1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Type.ClassType.Flavor; 49 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 50 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 51 import com.sun.tools.javac.comp.Check.CheckContext; 52 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 53 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 54 import com.sun.tools.javac.jvm.*; 55 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 59 60 import com.sun.tools.javac.resources.CompilerProperties.Errors; 61 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 128 public static Attr instance(Context context) { 129 Attr instance = context.get(attrKey); 130 if (instance == null) 131 instance = new Attr(context); 132 return instance; 133 } 134 135 @SuppressWarnings("this-escape") 136 protected Attr(Context context) { 137 context.put(attrKey, this); 138 139 names = Names.instance(context); 140 log = Log.instance(context); 141 syms = Symtab.instance(context); 142 rs = Resolve.instance(context); 143 operators = Operators.instance(context); 144 chk = Check.instance(context); 145 flow = Flow.instance(context); 146 memberEnter = MemberEnter.instance(context); 147 typeEnter = TypeEnter.instance(context); 148 make = TreeMaker.instance(context); 149 enter = Enter.instance(context); 150 infer = Infer.instance(context); 151 analyzer = Analyzer.instance(context); 152 deferredAttr = DeferredAttr.instance(context); 153 cfolder = ConstFold.instance(context); 154 target = Target.instance(context); 155 types = Types.instance(context); 156 preview = Preview.instance(context); 157 diags = JCDiagnostic.Factory.instance(context); 158 annotate = Annotate.instance(context); 159 typeAnnotations = TypeAnnotations.instance(context); 160 deferredLintHandler = DeferredLintHandler.instance(context); 161 typeEnvs = TypeEnvs.instance(context); 162 dependencies = Dependencies.instance(context); 163 argumentAttr = ArgumentAttr.instance(context); 164 matchBindingsComputer = MatchBindingsComputer.instance(context); 165 attrRecover = AttrRecover.instance(context); 166 167 Options options = Options.instance(context); 168 169 Source source = Source.instance(context); 170 allowPrimitiveClasses = Feature.PRIMITIVE_CLASSES.allowedInSource(source) && options.isSet("enablePrimitiveClasses"); 171 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 172 allowRecords = Feature.RECORDS.allowedInSource(source); 173 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 174 Feature.PATTERN_SWITCH.allowedInSource(source); 175 allowUnconditionalPatternsInstanceOf = 176 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 177 sourceName = source.name; 178 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 179 180 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 181 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 182 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 183 methodAttrInfo = new MethodAttrInfo(); 184 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 185 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 186 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 187 } 188 189 /** Switch: allow primitive classes ? 190 */ 191 boolean allowPrimitiveClasses; 192 193 /** Switch: reifiable types in instanceof enabled? 194 */ 195 boolean allowReifiableTypesInInstanceof; 196 197 /** Are records allowed 198 */ 199 private final boolean allowRecords; 200 201 /** Are patterns in switch allowed 202 */ 203 private final boolean allowPatternSwitch; 204 205 /** Are unconditional patterns in instanceof allowed 206 */ 207 private final boolean allowUnconditionalPatternsInstanceOf; 208 209 /** 210 * Switch: warn about use of variable before declaration? 211 * RFE: 6425594 212 */ 213 boolean useBeforeDeclarationWarning; 214 215 /** 216 * Switch: name of source level; used for error reporting. 217 */ 218 String sourceName; 219 220 /** Check kind and type of given tree against protokind and prototype. 221 * If check succeeds, store type in tree and return it. 222 * If check fails, store errType in tree and return it. 223 * No checks are performed if the prototype is a method type. 224 * It is not necessary in this case since we know that kind and type 225 * are correct. 226 * 227 * @param tree The tree whose kind and type is checked 228 * @param found The computed type of the tree 229 * @param ownkind The computed kind of the tree 230 * @param resultInfo The expected result of the tree 231 */ 232 Type check(final JCTree tree, 233 final Type found, 234 final KindSelector ownkind, 235 final ResultInfo resultInfo) { 236 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 237 Type owntype; 238 boolean shouldCheck = !found.hasTag(ERROR) && 239 !resultInfo.pt.hasTag(METHOD) && 240 !resultInfo.pt.hasTag(FORALL); 241 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 242 log.error(tree.pos(), 243 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 244 ownkind.kindNames())); 245 owntype = types.createErrorType(found); 246 } else if (inferenceContext.free(found)) { 247 //delay the check if there are inference variables in the found type 248 //this means we are dealing with a partially inferred poly expression 249 owntype = shouldCheck ? resultInfo.pt : found; 250 if (resultInfo.checkMode.installPostInferenceHook()) { 251 inferenceContext.addFreeTypeListener(List.of(found), 252 instantiatedContext -> { 253 ResultInfo pendingResult = 254 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 255 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 256 }); 257 } 258 } else { 259 owntype = shouldCheck ? 260 resultInfo.check(tree, found) : 261 found; 262 } 263 if (resultInfo.checkMode.updateTreeType()) { 264 tree.type = owntype; 265 } 266 return owntype; 267 } 268 269 /** Is given blank final variable assignable, i.e. in a scope where it 270 * may be assigned to even though it is final? 271 * @param v The blank final variable. 272 * @param env The current environment. 273 */ 274 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 275 Symbol owner = env.info.scope.owner; 276 // owner refers to the innermost variable, method or 277 // initializer block declaration at this point. 278 boolean isAssignable = 279 v.owner == owner 280 || 281 ((names.isInitOrVNew(owner.name) || // i.e. we are in a constructor 282 owner.kind == VAR || // i.e. we are in a variable initializer 283 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 284 && 285 v.owner == owner.owner 286 && 287 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 288 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 289 return isAssignable & !insideCompactConstructor; 290 } 291 292 /** Check that variable can be assigned to. 293 * @param pos The current source code position. 294 * @param v The assigned variable 295 * @param base If the variable is referred to in a Select, the part 296 * to the left of the `.', null otherwise. 297 * @param env The current environment. 298 */ 299 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 300 if (v.name == names._this) { 301 log.error(pos, Errors.CantAssignValToThis); 302 } else if ((v.flags() & FINAL) != 0 && 303 ((v.flags() & HASINIT) != 0 304 || 305 !((base == null || 306 TreeInfo.isThisQualifier(base)) && 307 isAssignableAsBlankFinal(v, env)))) { 308 if (v.isResourceVariable()) { //TWR resource 309 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 310 } else { 311 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 312 } 313 } 314 } 315 316 /** Does tree represent a static reference to an identifier? 317 * It is assumed that tree is either a SELECT or an IDENT. 318 * We have to weed out selects from non-type names here. 319 * @param tree The candidate tree. 320 */ 321 boolean isStaticReference(JCTree tree) { 322 if (tree.hasTag(SELECT)) { 323 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 324 if (lsym == null || lsym.kind != TYP) { 325 return false; 326 } 327 } 328 return true; 329 } 330 331 /** Is this symbol a type? 332 */ 333 static boolean isType(Symbol sym) { 334 return sym != null && sym.kind == TYP; 335 } 336 337 /** The current `this' symbol. 338 * @param env The current environment. 339 */ 340 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) { 341 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this); 342 } 343 344 /** Attribute a parsed identifier. 345 * @param tree Parsed identifier name 346 * @param topLevel The toplevel to use 347 */ 348 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 349 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 350 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 351 syms.errSymbol.name, 352 null, null, null, null); 353 localEnv.enclClass.sym = syms.errSymbol; 354 return attribIdent(tree, localEnv); 355 } 356 357 /** Attribute a parsed identifier. 358 * @param tree Parsed identifier name 359 * @param env The env to use 360 */ 361 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 362 return tree.accept(identAttributer, env); 363 } 364 // where 365 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 366 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 367 @Override @DefinedBy(Api.COMPILER_TREE) 368 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 369 Symbol site = visit(node.getExpression(), env); 370 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 371 return site; 372 Name name = (Name)node.getIdentifier(); 373 if (site.kind == PCK) { 374 env.toplevel.packge = (PackageSymbol)site; 375 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 376 KindSelector.TYP_PCK); 377 } else { 378 env.enclClass.sym = (ClassSymbol)site; 379 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 380 } 381 } 382 383 @Override @DefinedBy(Api.COMPILER_TREE) 384 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 385 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 386 } 387 } 388 389 public Type coerce(Type etype, Type ttype) { 390 return cfolder.coerce(etype, ttype); 391 } 392 393 public Type attribType(JCTree node, TypeSymbol sym) { 394 Env<AttrContext> env = typeEnvs.get(sym); 395 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 396 return attribTree(node, localEnv, unknownTypeInfo); 397 } 398 399 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 400 // Attribute qualifying package or class. 401 JCFieldAccess s = tree.qualid; 402 return attribTree(s.selected, env, 403 new ResultInfo(tree.staticImport ? 404 KindSelector.TYP : KindSelector.TYP_PCK, 405 Type.noType)); 406 } 407 408 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 409 return attribToTree(expr, env, tree, unknownExprInfo); 410 } 411 412 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 413 return attribToTree(stmt, env, tree, statInfo); 414 } 415 416 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 417 breakTree = tree; 418 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 419 try { 420 deferredAttr.attribSpeculative(root, env, resultInfo, 421 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 422 argumentAttr.withLocalCacheContext()); 423 attrRecover.doRecovery(); 424 } catch (BreakAttr b) { 425 return b.env; 426 } catch (AssertionError ae) { 427 if (ae.getCause() instanceof BreakAttr breakAttr) { 428 return breakAttr.env; 429 } else { 430 throw ae; 431 } 432 } finally { 433 breakTree = null; 434 log.useSource(prev); 435 } 436 return env; 437 } 438 439 private JCTree breakTree = null; 440 441 private static class BreakAttr extends RuntimeException { 442 static final long serialVersionUID = -6924771130405446405L; 443 private transient Env<AttrContext> env; 444 private BreakAttr(Env<AttrContext> env) { 445 this.env = env; 446 } 447 } 448 449 /** 450 * Mode controlling behavior of Attr.Check 451 */ 452 enum CheckMode { 453 454 NORMAL, 455 456 /** 457 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 458 * that the captured var cache in {@code InferenceContext} will be used in read-only 459 * mode when performing inference checks. 460 */ 461 NO_TREE_UPDATE { 462 @Override 463 public boolean updateTreeType() { 464 return false; 465 } 466 }, 467 /** 468 * Mode signalling that caller will manage free types in tree decorations. 469 */ 470 NO_INFERENCE_HOOK { 471 @Override 472 public boolean installPostInferenceHook() { 473 return false; 474 } 475 }; 476 477 public boolean updateTreeType() { 478 return true; 479 } 480 public boolean installPostInferenceHook() { 481 return true; 482 } 483 } 484 485 486 class ResultInfo { 487 final KindSelector pkind; 488 final Type pt; 489 final CheckContext checkContext; 490 final CheckMode checkMode; 491 492 ResultInfo(KindSelector pkind, Type pt) { 493 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 494 } 495 496 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 497 this(pkind, pt, chk.basicHandler, checkMode); 498 } 499 500 protected ResultInfo(KindSelector pkind, 501 Type pt, CheckContext checkContext) { 502 this(pkind, pt, checkContext, CheckMode.NORMAL); 503 } 504 505 protected ResultInfo(KindSelector pkind, 506 Type pt, CheckContext checkContext, CheckMode checkMode) { 507 this.pkind = pkind; 508 this.pt = pt; 509 this.checkContext = checkContext; 510 this.checkMode = checkMode; 511 } 512 513 /** 514 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 515 * @param tree The tree to be type-checked. 516 * @return true if {@code ArgumentAttr} should be used. 517 */ 518 protected boolean needsArgumentAttr(JCTree tree) { return false; } 519 520 protected Type check(final DiagnosticPosition pos, final Type found) { 521 return chk.checkType(pos, found, pt, checkContext); 522 } 523 524 protected ResultInfo dup(Type newPt) { 525 return new ResultInfo(pkind, newPt, checkContext, checkMode); 526 } 527 528 protected ResultInfo dup(CheckContext newContext) { 529 return new ResultInfo(pkind, pt, newContext, checkMode); 530 } 531 532 protected ResultInfo dup(Type newPt, CheckContext newContext) { 533 return new ResultInfo(pkind, newPt, newContext, checkMode); 534 } 535 536 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 537 return new ResultInfo(pkind, newPt, newContext, newMode); 538 } 539 540 protected ResultInfo dup(CheckMode newMode) { 541 return new ResultInfo(pkind, pt, checkContext, newMode); 542 } 543 544 @Override 545 public String toString() { 546 if (pt != null) { 547 return pt.toString(); 548 } else { 549 return ""; 550 } 551 } 552 } 553 554 class MethodAttrInfo extends ResultInfo { 555 public MethodAttrInfo() { 556 this(chk.basicHandler); 557 } 558 559 public MethodAttrInfo(CheckContext checkContext) { 560 super(KindSelector.VAL, Infer.anyPoly, checkContext); 561 } 562 563 @Override 564 protected boolean needsArgumentAttr(JCTree tree) { 565 return true; 566 } 567 568 protected ResultInfo dup(Type newPt) { 569 throw new IllegalStateException(); 570 } 571 572 protected ResultInfo dup(CheckContext newContext) { 573 return new MethodAttrInfo(newContext); 574 } 575 576 protected ResultInfo dup(Type newPt, CheckContext newContext) { 577 throw new IllegalStateException(); 578 } 579 580 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 581 throw new IllegalStateException(); 582 } 583 584 protected ResultInfo dup(CheckMode newMode) { 585 throw new IllegalStateException(); 586 } 587 } 588 589 class RecoveryInfo extends ResultInfo { 590 591 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 592 this(deferredAttrContext, Type.recoveryType); 593 } 594 595 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 596 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 597 @Override 598 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 599 return deferredAttrContext; 600 } 601 @Override 602 public boolean compatible(Type found, Type req, Warner warn) { 603 return true; 604 } 605 @Override 606 public void report(DiagnosticPosition pos, JCDiagnostic details) { 607 boolean needsReport = pt == Type.recoveryType || 608 (details.getDiagnosticPosition() != null && 609 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 610 if (needsReport) { 611 chk.basicHandler.report(pos, details); 612 } 613 } 614 }); 615 } 616 } 617 618 final ResultInfo statInfo; 619 final ResultInfo varAssignmentInfo; 620 final ResultInfo methodAttrInfo; 621 final ResultInfo unknownExprInfo; 622 final ResultInfo unknownTypeInfo; 623 final ResultInfo unknownTypeExprInfo; 624 final ResultInfo recoveryInfo; 625 626 Type pt() { 627 return resultInfo.pt; 628 } 629 630 KindSelector pkind() { 631 return resultInfo.pkind; 632 } 633 634 /* ************************************************************************ 635 * Visitor methods 636 *************************************************************************/ 637 638 /** Visitor argument: the current environment. 639 */ 640 Env<AttrContext> env; 641 642 /** Visitor argument: the currently expected attribution result. 643 */ 644 ResultInfo resultInfo; 645 646 /** Visitor result: the computed type. 647 */ 648 Type result; 649 650 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 651 652 /** Visitor method: attribute a tree, catching any completion failure 653 * exceptions. Return the tree's type. 654 * 655 * @param tree The tree to be visited. 656 * @param env The environment visitor argument. 657 * @param resultInfo The result info visitor argument. 658 */ 659 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 660 Env<AttrContext> prevEnv = this.env; 661 ResultInfo prevResult = this.resultInfo; 662 try { 663 this.env = env; 664 this.resultInfo = resultInfo; 665 if (resultInfo.needsArgumentAttr(tree)) { 666 result = argumentAttr.attribArg(tree, env); 667 } else { 668 tree.accept(this); 669 } 670 matchBindings = matchBindingsComputer.finishBindings(tree, 671 matchBindings); 672 if (tree == breakTree && 673 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 674 breakTreeFound(copyEnv(env)); 675 } 676 return result; 677 } catch (CompletionFailure ex) { 678 tree.type = syms.errType; 679 return chk.completionError(tree.pos(), ex); 680 } finally { 681 this.env = prevEnv; 682 this.resultInfo = prevResult; 683 } 684 } 685 686 protected void breakTreeFound(Env<AttrContext> env) { 687 throw new BreakAttr(env); 688 } 689 690 Env<AttrContext> copyEnv(Env<AttrContext> env) { 691 Env<AttrContext> newEnv = 692 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 693 if (newEnv.outer != null) { 694 newEnv.outer = copyEnv(newEnv.outer); 695 } 696 return newEnv; 697 } 698 699 WriteableScope copyScope(WriteableScope sc) { 700 WriteableScope newScope = WriteableScope.create(sc.owner); 701 List<Symbol> elemsList = List.nil(); 702 for (Symbol sym : sc.getSymbols()) { 703 elemsList = elemsList.prepend(sym); 704 } 705 for (Symbol s : elemsList) { 706 newScope.enter(s); 707 } 708 return newScope; 709 } 710 711 /** Derived visitor method: attribute an expression tree. 712 */ 713 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 714 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 715 } 716 717 /** Derived visitor method: attribute an expression tree with 718 * no constraints on the computed type. 719 */ 720 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 721 return attribTree(tree, env, unknownExprInfo); 722 } 723 724 /** Derived visitor method: attribute a type tree. 725 */ 726 public Type attribType(JCTree tree, Env<AttrContext> env) { 727 Type result = attribType(tree, env, Type.noType); 728 return result; 729 } 730 731 /** Derived visitor method: attribute a type tree. 732 */ 733 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 734 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 735 return result; 736 } 737 738 /** Derived visitor method: attribute a statement or definition tree. 739 */ 740 public Type attribStat(JCTree tree, Env<AttrContext> env) { 741 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 742 Type result = attribTree(tree, env, statInfo); 743 analyzer.analyzeIfNeeded(tree, analyzeEnv); 744 attrRecover.doRecovery(); 745 return result; 746 } 747 748 /** Attribute a list of expressions, returning a list of types. 749 */ 750 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 751 ListBuffer<Type> ts = new ListBuffer<>(); 752 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 753 ts.append(attribExpr(l.head, env, pt)); 754 return ts.toList(); 755 } 756 757 /** Attribute a list of statements, returning nothing. 758 */ 759 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 760 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 761 attribStat(l.head, env); 762 } 763 764 /** Attribute the arguments in a method call, returning the method kind. 765 */ 766 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 767 KindSelector kind = initialKind; 768 for (JCExpression arg : trees) { 769 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 770 if (argtype.hasTag(DEFERRED)) { 771 kind = KindSelector.of(KindSelector.POLY, kind); 772 } 773 argtypes.append(argtype); 774 } 775 return kind; 776 } 777 778 /** Attribute a type argument list, returning a list of types. 779 * Caller is responsible for calling checkRefTypes. 780 */ 781 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 782 ListBuffer<Type> argtypes = new ListBuffer<>(); 783 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 784 argtypes.append(attribType(l.head, env)); 785 return argtypes.toList(); 786 } 787 788 /** Attribute a type argument list, returning a list of types. 789 * Check that all the types are references. 790 */ 791 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 792 List<Type> types = attribAnyTypes(trees, env); 793 return chk.checkRefTypes(trees, types); 794 } 795 796 /** 797 * Attribute type variables (of generic classes or methods). 798 * Compound types are attributed later in attribBounds. 799 * @param typarams the type variables to enter 800 * @param env the current environment 801 */ 802 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 803 for (JCTypeParameter tvar : typarams) { 804 TypeVar a = (TypeVar)tvar.type; 805 a.tsym.flags_field |= UNATTRIBUTED; 806 a.setUpperBound(Type.noType); 807 if (!tvar.bounds.isEmpty()) { 808 List<Type> bounds = List.of(chk.checkRefType(tvar.bounds.head, attribType(tvar.bounds.head, env), false)); 809 for (JCExpression bound : tvar.bounds.tail) 810 bounds = bounds.prepend(chk.checkRefType(bound, attribType(bound, env), false)); 811 types.setBounds(a, bounds.reverse()); 812 } else { 813 // if no bounds are given, assume a single bound of 814 // java.lang.Object. 815 types.setBounds(a, List.of(syms.objectType)); 816 } 817 a.tsym.flags_field &= ~UNATTRIBUTED; 818 } 819 if (checkCyclic) { 820 for (JCTypeParameter tvar : typarams) { 821 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 822 } 823 } 824 } 825 826 /** 827 * Attribute the type references in a list of annotations. 828 */ 829 void attribAnnotationTypes(List<JCAnnotation> annotations, 830 Env<AttrContext> env) { 831 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 832 JCAnnotation a = al.head; 833 attribType(a.annotationType, env); 834 } 835 } 836 837 /** 838 * Attribute a "lazy constant value". 839 * @param env The env for the const value 840 * @param variable The initializer for the const value 841 * @param type The expected type, or null 842 * @see VarSymbol#setLazyConstValue 843 */ 844 public Object attribLazyConstantValue(Env<AttrContext> env, 845 JCVariableDecl variable, 846 Type type) { 847 848 DiagnosticPosition prevLintPos 849 = deferredLintHandler.setPos(variable.pos()); 850 851 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 852 try { 853 Type itype = attribExpr(variable.init, env, type); 854 if (variable.isImplicitlyTyped()) { 855 //fixup local variable type 856 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 857 } 858 if (itype.constValue() != null) { 859 return coerce(itype, type).constValue(); 860 } else { 861 return null; 862 } 863 } finally { 864 log.useSource(prevSource); 865 deferredLintHandler.setPos(prevLintPos); 866 } 867 } 868 869 /** Attribute type reference in an `extends' or `implements' clause. 870 * Supertypes of anonymous inner classes are usually already attributed. 871 * 872 * @param tree The tree making up the type reference. 873 * @param env The environment current at the reference. 874 * @param classExpected true if only a class is expected here. 875 * @param interfaceExpected true if only an interface is expected here. 876 */ 877 Type attribBase(JCTree tree, 878 Env<AttrContext> env, 879 boolean classExpected, 880 boolean interfaceExpected, 881 boolean checkExtensible) { 882 Type t = tree.type != null ? 883 tree.type : 884 attribType(tree, env); 885 try { 886 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 887 } catch (CompletionFailure ex) { 888 chk.completionError(tree.pos(), ex); 889 return t; 890 } 891 } 892 Type checkBase(Type t, 893 JCTree tree, 894 Env<AttrContext> env, 895 boolean classExpected, 896 boolean interfaceExpected, 897 boolean checkExtensible) { 898 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 899 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 900 if (t.tsym.isAnonymous()) { 901 log.error(pos, Errors.CantInheritFromAnon); 902 return types.createErrorType(t); 903 } 904 if (t.isErroneous()) 905 return t; 906 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 907 // check that type variable is already visible 908 if (t.getUpperBound() == null) { 909 log.error(pos, Errors.IllegalForwardRef); 910 return types.createErrorType(t); 911 } 912 } else { 913 t = chk.checkClassType(pos, t, checkExtensible); 914 } 915 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 916 log.error(pos, Errors.IntfExpectedHere); 917 // return errType is necessary since otherwise there might 918 // be undetected cycles which cause attribution to loop 919 return types.createErrorType(t); 920 } else if (checkExtensible && 921 classExpected && 922 (t.tsym.flags() & INTERFACE) != 0) { 923 log.error(pos, Errors.NoIntfExpectedHere); 924 return types.createErrorType(t); 925 } 926 if (checkExtensible && 927 ((t.tsym.flags() & FINAL) != 0)) { 928 log.error(pos, 929 Errors.CantInheritFromFinal(t.tsym)); 930 } 931 chk.checkNonCyclic(pos, t); 932 return t; 933 } 934 935 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 936 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 937 id.type = env.info.scope.owner.enclClass().type; 938 id.sym = env.info.scope.owner.enclClass(); 939 return id.type; 940 } 941 942 public void visitClassDef(JCClassDecl tree) { 943 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 944 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 945 argumentAttr.withLocalCacheContext() : null); 946 try { 947 // Local and anonymous classes have not been entered yet, so we need to 948 // do it now. 949 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 950 enter.classEnter(tree, env); 951 } else { 952 // If this class declaration is part of a class level annotation, 953 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 954 // order to simplify later steps and allow for sensible error 955 // messages. 