1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.IdentifierTree;
  38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  39 import com.sun.source.tree.MemberSelectTree;
  40 import com.sun.source.tree.TreeVisitor;
  41 import com.sun.source.util.SimpleTreeVisitor;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Lint.LintCategory;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Source.Feature;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  53 import com.sun.tools.javac.jvm.*;
  54 
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  58 
  59 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  60 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  61 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  62 import com.sun.tools.javac.tree.*;
  63 import com.sun.tools.javac.tree.JCTree.*;
  64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  65 import com.sun.tools.javac.util.*;
  66 import com.sun.tools.javac.util.DefinedBy.Api;
  67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  68 import com.sun.tools.javac.util.JCDiagnostic.Error;
  69 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  70 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  71 import com.sun.tools.javac.util.List;
  72 
  73 import static com.sun.tools.javac.code.Flags.*;
  74 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  75 import static com.sun.tools.javac.code.Flags.BLOCK;
  76 import static com.sun.tools.javac.code.Kinds.*;
  77 import static com.sun.tools.javac.code.Kinds.Kind.*;
  78 import static com.sun.tools.javac.code.TypeTag.*;
  79 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  82 
  83 /** This is the main context-dependent analysis phase in GJC. It
  84  *  encompasses name resolution, type checking and constant folding as
  85  *  subtasks. Some subtasks involve auxiliary classes.
  86  *  @see Check
  87  *  @see Resolve
  88  *  @see ConstFold
  89  *  @see Infer
  90  *
  91  *  <p><b>This is NOT part of any supported API.
  92  *  If you write code that depends on this, you do so at your own risk.
  93  *  This code and its internal interfaces are subject to change or
  94  *  deletion without notice.</b>
  95  */
  96 public class Attr extends JCTree.Visitor {
  97     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  98 
  99     final Names names;
 100     final Log log;
 101     final Symtab syms;
 102     final Resolve rs;
 103     final Operators operators;
 104     final Infer infer;
 105     final Analyzer analyzer;
 106     final DeferredAttr deferredAttr;
 107     final Check chk;
 108     final Flow flow;
 109     final MemberEnter memberEnter;
 110     final TypeEnter typeEnter;
 111     final TreeMaker make;
 112     final ConstFold cfolder;
 113     final Enter enter;
 114     final Target target;
 115     final Types types;
 116     final Preview preview;
 117     final JCDiagnostic.Factory diags;
 118     final TypeAnnotations typeAnnotations;
 119     final DeferredLintHandler deferredLintHandler;
 120     final TypeEnvs typeEnvs;
 121     final Dependencies dependencies;
 122     final Annotate annotate;
 123     final ArgumentAttr argumentAttr;
 124     final MatchBindingsComputer matchBindingsComputer;
 125     final AttrRecover attrRecover;
 126 
 127     public static Attr instance(Context context) {
 128         Attr instance = context.get(attrKey);
 129         if (instance == null)
 130             instance = new Attr(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Attr(Context context) {
 136         context.put(attrKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         syms = Symtab.instance(context);
 141         rs = Resolve.instance(context);
 142         operators = Operators.instance(context);
 143         chk = Check.instance(context);
 144         flow = Flow.instance(context);
 145         memberEnter = MemberEnter.instance(context);
 146         typeEnter = TypeEnter.instance(context);
 147         make = TreeMaker.instance(context);
 148         enter = Enter.instance(context);
 149         infer = Infer.instance(context);
 150         analyzer = Analyzer.instance(context);
 151         deferredAttr = DeferredAttr.instance(context);
 152         cfolder = ConstFold.instance(context);
 153         target = Target.instance(context);
 154         types = Types.instance(context);
 155         preview = Preview.instance(context);
 156         diags = JCDiagnostic.Factory.instance(context);
 157         annotate = Annotate.instance(context);
 158         typeAnnotations = TypeAnnotations.instance(context);
 159         deferredLintHandler = DeferredLintHandler.instance(context);
 160         typeEnvs = TypeEnvs.instance(context);
 161         dependencies = Dependencies.instance(context);
 162         argumentAttr = ArgumentAttr.instance(context);
 163         matchBindingsComputer = MatchBindingsComputer.instance(context);
 164         attrRecover = AttrRecover.instance(context);
 165 
 166         Options options = Options.instance(context);
 167 
 168         Source source = Source.instance(context);
 169         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 170         allowRecords = Feature.RECORDS.allowedInSource(source);
 171         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 172                              Feature.PATTERN_SWITCH.allowedInSource(source);
 173         allowUnconditionalPatternsInstanceOf =
 174                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 175         sourceName = source.name;
 176         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 177 
 178         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 179         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 180         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 181         methodAttrInfo = new MethodAttrInfo();
 182         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 183         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 184         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 185         initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
 186     }
 187 
 188     /** Switch: reifiable types in instanceof enabled?
 189      */
 190     boolean allowReifiableTypesInInstanceof;
 191 
 192     /** Are records allowed
 193      */
 194     private final boolean allowRecords;
 195 
 196     /** Are patterns in switch allowed
 197      */
 198     private final boolean allowPatternSwitch;
 199 
 200     /** Are unconditional patterns in instanceof allowed
 201      */
 202     private final boolean allowUnconditionalPatternsInstanceOf;
 203 
 204     /**
 205      * Switch: warn about use of variable before declaration?
 206      * RFE: 6425594
 207      */
 208     boolean useBeforeDeclarationWarning;
 209 
 210     /**
 211      * Switch: name of source level; used for error reporting.
 212      */
 213     String sourceName;
 214 
 215     /** Check kind and type of given tree against protokind and prototype.
 216      *  If check succeeds, store type in tree and return it.
 217      *  If check fails, store errType in tree and return it.
 218      *  No checks are performed if the prototype is a method type.
 219      *  It is not necessary in this case since we know that kind and type
 220      *  are correct.
 221      *
 222      *  @param tree     The tree whose kind and type is checked
 223      *  @param found    The computed type of the tree
 224      *  @param ownkind  The computed kind of the tree
 225      *  @param resultInfo  The expected result of the tree
 226      */
 227     Type check(final JCTree tree,
 228                final Type found,
 229                final KindSelector ownkind,
 230                final ResultInfo resultInfo) {
 231         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 232         Type owntype;
 233         boolean shouldCheck = !found.hasTag(ERROR) &&
 234                 !resultInfo.pt.hasTag(METHOD) &&
 235                 !resultInfo.pt.hasTag(FORALL);
 236         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 237             log.error(tree.pos(),
 238                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 239                                             ownkind.kindNames()));
 240             owntype = types.createErrorType(found);
 241         } else if (inferenceContext.free(found)) {
 242             //delay the check if there are inference variables in the found type
 243             //this means we are dealing with a partially inferred poly expression
 244             owntype = shouldCheck ? resultInfo.pt : found;
 245             if (resultInfo.checkMode.installPostInferenceHook()) {
 246                 inferenceContext.addFreeTypeListener(List.of(found),
 247                         instantiatedContext -> {
 248                             ResultInfo pendingResult =
 249                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 250                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 251                         });
 252             }
 253         } else {
 254             owntype = shouldCheck ?
 255             resultInfo.check(tree, found) :
 256             found;
 257         }
 258         if (resultInfo.checkMode.updateTreeType()) {
 259             tree.type = owntype;
 260         }
 261         return owntype;
 262     }
 263 
 264     /** Is given blank final variable assignable, i.e. in a scope where it
 265      *  may be assigned to even though it is final?
 266      *  @param v      The blank final variable.
 267      *  @param env    The current environment.
 268      */
 269     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 270         Symbol owner = env.info.scope.owner;
 271            // owner refers to the innermost variable, method or
 272            // initializer block declaration at this point.
 273         boolean isAssignable =
 274             v.owner == owner
 275             ||
 276             ((owner.name == names.init ||    // i.e. we are in a constructor
 277               owner.kind == VAR ||           // i.e. we are in a variable initializer
 278               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 279              &&
 280              v.owner == owner.owner
 281              &&
 282              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 283         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 284         return isAssignable & !insideCompactConstructor;
 285     }
 286 
 287     /** Check that variable can be assigned to.
 288      *  @param pos    The current source code position.
 289      *  @param v      The assigned variable
 290      *  @param base   If the variable is referred to in a Select, the part
 291      *                to the left of the `.', null otherwise.
 292      *  @param env    The current environment.
 293      */
 294     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 295         if (v.name == names._this) {
 296             log.error(pos, Errors.CantAssignValToThis);
 297             return;
 298         }
 299         if ((v.flags() & FINAL) != 0 &&
 300             ((v.flags() & HASINIT) != 0
 301              ||
 302              !((base == null ||
 303                TreeInfo.isThisQualifier(base)) &&
 304                isAssignableAsBlankFinal(v, env)))) {
 305             if (v.isResourceVariable()) { //TWR resource
 306                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 307             } else {
 308                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 309             }
 310             return;
 311         }
 312 
 313         // Check instance field assignments that appear in constructor prologues
 314         if (rs.isEarlyReference(env, base, v)) {
 315 
 316             // Field may not be inherited from a superclass
 317             if (v.owner != env.enclClass.sym) {
 318                 log.error(pos, Errors.CantRefBeforeCtorCalled(v));
 319                 return;
 320             }
 321 
 322             // Field may not have an initializer
 323             if ((v.flags() & HASINIT) != 0) {
 324                 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v));
 325                 return;
 326             }
 327         }
 328 
 329         if (!env.info.ctorPrologue &&
 330                 v.owner.isValueClass() &&
 331                 v.owner.kind == TYP &&
 332                 v.owner == env.enclClass.sym &&
 333                 (v.flags() & STATIC) == 0 &&
 334                 (base == null ||
 335                         TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, base))) {
 336             log.error(pos, Errors.CantRefAfterCtorCalled(v));
 337         }
 338     }
 339 
 340     /** Does tree represent a static reference to an identifier?
 341      *  It is assumed that tree is either a SELECT or an IDENT.
 342      *  We have to weed out selects from non-type names here.
 343      *  @param tree    The candidate tree.
 344      */
 345     boolean isStaticReference(JCTree tree) {
 346         if (tree.hasTag(SELECT)) {
 347             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 348             if (lsym == null || lsym.kind != TYP) {
 349                 return false;
 350             }
 351         }
 352         return true;
 353     }
 354 
 355     /** Is this symbol a type?
 356      */
 357     static boolean isType(Symbol sym) {
 358         return sym != null && sym.kind == TYP;
 359     }
 360 
 361     /** Attribute a parsed identifier.
 362      * @param tree Parsed identifier name
 363      * @param topLevel The toplevel to use
 364      */
 365     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 366         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 367         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 368                                            syms.errSymbol.name,
 369                                            null, null, null, null);
 370         localEnv.enclClass.sym = syms.errSymbol;
 371         return attribIdent(tree, localEnv);
 372     }
 373 
 374     /** Attribute a parsed identifier.
 375      * @param tree Parsed identifier name
 376      * @param env The env to use
 377      */
 378     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 379         return tree.accept(identAttributer, env);
 380     }
 381     // where
 382         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 383         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 384             @Override @DefinedBy(Api.COMPILER_TREE)
 385             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 386                 Symbol site = visit(node.getExpression(), env);
 387                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 388                     return site;
 389                 Name name = (Name)node.getIdentifier();
 390                 if (site.kind == PCK) {
 391                     env.toplevel.packge = (PackageSymbol)site;
 392                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 393                             KindSelector.TYP_PCK);
 394                 } else {
 395                     env.enclClass.sym = (ClassSymbol)site;
 396                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 397                 }
 398             }
 399 
 400             @Override @DefinedBy(Api.COMPILER_TREE)
 401             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 402                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 403             }
 404         }
 405 
 406     public Type coerce(Type etype, Type ttype) {
 407         return cfolder.coerce(etype, ttype);
 408     }
 409 
 410     public Type attribType(JCTree node, TypeSymbol sym) {
 411         Env<AttrContext> env = typeEnvs.get(sym);
 412         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 413         return attribTree(node, localEnv, unknownTypeInfo);
 414     }
 415 
 416     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 417         // Attribute qualifying package or class.
 418         JCFieldAccess s = tree.qualid;
 419         return attribTree(s.selected, env,
 420                           new ResultInfo(tree.staticImport ?
 421                                          KindSelector.TYP : KindSelector.TYP_PCK,
 422                        Type.noType));
 423     }
 424 
 425     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 426         return attribToTree(expr, env, tree, unknownExprInfo);
 427     }
 428 
 429     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 430         return attribToTree(stmt, env, tree, statInfo);
 431     }
 432 
 433     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 434         breakTree = tree;
 435         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 436         try {
 437             deferredAttr.attribSpeculative(root, env, resultInfo,
 438                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 439                     argumentAttr.withLocalCacheContext());
 440             attrRecover.doRecovery();
 441         } catch (BreakAttr b) {
 442             return b.env;
 443         } catch (AssertionError ae) {
 444             if (ae.getCause() instanceof BreakAttr breakAttr) {
 445                 return breakAttr.env;
 446             } else {
 447                 throw ae;
 448             }
 449         } finally {
 450             breakTree = null;
 451             log.useSource(prev);
 452         }
 453         return env;
 454     }
 455 
 456     private JCTree breakTree = null;
 457 
 458     private static class BreakAttr extends RuntimeException {
 459         static final long serialVersionUID = -6924771130405446405L;
 460         private transient Env<AttrContext> env;
 461         private BreakAttr(Env<AttrContext> env) {
 462             this.env = env;
 463         }
 464     }
 465 
 466     /**
 467      * Mode controlling behavior of Attr.Check
 468      */
 469     enum CheckMode {
 470 
 471         NORMAL,
 472 
 473         /**
 474          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 475          * that the captured var cache in {@code InferenceContext} will be used in read-only
 476          * mode when performing inference checks.
 477          */
 478         NO_TREE_UPDATE {
 479             @Override
 480             public boolean updateTreeType() {
 481                 return false;
 482             }
 483         },
 484         /**
 485          * Mode signalling that caller will manage free types in tree decorations.
 486          */
 487         NO_INFERENCE_HOOK {
 488             @Override
 489             public boolean installPostInferenceHook() {
 490                 return false;
 491             }
 492         };
 493 
 494         public boolean updateTreeType() {
 495             return true;
 496         }
 497         public boolean installPostInferenceHook() {
 498             return true;
 499         }
 500     }
 501 
 502 
 503     class ResultInfo {
 504         final KindSelector pkind;
 505         final Type pt;
 506         final CheckContext checkContext;
 507         final CheckMode checkMode;
 508 
 509         ResultInfo(KindSelector pkind, Type pt) {
 510             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 511         }
 512 
 513         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 514             this(pkind, pt, chk.basicHandler, checkMode);
 515         }
 516 
 517         protected ResultInfo(KindSelector pkind,
 518                              Type pt, CheckContext checkContext) {
 519             this(pkind, pt, checkContext, CheckMode.NORMAL);
 520         }
 521 
 522         protected ResultInfo(KindSelector pkind,
 523                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 524             this.pkind = pkind;
 525             this.pt = pt;
 526             this.checkContext = checkContext;
 527             this.checkMode = checkMode;
 528         }
 529 
 530         /**
 531          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 532          * @param tree The tree to be type-checked.
 533          * @return true if {@code ArgumentAttr} should be used.
 534          */
 535         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 536 
 537         protected Type check(final DiagnosticPosition pos, final Type found) {
 538             return chk.checkType(pos, found, pt, checkContext);
 539         }
 540 
 541         protected ResultInfo dup(Type newPt) {
 542             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 543         }
 544 
 545         protected ResultInfo dup(CheckContext newContext) {
 546             return new ResultInfo(pkind, pt, newContext, checkMode);
 547         }
 548 
 549         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 550             return new ResultInfo(pkind, newPt, newContext, checkMode);
 551         }
 552 
 553         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 554             return new ResultInfo(pkind, newPt, newContext, newMode);
 555         }
 556 
 557         protected ResultInfo dup(CheckMode newMode) {
 558             return new ResultInfo(pkind, pt, checkContext, newMode);
 559         }
 560 
 561         @Override
 562         public String toString() {
 563             if (pt != null) {
 564                 return pt.toString();
 565             } else {
 566                 return "";
 567             }
 568         }
 569     }
 570 
 571     class MethodAttrInfo extends ResultInfo {
 572         public MethodAttrInfo() {
 573             this(chk.basicHandler);
 574         }
 575 
 576         public MethodAttrInfo(CheckContext checkContext) {
 577             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 578         }
 579 
 580         @Override
 581         protected boolean needsArgumentAttr(JCTree tree) {
 582             return true;
 583         }
 584 
 585         protected ResultInfo dup(Type newPt) {
 586             throw new IllegalStateException();
 587         }
 588 
 589         protected ResultInfo dup(CheckContext newContext) {
 590             return new MethodAttrInfo(newContext);
 591         }
 592 
 593         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 594             throw new IllegalStateException();
 595         }
 596 
 597         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 598             throw new IllegalStateException();
 599         }
 600 
 601         protected ResultInfo dup(CheckMode newMode) {
 602             throw new IllegalStateException();
 603         }
 604     }
 605 
 606     class RecoveryInfo extends ResultInfo {
 607 
 608         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 609             this(deferredAttrContext, Type.recoveryType);
 610         }
 611 
 612         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 613             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 614                 @Override
 615                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 616                     return deferredAttrContext;
 617                 }
 618                 @Override
 619                 public boolean compatible(Type found, Type req, Warner warn) {
 620                     return true;
 621                 }
 622                 @Override
 623                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 624                     boolean needsReport = pt == Type.recoveryType ||
 625                             (details.getDiagnosticPosition() != null &&
 626                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 627                     if (needsReport) {
 628                         chk.basicHandler.report(pos, details);
 629                     }
 630                 }
 631             });
 632         }
 633     }
 634 
 635     final ResultInfo statInfo;
 636     final ResultInfo varAssignmentInfo;
 637     final ResultInfo methodAttrInfo;
 638     final ResultInfo unknownExprInfo;
 639     final ResultInfo unknownTypeInfo;
 640     final ResultInfo unknownTypeExprInfo;
 641     final ResultInfo recoveryInfo;
 642     final MethodType initBlockType;
 643 
 644     Type pt() {
 645         return resultInfo.pt;
 646     }
 647 
 648     KindSelector pkind() {
 649         return resultInfo.pkind;
 650     }
 651 
 652 /* ************************************************************************
 653  * Visitor methods
 654  *************************************************************************/
 655 
 656     /** Visitor argument: the current environment.
 657      */
 658     Env<AttrContext> env;
 659 
 660     /** Visitor argument: the currently expected attribution result.
 661      */
 662     ResultInfo resultInfo;
 663 
 664     /** Visitor result: the computed type.
 665      */
 666     Type result;
 667 
 668     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 669 
 670     /** Visitor method: attribute a tree, catching any completion failure
 671      *  exceptions. Return the tree's type.
 672      *
 673      *  @param tree    The tree to be visited.
 674      *  @param env     The environment visitor argument.
 675      *  @param resultInfo   The result info visitor argument.
 676      */
 677     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 678         Env<AttrContext> prevEnv = this.env;
 679         ResultInfo prevResult = this.resultInfo;
 680         try {
 681             this.env = env;
 682             this.resultInfo = resultInfo;
 683             if (resultInfo.needsArgumentAttr(tree)) {
 684                 result = argumentAttr.attribArg(tree, env);
 685             } else {
 686                 tree.accept(this);
 687             }
 688             matchBindings = matchBindingsComputer.finishBindings(tree,
 689                                                                  matchBindings);
 690             if (tree == breakTree &&
 691                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 692                 breakTreeFound(copyEnv(env));
 693             }
 694             return result;
 695         } catch (CompletionFailure ex) {
 696             tree.type = syms.errType;
 697             return chk.completionError(tree.pos(), ex);
 698         } finally {
 699             this.env = prevEnv;
 700             this.resultInfo = prevResult;
 701         }
 702     }
 703 
 704     protected void breakTreeFound(Env<AttrContext> env) {
 705         throw new BreakAttr(env);
 706     }
 707 
 708     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 709         Env<AttrContext> newEnv =
 710                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 711         if (newEnv.outer != null) {
 712             newEnv.outer = copyEnv(newEnv.outer);
 713         }
 714         return newEnv;
 715     }
 716 
 717     WriteableScope copyScope(WriteableScope sc) {
 718         WriteableScope newScope = WriteableScope.create(sc.owner);
 719         List<Symbol> elemsList = List.nil();
 720         for (Symbol sym : sc.getSymbols()) {
 721             elemsList = elemsList.prepend(sym);
 722         }
 723         for (Symbol s : elemsList) {
 724             newScope.enter(s);
 725         }
 726         return newScope;
 727     }
 728 
 729     /** Derived visitor method: attribute an expression tree.
 730      */
 731     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 732         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 733     }
 734 
 735     /** Derived visitor method: attribute an expression tree with
 736      *  no constraints on the computed type.
 737      */
 738     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 739         return attribTree(tree, env, unknownExprInfo);
 740     }
 741 
 742     /** Derived visitor method: attribute a type tree.
 743      */
 744     public Type attribType(JCTree tree, Env<AttrContext> env) {
 745         Type result = attribType(tree, env, Type.noType);
 746         return result;
 747     }
 748 
 749     /** Derived visitor method: attribute a type tree.
 750      */
 751     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 752         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 753         return result;
 754     }
 755 
 756     /** Derived visitor method: attribute a statement or definition tree.
