree, env, v, true); 4772 4773 // If we are expecting a variable (as opposed to a value), check 4774 // that the variable is assignable in the current environment. 4775 if (KindSelector.ASG.subset(pkind())) 4776 checkAssignable(tree.pos(), v, tree.selected, env); 4777 } 4778 4779 if (sitesym != null && 4780 sitesym.kind == VAR && 4781 ((VarSymbol)sitesym).isResourceVariable() && 4782 sym.kind == MTH && 4783 sym.name.equals(names.close) && 4784 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4785 log.warning(tree, LintWarnings.TryExplicitCloseCall); 4786 } 4787 4788 // Disallow selecting a type from an expression 4789 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4790 tree.type = check(tree.selected, pt(), 4791 sitesym == null ? 4792 KindSelector.VAL : sitesym.kind.toSelector(), 4793 new ResultInfo(KindSelector.TYP_PCK, pt())); 4794 } 4795 4796 if (isType(sitesym)) { 4797 if (sym.name != names._this && sym.name != names._super) { 4798 // Check if type-qualified fields or methods are static (JLS) 4799 if ((sym.flags() & STATIC) == 0 && 4800 sym.name != names._super && 4801 (sym.kind == VAR || sym.kind == MTH)) { 4802 rs.accessBase(rs.new StaticError(sym), 4803 tree.pos(), site, sym.name, true); 4804 } 4805 } 4806 } else if (sym.kind != ERR && 4807 (sym.flags() & STATIC) != 0 && 4808 sym.name != names._class) { 4809 // If the qualified item is not a type and the selected item is static, report 4810 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4811 if (!sym.owner.isAnonymous()) { 4812 log.warning(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4813 } else { 4814 log.warning(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4815 } 4816 } 4817 4818 // If we are selecting an instance member via a `super', ... 4819 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4820 4821 // Check that super-qualified symbols are not abstract (JLS) 4822 rs.checkNonAbstract(tree.pos(), sym); 4823 4824 if (site.isRaw()) { 4825 // Determine argument types for site. 4826 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4827 if (site1 != null) site = site1; 4828 } 4829 } 4830 4831 if (env.info.isSerializable) { 4832 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4833 } 4834 4835 env.info.selectSuper = selectSuperPrev; 4836 result = checkId(tree, site, sym, env, resultInfo); 4837 } 4838 //where 4839 /** Determine symbol referenced by a Select expression, 4840 * 4841 * @param tree The select tree. 4842 * @param site The type of the selected expression, 4843 * @param env The current environment. 4844 * @param resultInfo The current result. 4845 */ 4846 private Symbol selectSym(JCFieldAccess tree, 4847 Symbol location, 4848 Type site, 4849 Env<AttrContext> env, 4850 ResultInfo resultInfo) { 4851 DiagnosticPosition pos = tree.pos(); 4852 Name name = tree.name; 4853 switch (site.getTag()) { 4854 case PACKAGE: 4855 return rs.accessBase( 4856 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4857 pos, location, site, name, true); 4858 case ARRAY: 4859 case CLASS: 4860 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4861 return rs.resolveQualifiedMethod( 4862 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4863 } else if (name == names._this || name == names._super) { 4864 return rs.resolveSelf(pos, env, site.tsym, tree); 4865 } else if (name == names._class) { 4866 // In this case, we have already made sure in 4867 // visitSelect that qualifier expression is a type. 4868 return syms.getClassField(site, types); 4869 } else { 4870 // We are seeing a plain identifier as selector. 4871 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4872 sym = rs.accessBase(sym, pos, location, site, name, true); 4873 return sym; 4874 } 4875 case WILDCARD: 4876 throw new AssertionError(tree); 4877 case TYPEVAR: 4878 // Normally, site.getUpperBound() shouldn't be null. 4879 // It should only happen during memberEnter/attribBase 4880 // when determining the supertype which *must* be 4881 // done before attributing the type variables. In 4882 // other words, we are seeing this illegal program: 4883 // class B<T> extends A<T.foo> {} 4884 Symbol sym = (site.getUpperBound() != null) 4885 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4886 : null; 4887 if (sym == null) { 4888 log.error(pos, Errors.TypeVarCantBeDeref); 4889 return syms.errSymbol; 4890 } else { 4891 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4892 rs.new AccessError(env, site, sym) : 4893 sym; 4894 rs.accessBase(sym2, pos, location, site, name, true); 4895 return sym; 4896 } 4897 case ERROR: 4898 // preserve identifier names through errors 4899 return types.createErrorType(name, site.tsym, site).tsym; 4900 default: 4901 // The qualifier expression is of a primitive type -- only 4902 // .class is allowed for these. 4903 if (name == names._class) { 4904 // In this case, we have already made sure in Select that 4905 // qualifier expression is a type. 4906 return syms.getClassField(site, types); 4907 } else { 4908 log.error(pos, Errors.CantDeref(site)); 4909 return syms.errSymbol; 4910 } 4911 } 4912 } 4913 4914 /** Determine type of identifier or select expression and check that 4915 * (1) the referenced symbol is not deprecated 4916 * (2) the symbol's type is safe (@see checkSafe) 4917 * (3) if symbol is a variable, check that its type and kind are 4918 * compatible with the prototype and protokind. 4919 * (4) if symbol is an instance field of a raw type, 4920 * which is being assigned to, issue an unchecked warning if its 4921 * type changes under erasure. 4922 * (5) if symbol is an instance method of a raw type, issue an 4923 * unchecked warning if its argument types change under erasure. 4924 * If checks succeed: 4925 * If symbol is a constant, return its constant type 4926 * else if symbol is a method, return its result type 4927 * otherwise return its type. 4928 * Otherwise return errType. 4929 * 4930 * @param tree The syntax tree representing the identifier 4931 * @param site If this is a select, the type of the selected 4932 * expression, otherwise the type of the current class. 4933 * @param sym The symbol representing the identifier. 4934 * @param env The current environment. 4935 * @param resultInfo The expected result 4936 */ 4937 Type checkId(JCTree tree, 4938 Type site, 4939 Symbol sym, 4940 Env<AttrContext> env, 4941 ResultInfo resultInfo) { 4942 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4943 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4944 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4945 } 4946 4947 Type checkMethodIdInternal(JCTree tree, 4948 Type site, 4949 Symbol sym, 4950 Env<AttrContext> env, 4951 ResultInfo resultInfo) { 4952 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4953 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4954 } else { 4955 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4956 } 4957 } 4958 4959 Type checkIdInternal(JCTree tree, 4960 Type site, 4961 Symbol sym, 4962 Type pt, 4963 Env<AttrContext> env, 4964 ResultInfo resultInfo) { 4965 Type owntype; // The computed type of this identifier occurrence. 