956 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 957 enter.classEnter(tree, env); 958 } 959 960 ClassSymbol c = tree.sym; 961 if (c == null) { 962 // exit in case something drastic went wrong during enter. 963 result = null; 964 } else { 965 // make sure class has been completed: 966 c.complete(); 967 968 // If this class appears as an anonymous class 969 // in a superclass constructor call 970 // disable implicit outer instance from being passed. 971 // (This would be an illegal access to "this before super"). 972 if (env.info.isSelfCall && 973 env.tree.hasTag(NEWCLASS)) { 974 c.flags_field |= NOOUTERTHIS; 975 } 976 attribClass(tree.pos(), c); 977 result = tree.type = c.type; 978 } 979 } finally { 980 localCacheContext.ifPresent(LocalCacheContext::leave); 981 } 982 } 983 984 public void visitMethodDef(JCMethodDecl tree) { 985 MethodSymbol m = tree.sym; 986 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 987 988 Lint lint = env.info.lint.augment(m); 989 Lint prevLint = chk.setLint(lint); 990 MethodSymbol prevMethod = chk.setMethod(m); 991 try { 992 deferredLintHandler.flush(tree.pos()); 993 chk.checkDeprecatedAnnotation(tree.pos(), m); 994 995 996 // Create a new environment with local scope 997 // for attributing the method. 998 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 999 localEnv.info.lint = lint; 1000 1001 attribStats(tree.typarams, localEnv); 1002 1003 // If we override any other methods, check that we do so properly. 1004 // JLS ??? 1005 if (m.isStatic()) { 1006 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1007 } else { 1008 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1009 } 1010 chk.checkOverride(env, tree, m); 1011 1012 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1013 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1014 } 1015 1016 // Enter all type parameters into the local method scope. 1017 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1018 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1019 1020 ClassSymbol owner = env.enclClass.sym; 1021 if ((owner.flags() & ANNOTATION) != 0 && 1022 (tree.params.nonEmpty() || 1023 tree.recvparam != null)) 1024 log.error(tree.params.nonEmpty() ? 1025 tree.params.head.pos() : 1026 tree.recvparam.pos(), 1027 Errors.IntfAnnotationMembersCantHaveParams); 1028 1029 // Attribute all value parameters. 1030 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1031 attribStat(l.head, localEnv); 1032 } 1033 1034 chk.checkVarargsMethodDecl(localEnv, tree); 1035 1036 // Check that type parameters are well-formed. 1037 chk.validate(tree.typarams, localEnv); 1038 1039 // Check that result type is well-formed. 1040 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1041 chk.validate(tree.restype, localEnv); 1042 1043 // Check that receiver type is well-formed. 1044 if (tree.recvparam != null) { 1045 // Use a new environment to check the receiver parameter. 1046 // Otherwise I get "might not have been initialized" errors. 1047 // Is there a better way? 1048 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1049 attribType(tree.recvparam, newEnv); 1050 chk.validate(tree.recvparam, newEnv); 1051 } 1052 1053 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1054 // lets find if this method is an accessor 1055 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1056 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1057 if (recordComponent.isPresent()) { 1058 // the method is a user defined accessor lets check that everything is fine 1059 if (!tree.sym.isPublic()) { 1060 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1061 } 1062 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1063 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1064 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1065 } 1066 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1067 log.error(tree, 1068 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1069 } 1070 if (!tree.typarams.isEmpty()) { 1071 log.error(tree, 1072 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1073 } 1074 if (tree.sym.isStatic()) { 1075 log.error(tree, 1076 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1077 } 1078 } 1079 1080 if (names.isInitOrVNew(tree.name)) { 1081 // if this a constructor other than the canonical one 1082 if ((tree.sym.flags_field & RECORD) == 0) { 1083 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1084 if (app == null || 1085 TreeInfo.name(app.meth) != names._this || 1086 !checkFirstConstructorStat(app, tree, false)) { 1087 log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor(env.enclClass.sym)); 1088 } 1089 } else { 1090 // but if it is the canonical: 1091 1092 /* if user generated, then it shouldn't: 1093 * - have an accessibility stricter than that of the record type 1094 * - explicitly invoke any other constructor 1095 */ 1096 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1097 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1098 log.error(tree, 1099 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1100 Errors.InvalidCanonicalConstructorInRecord( 1101 Fragments.Canonical, 1102 env.enclClass.sym.name, 1103 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1104 ) : 1105 Errors.InvalidCanonicalConstructorInRecord( 1106 Fragments.Canonical, 1107 env.enclClass.sym.name, 1108 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1109 ) 1110 ); 1111 } 1112 1113 JCMethodInvocation app = TreeInfo.firstConstructorCall(tree); 1114 if (app != null && 1115 (TreeInfo.name(app.meth) == names._this || 1116 TreeInfo.name(app.meth) == names._super) && 1117 checkFirstConstructorStat(app, tree, false)) { 1118 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1119 Fragments.Canonical, env.enclClass.sym.name, 1120 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1121 } 1122 } 1123 1124 // also we want to check that no type variables have been defined 1125 if (!tree.typarams.isEmpty()) { 1126 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1127 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1128 } 1129 1130 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1131 * record components 1132 */ 1133 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1134 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1135 for (JCVariableDecl param: tree.params) { 1136 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1137 if (!types.isSameType(param.type, recordFieldTypes.head) || 1138 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1139 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1140 Fragments.Canonical, env.enclClass.sym.name, 1141 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1142 } 1143 recordComponents = recordComponents.tail; 1144 recordFieldTypes = recordFieldTypes.tail; 1145 } 1146 } 1147 } 1148 } 1149 1150 // annotation method checks 1151 if ((owner.flags() & ANNOTATION) != 0) { 1152 // annotation method cannot have throws clause 1153 if (tree.thrown.nonEmpty()) { 1154 log.error(tree.thrown.head.pos(), 1155 Errors.ThrowsNotAllowedInIntfAnnotation); 1156 } 1157 // annotation method cannot declare type-parameters 1158 if (tree.typarams.nonEmpty()) { 1159 log.error(tree.typarams.head.pos(), 1160 Errors.IntfAnnotationMembersCantHaveTypeParams); 1161 } 1162 // validate annotation method's return type (could be an annotation type) 1163 chk.validateAnnotationType(tree.restype); 1164 // ensure that annotation method does not clash with members of Object/Annotation 1165 chk.validateAnnotationMethod(tree.pos(), m); 1166 } 1167 1168 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1169 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1170 1171 if (tree.body == null) { 1172 // Empty bodies are only allowed for 1173 // abstract, native, or interface methods, or for methods 1174 // in a retrofit signature class. 1175 if (tree.defaultValue != null) { 1176 if ((owner.flags() & ANNOTATION) == 0) 1177 log.error(tree.pos(), 1178 Errors.DefaultAllowedInIntfAnnotationMember); 1179 } 1180 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1181 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1182 } else { 1183 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1184 if ((owner.flags() & INTERFACE) != 0) { 1185 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1186 } else { 1187 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1188 } 1189 } else if ((tree.mods.flags & NATIVE) != 0) { 1190 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1191 } 1192 // Add an implicit super() call unless an explicit call to 1193 // super(...) or this(...) is given 1194 // or we are compiling class java.lang.Object. 1195 if (names.isInitOrVNew(tree.name) && owner.type != syms.objectType) { 1196 JCBlock body = tree.body; 1197 if (body.stats.isEmpty() || 1198 TreeInfo.getConstructorInvocationName(body.stats, names, true) == names.empty) { 1199 JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(), 1200 make.Ident(names._super), make.Idents(List.nil()))); 1201 body.stats = body.stats.prepend(supCall); 1202 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1203 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1204 TreeInfo.isSuperCall(body.stats.head)) { 1205 // enum constructors are not allowed to call super 1206 // directly, so make sure there aren't any super calls 1207 // in enum constructors, except in the compiler 1208 // generated one. 1209 log.error(tree.body.stats.head.pos(), 1210 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1211 } else if ((env.enclClass.sym.flags() & VALUE_CLASS) != 0 && 1212 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1213 TreeInfo.isSuperCall(body.stats.head)) { 1214 // value constructors are not allowed to call super directly, 1215 // but tolerate compiler generated ones, these are ignored during code generation 1216 log.error(tree.body.stats.head.pos(), Errors.CallToSuperNotAllowedInValueCtor); 1217 } 1218 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1219 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1220 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1221 if (!initParamNames.equals(recordComponentNames)) { 1222 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1223 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1224 } 1225 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1226 log.error(tree, 1227 Errors.InvalidCanonicalConstructorInRecord( 1228 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1229 env.enclClass.sym.name, 1230 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1231 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1232 } 1233 } 1234 } 1235 1236 // Attribute all type annotations in the body 1237 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1238 annotate.flush(); 1239 1240 // Attribute method body. 1241 attribStat(tree.body, localEnv); 1242 } 1243 1244 localEnv.info.scope.leave(); 1245 result = tree.type = m.type; 1246 } finally { 1247 chk.setLint(prevLint); 1248 chk.setMethod(prevMethod); 1249 } 1250 } 1251 1252 public void visitVarDef(JCVariableDecl tree) { 1253 // Local variables have not been entered yet, so we need to do it now: 1254 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1255 if (tree.sym != null) { 1256 // parameters have already been entered 1257 env.info.scope.enter(tree.sym); 1258 } else { 1259 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1260 if (tree.init == null) { 1261 //cannot use 'var' without initializer 1262 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1263 tree.vartype = make.Erroneous(); 1264 } else { 1265 Fragment msg = canInferLocalVarType(tree); 1266 if (msg != null) { 1267 //cannot use 'var' with initializer which require an explicit target 1268 //(e.g. lambda, method reference, array initializer). 1269 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1270 tree.vartype = make.Erroneous(); 1271 } 1272 } 1273 } 1274 try { 1275 annotate.blockAnnotations(); 1276 memberEnter.memberEnter(tree, env); 1277 } finally { 1278 annotate.unblockAnnotations(); 1279 } 1280 } 1281 } else { 1282 if (tree.init != null) { 1283 // Field initializer expression need to be entered. 1284 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos()); 1285 annotate.flush(); 1286 } 1287 } 1288 1289 VarSymbol v = tree.sym; 1290 Lint lint = env.info.lint.augment(v); 1291 Lint prevLint = chk.setLint(lint); 1292 1293 // Check that the variable's declared type is well-formed. 1294 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1295 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1296 (tree.sym.flags() & PARAMETER) != 0; 1297 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1298 1299 try { 1300 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1301 deferredLintHandler.flush(tree.pos()); 1302 chk.checkDeprecatedAnnotation(tree.pos(), v); 1303 1304 /* Don't want constant propagation/folding for instance fields of primitive classes, 1305 as these can undergo updates via copy on write. 1306 */ 1307 if (tree.init != null) { 1308 if ((v.flags_field & FINAL) == 0 || ((v.flags_field & STATIC) == 0 && v.owner.isValueClass()) || 1309 !memberEnter.needsLazyConstValue(tree.init)) { 1310 // Not a compile-time constant 1311 // Attribute initializer in a new environment 1312 // with the declared variable as owner. 1313 // Check that initializer conforms to variable's declared type. 1314 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1315 initEnv.info.lint = lint; 1316 // In order to catch self-references, we set the variable's 1317 // declaration position to maximal possible value, effectively 1318 // marking the variable as undefined. 1319 initEnv.info.enclVar = v; 1320 attribExpr(tree.init, initEnv, v.type); 1321 if (tree.isImplicitlyTyped()) { 1322 //fixup local variable type 1323 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1324 } 1325 } 1326 if (tree.isImplicitlyTyped()) { 1327 setSyntheticVariableType(tree, v.type); 1328 } 1329 } 1330 result = tree.type = v.type; 1331 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1332 if (isNonArgsMethodInObject(v.name)) { 1333 log.error(tree, Errors.IllegalRecordComponentName(v)); 1334 } 1335 } 1336 } 1337 finally { 1338 chk.setLint(prevLint); 1339 } 1340 } 1341 1342 private boolean isNonArgsMethodInObject(Name name) { 1343 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1344 if (s.type.getParameterTypes().isEmpty()) { 1345 return true; 1346 } 1347 } 1348 // isValueObject is not included in Object yet so we need a work around 1349 return name == names.isValueObject; 1350 } 1351 1352 Fragment canInferLocalVarType(JCVariableDecl tree) { 1353 LocalInitScanner lis = new LocalInitScanner(); 1354 lis.scan(tree.init); 1355 return lis.badInferenceMsg; 1356 } 1357 1358 static class LocalInitScanner extends TreeScanner { 1359 Fragment badInferenceMsg = null; 1360 boolean needsTarget = true; 1361 1362 @Override 1363 public void visitNewArray(JCNewArray tree) { 1364 if (tree.elemtype == null && needsTarget) { 1365 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1366 } 1367 } 1368 1369 @Override 1370 public void visitLambda(JCLambda tree) { 1371 if (needsTarget) { 1372 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1373 } 1374 } 1375 1376 @Override 1377 public void visitTypeCast(JCTypeCast tree) { 1378 boolean prevNeedsTarget = needsTarget; 1379 try { 1380 needsTarget = false; 1381 super.visitTypeCast(tree); 1382 } finally { 1383 needsTarget = prevNeedsTarget; 1384 } 1385 } 1386 1387 @Override 1388 public void visitReference(JCMemberReference tree) { 1389 if (needsTarget) { 1390 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1391 } 1392 } 1393 1394 @Override 1395 public void visitNewClass(JCNewClass tree) { 1396 boolean prevNeedsTarget = needsTarget; 1397 try { 1398 needsTarget = false; 1399 super.visitNewClass(tree); 1400 } finally { 1401 needsTarget = prevNeedsTarget; 1402 } 1403 } 1404 1405 @Override 1406 public void visitApply(JCMethodInvocation tree) { 1407 boolean prevNeedsTarget = needsTarget; 1408 try { 1409 needsTarget = false; 1410 super.visitApply(tree); 1411 } finally { 1412 needsTarget = prevNeedsTarget; 1413 } 1414 } 1415 } 1416 1417 public void visitSkip(JCSkip tree) { 1418 result = null; 1419 } 1420 1421 public void visitBlock(JCBlock tree) { 1422 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1423 // Block is a static or instance initializer; 1424 // let the owner of the environment be a freshly 1425 // created BLOCK-method. 1426 Symbol fakeOwner = 1427 new MethodSymbol(tree.flags | BLOCK | 1428 env.info.scope.owner.flags() & STRICTFP, names.empty, null, 1429 env.info.scope.owner); 1430 final Env<AttrContext> localEnv = 1431 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1432 1433 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; 1434 // Attribute all type annotations in the block 1435 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1436 annotate.flush(); 1437 attribStats(tree.stats, localEnv); 1438 1439 { 1440 // Store init and clinit type annotations with the ClassSymbol 1441 // to allow output in Gen.normalizeDefs. 1442 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1443 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1444 if ((tree.flags & STATIC) != 0) { 1445 cs.appendClassInitTypeAttributes(tas); 1446 } else { 1447 cs.appendInitTypeAttributes(tas); 1448 } 1449 } 1450 } else { 1451 // Create a new local environment with a local scope. 1452 Env<AttrContext> localEnv = 1453 env.dup(tree, env.info.dup(env.info.scope.dup())); 1454 try { 1455 attribStats(tree.stats, localEnv); 1456 } finally { 1457 localEnv.info.scope.leave(); 1458 } 1459 } 1460 result = null; 1461 } 1462 1463 public void visitDoLoop(JCDoWhileLoop tree) { 1464 attribStat(tree.body, env.dup(tree)); 1465 attribExpr(tree.cond, env, syms.booleanType); 1466 handleLoopConditionBindings(matchBindings, tree, tree.body); 1467 result = null; 1468 } 1469 1470 public void visitWhileLoop(JCWhileLoop tree) { 1471 attribExpr(tree.cond, env, syms.booleanType); 1472 MatchBindings condBindings = matchBindings; 1473 // include condition's bindings when true in the body: 1474 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1475 try { 1476 attribStat(tree.body, whileEnv.dup(tree)); 1477 } finally { 1478 whileEnv.info.scope.leave(); 1479 } 1480 handleLoopConditionBindings(condBindings, tree, tree.body); 1481 result = null; 1482 } 1483 1484 public void visitForLoop(JCForLoop tree) { 1485 Env<AttrContext> loopEnv = 1486 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1487 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1488 try { 1489 attribStats(tree.init, loopEnv); 1490 if (tree.cond != null) { 1491 attribExpr(tree.cond, loopEnv, syms.booleanType); 1492 // include condition's bindings when true in the body and step: 1493 condBindings = matchBindings; 1494 } 1495 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1496 try { 1497 bodyEnv.tree = tree; // before, we were not in loop! 1498 attribStats(tree.step, bodyEnv); 1499 attribStat(tree.body, bodyEnv); 1500 } finally { 1501 bodyEnv.info.scope.leave(); 1502 } 1503 result = null; 1504 } 1505 finally { 1506 loopEnv.info.scope.leave(); 1507 } 1508 handleLoopConditionBindings(condBindings, tree, tree.body); 1509 } 1510 1511 /** 1512 * Include condition's bindings when false after the loop, if cannot get out of the loop 1513 */ 1514 private void handleLoopConditionBindings(MatchBindings condBindings, 1515 JCStatement loop, 1516 JCStatement loopBody) { 1517 if (condBindings.bindingsWhenFalse.nonEmpty() && 1518 !breaksTo(env, loop, loopBody)) { 1519 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1520 } 1521 } 1522 1523 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1524 preFlow(body); 1525 return flow.breaksToTree(env, loop, body, make); 1526 } 1527 1528 /** 1529 * Add given bindings to the current scope, unless there's a break to 1530 * an immediately enclosing labeled statement. 1531 */ 1532 private void addBindings2Scope(JCStatement introducingStatement, 1533 List<BindingSymbol> bindings) { 1534 if (bindings.isEmpty()) { 1535 return ; 1536 } 1537 1538 var searchEnv = env; 1539 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1540 labeled.body == introducingStatement) { 1541 if (breaksTo(env, labeled, labeled.body)) { 1542 //breaking to an immediately enclosing labeled statement 1543 return ; 1544 } 1545 searchEnv = searchEnv.next; 1546 introducingStatement = labeled; 1547 } 1548 1549 //include condition's body when false after the while, if cannot get out of the loop 1550 bindings.forEach(env.info.scope::enter); 1551 bindings.forEach(BindingSymbol::preserveBinding); 1552 } 1553 1554 public void visitForeachLoop(JCEnhancedForLoop tree) { 1555 Env<AttrContext> loopEnv = 1556 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1557 try { 1558 //the Formal Parameter of a for-each loop is not in the scope when 1559 //attributing the for-each expression; we mimic this by attributing 1560 //the for-each expression first (against original scope). 1561 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1562 chk.checkNonVoid(tree.pos(), exprType); 1563 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1564 if (elemtype == null) { 1565 // or perhaps expr implements Iterable<T>? 1566 Type base = types.asSuper(exprType.referenceProjectionOrSelf(), syms.iterableType.tsym); 1567 if (base == null) { 1568 log.error(tree.expr.pos(), 1569 Errors.ForeachNotApplicableToType(exprType, 1570 Fragments.TypeReqArrayOrIterable)); 1571 elemtype = types.createErrorType(exprType); 1572 } else { 1573 List<Type> iterableParams = base.allparams(); 1574 elemtype = iterableParams.isEmpty() 1575 ? syms.objectType 1576 : types.wildUpperBound(iterableParams.head); 1577 1578 // Check the return type of the method iterator(). 1579 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1580 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1581 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1582 if (types.asSuper(iterSymbol.type.getReturnType().referenceProjectionOrSelf(), syms.iteratorType.tsym) == null) { 1583 log.error(tree.pos(), 1584 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1585 } 1586 } 1587 } 1588 if (tree.var.isImplicitlyTyped()) { 1589 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1590 setSyntheticVariableType(tree.var, inferredType); 1591 } 1592 attribStat(tree.var, loopEnv); 1593 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1594 loopEnv.tree = tree; // before, we were not in loop! 1595 attribStat(tree.body, loopEnv); 1596 result = null; 1597 } 1598 finally { 1599 loopEnv.info.scope.leave(); 1600 } 1601 } 1602 1603 public void visitLabelled(JCLabeledStatement tree) { 1604 // Check that label is not used in an enclosing statement 1605 Env<AttrContext> env1 = env; 1606 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1607 if (env1.tree.hasTag(LABELLED) && 1608 ((JCLabeledStatement) env1.tree).label == tree.label) { 1609 log.error(tree.pos(), 1610 Errors.LabelAlreadyInUse(tree.label)); 1611 break; 1612 } 1613 env1 = env1.next; 1614 } 1615 1616 attribStat(tree.body, env.dup(tree)); 1617 result = null; 1618 } 1619 1620 public void visitSwitch(JCSwitch tree) { 1621 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1622 attribStats(c.stats, caseEnv); 1623 }); 1624 result = null; 1625 } 1626 1627 public void visitSwitchExpression(JCSwitchExpression tree) { 1628 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1629 PolyKind.STANDALONE : PolyKind.POLY; 1630 1631 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1632 //this means we are returning a poly conditional from void-compatible lambda expression 1633 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1634 result = tree.type = types.createErrorType(resultInfo.pt); 1635 return; 1636 } 1637 1638 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1639 unknownExprInfo : 1640 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1641 1642 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1643 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1644 1645 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1646 caseEnv.info.yieldResult = condInfo; 1647 attribStats(c.stats, caseEnv); 1648 new TreeScanner() { 1649 @Override 1650 public void visitYield(JCYield brk) { 1651 if (brk.target == tree) { 1652 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1653 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1654 } 1655 super.visitYield(brk); 1656 } 1657 1658 @Override public void visitClassDef(JCClassDecl tree) {} 1659 @Override public void visitLambda(JCLambda tree) {} 1660 }.scan(c.stats); 1661 }); 1662 1663 if (tree.cases.isEmpty()) { 1664 log.error(tree.pos(), 1665 Errors.SwitchExpressionEmpty); 1666 } else if (caseTypes.isEmpty()) { 1667 log.error(tree.pos(), 1668 Errors.SwitchExpressionNoResultExpressions); 1669 } 1670 1671 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1672 1673 result = tree.type = check(tree, owntype, KindSelector.VAL, resultInfo); 1674 } 1675 //where: 1676 CheckContext switchExpressionContext(CheckContext checkContext) { 1677 return new Check.NestedCheckContext(checkContext) { 1678 //this will use enclosing check context to check compatibility of 1679 //subexpression against target type; if we are in a method check context, 1680 //depending on whether boxing is allowed, we could have incompatibilities 1681 @Override 1682 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1683 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1684 } 1685 }; 1686 } 1687 1688 private void handleSwitch(JCTree switchTree, 1689 JCExpression selector, 1690 List<JCCase> cases, 1691 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1692 Type seltype = attribExpr(selector, env); 1693 1694 Env<AttrContext> switchEnv = 1695 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1696 1697 try { 1698 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1699 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1700 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1701 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1702 boolean errorPrimitiveSwitch = seltype.isPrimitive() && !intSwitch; 1703 boolean patternSwitch; 1704 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1705 !intSwitch && !errorPrimitiveSwitch) { 1706 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1707 patternSwitch = true; 1708 } else { 1709 if (errorPrimitiveSwitch) { 1710 log.error(selector.pos(), Errors.SelectorTypeNotAllowed(seltype)); 1711 } 1712 patternSwitch = cases.stream() 1713 .flatMap(c -> c.labels.stream()) 1714 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1715 TreeInfo.isNullCaseLabel(l)); 1716 } 1717 1718 // Attribute all cases and 1719 // check that there are no duplicate case labels or default clauses. 