 757      */
 758     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 759         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 760         Type result = attribTree(tree, env, statInfo);
 761         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 762         attrRecover.doRecovery();
 763         return result;
 764     }
 765 
 766     /** Attribute a list of expressions, returning a list of types.
 767      */
 768     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 769         ListBuffer<Type> ts = new ListBuffer<>();
 770         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 771             ts.append(attribExpr(l.head, env, pt));
 772         return ts.toList();
 773     }
 774 
 775     /** Attribute a list of statements, returning nothing.
 776      */
 777     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 778         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 779             attribStat(l.head, env);
 780     }
 781 
 782     /** Attribute the arguments in a method call, returning the method kind.
 783      */
 784     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 785         KindSelector kind = initialKind;
 786         for (JCExpression arg : trees) {
 787             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 788             if (argtype.hasTag(DEFERRED)) {
 789                 kind = KindSelector.of(KindSelector.POLY, kind);
 790             }
 791             argtypes.append(argtype);
 792         }
 793         return kind;
 794     }
 795 
 796     /** Attribute a type argument list, returning a list of types.
 797      *  Caller is responsible for calling checkRefTypes.
 798      */
 799     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 800         ListBuffer<Type> argtypes = new ListBuffer<>();
 801         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 802             argtypes.append(attribType(l.head, env));
 803         return argtypes.toList();
 804     }
 805 
 806     /** Attribute a type argument list, returning a list of types.
 807      *  Check that all the types are references.
 808      */
 809     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 810         List<Type> types = attribAnyTypes(trees, env);
 811         return chk.checkRefTypes(trees, types);
 812     }
 813 
 814     /**
 815      * Attribute type variables (of generic classes or methods).
 816      * Compound types are attributed later in attribBounds.
 817      * @param typarams the type variables to enter
 818      * @param env      the current environment
 819      */
 820     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 821         for (JCTypeParameter tvar : typarams) {
 822             TypeVar a = (TypeVar)tvar.type;
 823             a.tsym.flags_field |= UNATTRIBUTED;
 824             a.setUpperBound(Type.noType);
 825             if (!tvar.bounds.isEmpty()) {
 826                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 827                 for (JCExpression bound : tvar.bounds.tail)
 828                     bounds = bounds.prepend(attribType(bound, env));
 829                 types.setBounds(a, bounds.reverse());
 830             } else {
 831                 // if no bounds are given, assume a single bound of
 832                 // java.lang.Object.
 833                 types.setBounds(a, List.of(syms.objectType));
 834             }
 835             a.tsym.flags_field &= ~UNATTRIBUTED;
 836         }
 837         if (checkCyclic) {
 838             for (JCTypeParameter tvar : typarams) {
 839                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 840             }
 841         }
 842     }
 843 
 844     /**
 845      * Attribute the type references in a list of annotations.
 846      */
 847     void attribAnnotationTypes(List<JCAnnotation> annotations,
 848                                Env<AttrContext> env) {
 849         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 850             JCAnnotation a = al.head;
 851             attribType(a.annotationType, env);
 852         }
 853     }
 854 
 855     /**
 856      * Attribute a "lazy constant value".
 857      *  @param env         The env for the const value
 858      *  @param variable    The initializer for the const value
 859      *  @param type        The expected type, or null
 860      *  @see VarSymbol#setLazyConstValue
 861      */
 862     public Object attribLazyConstantValue(Env<AttrContext> env,
 863                                       JCVariableDecl variable,
 864                                       Type type) {
 865 
 866         DiagnosticPosition prevLintPos
 867                 = deferredLintHandler.setPos(variable.pos());
 868 
 869         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 870         try {
 871             Type itype = attribExpr(variable.init, env, type);
 872             if (variable.isImplicitlyTyped()) {
 873                 //fixup local variable type
 874                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 875             }
 876             if (itype.constValue() != null) {
 877                 return coerce(itype, type).constValue();
 878             } else {
 879                 return null;
 880             }
 881         } finally {
 882             log.useSource(prevSource);
 883             deferredLintHandler.setPos(prevLintPos);
 884         }
 885     }
 886 
 887     /** Attribute type reference in an `extends' or `implements' clause.
 888      *  Supertypes of anonymous inner classes are usually already attributed.
 889      *
 890      *  @param tree              The tree making up the type reference.
 891      *  @param env               The environment current at the reference.
 892      *  @param classExpected     true if only a class is expected here.
 893      *  @param interfaceExpected true if only an interface is expected here.
 894      */
 895     Type attribBase(JCTree tree,
 896                     Env<AttrContext> env,
 897                     boolean classExpected,
 898                     boolean interfaceExpected,
 899                     boolean checkExtensible) {
 900         Type t = tree.type != null ?
 901             tree.type :
 902             attribType(tree, env);
 903         try {
 904             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 905         } catch (CompletionFailure ex) {
 906             chk.completionError(tree.pos(), ex);
 907             return t;
 908         }
 909     }
 910     Type checkBase(Type t,
 911                    JCTree tree,
 912                    Env<AttrContext> env,
 913                    boolean classExpected,
 914                    boolean interfaceExpected,
 915                    boolean checkExtensible) {
 916         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 917                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 918         if (t.tsym.isAnonymous()) {
 919             log.error(pos, Errors.CantInheritFromAnon);
 920             return types.createErrorType(t);
 921         }
 922         if (t.isErroneous())
 923             return t;
 924         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 925             // check that type variable is already visible
 926             if (t.getUpperBound() == null) {
 927                 log.error(pos, Errors.IllegalForwardRef);
 928                 return types.createErrorType(t);
 929             }
 930         } else {
 931             t = chk.checkClassType(pos, t, checkExtensible);
 932         }
 933         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 934             log.error(pos, Errors.IntfExpectedHere);
 935             // return errType is necessary since otherwise there might
 936             // be undetected cycles which cause attribution to loop
 937             return types.createErrorType(t);
 938         } else if (checkExtensible &&
 939                    classExpected &&
 940                    (t.tsym.flags() & INTERFACE) != 0) {
 941             log.error(pos, Errors.NoIntfExpectedHere);
 942             return types.createErrorType(t);
 943         }
 944         if (checkExtensible &&
 945             ((t.tsym.flags() & FINAL) != 0)) {
 946             log.error(pos,
 947                       Errors.CantInheritFromFinal(t.tsym));
 948         }
 949         chk.checkNonCyclic(pos, t);
 950         return t;
 951     }
 952 
 953     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 954         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 955         id.type = env.info.scope.owner.enclClass().type;
 956         id.sym = env.info.scope.owner.enclClass();
 957         return id.type;
 958     }
 959 
 960     public void visitClassDef(JCClassDecl tree) {
 961         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 962                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 963                         argumentAttr.withLocalCacheContext() : null);
 964         boolean ctorProloguePrev = env.info.ctorPrologue;
 965         try {
 966             // Local and anonymous classes have not been entered yet, so we need to
 967             // do it now.
 968             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 969                 enter.classEnter(tree, env);
 970             } else {
 971                 // If this class declaration is part of a class level annotation,
 972                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 973                 // order to simplify later steps and allow for sensible error
 974                 // messages.
 975                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 976                     enter.classEnter(tree, env);
 977             }
 978 
 979             ClassSymbol c = tree.sym;
 980             if (c == null) {
 981                 // exit in case something drastic went wrong during enter.
 982                 result = null;
 983             } else {
 984                 // make sure class has been completed:
 985                 c.complete();
 986 
 987                 // If a class declaration appears in a constructor prologue,
 988                 // that means it's either a local class or an anonymous class.
 989                 // Either way, there is no immediately enclosing instance.
 990                 if (ctorProloguePrev) {
 991                     c.flags_field |= NOOUTERTHIS;
 992                 }
 993                 attribClass(tree.pos(), c);
 994                 result = tree.type = c.type;
 995             }
 996         } finally {
 997             localCacheContext.ifPresent(LocalCacheContext::leave);
 998             env.info.ctorPrologue = ctorProloguePrev;
 999         }
1000     }
1001 
1002     public void visitMethodDef(JCMethodDecl tree) {
1003         MethodSymbol m = tree.sym;
1004         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
1005 
1006         Lint lint = env.info.lint.augment(m);
1007         Lint prevLint = chk.setLint(lint);
1008         boolean ctorProloguePrev = env.info.ctorPrologue;
1009         Assert.check(!env.info.ctorPrologue);
1010         MethodSymbol prevMethod = chk.setMethod(m);
1011         try {
1012             deferredLintHandler.flush(tree.pos(), lint);
1013             chk.checkDeprecatedAnnotation(tree.pos(), m);
1014 
1015 
1016             // Create a new environment with local scope
1017             // for attributing the method.
1018             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
1019             localEnv.info.lint = lint;
1020 
1021             attribStats(tree.typarams, localEnv);
1022 
1023             // If we override any other methods, check that we do so properly.
1024             // JLS ???
1025             if (m.isStatic()) {
1026                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1027             } else {
1028                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1029             }
1030             chk.checkOverride(env, tree, m);
1031 
1032             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1033                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1034             }
1035 
1036             // Enter all type parameters into the local method scope.
1037             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1038                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1039 
1040             ClassSymbol owner = env.enclClass.sym;
1041             if ((owner.flags() & ANNOTATION) != 0 &&
1042                     (tree.params.nonEmpty() ||
1043                     tree.recvparam != null))
1044                 log.error(tree.params.nonEmpty() ?
1045                         tree.params.head.pos() :
1046                         tree.recvparam.pos(),
1047                         Errors.IntfAnnotationMembersCantHaveParams);
1048 
1049             // Attribute all value parameters.
1050             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1051                 attribStat(l.head, localEnv);
1052             }
1053 
1054             chk.checkVarargsMethodDecl(localEnv, tree);
1055 
1056             // Check that type parameters are well-formed.
1057             chk.validate(tree.typarams, localEnv);
1058 
1059             // Check that result type is well-formed.
1060             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1061                 chk.validate(tree.restype, localEnv);
1062 
1063             // Check that receiver type is well-formed.
1064             if (tree.recvparam != null) {
1065                 // Use a new environment to check the receiver parameter.
1066                 // Otherwise I get "might not have been initialized" errors.
1067                 // Is there a better way?
1068                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1069                 attribType(tree.recvparam, newEnv);
1070                 chk.validate(tree.recvparam, newEnv);
1071             }
1072 
1073             // Is this method a constructor?
1074             boolean isConstructor = TreeInfo.isConstructor(tree);
1075 
1076             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1077                 // lets find if this method is an accessor
1078                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1079                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1080                 if (recordComponent.isPresent()) {
1081                     // the method is a user defined accessor lets check that everything is fine
1082                     if (!tree.sym.isPublic()) {
1083                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1084                     }
1085                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1086                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1087                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1088                     }
1089                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1090                         log.error(tree,
1091                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1092                     }
1093                     if (!tree.typarams.isEmpty()) {
1094                         log.error(tree,
1095                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1096                     }
1097                     if (tree.sym.isStatic()) {
1098                         log.error(tree,
1099                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1100                     }
1101                 }
1102 
1103                 if (isConstructor) {
1104                     // if this a constructor other than the canonical one
1105                     if ((tree.sym.flags_field & RECORD) == 0) {
1106                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1107                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1108                         }
1109                     } else {
1110                         // but if it is the canonical:
1111 
1112                         /* if user generated, then it shouldn't:
1113                          *     - have an accessibility stricter than that of the record type
1114                          *     - explicitly invoke any other constructor
1115                          */
1116                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1117                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1118                                 log.error(tree,
1119                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1120                                             Errors.InvalidCanonicalConstructorInRecord(
1121                                                 Fragments.Canonical,
1122                                                 env.enclClass.sym.name,
1123                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1124                                             ) :
1125                                             Errors.InvalidCanonicalConstructorInRecord(
1126                                                     Fragments.Canonical,
1127                                                     env.enclClass.sym.name,
1128                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1129                                             )
1130                                 );
1131                             }
1132 
1133                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1134                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1135                                         Fragments.Canonical, env.enclClass.sym.name,
1136                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1137                             }
1138                         }
1139 
1140                         // also we want to check that no type variables have been defined
1141                         if (!tree.typarams.isEmpty()) {
1142                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1143                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1144                         }
1145 
1146                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1147                          * record components
1148                          */
1149                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1150                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1151                         for (JCVariableDecl param: tree.params) {
1152                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1153                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1154                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1155                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1156                                         Fragments.Canonical, env.enclClass.sym.name,
1157                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1158                             }
1159                             recordComponents = recordComponents.tail;
1160                             recordFieldTypes = recordFieldTypes.tail;
1161                         }
1162                     }
1163                 }
1164             }
1165 
1166             // annotation method checks
1167             if ((owner.flags() & ANNOTATION) != 0) {
1168                 // annotation method cannot have throws clause
1169                 if (tree.thrown.nonEmpty()) {
1170                     log.error(tree.thrown.head.pos(),
1171                               Errors.ThrowsNotAllowedInIntfAnnotation);
1172                 }
1173                 // annotation method cannot declare type-parameters
1174                 if (tree.typarams.nonEmpty()) {
1175                     log.error(tree.typarams.head.pos(),
1176                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1177                 }
1178                 // validate annotation method's return type (could be an annotation type)
1179                 chk.validateAnnotationType(tree.restype);
1180                 // ensure that annotation method does not clash with members of Object/Annotation
1181                 chk.validateAnnotationMethod(tree.pos(), m);
1182             }
1183 
1184             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1185                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1186 
1187             if (tree.body == null) {
1188                 // Empty bodies are only allowed for
1189                 // abstract, native, or interface methods, or for methods
1190                 // in a retrofit signature class.
1191                 if (tree.defaultValue != null) {
1192                     if ((owner.flags() & ANNOTATION) == 0)
1193                         log.error(tree.pos(),
1194                                   Errors.DefaultAllowedInIntfAnnotationMember);
1195                 }
1196                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1197                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1198             } else {
1199                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1200                     if ((owner.flags() & INTERFACE) != 0) {
1201                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1202                     } else {
1203                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1204                     }
1205                 } else if ((tree.mods.flags & NATIVE) != 0) {
1206                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1207                 }
1208                 // Add an implicit super() call unless an explicit call to
1209                 // super(...) or this(...) is given
1210                 // or we are compiling class java.lang.Object.
1211                 if (isConstructor && owner.type != syms.objectType) {
1212                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1213                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1214                                 make.Ident(names._super), make.Idents(List.nil())));
1215                         if (owner.isValueClass()) {
1216                             tree.body.stats = tree.body.stats.append(supCall);
1217                         } else {
1218                             tree.body.stats = tree.body.stats.prepend(supCall);
1219                         }
1220                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1221                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1222                             TreeInfo.hasConstructorCall(tree, names._super)) {
1223                         // enum constructors are not allowed to call super
1224                         // directly, so make sure there aren't any super calls
1225                         // in enum constructors, except in the compiler
1226                         // generated one.
1227                         log.error(tree.body.stats.head.pos(),
1228                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1229                     }
1230                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1231                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1232                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1233                         if (!initParamNames.equals(recordComponentNames)) {
1234                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1235                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1236                         }
1237                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1238                             log.error(tree,
1239                                     Errors.InvalidCanonicalConstructorInRecord(
1240                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1241                                             env.enclClass.sym.name,
1242                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1243                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1244                         }
1245                     }
1246                 }
1247 
1248                 // Attribute all type annotations in the body
1249                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1250                 annotate.flush();
1251 
1252                 // Start of constructor prologue
1253                 localEnv.info.ctorPrologue = isConstructor;
1254 
1255                 // Attribute method body.
1256                 attribStat(tree.body, localEnv);
1257             }
1258 
1259             localEnv.info.scope.leave();
1260             result = tree.type = m.type;
1261         } finally {
1262             chk.setLint(prevLint);
1263             chk.setMethod(prevMethod);
1264             env.info.ctorPrologue = ctorProloguePrev;
1265         }
1266     }
1267 
1268     public void visitVarDef(JCVariableDecl tree) {
1269         // Local variables have not been entered yet, so we need to do it now:
1270         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1271             if (tree.sym != null) {
1272                 // parameters have already been entered
1273                 env.info.scope.enter(tree.sym);
1274             } else {
1275                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1276                     if (tree.init == null) {
1277                         //cannot use 'var' without initializer
1278                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1279                         tree.vartype = make.Erroneous();
1280                     } else {
1281                         Fragment msg = canInferLocalVarType(tree);
1282                         if (msg != null) {
1283                             //cannot use 'var' with initializer which require an explicit target
1284                             //(e.g. lambda, method reference, array initializer).
1285                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1286                             tree.vartype = make.Erroneous();
1287                         }
1288                     }
1289                 }
1290                 try {
1291                     annotate.blockAnnotations();
1292                     memberEnter.memberEnter(tree, env);
1293                 } finally {
1294                     annotate.unblockAnnotations();
1295                 }
1296             }
1297         } else {
1298             if (tree.init != null) {
1299                 // Field initializer expression need to be entered.
1300                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1301                 annotate.flush();
1302             }
1303         }
1304 
1305         VarSymbol v = tree.sym;
1306         Lint lint = env.info.lint.augment(v);
1307         Lint prevLint = chk.setLint(lint);
1308 
1309         // Check that the variable's declared type is well-formed.
1310         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1311                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1312                 (tree.sym.flags() & PARAMETER) != 0;
1313         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1314 
1315         try {
1316             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1317             deferredLintHandler.flush(tree.pos(), lint);
1318             chk.checkDeprecatedAnnotation(tree.pos(), v);
1319 
1320             if (tree.init != null) {
1321                 if ((v.flags_field & FINAL) == 0 ||
1322                     !memberEnter.needsLazyConstValue(tree.init)) {
1323                     // Not a compile-time constant
1324                     // Attribute initializer in a new environment
1325                     // with the declared variable as owner.
1326                     // Check that initializer conforms to variable's declared type.
1327                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1328                     initEnv.info.lint = lint;
1329                     // In order to catch self-references, we set the variable's
1330                     // declaration position to maximal possible value, effectively
1331                     // marking the variable as undefined.
1332                     initEnv.info.enclVar = v;
1333                     boolean previousCtorPrologue = initEnv.info.ctorPrologue;
1334                     try {
1335                         if (v.owner.kind == TYP && v.owner.isValueClass() && !v.isStatic()) {
1336                             // strict instance initializer in a value class
1337                             initEnv.info.ctorPrologue = true;
1338                         }
1339                         attribExpr(tree.init, initEnv, v.type);
1340                         if (tree.isImplicitlyTyped()) {
1341                             //fixup local variable type
1342                             v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1343                         }
1344                     } finally {
1345                         initEnv.info.ctorPrologue = previousCtorPrologue;
1346                     }
1347                 }
1348                 if (tree.isImplicitlyTyped()) {
1349                     setSyntheticVariableType(tree, v.type);
1350                 }
1351             }
1352             result = tree.type = v.type;
1353             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1354                 if (isNonArgsMethodInObject(v.name)) {
1355                     log.error(tree, Errors.IllegalRecordComponentName(v));
1356                 }
1357             }
1358         }
1359         finally {
1360             chk.setLint(prevLint);
1361         }
1362     }
1363 
1364     private boolean isNonArgsMethodInObject(Name name) {
1365         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1366             if (s.type.getParameterTypes().isEmpty()) {
1367                 return true;
1368             }
1369         }
1370         return false;
1371     }
1372 
1373     Fragment canInferLocalVarType(JCVariableDecl tree) {
1374         LocalInitScanner lis = new LocalInitScanner();
1375         lis.scan(tree.init);
1376         return lis.badInferenceMsg;
1377     }
1378 
1379     static class LocalInitScanner extends TreeScanner {
1380         Fragment badInferenceMsg = null;
1381         boolean needsTarget = true;
1382 
1383         @Override
1384         public void visitNewArray(JCNewArray tree) {
1385             if (tree.elemtype == null && needsTarget) {
1386                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1387             }
1388         }
1389 
1390         @Override
1391         public void visitLambda(JCLambda tree) {
1392             if (needsTarget) {
1393                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1394             }
1395         }
1396 
1397         @Override
1398         public void visitTypeCast(JCTypeCast tree) {
1399             boolean prevNeedsTarget = needsTarget;
1400             try {
1401                 needsTarget = false;
1402                 super.visitTypeCast(tree);
1403             } finally {
1404                 needsTarget = prevNeedsTarget;
1405             }
1406         }
1407 
1408         @Override
1409         public void visitReference(JCMemberReference tree) {
1410             if (needsTarget) {
1411                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1412             }
1413         }
1414 
1415         @Override
1416         public void visitNewClass(JCNewClass tree) {
1417             boolean prevNeedsTarget = needsTarget;
1418             try {
1419                 needsTarget = false;
1420                 super.visitNewClass(tree);
1421             } finally {
1422                 needsTarget = prevNeedsTarget;
1423             }
1424         }
1425 
1426         @Override
1427         public void visitApply(JCMethodInvocation tree) {
1428             boolean prevNeedsTarget = needsTarget;
1429             try {
1430                 needsTarget = false;
1431                 super.visitApply(tree);
1432             } finally {
1433                 needsTarget = prevNeedsTarget;
1434             }
1435         }
1436     }
1437 
1438     public void visitSkip(JCSkip tree) {
1439         result = null;
1440     }
1441 
1442     public void visitBlock(JCBlock tree) {
1443         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1444             // Block is a static or instance initializer;
1445             // let the owner of the environment be a freshly
1446             // created BLOCK-method.