4966 switch (sym.kind) { 4967 case TYP: 4968 // For types, the computed type equals the symbol's type, 4969 // except for two situations: 4970 owntype = sym.type; 4971 if (owntype.hasTag(CLASS)) { 4972 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4973 Type ownOuter = owntype.getEnclosingType(); 4974 4975 // (a) If the symbol's type is parameterized, erase it 4976 // because no type parameters were given. 4977 // We recover generic outer type later in visitTypeApply. 4978 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4979 owntype = types.erasure(owntype); 4980 } 4981 4982 // (b) If the symbol's type is an inner class, then 4983 // we have to interpret its outer type as a superclass 4984 // of the site type. Example: 4985 // 4986 // class Tree<A> { class Visitor { ... } } 4987 // class PointTree extends Tree<Point> { ... } 4988 // ...PointTree.Visitor... 4989 // 4990 // Then the type of the last expression above is 4991 // Tree<Point>.Visitor. 4992 else if ((ownOuter.hasTag(CLASS) || ownOuter.hasTag(TYPEVAR)) && site != ownOuter) { 4993 Type normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4994 if (normOuter == null) // perhaps from an import 4995 normOuter = types.erasure(ownOuter); 4996 if (normOuter != ownOuter) 4997 owntype = new ClassType( 4998 normOuter, List.nil(), owntype.tsym, 4999 owntype.getMetadata()); 5000 } 5001 } 5002 break; 5003 case VAR: 5004 VarSymbol v = (VarSymbol)sym; 5005 5006 if (env.info.enclVar != null 5007 && v.type.hasTag(NONE)) { 5008 //self reference to implicitly typed variable declaration 5009 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 5010 return tree.type = v.type = types.createErrorType(v.type); 5011 } 5012 5013 // Test (4): if symbol is an instance field of a raw type, 5014 // which is being assigned to, issue an unchecked warning if 5015 // its type changes under erasure. 5016 if (KindSelector.ASG.subset(pkind()) && 5017 v.owner.kind == TYP && 5018 (v.flags() & STATIC) == 0 && 5019 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 5020 Type s = types.asOuterSuper(site, v.owner); 5021 if (s != null && 5022 s.isRaw() && 5023 !types.isSameType(v.type, v.erasure(types))) { 5024 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 5025 } 5026 } 5027 // The computed type of a variable is the type of the 5028 // variable symbol, taken as a member of the site type. 5029 owntype = (sym.owner.kind == TYP && 5030 sym.name != names._this && sym.name != names._super) 5031 ? types.memberType(site, sym) 5032 : sym.type; 5033 5034 // If the variable is a constant, record constant value in 5035 // computed type. 5036 if (v.getConstValue() != null && isStaticReference(tree)) 5037 owntype = owntype.constType(v.getConstValue()); 5038 5039 if (resultInfo.pkind == KindSelector.VAL) { 5040 owntype = capture(owntype); // capture "names as expressions" 5041 } 5042 break; 5043 case MTH: { 5044 owntype = checkMethod(site, sym, 5045 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 5046 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 5047 resultInfo.pt.getTypeArguments()); 5048 chk.checkRestricted(tree.pos(), sym); 5049 break; 5050 } 5051 case PCK: case ERR: 5052 owntype = sym.type; 5053 break; 5054 default: 5055 throw new AssertionError("unexpected kind: " + sym.kind + 5056 " in tree " + tree); 5057 } 5058 5059 // Emit a `deprecation' warning if symbol is deprecated. 5060 // (for constructors (but not for constructor references), the error 5061 // was given when the constructor was resolved) 5062 5063 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 5064 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 5065 chk.checkSunAPI(tree.pos(), sym); 5066 chk.checkProfile(tree.pos(), sym); 5067 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 5068 } 5069 5070 if (pt.isErroneous()) { 5071 owntype = types.createErrorType(owntype); 5072 } 5073 5074 // If symbol is a variable, check that its type and 5075 // kind are compatible with the prototype and protokind. 5076 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 5077 } 5078 5079 /** Check that variable is initialized and evaluate the variable's 5080 * initializer, if not yet done. Also check that variable is not 5081 * referenced before it is defined. 5082 * @param tree The tree making up the variable reference. 5083 * @param env The current environment. 5084 * @param v The variable's symbol. 5085 */ 5086 private void checkInit(JCTree tree, 5087 Env<AttrContext> env, 5088 VarSymbol v, 5089 boolean onlyWarning) { 5090 // A forward reference is diagnosed if the declaration position 5091 // of the variable is greater than the current tree position 5092 // and the tree and variable definition occur in the same class 5093 // definition. Note that writes don't count as references. 5094 // This check applies only to class and instance 5095 // variables. Local variables follow different scope rules, 5096 // and are subject to definite assignment checking. 5097 Env<AttrContext> initEnv = enclosingInitEnv(env); 5098 if (initEnv != null && 5099 (initEnv.info.enclVar == v || v.pos > tree.pos) && 5100 v.owner.kind == TYP && 5101 v.owner == env.info.scope.owner.enclClass() && 5102 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 5103 (!env.tree.hasTag(ASSIGN) || 5104 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 5105 if (!onlyWarning || isStaticEnumField(v)) { 5106 Error errkey = (initEnv.info.enclVar == v) ? 5107 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 5108 log.error(tree.pos(), errkey); 5109 } else if (useBeforeDeclarationWarning) { 5110 Warning warnkey = (initEnv.info.enclVar == v) ? 5111 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 5112 log.warning(tree.pos(), warnkey); 5113 } 5114 } 5115 5116 v.getConstValue(); // ensure initializer is evaluated 5117 5118 checkEnumInitializer(tree, env, v); 5119 } 5120 5121 /** 5122 * Returns the enclosing init environment associated with this env (if any). An init env 5123 * can be either a field declaration env or a static/instance initializer env. 5124 */ 5125 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 5126 while (true) { 5127 switch (env.tree.getTag()) { 5128 case VARDEF: 5129 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 5130 if (vdecl.sym.owner.kind == TYP) { 5131 //field 5132 return env; 5133 } 5134 break; 5135 case BLOCK: 5136 if (env.next.tree.hasTag(CLASSDEF)) { 5137 //instance/static initializer 5138 return env; 5139 } 5140 break; 5141 case METHODDEF: 5142 case CLASSDEF: 5143 case TOPLEVEL: 5144 return null; 5145 } 5146 Assert.checkNonNull(env.next); 5147 env = env.next; 5148 } 5149 } 5150 5151 /** 5152 * Check for illegal references to static members of enum. In 5153 * an enum type, constructors and initializers may not 5154 * reference its static members unless they are constant. 5155 * 5156 * @param tree The tree making up the variable reference. 5157 * @param env The current environment. 5158 * @param v The variable's symbol. 