1720 Set<Object> constants = new HashSet<>(); // The set of case constants. 1721 boolean hasDefault = false; // Is there a default label? 1722 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1723 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1724 boolean hasNullPattern = false; // Is there a null pattern? 1725 CaseTree.CaseKind caseKind = null; 1726 boolean wasError = false; 1727 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1728 JCCase c = l.head; 1729 if (caseKind == null) { 1730 caseKind = c.caseKind; 1731 } else if (caseKind != c.caseKind && !wasError) { 1732 log.error(c.pos(), 1733 Errors.SwitchMixingCaseTypes); 1734 wasError = true; 1735 } 1736 MatchBindings currentBindings = null; 1737 MatchBindings guardBindings = null; 1738 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1739 JCCaseLabel label = labels.head; 1740 if (label instanceof JCConstantCaseLabel constLabel) { 1741 JCExpression expr = constLabel.expr; 1742 if (TreeInfo.isNull(expr)) { 1743 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1744 if (hasNullPattern) { 1745 log.error(label.pos(), Errors.DuplicateCaseLabel); 1746 } 1747 hasNullPattern = true; 1748 attribExpr(expr, switchEnv, seltype); 1749 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1750 } else if (enumSwitch) { 1751 Symbol sym = enumConstant(expr, seltype); 1752 if (sym == null) { 1753 if (allowPatternSwitch) { 1754 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1755 Symbol enumSym = TreeInfo.symbol(expr); 1756 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1757 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1758 } else if (!constants.add(enumSym)) { 1759 log.error(label.pos(), Errors.DuplicateCaseLabel); 1760 } 1761 } else { 1762 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1763 } 1764 } else if (!constants.add(sym)) { 1765 log.error(label.pos(), Errors.DuplicateCaseLabel); 1766 } 1767 } else if (errorEnumSwitch) { 1768 //error recovery: the selector is erroneous, and all the case labels 1769 //are identifiers. This could be an enum switch - don't report resolve 1770 //error for the case label: 1771 var prevResolveHelper = rs.basicLogResolveHelper; 1772 try { 1773 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1774 attribExpr(expr, switchEnv, seltype); 1775 } finally { 1776 rs.basicLogResolveHelper = prevResolveHelper; 1777 } 1778 } else { 1779 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1780 if (!pattype.hasTag(ERROR)) { 1781 if (pattype.constValue() == null) { 1782 Symbol s = TreeInfo.symbol(expr); 1783 if (s != null && s.kind == TYP) { 1784 log.error(expr.pos(), 1785 Errors.PatternExpected); 1786 } else if (s == null || !s.isEnum()) { 1787 log.error(expr.pos(), 1788 (stringSwitch ? Errors.StringConstReq 1789 : intSwitch ? Errors.ConstExprReq 1790 : Errors.PatternOrEnumReq)); 1791 } else if (!constants.add(s)) { 1792 log.error(label.pos(), Errors.DuplicateCaseLabel); 1793 } 1794 } else if (!stringSwitch && !intSwitch && !errorPrimitiveSwitch) { 1795 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1796 } else if (!constants.add(pattype.constValue())) { 1797 log.error(c.pos(), Errors.DuplicateCaseLabel); 1798 } 1799 } 1800 } 1801 } else if (label instanceof JCDefaultCaseLabel def) { 1802 if (hasDefault) { 1803 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1804 } else if (hasUnconditionalPattern) { 1805 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1806 } 1807 hasDefault = true; 1808 matchBindings = MatchBindingsComputer.EMPTY; 1809 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1810 //pattern 1811 JCPattern pat = patternlabel.pat; 1812 attribExpr(pat, switchEnv, seltype); 1813 Type primaryType = TreeInfo.primaryPatternType(pat); 1814 if (!primaryType.hasTag(TYPEVAR)) { 1815 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1816 } 1817 if (!errorPrimitiveSwitch) { 1818 checkCastablePattern(pat.pos(), seltype, primaryType); 1819 } 1820 Type patternType = types.erasure(primaryType); 1821 JCExpression guard = c.guard; 1822 if (guardBindings == null && guard != null) { 1823 MatchBindings afterPattern = matchBindings; 1824 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1825 try { 1826 attribExpr(guard, bodyEnv, syms.booleanType); 1827 } finally { 1828 bodyEnv.info.scope.leave(); 1829 } 1830 1831 guardBindings = matchBindings; 1832 matchBindings = afterPattern; 1833 1834 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1835 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1836 } 1837 } 1838 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1839 boolean unconditional = 1840 unguarded && 1841 !patternType.isErroneous() && 1842 types.isSubtype(types.boxedTypeOrType(types.erasure(seltype)), 1843 patternType); 1844 if (unconditional) { 1845 if (hasUnconditionalPattern) { 1846 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1847 } else if (hasDefault) { 1848 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1849 } 1850 hasUnconditionalPattern = true; 1851 } 1852 lastPatternErroneous = patternType.isErroneous(); 1853 } else { 1854 Assert.error(); 1855 } 1856 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1857 } 1858 1859 if (guardBindings != null) { 1860 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1861 } 1862 1863 Env<AttrContext> caseEnv = 1864 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1865 try { 1866 attribCase.accept(c, caseEnv); 1867 } finally { 1868 caseEnv.info.scope.leave(); 1869 } 1870 addVars(c.stats, switchEnv.info.scope); 1871 1872 preFlow(c); 1873 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1874 } 1875 if (patternSwitch) { 1876 chk.checkSwitchCaseStructure(cases); 1877 chk.checkSwitchCaseLabelDominated(cases); 1878 } 1879 if (switchTree.hasTag(SWITCH)) { 1880 ((JCSwitch) switchTree).hasUnconditionalPattern = 1881 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1882 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1883 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1884 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1885 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1886 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1887 } else { 1888 Assert.error(switchTree.getTag().name()); 1889 } 1890 } finally { 1891 switchEnv.info.scope.leave(); 1892 } 1893 } 1894 // where 1895 private ResultInfo caseLabelResultInfo(Type seltype) { 1896 return new ResultInfo(KindSelector.VAL_TYP, 1897 !seltype.hasTag(ERROR) ? seltype 1898 : Type.noType); 1899 } 1900 /** Add any variables defined in stats to the switch scope. */ 1901 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1902 for (;stats.nonEmpty(); stats = stats.tail) { 1903 JCTree stat = stats.head; 1904 if (stat.hasTag(VARDEF)) 1905 switchScope.enter(((JCVariableDecl) stat).sym); 1906 } 1907 } 1908 // where 1909 /** Return the selected enumeration constant symbol, or null. */ 1910 private Symbol enumConstant(JCTree tree, Type enumType) { 1911 if (tree.hasTag(IDENT)) { 1912 JCIdent ident = (JCIdent)tree; 1913 Name name = ident.name; 1914 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1915 if (sym.kind == VAR) { 1916 Symbol s = ident.sym = sym; 1917 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1918 ident.type = s.type; 1919 return ((s.flags_field & Flags.ENUM) == 0) 1920 ? null : s; 1921 } 1922 } 1923 } 1924 return null; 1925 } 1926 1927 public void visitSynchronized(JCSynchronized tree) { 1928 chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 1929 if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) { 1930 log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1931 } 1932 attribStat(tree.body, env); 1933 result = null; 1934 } 1935 // where 1936 private boolean isValueBased(Type t) { 1937 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1938 } 1939 1940 1941 public void visitTry(JCTry tree) { 1942 // Create a new local environment with a local 1943 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1944 try { 1945 boolean isTryWithResource = tree.resources.nonEmpty(); 1946 // Create a nested environment for attributing the try block if needed 1947 Env<AttrContext> tryEnv = isTryWithResource ? 1948 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1949 localEnv; 1950 try { 1951 // Attribute resource declarations 1952 for (JCTree resource : tree.resources) { 1953 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1954 @Override 1955 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1956 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1957 } 1958 }; 1959 ResultInfo twrResult = 1960 new ResultInfo(KindSelector.VAR, 1961 syms.autoCloseableType, 1962 twrContext); 1963 if (resource.hasTag(VARDEF)) { 1964 attribStat(resource, tryEnv); 1965 twrResult.check(resource, resource.type); 1966 1967 //check that resource type cannot throw InterruptedException 1968 checkAutoCloseable(resource.pos(), localEnv, resource.type); 1969 1970 VarSymbol var = ((JCVariableDecl) resource).sym; 1971 1972 var.flags_field |= Flags.FINAL; 1973 var.setData(ElementKind.RESOURCE_VARIABLE); 1974 } else { 1975 attribTree(resource, tryEnv, twrResult); 1976 } 1977 } 1978 // Attribute body 1979 attribStat(tree.body, tryEnv); 1980 } finally { 1981 if (isTryWithResource) 1982 tryEnv.info.scope.leave(); 1983 } 1984 1985 // Attribute catch clauses 1986 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 1987 JCCatch c = l.head; 1988 Env<AttrContext> catchEnv = 1989 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 1990 try { 1991 Type ctype = attribStat(c.param, catchEnv); 1992 if (TreeInfo.isMultiCatch(c)) { 1993 //multi-catch parameter is implicitly marked as final 1994 c.param.sym.flags_field |= FINAL | UNION; 1995 } 1996 if (c.param.sym.kind == VAR) { 1997 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 1998 } 1999 chk.checkType(c.param.vartype.pos(), 2000 chk.checkClassType(c.param.vartype.pos(), ctype), 2001 syms.throwableType); 2002 attribStat(c.body, catchEnv); 2003 } finally { 2004 catchEnv.info.scope.leave(); 2005 } 2006 } 2007 2008 // Attribute finalizer 2009 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2010 result = null; 2011 } 2012 finally { 2013 localEnv.info.scope.leave(); 2014 } 2015 } 2016 2017 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2018 if (!resource.isErroneous() && 2019 types.asSuper(resource.referenceProjectionOrSelf(), syms.autoCloseableType.tsym) != null && 2020 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2021 Symbol close = syms.noSymbol; 2022 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); 2023 try { 2024 close = rs.resolveQualifiedMethod(pos, 2025 env, 2026 types.skipTypeVars(resource, false), 2027 names.close, 2028 List.nil(), 2029 List.nil()); 2030 } 2031 finally { 2032 log.popDiagnosticHandler(discardHandler); 2033 } 2034 if (close.kind == MTH && 2035 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2036 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) && 2037 env.info.lint.isEnabled(LintCategory.TRY)) { 2038 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource)); 2039 } 2040 } 2041 } 2042 2043 public void visitConditional(JCConditional tree) { 2044 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2045 MatchBindings condBindings = matchBindings; 2046 2047 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2048 isBooleanOrNumeric(env, tree)) ? 2049 PolyKind.STANDALONE : PolyKind.POLY; 2050 2051 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2052 //this means we are returning a poly conditional from void-compatible lambda expression 2053 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2054 result = tree.type = types.createErrorType(resultInfo.pt); 2055 return; 2056 } 2057 2058 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2059 unknownExprInfo : 2060 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2061 2062 2063 // x ? y : z 2064 // include x's bindings when true in y 2065 // include x's bindings when false in z 2066 2067 Type truetype; 2068 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2069 try { 2070 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2071 } finally { 2072 trueEnv.info.scope.leave(); 2073 } 2074 2075 MatchBindings trueBindings = matchBindings; 2076 2077 Type falsetype; 2078 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2079 try { 2080 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2081 } finally { 2082 falseEnv.info.scope.leave(); 2083 } 2084 2085 MatchBindings falseBindings = matchBindings; 2086 2087 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2088 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2089 List.of(truetype, falsetype)) : pt(); 2090 if (condtype.constValue() != null && 2091 truetype.constValue() != null && 2092 falsetype.constValue() != null && 2093 !owntype.hasTag(NONE)) { 2094 //constant folding 2095 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2096 } 2097 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2098 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2099 } 2100 //where 2101 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2102 switch (tree.getTag()) { 2103 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2104 ((JCLiteral)tree).typetag == BOOLEAN || 2105 ((JCLiteral)tree).typetag == BOT; 2106 case LAMBDA: case REFERENCE: return false; 2107 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2108 case CONDEXPR: 2109 JCConditional condTree = (JCConditional)tree; 2110 return isBooleanOrNumeric(env, condTree.truepart) && 2111 isBooleanOrNumeric(env, condTree.falsepart); 2112 case APPLY: 2113 JCMethodInvocation speculativeMethodTree = 2114 (JCMethodInvocation)deferredAttr.attribSpeculative( 2115 tree, env, unknownExprInfo, 2116 argumentAttr.withLocalCacheContext()); 2117 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2118 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2119 env.enclClass.type : 2120 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2121 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2122 return primitiveOrBoxed(owntype); 2123 case NEWCLASS: 2124 JCExpression className = 2125 removeClassParams.translate(((JCNewClass)tree).clazz); 2126 JCExpression speculativeNewClassTree = 2127 (JCExpression)deferredAttr.attribSpeculative( 2128 className, env, unknownTypeInfo, 2129 argumentAttr.withLocalCacheContext()); 2130 return primitiveOrBoxed(speculativeNewClassTree.type); 2131 default: 2132 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2133 argumentAttr.withLocalCacheContext()).type; 2134 return primitiveOrBoxed(speculativeType); 2135 } 2136 } 2137 //where 2138 boolean primitiveOrBoxed(Type t) { 2139 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2140 } 2141 2142 TreeTranslator removeClassParams = new TreeTranslator() { 2143 @Override 2144 public void visitTypeApply(JCTypeApply tree) { 2145 result = translate(tree.clazz); 2146 } 2147 }; 2148 2149 CheckContext conditionalContext(CheckContext checkContext) { 2150 return new Check.NestedCheckContext(checkContext) { 2151 //this will use enclosing check context to check compatibility of 2152 //subexpression against target type; if we are in a method check context, 2153 //depending on whether boxing is allowed, we could have incompatibilities 2154 @Override 2155 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2156 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2157 } 2158 }; 2159 } 2160 2161 /** Compute the type of a conditional expression, after 2162 * checking that it exists. See JLS 15.25. Does not take into 2163 * account the special case where condition and both arms 2164 * are constants. 2165 * 2166 * @param pos The source position to be used for error 2167 * diagnostics. 2168 * @param thentype The type of the expression's then-part. 2169 * @param elsetype The type of the expression's else-part. 2170 */ 2171 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2172 if (condTypes.isEmpty()) { 2173 return syms.objectType; //TODO: how to handle? 2174 } 2175 Type first = condTypes.head; 2176 // If same type, that is the result 2177 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2178 return first.baseType(); 2179 2180 List<Type> unboxedTypes = condTypes.stream() 2181 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2182 .collect(List.collector()); 2183 2184 // Otherwise, if both arms can be converted to a numeric 2185 // type, return the least numeric type that fits both arms 2186 // (i.e. return larger of the two, or return int if one 2187 // arm is short, the other is char). 2188 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2189 // If one arm has an integer subrange type (i.e., byte, 2190 // short, or char), and the other is an integer constant 2191 // that fits into the subrange, return the subrange type. 2192 for (Type type : unboxedTypes) { 2193 if (!type.getTag().isStrictSubRangeOf(INT)) { 2194 continue; 2195 } 2196 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2197 return type.baseType(); 2198 } 2199 2200 for (TypeTag tag : primitiveTags) { 2201 Type candidate = syms.typeOfTag[tag.ordinal()]; 2202 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2203 return candidate; 2204 } 2205 } 2206 } 2207 2208 // Those were all the cases that could result in a primitive. See if primitive boxing and primitive 2209 // value conversions bring about a convergence. 2210 condTypes = condTypes.stream() 2211 .map(t -> t.isPrimitive() ? types.boxedClass(t).type 2212 : t.isReferenceProjection() ? t.valueProjection() : t) 2213 .collect(List.collector()); 2214 2215 for (Type type : condTypes) { 2216 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2217 return type.baseType(); 2218 } 2219 2220 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2221 2222 condTypes = condTypes.stream() 2223 .map(t -> chk.checkNonVoid(posIt.next(), allowPrimitiveClasses && t.isPrimitiveClass() ? t.referenceProjection() : t)) 2224 .collect(List.collector()); 2225 2226 // both are known to be reference types (or projections). The result is 2227 // lub(thentype,elsetype). This cannot fail, as it will 2228 // always be possible to infer "Object" if nothing better. 2229 return types.lub(condTypes.stream() 2230 .map(t -> t.baseType()) 2231 .filter(t -> !t.hasTag(BOT)) 2232 .collect(List.collector())); 2233 } 2234 2235 static final TypeTag[] primitiveTags = new TypeTag[]{ 2236 BYTE, 2237 CHAR, 2238 SHORT, 2239 INT, 2240 LONG, 2241 FLOAT, 2242 DOUBLE, 2243 BOOLEAN, 2244 }; 2245 2246 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2247 return bindingEnv(env, env.tree, bindings); 2248 } 2249 2250 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2251 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2252 bindings.forEach(env1.info.scope::enter); 2253 return env1; 2254 } 2255 2256 public void visitIf(JCIf tree) { 2257 attribExpr(tree.cond, env, syms.booleanType); 2258 2259 // if (x) { y } [ else z ] 2260 // include x's bindings when true in y 2261 // include x's bindings when false in z 2262 2263 MatchBindings condBindings = matchBindings; 2264 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2265 2266 try { 2267 attribStat(tree.thenpart, thenEnv); 2268 } finally { 2269 thenEnv.info.scope.leave(); 2270 } 2271 2272 preFlow(tree.thenpart); 2273 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2274 boolean aliveAfterElse; 2275 2276 if (tree.elsepart != null) { 2277 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2278 try { 2279 attribStat(tree.elsepart, elseEnv); 2280 } finally { 2281 elseEnv.info.scope.leave(); 2282 } 2283 preFlow(tree.elsepart); 2284 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2285 } else { 2286 aliveAfterElse = true; 2287 } 2288 2289 chk.checkEmptyIf(tree); 2290 2291 List<BindingSymbol> afterIfBindings = List.nil(); 2292 2293 if (aliveAfterThen && !aliveAfterElse) { 2294 afterIfBindings = condBindings.bindingsWhenTrue; 2295 } else if (aliveAfterElse && !aliveAfterThen) { 2296 afterIfBindings = condBindings.bindingsWhenFalse; 2297 } 2298 2299 addBindings2Scope(tree, afterIfBindings); 2300 2301 result = null; 2302 } 2303 2304 void preFlow(JCTree tree) { 2305 attrRecover.doRecovery(); 2306 new PostAttrAnalyzer() { 2307 @Override 2308 public void scan(JCTree tree) { 2309 if (tree == null || 2310 (tree.type != null && 2311 tree.type == Type.stuckType)) { 2312 //don't touch stuck expressions! 2313 return; 2314 } 2315 super.scan(tree); 2316 } 2317 2318 @Override 2319 public void visitClassDef(JCClassDecl that) { 2320 if (that.sym != null) { 2321 // Method preFlow shouldn't visit class definitions 2322 // that have not been entered and attributed. 2323 // See JDK-8254557 and JDK-8203277 for more details. 2324 super.visitClassDef(that); 2325 } 2326 } 2327 2328 @Override 2329 public void visitLambda(JCLambda that) { 2330 if (that.type != null) { 2331 // Method preFlow shouldn't visit lambda expressions 2332 // that have not been entered and attributed. 2333 // See JDK-8254557 and JDK-8203277 for more details. 2334 super.visitLambda(that); 2335 } 2336 } 2337 }.scan(tree); 2338 } 2339 2340 public void visitExec(JCExpressionStatement tree) { 2341 //a fresh environment is required for 292 inference to work properly --- 2342 //see Infer.instantiatePolymorphicSignatureInstance() 2343 Env<AttrContext> localEnv = env.dup(tree); 2344 attribExpr(tree.expr, localEnv); 2345 result = null; 2346 } 2347 2348 public void visitBreak(JCBreak tree) { 2349 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2350 result = null; 2351 } 2352 2353 public void visitYield(JCYield tree) { 2354 if (env.info.yieldResult != null) { 2355 attribTree(tree.value, env, env.info.yieldResult); 2356 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2357 } else { 2358 log.error(tree.pos(), tree.value.hasTag(PARENS) 2359 ? Errors.NoSwitchExpressionQualify 2360 : Errors.NoSwitchExpression); 2361 attribTree(tree.value, env, unknownExprInfo); 2362 } 2363 result = null; 2364 } 2365 2366 public void visitContinue(JCContinue tree) { 2367 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2368 result = null; 2369 } 2370 //where 2371 /** Return the target of a break, continue or yield statement, 2372 * if it exists, report an error if not. 2373 * Note: The target of a labelled break or continue is the 2374 * (non-labelled) statement tree referred to by the label, 2375 * not the tree representing the labelled statement itself. 2376 * 2377 * @param pos The position to be used for error diagnostics 2378 * @param tag The tag of the jump statement. This is either 2379 * Tree.BREAK or Tree.CONTINUE. 2380 * @param label The label of the jump statement, or null if no 2381 * label is given. 2382 * @param env The environment current at the jump statement. 2383 */ 2384 private JCTree findJumpTarget(DiagnosticPosition pos, 2385 JCTree.Tag tag, 2386 Name label, 2387 Env<AttrContext> env) { 2388 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2389 2390 if (jumpTarget.snd != null) { 2391 log.error(pos, jumpTarget.snd); 2392 } 2393 2394 return jumpTarget.fst; 2395 } 2396 /** Return the target of a break or continue statement, if it exists, 2397 * report an error if not. 2398 * Note: The target of a labelled break or continue is the 2399 * (non-labelled) statement tree referred to by the label, 2400 * not the tree representing the labelled statement itself. 2401 * 2402 * @param tag The tag of the jump statement. This is either 2403 * Tree.BREAK or Tree.CONTINUE. 2404 * @param label The label of the jump statement, or null if no 2405 * label is given. 2406 * @param env The environment current at the jump statement. 2407 */ 2408 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2409 Name label, 2410 Env<AttrContext> env) { 2411 // Search environments outwards from the point of jump. 2412 Env<AttrContext> env1 = env; 2413 JCDiagnostic.Error pendingError = null; 2414 LOOP: 2415 while (env1 != null) { 2416 switch (env1.tree.getTag()) { 2417 case LABELLED: 2418 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2419 if (label == labelled.label) { 2420 // If jump is a continue, check that target is a loop. 2421 if (tag == CONTINUE) { 2422 if (!labelled.body.hasTag(DOLOOP) && 2423 !labelled.body.hasTag(WHILELOOP) && 2424 !labelled.body.hasTag(FORLOOP) && 2425 !labelled.body.hasTag(FOREACHLOOP)) { 2426 pendingError = Errors.NotLoopLabel(label); 2427 } 2428 // Found labelled statement target, now go inwards 2429 // to next non-labelled tree. 2430 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2431 } else { 2432 return Pair.of(labelled, pendingError); 2433 } 2434 } 2435 break; 2436 case DOLOOP: 2437 case WHILELOOP: 2438 case FORLOOP: 2439 case FOREACHLOOP: 2440 if (label == null) return Pair.of(env1.tree, pendingError); 2441 break; 2442 case SWITCH: 2443 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2444 break; 2445 case SWITCH_EXPRESSION: 2446 if (tag == YIELD) { 2447 return Pair.of(env1.tree, null); 2448 } else if (tag == BREAK) { 2449 pendingError = Errors.BreakOutsideSwitchExpression; 2450 } else { 2451 pendingError = Errors.ContinueOutsideSwitchExpression; 2452 } 2453 break; 2454 case LAMBDA: 2455 case METHODDEF: 2456 case CLASSDEF: 2457 break LOOP; 2458 default: 2459 } 2460 env1 = env1.next; 2461 } 2462 if (label != null) 2463 return Pair.of(null, Errors.UndefLabel(label)); 2464 else if (pendingError != null) 2465 return Pair.of(null, pendingError); 2466 else if (tag == CONTINUE) 2467 return Pair.of(null, Errors.ContOutsideLoop); 2468 else 2469 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2470 } 2471 2472 public void visitReturn(JCReturn tree) { 2473 // Check that there is an enclosing method which is 2474 // nested within than the enclosing class. 