1447             Symbol fakeOwner =
1448                 new MethodSymbol(tree.flags | BLOCK |
1449                     env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1450                     env.info.scope.owner);
1451             final Env<AttrContext> localEnv =
1452                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1453 
1454             if ((tree.flags & STATIC) != 0) {
1455                 localEnv.info.staticLevel++;
1456             } else {
1457                 localEnv.info.instanceInitializerBlock = true;
1458             }
1459             // Attribute all type annotations in the block
1460             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1461             annotate.flush();
1462             attribStats(tree.stats, localEnv);
1463 
1464             {
1465                 // Store init and clinit type annotations with the ClassSymbol
1466                 // to allow output in Gen.normalizeDefs.
1467                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1468                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1469                 if ((tree.flags & STATIC) != 0) {
1470                     cs.appendClassInitTypeAttributes(tas);
1471                 } else {
1472                     cs.appendInitTypeAttributes(tas);
1473                 }
1474             }
1475         } else {
1476             // Create a new local environment with a local scope.
1477             Env<AttrContext> localEnv =
1478                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1479             try {
1480                 attribStats(tree.stats, localEnv);
1481             } finally {
1482                 localEnv.info.scope.leave();
1483             }
1484         }
1485         result = null;
1486     }
1487 
1488     public void visitDoLoop(JCDoWhileLoop tree) {
1489         attribStat(tree.body, env.dup(tree));
1490         attribExpr(tree.cond, env, syms.booleanType);
1491         handleLoopConditionBindings(matchBindings, tree, tree.body);
1492         result = null;
1493     }
1494 
1495     public void visitWhileLoop(JCWhileLoop tree) {
1496         attribExpr(tree.cond, env, syms.booleanType);
1497         MatchBindings condBindings = matchBindings;
1498         // include condition's bindings when true in the body:
1499         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1500         try {
1501             attribStat(tree.body, whileEnv.dup(tree));
1502         } finally {
1503             whileEnv.info.scope.leave();
1504         }
1505         handleLoopConditionBindings(condBindings, tree, tree.body);
1506         result = null;
1507     }
1508 
1509     public void visitForLoop(JCForLoop tree) {
1510         Env<AttrContext> loopEnv =
1511             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1512         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1513         try {
1514             attribStats(tree.init, loopEnv);
1515             if (tree.cond != null) {
1516                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1517                 // include condition's bindings when true in the body and step:
1518                 condBindings = matchBindings;
1519             }
1520             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1521             try {
1522                 bodyEnv.tree = tree; // before, we were not in loop!
1523                 attribStats(tree.step, bodyEnv);
1524                 attribStat(tree.body, bodyEnv);
1525             } finally {
1526                 bodyEnv.info.scope.leave();
1527             }
1528             result = null;
1529         }
1530         finally {
1531             loopEnv.info.scope.leave();
1532         }
1533         handleLoopConditionBindings(condBindings, tree, tree.body);
1534     }
1535 
1536     /**
1537      * Include condition's bindings when false after the loop, if cannot get out of the loop
1538      */
1539     private void handleLoopConditionBindings(MatchBindings condBindings,
1540                                              JCStatement loop,
1541                                              JCStatement loopBody) {
1542         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1543             !breaksTo(env, loop, loopBody)) {
1544             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1545         }
1546     }
1547 
1548     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1549         preFlow(body);
1550         return flow.breaksToTree(env, loop, body, make);
1551     }
1552 
1553     /**
1554      * Add given bindings to the current scope, unless there's a break to
1555      * an immediately enclosing labeled statement.
1556      */
1557     private void addBindings2Scope(JCStatement introducingStatement,
1558                                    List<BindingSymbol> bindings) {
1559         if (bindings.isEmpty()) {
1560             return ;
1561         }
1562 
1563         var searchEnv = env;
1564         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1565                labeled.body == introducingStatement) {
1566             if (breaksTo(env, labeled, labeled.body)) {
1567                 //breaking to an immediately enclosing labeled statement
1568                 return ;
1569             }
1570             searchEnv = searchEnv.next;
1571             introducingStatement = labeled;
1572         }
1573 
1574         //include condition's body when false after the while, if cannot get out of the loop
1575         bindings.forEach(env.info.scope::enter);
1576         bindings.forEach(BindingSymbol::preserveBinding);
1577     }
1578 
1579     public void visitForeachLoop(JCEnhancedForLoop tree) {
1580         Env<AttrContext> loopEnv =
1581             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1582         try {
1583             //the Formal Parameter of a for-each loop is not in the scope when
1584             //attributing the for-each expression; we mimic this by attributing
1585             //the for-each expression first (against original scope).
1586             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1587             chk.checkNonVoid(tree.pos(), exprType);
1588             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1589             if (elemtype == null) {
1590                 // or perhaps expr implements Iterable<T>?
1591                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1592                 if (base == null) {
1593                     log.error(tree.expr.pos(),
1594                               Errors.ForeachNotApplicableToType(exprType,
1595                                                                 Fragments.TypeReqArrayOrIterable));
1596                     elemtype = types.createErrorType(exprType);
1597                 } else {
1598                     List<Type> iterableParams = base.allparams();
1599                     elemtype = iterableParams.isEmpty()
1600                         ? syms.objectType
1601                         : types.wildUpperBound(iterableParams.head);
1602 
1603                     // Check the return type of the method iterator().
1604                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1605                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1606                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1607                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1608                         log.error(tree.pos(),
1609                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1610                     }
1611                 }
1612             }
1613             if (tree.var.isImplicitlyTyped()) {
1614                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1615                 setSyntheticVariableType(tree.var, inferredType);
1616             }
1617             attribStat(tree.var, loopEnv);
1618             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1619             loopEnv.tree = tree; // before, we were not in loop!
1620             attribStat(tree.body, loopEnv);
1621             result = null;
1622         }
1623         finally {
1624             loopEnv.info.scope.leave();
1625         }
1626     }
1627 
1628     public void visitLabelled(JCLabeledStatement tree) {
1629         // Check that label is not used in an enclosing statement
1630         Env<AttrContext> env1 = env;
1631         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1632             if (env1.tree.hasTag(LABELLED) &&
1633                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1634                 log.error(tree.pos(),
1635                           Errors.LabelAlreadyInUse(tree.label));
1636                 break;
1637             }
1638             env1 = env1.next;
1639         }
1640 
1641         attribStat(tree.body, env.dup(tree));
1642         result = null;
1643     }
1644 
1645     public void visitSwitch(JCSwitch tree) {
1646         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1647             attribStats(c.stats, caseEnv);
1648         });
1649         result = null;
1650     }
1651 
1652     public void visitSwitchExpression(JCSwitchExpression tree) {
1653         boolean wrongContext = false;
1654 
1655         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1656                 PolyKind.STANDALONE : PolyKind.POLY;
1657 
1658         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1659             //this means we are returning a poly conditional from void-compatible lambda expression
1660             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1661             resultInfo = recoveryInfo;
1662             wrongContext = true;
1663         }
1664 
1665         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1666                 unknownExprInfo :
1667                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1668 
1669         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1670         ListBuffer<Type> caseTypes = new ListBuffer<>();
1671 
1672         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1673             caseEnv.info.yieldResult = condInfo;
1674             attribStats(c.stats, caseEnv);
1675             new TreeScanner() {
1676                 @Override
1677                 public void visitYield(JCYield brk) {
1678                     if (brk.target == tree) {
1679                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1680                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1681                     }
1682                     super.visitYield(brk);
1683                 }
1684 
1685                 @Override public void visitClassDef(JCClassDecl tree) {}
1686                 @Override public void visitLambda(JCLambda tree) {}
1687             }.scan(c.stats);
1688         });
1689 
1690         if (tree.cases.isEmpty()) {
1691             log.error(tree.pos(),
1692                       Errors.SwitchExpressionEmpty);
1693         } else if (caseTypes.isEmpty()) {
1694             log.error(tree.pos(),
1695                       Errors.SwitchExpressionNoResultExpressions);
1696         }
1697 
1698         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1699 
1700         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1701     }
1702     //where:
1703         CheckContext switchExpressionContext(CheckContext checkContext) {
1704             return new Check.NestedCheckContext(checkContext) {
1705                 //this will use enclosing check context to check compatibility of
1706                 //subexpression against target type; if we are in a method check context,
1707                 //depending on whether boxing is allowed, we could have incompatibilities
1708                 @Override
1709                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1710                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1711                 }
1712             };
1713         }
1714 
1715     private void handleSwitch(JCTree switchTree,
1716                               JCExpression selector,
1717                               List<JCCase> cases,
1718                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1719         Type seltype = attribExpr(selector, env);
1720 
1721         Env<AttrContext> switchEnv =
1722             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1723 
1724         try {
1725             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1726             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1727             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1728             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1729             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1730             boolean patternSwitch;
1731             if (seltype.isPrimitive() && !intSwitch) {
1732                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1733                 patternSwitch = true;
1734             }
1735             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1736                 !intSwitch) {
1737                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1738                 patternSwitch = true;
1739             } else {
1740                 patternSwitch = cases.stream()
1741                                      .flatMap(c -> c.labels.stream())
1742                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1743                                                     TreeInfo.isNullCaseLabel(l));
1744             }
1745 
1746             // Attribute all cases and
1747             // check that there are no duplicate case labels or default clauses.
1748             Set<Object> constants = new HashSet<>(); // The set of case constants.
1749             boolean hasDefault = false;           // Is there a default label?
1750             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1751             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1752             boolean hasNullPattern = false;       // Is there a null pattern?
1753             CaseTree.CaseKind caseKind = null;
1754             boolean wasError = false;
1755             JCCaseLabel unconditionalCaseLabel = null;
1756             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1757                 JCCase c = l.head;
1758                 if (caseKind == null) {
1759                     caseKind = c.caseKind;
1760                 } else if (caseKind != c.caseKind && !wasError) {
1761                     log.error(c.pos(),
1762                               Errors.SwitchMixingCaseTypes);
1763                     wasError = true;
1764                 }
1765                 MatchBindings currentBindings = null;
1766                 MatchBindings guardBindings = null;
1767                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1768                     JCCaseLabel label = labels.head;
1769                     if (label instanceof JCConstantCaseLabel constLabel) {
1770                         JCExpression expr = constLabel.expr;
1771                         if (TreeInfo.isNull(expr)) {
1772                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1773                             if (hasNullPattern) {
1774                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1775                             }
1776                             hasNullPattern = true;
1777                             attribExpr(expr, switchEnv, seltype);
1778                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1779                         } else if (enumSwitch) {
1780                             Symbol sym = enumConstant(expr, seltype);
1781                             if (sym == null) {
1782                                 if (allowPatternSwitch) {
1783                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1784                                     Symbol enumSym = TreeInfo.symbol(expr);
1785                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1786                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1787                                     } else if (!constants.add(enumSym)) {
1788                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1789                                     }
1790                                 } else {
1791                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1792                                 }
1793                             } else if (!constants.add(sym)) {
1794                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1795                             }
1796                         } else if (errorEnumSwitch) {
1797                             //error recovery: the selector is erroneous, and all the case labels
1798                             //are identifiers. This could be an enum switch - don't report resolve
1799                             //error for the case label:
1800                             var prevResolveHelper = rs.basicLogResolveHelper;
1801                             try {
1802                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1803                                 attribExpr(expr, switchEnv, seltype);
1804                             } finally {
1805                                 rs.basicLogResolveHelper = prevResolveHelper;
1806                             }
1807                         } else {
1808                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1809                             if (!pattype.hasTag(ERROR)) {
1810                                 if (pattype.constValue() == null) {
1811                                     Symbol s = TreeInfo.symbol(expr);
1812                                     if (s != null && s.kind == TYP) {
1813                                         log.error(expr.pos(),
1814                                                   Errors.PatternExpected);
1815                                     } else if (s == null || !s.isEnum()) {
1816                                         log.error(expr.pos(),
1817                                                   (stringSwitch ? Errors.StringConstReq
1818                                                                 : intSwitch ? Errors.ConstExprReq
1819                                                                             : Errors.PatternOrEnumReq));
1820                                     } else if (!constants.add(s)) {
1821                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1822                                     }
1823                                 }
1824                                 else {
1825                                     if (!stringSwitch && !intSwitch &&
1826                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1827                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1828                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1829                                     } else if (!constants.add(pattype.constValue())) {
1830                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1831                                     }
1832                                 }
1833                             }
1834                         }
1835                     } else if (label instanceof JCDefaultCaseLabel def) {
1836                         if (hasDefault) {
1837                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1838                         } else if (hasUnconditionalPattern) {
1839                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1840                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1841                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1842                         }
1843                         hasDefault = true;
1844                         matchBindings = MatchBindingsComputer.EMPTY;
1845                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1846                         //pattern
1847                         JCPattern pat = patternlabel.pat;
1848                         attribExpr(pat, switchEnv, seltype);
1849                         Type primaryType = TreeInfo.primaryPatternType(pat);
1850 
1851                         if (primaryType.isPrimitive()) {
1852                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1853                         } else if (!primaryType.hasTag(TYPEVAR)) {
1854                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1855                         }
1856                         checkCastablePattern(pat.pos(), seltype, primaryType);
1857                         Type patternType = types.erasure(primaryType);
1858                         JCExpression guard = c.guard;
1859                         if (guardBindings == null && guard != null) {
1860                             MatchBindings afterPattern = matchBindings;
1861                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1862                             try {
1863                                 attribExpr(guard, bodyEnv, syms.booleanType);
1864                             } finally {
1865                                 bodyEnv.info.scope.leave();
1866                             }
1867 
1868                             guardBindings = matchBindings;
1869                             matchBindings = afterPattern;
1870 
1871                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1872                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1873                             }
1874                         }
1875                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1876                         boolean unconditional =
1877                                 unguarded &&
1878                                 !patternType.isErroneous() &&
1879                                 types.isUnconditionallyExact(seltype, patternType);
1880                         if (unconditional) {
1881                             if (hasUnconditionalPattern) {
1882                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1883                             } else if (hasDefault) {
1884                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1885                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1886                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1887                             }
1888                             hasUnconditionalPattern = true;
1889                             unconditionalCaseLabel = label;
1890                         }
1891                         lastPatternErroneous = patternType.isErroneous();
1892                     } else {
1893                         Assert.error();
1894                     }
1895                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1896                 }
1897 
1898                 if (guardBindings != null) {
1899                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1900                 }
1901 
1902                 Env<AttrContext> caseEnv =
1903                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1904                 try {
1905                     attribCase.accept(c, caseEnv);
1906                 } finally {
1907                     caseEnv.info.scope.leave();
1908                 }
1909                 addVars(c.stats, switchEnv.info.scope);
1910 
1911                 preFlow(c);
1912                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1913             }
1914             if (patternSwitch) {
1915                 chk.checkSwitchCaseStructure(cases);
1916                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1917             }
1918             if (switchTree.hasTag(SWITCH)) {
1919                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1920                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1921                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1922             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1923                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1924                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1925                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1926             } else {
1927                 Assert.error(switchTree.getTag().name());
1928             }
1929         } finally {
1930             switchEnv.info.scope.leave();
1931         }
1932     }
1933     // where
1934         private ResultInfo caseLabelResultInfo(Type seltype) {
1935             return new ResultInfo(KindSelector.VAL_TYP,
1936                                   !seltype.hasTag(ERROR) ? seltype
1937                                                          : Type.noType);
1938         }
1939         /** Add any variables defined in stats to the switch scope. */
1940         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1941             for (;stats.nonEmpty(); stats = stats.tail) {
1942                 JCTree stat = stats.head;
1943                 if (stat.hasTag(VARDEF))
1944                     switchScope.enter(((JCVariableDecl) stat).sym);
1945             }
1946         }
1947     // where
1948     /** Return the selected enumeration constant symbol, or null. */
1949     private Symbol enumConstant(JCTree tree, Type enumType) {
1950         if (tree.hasTag(IDENT)) {
1951             JCIdent ident = (JCIdent)tree;
1952             Name name = ident.name;
1953             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1954                 if (sym.kind == VAR) {
1955                     Symbol s = ident.sym = sym;
1956                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1957                     ident.type = s.type;
1958                     return ((s.flags_field & Flags.ENUM) == 0)
1959                         ? null : s;
1960                 }
1961             }
1962         }
1963         return null;
1964     }
1965 
1966     public void visitSynchronized(JCSynchronized tree) {
1967         boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
1968         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) &&
1969                 identityType &&
1970                 isValueBased(tree.lock.type)) {
1971             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1972         }
1973         attribStat(tree.body, env);
1974         result = null;
1975     }
1976         // where
1977         private boolean isValueBased(Type t) {
1978             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1979         }
1980 
1981     public void visitTry(JCTry tree) {
1982         // Create a new local environment with a local
1983         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1984         try {
1985             boolean isTryWithResource = tree.resources.nonEmpty();
1986             // Create a nested environment for attributing the try block if needed
1987             Env<AttrContext> tryEnv = isTryWithResource ?
1988                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1989                 localEnv;
1990             try {
1991                 // Attribute resource declarations
1992                 for (JCTree resource : tree.resources) {
1993                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1994                         @Override
1995                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1996                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1997                         }
1998                     };
1999                     ResultInfo twrResult =
2000                         new ResultInfo(KindSelector.VAR,
2001                                        syms.autoCloseableType,
2002                                        twrContext);
2003                     if (resource.hasTag(VARDEF)) {
2004                         attribStat(resource, tryEnv);
2005                         twrResult.check(resource, resource.type);
2006 
2007                         //check that resource type cannot throw InterruptedException
2008                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
2009 
2010                         VarSymbol var = ((JCVariableDecl) resource).sym;
2011 
2012                         var.flags_field |= Flags.FINAL;
2013                         var.setData(ElementKind.RESOURCE_VARIABLE);
2014                     } else {
2015                         attribTree(resource, tryEnv, twrResult);
2016                     }
2017                 }
2018                 // Attribute body
2019                 attribStat(tree.body, tryEnv);
2020             } finally {
2021                 if (isTryWithResource)
2022                     tryEnv.info.scope.leave();
2023             }
2024 
2025             // Attribute catch clauses
2026             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2027                 JCCatch c = l.head;
2028                 Env<AttrContext> catchEnv =
2029                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2030                 try {
2031                     Type ctype = attribStat(c.param, catchEnv);
2032                     if (TreeInfo.isMultiCatch(c)) {
2033                         //multi-catch parameter is implicitly marked as final
2034                         c.param.sym.flags_field |= FINAL | UNION;
2035                     }
2036                     if (c.param.sym.kind == VAR) {
2037                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2038                     }
2039                     chk.checkType(c.param.vartype.pos(),
2040                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2041                                   syms.throwableType);
2042                     attribStat(c.body, catchEnv);
2043                 } finally {
2044                     catchEnv.info.scope.leave();
2045                 }
2046             }
2047 
2048             // Attribute finalizer
2049             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2050             result = null;
2051         }
2052         finally {
2053             localEnv.info.scope.leave();
2054         }
2055     }
2056 
2057     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2058         if (!resource.isErroneous() &&
2059             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2060             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2061             Symbol close = syms.noSymbol;
2062             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
2063             try {
2064                 close = rs.resolveQualifiedMethod(pos,
2065                         env,
2066                         types.skipTypeVars(resource, false),
2067                         names.close,
2068                         List.nil(),
2069                         List.nil());
2070             }
2071             finally {
2072                 log.popDiagnosticHandler(discardHandler);
2073             }
2074             if (close.kind == MTH &&
2075                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2076                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2077                     env.info.lint.isEnabled(LintCategory.TRY)) {
2078                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2079             }
2080         }
2081     }
2082 
2083     public void visitConditional(JCConditional tree) {
2084         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2085         MatchBindings condBindings = matchBindings;
2086 
2087         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2088                 isBooleanOrNumeric(env, tree)) ?