5159 * @jls 8.9 Enum Types 5160 */ 5161 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 5162 // JLS: 5163 // 5164 // "It is a compile-time error to reference a static field 5165 // of an enum type that is not a compile-time constant 5166 // (15.28) from constructors, instance initializer blocks, 5167 // or instance variable initializer expressions of that 5168 // type. It is a compile-time error for the constructors, 5169 // instance initializer blocks, or instance variable 5170 // initializer expressions of an enum constant e to refer 5171 // to itself or to an enum constant of the same type that 5172 // is declared to the right of e." 5173 if (isStaticEnumField(v)) { 5174 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 5175 5176 if (enclClass == null || enclClass.owner == null) 5177 return; 5178 5179 // See if the enclosing class is the enum (or a 5180 // subclass thereof) declaring v. If not, this 5181 // reference is OK. 5182 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 5183 return; 5184 5185 // If the reference isn't from an initializer, then 5186 // the reference is OK. 5187 if (!Resolve.isInitializer(env)) 5188 return; 5189 5190 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 5191 } 5192 } 5193 5194 /** Is the given symbol a static, non-constant field of an Enum? 5195 * Note: enum literals should not be regarded as such 5196 */ 5197 private boolean isStaticEnumField(VarSymbol v) { 5198 return Flags.isEnum(v.owner) && 5199 Flags.isStatic(v) && 5200 !Flags.isConstant(v) && 5201 v.name != names._class; 5202 } 5203 5204 /** 5205 * Check that method arguments conform to its instantiation. 5206 **/ 5207 public Type checkMethod(Type site, 5208 final Symbol sym, 5209 ResultInfo resultInfo, 5210 Env<AttrContext> env, 5211 final List<JCExpression> argtrees, 5212 List<Type> argtypes, 5213 List<Type> typeargtypes) { 5214 // Test (5): if symbol is an instance method of a raw type, issue 5215 // an unchecked warning if its argument types change under erasure. 5216 if ((sym.flags() & STATIC) == 0 && 5217 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 5218 Type s = types.asOuterSuper(site, sym.owner); 5219 if (s != null && s.isRaw() && 5220 !types.isSameTypes(sym.type.getParameterTypes(), 5221 sym.erasure(types).getParameterTypes())) { 5222 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 5223 } 5224 } 5225 5226 if (env.info.defaultSuperCallSite != null) { 5227 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 5228 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 5229 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 5230 List<MethodSymbol> icand_sup = 5231 types.interfaceCandidates(sup, (MethodSymbol)sym); 5232 if (icand_sup.nonEmpty() && 5233 icand_sup.head != sym && 5234 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 5235 log.error(env.tree.pos(), 5236 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 5237 break; 5238 } 5239 } 5240 env.info.defaultSuperCallSite = null; 5241 } 5242 5243 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 5244 JCMethodInvocation app = (JCMethodInvocation)env.tree; 5245 if (app.meth.hasTag(SELECT) && 5246 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 5247 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 5248 } 5249 } 5250 5251 // Compute the identifier's instantiated type. 5252 // For methods, we need to compute the instance type by 5253 // Resolve.instantiate from the symbol's type as well as 5254 // any type arguments and value arguments. 5255 Warner noteWarner = new Warner(); 5256 try { 5257 Type owntype = rs.checkMethod( 5258 env, 5259 site, 5260 sym, 5261 resultInfo, 5262 argtypes, 5263 typeargtypes, 5264 noteWarner); 5265 5266 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 5267 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 5268 5269 argtypes = argtypes.map(checkDeferredMap); 5270 5271 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 5272 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 5273 sym.name, 5274 rs.methodArguments(sym.type.getParameterTypes()), 5275 rs.methodArguments(argtypes.map(checkDeferredMap)), 5276 kindName(sym.location()), 5277 sym.location())); 5278 if (resultInfo.pt != Infer.anyPoly || 5279 !owntype.hasTag(METHOD) || 5280 !owntype.isPartial()) { 5281 //if this is not a partially inferred method type, erase return type. Otherwise, 5282 //erasure is carried out in PartiallyInferredMethodType.check(). 5283 owntype = new MethodType(owntype.getParameterTypes(), 5284 types.erasure(owntype.getReturnType()), 5285 types.erasure(owntype.getThrownTypes()), 5286 syms.methodClass); 5287 } 5288 } 5289 5290 PolyKind pkind = (sym.type.hasTag(FORALL) && 5291 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 5292 PolyKind.POLY : PolyKind.STANDALONE; 5293 TreeInfo.setPolyKind(env.tree, pkind); 5294 5295 return (resultInfo.pt == Infer.anyPoly) ? 5296 owntype : 5297 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 5298 resultInfo.checkContext.inferenceContext()); 5299 } catch (Infer.InferenceException ex) { 5300 //invalid target type - propagate exception outwards or report error 5301 //depending on the current check context 5302 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 5303 return types.createErrorType(site); 5304 } catch (Resolve.InapplicableMethodException ex) { 5305 final JCDiagnostic diag = ex.getDiagnostic(); 5306 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 5307 @Override 5308 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5309 return new Pair<>(sym, diag); 5310 } 5311 }; 5312 List<Type> argtypes2 = argtypes.map( 5313 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5314 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5315 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5316 log.report(errDiag); 5317 return types.createErrorType(site); 5318 } 5319 } 5320 5321 public void visitLiteral(JCLiteral tree) { 5322 result = check(tree, litType(tree.typetag).constType(tree.value), 5323 KindSelector.VAL, resultInfo); 5324 } 5325 //where 5326 /** Return the type of a literal with given type tag. 5327 */ 5328 Type litType(TypeTag tag) { 5329 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5330 } 5331 5332 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5333 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5334 } 5335 5336 public void visitTypeArray(JCArrayTypeTree tree) { 5337 Type etype = attribType(tree.elemtype, env); 5338 Type type = new ArrayType(etype, syms.arrayClass); 5339 result = check(tree, type, KindSelector.TYP, resultInfo); 5340 } 5341 5342 /** Visitor method for parameterized types. 5343 * Bound checking is left until later, since types are attributed 5344 * before supertype structure is completely known 5345 */ 5346 public void visitTypeApply(JCTypeApply tree) { 5347 Type owntype = types.createErrorType(tree.type); 5348 5349 // Attribute functor part of application and make sure it's a class. 