2475 if (env.info.returnResult == null) { 2476 log.error(tree.pos(), Errors.RetOutsideMeth); 2477 } else if (env.info.yieldResult != null) { 2478 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2479 } else if (!env.info.isLambda && 2480 !env.info.isNewClass && 2481 env.enclMethod != null && 2482 TreeInfo.isCompactConstructor(env.enclMethod)) { 2483 log.error(env.enclMethod, 2484 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2485 } else { 2486 // Attribute return expression, if it exists, and check that 2487 // it conforms to result type of enclosing method. 2488 if (tree.expr != null) { 2489 if (env.info.returnResult.pt.hasTag(VOID)) { 2490 env.info.returnResult.checkContext.report(tree.expr.pos(), 2491 diags.fragment(Fragments.UnexpectedRetVal)); 2492 } 2493 attribTree(tree.expr, env, env.info.returnResult); 2494 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2495 !env.info.returnResult.pt.hasTag(NONE)) { 2496 env.info.returnResult.checkContext.report(tree.pos(), 2497 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2498 } 2499 } 2500 result = null; 2501 } 2502 2503 public void visitThrow(JCThrow tree) { 2504 Type owntype = attribExpr(tree.expr, env, Type.noType); 2505 chk.checkType(tree, owntype, syms.throwableType); 2506 result = null; 2507 } 2508 2509 public void visitAssert(JCAssert tree) { 2510 attribExpr(tree.cond, env, syms.booleanType); 2511 if (tree.detail != null) { 2512 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2513 } 2514 result = null; 2515 } 2516 2517 /** Visitor method for method invocations. 2518 * NOTE: The method part of an application will have in its type field 2519 * the return type of the method, not the method's type itself! 2520 */ 2521 public void visitApply(JCMethodInvocation tree) { 2522 // The local environment of a method application is 2523 // a new environment nested in the current one. 2524 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2525 2526 // The types of the actual method arguments. 2527 List<Type> argtypes; 2528 2529 // The types of the actual method type arguments. 2530 List<Type> typeargtypes = null; 2531 2532 Name methName = TreeInfo.name(tree.meth); 2533 2534 boolean isConstructorCall = 2535 methName == names._this || methName == names._super; 2536 2537 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2538 if (isConstructorCall) { 2539 // We are seeing a ...this(...) or ...super(...) call. 2540 // Check that this is the first statement in a constructor. 2541 checkFirstConstructorStat(tree, env.enclMethod, true); 2542 2543 // Record the fact 2544 // that this is a constructor call (using isSelfCall). 2545 localEnv.info.isSelfCall = true; 2546 2547 // Attribute arguments, yielding list of argument types. 2548 localEnv.info.constructorArgs = true; 2549 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2550 localEnv.info.constructorArgs = false; 2551 argtypes = argtypesBuf.toList(); 2552 typeargtypes = attribTypes(tree.typeargs, localEnv); 2553 2554 // Variable `site' points to the class in which the called 2555 // constructor is defined. 2556 Type site = env.enclClass.sym.type; 2557 if (methName == names._super) { 2558 if (site == syms.objectType) { 2559 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2560 site = types.createErrorType(syms.objectType); 2561 } else { 2562 site = types.supertype(site); 2563 } 2564 } 2565 2566 if (site.hasTag(CLASS)) { 2567 Type encl = site.getEnclosingType(); 2568 while (encl != null && encl.hasTag(TYPEVAR)) 2569 encl = encl.getUpperBound(); 2570 if (encl.hasTag(CLASS)) { 2571 // we are calling a nested class 2572 2573 if (tree.meth.hasTag(SELECT)) { 2574 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2575 2576 // We are seeing a prefixed call, of the form 2577 // <expr>.super(...). 2578 // Check that the prefix expression conforms 2579 // to the outer instance type of the class. 2580 chk.checkRefType(qualifier.pos(), 2581 attribExpr(qualifier, localEnv, 2582 encl)); 2583 } else if (methName == names._super) { 2584 // qualifier omitted; check for existence 2585 // of an appropriate implicit qualifier. 2586 rs.resolveImplicitThis(tree.meth.pos(), 2587 localEnv, site, true); 2588 } 2589 } else if (tree.meth.hasTag(SELECT)) { 2590 log.error(tree.meth.pos(), 2591 Errors.IllegalQualNotIcls(site.tsym)); 2592 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2593 } 2594 2595 // if we're calling a java.lang.Enum constructor, 2596 // prefix the implicit String and int parameters 2597 if (site.tsym == syms.enumSym) 2598 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2599 2600 // Resolve the called constructor under the assumption 2601 // that we are referring to a superclass instance of the 2602 // current instance (JLS ???). 2603 boolean selectSuperPrev = localEnv.info.selectSuper; 2604 localEnv.info.selectSuper = true; 2605 localEnv.info.pendingResolutionPhase = null; 2606 Symbol sym = rs.resolveConstructor( 2607 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2608 localEnv.info.selectSuper = selectSuperPrev; 2609 2610 // Set method symbol to resolved constructor... 2611 TreeInfo.setSymbol(tree.meth, sym); 2612 2613 // ...and check that it is legal in the current context. 2614 // (this will also set the tree's type) 2615 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2616 checkId(tree.meth, site, sym, localEnv, 2617 new ResultInfo(kind, mpt)); 2618 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2619 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2620 } 2621 // Otherwise, `site' is an error type and we do nothing 2622 result = tree.type = syms.voidType; 2623 } else { 2624 // Otherwise, we are seeing a regular method call. 2625 // Attribute the arguments, yielding list of argument types, ... 2626 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2627 argtypes = argtypesBuf.toList(); 2628 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2629 2630 // ... and attribute the method using as a prototype a methodtype 2631 // whose formal argument types is exactly the list of actual 2632 // arguments (this will also set the method symbol). 2633 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2634 localEnv.info.pendingResolutionPhase = null; 2635 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2636 2637 // Compute the result type. 2638 Type restype = mtype.getReturnType(); 2639 if (restype.hasTag(WILDCARD)) 2640 throw new AssertionError(mtype); 2641 2642 Type qualifier = (tree.meth.hasTag(SELECT)) 2643 ? ((JCFieldAccess) tree.meth).selected.type 2644 : env.enclClass.sym.type; 2645 Symbol msym = TreeInfo.symbol(tree.meth); 2646 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2647 2648 chk.checkRefTypes(tree.typeargs, typeargtypes); 2649 2650 // Check that value of resulting type is admissible in the 2651 // current context. Also, capture the return type 2652 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2653 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2654 } 2655 chk.validate(tree.typeargs, localEnv); 2656 } 2657 //where 2658 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2659 if (msym != null && 2660 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2661 methodName == names.getClass && 2662 argtypes.isEmpty()) { 2663 // as a special case, x.getClass() has type Class<? extends |X|> 2664 // Special treatment for primitive classes: Given an expression v of type V where 2665 // V is a primitive class, v.getClass() is typed to be Class<? extends |V.ref|> 2666 Type wcb = types.erasure(allowPrimitiveClasses && qualifierType.isPrimitiveClass() ? 2667 qualifierType.referenceProjection() : qualifierType.baseType()); 2668 return new ClassType(restype.getEnclosingType(), 2669 List.of(new WildcardType(wcb, 2670 BoundKind.EXTENDS, 2671 syms.boundClass)), 2672 restype.tsym, 2673 restype.getMetadata(), 2674 restype.getFlavor()); 2675 } else if (msym != null && 2676 msym.owner == syms.arrayClass && 2677 methodName == names.clone && 2678 types.isArray(qualifierType)) { 2679 // as a special case, array.clone() has a result that is 2680 // the same as static type of the array being cloned 2681 return qualifierType; 2682 } else { 2683 return restype; 2684 } 2685 } 2686 2687 /** Check that given application node appears as first statement 2688 * in a constructor call. 2689 * @param tree The application node 2690 * @param enclMethod The enclosing method of the application. 2691 * @param error Should an error be issued? 2692 */ 2693 boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) { 2694 if (enclMethod != null && names.isInitOrVNew(enclMethod.name)) { 2695 JCBlock body = enclMethod.body; 2696 if (body.stats.head.hasTag(EXEC) && 2697 ((JCExpressionStatement) body.stats.head).expr == tree) 2698 return true; 2699 } 2700 if (error) { 2701 log.error(tree.pos(), 2702 Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth))); 2703 } 2704 return false; 2705 } 2706 2707 /** Obtain a method type with given argument types. 2708 */ 2709 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2710 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2711 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2712 } 2713 2714 public void visitNewClass(final JCNewClass tree) { 2715 Type owntype = types.createErrorType(tree.type); 2716 2717 // The local environment of a class creation is 2718 // a new environment nested in the current one. 2719 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2720 2721 // The anonymous inner class definition of the new expression, 2722 // if one is defined by it. 2723 JCClassDecl cdef = tree.def; 2724 2725 // If enclosing class is given, attribute it, and 2726 // complete class name to be fully qualified 2727 JCExpression clazz = tree.clazz; // Class field following new 2728 JCExpression clazzid; // Identifier in class field 2729 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2730 annoclazzid = null; 2731 2732 if (clazz.hasTag(TYPEAPPLY)) { 2733 clazzid = ((JCTypeApply) clazz).clazz; 2734 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2735 annoclazzid = (JCAnnotatedType) clazzid; 2736 clazzid = annoclazzid.underlyingType; 2737 } 2738 } else { 2739 if (clazz.hasTag(ANNOTATED_TYPE)) { 2740 annoclazzid = (JCAnnotatedType) clazz; 2741 clazzid = annoclazzid.underlyingType; 2742 } else { 2743 clazzid = clazz; 2744 } 2745 } 2746 2747 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2748 2749 if (tree.encl != null) { 2750 // We are seeing a qualified new, of the form 2751 // <expr>.new C <...> (...) ... 2752 // In this case, we let clazz stand for the name of the 2753 // allocated class C prefixed with the type of the qualifier 2754 // expression, so that we can 2755 // resolve it with standard techniques later. I.e., if 2756 // <expr> has type T, then <expr>.new C <...> (...) 2757 // yields a clazz T.C. 2758 Type encltype = chk.checkRefType(tree.encl.pos(), 2759 attribExpr(tree.encl, env)); 2760 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2761 // from expr to the combined type, or not? Yes, do this. 2762 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2763 ((JCIdent) clazzid).name); 2764 2765 EndPosTable endPosTable = this.env.toplevel.endPositions; 2766 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2767 if (clazz.hasTag(ANNOTATED_TYPE)) { 2768 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2769 List<JCAnnotation> annos = annoType.annotations; 2770 2771 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2772 clazzid1 = make.at(tree.pos). 2773 TypeApply(clazzid1, 2774 ((JCTypeApply) clazz).arguments); 2775 } 2776 2777 clazzid1 = make.at(tree.pos). 2778 AnnotatedType(annos, clazzid1); 2779 } else if (clazz.hasTag(TYPEAPPLY)) { 2780 clazzid1 = make.at(tree.pos). 2781 TypeApply(clazzid1, 2782 ((JCTypeApply) clazz).arguments); 2783 } 2784 2785 clazz = clazzid1; 2786 } 2787 2788 // Attribute clazz expression and store 2789 // symbol + type back into the attributed tree. 2790 Type clazztype; 2791 2792 try { 2793 env.info.isNewClass = true; 2794 clazztype = TreeInfo.isEnumInit(env.tree) ? 2795 attribIdentAsEnumType(env, (JCIdent)clazz) : 2796 attribType(clazz, env); 2797 } finally { 2798 env.info.isNewClass = false; 2799 } 2800 2801 clazztype = chk.checkDiamond(tree, clazztype); 2802 chk.validate(clazz, localEnv); 2803 if (tree.encl != null) { 2804 // We have to work in this case to store 2805 // symbol + type back into the attributed tree. 2806 tree.clazz.type = clazztype; 2807 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2808 clazzid.type = ((JCIdent) clazzid).sym.type; 2809 if (annoclazzid != null) { 2810 annoclazzid.type = clazzid.type; 2811 } 2812 if (!clazztype.isErroneous()) { 2813 if (cdef != null && clazztype.tsym.isInterface()) { 2814 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2815 } else if (clazztype.tsym.isStatic()) { 2816 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2817 } 2818 } 2819 } else if (!clazztype.tsym.isInterface() && 2820 clazztype.getEnclosingType().hasTag(CLASS)) { 2821 // Check for the existence of an apropos outer instance 2822 rs.resolveImplicitThis(tree.pos(), env, clazztype); 2823 } 2824 2825 // Attribute constructor arguments. 2826 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2827 final KindSelector pkind = 2828 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2829 List<Type> argtypes = argtypesBuf.toList(); 2830 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2831 2832 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2833 // Enums may not be instantiated except implicitly 2834 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2835 (!env.tree.hasTag(VARDEF) || 2836 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2837 ((JCVariableDecl) env.tree).init != tree)) 2838 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2839 2840 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2841 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2842 boolean skipNonDiamondPath = false; 2843 // Check that it is an instantiation of a class and not a projection type 2844 if (allowPrimitiveClasses) { 2845 if (clazz.hasTag(SELECT)) { 2846 JCFieldAccess fieldAccess = (JCFieldAccess) clazz; 2847 if (fieldAccess.selected.type.isPrimitiveClass() && 2848 (fieldAccess.name == names.ref || fieldAccess.name == names.val)) { 2849 log.error(tree.pos(), Errors.ProjectionCantBeInstantiated); 2850 } 2851 } 2852 } 2853 // Check that class is not abstract 2854 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2855 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2856 log.error(tree.pos(), 2857 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2858 skipNonDiamondPath = true; 2859 } else if (cdef != null && clazztype.tsym.isInterface()) { 2860 // Check that no constructor arguments are given to 2861 // anonymous classes implementing an interface 2862 if (!argtypes.isEmpty()) 2863 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2864 2865 if (!typeargtypes.isEmpty()) 2866 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2867 2868 // Error recovery: pretend no arguments were supplied. 2869 argtypes = List.nil(); 2870 typeargtypes = List.nil(); 2871 skipNonDiamondPath = true; 2872 } 2873 if (TreeInfo.isDiamond(tree)) { 2874 ClassType site = new ClassType(clazztype.getEnclosingType(), 2875 clazztype.tsym.type.getTypeArguments(), 2876 clazztype.tsym, 2877 clazztype.getMetadata(), 2878 clazztype.getFlavor()); 2879 2880 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2881 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2882 diamondEnv.info.pendingResolutionPhase = null; 2883 2884 //if the type of the instance creation expression is a class type 2885 //apply method resolution inference (JLS 15.12.2.7). The return type 2886 //of the resolved constructor will be a partially instantiated type 2887 Symbol constructor = rs.resolveDiamond(tree.pos(), 2888 diamondEnv, 2889 site, 2890 argtypes, 2891 typeargtypes); 2892 tree.constructor = constructor.baseSymbol(); 2893 2894 final TypeSymbol csym = clazztype.tsym; 2895 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2896 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2897 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2898 constructorType = checkId(tree, site, 2899 constructor, 2900 diamondEnv, 2901 diamondResult); 2902 2903 tree.clazz.type = types.createErrorType(clazztype); 2904 if (!constructorType.isErroneous()) { 2905 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2906 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2907 } 2908 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2909 } 2910 2911 // Resolve the called constructor under the assumption 2912 // that we are referring to a superclass instance of the 2913 // current instance (JLS ???). 2914 else if (!skipNonDiamondPath) { 2915 //the following code alters some of the fields in the current 2916 //AttrContext - hence, the current context must be dup'ed in 2917 //order to avoid downstream failures 2918 Env<AttrContext> rsEnv = localEnv.dup(tree); 2919 rsEnv.info.selectSuper = cdef != null; 2920 rsEnv.info.pendingResolutionPhase = null; 2921 tree.constructor = rs.resolveConstructor( 2922 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2923 if (cdef == null) { //do not check twice! 2924 tree.constructorType = checkId(tree, 2925 clazztype, 2926 tree.constructor, 2927 rsEnv, 2928 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2929 if (rsEnv.info.lastResolveVarargs()) 2930 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2931 } 2932 } 2933 2934 if (cdef != null) { 2935 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2936 return; 2937 } 2938 2939 if (tree.constructor != null && tree.constructor.kind == MTH) 2940 owntype = clazztype; 2941 } 2942 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2943 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2944 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2945 //we need to wait for inference to finish and then replace inference vars in the constructor type 2946 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2947 instantiatedContext -> { 2948 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2949 }); 2950 } 2951 chk.validate(tree.typeargs, localEnv); 2952 } 2953 2954 // where 2955 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2956 JCClassDecl cdef, Env<AttrContext> localEnv, 2957 List<Type> argtypes, List<Type> typeargtypes, 2958 KindSelector pkind) { 2959 // We are seeing an anonymous class instance creation. 2960 // In this case, the class instance creation 2961 // expression 2962 // 2963 // E.new <typeargs1>C<typargs2>(args) { ... } 2964 // 2965 // is represented internally as 2966 // 2967 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2968 // 2969 // This expression is then *transformed* as follows: 2970 // 2971 // (1) add an extends or implements clause 2972 // (2) add a constructor. 2973 // 2974 // For instance, if C is a class, and ET is the type of E, 2975 // the expression 2976 // 2977 // E.new <typeargs1>C<typargs2>(args) { ... } 2978 // 2979 // is translated to (where X is a fresh name and typarams is the 2980 // parameter list of the super constructor): 2981 // 2982 // new <typeargs1>X(<*nullchk*>E, args) where 2983 // X extends C<typargs2> { 2984 // <typarams> X(ET e, args) { 2985 // e.<typeargs1>super(args) 2986 // } 2987 // ... 2988 // } 2989 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2990 Type enclType = clazztype.getEnclosingType(); 2991 if (enclType != null && 2992 enclType.hasTag(CLASS) && 2993 !chk.checkDenotable((ClassType)enclType)) { 2994 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2995 } 2996 final boolean isDiamond = TreeInfo.isDiamond(tree); 2997 if (isDiamond 2998 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2999 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 3000 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 3001 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 3002 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 3003 instantiatedContext -> { 3004 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3005 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3006 ResultInfo prevResult = this.resultInfo; 3007 try { 3008 this.resultInfo = resultInfoForClassDefinition; 3009 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3010 dupLocalEnv, argtypes, typeargtypes, pkind); 3011 } finally { 3012 this.resultInfo = prevResult; 3013 } 3014 }); 3015 } else { 3016 if (isDiamond && clazztype.hasTag(CLASS)) { 3017 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3018 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3019 // One or more types inferred in the previous steps is non-denotable. 3020 Fragment fragment = Diamond(clazztype.tsym); 3021 log.error(tree.clazz.pos(), 3022 Errors.CantApplyDiamond1( 3023 fragment, 3024 invalidDiamondArgs.size() > 1 ? 3025 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3026 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3027 } 3028 // For <>(){}, inferred types must also be accessible. 3029 for (Type t : clazztype.getTypeArguments()) { 3030 rs.checkAccessibleType(env, t); 3031 } 3032 if (allowPrimitiveClasses) { 3033 chk.checkParameterizationByPrimitiveClass(tree, clazztype); 3034 } 3035 } 3036 3037 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3038 // false for isInterface call even when the original type is an interface. 3039 boolean implementing = clazztype.tsym.isInterface() || 3040 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3041 clazztype.getOriginalType().tsym.isInterface(); 3042 3043 if (implementing) { 3044 cdef.implementing = List.of(clazz); 3045 } else { 3046 cdef.extending = clazz; 3047 } 3048 3049 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3050 rs.isSerializable(clazztype)) { 3051 localEnv.info.isSerializable = true; 3052 } 3053 3054 attribStat(cdef, localEnv); 3055 3056 List<Type> finalargtypes; 3057 // If an outer instance is given, 3058 // prefix it to the constructor arguments 3059 // and delete it from the new expression 3060 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3061 finalargtypes = argtypes.prepend(tree.encl.type); 3062 } else { 3063 finalargtypes = argtypes; 3064 } 3065 3066 // Reassign clazztype and recompute constructor. As this necessarily involves 3067 // another attribution pass for deferred types in the case of <>, replicate 3068 // them. Original arguments have right decorations already. 3069 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3070 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3071 } 3072 3073 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3074 : cdef.sym.type; 3075 Symbol sym = tree.constructor = rs.resolveConstructor( 3076 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3077 Assert.check(!sym.kind.isResolutionError()); 3078 tree.constructor = sym; 3079 tree.constructorType = checkId(tree, 3080 clazztype, 3081 tree.constructor, 3082 localEnv, 3083 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3084 } 3085 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3086 clazztype : types.createErrorType(tree.type); 3087 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3088 chk.validate(tree.typeargs, localEnv); 3089 } 3090 3091 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3092 return new Check.NestedCheckContext(checkContext) { 3093 @Override 3094 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3095 enclosingContext.report(clazz.clazz, 3096 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3097 } 3098 }; 3099 } 3100 3101 /** Make an attributed null check tree. 3102 */ 3103 public JCExpression makeNullCheck(JCExpression arg) { 3104 // optimization: new Outer() can never be null; skip null check 3105 if (arg.getTag() == NEWCLASS) 3106 return arg; 3107 // Likewise arg can't be null if it is a primitive class instance. 3108 if (allowPrimitiveClasses && arg.type.isPrimitiveClass()) 3109 return arg; 3110 // optimization: X.this is never null; skip null check 3111 Name name = TreeInfo.name(arg); 3112 if (name == names._this || name == names._super) return arg; 3113 3114 JCTree.Tag optag = NULLCHK; 3115 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3116 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3117 tree.type = arg.type; 3118 return tree; 3119 } 3120 3121 public void visitNewArray(JCNewArray tree) { 3122 Type owntype = types.createErrorType(tree.type); 3123 Env<AttrContext> localEnv = env.dup(tree); 3124 Type elemtype; 3125 if (tree.elemtype != null) { 3126 elemtype = attribType(tree.elemtype, localEnv); 3127 chk.validate(tree.elemtype, localEnv); 3128 owntype = elemtype; 3129 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3130 attribExpr(l.head, localEnv, syms.intType); 3131 owntype = new ArrayType(owntype, syms.arrayClass); 3132 } 3133 } else { 3134 // we are seeing an untyped aggregate { ... } 3135 // this is allowed only if the prototype is an array 3136 if (pt().hasTag(ARRAY)) { 3137 elemtype = types.elemtype(pt()); 3138 } else { 3139 if (!pt().hasTag(ERROR) && 3140 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3141 log.error(tree.pos(), 3142 Errors.IllegalInitializerForType(pt())); 3143 } 3144 elemtype = types.createErrorType(pt()); 3145 } 3146 } 3147 if (tree.elems != null) { 3148 attribExprs(tree.elems, localEnv, elemtype); 3149 owntype = new ArrayType(elemtype, syms.arrayClass); 3150 } 3151 if (!types.isReifiable(elemtype)) 3152 log.error(tree.pos(), Errors.GenericArrayCreation); 3153 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3154 } 3155 3156 /* 3157 * A lambda expression can only be attributed when a target-type is available. 3158 * In addition, if the target-type is that of a functional interface whose 3159 * descriptor contains inference variables in argument position the lambda expression 3160 * is 'stuck' (see DeferredAttr). 