2089                 PolyKind.STANDALONE : PolyKind.POLY;
2090 
2091         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2092             //this means we are returning a poly conditional from void-compatible lambda expression
2093             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2094             result = tree.type = types.createErrorType(resultInfo.pt);
2095             return;
2096         }
2097 
2098         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2099                 unknownExprInfo :
2100                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2101 
2102 
2103         // x ? y : z
2104         // include x's bindings when true in y
2105         // include x's bindings when false in z
2106 
2107         Type truetype;
2108         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2109         try {
2110             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2111         } finally {
2112             trueEnv.info.scope.leave();
2113         }
2114 
2115         MatchBindings trueBindings = matchBindings;
2116 
2117         Type falsetype;
2118         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2119         try {
2120             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2121         } finally {
2122             falseEnv.info.scope.leave();
2123         }
2124 
2125         MatchBindings falseBindings = matchBindings;
2126 
2127         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2128                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2129                          List.of(truetype, falsetype)) : pt();
2130         if (condtype.constValue() != null &&
2131                 truetype.constValue() != null &&
2132                 falsetype.constValue() != null &&
2133                 !owntype.hasTag(NONE)) {
2134             //constant folding
2135             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2136         }
2137         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2138         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2139     }
2140     //where
2141         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2142             switch (tree.getTag()) {
2143                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2144                               ((JCLiteral)tree).typetag == BOOLEAN ||
2145                               ((JCLiteral)tree).typetag == BOT;
2146                 case LAMBDA: case REFERENCE: return false;
2147                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2148                 case CONDEXPR:
2149                     JCConditional condTree = (JCConditional)tree;
2150                     return isBooleanOrNumeric(env, condTree.truepart) &&
2151                             isBooleanOrNumeric(env, condTree.falsepart);
2152                 case APPLY:
2153                     JCMethodInvocation speculativeMethodTree =
2154                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2155                                     tree, env, unknownExprInfo,
2156                                     argumentAttr.withLocalCacheContext());
2157                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2158                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2159                             env.enclClass.type :
2160                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2161                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2162                     return primitiveOrBoxed(owntype);
2163                 case NEWCLASS:
2164                     JCExpression className =
2165                             removeClassParams.translate(((JCNewClass)tree).clazz);
2166                     JCExpression speculativeNewClassTree =
2167                             (JCExpression)deferredAttr.attribSpeculative(
2168                                     className, env, unknownTypeInfo,
2169                                     argumentAttr.withLocalCacheContext());
2170                     return primitiveOrBoxed(speculativeNewClassTree.type);
2171                 default:
2172                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2173                             argumentAttr.withLocalCacheContext()).type;
2174                     return primitiveOrBoxed(speculativeType);
2175             }
2176         }
2177         //where
2178             boolean primitiveOrBoxed(Type t) {
2179                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2180             }
2181 
2182             TreeTranslator removeClassParams = new TreeTranslator() {
2183                 @Override
2184                 public void visitTypeApply(JCTypeApply tree) {
2185                     result = translate(tree.clazz);
2186                 }
2187             };
2188 
2189         CheckContext conditionalContext(CheckContext checkContext) {
2190             return new Check.NestedCheckContext(checkContext) {
2191                 //this will use enclosing check context to check compatibility of
2192                 //subexpression against target type; if we are in a method check context,
2193                 //depending on whether boxing is allowed, we could have incompatibilities
2194                 @Override
2195                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2196                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2197                 }
2198             };
2199         }
2200 
2201         /** Compute the type of a conditional expression, after
2202          *  checking that it exists.  See JLS 15.25. Does not take into
2203          *  account the special case where condition and both arms
2204          *  are constants.
2205          *
2206          *  @param pos      The source position to be used for error
2207          *                  diagnostics.
2208          *  @param thentype The type of the expression's then-part.
2209          *  @param elsetype The type of the expression's else-part.
2210          */
2211         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2212             if (condTypes.isEmpty()) {
2213                 return syms.objectType; //TODO: how to handle?
2214             }
2215             Type first = condTypes.head;
2216             // If same type, that is the result
2217             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2218                 return first.baseType();
2219 
2220             List<Type> unboxedTypes = condTypes.stream()
2221                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2222                                                .collect(List.collector());
2223 
2224             // Otherwise, if both arms can be converted to a numeric
2225             // type, return the least numeric type that fits both arms
2226             // (i.e. return larger of the two, or return int if one
2227             // arm is short, the other is char).
2228             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2229                 // If one arm has an integer subrange type (i.e., byte,
2230                 // short, or char), and the other is an integer constant
2231                 // that fits into the subrange, return the subrange type.
2232                 for (Type type : unboxedTypes) {
2233                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2234                         continue;
2235                     }
2236                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2237                         return type.baseType();
2238                 }
2239 
2240                 for (TypeTag tag : primitiveTags) {
2241                     Type candidate = syms.typeOfTag[tag.ordinal()];
2242                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2243                         return candidate;
2244                     }
2245                 }
2246             }
2247 
2248             // Those were all the cases that could result in a primitive
2249             condTypes = condTypes.stream()
2250                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2251                                  .collect(List.collector());
2252 
2253             for (Type type : condTypes) {
2254                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2255                     return type.baseType();
2256             }
2257 
2258             Iterator<DiagnosticPosition> posIt = positions.iterator();
2259 
2260             condTypes = condTypes.stream()
2261                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2262                                  .collect(List.collector());
2263 
2264             // both are known to be reference types.  The result is
2265             // lub(thentype,elsetype). This cannot fail, as it will
2266             // always be possible to infer "Object" if nothing better.
2267             return types.lub(condTypes.stream()
2268                         .map(t -> t.baseType())
2269                         .filter(t -> !t.hasTag(BOT))
2270                         .collect(List.collector()));
2271         }
2272 
2273     static final TypeTag[] primitiveTags = new TypeTag[]{
2274         BYTE,
2275         CHAR,
2276         SHORT,
2277         INT,
2278         LONG,
2279         FLOAT,
2280         DOUBLE,
2281         BOOLEAN,
2282     };
2283 
2284     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2285         return bindingEnv(env, env.tree, bindings);
2286     }
2287 
2288     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2289         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2290         bindings.forEach(env1.info.scope::enter);
2291         return env1;
2292     }
2293 
2294     public void visitIf(JCIf tree) {
2295         attribExpr(tree.cond, env, syms.booleanType);
2296 
2297         // if (x) { y } [ else z ]
2298         // include x's bindings when true in y
2299         // include x's bindings when false in z
2300 
2301         MatchBindings condBindings = matchBindings;
2302         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2303 
2304         try {
2305             attribStat(tree.thenpart, thenEnv);
2306         } finally {
2307             thenEnv.info.scope.leave();
2308         }
2309 
2310         preFlow(tree.thenpart);
2311         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2312         boolean aliveAfterElse;
2313 
2314         if (tree.elsepart != null) {
2315             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2316             try {
2317                 attribStat(tree.elsepart, elseEnv);
2318             } finally {
2319                 elseEnv.info.scope.leave();
2320             }
2321             preFlow(tree.elsepart);
2322             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2323         } else {
2324             aliveAfterElse = true;
2325         }
2326 
2327         chk.checkEmptyIf(tree);
2328 
2329         List<BindingSymbol> afterIfBindings = List.nil();
2330 
2331         if (aliveAfterThen && !aliveAfterElse) {
2332             afterIfBindings = condBindings.bindingsWhenTrue;
2333         } else if (aliveAfterElse && !aliveAfterThen) {
2334             afterIfBindings = condBindings.bindingsWhenFalse;
2335         }
2336 
2337         addBindings2Scope(tree, afterIfBindings);
2338 
2339         result = null;
2340     }
2341 
2342         void preFlow(JCTree tree) {
2343             attrRecover.doRecovery();
2344             new PostAttrAnalyzer() {
2345                 @Override
2346                 public void scan(JCTree tree) {
2347                     if (tree == null ||
2348                             (tree.type != null &&
2349                             tree.type == Type.stuckType)) {
2350                         //don't touch stuck expressions!
2351                         return;
2352                     }
2353                     super.scan(tree);
2354                 }
2355 
2356                 @Override
2357                 public void visitClassDef(JCClassDecl that) {
2358                     if (that.sym != null) {
2359                         // Method preFlow shouldn't visit class definitions
2360                         // that have not been entered and attributed.
2361                         // See JDK-8254557 and JDK-8203277 for more details.
2362                         super.visitClassDef(that);
2363                     }
2364                 }
2365 
2366                 @Override
2367                 public void visitLambda(JCLambda that) {
2368                     if (that.type != null) {
2369                         // Method preFlow shouldn't visit lambda expressions
2370                         // that have not been entered and attributed.
2371                         // See JDK-8254557 and JDK-8203277 for more details.
2372                         super.visitLambda(that);
2373                     }
2374                 }
2375             }.scan(tree);
2376         }
2377 
2378     public void visitExec(JCExpressionStatement tree) {
2379         //a fresh environment is required for 292 inference to work properly ---
2380         //see Infer.instantiatePolymorphicSignatureInstance()
2381         Env<AttrContext> localEnv = env.dup(tree);
2382         attribExpr(tree.expr, localEnv);
2383         result = null;
2384     }
2385 
2386     public void visitBreak(JCBreak tree) {
2387         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2388         result = null;
2389     }
2390 
2391     public void visitYield(JCYield tree) {
2392         if (env.info.yieldResult != null) {
2393             attribTree(tree.value, env, env.info.yieldResult);
2394             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2395         } else {
2396             log.error(tree.pos(), tree.value.hasTag(PARENS)
2397                     ? Errors.NoSwitchExpressionQualify
2398                     : Errors.NoSwitchExpression);
2399             attribTree(tree.value, env, unknownExprInfo);
2400         }
2401         result = null;
2402     }
2403 
2404     public void visitContinue(JCContinue tree) {
2405         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2406         result = null;
2407     }
2408     //where
2409         /** Return the target of a break, continue or yield statement,
2410          *  if it exists, report an error if not.
2411          *  Note: The target of a labelled break or continue is the
2412          *  (non-labelled) statement tree referred to by the label,
2413          *  not the tree representing the labelled statement itself.
2414          *
2415          *  @param pos     The position to be used for error diagnostics
2416          *  @param tag     The tag of the jump statement. This is either
2417          *                 Tree.BREAK or Tree.CONTINUE.
2418          *  @param label   The label of the jump statement, or null if no
2419          *                 label is given.
2420          *  @param env     The environment current at the jump statement.
2421          */
2422         private JCTree findJumpTarget(DiagnosticPosition pos,
2423                                                    JCTree.Tag tag,
2424                                                    Name label,
2425                                                    Env<AttrContext> env) {
2426             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2427 
2428             if (jumpTarget.snd != null) {
2429                 log.error(pos, jumpTarget.snd);
2430             }
2431 
2432             return jumpTarget.fst;
2433         }
2434         /** Return the target of a break or continue statement, if it exists,
2435          *  report an error if not.
2436          *  Note: The target of a labelled break or continue is the
2437          *  (non-labelled) statement tree referred to by the label,
2438          *  not the tree representing the labelled statement itself.
2439          *
2440          *  @param tag     The tag of the jump statement. This is either
2441          *                 Tree.BREAK or Tree.CONTINUE.
2442          *  @param label   The label of the jump statement, or null if no
2443          *                 label is given.
2444          *  @param env     The environment current at the jump statement.
2445          */
2446         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2447                                                                        Name label,
2448                                                                        Env<AttrContext> env) {
2449             // Search environments outwards from the point of jump.
2450             Env<AttrContext> env1 = env;
2451             JCDiagnostic.Error pendingError = null;
2452             LOOP:
2453             while (env1 != null) {
2454                 switch (env1.tree.getTag()) {
2455                     case LABELLED:
2456                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2457                         if (label == labelled.label) {
2458                             // If jump is a continue, check that target is a loop.
2459                             if (tag == CONTINUE) {
2460                                 if (!labelled.body.hasTag(DOLOOP) &&
2461                                         !labelled.body.hasTag(WHILELOOP) &&
2462                                         !labelled.body.hasTag(FORLOOP) &&
2463                                         !labelled.body.hasTag(FOREACHLOOP)) {
2464                                     pendingError = Errors.NotLoopLabel(label);
2465                                 }
2466                                 // Found labelled statement target, now go inwards
2467                                 // to next non-labelled tree.
2468                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2469                             } else {
2470                                 return Pair.of(labelled, pendingError);
2471                             }
2472                         }
2473                         break;
2474                     case DOLOOP:
2475                     case WHILELOOP:
2476                     case FORLOOP:
2477                     case FOREACHLOOP:
2478                         if (label == null) return Pair.of(env1.tree, pendingError);
2479                         break;
2480                     case SWITCH:
2481                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2482                         break;
2483                     case SWITCH_EXPRESSION:
2484                         if (tag == YIELD) {
2485                             return Pair.of(env1.tree, null);
2486                         } else if (tag == BREAK) {
2487                             pendingError = Errors.BreakOutsideSwitchExpression;
2488                         } else {
2489                             pendingError = Errors.ContinueOutsideSwitchExpression;
2490                         }
2491                         break;
2492                     case LAMBDA:
2493                     case METHODDEF:
2494                     case CLASSDEF:
2495                         break LOOP;
2496                     default:
2497                 }
2498                 env1 = env1.next;
2499             }
2500             if (label != null)
2501                 return Pair.of(null, Errors.UndefLabel(label));
2502             else if (pendingError != null)
2503                 return Pair.of(null, pendingError);
2504             else if (tag == CONTINUE)
2505                 return Pair.of(null, Errors.ContOutsideLoop);
2506             else
2507                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2508         }
2509 
2510     public void visitReturn(JCReturn tree) {
2511         // Check that there is an enclosing method which is
2512         // nested within than the enclosing class.
2513         if (env.info.returnResult == null) {
2514             log.error(tree.pos(), Errors.RetOutsideMeth);
2515         } else if (env.info.yieldResult != null) {
2516             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2517             if (tree.expr != null) {
2518                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2519             }
2520         } else if (!env.info.isLambda &&
2521                 !env.info.isNewClass &&
2522                 env.enclMethod != null &&
2523                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2524             log.error(env.enclMethod,
2525                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2526         } else {
2527             // Attribute return expression, if it exists, and check that
2528             // it conforms to result type of enclosing method.
2529             if (tree.expr != null) {
2530                 if (env.info.returnResult.pt.hasTag(VOID)) {
2531                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2532                               diags.fragment(Fragments.UnexpectedRetVal));
2533                 }
2534                 attribTree(tree.expr, env, env.info.returnResult);
2535             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2536                     !env.info.returnResult.pt.hasTag(NONE)) {
2537                 env.info.returnResult.checkContext.report(tree.pos(),
2538                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2539             }
2540         }
2541         result = null;
2542     }
2543 
2544     public void visitThrow(JCThrow tree) {
2545         Type owntype = attribExpr(tree.expr, env, Type.noType);
2546         chk.checkType(tree, owntype, syms.throwableType);
2547         result = null;
2548     }
2549 
2550     public void visitAssert(JCAssert tree) {
2551         attribExpr(tree.cond, env, syms.booleanType);
2552         if (tree.detail != null) {
2553             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2554         }
2555         result = null;
2556     }
2557 
2558      /** Visitor method for method invocations.
2559      *  NOTE: The method part of an application will have in its type field
2560      *        the return type of the method, not the method's type itself!
2561      */
2562     public void visitApply(JCMethodInvocation tree) {
2563         // The local environment of a method application is
2564         // a new environment nested in the current one.
2565         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2566 
2567         // The types of the actual method arguments.
2568         List<Type> argtypes;
2569 
2570         // The types of the actual method type arguments.
2571         List<Type> typeargtypes = null;
2572 
2573         Name methName = TreeInfo.name(tree.meth);
2574 
2575         boolean isConstructorCall =
2576             methName == names._this || methName == names._super;
2577 
2578         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2579         if (isConstructorCall) {
2580 
2581             // Attribute arguments, yielding list of argument types.
2582             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2583             argtypes = argtypesBuf.toList();
2584             typeargtypes = attribTypes(tree.typeargs, localEnv);
2585 
2586             // Done with this()/super() parameters. End of constructor prologue.
2587             env.info.ctorPrologue = false;
2588 
2589             // Variable `site' points to the class in which the called
2590             // constructor is defined.
2591             Type site = env.enclClass.sym.type;
2592             if (methName == names._super) {
2593                 if (site == syms.objectType) {
2594                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2595                     site = types.createErrorType(syms.objectType);
2596                 } else {
2597                     site = types.supertype(site);
2598                 }
2599             }
2600 
2601             if (site.hasTag(CLASS)) {
2602                 Type encl = site.getEnclosingType();
2603                 while (encl != null && encl.hasTag(TYPEVAR))
2604                     encl = encl.getUpperBound();
2605                 if (encl.hasTag(CLASS)) {
2606                     // we are calling a nested class
2607 
2608                     if (tree.meth.hasTag(SELECT)) {
2609                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2610 
2611                         // We are seeing a prefixed call, of the form
2612                         //     <expr>.super(...).
2613                         // Check that the prefix expression conforms
2614                         // to the outer instance type of the class.
2615                         chk.checkRefType(qualifier.pos(),
2616                                          attribExpr(qualifier, localEnv,
2617                                                     encl));
2618                     } else if (methName == names._super) {
2619                         // qualifier omitted; check for existence
2620                         // of an appropriate implicit qualifier.
2621                         rs.resolveImplicitThis(tree.meth.pos(),
2622                                                localEnv, site, true);
2623                     }
2624                 } else if (tree.meth.hasTag(SELECT)) {
2625                     log.error(tree.meth.pos(),
2626                               Errors.IllegalQualNotIcls(site.tsym));
2627                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2628                 }
2629 
2630                 // if we're calling a java.lang.Enum constructor,
2631                 // prefix the implicit String and int parameters
2632                 if (site.tsym == syms.enumSym)
2633                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2634 
2635                 // Resolve the called constructor under the assumption
2636                 // that we are referring to a superclass instance of the
2637                 // current instance (JLS ???).
2638                 boolean selectSuperPrev = localEnv.info.selectSuper;
2639                 localEnv.info.selectSuper = true;
2640                 localEnv.info.pendingResolutionPhase = null;
2641                 Symbol sym = rs.resolveConstructor(
2642                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2643                 localEnv.info.selectSuper = selectSuperPrev;
2644 
2645                 // Set method symbol to resolved constructor...
2646                 TreeInfo.setSymbol(tree.meth, sym);
2647 
2648                 // ...and check that it is legal in the current context.
2649                 // (this will also set the tree's type)
2650                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2651                 checkId(tree.meth, site, sym, localEnv,
2652                         new ResultInfo(kind, mpt));
2653             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2654                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2655             }
2656             // Otherwise, `site' is an error type and we do nothing
2657             result = tree.type = syms.voidType;
2658         } else {
2659             // Otherwise, we are seeing a regular method call.
2660             // Attribute the arguments, yielding list of argument types, ...
2661             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2662             argtypes = argtypesBuf.toList();
2663             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2664 
2665             // ... and attribute the method using as a prototype a methodtype
2666             // whose formal argument types is exactly the list of actual
2667             // arguments (this will also set the method symbol).
2668             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2669             localEnv.info.pendingResolutionPhase = null;
2670             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2671 
2672             // Compute the result type.
2673             Type restype = mtype.getReturnType();
2674             if (restype.hasTag(WILDCARD))
2675                 throw new AssertionError(mtype);
2676 
2677             Type qualifier = (tree.meth.hasTag(SELECT))
2678                     ? ((JCFieldAccess) tree.meth).selected.type
2679                     : env.enclClass.sym.type;
2680             Symbol msym = TreeInfo.symbol(tree.meth);
2681             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2682 
2683             chk.checkRefTypes(tree.typeargs, typeargtypes);
2684 
2685             // Check that value of resulting type is admissible in the
2686             // current context.  Also, capture the return type
2687             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2688             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2689         }
2690         chk.validate(tree.typeargs, localEnv);
2691     }
2692     //where
2693         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2694             if (msym != null &&
2695                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2696                     methodName == names.getClass &&
2697                     argtypes.isEmpty()) {
2698                 // as a special case, x.getClass() has type Class<? extends |X|>
2699                 return new ClassType(restype.getEnclosingType(),
2700                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2701                                 BoundKind.EXTENDS,
2702                                 syms.boundClass)),
2703                         restype.tsym,
2704                         restype.getMetadata());
2705             } else if (msym != null &&
2706                     msym.owner == syms.arrayClass &&
2707                     methodName == names.clone &&
2708                     types.isArray(qualifierType)) {
2709                 // as a special case, array.clone() has a result that is
2710                 // the same as static type of the array being cloned
2711                 return qualifierType;
2712             } else {
2713                 return restype;
2714             }
2715         }
2716 
2717         /** Obtain a method type with given argument types.
2718          */
2719         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2720             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2721             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2722         }
2723 
2724     public void visitNewClass(final JCNewClass tree) {
2725         Type owntype = types.createErrorType(tree.type);
2726 
2727         // The local environment of a class creation is
2728         // a new environment nested in the current one.
2729         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2730 
2731         // The anonymous inner class definition of the new expression,
2732         // if one is defined by it.
2733         JCClassDecl cdef = tree.def;
2734 
2735         // If enclosing class is given, attribute it, and
2736         // complete class name to be fully qualified
2737         JCExpression clazz = tree.clazz; // Class field following new
2738         JCExpression clazzid;            // Identifier in class field
2739         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2740         annoclazzid = null;
2741 
2742         if (clazz.hasTag(TYPEAPPLY)) {
2743             clazzid = ((JCTypeApply) clazz).clazz;
2744             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2745                 annoclazzid = (JCAnnotatedType) clazzid;
2746                 clazzid = annoclazzid.underlyingType;
2747             }
2748         } else {
2749             if (clazz.hasTag(ANNOTATED_TYPE)) {
2750                 annoclazzid = (JCAnnotatedType) clazz;
2751                 clazzid = annoclazzid.underlyingType;
2752             } else {
2753                 clazzid = clazz;
2754             }
2755         }
2756 
2757         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2758 
2759         if (tree.encl != null) {
2760             // We are seeing a qualified new, of the form
2761             //    <expr>.new C <...> (...) ...
2762             // In this case, we let clazz stand for the name of the
2763             // allocated class C prefixed with the type of the qualifier
2764             // expression, so that we can
2765             // resolve it with standard techniques later. I.e., if
2766             // <expr> has type T, then <expr>.new C <...> (...)
2767             // yields a clazz T.C.
2768             Type encltype = chk.checkRefType(tree.encl.pos(),
2769                                              attribExpr(tree.encl, env));
2770             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2771             // from expr to the combined type, or not? Yes, do this.
2772             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2773                                                  ((JCIdent) clazzid).name);
2774 
2775             EndPosTable endPosTable = this.env.toplevel.endPositions;
2776             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2777             if (clazz.hasTag(ANNOTATED_TYPE)) {
2778                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2779                 List<JCAnnotation> annos = annoType.annotations;
2780 
2781                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2782                     clazzid1 = make.at(tree.pos).