5350 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5351 5352 // Attribute type parameters 5353 List<Type> actuals = attribTypes(tree.arguments, env); 5354 5355 if (clazztype.hasTag(CLASS)) { 5356 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5357 if (actuals.isEmpty()) //diamond 5358 actuals = formals; 5359 5360 if (actuals.length() == formals.length()) { 5361 List<Type> a = actuals; 5362 List<Type> f = formals; 5363 while (a.nonEmpty()) { 5364 a.head = a.head.withTypeVar(f.head); 5365 a = a.tail; 5366 f = f.tail; 5367 } 5368 // Compute the proper generic outer 5369 Type clazzOuter = clazztype.getEnclosingType(); 5370 if (clazzOuter.hasTag(CLASS)) { 5371 Type site; 5372 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5373 if (clazz.hasTag(IDENT)) { 5374 site = env.enclClass.sym.type; 5375 } else if (clazz.hasTag(SELECT)) { 5376 site = ((JCFieldAccess) clazz).selected.type; 5377 } else throw new AssertionError(""+tree); 5378 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5379 if (site.hasTag(CLASS) || site.hasTag(TYPEVAR)) 5380 site = types.asEnclosingSuper(site, clazzOuter.tsym); 5381 if (site == null) 5382 site = types.erasure(clazzOuter); 5383 clazzOuter = site; 5384 } 5385 } 5386 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5387 clazztype.getMetadata()); 5388 } else { 5389 if (formals.length() != 0) { 5390 log.error(tree.pos(), 5391 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5392 } else { 5393 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5394 } 5395 owntype = types.createErrorType(tree.type); 5396 } 5397 } else if (clazztype.hasTag(ERROR)) { 5398 ErrorType parameterizedErroneous = 5399 new ErrorType(clazztype.getOriginalType(), 5400 clazztype.tsym, 5401 clazztype.getMetadata()); 5402 5403 parameterizedErroneous.typarams_field = actuals; 5404 owntype = parameterizedErroneous; 5405 } 5406 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5407 } 5408 5409 public void visitTypeUnion(JCTypeUnion tree) { 5410 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5411 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5412 for (JCExpression typeTree : tree.alternatives) { 5413 Type ctype = attribType(typeTree, env); 5414 ctype = chk.checkType(typeTree.pos(), 5415 chk.checkClassType(typeTree.pos(), ctype), 5416 syms.throwableType); 5417 if (!ctype.isErroneous()) { 5418 //check that alternatives of a union type are pairwise 5419 //unrelated w.r.t. subtyping 5420 if (chk.intersects(ctype, multicatchTypes.toList())) { 5421 for (Type t : multicatchTypes) { 5422 boolean sub = types.isSubtype(ctype, t); 5423 boolean sup = types.isSubtype(t, ctype); 5424 if (sub || sup) { 5425 //assume 'a' <: 'b' 5426 Type a = sub ? ctype : t; 5427 Type b = sub ? t : ctype; 5428 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5429 } 5430 } 5431 } 5432 multicatchTypes.append(ctype); 5433 if (all_multicatchTypes != null) 5434 all_multicatchTypes.append(ctype); 5435 } else { 5436 if (all_multicatchTypes == null) { 5437 all_multicatchTypes = new ListBuffer<>(); 5438 all_multicatchTypes.appendList(multicatchTypes); 5439 } 5440 all_multicatchTypes.append(ctype); 5441 } 5442 } 5443 Type t = check(tree, types.lub(multicatchTypes.toList()), 5444 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5445 if (t.hasTag(CLASS)) { 5446 List<Type> alternatives = 5447 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5448 t = new UnionClassType((ClassType) t, alternatives); 5449 } 5450 tree.type = result = t; 5451 } 5452 5453 public void visitTypeIntersection(JCTypeIntersection tree) { 5454 attribTypes(tree.bounds, env); 5455 tree.type = result = checkIntersection(tree, tree.bounds); 5456 } 5457 5458 public void visitTypeParameter(JCTypeParameter tree) { 5459 TypeVar typeVar = (TypeVar) tree.type; 5460 5461 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5462 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5463 } 5464 5465 if (!typeVar.getUpperBound().isErroneous()) { 5466 //fixup type-parameter bound computed in 'attribTypeVariables' 5467 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5468 } 5469 } 5470 5471 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5472 Set<Symbol> boundSet = new HashSet<>(); 5473 if (bounds.nonEmpty()) { 5474 // accept class or interface or typevar as first bound. 5475 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5476 boundSet.add(types.erasure(bounds.head.type).tsym); 5477 if (bounds.head.type.isErroneous()) { 5478 return bounds.head.type; 5479 } 5480 else if (bounds.head.type.hasTag(TYPEVAR)) { 5481 // if first bound was a typevar, do not accept further bounds. 5482 if (bounds.tail.nonEmpty()) { 5483 log.error(bounds.tail.head.pos(), 5484 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5485 return bounds.head.type; 5486 } 5487 } else { 5488 // if first bound was a class or interface, accept only interfaces 5489 // as further bounds. 5490 for (JCExpression bound : bounds.tail) { 5491 bound.type = checkBase(bound.type, bound, env, false, true, false); 5492 if (bound.type.isErroneous()) { 5493 bounds = List.of(bound); 5494 } 5495 else if (bound.type.hasTag(CLASS)) { 5496 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5497 } 5498 } 5499 } 5500 } 5501 5502 if (bounds.length() == 0) { 5503 return syms.objectType; 5504 } else if (bounds.length() == 1) { 5505 return bounds.head.type; 5506 } else { 5507 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5508 // ... the variable's bound is a class type flagged COMPOUND 5509 // (see comment for TypeVar.bound). 5510 // In this case, generate a class tree that represents the 5511 // bound class, ... 5512 JCExpression extending; 5513 List<JCExpression> implementing; 5514 if (!bounds.head.type.isInterface()) { 5515 extending = bounds.head; 5516 implementing = bounds.tail; 5517 } else { 5518 extending = null; 5519 implementing = bounds; 5520 } 5521 JCClassDecl cd = make.at(tree).ClassDef( 5522 make.Modifiers(PUBLIC | ABSTRACT), 5523 names.empty, List.nil(), 5524 extending, implementing, List.nil()); 5525 5526 ClassSymbol c = (ClassSymbol)owntype.tsym; 5527 Assert.check((c.flags() & COMPOUND) != 0); 5528 cd.sym = c; 5529 c.sourcefile = env.toplevel.sourcefile; 5530 5531 // ... and attribute the bound class 5532 c.flags_field |= UNATTRIBUTED; 5533 Env<AttrContext> cenv = enter.classEnv(cd, env); 5534 typeEnvs.put(c, cenv); 5535 attribClass(c); 5536 return owntype; 5537 } 5538 } 5539 5540 public void visitWildcard(JCWildcard tree) { 5541 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5542 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5543 ? syms.objectType 5544 : attribType(tree.inner, env); 5545 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5546 tree.kind.kind, 5547 syms.boundClass), 5548 KindSelector.TYP, resultInfo); 5549 } 5550 5551 public void visitAnnotation(JCAnnotation tree) { 5552 Assert.error("should be handled in annotate"); 5553 } 5554 5555 @Override 5556 public void visitModifiers(JCModifiers tree) { 5557 //error recovery only: 5558 Assert.check(resultInfo.pkind == KindSelector.ERR); 5559 5560 attribAnnotationTypes(tree.annotations, env); 5561 } 5562 5563 public void visitAnnotatedType(JCAnnotatedType tree) { 5564 attribAnnotationTypes(tree.annotations, env); 5565 Type underlyingType = attribType(tree.underlyingType, env); 5566 Type annotatedType = underlyingType.preannotatedType(); 5567 5568 if (!env.info.isAnonymousNewClass) 5569 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5570 result = tree.type = annotatedType; 5571 } 5572 5573 public void visitErroneous(JCErroneous tree) { 5574 if (tree.errs != null) { 5575 WriteableScope newScope = env.info.scope; 5576 5577 if (env.tree instanceof JCClassDecl) { 5578 Symbol fakeOwner = 5579 new MethodSymbol(BLOCK, names.empty, null, 5580 env.info.scope.owner); 5581 newScope = newScope.dupUnshared(fakeOwner); 5582 } 5583 5584 Env<AttrContext> errEnv = 5585 env.dup(env.tree, 5586 env.info.dup(newScope)); 5587 errEnv.info.returnResult = unknownExprInfo; 5588 for (JCTree err : tree.errs) 5589 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5590 } 5591 result = tree.type = syms.errType; 5592 } 5593 5594 /** Default visitor method for all other trees. 