3161 */ 3162 @Override 3163 public void visitLambda(final JCLambda that) { 3164 boolean wrongContext = false; 3165 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3166 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3167 //lambda only allowed in assignment or method invocation/cast context 3168 log.error(that.pos(), Errors.UnexpectedLambda); 3169 } 3170 resultInfo = recoveryInfo; 3171 wrongContext = true; 3172 } 3173 //create an environment for attribution of the lambda expression 3174 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3175 boolean needsRecovery = 3176 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3177 try { 3178 if (needsRecovery && rs.isSerializable(pt())) { 3179 localEnv.info.isSerializable = true; 3180 localEnv.info.isSerializableLambda = true; 3181 } 3182 List<Type> explicitParamTypes = null; 3183 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3184 //attribute lambda parameters 3185 attribStats(that.params, localEnv); 3186 explicitParamTypes = TreeInfo.types(that.params); 3187 } 3188 3189 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3190 Type currentTarget = targetInfo.target; 3191 Type lambdaType = targetInfo.descriptor; 3192 3193 if (currentTarget.isErroneous()) { 3194 result = that.type = currentTarget; 3195 return; 3196 } 3197 3198 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3199 3200 if (lambdaType.hasTag(FORALL)) { 3201 //lambda expression target desc cannot be a generic method 3202 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3203 kindName(currentTarget.tsym), 3204 currentTarget.tsym); 3205 resultInfo.checkContext.report(that, diags.fragment(msg)); 3206 result = that.type = types.createErrorType(pt()); 3207 return; 3208 } 3209 3210 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3211 //add param type info in the AST 3212 List<Type> actuals = lambdaType.getParameterTypes(); 3213 List<JCVariableDecl> params = that.params; 3214 3215 boolean arityMismatch = false; 3216 3217 while (params.nonEmpty()) { 3218 if (actuals.isEmpty()) { 3219 //not enough actuals to perform lambda parameter inference 3220 arityMismatch = true; 3221 } 3222 //reset previously set info 3223 Type argType = arityMismatch ? 3224 syms.errType : 3225 actuals.head; 3226 if (params.head.isImplicitlyTyped()) { 3227 setSyntheticVariableType(params.head, argType); 3228 } 3229 params.head.sym = null; 3230 actuals = actuals.isEmpty() ? 3231 actuals : 3232 actuals.tail; 3233 params = params.tail; 3234 } 3235 3236 //attribute lambda parameters 3237 attribStats(that.params, localEnv); 3238 3239 if (arityMismatch) { 3240 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3241 result = that.type = types.createErrorType(currentTarget); 3242 return; 3243 } 3244 } 3245 3246 //from this point on, no recovery is needed; if we are in assignment context 3247 //we will be able to attribute the whole lambda body, regardless of errors; 3248 //if we are in a 'check' method context, and the lambda is not compatible 3249 //with the target-type, it will be recovered anyway in Attr.checkId 3250 needsRecovery = false; 3251 3252 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3253 lambdaBodyResult(that, lambdaType, resultInfo); 3254 3255 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3256 attribTree(that.getBody(), localEnv, bodyResultInfo); 3257 } else { 3258 JCBlock body = (JCBlock)that.body; 3259 if (body == breakTree && 3260 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3261 breakTreeFound(copyEnv(localEnv)); 3262 } 3263 attribStats(body.stats, localEnv); 3264 } 3265 3266 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3267 3268 boolean isSpeculativeRound = 3269 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3270 3271 preFlow(that); 3272 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3273 3274 that.type = currentTarget; //avoids recovery at this stage 3275 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3276 3277 if (!isSpeculativeRound) { 3278 //add thrown types as bounds to the thrown types free variables if needed: 3279 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3280 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3281 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3282 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3283 } 3284 } 3285 3286 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3287 } 3288 result = wrongContext ? that.type = types.createErrorType(pt()) 3289 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3290 } catch (Types.FunctionDescriptorLookupError ex) { 3291 JCDiagnostic cause = ex.getDiagnostic(); 3292 resultInfo.checkContext.report(that, cause); 3293 result = that.type = types.createErrorType(pt()); 3294 return; 3295 } catch (CompletionFailure cf) { 3296 chk.completionError(that.pos(), cf); 3297 } catch (Throwable t) { 3298 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3299 //as that would likely cause the same exception again. 3300 needsRecovery = false; 3301 throw t; 3302 } finally { 3303 localEnv.info.scope.leave(); 3304 if (needsRecovery) { 3305 Type prevResult = result; 3306 try { 3307 attribTree(that, env, recoveryInfo); 3308 } finally { 3309 if (result == Type.recoveryType) { 3310 result = prevResult; 3311 } 3312 } 3313 } 3314 } 3315 } 3316 //where 3317 class TargetInfo { 3318 Type target; 3319 Type descriptor; 3320 3321 public TargetInfo(Type target, Type descriptor) { 3322 this.target = target; 3323 this.descriptor = descriptor; 3324 } 3325 } 3326 3327 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3328 Type lambdaType; 3329 Type currentTarget = resultInfo.pt; 3330 if (resultInfo.pt != Type.recoveryType) { 3331 /* We need to adjust the target. If the target is an 3332 * intersection type, for example: SAM & I1 & I2 ... 3333 * the target will be updated to SAM 3334 */ 3335 currentTarget = targetChecker.visit(currentTarget, that); 3336 if (!currentTarget.isIntersection()) { 3337 if (explicitParamTypes != null) { 3338 currentTarget = infer.instantiateFunctionalInterface(that, 3339 currentTarget, explicitParamTypes, resultInfo.checkContext); 3340 } 3341 currentTarget = types.removeWildcards(currentTarget); 3342 lambdaType = types.findDescriptorType(currentTarget); 3343 } else { 3344 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3345 ListBuffer<Type> components = new ListBuffer<>(); 3346 for (Type bound : ict.getExplicitComponents()) { 3347 if (explicitParamTypes != null) { 3348 try { 3349 bound = infer.instantiateFunctionalInterface(that, 3350 bound, explicitParamTypes, resultInfo.checkContext); 3351 } catch (FunctionDescriptorLookupError t) { 3352 // do nothing 3353 } 3354 } 3355 bound = types.removeWildcards(bound); 3356 components.add(bound); 3357 } 3358 currentTarget = types.makeIntersectionType(components.toList()); 3359 currentTarget.tsym.flags_field |= INTERFACE; 3360 lambdaType = types.findDescriptorType(currentTarget); 3361 } 3362 3363 } else { 3364 currentTarget = Type.recoveryType; 3365 lambdaType = fallbackDescriptorType(that); 3366 } 3367 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3368 //lambda expression target desc cannot be a generic method 3369 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3370 kindName(currentTarget.tsym), 3371 currentTarget.tsym); 3372 resultInfo.checkContext.report(that, diags.fragment(msg)); 3373 currentTarget = types.createErrorType(pt()); 3374 } 3375 return new TargetInfo(currentTarget, lambdaType); 3376 } 3377 3378 void preFlow(JCLambda tree) { 3379 attrRecover.doRecovery(); 3380 new PostAttrAnalyzer() { 3381 @Override 3382 public void scan(JCTree tree) { 3383 if (tree == null || 3384 (tree.type != null && 3385 tree.type == Type.stuckType)) { 3386 //don't touch stuck expressions! 3387 return; 3388 } 3389 super.scan(tree); 3390 } 3391 3392 @Override 3393 public void visitClassDef(JCClassDecl that) { 3394 // or class declaration trees! 3395 } 3396 3397 public void visitLambda(JCLambda that) { 3398 // or lambda expressions! 3399 } 3400 }.scan(tree.body); 3401 } 3402 3403 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3404 3405 @Override 3406 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3407 return t.isIntersection() ? 3408 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3409 } 3410 3411 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3412 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3413 return ict; 3414 } 3415 3416 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3417 ListBuffer<Type> targs = new ListBuffer<>(); 3418 ListBuffer<Type> supertypes = new ListBuffer<>(); 3419 for (Type i : ict.interfaces_field) { 3420 if (i.isParameterized()) { 3421 targs.appendList(i.tsym.type.allparams()); 3422 } 3423 supertypes.append(i.tsym.type); 3424 } 3425 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3426 notionalIntf.allparams_field = targs.toList(); 3427 notionalIntf.tsym.flags_field |= INTERFACE; 3428 return notionalIntf.tsym; 3429 } 3430 }; 3431 3432 private Type fallbackDescriptorType(JCExpression tree) { 3433 switch (tree.getTag()) { 3434 case LAMBDA: 3435 JCLambda lambda = (JCLambda)tree; 3436 List<Type> argtypes = List.nil(); 3437 for (JCVariableDecl param : lambda.params) { 3438 argtypes = param.vartype != null && param.vartype.type != null ? 3439 argtypes.append(param.vartype.type) : 3440 argtypes.append(syms.errType); 3441 } 3442 return new MethodType(argtypes, Type.recoveryType, 3443 List.of(syms.throwableType), syms.methodClass); 3444 case REFERENCE: 3445 return new MethodType(List.nil(), Type.recoveryType, 3446 List.of(syms.throwableType), syms.methodClass); 3447 default: 3448 Assert.error("Cannot get here!"); 3449 } 3450 return null; 3451 } 3452 3453 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3454 final InferenceContext inferenceContext, final Type... ts) { 3455 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3456 } 3457 3458 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3459 final InferenceContext inferenceContext, final List<Type> ts) { 3460 if (inferenceContext.free(ts)) { 3461 inferenceContext.addFreeTypeListener(ts, 3462 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3463 } else { 3464 for (Type t : ts) { 3465 rs.checkAccessibleType(env, t); 3466 } 3467 } 3468 } 3469 3470 /** 3471 * Lambda/method reference have a special check context that ensures 3472 * that i.e. a lambda return type is compatible with the expected 3473 * type according to both the inherited context and the assignment 3474 * context. 3475 */ 3476 class FunctionalReturnContext extends Check.NestedCheckContext { 3477 3478 FunctionalReturnContext(CheckContext enclosingContext) { 3479 super(enclosingContext); 3480 } 3481 3482 @Override 3483 public boolean compatible(Type found, Type req, Warner warn) { 3484 //return type must be compatible in both current context and assignment context 3485 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3486 } 3487 3488 @Override 3489 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3490 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3491 } 3492 } 3493 3494 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3495 3496 JCExpression expr; 3497 boolean expStmtExpected; 3498 3499 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3500 super(enclosingContext); 3501 this.expr = expr; 3502 } 3503 3504 @Override 3505 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3506 if (expStmtExpected) { 3507 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3508 } else { 3509 super.report(pos, details); 3510 } 3511 } 3512 3513 @Override 3514 public boolean compatible(Type found, Type req, Warner warn) { 3515 //a void return is compatible with an expression statement lambda 3516 if (req.hasTag(VOID)) { 3517 expStmtExpected = true; 3518 return TreeInfo.isExpressionStatement(expr); 3519 } else { 3520 return super.compatible(found, req, warn); 3521 } 3522 } 3523 } 3524 3525 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3526 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3527 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3528 new FunctionalReturnContext(resultInfo.checkContext); 3529 3530 return descriptor.getReturnType() == Type.recoveryType ? 3531 recoveryInfo : 3532 new ResultInfo(KindSelector.VAL, 3533 descriptor.getReturnType(), funcContext); 3534 } 3535 3536 /** 3537 * Lambda compatibility. Check that given return types, thrown types, parameter types 3538 * are compatible with the expected functional interface descriptor. This means that: 3539 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3540 * types must be compatible with the return type of the expected descriptor. 3541 */ 3542 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3543 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3544 3545 //return values have already been checked - but if lambda has no return 3546 //values, we must ensure that void/value compatibility is correct; 3547 //this amounts at checking that, if a lambda body can complete normally, 3548 //the descriptor's return type must be void 3549 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3550 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3551 Fragment msg = 3552 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3553 checkContext.report(tree, 3554 diags.fragment(msg)); 3555 } 3556 3557 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3558 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3559 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3560 } 3561 } 3562 3563 /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a 3564 * static field and that lambda has type annotations, these annotations will 3565 * also be stored at these fake clinit methods. 3566 * 3567 * LambdaToMethod also use fake clinit methods so they can be reused. 3568 * Also as LTM is a phase subsequent to attribution, the methods from 3569 * clinits can be safely removed by LTM to save memory. 3570 */ 3571 private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>(); 3572 3573 public MethodSymbol removeClinit(ClassSymbol sym) { 3574 return clinits.remove(sym); 3575 } 3576 3577 /* This method returns an environment to be used to attribute a lambda 3578 * expression. 3579 * 3580 * The owner of this environment is a method symbol. If the current owner 3581 * is not a method, for example if the lambda is used to initialize 3582 * a field, then if the field is: 3583 * 3584 * - an instance field, we use the first constructor. 3585 * - a static field, we create a fake clinit method. 3586 */ 3587 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3588 Env<AttrContext> lambdaEnv; 3589 Symbol owner = env.info.scope.owner; 3590 if (owner.kind == VAR && owner.owner.kind == TYP) { 3591 //field initializer 3592 ClassSymbol enclClass = owner.enclClass(); 3593 Symbol newScopeOwner = env.info.scope.owner; 3594 /* if the field isn't static, then we can get the first constructor 3595 * and use it as the owner of the environment. This is what 3596 * LTM code is doing to look for type annotations so we are fine. 3597 */ 3598 if ((owner.flags() & STATIC) == 0) { 3599 Name constructorName = owner.isConcreteValueClass() ? names.vnew : names.init; 3600 for (Symbol s : enclClass.members_field.getSymbolsByName(constructorName)) { 3601 newScopeOwner = s; 3602 break; 3603 } 3604 } else { 3605 /* if the field is static then we need to create a fake clinit 3606 * method, this method can later be reused by LTM. 3607 */ 3608 MethodSymbol clinit = clinits.get(enclClass); 3609 if (clinit == null) { 3610 Type clinitType = new MethodType(List.nil(), 3611 syms.voidType, List.nil(), syms.methodClass); 3612 clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE, 3613 names.clinit, clinitType, enclClass); 3614 clinit.params = List.nil(); 3615 clinits.put(enclClass, clinit); 3616 } 3617 newScopeOwner = clinit; 3618 } 3619 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner))); 3620 } else { 3621 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3622 } 3623 lambdaEnv.info.yieldResult = null; 3624 lambdaEnv.info.isLambda = true; 3625 return lambdaEnv; 3626 } 3627 3628 @Override 3629 public void visitReference(final JCMemberReference that) { 3630 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3631 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3632 //method reference only allowed in assignment or method invocation/cast context 3633 log.error(that.pos(), Errors.UnexpectedMref); 3634 } 3635 result = that.type = types.createErrorType(pt()); 3636 return; 3637 } 3638 final Env<AttrContext> localEnv = env.dup(that); 3639 try { 3640 //attribute member reference qualifier - if this is a constructor 3641 //reference, the expected kind must be a type 3642 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3643 3644 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3645 exprType = chk.checkConstructorRefType(that.expr, exprType); 3646 if (!exprType.isErroneous() && 3647 exprType.isRaw() && 3648 that.typeargs != null) { 3649 log.error(that.expr.pos(), 3650 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3651 Fragments.MrefInferAndExplicitParams)); 3652 exprType = types.createErrorType(exprType); 3653 } 3654 } 3655 3656 if (exprType.isErroneous()) { 3657 //if the qualifier expression contains problems, 3658 //give up attribution of method reference 3659 result = that.type = exprType; 3660 return; 3661 } 3662 3663 Symbol lhsSym = TreeInfo.symbol(that.expr); 3664 if (TreeInfo.isStaticSelector(that.expr, names)) { 3665 // TODO - a bit hacky but... 3666 if (lhsSym != null && lhsSym.isConcreteValueClass() && that.name == names.init) { 3667 that.name = names.vnew; 3668 } 3669 //if the qualifier is a type, validate it; raw warning check is 3670 //omitted as we don't know at this stage as to whether this is a 3671 //raw selector (because of inference) 3672 chk.validate(that.expr, env, false); 3673 } else { 3674 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3675 } 3676 //attrib type-arguments 3677 List<Type> typeargtypes = List.nil(); 3678 if (that.typeargs != null) { 3679 typeargtypes = attribTypes(that.typeargs, localEnv); 3680 } 3681 3682 boolean isTargetSerializable = 3683 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3684 rs.isSerializable(pt()); 3685 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3686 Type currentTarget = targetInfo.target; 3687 Type desc = targetInfo.descriptor; 3688 3689 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3690 List<Type> argtypes = desc.getParameterTypes(); 3691 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3692 3693 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3694 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3695 } 3696 3697 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3698 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3699 try { 3700 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3701 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3702 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3703 } finally { 3704 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3705 } 3706 3707 Symbol refSym = refResult.fst; 3708 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3709 3710 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3711 * JDK-8075541 3712 */ 3713 if (refSym.kind != MTH) { 3714 boolean targetError; 3715 switch (refSym.kind) { 3716 case ABSENT_MTH: 3717 case MISSING_ENCL: 3718 targetError = false; 3719 break; 3720 case WRONG_MTH: 3721 case WRONG_MTHS: 3722 case AMBIGUOUS: 3723 case HIDDEN: 3724 case STATICERR: 3725 targetError = true; 3726 break; 3727 default: 3728 Assert.error("unexpected result kind " + refSym.kind); 3729 targetError = false; 3730 } 3731 3732 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3733 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3734 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3735 3736 JCDiagnostic diag = diags.create(log.currentSource(), that, 3737 targetError ? 3738 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3739 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3740 3741 if (targetError && currentTarget == Type.recoveryType) { 3742 //a target error doesn't make sense during recovery stage 3743 //as we don't know what actual parameter types are 3744 result = that.type = currentTarget; 3745 return; 3746 } else { 3747 if (targetError) { 3748 resultInfo.checkContext.report(that, diag); 3749 } else { 3750 log.report(diag); 3751 } 3752 result = that.type = types.createErrorType(currentTarget); 3753 return; 3754 } 3755 } 3756 3757 that.sym = refSym.isInitOrVNew() ? refSym.baseSymbol() : refSym; 3758 that.kind = lookupHelper.referenceKind(that.sym); 3759 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3760 3761 if (desc.getReturnType() == Type.recoveryType) { 3762 // stop here 3763 result = that.type = currentTarget; 3764 return; 3765 } 3766 3767 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3768 Type enclosingType = exprType.getEnclosingType(); 3769 if (enclosingType != null && enclosingType.hasTag(CLASS)) { 3770 // Check for the existence of an appropriate outer instance 3771 rs.resolveImplicitThis(that.pos(), env, exprType); 3772 } 3773 } 3774 3775 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3776 3777 if (that.getMode() == ReferenceMode.INVOKE && 3778 TreeInfo.isStaticSelector(that.expr, names) && 3779 that.kind.isUnbound() && 3780 lookupHelper.site.isRaw()) { 3781 chk.checkRaw(that.expr, localEnv); 3782 } 3783 3784 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3785 exprType.getTypeArguments().nonEmpty()) { 3786 //static ref with class type-args 3787 log.error(that.expr.pos(), 3788 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3789 Fragments.StaticMrefWithTargs)); 3790 result = that.type = types.createErrorType(currentTarget); 3791 return; 3792 } 3793 3794 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3795 // Check that super-qualified symbols are not abstract (JLS) 3796 rs.checkNonAbstract(that.pos(), that.sym); 3797 } 3798 3799 if (isTargetSerializable) { 3800 chk.checkAccessFromSerializableElement(that, true); 3801 } 3802 } 3803 3804 ResultInfo checkInfo = 3805 resultInfo.dup(newMethodTemplate( 3806 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3807 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3808 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3809 3810 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3811 3812 if (that.kind.isUnbound() && 3813 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3814 //re-generate inference constraints for unbound receiver 3815 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3816 //cannot happen as this has already been checked - we just need 3817 //to regenerate the inference constraints, as that has been lost 3818 //as a result of the call to inferenceContext.save() 3819 Assert.error("Can't get here"); 3820 } 3821 } 3822 3823 if (!refType.isErroneous()) { 3824 refType = types.createMethodTypeWithReturn(refType, 3825 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3826 } 3827 3828 //go ahead with standard method reference compatibility check - note that param check 3829 //is a no-op (as this has been taken care during method applicability) 3830 boolean isSpeculativeRound = 3831 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3832 3833 that.type = currentTarget; //avoids recovery at this stage 3834 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3835 if (!isSpeculativeRound) { 3836 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3837 } 3838 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3839 } catch (Types.FunctionDescriptorLookupError ex) { 3840 JCDiagnostic cause = ex.getDiagnostic(); 3841 resultInfo.checkContext.report(that, cause); 3842 result = that.type = types.createErrorType(pt()); 3843 return; 3844 } 3845 } 3846 //where 3847 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3848 //if this is a constructor reference, the expected kind must be a type 3849 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3850 KindSelector.VAL_TYP : KindSelector.TYP, 3851 Type.noType); 3852 } 3853 3854 3855 @SuppressWarnings("fallthrough") 3856 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3857 InferenceContext inferenceContext = checkContext.inferenceContext(); 3858 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3859 3860 Type resType; 3861 switch (tree.getMode()) { 3862 case NEW: 3863 if (!tree.expr.type.isRaw()) { 3864 resType = tree.expr.type; 3865 break; 3866 } 3867 default: 3868 resType = refType.getReturnType(); 3869 } 3870 3871 Type incompatibleReturnType = resType; 3872 3873 if (returnType.hasTag(VOID)) { 3874 incompatibleReturnType = null; 3875 } 3876 3877 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3878 if (resType.isErroneous() || 3879 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3880 checkContext.checkWarner(tree, resType, returnType))) { 3881 incompatibleReturnType = null; 3882 } 3883 } 3884 3885 if (incompatibleReturnType != null) { 3886 Fragment msg = 3887 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3888 checkContext.report(tree, diags.fragment(msg)); 3889 } else { 3890 if (inferenceContext.free(refType)) { 3891 // we need to wait for inference to finish and then replace inference vars in the referent type 3892 inferenceContext.addFreeTypeListener(List.of(refType), 3893 instantiatedContext -> { 3894 tree.referentType = instantiatedContext.asInstType(refType); 3895 }); 3896 } else { 3897 tree.referentType = refType; 3898 } 3899 } 3900 3901 if (!speculativeAttr) { 3902 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3903 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3904 } 3905 } 3906 } 3907 3908 boolean checkExConstraints( 3909 List<Type> thrownByFuncExpr, 3910 List<Type> thrownAtFuncType, 3911 InferenceContext inferenceContext) { 3912 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3913 * are not proper types 3914 */ 3915 List<Type> nonProperList = thrownAtFuncType.stream() 3916 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3917 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3918 3919 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3920 * in the throws clause of the invocation type of the method reference's compile-time 3921 * declaration 3922 */ 3923 List<Type> checkedList = thrownByFuncExpr.stream() 3924 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3925 3926 /** If n = 0 (the function type's throws clause consists only of proper types), then 3927 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3928 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3929 * reduces to true 3930 */ 3931 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3932 for (Type checked : checkedList) { 3933 boolean isSubtype = false; 3934 for (Type proper : properList) { 3935 if (types.isSubtype(checked, proper)) { 3936 isSubtype = true; 3937 break; 3938 } 3939 } 3940 if (!isSubtype) { 3941 uncaughtByProperTypes.add(checked); 3942 } 3943 } 3944 3945 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3946 return false; 3947 } 3948 3949 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3950 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3951 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3952 */ 3953 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3954 uncaughtByProperTypes.forEach(checkedEx -> { 3955 nonProperAsUndet.forEach(nonProper -> { 3956 types.isSubtype(checkedEx, nonProper); 3957 }); 3958 }); 3959 3960 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3961 */ 3962 nonProperAsUndet.stream() 3963 .filter(t -> t.hasTag(UNDETVAR)) 3964 .forEach(t -> ((UndetVar)t).setThrow()); 3965 return true; 3966 } 3967 3968 /** 3969 * Set functional type info on the underlying AST. Note: as the target descriptor 3970 * might contain inference variables, we might need to register an hook in the 3971 * current inference context. 