2783                         TypeApply(clazzid1,
2784                                   ((JCTypeApply) clazz).arguments);
2785                 }
2786 
2787                 clazzid1 = make.at(tree.pos).
2788                     AnnotatedType(annos, clazzid1);
2789             } else if (clazz.hasTag(TYPEAPPLY)) {
2790                 clazzid1 = make.at(tree.pos).
2791                     TypeApply(clazzid1,
2792                               ((JCTypeApply) clazz).arguments);
2793             }
2794 
2795             clazz = clazzid1;
2796         }
2797 
2798         // Attribute clazz expression and store
2799         // symbol + type back into the attributed tree.
2800         Type clazztype;
2801 
2802         try {
2803             env.info.isNewClass = true;
2804             clazztype = TreeInfo.isEnumInit(env.tree) ?
2805                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2806                 attribType(clazz, env);
2807         } finally {
2808             env.info.isNewClass = false;
2809         }
2810 
2811         clazztype = chk.checkDiamond(tree, clazztype);
2812         chk.validate(clazz, localEnv);
2813         if (tree.encl != null) {
2814             // We have to work in this case to store
2815             // symbol + type back into the attributed tree.
2816             tree.clazz.type = clazztype;
2817             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2818             clazzid.type = ((JCIdent) clazzid).sym.type;
2819             if (annoclazzid != null) {
2820                 annoclazzid.type = clazzid.type;
2821             }
2822             if (!clazztype.isErroneous()) {
2823                 if (cdef != null && clazztype.tsym.isInterface()) {
2824                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2825                 } else if (clazztype.tsym.isStatic()) {
2826                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2827                 }
2828             }
2829         } else if (!clazztype.tsym.isInterface() &&
2830                    (clazztype.tsym.flags_field & NOOUTERTHIS) == 0 &&
2831                    clazztype.getEnclosingType().hasTag(CLASS)) {
2832             // Check for the existence of an apropos outer instance
2833             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2834         }
2835 
2836         // Attribute constructor arguments.
2837         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2838         final KindSelector pkind =
2839             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2840         List<Type> argtypes = argtypesBuf.toList();
2841         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2842 
2843         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2844             // Enums may not be instantiated except implicitly
2845             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2846                 (!env.tree.hasTag(VARDEF) ||
2847                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2848                  ((JCVariableDecl) env.tree).init != tree))
2849                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2850 
2851             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2852                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2853             boolean skipNonDiamondPath = false;
2854             // Check that class is not abstract
2855             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2856                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2857                 log.error(tree.pos(),
2858                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2859                 skipNonDiamondPath = true;
2860             } else if (cdef != null && clazztype.tsym.isInterface()) {
2861                 // Check that no constructor arguments are given to
2862                 // anonymous classes implementing an interface
2863                 if (!argtypes.isEmpty())
2864                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2865 
2866                 if (!typeargtypes.isEmpty())
2867                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2868 
2869                 // Error recovery: pretend no arguments were supplied.
2870                 argtypes = List.nil();
2871                 typeargtypes = List.nil();
2872                 skipNonDiamondPath = true;
2873             }
2874             if (TreeInfo.isDiamond(tree)) {
2875                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2876                             clazztype.tsym.type.getTypeArguments(),
2877                                                clazztype.tsym,
2878                                                clazztype.getMetadata());
2879 
2880                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2881                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2882                 diamondEnv.info.pendingResolutionPhase = null;
2883 
2884                 //if the type of the instance creation expression is a class type
2885                 //apply method resolution inference (JLS 15.12.2.7). The return type
2886                 //of the resolved constructor will be a partially instantiated type
2887                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2888                             diamondEnv,
2889                             site,
2890                             argtypes,
2891                             typeargtypes);
2892                 tree.constructor = constructor.baseSymbol();
2893 
2894                 final TypeSymbol csym = clazztype.tsym;
2895                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2896                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2897                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2898                 constructorType = checkId(tree, site,
2899                         constructor,
2900                         diamondEnv,
2901                         diamondResult);
2902 
2903                 tree.clazz.type = types.createErrorType(clazztype);
2904                 if (!constructorType.isErroneous()) {
2905                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2906                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2907                 }
2908                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2909             }
2910 
2911             // Resolve the called constructor under the assumption
2912             // that we are referring to a superclass instance of the
2913             // current instance (JLS ???).
2914             else if (!skipNonDiamondPath) {
2915                 //the following code alters some of the fields in the current
2916                 //AttrContext - hence, the current context must be dup'ed in
2917                 //order to avoid downstream failures
2918                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2919                 rsEnv.info.selectSuper = cdef != null;
2920                 rsEnv.info.pendingResolutionPhase = null;
2921                 tree.constructor = rs.resolveConstructor(
2922                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2923                 if (cdef == null) { //do not check twice!
2924                     tree.constructorType = checkId(tree,
2925                             clazztype,
2926                             tree.constructor,
2927                             rsEnv,
2928                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2929                     if (rsEnv.info.lastResolveVarargs())
2930                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2931                 }
2932             }
2933 
2934             if (cdef != null) {
2935                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2936                 return;
2937             }
2938 
2939             if (tree.constructor != null && tree.constructor.kind == MTH)
2940                 owntype = clazztype;
2941         }
2942         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2943         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2944         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2945             //we need to wait for inference to finish and then replace inference vars in the constructor type
2946             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2947                     instantiatedContext -> {
2948                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2949                     });
2950         }
2951         chk.validate(tree.typeargs, localEnv);
2952     }
2953 
2954         // where
2955         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2956                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2957                                                    List<Type> argtypes, List<Type> typeargtypes,
2958                                                    KindSelector pkind) {
2959             // We are seeing an anonymous class instance creation.
2960             // In this case, the class instance creation
2961             // expression
2962             //
2963             //    E.new <typeargs1>C<typargs2>(args) { ... }
2964             //
2965             // is represented internally as
2966             //
2967             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2968             //
2969             // This expression is then *transformed* as follows:
2970             //
2971             // (1) add an extends or implements clause
2972             // (2) add a constructor.
2973             //
2974             // For instance, if C is a class, and ET is the type of E,
2975             // the expression
2976             //
2977             //    E.new <typeargs1>C<typargs2>(args) { ... }
2978             //
2979             // is translated to (where X is a fresh name and typarams is the
2980             // parameter list of the super constructor):
2981             //
2982             //   new <typeargs1>X(<*nullchk*>E, args) where
2983             //     X extends C<typargs2> {
2984             //       <typarams> X(ET e, args) {
2985             //         e.<typeargs1>super(args)
2986             //       }
2987             //       ...
2988             //     }
2989             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2990             Type enclType = clazztype.getEnclosingType();
2991             if (enclType != null &&
2992                     enclType.hasTag(CLASS) &&
2993                     !chk.checkDenotable((ClassType)enclType)) {
2994                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2995             }
2996             final boolean isDiamond = TreeInfo.isDiamond(tree);
2997             if (isDiamond
2998                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2999                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3000                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3001                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3002                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3003                         instantiatedContext -> {
3004                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3005                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3006                             ResultInfo prevResult = this.resultInfo;
3007                             try {
3008                                 this.resultInfo = resultInfoForClassDefinition;
3009                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3010                                         dupLocalEnv, argtypes, typeargtypes, pkind);
3011                             } finally {
3012                                 this.resultInfo = prevResult;
3013                             }
3014                         });
3015             } else {
3016                 if (isDiamond && clazztype.hasTag(CLASS)) {
3017                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3018                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3019                         // One or more types inferred in the previous steps is non-denotable.
3020                         Fragment fragment = Diamond(clazztype.tsym);
3021                         log.error(tree.clazz.pos(),
3022                                 Errors.CantApplyDiamond1(
3023                                         fragment,
3024                                         invalidDiamondArgs.size() > 1 ?
3025                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3026                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3027                     }
3028                     // For <>(){}, inferred types must also be accessible.
3029                     for (Type t : clazztype.getTypeArguments()) {
3030                         rs.checkAccessibleType(env, t);
3031                     }
3032                 }
3033 
3034                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3035                 // false for isInterface call even when the original type is an interface.
3036                 boolean implementing = clazztype.tsym.isInterface() ||
3037                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3038                         clazztype.getOriginalType().tsym.isInterface();
3039 
3040                 if (implementing) {
3041                     cdef.implementing = List.of(clazz);
3042                 } else {
3043                     cdef.extending = clazz;
3044                 }
3045 
3046                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3047                     rs.isSerializable(clazztype)) {
3048                     localEnv.info.isSerializable = true;
3049                 }
3050 
3051                 attribStat(cdef, localEnv);
3052 
3053                 List<Type> finalargtypes;
3054                 // If an outer instance is given,
3055                 // prefix it to the constructor arguments
3056                 // and delete it from the new expression
3057                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3058                     finalargtypes = argtypes.prepend(tree.encl.type);
3059                 } else {
3060                     finalargtypes = argtypes;
3061                 }
3062 
3063                 // Reassign clazztype and recompute constructor. As this necessarily involves
3064                 // another attribution pass for deferred types in the case of <>, replicate
3065                 // them. Original arguments have right decorations already.
3066                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3067                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3068                 }
3069 
3070                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3071                                                     : cdef.sym.type;
3072                 Symbol sym = tree.constructor = rs.resolveConstructor(
3073                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3074                 Assert.check(!sym.kind.isResolutionError());
3075                 tree.constructor = sym;
3076                 tree.constructorType = checkId(tree,
3077                         clazztype,
3078                         tree.constructor,
3079                         localEnv,
3080                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3081             }
3082             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3083                                 clazztype : types.createErrorType(tree.type);
3084             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3085             chk.validate(tree.typeargs, localEnv);
3086         }
3087 
3088         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3089             return new Check.NestedCheckContext(checkContext) {
3090                 @Override
3091                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3092                     enclosingContext.report(clazz.clazz,
3093                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3094                 }
3095             };
3096         }
3097 
3098     /** Make an attributed null check tree.
3099      */
3100     public JCExpression makeNullCheck(JCExpression arg) {
3101         // optimization: new Outer() can never be null; skip null check
3102         if (arg.getTag() == NEWCLASS)
3103             return arg;
3104         // optimization: X.this is never null; skip null check
3105         Name name = TreeInfo.name(arg);
3106         if (name == names._this || name == names._super) return arg;
3107 
3108         JCTree.Tag optag = NULLCHK;
3109         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3110         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3111         tree.type = arg.type;
3112         return tree;
3113     }
3114 
3115     public void visitNewArray(JCNewArray tree) {
3116         Type owntype = types.createErrorType(tree.type);
3117         Env<AttrContext> localEnv = env.dup(tree);
3118         Type elemtype;
3119         if (tree.elemtype != null) {
3120             elemtype = attribType(tree.elemtype, localEnv);
3121             chk.validate(tree.elemtype, localEnv);
3122             owntype = elemtype;
3123             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3124                 attribExpr(l.head, localEnv, syms.intType);
3125                 owntype = new ArrayType(owntype, syms.arrayClass);
3126             }
3127         } else {
3128             // we are seeing an untyped aggregate { ... }
3129             // this is allowed only if the prototype is an array
3130             if (pt().hasTag(ARRAY)) {
3131                 elemtype = types.elemtype(pt());
3132             } else {
3133                 if (!pt().hasTag(ERROR) &&
3134                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3135                     log.error(tree.pos(),
3136                               Errors.IllegalInitializerForType(pt()));
3137                 }
3138                 elemtype = types.createErrorType(pt());
3139             }
3140         }
3141         if (tree.elems != null) {
3142             attribExprs(tree.elems, localEnv, elemtype);
3143             owntype = new ArrayType(elemtype, syms.arrayClass);
3144         }
3145         if (!types.isReifiable(elemtype))
3146             log.error(tree.pos(), Errors.GenericArrayCreation);
3147         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3148     }
3149 
3150     /*
3151      * A lambda expression can only be attributed when a target-type is available.
3152      * In addition, if the target-type is that of a functional interface whose
3153      * descriptor contains inference variables in argument position the lambda expression
3154      * is 'stuck' (see DeferredAttr).
3155      */
3156     @Override
3157     public void visitLambda(final JCLambda that) {
3158         boolean wrongContext = false;
3159         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3160             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3161                 //lambda only allowed in assignment or method invocation/cast context
3162                 log.error(that.pos(), Errors.UnexpectedLambda);
3163             }
3164             resultInfo = recoveryInfo;
3165             wrongContext = true;
3166         }
3167         //create an environment for attribution of the lambda expression
3168         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3169         boolean needsRecovery =
3170                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3171         try {
3172             if (needsRecovery && rs.isSerializable(pt())) {
3173                 localEnv.info.isSerializable = true;
3174                 localEnv.info.isSerializableLambda = true;
3175             }
3176             List<Type> explicitParamTypes = null;
3177             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3178                 //attribute lambda parameters
3179                 attribStats(that.params, localEnv);
3180                 explicitParamTypes = TreeInfo.types(that.params);
3181             }
3182 
3183             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3184             Type currentTarget = targetInfo.target;
3185             Type lambdaType = targetInfo.descriptor;
3186 
3187             if (currentTarget.isErroneous()) {
3188                 result = that.type = currentTarget;
3189                 return;
3190             }
3191 
3192             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3193 
3194             if (lambdaType.hasTag(FORALL)) {
3195                 //lambda expression target desc cannot be a generic method
3196                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3197                                                                     kindName(currentTarget.tsym),
3198                                                                     currentTarget.tsym);
3199                 resultInfo.checkContext.report(that, diags.fragment(msg));
3200                 result = that.type = types.createErrorType(pt());
3201                 return;
3202             }
3203 
3204             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3205                 //add param type info in the AST
3206                 List<Type> actuals = lambdaType.getParameterTypes();
3207                 List<JCVariableDecl> params = that.params;
3208 
3209                 boolean arityMismatch = false;
3210 
3211                 while (params.nonEmpty()) {
3212                     if (actuals.isEmpty()) {
3213                         //not enough actuals to perform lambda parameter inference
3214                         arityMismatch = true;
3215                     }
3216                     //reset previously set info
3217                     Type argType = arityMismatch ?
3218                             syms.errType :
3219                             actuals.head;
3220                     if (params.head.isImplicitlyTyped()) {
3221                         setSyntheticVariableType(params.head, argType);
3222                     }
3223                     params.head.sym = null;
3224                     actuals = actuals.isEmpty() ?
3225                             actuals :
3226                             actuals.tail;
3227                     params = params.tail;
3228                 }
3229 
3230                 //attribute lambda parameters
3231                 attribStats(that.params, localEnv);
3232 
3233                 if (arityMismatch) {
3234                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3235                         result = that.type = types.createErrorType(currentTarget);
3236                         return;
3237                 }
3238             }
3239 
3240             //from this point on, no recovery is needed; if we are in assignment context
3241             //we will be able to attribute the whole lambda body, regardless of errors;
3242             //if we are in a 'check' method context, and the lambda is not compatible
3243             //with the target-type, it will be recovered anyway in Attr.checkId
3244             needsRecovery = false;
3245 
3246             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3247                     lambdaBodyResult(that, lambdaType, resultInfo);
3248 
3249             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3250                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3251             } else {
3252                 JCBlock body = (JCBlock)that.body;
3253                 if (body == breakTree &&
3254                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3255                     breakTreeFound(copyEnv(localEnv));
3256                 }
3257                 attribStats(body.stats, localEnv);
3258             }
3259 
3260             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3261 
3262             boolean isSpeculativeRound =
3263                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3264 
3265             preFlow(that);
3266             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3267 
3268             that.type = currentTarget; //avoids recovery at this stage
3269             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3270 
3271             if (!isSpeculativeRound) {
3272                 //add thrown types as bounds to the thrown types free variables if needed:
3273                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3274                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3275                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3276                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3277                     }
3278                 }
3279 
3280                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3281             }
3282             result = wrongContext ? that.type = types.createErrorType(pt())
3283                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3284         } catch (Types.FunctionDescriptorLookupError ex) {
3285             JCDiagnostic cause = ex.getDiagnostic();
3286             resultInfo.checkContext.report(that, cause);
3287             result = that.type = types.createErrorType(pt());
3288             return;
3289         } catch (CompletionFailure cf) {
3290             chk.completionError(that.pos(), cf);
3291         } catch (Throwable t) {
3292             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3293             //as that would likely cause the same exception again.
3294             needsRecovery = false;
3295             throw t;
3296         } finally {
3297             localEnv.info.scope.leave();
3298             if (needsRecovery) {
3299                 Type prevResult = result;
3300                 try {
3301                     attribTree(that, env, recoveryInfo);
3302                 } finally {
3303                     if (result == Type.recoveryType) {
3304                         result = prevResult;
3305                     }
3306                 }
3307             }
3308         }
3309     }
3310     //where
3311         class TargetInfo {
3312             Type target;
3313             Type descriptor;
3314 
3315             public TargetInfo(Type target, Type descriptor) {
3316                 this.target = target;
3317                 this.descriptor = descriptor;
3318             }
3319         }
3320 
3321         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3322             Type lambdaType;
3323             Type currentTarget = resultInfo.pt;
3324             if (resultInfo.pt != Type.recoveryType) {
3325                 /* We need to adjust the target. If the target is an
3326                  * intersection type, for example: SAM & I1 & I2 ...
3327                  * the target will be updated to SAM
3328                  */
3329                 currentTarget = targetChecker.visit(currentTarget, that);
3330                 if (!currentTarget.isIntersection()) {
3331                     if (explicitParamTypes != null) {
3332                         currentTarget = infer.instantiateFunctionalInterface(that,
3333                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3334                     }
3335                     currentTarget = types.removeWildcards(currentTarget);
3336                     lambdaType = types.findDescriptorType(currentTarget);
3337                 } else {
3338                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3339                     ListBuffer<Type> components = new ListBuffer<>();
3340                     for (Type bound : ict.getExplicitComponents()) {
3341                         if (explicitParamTypes != null) {
3342                             try {
3343                                 bound = infer.instantiateFunctionalInterface(that,
3344                                         bound, explicitParamTypes, resultInfo.checkContext);
3345                             } catch (FunctionDescriptorLookupError t) {
3346                                 // do nothing
3347                             }
3348                         }
3349                         bound = types.removeWildcards(bound);
3350                         components.add(bound);
3351                     }
3352                     currentTarget = types.makeIntersectionType(components.toList());
3353                     currentTarget.tsym.flags_field |= INTERFACE;
3354                     lambdaType = types.findDescriptorType(currentTarget);
3355                 }
3356 
3357             } else {
3358                 currentTarget = Type.recoveryType;
3359                 lambdaType = fallbackDescriptorType(that);
3360             }
3361             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3362                 //lambda expression target desc cannot be a generic method
3363                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3364                                                                     kindName(currentTarget.tsym),
3365                                                                     currentTarget.tsym);
3366                 resultInfo.checkContext.report(that, diags.fragment(msg));
3367                 currentTarget = types.createErrorType(pt());
3368             }
3369             return new TargetInfo(currentTarget, lambdaType);
3370         }
3371 
3372         void preFlow(JCLambda tree) {
3373             attrRecover.doRecovery();
3374             new PostAttrAnalyzer() {
3375                 @Override
3376                 public void scan(JCTree tree) {
3377                     if (tree == null ||
3378                             (tree.type != null &&
3379                             tree.type == Type.stuckType)) {
3380                         //don't touch stuck expressions!
3381                         return;
3382                     }
3383                     super.scan(tree);
3384                 }
3385 
3386                 @Override
3387                 public void visitClassDef(JCClassDecl that) {
3388                     // or class declaration trees!
3389                 }
3390 
3391                 public void visitLambda(JCLambda that) {
3392                     // or lambda expressions!
3393                 }
3394             }.scan(tree.body);
3395         }
3396 
3397         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3398 
3399             @Override
3400             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3401                 return t.isIntersection() ?
3402                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3403             }
3404 
3405             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3406                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3407                 return ict;
3408             }
3409 
3410             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3411                 ListBuffer<Type> targs = new ListBuffer<>();
3412                 ListBuffer<Type> supertypes = new ListBuffer<>();
3413                 for (Type i : ict.interfaces_field) {
3414                     if (i.isParameterized()) {
3415                         targs.appendList(i.tsym.type.allparams());
3416                     }
3417                     supertypes.append(i.tsym.type);
3418                 }
3419                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3420                 notionalIntf.allparams_field = targs.toList();
3421                 notionalIntf.tsym.flags_field |= INTERFACE;
3422                 return notionalIntf.tsym;
3423             }
3424         };
3425 
3426         private Type fallbackDescriptorType(JCExpression tree) {
3427             switch (tree.getTag()) {
3428                 case LAMBDA:
3429                     JCLambda lambda = (JCLambda)tree;
3430                     List<Type> argtypes = List.nil();
3431                     for (JCVariableDecl param : lambda.params) {
3432                         argtypes = param.vartype != null && param.vartype.type != null ?