5595 */ 5596 public void visitTree(JCTree tree) { 5597 throw new AssertionError(); 5598 } 5599 5600 /** 5601 * Attribute an env for either a top level tree or class or module declaration. 5602 */ 5603 public void attrib(Env<AttrContext> env) { 5604 switch (env.tree.getTag()) { 5605 case MODULEDEF: 5606 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5607 break; 5608 case PACKAGEDEF: 5609 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5610 break; 5611 default: 5612 attribClass(env.tree.pos(), env.enclClass.sym); 5613 } 5614 5615 annotate.flush(); 5616 5617 // Now that this tree is attributed, we can calculate the Lint configuration everywhere within it 5618 lintMapper.calculateLints(env.toplevel.sourcefile, env.tree, env.toplevel.endPositions); 5619 } 5620 5621 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5622 try { 5623 annotate.flush(); 5624 attribPackage(p); 5625 } catch (CompletionFailure ex) { 5626 chk.completionError(pos, ex); 5627 } 5628 } 5629 5630 void attribPackage(PackageSymbol p) { 5631 attribWithLint(p, 5632 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5633 } 5634 5635 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5636 try { 5637 annotate.flush(); 5638 attribModule(m); 5639 } catch (CompletionFailure ex) { 5640 chk.completionError(pos, ex); 5641 } 5642 } 5643 5644 void attribModule(ModuleSymbol m) { 5645 attribWithLint(m, env -> attribStat(env.tree, env)); 5646 } 5647 5648 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5649 Env<AttrContext> env = typeEnvs.get(sym); 5650 5651 Env<AttrContext> lintEnv = env; 5652 while (lintEnv.info.lint == null) 5653 lintEnv = lintEnv.next; 5654 5655 Lint lint = lintEnv.info.lint.augment(sym); 5656 5657 Lint prevLint = chk.setLint(lint); 5658 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5659 5660 try { 5661 attrib.accept(env); 5662 } finally { 5663 log.useSource(prev); 5664 chk.setLint(prevLint); 5665 } 5666 } 5667 5668 /** Main method: attribute class definition associated with given class symbol. 5669 * reporting completion failures at the given position. 5670 * @param pos The source position at which completion errors are to be 5671 * reported. 5672 * @param c The class symbol whose definition will be attributed. 5673 */ 5674 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5675 try { 5676 annotate.flush(); 5677 attribClass(c); 5678 } catch (CompletionFailure ex) { 5679 chk.completionError(pos, ex); 5680 } 5681 } 5682 5683 /** Attribute class definition associated with given class symbol. 5684 * @param c The class symbol whose definition will be attributed. 5685 */ 5686 void attribClass(ClassSymbol c) throws CompletionFailure { 5687 if (c.type.hasTag(ERROR)) return; 5688 5689 // Check for cycles in the inheritance graph, which can arise from 5690 // ill-formed class files. 5691 chk.checkNonCyclic(null, c.type); 5692 5693 Type st = types.supertype(c.type); 5694 if ((c.flags_field & Flags.COMPOUND) == 0 && 5695 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5696 // First, attribute superclass. 5697 if (st.hasTag(CLASS)) 5698 attribClass((ClassSymbol)st.tsym); 5699 5700 // Next attribute owner, if it is a class. 5701 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5702 attribClass((ClassSymbol)c.owner); 5703 5704 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5705 } 5706 5707 // The previous operations might have attributed the current class 5708 // if there was a cycle. So we test first whether the class is still 5709 // UNATTRIBUTED. 5710 if ((c.flags_field & UNATTRIBUTED) != 0) { 5711 c.flags_field &= ~UNATTRIBUTED; 5712 5713 // Get environment current at the point of class definition. 5714 Env<AttrContext> env = typeEnvs.get(c); 5715 5716 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5717 // because the annotations were not available at the time the env was created. Therefore, 5718 // we look up the environment chain for the first enclosing environment for which the 5719 // lint value is set. Typically, this is the parent env, but might be further if there 5720 // are any envs created as a result of TypeParameter nodes. 5721 Env<AttrContext> lintEnv = env; 5722 while (lintEnv.info.lint == null) 5723 lintEnv = lintEnv.next; 5724 5725 // Having found the enclosing lint value, we can initialize the lint value for this class 5726 env.info.lint = lintEnv.info.lint.augment(c); 5727 5728 Lint prevLint = chk.setLint(env.info.lint); 5729 JavaFileObject prev = log.useSource(c.sourcefile); 5730 ResultInfo prevReturnRes = env.info.returnResult; 5731 5732 try { 5733 if (c.isSealed() && 5734 !c.isEnum() && 5735 !c.isPermittedExplicit && 5736 c.getPermittedSubclasses().isEmpty()) { 5737 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5738 } 5739 5740 if (c.isSealed()) { 5741 Set<Symbol> permittedTypes = new HashSet<>(); 5742 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5743 for (Type subType : c.getPermittedSubclasses()) { 5744 if (subType.isErroneous()) { 5745 // the type already caused errors, don't produce more potentially misleading errors 5746 continue; 5747 } 5748 boolean isTypeVar = false; 5749 if (subType.getTag() == TYPEVAR) { 5750 isTypeVar = true; //error recovery 5751 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5752 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5753 } 5754 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5755 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5756 } 5757 if (permittedTypes.contains(subType.tsym)) { 5758 DiagnosticPosition pos = 5759 env.enclClass.permitting.stream() 5760 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5761 .limit(2).collect(List.collector()).get(1); 5762 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5763 } else { 5764 permittedTypes.add(subType.tsym); 5765 } 5766 if (sealedInUnnamed) { 5767 if (subType.tsym.packge() != c.packge()) { 5768 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5769 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5770 ); 5771 } 5772 } else if (subType.tsym.packge().modle != c.packge().modle) { 5773 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5774 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5775 ); 5776 } 5777 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5778 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5779 Errors.InvalidPermitsClause( 5780 subType.tsym == c.type.tsym ? 