3972 */ 3973 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3974 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3975 if (checkContext.inferenceContext().free(descriptorType)) { 3976 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3977 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3978 inferenceContext.asInstType(primaryTarget), checkContext)); 3979 } else { 3980 if (pt.hasTag(CLASS)) { 3981 fExpr.target = primaryTarget; 3982 } 3983 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3984 pt != Type.recoveryType) { 3985 //check that functional interface class is well-formed 3986 try { 3987 /* Types.makeFunctionalInterfaceClass() may throw an exception 3988 * when it's executed post-inference. See the listener code 3989 * above. 3990 */ 3991 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3992 names.empty, fExpr.target, ABSTRACT); 3993 if (csym != null) { 3994 chk.checkImplementations(env.tree, csym, csym); 3995 try { 3996 //perform an additional functional interface check on the synthetic class, 3997 //as there may be spurious errors for raw targets - because of existing issues 3998 //with membership and inheritance (see JDK-8074570). 3999 csym.flags_field |= INTERFACE; 4000 types.findDescriptorType(csym.type); 4001 } catch (FunctionDescriptorLookupError err) { 4002 resultInfo.checkContext.report(fExpr, 4003 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 4004 } 4005 } 4006 } catch (Types.FunctionDescriptorLookupError ex) { 4007 JCDiagnostic cause = ex.getDiagnostic(); 4008 resultInfo.checkContext.report(env.tree, cause); 4009 } 4010 } 4011 } 4012 } 4013 4014 public void visitParens(JCParens tree) { 4015 Type owntype = attribTree(tree.expr, env, resultInfo); 4016 result = check(tree, owntype, pkind(), resultInfo); 4017 Symbol sym = TreeInfo.symbol(tree); 4018 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 4019 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 4020 } 4021 4022 public void visitAssign(JCAssign tree) { 4023 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 4024 Type capturedType = capture(owntype); 4025 attribExpr(tree.rhs, env, owntype); 4026 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 4027 } 4028 4029 public void visitAssignop(JCAssignOp tree) { 4030 // Attribute arguments. 4031 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 4032 Type operand = attribExpr(tree.rhs, env); 4033 // Find operator. 4034 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 4035 if (operator != operators.noOpSymbol && 4036 !owntype.isErroneous() && 4037 !operand.isErroneous()) { 4038 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4039 chk.checkCastable(tree.rhs.pos(), 4040 operator.type.getReturnType(), 4041 owntype); 4042 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4043 } 4044 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4045 } 4046 4047 public void visitUnary(JCUnary tree) { 4048 // Attribute arguments. 4049 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4050 ? attribTree(tree.arg, env, varAssignmentInfo) 4051 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4052 4053 // Find operator. 4054 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4055 Type owntype = types.createErrorType(tree.type); 4056 if (operator != operators.noOpSymbol && 4057 !argtype.isErroneous()) { 4058 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4059 ? tree.arg.type 4060 : operator.type.getReturnType(); 4061 int opc = operator.opcode; 4062 4063 // If the argument is constant, fold it. 4064 if (argtype.constValue() != null) { 4065 Type ctype = cfolder.fold1(opc, argtype); 4066 if (ctype != null) { 4067 owntype = cfolder.coerce(ctype, owntype); 4068 } 4069 } 4070 } 4071 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4072 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4073 } 4074 4075 public void visitBinary(JCBinary tree) { 4076 // Attribute arguments. 4077 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4078 // x && y 4079 // include x's bindings when true in y 4080 4081 // x || y 4082 // include x's bindings when false in y 4083 4084 MatchBindings lhsBindings = matchBindings; 4085 List<BindingSymbol> propagatedBindings; 4086 switch (tree.getTag()) { 4087 case AND: 4088 propagatedBindings = lhsBindings.bindingsWhenTrue; 4089 break; 4090 case OR: 4091 propagatedBindings = lhsBindings.bindingsWhenFalse; 4092 break; 4093 default: 4094 propagatedBindings = List.nil(); 4095 break; 4096 } 4097 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4098 Type right; 4099 try { 4100 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4101 } finally { 4102 rhsEnv.info.scope.leave(); 4103 } 4104 4105 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4106 4107 // Find operator. 4108 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4109 Type owntype = types.createErrorType(tree.type); 4110 if (operator != operators.noOpSymbol && 4111 !left.isErroneous() && 4112 !right.isErroneous()) { 4113 owntype = operator.type.getReturnType(); 4114 int opc = operator.opcode; 4115 // If both arguments are constants, fold them. 4116 if (left.constValue() != null && right.constValue() != null) { 4117 Type ctype = cfolder.fold2(opc, left, right); 4118 if (ctype != null) { 4119 owntype = cfolder.coerce(ctype, owntype); 4120 } 4121 } 4122 4123 // Check that argument types of a reference ==, != are 4124 // castable to each other, (JLS 15.21). Note: unboxing 4125 // comparisons will not have an acmp* opc at this point. 4126 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4127 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4128 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4129 } 4130 } 4131 4132 chk.checkDivZero(tree.rhs.pos(), operator, right); 4133 } 4134 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4135 } 4136 4137 public void visitTypeCast(final JCTypeCast tree) { 4138 Type clazztype = attribType(tree.clazz, env); 4139 chk.validate(tree.clazz, env, false); 4140 //a fresh environment is required for 292 inference to work properly --- 4141 //see Infer.instantiatePolymorphicSignatureInstance() 4142 Env<AttrContext> localEnv = env.dup(tree); 4143 //should we propagate the target type? 4144 final ResultInfo castInfo; 4145 JCExpression expr = TreeInfo.skipParens(tree.expr); 4146 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4147 if (isPoly) { 4148 //expression is a poly - we need to propagate target type info 4149 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4150 new Check.NestedCheckContext(resultInfo.checkContext) { 4151 @Override 4152 public boolean compatible(Type found, Type req, Warner warn) { 4153 return types.isCastable(found, req, warn); 4154 } 4155 }); 4156 } else { 4157 //standalone cast - target-type info is not propagated 4158 castInfo = unknownExprInfo; 4159 } 4160 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4161 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4162 if (exprtype.constValue() != null) 4163 owntype = cfolder.coerce(exprtype, owntype); 4164 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4165 if (!isPoly) 4166 chk.checkRedundantCast(localEnv, tree); 4167 } 4168 4169 public void visitTypeTest(JCInstanceOf tree) { 4170 Type exprtype = chk.checkNullOrRefType( 4171 tree.expr.pos(), attribExpr(tree.expr, env)); 4172 Type clazztype; 4173 JCTree typeTree; 4174 if (tree.pattern.getTag() == BINDINGPATTERN || 4175 tree.pattern.getTag() == RECORDPATTERN) { 4176 attribExpr(tree.pattern, env, exprtype); 4177 clazztype = tree.pattern.type; 4178 if (types.isSubtype(exprtype, clazztype) && 4179 !exprtype.isErroneous() && !clazztype.isErroneous() && 4180 tree.pattern.getTag() != RECORDPATTERN) { 4181 if (!allowUnconditionalPatternsInstanceOf) { 4182 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4183 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4184 } 4185 } 4186 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4187 } else { 4188 clazztype = attribType(tree.pattern, env); 4189 typeTree = tree.pattern; 4190 chk.validate(typeTree, env, false); 4191 } 4192 if (!clazztype.hasTag(TYPEVAR)) { 4193 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4194 } 4195 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4196 boolean valid = false; 4197 if (allowReifiableTypesInInstanceof) { 4198 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4199 } else { 4200 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4201 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4202 allowReifiableTypesInInstanceof = true; 4203 } 4204 if (!valid) { 4205 clazztype = types.createErrorType(clazztype); 4206 } 4207 } 4208 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4209 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4210 } 4211 4212 private boolean checkCastablePattern(DiagnosticPosition pos, 4213 Type exprType, 4214 Type pattType) { 4215 Warner warner = new Warner(); 4216 // if any type is erroneous, the problem is reported elsewhere 4217 if (exprType.isErroneous() || pattType.isErroneous()) { 4218 return false; 4219 } 4220 if (!types.isCastable(exprType, pattType, warner)) { 4221 chk.basicHandler.report(pos, 4222 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4223 return false; 4224 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4225 (!exprType.isPrimitive() || 4226 !pattType.isPrimitive() || 4227 !types.isSameType(exprType, pattType))) { 4228 chk.basicHandler.report(pos, 4229 diags.fragment(Fragments.NotApplicableTypes(exprType, pattType))); 4230 return false; 4231 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4232 log.error(pos, 4233 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4234 return false; 4235 } else { 4236 return true; 4237 } 4238 } 4239 4240 @Override 4241 public void visitAnyPattern(JCAnyPattern tree) { 4242 result = tree.type = resultInfo.pt; 4243 } 4244 4245 public void visitBindingPattern(JCBindingPattern tree) { 4246 Type type; 4247 if (tree.var.vartype != null) { 4248 type = attribType(tree.var.vartype, env); 4249 } else { 4250 type = resultInfo.pt; 4251 } 4252 tree.type = tree.var.type = type; 4253 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4254 v.pos = tree.pos; 4255 tree.var.sym = v; 4256 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4257 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4258 } 4259 if (tree.var.vartype != null) { 4260 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos()); 4261 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos()); 4262 annotate.flush(); 4263 } 4264 chk.validate(tree.var.vartype, env, true); 4265 result = tree.type; 4266 if (v.isUnnamedVariable()) { 4267 matchBindings = MatchBindingsComputer.EMPTY; 4268 } else { 4269 matchBindings = new MatchBindings(List.of(v), List.nil()); 4270 } 4271 } 4272 4273 @Override 4274 public void visitRecordPattern(JCRecordPattern tree) { 4275 Type site; 4276 4277 if (tree.deconstructor == null) { 4278 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4279 tree.record = syms.errSymbol; 4280 site = tree.type = types.createErrorType(tree.record.type); 4281 } else { 4282 Type type = attribType(tree.deconstructor, env); 4283 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4284 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4285 if (inferred == null) { 4286 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4287 } else { 4288 type = inferred; 4289 } 4290 } 4291 tree.type = tree.deconstructor.type = type; 4292 site = types.capture(tree.type); 4293 } 4294 4295 List<Type> expectedRecordTypes; 4296 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4297 ClassSymbol record = (ClassSymbol) site.tsym; 4298 expectedRecordTypes = record.getRecordComponents() 4299 .stream() 4300 .map(rc -> types.memberType(site, rc)) 4301 .map(t -> types.upward(t, types.captures(t)).baseType()) 4302 .collect(List.collector()); 4303 tree.record = record; 4304 } else { 4305 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4306 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4307 .limit(tree.nested.size()) 4308 .collect(List.collector()); 4309 tree.record = syms.errSymbol; 4310 } 4311 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4312 List<Type> recordTypes = expectedRecordTypes; 4313 List<JCPattern> nestedPatterns = tree.nested; 4314 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4315 try { 4316 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4317 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4318 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4319 outBindings.addAll(matchBindings.bindingsWhenTrue); 4320 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4321 nestedPatterns = nestedPatterns.tail; 4322 recordTypes = recordTypes.tail; 4323 } 4324 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4325 while (nestedPatterns.nonEmpty()) { 4326 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4327 nestedPatterns = nestedPatterns.tail; 4328 } 4329 List<Type> nestedTypes = 4330 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4331 log.error(tree.pos(), 4332 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4333 nestedTypes)); 4334 } 4335 } finally { 4336 localEnv.info.scope.leave(); 4337 } 4338 chk.validate(tree.deconstructor, env, true); 4339 result = tree.type; 4340 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4341 } 4342 4343 public void visitIndexed(JCArrayAccess tree) { 4344 Type owntype = types.createErrorType(tree.type); 4345 Type atype = attribExpr(tree.indexed, env); 4346 attribExpr(tree.index, env, syms.intType); 4347 if (types.isArray(atype)) 4348 owntype = types.elemtype(atype); 4349 else if (!atype.hasTag(ERROR)) 4350 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4351 if (!pkind().contains(KindSelector.VAL)) 4352 owntype = capture(owntype); 4353 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4354 } 4355 4356 public void visitIdent(JCIdent tree) { 4357 Symbol sym; 4358 4359 // Find symbol 4360 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4361 // If we are looking for a method, the prototype `pt' will be a 4362 // method type with the type of the call's arguments as parameters. 4363 env.info.pendingResolutionPhase = null; 4364 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4365 } else if (tree.sym != null && tree.sym.kind != VAR) { 4366 sym = tree.sym; 4367 } else { 4368 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4369 } 4370 tree.sym = sym; 4371 4372 // Also find the environment current for the class where 4373 // sym is defined (`symEnv'). 4374 Env<AttrContext> symEnv = env; 4375 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4376 sym.kind.matches(KindSelector.VAL_MTH) && 4377 sym.owner.kind == TYP && 4378 tree.name != names._this && tree.name != names._super) { 4379 4380 // Find environment in which identifier is defined. 4381 while (symEnv.outer != null && 4382 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4383 symEnv = symEnv.outer; 4384 } 4385 } 4386 4387 // If symbol is a variable, ... 4388 if (sym.kind == VAR) { 4389 VarSymbol v = (VarSymbol)sym; 4390 4391 // ..., evaluate its initializer, if it has one, and check for 4392 // illegal forward reference. 4393 checkInit(tree, env, v, false); 4394 4395 // If we are expecting a variable (as opposed to a value), check 4396 // that the variable is assignable in the current environment. 4397 if (KindSelector.ASG.subset(pkind())) 4398 checkAssignable(tree.pos(), v, null, env); 4399 } 4400 4401 // In a constructor body, 4402 // if symbol is a field or instance method, check that it is 4403 // not accessed before the supertype constructor is called. 4404 if (symEnv.info.isSelfCall && 4405 sym.kind.matches(KindSelector.VAL_MTH) && 4406 sym.owner.kind == TYP && 4407 (sym.flags() & STATIC) == 0) { 4408 chk.earlyRefError(tree.pos(), sym.kind == VAR ? 4409 sym : thisSym(tree.pos(), env)); 4410 } 4411 Env<AttrContext> env1 = env; 4412 if (sym.kind != ERR && sym.kind != TYP && 4413 sym.owner != null && sym.owner != env1.enclClass.sym) { 4414 // If the found symbol is inaccessible, then it is 4415 // accessed through an enclosing instance. Locate this 4416 // enclosing instance: 4417 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4418 env1 = env1.outer; 4419 } 4420 4421 if (env.info.isSerializable) { 4422 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4423 } 4424 4425 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4426 } 4427 4428 public void visitSelect(JCFieldAccess tree) { 4429 // Determine the expected kind of the qualifier expression. 4430 KindSelector skind = KindSelector.NIL; 4431 if (tree.name == names._this || tree.name == names._super || 4432 tree.name == names._class) 4433 { 4434 skind = KindSelector.TYP; 4435 } else { 4436 if (pkind().contains(KindSelector.PCK)) 4437 skind = KindSelector.of(skind, KindSelector.PCK); 4438 if (pkind().contains(KindSelector.TYP)) 4439 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4440 if (pkind().contains(KindSelector.VAL_MTH)) 4441 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4442 } 4443 4444 // Attribute the qualifier expression, and determine its symbol (if any). 4445 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4446 Assert.check(site == tree.selected.type); 4447 if (allowPrimitiveClasses && tree.name == names._class && site.isPrimitiveClass()) { 4448 /* JDK-8269956: Where a reflective (class) literal is needed, the unqualified Point.class is 4449 * always the "primary" mirror - representing the primitive reference runtime type - thereby 4450 * always matching the behavior of Object::getClass 4451 */ 4452 if (!tree.selected.hasTag(SELECT) || ((JCFieldAccess) tree.selected).name != names.val) { 4453 tree.selected.setType(site = site.referenceProjection()); 4454 } 4455 } 4456 if (!pkind().contains(KindSelector.TYP_PCK)) 4457 site = capture(site); // Capture field access 4458 4459 // don't allow T.class T[].class, etc 4460 if (skind == KindSelector.TYP) { 4461 Type elt = site; 4462 while (elt.hasTag(ARRAY)) 4463 elt = ((ArrayType)elt).elemtype; 4464 if (elt.hasTag(TYPEVAR)) { 4465 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4466 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4467 tree.sym = tree.type.tsym; 4468 return; 4469 } 4470 } 4471 4472 // If qualifier symbol is a type or `super', assert `selectSuper' 4473 // for the selection. This is relevant for determining whether 4474 // protected symbols are accessible. 4475 Symbol sitesym = TreeInfo.symbol(tree.selected); 4476 boolean selectSuperPrev = env.info.selectSuper; 4477 env.info.selectSuper = 4478 sitesym != null && 4479 sitesym.name == names._super; 4480 4481 // Determine the symbol represented by the selection. 4482 env.info.pendingResolutionPhase = null; 4483 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4484 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4485 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4486 sym = syms.errSymbol; 4487 } 4488 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4489 site = capture(site); 4490 sym = selectSym(tree, sitesym, site, env, resultInfo); 4491 } 4492 boolean varArgs = env.info.lastResolveVarargs(); 4493 tree.sym = sym; 4494 4495 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4496 site = types.skipTypeVars(site, true); 4497 } 4498 4499 // If that symbol is a variable, ... 4500 if (sym.kind == VAR) { 4501 VarSymbol v = (VarSymbol)sym; 4502 4503 // ..., evaluate its initializer, if it has one, and check for 4504 // illegal forward reference. 4505 checkInit(tree, env, v, true); 4506 4507 // If we are expecting a variable (as opposed to a value), check 4508 // that the variable is assignable in the current environment. 4509 if (KindSelector.ASG.subset(pkind())) 4510 checkAssignable(tree.pos(), v, tree.selected, env); 4511 } 4512 4513 if (sitesym != null && 4514 sitesym.kind == VAR && 4515 ((VarSymbol)sitesym).isResourceVariable() && 4516 sym.kind == MTH && 4517 sym.name.equals(names.close) && 4518 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) && 4519 env.info.lint.isEnabled(LintCategory.TRY)) { 4520 log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall); 4521 } 4522 4523 // Disallow selecting a type from an expression 4524 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4525 tree.type = check(tree.selected, pt(), 4526 sitesym == null ? 4527 KindSelector.VAL : sitesym.kind.toSelector(), 4528 new ResultInfo(KindSelector.TYP_PCK, pt())); 4529 } 4530 4531 if (isType(sitesym)) { 4532 if (sym.name == names._this || sym.name == names._super) { 4533 // If `C' is the currently compiled class, check that 4534 // `C.this' does not appear in an explicit call to a constructor 4535 // also make sure that `super` is not used in constructor invocations 4536 if (env.info.isSelfCall && 4537 ((sym.name == names._this && 4538 site.tsym == env.enclClass.sym) || 4539 sym.name == names._super && env.info.constructorArgs && 4540 (sitesym.isInterface() || site.tsym == env.enclClass.sym))) { 4541 chk.earlyRefError(tree.pos(), sym); 4542 } 4543 } else { 4544 // Check if type-qualified fields or methods are static (JLS) 4545 if ((sym.flags() & STATIC) == 0 && 4546 sym.name != names._super && 4547 (sym.kind == VAR || sym.kind == MTH)) { 4548 rs.accessBase(rs.new StaticError(sym), 4549 tree.pos(), site, sym.name, true); 4550 } 4551 } 4552 } else if (sym.kind != ERR && 4553 (sym.flags() & STATIC) != 0 && 4554 sym.name != names._class) { 4555 // If the qualified item is not a type and the selected item is static, report 4556 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4557 if (!sym.owner.isAnonymous()) { 4558 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4559 } else { 4560 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4561 } 4562 } 4563 4564 // If we are selecting an instance member via a `super', ... 4565 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4566 4567 // Check that super-qualified symbols are not abstract (JLS) 4568 rs.checkNonAbstract(tree.pos(), sym); 4569 4570 if (site.isRaw()) { 4571 // Determine argument types for site. 4572 Type site1 = types.asSuper(env.enclClass.sym.type.referenceProjectionOrSelf(), site.tsym); 4573 if (site1 != null) site = site1; 4574 } 4575 } 4576 4577 if (env.info.isSerializable) { 4578 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4579 } 4580 4581 env.info.selectSuper = selectSuperPrev; 4582 result = checkId(tree, site, sym, env, resultInfo); 4583 } 4584 //where 4585 /** Determine symbol referenced by a Select expression, 4586 * 4587 * @param tree The select tree. 4588 * @param site The type of the selected expression, 4589 * @param env The current environment. 4590 * @param resultInfo The current result. 4591 */ 4592 private Symbol selectSym(JCFieldAccess tree, 4593 Symbol location, 4594 Type site, 4595 Env<AttrContext> env, 4596 ResultInfo resultInfo) { 4597 DiagnosticPosition pos = tree.pos(); 4598 Name name = tree.name; 4599 switch (site.getTag()) { 4600 case PACKAGE: 4601 return rs.accessBase( 4602 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4603 pos, location, site, name, true); 4604 case ARRAY: 4605 case CLASS: 4606 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4607 return rs.resolveQualifiedMethod( 4608 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4609 } else if (name == names._this || name == names._super) { 4610 return rs.resolveSelf(pos, env, site.tsym, name); 4611 } else if (name == names._class) { 4612 // In this case, we have already made sure in 4613 // visitSelect that qualifier expression is a type. 4614 return syms.getClassField(site, types); 4615 } else if (allowPrimitiveClasses && site.isPrimitiveClass() && isType(location) && resultInfo.pkind.contains(KindSelector.TYP) && (name == names.ref || name == names.val)) { 4616 return site.tsym; 4617 } else { 4618 // We are seeing a plain identifier as selector. 4619 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4620 sym = rs.accessBase(sym, pos, location, site, name, true); 4621 return sym; 4622 } 4623 case WILDCARD: 4624 throw new AssertionError(tree); 4625 case TYPEVAR: 4626 // Normally, site.getUpperBound() shouldn't be null. 4627 // It should only happen during memberEnter/attribBase 4628 // when determining the supertype which *must* be 4629 // done before attributing the type variables. In 4630 // other words, we are seeing this illegal program: 4631 // class B<T> extends A<T.foo> {} 4632 Symbol sym = (site.getUpperBound() != null) 4633 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4634 : null; 4635 if (sym == null) { 4636 log.error(pos, Errors.TypeVarCantBeDeref); 4637 return syms.errSymbol; 4638 } else { 4639 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4640 rs.new AccessError(env, site, sym) : 4641 sym; 4642 rs.accessBase(sym2, pos, location, site, name, true); 4643 return sym; 4644 } 4645 case ERROR: 4646 // preserve identifier names through errors 4647 return types.createErrorType(name, site.tsym, site).tsym; 4648 default: 4649 // The qualifier expression is of a primitive type -- only 4650 // .class is allowed for these. 4651 if (name == names._class) { 4652 // In this case, we have already made sure in Select that 4653 // qualifier expression is a type. 4654 return syms.getClassField(site, types); 4655 } else { 4656 log.error(pos, Errors.CantDeref(site)); 4657 return syms.errSymbol; 4658 } 4659 } 4660 } 4661 4662 /** Determine type of identifier or select expression and check that 4663 * (1) the referenced symbol is not deprecated 4664 * (2) the symbol's type is safe (@see checkSafe) 4665 * (3) if symbol is a variable, check that its type and kind are 4666 * compatible with the prototype and protokind. 4667 * (4) if symbol is an instance field of a raw type, 4668 * which is being assigned to, issue an unchecked warning if its 4669 * type changes under erasure. 