3433                                 argtypes.append(param.vartype.type) :
3434                                 argtypes.append(syms.errType);
3435                     }
3436                     return new MethodType(argtypes, Type.recoveryType,
3437                             List.of(syms.throwableType), syms.methodClass);
3438                 case REFERENCE:
3439                     return new MethodType(List.nil(), Type.recoveryType,
3440                             List.of(syms.throwableType), syms.methodClass);
3441                 default:
3442                     Assert.error("Cannot get here!");
3443             }
3444             return null;
3445         }
3446 
3447         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3448                 final InferenceContext inferenceContext, final Type... ts) {
3449             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3450         }
3451 
3452         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3453                 final InferenceContext inferenceContext, final List<Type> ts) {
3454             if (inferenceContext.free(ts)) {
3455                 inferenceContext.addFreeTypeListener(ts,
3456                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3457             } else {
3458                 for (Type t : ts) {
3459                     rs.checkAccessibleType(env, t);
3460                 }
3461             }
3462         }
3463 
3464         /**
3465          * Lambda/method reference have a special check context that ensures
3466          * that i.e. a lambda return type is compatible with the expected
3467          * type according to both the inherited context and the assignment
3468          * context.
3469          */
3470         class FunctionalReturnContext extends Check.NestedCheckContext {
3471 
3472             FunctionalReturnContext(CheckContext enclosingContext) {
3473                 super(enclosingContext);
3474             }
3475 
3476             @Override
3477             public boolean compatible(Type found, Type req, Warner warn) {
3478                 //return type must be compatible in both current context and assignment context
3479                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3480             }
3481 
3482             @Override
3483             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3484                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3485             }
3486         }
3487 
3488         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3489 
3490             JCExpression expr;
3491             boolean expStmtExpected;
3492 
3493             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3494                 super(enclosingContext);
3495                 this.expr = expr;
3496             }
3497 
3498             @Override
3499             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3500                 if (expStmtExpected) {
3501                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3502                 } else {
3503                     super.report(pos, details);
3504                 }
3505             }
3506 
3507             @Override
3508             public boolean compatible(Type found, Type req, Warner warn) {
3509                 //a void return is compatible with an expression statement lambda
3510                 if (req.hasTag(VOID)) {
3511                     expStmtExpected = true;
3512                     return TreeInfo.isExpressionStatement(expr);
3513                 } else {
3514                     return super.compatible(found, req, warn);
3515                 }
3516             }
3517         }
3518 
3519         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3520             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3521                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3522                     new FunctionalReturnContext(resultInfo.checkContext);
3523 
3524             return descriptor.getReturnType() == Type.recoveryType ?
3525                     recoveryInfo :
3526                     new ResultInfo(KindSelector.VAL,
3527                             descriptor.getReturnType(), funcContext);
3528         }
3529 
3530         /**
3531         * Lambda compatibility. Check that given return types, thrown types, parameter types
3532         * are compatible with the expected functional interface descriptor. This means that:
3533         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3534         * types must be compatible with the return type of the expected descriptor.
3535         */
3536         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3537             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3538 
3539             //return values have already been checked - but if lambda has no return
3540             //values, we must ensure that void/value compatibility is correct;
3541             //this amounts at checking that, if a lambda body can complete normally,
3542             //the descriptor's return type must be void
3543             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3544                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3545                 Fragment msg =
3546                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3547                 checkContext.report(tree,
3548                                     diags.fragment(msg));
3549             }
3550 
3551             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3552             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3553                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3554             }
3555         }
3556 
3557         /* This method returns an environment to be used to attribute a lambda
3558          * expression.
3559          *
3560          * The owner of this environment is a method symbol. If the current owner
3561          * is not a method (e.g. if the lambda occurs in a field initializer), then
3562          * a synthetic method symbol owner is created.
3563          */
3564         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3565             Env<AttrContext> lambdaEnv;
3566             Symbol owner = env.info.scope.owner;
3567             if (owner.kind == VAR && owner.owner.kind == TYP) {
3568                 // If the lambda is nested in a field initializer, we need to create a fake init method.
3569                 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3570                 // init symbol's owner).
3571                 ClassSymbol enclClass = owner.enclClass();
3572                 Name initName = owner.isStatic() ? names.clinit : names.init;
3573                 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3574                         initName, initBlockType, enclClass);
3575                 initSym.params = List.nil();
3576                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3577             } else {
3578                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3579             }
3580             lambdaEnv.info.yieldResult = null;
3581             lambdaEnv.info.isLambda = true;
3582             return lambdaEnv;
3583         }
3584 
3585     @Override
3586     public void visitReference(final JCMemberReference that) {
3587         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3588             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3589                 //method reference only allowed in assignment or method invocation/cast context
3590                 log.error(that.pos(), Errors.UnexpectedMref);
3591             }
3592             result = that.type = types.createErrorType(pt());
3593             return;
3594         }
3595         final Env<AttrContext> localEnv = env.dup(that);
3596         try {
3597             //attribute member reference qualifier - if this is a constructor
3598             //reference, the expected kind must be a type
3599             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3600 
3601             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3602                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3603                 if (!exprType.isErroneous() &&
3604                     exprType.isRaw() &&
3605                     that.typeargs != null) {
3606                     log.error(that.expr.pos(),
3607                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3608                                                  Fragments.MrefInferAndExplicitParams));
3609                     exprType = types.createErrorType(exprType);
3610                 }
3611             }
3612 
3613             if (exprType.isErroneous()) {
3614                 //if the qualifier expression contains problems,
3615                 //give up attribution of method reference
3616                 result = that.type = exprType;
3617                 return;
3618             }
3619 
3620             if (TreeInfo.isStaticSelector(that.expr, names)) {
3621                 //if the qualifier is a type, validate it; raw warning check is
3622                 //omitted as we don't know at this stage as to whether this is a
3623                 //raw selector (because of inference)
3624                 chk.validate(that.expr, env, false);
3625             } else {
3626                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3627                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3628             }
3629             //attrib type-arguments
3630             List<Type> typeargtypes = List.nil();
3631             if (that.typeargs != null) {
3632                 typeargtypes = attribTypes(that.typeargs, localEnv);
3633             }
3634 
3635             boolean isTargetSerializable =
3636                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3637                     rs.isSerializable(pt());
3638             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3639             Type currentTarget = targetInfo.target;
3640             Type desc = targetInfo.descriptor;
3641 
3642             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3643             List<Type> argtypes = desc.getParameterTypes();
3644             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3645 
3646             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3647                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3648             }
3649 
3650             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3651             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3652             try {
3653                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3654                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3655                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3656             } finally {
3657                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3658             }
3659 
3660             Symbol refSym = refResult.fst;
3661             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3662 
3663             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3664              *  JDK-8075541
3665              */
3666             if (refSym.kind != MTH) {
3667                 boolean targetError;
3668                 switch (refSym.kind) {
3669                     case ABSENT_MTH:
3670                     case MISSING_ENCL:
3671                         targetError = false;
3672                         break;
3673                     case WRONG_MTH:
3674                     case WRONG_MTHS:
3675                     case AMBIGUOUS:
3676                     case HIDDEN:
3677                     case STATICERR:
3678                         targetError = true;
3679                         break;
3680                     default:
3681                         Assert.error("unexpected result kind " + refSym.kind);
3682                         targetError = false;
3683                 }
3684 
3685                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3686                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3687                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3688 
3689                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3690                         targetError ?
3691                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3692                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3693 
3694                 if (targetError && currentTarget == Type.recoveryType) {
3695                     //a target error doesn't make sense during recovery stage
3696                     //as we don't know what actual parameter types are
3697                     result = that.type = currentTarget;
3698                     return;
3699                 } else {
3700                     if (targetError) {
3701                         resultInfo.checkContext.report(that, diag);
3702                     } else {
3703                         log.report(diag);
3704                     }
3705                     result = that.type = types.createErrorType(currentTarget);
3706                     return;
3707                 }
3708             }
3709 
3710             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3711             that.kind = lookupHelper.referenceKind(that.sym);
3712             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3713 
3714             if (desc.getReturnType() == Type.recoveryType) {
3715                 // stop here
3716                 result = that.type = currentTarget;
3717                 return;
3718             }
3719 
3720             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3721                 Type enclosingType = exprType.getEnclosingType();
3722                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3723                     // Check for the existence of an appropriate outer instance
3724                     rs.resolveImplicitThis(that.pos(), env, exprType);
3725                 }
3726             }
3727 
3728             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3729 
3730                 if (that.getMode() == ReferenceMode.INVOKE &&
3731                         TreeInfo.isStaticSelector(that.expr, names) &&
3732                         that.kind.isUnbound() &&
3733                         lookupHelper.site.isRaw()) {
3734                     chk.checkRaw(that.expr, localEnv);
3735                 }
3736 
3737                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3738                         exprType.getTypeArguments().nonEmpty()) {
3739                     //static ref with class type-args
3740                     log.error(that.expr.pos(),
3741                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3742                                                  Fragments.StaticMrefWithTargs));
3743                     result = that.type = types.createErrorType(currentTarget);
3744                     return;
3745                 }
3746 
3747                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3748                     // Check that super-qualified symbols are not abstract (JLS)
3749                     rs.checkNonAbstract(that.pos(), that.sym);
3750                 }
3751 
3752                 if (isTargetSerializable) {
3753                     chk.checkAccessFromSerializableElement(that, true);
3754                 }
3755             }
3756 
3757             ResultInfo checkInfo =
3758                     resultInfo.dup(newMethodTemplate(
3759                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3760                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3761                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3762 
3763             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3764 
3765             if (that.kind.isUnbound() &&
3766                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3767                 //re-generate inference constraints for unbound receiver
3768                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3769                     //cannot happen as this has already been checked - we just need
3770                     //to regenerate the inference constraints, as that has been lost
3771                     //as a result of the call to inferenceContext.save()
3772                     Assert.error("Can't get here");
3773                 }
3774             }
3775 
3776             if (!refType.isErroneous()) {
3777                 refType = types.createMethodTypeWithReturn(refType,
3778                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3779             }
3780 
3781             //go ahead with standard method reference compatibility check - note that param check
3782             //is a no-op (as this has been taken care during method applicability)
3783             boolean isSpeculativeRound =
3784                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3785 
3786             that.type = currentTarget; //avoids recovery at this stage
3787             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3788             if (!isSpeculativeRound) {
3789                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3790             }
3791             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3792         } catch (Types.FunctionDescriptorLookupError ex) {
3793             JCDiagnostic cause = ex.getDiagnostic();
3794             resultInfo.checkContext.report(that, cause);
3795             result = that.type = types.createErrorType(pt());
3796             return;
3797         }
3798     }
3799     //where
3800         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3801             //if this is a constructor reference, the expected kind must be a type
3802             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3803                                   KindSelector.VAL_TYP : KindSelector.TYP,
3804                                   Type.noType);
3805         }
3806 
3807 
3808     @SuppressWarnings("fallthrough")
3809     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3810         InferenceContext inferenceContext = checkContext.inferenceContext();
3811         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3812 
3813         Type resType;
3814         switch (tree.getMode()) {
3815             case NEW:
3816                 if (!tree.expr.type.isRaw()) {
3817                     resType = tree.expr.type;
3818                     break;
3819                 }
3820             default:
3821                 resType = refType.getReturnType();
3822         }
3823 
3824         Type incompatibleReturnType = resType;
3825 
3826         if (returnType.hasTag(VOID)) {
3827             incompatibleReturnType = null;
3828         }
3829 
3830         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3831             if (resType.isErroneous() ||
3832                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3833                             checkContext.checkWarner(tree, resType, returnType))) {
3834                 incompatibleReturnType = null;
3835             }
3836         }
3837 
3838         if (incompatibleReturnType != null) {
3839             Fragment msg =
3840                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3841             checkContext.report(tree, diags.fragment(msg));
3842         } else {
3843             if (inferenceContext.free(refType)) {
3844                 // we need to wait for inference to finish and then replace inference vars in the referent type
3845                 inferenceContext.addFreeTypeListener(List.of(refType),
3846                         instantiatedContext -> {
3847                             tree.referentType = instantiatedContext.asInstType(refType);
3848                         });
3849             } else {
3850                 tree.referentType = refType;
3851             }
3852         }
3853 
3854         if (!speculativeAttr) {
3855             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3856                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3857             }
3858         }
3859     }
3860 
3861     boolean checkExConstraints(
3862             List<Type> thrownByFuncExpr,
3863             List<Type> thrownAtFuncType,
3864             InferenceContext inferenceContext) {
3865         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3866          *  are not proper types
3867          */
3868         List<Type> nonProperList = thrownAtFuncType.stream()
3869                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3870         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3871 
3872         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3873          *  in the throws clause of the invocation type of the method reference's compile-time
3874          *  declaration
3875          */
3876         List<Type> checkedList = thrownByFuncExpr.stream()
3877                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3878 
3879         /** If n = 0 (the function type's throws clause consists only of proper types), then
3880          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3881          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3882          *  reduces to true
3883          */
3884         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3885         for (Type checked : checkedList) {
3886             boolean isSubtype = false;
3887             for (Type proper : properList) {
3888                 if (types.isSubtype(checked, proper)) {
3889                     isSubtype = true;
3890                     break;
3891                 }
3892             }
3893             if (!isSubtype) {
3894                 uncaughtByProperTypes.add(checked);
3895             }
3896         }
3897 
3898         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3899             return false;
3900         }
3901 
3902         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3903          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3904          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3905          */
3906         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3907         uncaughtByProperTypes.forEach(checkedEx -> {
3908             nonProperAsUndet.forEach(nonProper -> {
3909                 types.isSubtype(checkedEx, nonProper);
3910             });
3911         });
3912 
3913         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3914          */
3915         nonProperAsUndet.stream()
3916                 .filter(t -> t.hasTag(UNDETVAR))
3917                 .forEach(t -> ((UndetVar)t).setThrow());
3918         return true;
3919     }
3920 
3921     /**
3922      * Set functional type info on the underlying AST. Note: as the target descriptor
3923      * might contain inference variables, we might need to register an hook in the
3924      * current inference context.
3925      */
3926     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3927             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3928         if (checkContext.inferenceContext().free(descriptorType)) {
3929             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3930                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3931                     inferenceContext.asInstType(primaryTarget), checkContext));
3932         } else {
3933             fExpr.owner = env.info.scope.owner;
3934             if (pt.hasTag(CLASS)) {
3935                 fExpr.target = primaryTarget;
3936             }
3937             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3938                     pt != Type.recoveryType) {
3939                 //check that functional interface class is well-formed
3940                 try {
3941                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3942                      * when it's executed post-inference. See the listener code
3943                      * above.
3944                      */
3945                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3946                             names.empty, fExpr.target, ABSTRACT);
3947                     if (csym != null) {
3948                         chk.checkImplementations(env.tree, csym, csym);
3949                         try {
3950                             //perform an additional functional interface check on the synthetic class,
3951                             //as there may be spurious errors for raw targets - because of existing issues
3952                             //with membership and inheritance (see JDK-8074570).
3953                             csym.flags_field |= INTERFACE;
3954                             types.findDescriptorType(csym.type);
3955                         } catch (FunctionDescriptorLookupError err) {
3956                             resultInfo.checkContext.report(fExpr,
3957                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3958                         }
3959                     }
3960                 } catch (Types.FunctionDescriptorLookupError ex) {
3961                     JCDiagnostic cause = ex.getDiagnostic();
3962                     resultInfo.checkContext.report(env.tree, cause);
3963                 }
3964             }
3965         }
3966     }
3967 
3968     public void visitParens(JCParens tree) {
3969         Type owntype = attribTree(tree.expr, env, resultInfo);
3970         result = check(tree, owntype, pkind(), resultInfo);
3971         Symbol sym = TreeInfo.symbol(tree);
3972         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
3973             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3974     }
3975 
3976     public void visitAssign(JCAssign tree) {
3977         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3978         Type capturedType = capture(owntype);
3979         attribExpr(tree.rhs, env, owntype);
3980         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3981     }
3982 
3983     public void visitAssignop(JCAssignOp tree) {
3984         // Attribute arguments.
3985         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3986         Type operand = attribExpr(tree.rhs, env);
3987         // Find operator.
3988         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3989         if (operator != operators.noOpSymbol &&
3990                 !owntype.isErroneous() &&
3991                 !operand.isErroneous()) {
3992             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3993             chk.checkCastable(tree.rhs.pos(),
3994                               operator.type.getReturnType(),
3995                               owntype);
3996             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
3997         }
3998         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3999     }
4000 
4001     public void visitUnary(JCUnary tree) {
4002         // Attribute arguments.
4003         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4004             ? attribTree(tree.arg, env, varAssignmentInfo)
4005             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4006 
4007         // Find operator.
4008         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4009         Type owntype = types.createErrorType(tree.type);
4010         if (operator != operators.noOpSymbol &&
4011                 !argtype.isErroneous()) {
4012             owntype = (tree.getTag().isIncOrDecUnaryOp())
4013                 ? tree.arg.type
4014                 : operator.type.getReturnType();
4015             int opc = operator.opcode;
4016 
4017             // If the argument is constant, fold it.
4018             if (argtype.constValue() != null) {
4019                 Type ctype = cfolder.fold1(opc, argtype);
4020                 if (ctype != null) {
4021                     owntype = cfolder.coerce(ctype, owntype);
4022                 }
4023             }
4024         }
4025         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4026         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4027     }
4028 
4029     public void visitBinary(JCBinary tree) {
4030         // Attribute arguments.
4031         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4032         // x && y
4033         // include x's bindings when true in y
4034 
4035         // x || y
4036         // include x's bindings when false in y
4037 
4038         MatchBindings lhsBindings = matchBindings;
4039         List<BindingSymbol> propagatedBindings;
4040         switch (tree.getTag()) {
4041             case AND:
4042                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4043                 break;
4044             case OR:
4045                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4046                 break;
4047             default:
4048                 propagatedBindings = List.nil();
4049                 break;
4050         }
4051         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4052         Type right;
4053         try {
4054             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4055         } finally {
4056             rhsEnv.info.scope.leave();
4057         }
4058 
4059         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4060 
4061         // Find operator.
4062         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4063         Type owntype = types.createErrorType(tree.type);
4064         if (operator != operators.noOpSymbol &&
4065                 !left.isErroneous() &&
4066                 !right.isErroneous()) {
4067             owntype = operator.type.getReturnType();
4068             int opc = operator.opcode;
4069             // If both arguments are constants, fold them.
4070             if (left.constValue() != null && right.constValue() != null) {
4071                 Type ctype = cfolder.fold2(opc, left, right);
4072                 if (ctype != null) {
4073                     owntype = cfolder.coerce(ctype, owntype);
4074                 }
4075             }
4076 
4077             // Check that argument types of a reference ==, != are
4078             // castable to each other, (JLS 15.21).  Note: unboxing
4079             // comparisons will not have an acmp* opc at this point.
4080             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4081                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4082                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4083                 }
4084             }
4085 
4086             chk.checkDivZero(tree.rhs.pos(), operator, right);
4087         }
4088         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4089     }
4090 
4091     public void visitTypeCast(final JCTypeCast tree) {
4092         Type clazztype = attribType(tree.clazz, env);
4093         chk.validate(tree.clazz, env, false);
4094         //a fresh environment is required for 292 inference to work properly ---
4095         //see Infer.instantiatePolymorphicSignatureInstance()
4096         Env<AttrContext> localEnv = env.dup(tree);
4097         //should we propagate the target type?