5781 Fragments.MustNotBeSameClass : 5782 Fragments.MustNotBeSupertype(subType) 5783 ) 5784 ); 5785 } else if (!isTypeVar) { 5786 boolean thisIsASuper = types.directSupertypes(subType) 5787 .stream() 5788 .anyMatch(d -> d.tsym == c); 5789 if (!thisIsASuper) { 5790 if(c.isInterface()) { 5791 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5792 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType))); 5793 } else { 5794 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5795 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5796 } 5797 } 5798 } 5799 } 5800 } 5801 5802 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5803 .stream() 5804 .filter(s -> s.tsym.isSealed()) 5805 .map(s -> (ClassSymbol) s.tsym) 5806 .collect(List.collector()); 5807 5808 if (sealedSupers.isEmpty()) { 5809 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5810 boolean hasErrorSuper = false; 5811 5812 hasErrorSuper |= types.directSupertypes(c.type) 5813 .stream() 5814 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5815 5816 ClassType ct = (ClassType) c.type; 5817 5818 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5819 5820 if (!hasErrorSuper) { 5821 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5822 } 5823 } 5824 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5825 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5826 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5827 } 5828 5829 if (!c.type.isCompound()) { 5830 for (ClassSymbol supertypeSym : sealedSupers) { 5831 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5832 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5833 } 5834 } 5835 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5836 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5837 c.isInterface() ? 5838 Errors.NonSealedOrSealedExpected : 5839 Errors.NonSealedSealedOrFinalExpected); 5840 } 5841 } 5842 } 5843 5844 env.info.returnResult = null; 5845 // java.lang.Enum may not be subclassed by a non-enum 5846 if (st.tsym == syms.enumSym && 5847 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5848 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5849 5850 // Enums may not be extended by source-level classes 5851 if (st.tsym != null && 5852 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5853 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5854 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5855 } 5856 5857 if (rs.isSerializable(c.type)) { 5858 env.info.isSerializable = true; 5859 } 5860 5861 if (c.isValueClass()) { 5862 Assert.check(env.tree.hasTag(CLASSDEF)); 5863 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c); 5864 } 5865 5866 attribClassBody(env, c); 5867 5868 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5869 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5870 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5871 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5872 5873 if (c.isImplicit()) { 5874 chk.checkHasMain(env.tree.pos(), c); 5875 } 5876 } finally { 5877 env.info.returnResult = prevReturnRes; 5878 log.useSource(prev); 5879 chk.setLint(prevLint); 5880 } 5881 5882 } 5883 } 5884 5885 public void visitImport(JCImport tree) { 5886 // nothing to do 5887 } 5888 5889 public void visitModuleDef(JCModuleDecl tree) { 5890 tree.sym.completeUsesProvides(); 5891 ModuleSymbol msym = tree.sym; 5892 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5893 Lint prevLint = chk.setLint(lint); 5894 try { 5895 chk.checkModuleName(tree); 5896 chk.checkDeprecatedAnnotation(tree, msym); 5897 } finally { 5898 chk.setLint(prevLint); 5899 } 5900 } 5901 5902 /** Finish the attribution of a class. */ 5903 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5904 JCClassDecl tree = (JCClassDecl)env.tree; 5905 Assert.check(c == tree.sym); 5906 5907 // Validate type parameters, supertype and interfaces. 5908 attribStats(tree.typarams, env); 5909 if (!c.isAnonymous()) { 5910 //already checked if anonymous 5911 chk.validate(tree.typarams, env); 5912 chk.validate(tree.extending, env); 5913 chk.validate(tree.implementing, env); 5914 } 5915 5916 chk.checkRequiresIdentity(tree, env.info.lint); 5917 5918 c.markAbstractIfNeeded(types); 5919 5920 // If this is a non-abstract class, check that it has no abstract 5921 // methods or unimplemented methods of an implemented interface. 5922 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5923 chk.checkAllDefined(tree.pos(), c); 5924 } 5925 5926 if ((c.flags() & ANNOTATION) != 0) { 5927 if (tree.implementing.nonEmpty()) 5928 log.error(tree.implementing.head.pos(), 5929 Errors.CantExtendIntfAnnotation); 5930 if (tree.typarams.nonEmpty()) { 5931 log.error(tree.typarams.head.pos(), 5932 Errors.IntfAnnotationCantHaveTypeParams(c)); 5933 } 5934 5935 // If this annotation type has a @Repeatable, validate 5936 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5937 // If this annotation type has a @Repeatable, validate 5938 if (repeatable != null) { 5939 // get diagnostic position for error reporting 5940 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5941 Assert.checkNonNull(cbPos); 5942 5943 chk.validateRepeatable(c, repeatable, cbPos); 5944 } 5945 } else { 5946 // Check that all extended classes and interfaces 5947 // are compatible (i.e. no two define methods with same arguments 5948 // yet different return types). (JLS 8.4.8.3) 5949 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5950 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5951 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5952 } 5953 5954 // Check that class does not import the same parameterized interface 5955 // with two different argument lists. 5956 chk.checkClassBounds(tree.pos(), c.type); 5957 5958 tree.type = c.type; 5959 5960 for (List<JCTypeParameter> l = tree.typarams; 5961 l.nonEmpty(); l = l.tail) { 5962 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5963 } 5964 5965 // Check that a generic class doesn't extend Throwable 5966 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5967 log.error(tree.extending.pos(), Errors.GenericThrowable); 5968 5969 // Check that all methods which implement some 5970 // method conform to the method they implement. 5971 chk.checkImplementations(tree); 5972 5973 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5974 checkAutoCloseable(tree.pos(), env, c.type); 5975 5976 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5977 // Attribute declaration 5978 attribStat(l.head, env); 5979 // Check that declarations in inner classes are not static (JLS 8.1.2) 5980 // Make an exception for static constants. 5981 if (!allowRecords && 5982 c.owner.kind != PCK && 5983 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5984 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5985 VarSymbol sym = null; 5986 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5987 if (sym == null || 5988 sym.kind != VAR || 5989 sym.getConstValue() == null) 5990 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5991 } 5992 } 5993 5994 // Check for proper placement of super()/this() calls. 5995 chk.checkSuperInitCalls(tree); 5996 5997 // Check for cycles among non-initial constructors. 5998 chk.checkCyclicConstructors(tree); 5999 6000 // Check for cycles among annotation elements. 