4670 * (5) if symbol is an instance method of a raw type, issue an 4671 * unchecked warning if its argument types change under erasure. 4672 * If checks succeed: 4673 * If symbol is a constant, return its constant type 4674 * else if symbol is a method, return its result type 4675 * otherwise return its type. 4676 * Otherwise return errType. 4677 * 4678 * @param tree The syntax tree representing the identifier 4679 * @param site If this is a select, the type of the selected 4680 * expression, otherwise the type of the current class. 4681 * @param sym The symbol representing the identifier. 4682 * @param env The current environment. 4683 * @param resultInfo The expected result 4684 */ 4685 Type checkId(JCTree tree, 4686 Type site, 4687 Symbol sym, 4688 Env<AttrContext> env, 4689 ResultInfo resultInfo) { 4690 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4691 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4692 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4693 } 4694 4695 Type checkMethodIdInternal(JCTree tree, 4696 Type site, 4697 Symbol sym, 4698 Env<AttrContext> env, 4699 ResultInfo resultInfo) { 4700 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4701 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4702 } else { 4703 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4704 } 4705 } 4706 4707 Type checkIdInternal(JCTree tree, 4708 Type site, 4709 Symbol sym, 4710 Type pt, 4711 Env<AttrContext> env, 4712 ResultInfo resultInfo) { 4713 if (pt.isErroneous()) { 4714 return types.createErrorType(site); 4715 } 4716 Type owntype; // The computed type of this identifier occurrence. 4717 switch (sym.kind) { 4718 case TYP: 4719 // For types, the computed type equals the symbol's type, 4720 // except for three situations: 4721 owntype = sym.type; 4722 if (owntype.hasTag(CLASS)) { 4723 if (allowPrimitiveClasses) { 4724 Assert.check(owntype.getFlavor() != Flavor.X_Typeof_X); 4725 } 4726 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4727 Type ownOuter = owntype.getEnclosingType(); 4728 4729 // (a) If symbol is a primitive class and its reference projection 4730 // is requested via the .ref notation, then adjust the computed type to 4731 // reflect this. 4732 if (allowPrimitiveClasses && owntype.isPrimitiveClass() && tree.hasTag(SELECT) && ((JCFieldAccess) tree).name == names.ref) { 4733 owntype = new ClassType(owntype.getEnclosingType(), owntype.getTypeArguments(), (TypeSymbol)sym, owntype.getMetadata(), Flavor.L_TypeOf_Q); 4734 } 4735 4736 // (b) If the symbol's type is parameterized, erase it 4737 // because no type parameters were given. 4738 // We recover generic outer type later in visitTypeApply. 4739 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4740 owntype = types.erasure(owntype); 4741 } 4742 4743 // (c) If the symbol's type is an inner class, then 4744 // we have to interpret its outer type as a superclass 4745 // of the site type. Example: 4746 // 4747 // class Tree<A> { class Visitor { ... } } 4748 // class PointTree extends Tree<Point> { ... } 4749 // ...PointTree.Visitor... 4750 // 4751 // Then the type of the last expression above is 4752 // Tree<Point>.Visitor. 4753 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4754 Type normOuter = site; 4755 if (normOuter.hasTag(CLASS)) { 4756 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4757 } 4758 if (normOuter == null) // perhaps from an import 4759 normOuter = types.erasure(ownOuter); 4760 if (normOuter != ownOuter) 4761 owntype = new ClassType( 4762 normOuter, List.nil(), owntype.tsym, 4763 owntype.getMetadata(), owntype.getFlavor()); 4764 } 4765 } 4766 break; 4767 case VAR: 4768 VarSymbol v = (VarSymbol)sym; 4769 4770 if (env.info.enclVar != null 4771 && v.type.hasTag(NONE)) { 4772 //self reference to implicitly typed variable declaration 4773 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4774 return tree.type = v.type = types.createErrorType(v.type); 4775 } 4776 4777 // Test (4): if symbol is an instance field of a raw type, 4778 // which is being assigned to, issue an unchecked warning if 4779 // its type changes under erasure. 4780 if (KindSelector.ASG.subset(pkind()) && 4781 v.owner.kind == TYP && 4782 (v.flags() & STATIC) == 0 && 4783 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4784 Type s = types.asOuterSuper(site, v.owner); 4785 if (s != null && 4786 s.isRaw() && 4787 !types.isSameType(v.type, v.erasure(types))) { 4788 chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s)); 4789 } 4790 } 4791 // The computed type of a variable is the type of the 4792 // variable symbol, taken as a member of the site type. 4793 owntype = (sym.owner.kind == TYP && 4794 sym.name != names._this && sym.name != names._super) 4795 ? types.memberType(site, sym) 4796 : sym.type; 4797 4798 // If the variable is a constant, record constant value in 4799 // computed type. 4800 if (v.getConstValue() != null && isStaticReference(tree)) 4801 owntype = owntype.constType(v.getConstValue()); 4802 4803 if (resultInfo.pkind == KindSelector.VAL) { 4804 owntype = capture(owntype); // capture "names as expressions" 4805 } 4806 break; 4807 case MTH: { 4808 owntype = checkMethod(site, sym, 4809 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4810 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4811 resultInfo.pt.getTypeArguments()); 4812 break; 4813 } 4814 case PCK: case ERR: 4815 owntype = sym.type; 4816 break; 4817 default: 4818 throw new AssertionError("unexpected kind: " + sym.kind + 4819 " in tree " + tree); 4820 } 4821 4822 // Emit a `deprecation' warning if symbol is deprecated. 4823 // (for constructors (but not for constructor references), the error 4824 // was given when the constructor was resolved) 4825 4826 if (!names.isInitOrVNew(sym.name) || tree.hasTag(REFERENCE)) { 4827 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4828 chk.checkSunAPI(tree.pos(), sym); 4829 chk.checkProfile(tree.pos(), sym); 4830 chk.checkPreview(tree.pos(), env.info.scope.owner, sym); 4831 } 4832 4833 // If symbol is a variable, check that its type and 4834 // kind are compatible with the prototype and protokind. 4835 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4836 } 4837 4838 /** Check that variable is initialized and evaluate the variable's 4839 * initializer, if not yet done. Also check that variable is not 4840 * referenced before it is defined. 4841 * @param tree The tree making up the variable reference. 4842 * @param env The current environment. 4843 * @param v The variable's symbol. 4844 */ 4845 private void checkInit(JCTree tree, 4846 Env<AttrContext> env, 4847 VarSymbol v, 4848 boolean onlyWarning) { 4849 // A forward reference is diagnosed if the declaration position 4850 // of the variable is greater than the current tree position 4851 // and the tree and variable definition occur in the same class 4852 // definition. Note that writes don't count as references. 4853 // This check applies only to class and instance 4854 // variables. Local variables follow different scope rules, 4855 // and are subject to definite assignment checking. 4856 Env<AttrContext> initEnv = enclosingInitEnv(env); 4857 if (initEnv != null && 4858 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4859 v.owner.kind == TYP && 4860 v.owner == env.info.scope.owner.enclClass() && 4861 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4862 (!env.tree.hasTag(ASSIGN) || 4863 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4864 if (!onlyWarning || isStaticEnumField(v)) { 4865 Error errkey = (initEnv.info.enclVar == v) ? 4866 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4867 log.error(tree.pos(), errkey); 4868 } else if (useBeforeDeclarationWarning) { 4869 Warning warnkey = (initEnv.info.enclVar == v) ? 4870 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4871 log.warning(tree.pos(), warnkey); 4872 } 4873 } 4874 4875 v.getConstValue(); // ensure initializer is evaluated 4876 4877 checkEnumInitializer(tree, env, v); 4878 } 4879 4880 /** 4881 * Returns the enclosing init environment associated with this env (if any). An init env 4882 * can be either a field declaration env or a static/instance initializer env. 4883 */ 4884 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4885 while (true) { 4886 switch (env.tree.getTag()) { 4887 case VARDEF: 4888 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4889 if (vdecl.sym.owner.kind == TYP) { 4890 //field 4891 return env; 4892 } 4893 break; 4894 case BLOCK: 4895 if (env.next.tree.hasTag(CLASSDEF)) { 4896 //instance/static initializer 4897 return env; 4898 } 4899 break; 4900 case METHODDEF: 4901 case CLASSDEF: 4902 case TOPLEVEL: 4903 return null; 4904 } 4905 Assert.checkNonNull(env.next); 4906 env = env.next; 4907 } 4908 } 4909 4910 /** 4911 * Check for illegal references to static members of enum. In 4912 * an enum type, constructors and initializers may not 4913 * reference its static members unless they are constant. 4914 * 4915 * @param tree The tree making up the variable reference. 4916 * @param env The current environment. 4917 * @param v The variable's symbol. 4918 * @jls 8.9 Enum Types 4919 */ 4920 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4921 // JLS: 4922 // 4923 // "It is a compile-time error to reference a static field 4924 // of an enum type that is not a compile-time constant 4925 // (15.28) from constructors, instance initializer blocks, 4926 // or instance variable initializer expressions of that 4927 // type. It is a compile-time error for the constructors, 4928 // instance initializer blocks, or instance variable 4929 // initializer expressions of an enum constant e to refer 4930 // to itself or to an enum constant of the same type that 4931 // is declared to the right of e." 4932 if (isStaticEnumField(v)) { 4933 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4934 4935 if (enclClass == null || enclClass.owner == null) 4936 return; 4937 4938 // See if the enclosing class is the enum (or a 4939 // subclass thereof) declaring v. If not, this 4940 // reference is OK. 4941 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4942 return; 4943 4944 // If the reference isn't from an initializer, then 4945 // the reference is OK. 4946 if (!Resolve.isInitializer(env)) 4947 return; 4948 4949 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4950 } 4951 } 4952 4953 /** Is the given symbol a static, non-constant field of an Enum? 4954 * Note: enum literals should not be regarded as such 4955 */ 4956 private boolean isStaticEnumField(VarSymbol v) { 4957 return Flags.isEnum(v.owner) && 4958 Flags.isStatic(v) && 4959 !Flags.isConstant(v) && 4960 v.name != names._class; 4961 } 4962 4963 /** 4964 * Check that method arguments conform to its instantiation. 4965 **/ 4966 public Type checkMethod(Type site, 4967 final Symbol sym, 4968 ResultInfo resultInfo, 4969 Env<AttrContext> env, 4970 final List<JCExpression> argtrees, 4971 List<Type> argtypes, 4972 List<Type> typeargtypes) { 4973 // Test (5): if symbol is an instance method of a raw type, issue 4974 // an unchecked warning if its argument types change under erasure. 4975 if ((sym.flags() & STATIC) == 0 && 4976 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4977 Type s = types.asOuterSuper(site, sym.owner); 4978 if (s != null && s.isRaw() && 4979 !types.isSameTypes(sym.type.getParameterTypes(), 4980 sym.erasure(types).getParameterTypes())) { 4981 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s)); 4982 } 4983 } 4984 4985 if (env.info.defaultSuperCallSite != null) { 4986 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4987 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4988 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4989 List<MethodSymbol> icand_sup = 4990 types.interfaceCandidates(sup, (MethodSymbol)sym); 4991 if (icand_sup.nonEmpty() && 4992 icand_sup.head != sym && 4993 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4994 log.error(env.tree.pos(), 4995 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4996 break; 4997 } 4998 } 4999 env.info.defaultSuperCallSite = null; 5000 } 5001 5002 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 5003 JCMethodInvocation app = (JCMethodInvocation)env.tree; 5004 if (app.meth.hasTag(SELECT) && 5005 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 5006 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 5007 } 5008 } 5009 5010 // Compute the identifier's instantiated type. 5011 // For methods, we need to compute the instance type by 5012 // Resolve.instantiate from the symbol's type as well as 5013 // any type arguments and value arguments. 5014 Warner noteWarner = new Warner(); 5015 try { 5016 Type owntype = rs.checkMethod( 5017 env, 5018 site, 5019 sym, 5020 resultInfo, 5021 argtypes, 5022 typeargtypes, 5023 noteWarner); 5024 5025 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 5026 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 5027 5028 argtypes = argtypes.map(checkDeferredMap); 5029 5030 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 5031 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym), 5032 sym.name, 5033 rs.methodArguments(sym.type.getParameterTypes()), 5034 rs.methodArguments(argtypes.map(checkDeferredMap)), 5035 kindName(sym.location()), 5036 sym.location())); 5037 if (resultInfo.pt != Infer.anyPoly || 5038 !owntype.hasTag(METHOD) || 5039 !owntype.isPartial()) { 5040 //if this is not a partially inferred method type, erase return type. Otherwise, 5041 //erasure is carried out in PartiallyInferredMethodType.check(). 5042 owntype = new MethodType(owntype.getParameterTypes(), 5043 types.erasure(owntype.getReturnType()), 5044 types.erasure(owntype.getThrownTypes()), 5045 syms.methodClass); 5046 } 5047 } 5048 5049 PolyKind pkind = (sym.type.hasTag(FORALL) && 5050 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 5051 PolyKind.POLY : PolyKind.STANDALONE; 5052 TreeInfo.setPolyKind(env.tree, pkind); 5053 5054 return (resultInfo.pt == Infer.anyPoly) ? 5055 owntype : 5056 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 5057 resultInfo.checkContext.inferenceContext()); 5058 } catch (Infer.InferenceException ex) { 5059 //invalid target type - propagate exception outwards or report error 5060 //depending on the current check context 5061 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 5062 return types.createErrorType(site); 5063 } catch (Resolve.InapplicableMethodException ex) { 5064 final JCDiagnostic diag = ex.getDiagnostic(); 5065 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 5066 @Override 5067 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5068 return new Pair<>(sym, diag); 5069 } 5070 }; 5071 List<Type> argtypes2 = argtypes.map( 5072 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5073 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5074 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5075 log.report(errDiag); 5076 return types.createErrorType(site); 5077 } 5078 } 5079 5080 public void visitDefaultValue(JCDefaultValue tree) { 5081 if (!allowPrimitiveClasses) { 5082 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 5083 Feature.PRIMITIVE_CLASSES.error(sourceName)); 5084 } 5085 5086 // Attribute the qualifier expression, and determine its symbol (if any). 5087 Type site = attribTree(tree.clazz, env, new ResultInfo(KindSelector.TYP_PCK, Type.noType)); 5088 if (!pkind().contains(KindSelector.TYP_PCK)) 5089 site = capture(site); // Capture field access 5090 if (!allowPrimitiveClasses) { 5091 result = types.createErrorType(names._default, site.tsym, site); 5092 } else { 5093 Symbol sym = switch (site.getTag()) { 5094 case WILDCARD -> throw new AssertionError(tree); 5095 case PACKAGE -> { 5096 log.error(tree.pos, Errors.CantResolveLocation(Kinds.KindName.CLASS, site.tsym.getQualifiedName(), null, null, 5097 Fragments.Location(Kinds.typeKindName(env.enclClass.type), env.enclClass.type, null))); 5098 yield syms.errSymbol; 5099 } 5100 case ERROR -> types.createErrorType(names._default, site.tsym, site).tsym; 5101 default -> new VarSymbol(STATIC, names._default, site, site.tsym); 5102 }; 5103 5104 if (site.hasTag(TYPEVAR) && sym.kind != ERR) { 5105 site = types.skipTypeVars(site, true); 5106 } 5107 result = checkId(tree, site, sym, env, resultInfo); 5108 } 5109 } 5110 5111 public void visitLiteral(JCLiteral tree) { 5112 result = check(tree, litType(tree.typetag).constType(tree.value), 5113 KindSelector.VAL, resultInfo); 5114 } 5115 //where 5116 /** Return the type of a literal with given type tag. 5117 */ 5118 Type litType(TypeTag tag) { 5119 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5120 } 5121 5122 public void visitStringTemplate(JCStringTemplate tree) { 5123 JCExpression processor = tree.processor; 5124 Type resultType = syms.stringTemplateType; 5125 5126 if (processor != null) { 5127 resultType = attribTree(processor, env, new ResultInfo(KindSelector.VAL, Type.noType)); 5128 resultType = chk.checkProcessorType(processor, resultType, env); 5129 } 5130 5131 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 5132 5133 for (JCExpression arg : tree.expressions) { 5134 chk.checkNonVoid(arg.pos(), attribExpr(arg, localEnv)); 5135 } 5136 5137 tree.type = resultType; 5138 result = resultType; 5139 5140 check(tree, resultType, KindSelector.VAL, resultInfo); 5141 } 5142 5143 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5144 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5145 } 5146 5147 public void visitTypeArray(JCArrayTypeTree tree) { 5148 Type etype = attribType(tree.elemtype, env); 5149 Type type = new ArrayType(etype, syms.arrayClass); 5150 result = check(tree, type, KindSelector.TYP, resultInfo); 5151 } 5152 5153 /** Visitor method for parameterized types. 5154 * Bound checking is left until later, since types are attributed 5155 * before supertype structure is completely known 5156 */ 5157 public void visitTypeApply(JCTypeApply tree) { 5158 Type owntype = types.createErrorType(tree.type); 5159 5160 // Attribute functor part of application and make sure it's a class. 5161 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5162 5163 // Attribute type parameters 5164 List<Type> actuals = attribTypes(tree.arguments, env); 5165 5166 if (clazztype.hasTag(CLASS)) { 5167 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5168 if (actuals.isEmpty()) //diamond 5169 actuals = formals; 5170 5171 if (actuals.length() == formals.length()) { 5172 List<Type> a = actuals; 5173 List<Type> f = formals; 5174 while (a.nonEmpty()) { 5175 a.head = a.head.withTypeVar(f.head); 5176 a = a.tail; 5177 f = f.tail; 5178 } 5179 // Compute the proper generic outer 5180 Type clazzOuter = clazztype.getEnclosingType(); 5181 if (clazzOuter.hasTag(CLASS)) { 5182 Type site; 5183 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5184 if (clazz.hasTag(IDENT)) { 5185 site = env.enclClass.sym.type; 5186 } else if (clazz.hasTag(SELECT)) { 5187 site = ((JCFieldAccess) clazz).selected.type; 5188 } else throw new AssertionError(""+tree); 5189 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5190 if (site.hasTag(CLASS)) 5191 site = types.asOuterSuper(site, clazzOuter.tsym); 5192 if (site == null) 5193 site = types.erasure(clazzOuter); 5194 clazzOuter = site; 5195 } 5196 } 5197 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5198 clazztype.getMetadata(), clazztype.getFlavor()); 5199 } else { 5200 if (formals.length() != 0) { 5201 log.error(tree.pos(), 5202 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5203 } else { 5204 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5205 } 5206 owntype = types.createErrorType(tree.type); 5207 } 5208 } 5209 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5210 } 5211 5212 public void visitTypeUnion(JCTypeUnion tree) { 5213 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5214 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5215 for (JCExpression typeTree : tree.alternatives) { 5216 Type ctype = attribType(typeTree, env); 5217 ctype = chk.checkType(typeTree.pos(), 5218 chk.checkClassType(typeTree.pos(), ctype), 5219 syms.throwableType); 5220 if (!ctype.isErroneous()) { 5221 //check that alternatives of a union type are pairwise 5222 //unrelated w.r.t. subtyping 5223 if (chk.intersects(ctype, multicatchTypes.toList())) { 5224 for (Type t : multicatchTypes) { 5225 boolean sub = types.isSubtype(ctype, t); 5226 boolean sup = types.isSubtype(t, ctype); 5227 if (sub || sup) { 5228 //assume 'a' <: 'b' 5229 Type a = sub ? ctype : t; 5230 Type b = sub ? t : ctype; 5231 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5232 } 5233 } 5234 } 5235 multicatchTypes.append(ctype); 5236 if (all_multicatchTypes != null) 5237 all_multicatchTypes.append(ctype); 5238 } else { 5239 if (all_multicatchTypes == null) { 5240 all_multicatchTypes = new ListBuffer<>(); 5241 all_multicatchTypes.appendList(multicatchTypes); 5242 } 5243 all_multicatchTypes.append(ctype); 5244 } 5245 } 5246 Type t = check(tree, types.lub(multicatchTypes.toList()), 5247 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5248 if (t.hasTag(CLASS)) { 5249 List<Type> alternatives = 5250 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5251 t = new UnionClassType((ClassType) t, alternatives); 5252 } 5253 tree.type = result = t; 5254 } 5255 5256 public void visitTypeIntersection(JCTypeIntersection tree) { 5257 attribTypes(tree.bounds, env); 5258 tree.type = result = checkIntersection(tree, tree.bounds); 5259 } 5260 5261 public void visitTypeParameter(JCTypeParameter tree) { 5262 TypeVar typeVar = (TypeVar) tree.type; 5263 5264 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5265 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5266 } 5267 5268 if (!typeVar.getUpperBound().isErroneous()) { 5269 //fixup type-parameter bound computed in 'attribTypeVariables' 5270 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5271 } 5272 } 5273 5274 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5275 Set<Symbol> boundSet = new HashSet<>(); 5276 if (bounds.nonEmpty()) { 5277 // accept class or interface or typevar as first bound. 5278 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5279 boundSet.add(types.erasure(bounds.head.type).tsym); 5280 if (bounds.head.type.isErroneous()) { 5281 return bounds.head.type; 5282 } 5283 else if (bounds.head.type.hasTag(TYPEVAR)) { 5284 // if first bound was a typevar, do not accept further bounds. 5285 if (bounds.tail.nonEmpty()) { 5286 log.error(bounds.tail.head.pos(), 5287 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5288 return bounds.head.type; 5289 } 5290 } else { 5291 // if first bound was a class or interface, accept only interfaces 5292 // as further bounds. 5293 for (JCExpression bound : bounds.tail) { 5294 bound.type = checkBase(bound.type, bound, env, false, true, false); 5295 if (bound.type.isErroneous()) { 5296 bounds = List.of(bound); 5297 } 5298 else if (bound.type.hasTag(CLASS)) { 5299 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5300 } 5301 } 5302 } 5303 } 5304 5305 if (bounds.length() == 0) { 5306 return syms.objectType; 5307 } else if (bounds.length() == 1) { 5308 return bounds.head.type; 5309 } else { 5310 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5311 // ... the variable's bound is a class type flagged COMPOUND 5312 // (see comment for TypeVar.bound). 5313 // In this case, generate a class tree that represents the 5314 // bound class, ... 5315 JCExpression extending; 5316 List<JCExpression> implementing; 5317 if (!bounds.head.type.isInterface()) { 5318 extending = bounds.head; 5319 implementing = bounds.tail; 5320 } else { 5321 extending = null; 5322 implementing = bounds; 5323 } 5324 JCClassDecl cd = make.at(tree).ClassDef( 5325 make.Modifiers(PUBLIC | ABSTRACT | (extending != null && TreeInfo.symbol(extending).isPrimitiveClass() ? PRIMITIVE_CLASS : 0)), 5326 names.empty, List.nil(), 5327 extending, implementing, List.nil()); 5328 5329 ClassSymbol c = (ClassSymbol)owntype.tsym; 5330 Assert.check((c.flags() & COMPOUND) != 0); 5331 cd.sym = c; 5332 c.sourcefile = env.toplevel.sourcefile; 5333 5334 // ... and attribute the bound class 5335 c.flags_field |= UNATTRIBUTED; 5336 Env<AttrContext> cenv = enter.classEnv(cd, env); 5337 typeEnvs.put(c, cenv); 5338 attribClass(c); 5339 return owntype; 5340 } 5341 } 5342 5343 public void visitWildcard(JCWildcard tree) { 5344 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5345 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5346 ? syms.objectType 5347 : attribType(tree.inner, env); 5348 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type, false), 5349 tree.kind.kind, 5350 syms.boundClass), 5351 KindSelector.TYP, resultInfo); 5352 } 5353 5354 public void visitAnnotation(JCAnnotation tree) { 5355 Assert.error("should be handled in annotate"); 5356 } 5357 5358 @Override 5359 public void visitModifiers(JCModifiers tree) { 5360 //error recovery only: 5361 Assert.check(resultInfo.pkind == KindSelector.ERR); 5362 5363 attribAnnotationTypes(tree.annotations, env); 5364 } 5365 5366 public void visitAnnotatedType(JCAnnotatedType tree) { 5367 attribAnnotationTypes(tree.annotations, env); 5368 Type underlyingType = attribType(tree.underlyingType, env); 5369 Type annotatedType = underlyingType.preannotatedType(); 5370 5371 if (!env.info.isNewClass) 5372 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5373 result = tree.type = annotatedType; 5374 } 5375 5376 public void visitErroneous(JCErroneous tree) { 5377 if (tree.errs != null) { 5378 Env<AttrContext> errEnv = env.dup(env.tree, env.info.dup()); 5379 errEnv.info.returnResult = unknownExprInfo; 5380 for (JCTree err : tree.errs) 5381 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5382 } 5383 result = tree.type = syms.errType; 5384 } 5385 5386 /** Default visitor method for all other trees. 5387 */ 5388 public void visitTree(JCTree tree) { 5389 throw new AssertionError(); 5390 } 5391 5392 /** 5393 * Attribute an env for either a top level tree or class or module declaration. 