4098         final ResultInfo castInfo;
4099         JCExpression expr = TreeInfo.skipParens(tree.expr);
4100         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4101         if (isPoly) {
4102             //expression is a poly - we need to propagate target type info
4103             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4104                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4105                 @Override
4106                 public boolean compatible(Type found, Type req, Warner warn) {
4107                     return types.isCastable(found, req, warn);
4108                 }
4109             });
4110         } else {
4111             //standalone cast - target-type info is not propagated
4112             castInfo = unknownExprInfo;
4113         }
4114         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4115         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4116         if (exprtype.constValue() != null)
4117             owntype = cfolder.coerce(exprtype, owntype);
4118         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4119         if (!isPoly)
4120             chk.checkRedundantCast(localEnv, tree);
4121     }
4122 
4123     public void visitTypeTest(JCInstanceOf tree) {
4124         Type exprtype = attribExpr(tree.expr, env);
4125         if (exprtype.isPrimitive()) {
4126             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4127         } else {
4128             exprtype = chk.checkNullOrRefType(
4129                     tree.expr.pos(), exprtype);
4130         }
4131         Type clazztype;
4132         JCTree typeTree;
4133         if (tree.pattern.getTag() == BINDINGPATTERN ||
4134             tree.pattern.getTag() == RECORDPATTERN) {
4135             attribExpr(tree.pattern, env, exprtype);
4136             clazztype = tree.pattern.type;
4137             if (types.isSubtype(exprtype, clazztype) &&
4138                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4139                 tree.pattern.getTag() != RECORDPATTERN) {
4140                 if (!allowUnconditionalPatternsInstanceOf) {
4141                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4142                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4143                 }
4144             }
4145             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4146         } else {
4147             clazztype = attribType(tree.pattern, env);
4148             typeTree = tree.pattern;
4149             chk.validate(typeTree, env, false);
4150         }
4151         if (clazztype.isPrimitive()) {
4152             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4153         } else {
4154             if (!clazztype.hasTag(TYPEVAR)) {
4155                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4156             }
4157             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4158                 boolean valid = false;
4159                 if (allowReifiableTypesInInstanceof) {
4160                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4161                 } else {
4162                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4163                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4164                     allowReifiableTypesInInstanceof = true;
4165                 }
4166                 if (!valid) {
4167                     clazztype = types.createErrorType(clazztype);
4168                 }
4169             }
4170         }
4171         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4172         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4173     }
4174 
4175     private boolean checkCastablePattern(DiagnosticPosition pos,
4176                                          Type exprType,
4177                                          Type pattType) {
4178         Warner warner = new Warner();
4179         // if any type is erroneous, the problem is reported elsewhere
4180         if (exprType.isErroneous() || pattType.isErroneous()) {
4181             return false;
4182         }
4183         if (!types.isCastable(exprType, pattType, warner)) {
4184             chk.basicHandler.report(pos,
4185                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4186             return false;
4187         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4188                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4189             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4190             return true;
4191         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4192             log.error(pos,
4193                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4194             return false;
4195         } else {
4196             return true;
4197         }
4198     }
4199 
4200     @Override
4201     public void visitAnyPattern(JCAnyPattern tree) {
4202         result = tree.type = resultInfo.pt;
4203     }
4204 
4205     public void visitBindingPattern(JCBindingPattern tree) {
4206         Type type;
4207         if (tree.var.vartype != null) {
4208             type = attribType(tree.var.vartype, env);
4209         } else {
4210             type = resultInfo.pt;
4211         }
4212         tree.type = tree.var.type = type;
4213         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4214         v.pos = tree.pos;
4215         tree.var.sym = v;
4216         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4217             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4218         }
4219         if (tree.var.isImplicitlyTyped()) {
4220             setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4221                                                                    : type);
4222         }
4223         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos());
4224         if (!tree.var.isImplicitlyTyped()) {
4225             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos());
4226         }
4227         annotate.flush();
4228         chk.validate(tree.var.vartype, env, true);
4229         result = tree.type;
4230         if (v.isUnnamedVariable()) {
4231             matchBindings = MatchBindingsComputer.EMPTY;
4232         } else {
4233             matchBindings = new MatchBindings(List.of(v), List.nil());
4234         }
4235     }
4236 
4237     @Override
4238     public void visitRecordPattern(JCRecordPattern tree) {
4239         Type site;
4240 
4241         if (tree.deconstructor == null) {
4242             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4243             tree.record = syms.errSymbol;
4244             site = tree.type = types.createErrorType(tree.record.type);
4245         } else {
4246             Type type = attribType(tree.deconstructor, env);
4247             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4248                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4249                 if (inferred == null) {
4250                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4251                 } else {
4252                     type = inferred;
4253                 }
4254             }
4255             tree.type = tree.deconstructor.type = type;
4256             site = types.capture(tree.type);
4257         }
4258 
4259         List<Type> expectedRecordTypes;
4260         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4261             ClassSymbol record = (ClassSymbol) site.tsym;
4262             expectedRecordTypes = record.getRecordComponents()
4263                                         .stream()
4264                                         .map(rc -> types.memberType(site, rc))
4265                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4266                                         .collect(List.collector());
4267             tree.record = record;
4268         } else {
4269             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4270             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4271                                 .limit(tree.nested.size())
4272                                 .collect(List.collector());
4273             tree.record = syms.errSymbol;
4274         }
4275         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4276         List<Type> recordTypes = expectedRecordTypes;
4277         List<JCPattern> nestedPatterns = tree.nested;
4278         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4279         try {
4280             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4281                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4282                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4283                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4284                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4285                 nestedPatterns = nestedPatterns.tail;
4286                 recordTypes = recordTypes.tail;
4287             }
4288             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4289                 while (nestedPatterns.nonEmpty()) {
4290                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4291                     nestedPatterns = nestedPatterns.tail;
4292                 }
4293                 List<Type> nestedTypes =
4294                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4295                 log.error(tree.pos(),
4296                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4297                                                                  nestedTypes));
4298             }
4299         } finally {
4300             localEnv.info.scope.leave();
4301         }
4302         chk.validate(tree.deconstructor, env, true);
4303         result = tree.type;
4304         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4305     }
4306 
4307     public void visitIndexed(JCArrayAccess tree) {
4308         Type owntype = types.createErrorType(tree.type);
4309         Type atype = attribExpr(tree.indexed, env);
4310         attribExpr(tree.index, env, syms.intType);
4311         if (types.isArray(atype))
4312             owntype = types.elemtype(atype);
4313         else if (!atype.hasTag(ERROR))
4314             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4315         if (!pkind().contains(KindSelector.VAL))
4316             owntype = capture(owntype);
4317         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4318     }
4319 
4320     public void visitIdent(JCIdent tree) {
4321         Symbol sym;
4322 
4323         // Find symbol
4324         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4325             // If we are looking for a method, the prototype `pt' will be a
4326             // method type with the type of the call's arguments as parameters.
4327             env.info.pendingResolutionPhase = null;
4328             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4329         } else if (tree.sym != null && tree.sym.kind != VAR) {
4330             sym = tree.sym;
4331         } else {
4332             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4333         }
4334         tree.sym = sym;
4335 
4336         // Also find the environment current for the class where
4337         // sym is defined (`symEnv').
4338         Env<AttrContext> symEnv = env;
4339         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4340             sym.kind.matches(KindSelector.VAL_MTH) &&
4341             sym.owner.kind == TYP &&
4342             tree.name != names._this && tree.name != names._super) {
4343 
4344             // Find environment in which identifier is defined.
4345             while (symEnv.outer != null &&
4346                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4347                 symEnv = symEnv.outer;
4348             }
4349         }
4350 
4351         // If symbol is a variable, ...
4352         if (sym.kind == VAR) {
4353             VarSymbol v = (VarSymbol)sym;
4354 
4355             // ..., evaluate its initializer, if it has one, and check for
4356             // illegal forward reference.
4357             checkInit(tree, env, v, false);
4358 
4359             // If we are expecting a variable (as opposed to a value), check
4360             // that the variable is assignable in the current environment.
4361             if (KindSelector.ASG.subset(pkind()))
4362                 checkAssignable(tree.pos(), v, null, env);
4363         }
4364 
4365         Env<AttrContext> env1 = env;
4366         if (sym.kind != ERR && sym.kind != TYP &&
4367             sym.owner != null && sym.owner != env1.enclClass.sym) {
4368             // If the found symbol is inaccessible, then it is
4369             // accessed through an enclosing instance.  Locate this
4370             // enclosing instance:
4371             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4372                 env1 = env1.outer;
4373         }
4374 
4375         if (env.info.isSerializable) {
4376             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4377         }
4378 
4379         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4380     }
4381 
4382     public void visitSelect(JCFieldAccess tree) {
4383         // Determine the expected kind of the qualifier expression.
4384         KindSelector skind = KindSelector.NIL;
4385         if (tree.name == names._this || tree.name == names._super ||
4386                 tree.name == names._class)
4387         {
4388             skind = KindSelector.TYP;
4389         } else {
4390             if (pkind().contains(KindSelector.PCK))
4391                 skind = KindSelector.of(skind, KindSelector.PCK);
4392             if (pkind().contains(KindSelector.TYP))
4393                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4394             if (pkind().contains(KindSelector.VAL_MTH))
4395                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4396         }
4397 
4398         // Attribute the qualifier expression, and determine its symbol (if any).
4399         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4400         Assert.check(site == tree.selected.type);
4401         if (!pkind().contains(KindSelector.TYP_PCK))
4402             site = capture(site); // Capture field access
4403 
4404         // don't allow T.class T[].class, etc
4405         if (skind == KindSelector.TYP) {
4406             Type elt = site;
4407             while (elt.hasTag(ARRAY))
4408                 elt = ((ArrayType)elt).elemtype;
4409             if (elt.hasTag(TYPEVAR)) {
4410                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4411                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4412                 tree.sym = tree.type.tsym;
4413                 return ;
4414             }
4415         }
4416 
4417         // If qualifier symbol is a type or `super', assert `selectSuper'
4418         // for the selection. This is relevant for determining whether
4419         // protected symbols are accessible.
4420         Symbol sitesym = TreeInfo.symbol(tree.selected);
4421         boolean selectSuperPrev = env.info.selectSuper;
4422         env.info.selectSuper =
4423             sitesym != null &&
4424             sitesym.name == names._super;
4425 
4426         // Determine the symbol represented by the selection.
4427         env.info.pendingResolutionPhase = null;
4428         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4429         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4430             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4431             sym = syms.errSymbol;
4432         }
4433         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4434             site = capture(site);
4435             sym = selectSym(tree, sitesym, site, env, resultInfo);
4436         }
4437         boolean varArgs = env.info.lastResolveVarargs();
4438         tree.sym = sym;
4439 
4440         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4441             site = types.skipTypeVars(site, true);
4442         }
4443 
4444         // If that symbol is a variable, ...
4445         if (sym.kind == VAR) {
4446             VarSymbol v = (VarSymbol)sym;
4447 
4448             // ..., evaluate its initializer, if it has one, and check for
4449             // illegal forward reference.
4450             checkInit(tree, env, v, true);
4451 
4452             // If we are expecting a variable (as opposed to a value), check
4453             // that the variable is assignable in the current environment.
4454             if (KindSelector.ASG.subset(pkind()))
4455                 checkAssignable(tree.pos(), v, tree.selected, env);
4456         }
4457 
4458         if (sitesym != null &&
4459                 sitesym.kind == VAR &&
4460                 ((VarSymbol)sitesym).isResourceVariable() &&
4461                 sym.kind == MTH &&
4462                 sym.name.equals(names.close) &&
4463                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4464                 env.info.lint.isEnabled(LintCategory.TRY)) {
4465             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4466         }
4467 
4468         // Disallow selecting a type from an expression
4469         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4470             tree.type = check(tree.selected, pt(),
4471                               sitesym == null ?
4472                                       KindSelector.VAL : sitesym.kind.toSelector(),
4473                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4474         }
4475 
4476         if (isType(sitesym)) {
4477             if (sym.name != names._this && sym.name != names._super) {
4478                 // Check if type-qualified fields or methods are static (JLS)
4479                 if ((sym.flags() & STATIC) == 0 &&
4480                     sym.name != names._super &&
4481                     (sym.kind == VAR || sym.kind == MTH)) {
4482                     rs.accessBase(rs.new StaticError(sym),
4483                               tree.pos(), site, sym.name, true);
4484                 }
4485             }
4486         } else if (sym.kind != ERR &&
4487                    (sym.flags() & STATIC) != 0 &&
4488                    sym.name != names._class) {
4489             // If the qualified item is not a type and the selected item is static, report
4490             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4491             if (!sym.owner.isAnonymous()) {
4492                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4493             } else {
4494                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4495             }
4496         }
4497 
4498         // If we are selecting an instance member via a `super', ...
4499         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4500 
4501             // Check that super-qualified symbols are not abstract (JLS)
4502             rs.checkNonAbstract(tree.pos(), sym);
4503 
4504             if (site.isRaw()) {
4505                 // Determine argument types for site.
4506                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4507                 if (site1 != null) site = site1;
4508             }
4509         }
4510 
4511         if (env.info.isSerializable) {
4512             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4513         }
4514 
4515         env.info.selectSuper = selectSuperPrev;
4516         result = checkId(tree, site, sym, env, resultInfo);
4517     }
4518     //where
4519         /** Determine symbol referenced by a Select expression,
4520          *
4521          *  @param tree   The select tree.
4522          *  @param site   The type of the selected expression,
4523          *  @param env    The current environment.
4524          *  @param resultInfo The current result.
4525          */
4526         private Symbol selectSym(JCFieldAccess tree,
4527                                  Symbol location,
4528                                  Type site,
4529                                  Env<AttrContext> env,
4530                                  ResultInfo resultInfo) {
4531             DiagnosticPosition pos = tree.pos();
4532             Name name = tree.name;
4533             switch (site.getTag()) {
4534             case PACKAGE:
4535                 return rs.accessBase(
4536                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4537                     pos, location, site, name, true);
4538             case ARRAY:
4539             case CLASS:
4540                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4541                     return rs.resolveQualifiedMethod(
4542                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4543                 } else if (name == names._this || name == names._super) {
4544                     return rs.resolveSelf(pos, env, site.tsym, name);
4545                 } else if (name == names._class) {
4546                     // In this case, we have already made sure in
4547                     // visitSelect that qualifier expression is a type.
4548                     return syms.getClassField(site, types);
4549                 } else {
4550                     // We are seeing a plain identifier as selector.
4551                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4552                         sym = rs.accessBase(sym, pos, location, site, name, true);
4553                     return sym;
4554                 }
4555             case WILDCARD:
4556                 throw new AssertionError(tree);
4557             case TYPEVAR:
4558                 // Normally, site.getUpperBound() shouldn't be null.
4559                 // It should only happen during memberEnter/attribBase
4560                 // when determining the supertype which *must* be
4561                 // done before attributing the type variables.  In
4562                 // other words, we are seeing this illegal program:
4563                 // class B<T> extends A<T.foo> {}
4564                 Symbol sym = (site.getUpperBound() != null)
4565                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4566                     : null;
4567                 if (sym == null) {
4568                     log.error(pos, Errors.TypeVarCantBeDeref);
4569                     return syms.errSymbol;
4570                 } else {
4571                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4572                         rs.new AccessError(env, site, sym) :
4573                                 sym;
4574                     rs.accessBase(sym2, pos, location, site, name, true);
4575                     return sym;
4576                 }
4577             case ERROR:
4578                 // preserve identifier names through errors
4579                 return types.createErrorType(name, site.tsym, site).tsym;
4580             default:
4581                 // The qualifier expression is of a primitive type -- only
4582                 // .class is allowed for these.
4583                 if (name == names._class) {
4584                     // In this case, we have already made sure in Select that
4585                     // qualifier expression is a type.
4586                     return syms.getClassField(site, types);
4587                 } else {
4588                     log.error(pos, Errors.CantDeref(site));
4589                     return syms.errSymbol;
4590                 }
4591             }
4592         }
4593 
4594         /** Determine type of identifier or select expression and check that
4595          *  (1) the referenced symbol is not deprecated
4596          *  (2) the symbol's type is safe (@see checkSafe)
4597          *  (3) if symbol is a variable, check that its type and kind are
4598          *      compatible with the prototype and protokind.
4599          *  (4) if symbol is an instance field of a raw type,
4600          *      which is being assigned to, issue an unchecked warning if its
4601          *      type changes under erasure.
4602          *  (5) if symbol is an instance method of a raw type, issue an
4603          *      unchecked warning if its argument types change under erasure.
4604          *  If checks succeed:
4605          *    If symbol is a constant, return its constant type
4606          *    else if symbol is a method, return its result type
4607          *    otherwise return its type.
4608          *  Otherwise return errType.
4609          *
4610          *  @param tree       The syntax tree representing the identifier
4611          *  @param site       If this is a select, the type of the selected
4612          *                    expression, otherwise the type of the current class.
4613          *  @param sym        The symbol representing the identifier.
4614          *  @param env        The current environment.
4615          *  @param resultInfo    The expected result
4616          */
4617         Type checkId(JCTree tree,
4618                      Type site,
4619                      Symbol sym,
4620                      Env<AttrContext> env,
4621                      ResultInfo resultInfo) {
4622             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4623                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4624                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4625         }
4626 
4627         Type checkMethodIdInternal(JCTree tree,
4628                      Type site,
4629                      Symbol sym,
4630                      Env<AttrContext> env,
4631                      ResultInfo resultInfo) {
4632             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4633                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4634             } else {
4635                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4636             }
4637         }
4638 
4639         Type checkIdInternal(JCTree tree,
4640                      Type site,
4641                      Symbol sym,
4642                      Type pt,
4643                      Env<AttrContext> env,
4644                      ResultInfo resultInfo) {
4645             Type owntype; // The computed type of this identifier occurrence.
4646             switch (sym.kind) {
4647             case TYP:
4648                 // For types, the computed type equals the symbol's type,
4649                 // except for two situations:
4650                 owntype = sym.type;
4651                 if (owntype.hasTag(CLASS)) {
4652                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4653                     Type ownOuter = owntype.getEnclosingType();
4654 
4655                     // (a) If the symbol's type is parameterized, erase it
4656                     // because no type parameters were given.
4657                     // We recover generic outer type later in visitTypeApply.
4658                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4659                         owntype = types.erasure(owntype);
4660                     }
4661 
4662                     // (b) If the symbol's type is an inner class, then
4663                     // we have to interpret its outer type as a superclass
4664                     // of the site type. Example:
4665                     //
4666                     // class Tree<A> { class Visitor { ... } }
4667                     // class PointTree extends Tree<Point> { ... }
4668                     // ...PointTree.Visitor...
4669                     //
4670                     // Then the type of the last expression above is
4671                     // Tree<Point>.Visitor.
4672                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4673                         Type normOuter = site;
4674                         if (normOuter.hasTag(CLASS)) {
4675                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4676                         }
4677                         if (normOuter == null) // perhaps from an import
4678                             normOuter = types.erasure(ownOuter);
4679                         if (normOuter != ownOuter)
4680                             owntype = new ClassType(
4681                                 normOuter, List.nil(), owntype.tsym,
4682                                 owntype.getMetadata());
4683                     }
4684                 }
4685                 break;
4686             case VAR:
4687                 VarSymbol v = (VarSymbol)sym;
4688 
4689                 if (env.info.enclVar != null
4690                         && v.type.hasTag(NONE)) {
4691                     //self reference to implicitly typed variable declaration
4692                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4693                     return tree.type = v.type = types.createErrorType(v.type);
4694                 }
4695 
4696                 // Test (4): if symbol is an instance field of a raw type,
4697                 // which is being assigned to, issue an unchecked warning if
4698                 // its type changes under erasure.
4699                 if (KindSelector.ASG.subset(pkind()) &&
4700                     v.owner.kind == TYP &&
4701                     (v.flags() & STATIC) == 0 &&
4702                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4703                     Type s = types.asOuterSuper(site, v.owner);
4704                     if (s != null &&
4705                         s.isRaw() &&
4706                         !types.isSameType(v.type, v.erasure(types))) {
4707                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4708                     }
4709                 }
4710                 // The computed type of a variable is the type of the
4711                 // variable symbol, taken as a member of the site type.
4712                 owntype = (sym.owner.kind == TYP &&
4713                            sym.name != names._this && sym.name != names._super)
4714                     ? types.memberType(site, sym)
4715                     : sym.type;
4716 
4717                 // If the variable is a constant, record constant value in
4718                 // computed type.
4719                 if (v.getConstValue() != null && isStaticReference(tree))
4720                     owntype = owntype.constType(v.getConstValue());
4721 
4722                 if (resultInfo.pkind == KindSelector.VAL) {
4723                     owntype = capture(owntype); // capture "names as expressions"
4724                 }
4725                 break;
4726             case MTH: {
4727                 owntype = checkMethod(site, sym,
4728                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4729                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4730                         resultInfo.pt.getTypeArguments());
4731                 chk.checkRestricted(tree.pos(), sym);
4732                 break;
4733             }
4734             case PCK: case ERR:
4735                 owntype = sym.type;
4736                 break;
4737             default:
4738                 throw new AssertionError("unexpected kind: " + sym.kind +
4739                                          " in tree " + tree);
4740             }
4741 
4742             // Emit a `deprecation' warning if symbol is deprecated.
4743             // (for constructors (but not for constructor references), the error
4744             // was given when the constructor was resolved)
4745 
4746             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4747                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4748                 chk.checkSunAPI(tree.pos(), sym);
4749                 chk.checkProfile(tree.pos(), sym);
4750                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4751             }
4752 
4753             if (pt.isErroneous()) {
4754                 owntype = types.createErrorType(owntype);
4755             }
4756 
4757             // If symbol is a variable, check that its type and
4758             // kind are compatible with the prototype and protokind.
4759             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4760         }
4761 
4762         /** Check that variable is initialized and evaluate the variable's
4763          *  initializer, if not yet done. Also check that variable is not
4764          *  referenced before it is defined.
4765          *  @param tree    The tree making up the variable reference.
4766          *  @param env     The current environment.
4767          *  @param v       The variable's symbol.
4768          */
4769         private void checkInit(JCTree tree,
4770                                Env<AttrContext> env,
4771                                VarSymbol v,
4772                                boolean onlyWarning) {
4773             // A forward reference is diagnosed if the declaration position
4774             // of the variable is greater than the current tree position
4775             // and the tree and variable definition occur in the same class
4776             // definition.  Note that writes don't count as references.
4777             // This check applies only to class and instance
4778             // variables.  Local variables follow different scope rules,
4779             // and are subject to definite assignment checking.
4780             Env<AttrContext> initEnv = enclosingInitEnv(env);
4781             if (initEnv != null &&
4782                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4783                 v.owner.kind == TYP &&
4784                 v.owner == env.info.scope.owner.enclClass() &&
4785                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4786                 (!env.tree.hasTag(ASSIGN) ||
4787                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4788                 if (!onlyWarning || isStaticEnumField(v)) {
4789                     Error errkey = (initEnv.info.enclVar == v) ?
4790                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4791                     log.error(tree.pos(), errkey);
4792                 } else if (useBeforeDeclarationWarning) {
4793                     Warning warnkey = (initEnv.info.enclVar == v) ?
4794                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4795                     log.warning(tree.pos(), warnkey);
4796                 }
4797             }
4798 
4799             v.getConstValue(); // ensure initializer is evaluated
4800 
4801             checkEnumInitializer(tree, env, v);
4802         }
4803 
4804         /**
4805          * Returns the enclosing init environment associated with this env (if any). An init env
4806          * can be either a field declaration env or a static/instance initializer env.