6001 chk.checkNonCyclicElements(tree); 6002 6003 // Check for proper use of serialVersionUID and other 6004 // serialization-related fields and methods 6005 if (env.info.lint.isEnabled(LintCategory.SERIAL) 6006 && rs.isSerializable(c.type) 6007 && !c.isAnonymous()) { 6008 chk.checkSerialStructure(env, tree, c); 6009 } 6010 // Correctly organize the positions of the type annotations 6011 typeAnnotations.organizeTypeAnnotationsBodies(tree); 6012 6013 // Check type annotations applicability rules 6014 validateTypeAnnotations(tree, false); 6015 } 6016 // where 6017 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 6018 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 6019 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 6020 if (types.isSameType(al.head.annotationType.type, t)) 6021 return al.head.pos(); 6022 } 6023 6024 return null; 6025 } 6026 6027 private Type capture(Type type) { 6028 return types.capture(type); 6029 } 6030 6031 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 6032 if (type.isErroneous()) { 6033 tree.vartype = make.at(tree.pos()).Erroneous(); 6034 } else { 6035 tree.vartype = make.at(tree.pos()).Type(type); 6036 } 6037 } 6038 6039 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 6040 tree.accept(new TypeAnnotationsValidator(sigOnly)); 6041 } 6042 //where 6043 private final class TypeAnnotationsValidator extends TreeScanner { 6044 6045 private final boolean sigOnly; 6046 public TypeAnnotationsValidator(boolean sigOnly) { 6047 this.sigOnly = sigOnly; 6048 } 6049 6050 public void visitAnnotation(JCAnnotation tree) { 6051 chk.validateTypeAnnotation(tree, null, false); 6052 super.visitAnnotation(tree); 6053 } 6054 public void visitAnnotatedType(JCAnnotatedType tree) { 6055 if (!tree.underlyingType.type.isErroneous()) { 6056 super.visitAnnotatedType(tree); 6057 } 6058 } 6059 public void visitTypeParameter(JCTypeParameter tree) { 6060 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 6061 scan(tree.bounds); 6062 // Don't call super. 6063 // This is needed because above we call validateTypeAnnotation with 6064 // false, which would forbid annotations on type parameters. 6065 // super.visitTypeParameter(tree); 6066 } 6067 public void visitMethodDef(JCMethodDecl tree) { 6068 if (tree.recvparam != null && 6069 !tree.recvparam.vartype.type.isErroneous()) { 6070 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 6071 } 6072 if (tree.restype != null && tree.restype.type != null) { 6073 validateAnnotatedType(tree.restype, tree.restype.type); 6074 } 6075 if (sigOnly) { 6076 scan(tree.mods); 6077 scan(tree.restype); 6078 scan(tree.typarams); 6079 scan(tree.recvparam); 6080 scan(tree.params); 6081 scan(tree.thrown); 6082 } else { 6083 scan(tree.defaultValue); 6084 scan(tree.body); 6085 } 6086 } 6087 public void visitVarDef(final JCVariableDecl tree) { 6088 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 6089 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 6090 validateAnnotatedType(tree.vartype, tree.sym.type); 6091 scan(tree.mods); 6092 scan(tree.vartype); 6093 if (!sigOnly) { 6094 scan(tree.init); 6095 } 6096 } 6097 public void visitTypeCast(JCTypeCast tree) { 6098 if (tree.clazz != null && tree.clazz.type != null) 6099 validateAnnotatedType(tree.clazz, tree.clazz.type); 6100 super.visitTypeCast(tree); 6101 } 6102 public void visitTypeTest(JCInstanceOf tree) { 6103 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 6104 validateAnnotatedType(tree.pattern, tree.pattern.type); 6105 super.visitTypeTest(tree); 6106 } 6107 public void visitNewClass(JCNewClass tree) { 6108 if (tree.clazz != null && tree.clazz.type != null) { 6109 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 6110 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 6111 tree.clazz.type.tsym); 6112 } 6113 if (tree.def != null) { 6114 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 6115 } 6116 6117 validateAnnotatedType(tree.clazz, tree.clazz.type); 6118 } 6119 super.visitNewClass(tree); 6120 } 6121 public void visitNewArray(JCNewArray tree) { 6122 if (tree.elemtype != null && tree.elemtype.type != null) { 6123 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 6124 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 6125 tree.elemtype.type.tsym); 6126 } 6127 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 6128 } 6129 super.visitNewArray(tree); 6130 } 6131 public void visitClassDef(JCClassDecl tree) { 6132 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 6133 if (sigOnly) { 6134 scan(tree.mods); 6135 scan(tree.typarams); 6136 scan(tree.extending); 6137 scan(tree.implementing); 6138 } 6139 for (JCTree member : tree.defs) { 6140 if (member.hasTag(Tag.CLASSDEF)) { 6141 continue; 6142 } 6143 scan(member); 6144 } 6145 } 6146 public void visitBlock(JCBlock tree) { 6147 if (!sigOnly) { 6148 scan(tree.stats); 6149 } 6150 } 6151 6152 /* I would want to model this after 6153 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 6154 * and override visitSelect and visitTypeApply. 6155 * However, we only set the annotated type in the top-level type 6156 * of the symbol. 6157 * Therefore, we need to override each individual location where a type 6158 * can occur. 6159 */ 6160 private void validateAnnotatedType(final JCTree errtree, final Type type) { 6161 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 6162 6163 if (type.isPrimitiveOrVoid()) { 6164 return; 6165 } 6166 6167 JCTree enclTr = errtree; 6168 Type enclTy = type; 6169 6170 boolean repeat = true; 6171 while (repeat) { 6172 if (enclTr.hasTag(TYPEAPPLY)) { 6173 List<Type> tyargs = enclTy.getTypeArguments(); 6174 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 6175 if (trargs.length() > 0) { 6176 // Nothing to do for diamonds 6177 if (tyargs.length() == trargs.length()) { 6178 for (int i = 0; i < tyargs.length(); ++i) { 6179 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 6180 } 6181 } 6182 // If the lengths don't match, it's either a diamond 6183 // or some nested type that redundantly provides 6184 // type arguments in the tree. 6185 } 6186 6187 // Look at the clazz part of a generic type 6188 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 6189 } 6190 6191 if (enclTr.hasTag(SELECT)) { 6192 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 6193 if (enclTy != null && 6194 !enclTy.hasTag(NONE)) { 6195 enclTy = enclTy.getEnclosingType(); 6196 } 6197 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 6198 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 6199 if (enclTy == null || enclTy.hasTag(NONE)) { 6200 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 6201 for (JCAnnotation an : at.getAnnotations()) { 6202 if (chk.isTypeAnnotation(an, false)) { 6203 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 6204 } 6205 } 6206 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 6207 if (!onlyTypeAnnotations.isEmpty()) { 6208 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 6209 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 6210 Fragments.TypeAnnotation(onlyTypeAnnotations); 6211 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 6212 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 6213 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 6214 type.tsym.owner, annotatedType)); 6215 } 6216 repeat = false; 6217 } 6218 enclTr = at.underlyingType; 6219 // enclTy doesn't