5394 */ 5395 public void attrib(Env<AttrContext> env) { 5396 switch (env.tree.getTag()) { 5397 case MODULEDEF: 5398 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5399 break; 5400 case PACKAGEDEF: 5401 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5402 break; 5403 default: 5404 attribClass(env.tree.pos(), env.enclClass.sym); 5405 } 5406 } 5407 5408 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5409 try { 5410 annotate.flush(); 5411 attribPackage(p); 5412 } catch (CompletionFailure ex) { 5413 chk.completionError(pos, ex); 5414 } 5415 } 5416 5417 void attribPackage(PackageSymbol p) { 5418 attribWithLint(p, 5419 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5420 } 5421 5422 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5423 try { 5424 annotate.flush(); 5425 attribModule(m); 5426 } catch (CompletionFailure ex) { 5427 chk.completionError(pos, ex); 5428 } 5429 } 5430 5431 void attribModule(ModuleSymbol m) { 5432 attribWithLint(m, env -> attribStat(env.tree, env)); 5433 } 5434 5435 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5436 Env<AttrContext> env = typeEnvs.get(sym); 5437 5438 Env<AttrContext> lintEnv = env; 5439 while (lintEnv.info.lint == null) 5440 lintEnv = lintEnv.next; 5441 5442 Lint lint = lintEnv.info.lint.augment(sym); 5443 5444 Lint prevLint = chk.setLint(lint); 5445 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5446 5447 try { 5448 deferredLintHandler.flush(env.tree.pos()); 5449 attrib.accept(env); 5450 } finally { 5451 log.useSource(prev); 5452 chk.setLint(prevLint); 5453 } 5454 } 5455 5456 /** Main method: attribute class definition associated with given class symbol. 5457 * reporting completion failures at the given position. 5458 * @param pos The source position at which completion errors are to be 5459 * reported. 5460 * @param c The class symbol whose definition will be attributed. 5461 */ 5462 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5463 try { 5464 annotate.flush(); 5465 attribClass(c); 5466 if (allowPrimitiveClasses && c.type.isPrimitiveClass()) { 5467 final Env<AttrContext> env = typeEnvs.get(c); 5468 if (env != null && env.tree != null && env.tree.hasTag(CLASSDEF)) 5469 chk.checkNonCyclicMembership((JCClassDecl)env.tree); 5470 } 5471 } catch (CompletionFailure ex) { 5472 chk.completionError(pos, ex); 5473 } 5474 } 5475 5476 /** Attribute class definition associated with given class symbol. 5477 * @param c The class symbol whose definition will be attributed. 5478 */ 5479 void attribClass(ClassSymbol c) throws CompletionFailure { 5480 if (c.type.hasTag(ERROR)) return; 5481 5482 // Check for cycles in the inheritance graph, which can arise from 5483 // ill-formed class files. 5484 chk.checkNonCyclic(null, c.type); 5485 5486 Type st = types.supertype(c.type); 5487 if ((c.flags_field & Flags.COMPOUND) == 0 && 5488 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5489 // First, attribute superclass. 5490 if (st.hasTag(CLASS)) 5491 attribClass((ClassSymbol)st.tsym); 5492 5493 // Next attribute owner, if it is a class. 5494 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5495 attribClass((ClassSymbol)c.owner); 5496 5497 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5498 } 5499 5500 // The previous operations might have attributed the current class 5501 // if there was a cycle. So we test first whether the class is still 5502 // UNATTRIBUTED. 5503 if ((c.flags_field & UNATTRIBUTED) != 0) { 5504 c.flags_field &= ~UNATTRIBUTED; 5505 5506 // Get environment current at the point of class definition. 5507 Env<AttrContext> env = typeEnvs.get(c); 5508 5509 if (c.isSealed() && 5510 !c.isEnum() && 5511 !c.isPermittedExplicit && 5512 c.permitted.isEmpty()) { 5513 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5514 } 5515 5516 if (c.isSealed()) { 5517 Set<Symbol> permittedTypes = new HashSet<>(); 5518 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5519 for (Symbol subTypeSym : c.permitted) { 5520 boolean isTypeVar = false; 5521 if (subTypeSym.type.getTag() == TYPEVAR) { 5522 isTypeVar = true; //error recovery 5523 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5524 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subTypeSym.type))); 5525 } 5526 if (subTypeSym.isAnonymous() && !c.isEnum()) { 5527 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5528 } 5529 if (permittedTypes.contains(subTypeSym)) { 5530 DiagnosticPosition pos = 5531 env.enclClass.permitting.stream() 5532 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subTypeSym, permittedExpr, true) != null) 5533 .limit(2).collect(List.collector()).get(1); 5534 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subTypeSym.type))); 5535 } else { 5536 permittedTypes.add(subTypeSym); 5537 } 5538 if (sealedInUnnamed) { 5539 if (subTypeSym.packge() != c.packge()) { 5540 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5541 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5542 ); 5543 } 5544 } else if (subTypeSym.packge().modle != c.packge().modle) { 5545 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5546 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5547 ); 5548 } 5549 if (subTypeSym == c.type.tsym || types.isSuperType(subTypeSym.type, c.type)) { 5550 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, ((JCClassDecl)env.tree).permitting), 5551 Errors.InvalidPermitsClause( 5552 subTypeSym == c.type.tsym ? 5553 Fragments.MustNotBeSameClass : 5554 Fragments.MustNotBeSupertype(subTypeSym.type) 5555 ) 5556 ); 5557 } else if (!isTypeVar) { 5558 boolean thisIsASuper = types.directSupertypes(subTypeSym.type) 5559 .stream() 5560 .anyMatch(d -> d.tsym == c); 5561 if (!thisIsASuper) { 5562 log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), 5563 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subTypeSym.type))); 5564 } 5565 } 5566 } 5567 } 5568 5569 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5570 .stream() 5571 .filter(s -> s.tsym.isSealed()) 5572 .map(s -> (ClassSymbol) s.tsym) 5573 .collect(List.collector()); 5574 5575 if (sealedSupers.isEmpty()) { 5576 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5577 boolean hasErrorSuper = false; 5578 5579 hasErrorSuper |= types.directSupertypes(c.type) 5580 .stream() 5581 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5582 5583 ClassType ct = (ClassType) c.type; 5584 5585 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5586 5587 if (!hasErrorSuper) { 5588 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5589 } 5590 } 5591 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5592 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5593 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5594 } 5595 5596 if (!c.type.isCompound()) { 5597 for (ClassSymbol supertypeSym : sealedSupers) { 5598 if (!supertypeSym.permitted.contains(c.type.tsym)) { 5599 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5600 } 5601 } 5602 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5603 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5604 c.isInterface() ? 5605 Errors.NonSealedOrSealedExpected : 5606 Errors.NonSealedSealedOrFinalExpected); 5607 } 5608 } 5609 } 5610 5611 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5612 // because the annotations were not available at the time the env was created. Therefore, 5613 // we look up the environment chain for the first enclosing environment for which the 5614 // lint value is set. Typically, this is the parent env, but might be further if there 5615 // are any envs created as a result of TypeParameter nodes. 5616 Env<AttrContext> lintEnv = env; 5617 while (lintEnv.info.lint == null) 5618 lintEnv = lintEnv.next; 5619 5620 // Having found the enclosing lint value, we can initialize the lint value for this class 5621 env.info.lint = lintEnv.info.lint.augment(c); 5622 5623 Lint prevLint = chk.setLint(env.info.lint); 5624 JavaFileObject prev = log.useSource(c.sourcefile); 5625 ResultInfo prevReturnRes = env.info.returnResult; 5626 5627 try { 5628 deferredLintHandler.flush(env.tree); 5629 env.info.returnResult = null; 5630 // java.lang.Enum may not be subclassed by a non-enum 5631 if (st.tsym == syms.enumSym && 5632 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5633 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5634 5635 // Enums may not be extended by source-level classes 5636 if (st.tsym != null && 5637 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5638 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5639 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5640 } 5641 5642 if (rs.isSerializable(c.type)) { 5643 env.info.isSerializable = true; 5644 } 5645 5646 if (c.isValueClass()) { 5647 Assert.check(env.tree.hasTag(CLASSDEF)); 5648 chk.checkConstraintsOfValueClass(env.tree.pos(), c); 5649 } 5650 5651 attribClassBody(env, c); 5652 5653 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5654 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5655 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5656 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5657 5658 if ((c.flags_field & Flags.UNNAMED_CLASS) != 0) { 5659 chk.checkHasMain(env.tree.pos(), c); 5660 } 5661 } finally { 5662 env.info.returnResult = prevReturnRes; 5663 log.useSource(prev); 5664 chk.setLint(prevLint); 5665 } 5666 5667 } 5668 } 5669 5670 public void visitImport(JCImport tree) { 5671 // nothing to do 5672 } 5673 5674 public void visitModuleDef(JCModuleDecl tree) { 5675 tree.sym.completeUsesProvides(); 5676 ModuleSymbol msym = tree.sym; 5677 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5678 Lint prevLint = chk.setLint(lint); 5679 chk.checkModuleName(tree); 5680 chk.checkDeprecatedAnnotation(tree, msym); 5681 5682 try { 5683 deferredLintHandler.flush(tree.pos()); 5684 } finally { 5685 chk.setLint(prevLint); 5686 } 5687 } 5688 5689 /** Finish the attribution of a class. */ 5690 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5691 JCClassDecl tree = (JCClassDecl)env.tree; 5692 Assert.check(c == tree.sym); 5693 5694 // Validate type parameters, supertype and interfaces. 5695 attribStats(tree.typarams, env); 5696 if (!c.isAnonymous()) { 5697 //already checked if anonymous 5698 chk.validate(tree.typarams, env); 5699 chk.validate(tree.extending, env); 5700 chk.validate(tree.implementing, env); 5701 } 5702 5703 c.markAbstractIfNeeded(types); 5704 5705 // If this is a non-abstract class, check that it has no abstract 5706 // methods or unimplemented methods of an implemented interface. 5707 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5708 chk.checkAllDefined(tree.pos(), c); 5709 } 5710 5711 if ((c.flags() & ANNOTATION) != 0) { 5712 if (tree.implementing.nonEmpty()) 5713 log.error(tree.implementing.head.pos(), 5714 Errors.CantExtendIntfAnnotation); 5715 if (tree.typarams.nonEmpty()) { 5716 log.error(tree.typarams.head.pos(), 5717 Errors.IntfAnnotationCantHaveTypeParams(c)); 5718 } 5719 5720 // If this annotation type has a @Repeatable, validate 5721 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5722 // If this annotation type has a @Repeatable, validate 5723 if (repeatable != null) { 5724 // get diagnostic position for error reporting 5725 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5726 Assert.checkNonNull(cbPos); 5727 5728 chk.validateRepeatable(c, repeatable, cbPos); 5729 } 5730 } else { 5731 // Check that all extended classes and interfaces 5732 // are compatible (i.e. no two define methods with same arguments 5733 // yet different return types). (JLS 8.4.8.3) 5734 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5735 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5736 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5737 } 5738 5739 // Check that class does not import the same parameterized interface 5740 // with two different argument lists. 5741 chk.checkClassBounds(tree.pos(), c.type); 5742 5743 tree.type = c.type; 5744 5745 for (List<JCTypeParameter> l = tree.typarams; 5746 l.nonEmpty(); l = l.tail) { 5747 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5748 } 5749 5750 // Check that a generic class doesn't extend Throwable 5751 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5752 log.error(tree.extending.pos(), Errors.GenericThrowable); 5753 5754 // Check that all methods which implement some 5755 // method conform to the method they implement. 5756 chk.checkImplementations(tree); 5757 5758 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5759 checkAutoCloseable(tree.pos(), env, c.type); 5760 5761 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5762 // Attribute declaration 5763 attribStat(l.head, env); 5764 // Check that declarations in inner classes are not static (JLS 8.1.2) 5765 // Make an exception for static constants. 5766 if (!allowRecords && 5767 c.owner.kind != PCK && 5768 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5769 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5770 VarSymbol sym = null; 5771 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5772 if (sym == null || 5773 sym.kind != VAR || 5774 sym.getConstValue() == null) 5775 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5776 } 5777 } 5778 5779 // Check for cycles among non-initial constructors. 5780 chk.checkCyclicConstructors(tree); 5781 5782 // Check for cycles among annotation elements. 5783 chk.checkNonCyclicElements(tree); 5784 5785 // Check for proper use of serialVersionUID and other 5786 // serialization-related fields and methods 5787 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5788 && rs.isSerializable(c.type) 5789 && !c.isAnonymous()) { 5790 chk.checkSerialStructure(tree, c); 5791 } 5792 // Correctly organize the positions of the type annotations 5793 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5794 5795 // Check type annotations applicability rules 5796 validateTypeAnnotations(tree, false); 5797 } 5798 // where 5799 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5800 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5801 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5802 if (types.isSameType(al.head.annotationType.type, t)) 5803 return al.head.pos(); 5804 } 5805 5806 return null; 5807 } 5808 5809 private Type capture(Type type) { 5810 return types.capture(type); 5811 } 5812 5813 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5814 if (type.isErroneous()) { 5815 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5816 } else { 5817 tree.vartype = make.at(Position.NOPOS).Type(type); 5818 } 5819 } 5820 5821 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5822 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5823 } 5824 //where 5825 private final class TypeAnnotationsValidator extends TreeScanner { 5826 5827 private final boolean sigOnly; 5828 public TypeAnnotationsValidator(boolean sigOnly) { 5829 this.sigOnly = sigOnly; 5830 } 5831 5832 public void visitAnnotation(JCAnnotation tree) { 5833 chk.validateTypeAnnotation(tree, null, false); 5834 super.visitAnnotation(tree); 5835 } 5836 public void visitAnnotatedType(JCAnnotatedType tree) { 5837 if (!tree.underlyingType.type.isErroneous()) { 5838 super.visitAnnotatedType(tree); 5839 } 5840 } 5841 public void visitTypeParameter(JCTypeParameter tree) { 5842 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5843 scan(tree.bounds); 5844 // Don't call super. 5845 // This is needed because above we call validateTypeAnnotation with 5846 // false, which would forbid annotations on type parameters. 5847 // super.visitTypeParameter(tree); 5848 } 5849 public void visitMethodDef(JCMethodDecl tree) { 5850 if (tree.recvparam != null && 5851 !tree.recvparam.vartype.type.isErroneous()) { 5852 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5853 } 5854 if (tree.restype != null && tree.restype.type != null) { 5855 validateAnnotatedType(tree.restype, tree.restype.type); 5856 } 5857 if (sigOnly) { 5858 scan(tree.mods); 5859 scan(tree.restype); 5860 scan(tree.typarams); 5861 scan(tree.recvparam); 5862 scan(tree.params); 5863 scan(tree.thrown); 5864 } else { 5865 scan(tree.defaultValue); 5866 scan(tree.body); 5867 } 5868 } 5869 public void visitVarDef(final JCVariableDecl tree) { 5870 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5871 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5872 validateAnnotatedType(tree.vartype, tree.sym.type); 5873 scan(tree.mods); 5874 scan(tree.vartype); 5875 if (!sigOnly) { 5876 scan(tree.init); 5877 } 5878 } 5879 public void visitTypeCast(JCTypeCast tree) { 5880 if (tree.clazz != null && tree.clazz.type != null) 5881 validateAnnotatedType(tree.clazz, tree.clazz.type); 5882 super.visitTypeCast(tree); 5883 } 5884 public void visitTypeTest(JCInstanceOf tree) { 5885 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5886 validateAnnotatedType(tree.pattern, tree.pattern.type); 5887 super.visitTypeTest(tree); 5888 } 5889 public void visitNewClass(JCNewClass tree) { 5890 if (tree.clazz != null && tree.clazz.type != null) { 5891 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5892 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5893 tree.clazz.type.tsym); 5894 } 5895 if (tree.def != null) { 5896 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5897 } 5898 5899 validateAnnotatedType(tree.clazz, tree.clazz.type); 5900 } 5901 super.visitNewClass(tree); 5902 } 5903 public void visitNewArray(JCNewArray tree) { 5904 if (tree.elemtype != null && tree.elemtype.type != null) { 5905 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5906 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5907 tree.elemtype.type.tsym); 5908 } 5909 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5910 } 5911 super.visitNewArray(tree); 5912 } 5913 public void visitClassDef(JCClassDecl tree) { 5914 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5915 if (sigOnly) { 5916 scan(tree.mods); 5917 scan(tree.typarams); 5918 scan(tree.extending); 5919 scan(tree.implementing); 5920 } 5921 for (JCTree member : tree.defs) { 5922 if (member.hasTag(Tag.CLASSDEF)) { 5923 continue; 5924 } 5925 scan(member); 5926 } 5927 } 5928 public void visitBlock(JCBlock tree) { 5929 if (!sigOnly) { 5930 scan(tree.stats); 5931 } 5932 } 5933 5934 /* I would want to model this after 5935 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5936 * and override visitSelect and visitTypeApply. 5937 * However, we only set the annotated type in the top-level type 5938 * of the symbol. 5939 * Therefore, we need to override each individual location where a type 5940 * can occur. 5941 */ 5942 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5943 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5944 5945 if (type.isPrimitiveOrVoid()) { 5946 return; 5947 } 5948 5949 JCTree enclTr = errtree; 5950 Type enclTy = type; 5951 5952 boolean repeat = true; 5953 while (repeat) { 5954 if (enclTr.hasTag(TYPEAPPLY)) { 5955 List<Type> tyargs = enclTy.getTypeArguments(); 5956 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5957 if (trargs.length() > 0) { 5958 // Nothing to do for diamonds 5959 if (tyargs.length() == trargs.length()) { 5960 for (int i = 0; i < tyargs.length(); ++i) { 5961 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5962 } 5963 } 5964 // If the lengths don't match, it's either a diamond 5965 // or some nested type that redundantly provides 5966 // type arguments in the tree. 5967 } 5968 5969 // Look at the clazz part of a generic type 5970 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5971 } 5972 5973 if (enclTr.hasTag(SELECT)) { 5974 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5975 if (enclTy != null && 5976 !enclTy.hasTag(NONE)) { 5977 enclTy = enclTy.getEnclosingType(); 5978 } 5979 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5980 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5981 if (enclTy == null || enclTy.hasTag(NONE)) { 5982 if (at.getAnnotations().size() == 1) { 5983 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute)); 5984 } else { 5985 ListBuffer<Attribute.Compound> comps = new ListBuffer<>(); 5986 for (JCAnnotation an : at.getAnnotations()) { 5987 comps.add(an.attribute); 5988 } 5989 log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList())); 5990 } 5991 repeat = false; 5992 } 5993 enclTr = at.underlyingType; 5994 // enclTy doesn't need to be changed 5995 } else if (enclTr.hasTag(IDENT)) { 5996 repeat = false; 5997 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5998 JCWildcard wc = (JCWildcard) enclTr; 5999 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 6000 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 6001 validateAnnotatedType(wc.getBound(), wc.getBound().type); 6002 } else { 6003 // Nothing to do for UNBOUND 6004 } 6005 repeat = false; 6006 } else if (enclTr.hasTag(TYPEARRAY)) { 6007 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 6008 validateAnnotatedType(art.getType(), art.elemtype.type); 6009 repeat = false; 6010 } else if (enclTr.hasTag(TYPEUNION)) { 6011 JCTypeUnion ut = (JCTypeUnion) enclTr; 6012 for (JCTree t : ut.getTypeAlternatives()) { 6013 validateAnnotatedType(t, t.type); 6014 } 6015 repeat = false; 6016 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 6017 JCTypeIntersection it = (JCTypeIntersection) enclTr; 6018 for (JCTree t : it.getBounds()) { 6019 validateAnnotatedType(t, t.type); 6020 } 6021 repeat = false; 6022 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 6023 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 6024 repeat = false; 6025 } else { 6026 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 6027 " within: "+ errtree + " with kind: " + errtree.getKind()); 6028 } 6029 } 6030 } 6031 6032 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 6033 Symbol sym) { 6034 // Ensure that no declaration annotations are present. 6035 // Note that a tree type might be an AnnotatedType with 6036 // empty annotations, if only declaration annotations were given. 6037 // This method will raise an error for such a type. 6038 for (JCAnnotation ai : annotations) { 6039 if (!ai.type.isErroneous() && 6040 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 6041 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 6042 } 6043 } 6044 } 6045 } 6046 6047 // <editor-fold desc="post-attribution visitor"> 6048 6049 /** 6050 * Handle missing types/symbols in an AST. This routine is useful when 6051 * the compiler has encountered some errors (which might have ended up 6052 * terminating attribution abruptly); if the compiler is used in fail-over 6053 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 6054 * prevents NPE to be propagated during subsequent compilation steps. 6055 */ 6056 public void postAttr(JCTree tree) { 6057 new PostAttrAnalyzer().scan(tree); 6058 } 6059 6060 class PostAttrAnalyzer extends TreeScanner { 6061 6062 private void initTypeIfNeeded(JCTree that) { 6063 if (that.type == null) { 6064 if (that.hasTag(METHODDEF)) { 6065 that.type = dummyMethodType((JCMethodDecl)that); 6066 } else { 6067 that.type = syms.unknownType; 6068 } 6069 } 6070 } 6071 6072 /* Construct a dummy method type. If we have a method declaration, 6073 * and the declared return type is void, then use that return type 6074 * instead of UNKNOWN to avoid spurious error messages in lambda 6075 * bodies (see:JDK-8041704). 6076 */ 6077 private Type dummyMethodType(JCMethodDecl md) { 6078 Type restype = syms.unknownType; 6079 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 6080 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 6081 if (prim.typetag == VOID) 6082 restype = syms.voidType; 6083 } 6084 return new MethodType(List.nil(), restype, 6085 List.nil(), syms.methodClass); 6086 } 6087 private Type dummyMethodType() { 6088 return dummyMethodType(null); 6089 } 6090 6091 @Override 6092 public void scan(JCTree tree) { 6093 if (tree == null) return; 6094 if (tree instanceof JCExpression) { 6095 initTypeIfNeeded(tree); 6096 } 6097 super.scan(tree); 6098 } 6099 6100 @Override 6101 public void visitIdent(JCIdent that) { 6102 if (that.sym == null) { 6103 that.sym = syms.unknownSymbol; 6104 } 6105 } 6106 6107 @Override 6108 public void visitSelect(JCFieldAccess that) { 6109 if (that.sym == null) { 6110 that.sym = syms.unknownSymbol; 6111 } 6112 super.visitSelect(that); 6113 } 6114 6115 @Override 6116 public void visitClassDef(JCClassDecl that) { 6117 initTypeIfNeeded(that); 6118 if (that.sym == null) { 6119 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6120 } 6121 super.visitClassDef(that); 6122 } 6123 6124 @Override 6125 public void visitMethodDef(JCMethodDecl that) { 6126 initTypeIfNeeded(that); 6127 if (that.sym == null) { 6128 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6129 } 6130 super.visitMethodDef(that); 6131 } 6132 6133 @Override 6134 public void visitVarDef(JCVariableDecl that) { 6135 initTypeIfNeeded(that); 6136 if (that.sym == null) { 6137 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6138 that.sym.adr = 0; 6139 } 6140 if (that.vartype == null) { 6141 that.vartype = make.at(Position.NOPOS).Erroneous(); 6142 } 6143 super.visitVarDef(that); 6144 } 6145 6146 @Override 6147 public void visitBindingPattern(JCBindingPattern that) { 6148 initTypeIfNeeded(that); 6149 initTypeIfNeeded(that.var); 6150 if (that.var.sym == null) { 6151 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6152 that.var.sym.adr = 0; 6153 } 6154 super.visitBindingPattern(that); 6155 } 6156 6157 @Override 6158 public void visitNewClass(JCNewClass that) { 6159 if (that.constructor == null) { 6160 that.constructor = new MethodSymbol(0, names.init, 6161 dummyMethodType(), syms.noSymbol); 6162 } 6163 if (that.constructorType == null) { 6164 that.constructorType = syms.unknownType; 6165 } 6166 super.visitNewClass(that); 6167 } 6168 6169 @Override 6170 public void visitAssignop(JCAssignOp that) { 6171 if (that.operator == null) { 6172 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6173 -1, syms.noSymbol); 6174 } 6175 super.visitAssignop(that); 6176 } 6177 6178 @Override 6179 public void visitBinary(JCBinary that) { 6180 if (that.operator == null) { 6181 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6182 -1, syms.noSymbol); 6183 } 6184 super.visitBinary(that); 6185 } 6186 6187 @Override 6188 public void visitUnary(JCUnary that) { 6189 if (that.operator == null) { 6190 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6191 -1, syms.noSymbol); 6192 } 6193 super.visitUnary(that); 6194 } 6195 6196 @Override 6197 public void visitReference(JCMemberReference that) { 6198 super.visitReference(that); 6199 if (that.sym == null) { 6200 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6201 syms.noSymbol); 6202 } 6203 } 6204 } 6205 // </editor-fold> 6206 6207 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6208 new TreeScanner() { 6209 Symbol packge = pkg; 6210 @Override 6211 public void visitIdent(JCIdent that) { 6212 that.sym = packge; 6213 } 6214 6215 @Override 6216 public void visitSelect(JCFieldAccess that) { 6217 that.sym = packge; 6218 packge = packge.owner; 6219 super.visitSelect(that); 6220 } 6221 }.scan(pid); 6222 } 6223 6224 }