need to be changed 6220 } else if (enclTr.hasTag(IDENT)) { 6221 repeat = false; 6222 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 6223 JCWildcard wc = (JCWildcard) enclTr; 6224 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 6225 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 6226 validateAnnotatedType(wc.getBound(), wc.getBound().type); 6227 } else { 6228 // Nothing to do for UNBOUND 6229 } 6230 repeat = false; 6231 } else if (enclTr.hasTag(TYPEARRAY)) { 6232 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 6233 validateAnnotatedType(art.getType(), art.elemtype.type); 6234 repeat = false; 6235 } else if (enclTr.hasTag(TYPEUNION)) { 6236 JCTypeUnion ut = (JCTypeUnion) enclTr; 6237 for (JCTree t : ut.getTypeAlternatives()) { 6238 validateAnnotatedType(t, t.type); 6239 } 6240 repeat = false; 6241 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 6242 JCTypeIntersection it = (JCTypeIntersection) enclTr; 6243 for (JCTree t : it.getBounds()) { 6244 validateAnnotatedType(t, t.type); 6245 } 6246 repeat = false; 6247 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 6248 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 6249 repeat = false; 6250 } else { 6251 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 6252 " within: "+ errtree + " with kind: " + errtree.getKind()); 6253 } 6254 } 6255 } 6256 6257 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 6258 Symbol sym) { 6259 // Ensure that no declaration annotations are present. 6260 // Note that a tree type might be an AnnotatedType with 6261 // empty annotations, if only declaration annotations were given. 6262 // This method will raise an error for such a type. 6263 for (JCAnnotation ai : annotations) { 6264 if (!ai.type.isErroneous() && 6265 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 6266 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 6267 } 6268 } 6269 } 6270 } 6271 6272 // <editor-fold desc="post-attribution visitor"> 6273 6274 /** 6275 * Handle missing types/symbols in an AST. This routine is useful when 6276 * the compiler has encountered some errors (which might have ended up 6277 * terminating attribution abruptly); if the compiler is used in fail-over 6278 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 6279 * prevents NPE to be propagated during subsequent compilation steps. 6280 */ 6281 public void postAttr(JCTree tree) { 6282 new PostAttrAnalyzer().scan(tree); 6283 } 6284 6285 class PostAttrAnalyzer extends TreeScanner { 6286 6287 private void initTypeIfNeeded(JCTree that) { 6288 if (that.type == null) { 6289 if (that.hasTag(METHODDEF)) { 6290 that.type = dummyMethodType((JCMethodDecl)that); 6291 } else { 6292 that.type = syms.unknownType; 6293 } 6294 } 6295 } 6296 6297 /* Construct a dummy method type. If we have a method declaration, 6298 * and the declared return type is void, then use that return type 6299 * instead of UNKNOWN to avoid spurious error messages in lambda 6300 * bodies (see:JDK-8041704). 6301 */ 6302 private Type dummyMethodType(JCMethodDecl md) { 6303 Type restype = syms.unknownType; 6304 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 6305 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 6306 if (prim.typetag == VOID) 6307 restype = syms.voidType; 6308 } 6309 return new MethodType(List.nil(), restype, 6310 List.nil(), syms.methodClass); 6311 } 6312 private Type dummyMethodType() { 6313 return dummyMethodType(null); 6314 } 6315 6316 @Override 6317 public void scan(JCTree tree) { 6318 if (tree == null) return; 6319 if (tree instanceof JCExpression) { 6320 initTypeIfNeeded(tree); 6321 } 6322 super.scan(tree); 6323 } 6324 6325 @Override 6326 public void visitIdent(JCIdent that) { 6327 if (that.sym == null) { 6328 that.sym = syms.unknownSymbol; 6329 } 6330 } 6331 6332 @Override 6333 public void visitSelect(JCFieldAccess that) { 6334 if (that.sym == null) { 6335 that.sym = syms.unknownSymbol; 6336 } 6337 super.visitSelect(that); 6338 } 6339 6340 @Override 6341 public void visitClassDef(JCClassDecl that) { 6342 initTypeIfNeeded(that); 6343 if (that.sym == null) { 6344 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6345 } 6346 super.visitClassDef(that); 6347 } 6348 6349 @Override 6350 public void visitMethodDef(JCMethodDecl that) { 6351 initTypeIfNeeded(that); 6352 if (that.sym == null) { 6353 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6354 } 6355 super.visitMethodDef(that); 6356 } 6357 6358 @Override 6359 public void visitVarDef(JCVariableDecl that) { 6360 initTypeIfNeeded(that); 6361 if (that.sym == null) { 6362 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6363 that.sym.adr = 0; 6364 } 6365 if (that.vartype == null) { 6366 that.vartype = make.at(Position.NOPOS).Erroneous(); 6367 } 6368 super.visitVarDef(that); 6369 } 6370 6371 @Override 6372 public void visitBindingPattern(JCBindingPattern that) { 6373 initTypeIfNeeded(that); 6374 initTypeIfNeeded(that.var); 6375 if (that.var.sym == null) { 6376 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6377 that.var.sym.adr = 0; 6378 } 6379 super.visitBindingPattern(that); 6380 } 6381 6382 @Override 6383 public void visitRecordPattern(JCRecordPattern that) { 6384 initTypeIfNeeded(that); 6385 if (that.record == null) { 6386 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6387 that.type, syms.noSymbol); 6388 } 6389 if (that.fullComponentTypes == null) { 6390 that.fullComponentTypes = List.nil(); 6391 } 6392 super.visitRecordPattern(that); 6393 } 6394 6395 @Override 6396 public void visitNewClass(JCNewClass that) { 6397 if (that.constructor == null) { 6398 that.constructor = new MethodSymbol(0, names.init, 6399 dummyMethodType(), syms.noSymbol); 6400 } 6401 if (that.constructorType == null) { 6402 that.constructorType = syms.unknownType; 6403 } 6404 super.visitNewClass(that); 6405 } 6406 6407 @Override 6408 public void visitAssignop(JCAssignOp that) { 6409 if (that.operator == null) { 6410 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6411 -1, syms.noSymbol); 6412 } 6413 super.visitAssignop(that); 6414 } 6415 6416 @Override 6417 public void visitBinary(JCBinary that) { 6418 if (that.operator == null) { 6419 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6420 -1, syms.noSymbol); 6421 } 6422 super.visitBinary(that); 6423 } 6424 6425 @Override 6426 public void visitUnary(JCUnary that) { 6427 if (that.operator == null) { 6428 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6429 -1, syms.noSymbol); 6430 } 6431 super.visitUnary(that); 6432 } 6433 6434 @Override 6435 public void visitReference(JCMemberReference that) { 6436 super.visitReference(that); 6437 if (that.sym == null) { 6438 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6439 syms.noSymbol); 6440 } 6441 } 6442 } 6443 // </editor-fold> 6444 6445 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6446 new TreeScanner() { 6447 Symbol packge = pkg; 6448 @Override 6449 public void visitIdent(JCIdent that) { 6450 that.sym = packge; 6451 } 6452 6453 @Override 6454 public void visitSelect(JCFieldAccess that) { 6455 that.sym = packge; 6456 packge = packge.owner; 6457 super.visitSelect(that); 6458 } 6459 }.scan(pid); 6460 } 6461 6462 }