4807          */
4808         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4809             while (true) {
4810                 switch (env.tree.getTag()) {
4811                     case VARDEF:
4812                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4813                         if (vdecl.sym.owner.kind == TYP) {
4814                             //field
4815                             return env;
4816                         }
4817                         break;
4818                     case BLOCK:
4819                         if (env.next.tree.hasTag(CLASSDEF)) {
4820                             //instance/static initializer
4821                             return env;
4822                         }
4823                         break;
4824                     case METHODDEF:
4825                     case CLASSDEF:
4826                     case TOPLEVEL:
4827                         return null;
4828                 }
4829                 Assert.checkNonNull(env.next);
4830                 env = env.next;
4831             }
4832         }
4833 
4834         /**
4835          * Check for illegal references to static members of enum.  In
4836          * an enum type, constructors and initializers may not
4837          * reference its static members unless they are constant.
4838          *
4839          * @param tree    The tree making up the variable reference.
4840          * @param env     The current environment.
4841          * @param v       The variable's symbol.
4842          * @jls 8.9 Enum Types
4843          */
4844         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4845             // JLS:
4846             //
4847             // "It is a compile-time error to reference a static field
4848             // of an enum type that is not a compile-time constant
4849             // (15.28) from constructors, instance initializer blocks,
4850             // or instance variable initializer expressions of that
4851             // type. It is a compile-time error for the constructors,
4852             // instance initializer blocks, or instance variable
4853             // initializer expressions of an enum constant e to refer
4854             // to itself or to an enum constant of the same type that
4855             // is declared to the right of e."
4856             if (isStaticEnumField(v)) {
4857                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4858 
4859                 if (enclClass == null || enclClass.owner == null)
4860                     return;
4861 
4862                 // See if the enclosing class is the enum (or a
4863                 // subclass thereof) declaring v.  If not, this
4864                 // reference is OK.
4865                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4866                     return;
4867 
4868                 // If the reference isn't from an initializer, then
4869                 // the reference is OK.
4870                 if (!Resolve.isInitializer(env))
4871                     return;
4872 
4873                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4874             }
4875         }
4876 
4877         /** Is the given symbol a static, non-constant field of an Enum?
4878          *  Note: enum literals should not be regarded as such
4879          */
4880         private boolean isStaticEnumField(VarSymbol v) {
4881             return Flags.isEnum(v.owner) &&
4882                    Flags.isStatic(v) &&
4883                    !Flags.isConstant(v) &&
4884                    v.name != names._class;
4885         }
4886 
4887     /**
4888      * Check that method arguments conform to its instantiation.
4889      **/
4890     public Type checkMethod(Type site,
4891                             final Symbol sym,
4892                             ResultInfo resultInfo,
4893                             Env<AttrContext> env,
4894                             final List<JCExpression> argtrees,
4895                             List<Type> argtypes,
4896                             List<Type> typeargtypes) {
4897         // Test (5): if symbol is an instance method of a raw type, issue
4898         // an unchecked warning if its argument types change under erasure.
4899         if ((sym.flags() & STATIC) == 0 &&
4900             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4901             Type s = types.asOuterSuper(site, sym.owner);
4902             if (s != null && s.isRaw() &&
4903                 !types.isSameTypes(sym.type.getParameterTypes(),
4904                                    sym.erasure(types).getParameterTypes())) {
4905                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4906             }
4907         }
4908 
4909         if (env.info.defaultSuperCallSite != null) {
4910             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4911                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4912                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4913                 List<MethodSymbol> icand_sup =
4914                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4915                 if (icand_sup.nonEmpty() &&
4916                         icand_sup.head != sym &&
4917                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4918                     log.error(env.tree.pos(),
4919                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4920                     break;
4921                 }
4922             }
4923             env.info.defaultSuperCallSite = null;
4924         }
4925 
4926         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4927             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4928             if (app.meth.hasTag(SELECT) &&
4929                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4930                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4931             }
4932         }
4933 
4934         // Compute the identifier's instantiated type.
4935         // For methods, we need to compute the instance type by
4936         // Resolve.instantiate from the symbol's type as well as
4937         // any type arguments and value arguments.
4938         Warner noteWarner = new Warner();
4939         try {
4940             Type owntype = rs.checkMethod(
4941                     env,
4942                     site,
4943                     sym,
4944                     resultInfo,
4945                     argtypes,
4946                     typeargtypes,
4947                     noteWarner);
4948 
4949             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4950                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4951 
4952             argtypes = argtypes.map(checkDeferredMap);
4953 
4954             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4955                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4956                         sym.name,
4957                         rs.methodArguments(sym.type.getParameterTypes()),
4958                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4959                         kindName(sym.location()),
4960                         sym.location()));
4961                 if (resultInfo.pt != Infer.anyPoly ||
4962                         !owntype.hasTag(METHOD) ||
4963                         !owntype.isPartial()) {
4964                     //if this is not a partially inferred method type, erase return type. Otherwise,
4965                     //erasure is carried out in PartiallyInferredMethodType.check().
4966                     owntype = new MethodType(owntype.getParameterTypes(),
4967                             types.erasure(owntype.getReturnType()),
4968                             types.erasure(owntype.getThrownTypes()),
4969                             syms.methodClass);
4970                 }
4971             }
4972 
4973             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4974                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4975                  PolyKind.POLY : PolyKind.STANDALONE;
4976             TreeInfo.setPolyKind(env.tree, pkind);
4977 
4978             return (resultInfo.pt == Infer.anyPoly) ?
4979                     owntype :
4980                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4981                             resultInfo.checkContext.inferenceContext());
4982         } catch (Infer.InferenceException ex) {
4983             //invalid target type - propagate exception outwards or report error
4984             //depending on the current check context
4985             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4986             return types.createErrorType(site);
4987         } catch (Resolve.InapplicableMethodException ex) {
4988             final JCDiagnostic diag = ex.getDiagnostic();
4989             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4990                 @Override
4991                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4992                     return new Pair<>(sym, diag);
4993                 }
4994             };
4995             List<Type> argtypes2 = argtypes.map(
4996                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4997             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4998                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4999             log.report(errDiag);
5000             return types.createErrorType(site);
5001         }
5002     }
5003 
5004     public void visitLiteral(JCLiteral tree) {
5005         result = check(tree, litType(tree.typetag).constType(tree.value),
5006                 KindSelector.VAL, resultInfo);
5007     }
5008     //where
5009     /** Return the type of a literal with given type tag.
5010      */
5011     Type litType(TypeTag tag) {
5012         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5013     }
5014 
5015     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5016         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5017     }
5018 
5019     public void visitTypeArray(JCArrayTypeTree tree) {
5020         Type etype = attribType(tree.elemtype, env);
5021         Type type = new ArrayType(etype, syms.arrayClass);
5022         result = check(tree, type, KindSelector.TYP, resultInfo);
5023     }
5024 
5025     /** Visitor method for parameterized types.
5026      *  Bound checking is left until later, since types are attributed
5027      *  before supertype structure is completely known
5028      */
5029     public void visitTypeApply(JCTypeApply tree) {
5030         Type owntype = types.createErrorType(tree.type);
5031 
5032         // Attribute functor part of application and make sure it's a class.
5033         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5034 
5035         // Attribute type parameters
5036         List<Type> actuals = attribTypes(tree.arguments, env);
5037 
5038         if (clazztype.hasTag(CLASS)) {
5039             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5040             if (actuals.isEmpty()) //diamond
5041                 actuals = formals;
5042 
5043             if (actuals.length() == formals.length()) {
5044                 List<Type> a = actuals;
5045                 List<Type> f = formals;
5046                 while (a.nonEmpty()) {
5047                     a.head = a.head.withTypeVar(f.head);
5048                     a = a.tail;
5049                     f = f.tail;
5050                 }
5051                 // Compute the proper generic outer
5052                 Type clazzOuter = clazztype.getEnclosingType();
5053                 if (clazzOuter.hasTag(CLASS)) {
5054                     Type site;
5055                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5056                     if (clazz.hasTag(IDENT)) {
5057                         site = env.enclClass.sym.type;
5058                     } else if (clazz.hasTag(SELECT)) {
5059                         site = ((JCFieldAccess) clazz).selected.type;
5060                     } else throw new AssertionError(""+tree);
5061                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5062                         if (site.hasTag(CLASS))
5063                             site = types.asOuterSuper(site, clazzOuter.tsym);
5064                         if (site == null)
5065                             site = types.erasure(clazzOuter);
5066                         clazzOuter = site;
5067                     }
5068                 }
5069                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5070                                         clazztype.getMetadata());
5071             } else {
5072                 if (formals.length() != 0) {
5073                     log.error(tree.pos(),
5074                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5075                 } else {
5076                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5077                 }
5078                 owntype = types.createErrorType(tree.type);
5079             }
5080         } else if (clazztype.hasTag(ERROR)) {
5081             ErrorType parameterizedErroneous =
5082                     new ErrorType(clazztype.getOriginalType(),
5083                                   clazztype.tsym,
5084                                   clazztype.getMetadata());
5085 
5086             parameterizedErroneous.typarams_field = actuals;
5087             owntype = parameterizedErroneous;
5088         }
5089         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5090     }
5091 
5092     public void visitTypeUnion(JCTypeUnion tree) {
5093         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5094         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5095         for (JCExpression typeTree : tree.alternatives) {
5096             Type ctype = attribType(typeTree, env);
5097             ctype = chk.checkType(typeTree.pos(),
5098                           chk.checkClassType(typeTree.pos(), ctype),
5099                           syms.throwableType);
5100             if (!ctype.isErroneous()) {
5101                 //check that alternatives of a union type are pairwise
5102                 //unrelated w.r.t. subtyping
5103                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5104                     for (Type t : multicatchTypes) {
5105                         boolean sub = types.isSubtype(ctype, t);
5106                         boolean sup = types.isSubtype(t, ctype);
5107                         if (sub || sup) {
5108                             //assume 'a' <: 'b'
5109                             Type a = sub ? ctype : t;
5110                             Type b = sub ? t : ctype;
5111                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5112                         }
5113                     }
5114                 }
5115                 multicatchTypes.append(ctype);
5116                 if (all_multicatchTypes != null)
5117                     all_multicatchTypes.append(ctype);
5118             } else {
5119                 if (all_multicatchTypes == null) {
5120                     all_multicatchTypes = new ListBuffer<>();
5121                     all_multicatchTypes.appendList(multicatchTypes);
5122                 }
5123                 all_multicatchTypes.append(ctype);
5124             }
5125         }
5126         Type t = check(tree, types.lub(multicatchTypes.toList()),
5127                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5128         if (t.hasTag(CLASS)) {
5129             List<Type> alternatives =
5130                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5131             t = new UnionClassType((ClassType) t, alternatives);
5132         }
5133         tree.type = result = t;
5134     }
5135 
5136     public void visitTypeIntersection(JCTypeIntersection tree) {
5137         attribTypes(tree.bounds, env);
5138         tree.type = result = checkIntersection(tree, tree.bounds);
5139     }
5140 
5141     public void visitTypeParameter(JCTypeParameter tree) {
5142         TypeVar typeVar = (TypeVar) tree.type;
5143 
5144         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5145             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5146         }
5147 
5148         if (!typeVar.getUpperBound().isErroneous()) {
5149             //fixup type-parameter bound computed in 'attribTypeVariables'
5150             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5151         }
5152     }
5153 
5154     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5155         Set<Symbol> boundSet = new HashSet<>();
5156         if (bounds.nonEmpty()) {
5157             // accept class or interface or typevar as first bound.
5158             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5159             boundSet.add(types.erasure(bounds.head.type).tsym);
5160             if (bounds.head.type.isErroneous()) {
5161                 return bounds.head.type;
5162             }
5163             else if (bounds.head.type.hasTag(TYPEVAR)) {
5164                 // if first bound was a typevar, do not accept further bounds.
5165                 if (bounds.tail.nonEmpty()) {
5166                     log.error(bounds.tail.head.pos(),
5167                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5168                     return bounds.head.type;
5169                 }
5170             } else {
5171                 // if first bound was a class or interface, accept only interfaces
5172                 // as further bounds.
5173                 for (JCExpression bound : bounds.tail) {
5174                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5175                     if (bound.type.isErroneous()) {
5176                         bounds = List.of(bound);
5177                     }
5178                     else if (bound.type.hasTag(CLASS)) {
5179                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5180                     }
5181                 }
5182             }
5183         }
5184 
5185         if (bounds.length() == 0) {
5186             return syms.objectType;
5187         } else if (bounds.length() == 1) {
5188             return bounds.head.type;
5189         } else {
5190             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5191             // ... the variable's bound is a class type flagged COMPOUND
5192             // (see comment for TypeVar.bound).
5193             // In this case, generate a class tree that represents the
5194             // bound class, ...
5195             JCExpression extending;
5196             List<JCExpression> implementing;
5197             if (!bounds.head.type.isInterface()) {
5198                 extending = bounds.head;
5199                 implementing = bounds.tail;
5200             } else {
5201                 extending = null;
5202                 implementing = bounds;
5203             }
5204             JCClassDecl cd = make.at(tree).ClassDef(
5205                 make.Modifiers(PUBLIC | ABSTRACT),
5206                 names.empty, List.nil(),
5207                 extending, implementing, List.nil());
5208 
5209             ClassSymbol c = (ClassSymbol)owntype.tsym;
5210             Assert.check((c.flags() & COMPOUND) != 0);
5211             cd.sym = c;
5212             c.sourcefile = env.toplevel.sourcefile;
5213 
5214             // ... and attribute the bound class
5215             c.flags_field |= UNATTRIBUTED;
5216             Env<AttrContext> cenv = enter.classEnv(cd, env);
5217             typeEnvs.put(c, cenv);
5218             attribClass(c);
5219             return owntype;
5220         }
5221     }
5222 
5223     public void visitWildcard(JCWildcard tree) {
5224         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5225         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5226             ? syms.objectType
5227             : attribType(tree.inner, env);
5228         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5229                                               tree.kind.kind,
5230                                               syms.boundClass),
5231                 KindSelector.TYP, resultInfo);
5232     }
5233 
5234     public void visitAnnotation(JCAnnotation tree) {
5235         Assert.error("should be handled in annotate");
5236     }
5237 
5238     @Override
5239     public void visitModifiers(JCModifiers tree) {
5240         //error recovery only:
5241         Assert.check(resultInfo.pkind == KindSelector.ERR);
5242 
5243         attribAnnotationTypes(tree.annotations, env);
5244     }
5245 
5246     public void visitAnnotatedType(JCAnnotatedType tree) {
5247         attribAnnotationTypes(tree.annotations, env);
5248         Type underlyingType = attribType(tree.underlyingType, env);
5249         Type annotatedType = underlyingType.preannotatedType();
5250 
5251         if (!env.info.isNewClass)
5252             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5253         result = tree.type = annotatedType;
5254     }
5255 
5256     public void visitErroneous(JCErroneous tree) {
5257         if (tree.errs != null) {
5258             WriteableScope newScope = env.info.scope;
5259 
5260             if (env.tree instanceof JCClassDecl) {
5261                 Symbol fakeOwner =
5262                     new MethodSymbol(BLOCK, names.empty, null,
5263                         env.info.scope.owner);
5264                 newScope = newScope.dupUnshared(fakeOwner);
5265             }
5266 
5267             Env<AttrContext> errEnv =
5268                     env.dup(env.tree,
5269                             env.info.dup(newScope));
5270             errEnv.info.returnResult = unknownExprInfo;
5271             for (JCTree err : tree.errs)
5272                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5273         }
5274         result = tree.type = syms.errType;
5275     }
5276 
5277     /** Default visitor method for all other trees.
5278      */
5279     public void visitTree(JCTree tree) {
5280         throw new AssertionError();
5281     }
5282 
5283     /**
5284      * Attribute an env for either a top level tree or class or module declaration.
5285      */
5286     public void attrib(Env<AttrContext> env) {
5287         switch (env.tree.getTag()) {
5288             case MODULEDEF:
5289                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5290                 break;
5291             case PACKAGEDEF:
5292                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5293                 break;
5294             default:
5295                 attribClass(env.tree.pos(), env.enclClass.sym);
5296         }
5297 
5298         annotate.flush();
5299     }
5300 
5301     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5302         try {
5303             annotate.flush();
5304             attribPackage(p);
5305         } catch (CompletionFailure ex) {
5306             chk.completionError(pos, ex);
5307         }
5308     }
5309 
5310     void attribPackage(PackageSymbol p) {
5311         attribWithLint(p,
5312                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5313     }
5314 
5315     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5316         try {
5317             annotate.flush();
5318             attribModule(m);
5319         } catch (CompletionFailure ex) {
5320             chk.completionError(pos, ex);
5321         }
5322     }
5323 
5324     void attribModule(ModuleSymbol m) {
5325         attribWithLint(m, env -> attribStat(env.tree, env));
5326     }
5327 
5328     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5329         Env<AttrContext> env = typeEnvs.get(sym);
5330 
5331         Env<AttrContext> lintEnv = env;
5332         while (lintEnv.info.lint == null)
5333             lintEnv = lintEnv.next;
5334 
5335         Lint lint = lintEnv.info.lint.augment(sym);
5336 
5337         Lint prevLint = chk.setLint(lint);
5338         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5339 
5340         try {
5341             deferredLintHandler.flush(env.tree.pos(), lint);
5342             attrib.accept(env);
5343         } finally {
5344             log.useSource(prev);
5345             chk.setLint(prevLint);
5346         }
5347     }
5348 
5349     /** Main method: attribute class definition associated with given class symbol.
5350      *  reporting completion failures at the given position.
5351      *  @param pos The source position at which completion errors are to be
5352      *             reported.
5353      *  @param c   The class symbol whose definition will be attributed.
5354      */
5355     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5356         try {
5357             annotate.flush();
5358             attribClass(c);
5359         } catch (CompletionFailure ex) {
5360             chk.completionError(pos, ex);
5361         }
5362     }
5363 
5364     /** Attribute class definition associated with given class symbol.
5365      *  @param c   The class symbol whose definition will be attributed.
5366      */
5367     void attribClass(ClassSymbol c) throws CompletionFailure {
5368         if (c.type.hasTag(ERROR)) return;
5369 
5370         // Check for cycles in the inheritance graph, which can arise from
5371         // ill-formed class files.
5372         chk.checkNonCyclic(null, c.type);
5373 
5374         Type st = types.supertype(c.type);
5375         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5376             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5377             // First, attribute superclass.
5378             if (st.hasTag(CLASS))
5379                 attribClass((ClassSymbol)st.tsym);
5380 
5381             // Next attribute owner, if it is a class.
5382             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5383                 attribClass((ClassSymbol)c.owner);
5384 
5385             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5386         }
5387 
5388         // The previous operations might have attributed the current class
5389         // if there was a cycle. So we test first whether the class is still
5390         // UNATTRIBUTED.
5391         if ((c.flags_field & UNATTRIBUTED) != 0) {
5392             c.flags_field &= ~UNATTRIBUTED;
5393 
5394             // Get environment current at the point of class definition.
5395             Env<AttrContext> env = typeEnvs.get(c);
5396 
5397             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5398             // because the annotations were not available at the time the env was created. Therefore,
5399             // we look up the environment chain for the first enclosing environment for which the
5400             // lint value is set. Typically, this is the parent env, but might be further if there
5401             // are any envs created as a result of TypeParameter nodes.
5402             Env<AttrContext> lintEnv = env;
5403             while (lintEnv.info.lint == null)
5404                 lintEnv = lintEnv.next;
5405 
5406             // Having found the enclosing lint value, we can initialize the lint value for this class
5407             env.info.lint = lintEnv.info.lint.augment(c);
5408 
5409             Lint prevLint = chk.setLint(env.info.lint);
5410             JavaFileObject prev = log.useSource(c.sourcefile);
5411             ResultInfo prevReturnRes = env.info.returnResult;
5412 
5413             try {
5414                 if (c.isSealed() &&
5415                         !c.isEnum() &&
5416                         !c.isPermittedExplicit &&
5417                         c.getPermittedSubclasses().isEmpty()) {
5418                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5419                 }
5420 
5421                 if (c.isSealed()) {
5422                     Set<Symbol> permittedTypes = new HashSet<>();
5423                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5424                     for (Type subType : c.getPermittedSubclasses()) {
5425                         boolean isTypeVar = false;
5426                         if (subType.getTag() == TYPEVAR) {
5427                             isTypeVar = true; //error recovery
5428                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5429                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5430                         }
5431                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5432                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5433                         }
5434                         if (permittedTypes.contains(subType.tsym)) {
5435                             DiagnosticPosition pos =
5436                                     env.enclClass.permitting.stream()
5437                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5438                                             .limit(2).collect(List.collector()).get(1);
5439                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5440                         } else {
5441                             permittedTypes.add(subType.tsym);
5442                         }
5443                         if (sealedInUnnamed) {
5444                             if (subType.tsym.packge() != c.packge()) {
5445                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5446                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5447                                 );
5448                             }
5449                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5450                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5451                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5452                             );
5453                         }
5454                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5455                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5456                                     Errors.InvalidPermitsClause(
5457                                             subType.tsym == c.type.tsym ?
5458                                                     Fragments.MustNotBeSameClass :
5459                                                     Fragments.MustNotBeSupertype(subType)
5460                                     )
5461                             );
5462                         } else if (!isTypeVar) {
5463                             boolean thisIsASuper = types.directSupertypes(subType)
5464                                                         .stream()
5465                                                         .anyMatch(d -> d.tsym == c);
5466                             if (!thisIsASuper) {
5467                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5468                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5469                             }
5470                         }
5471                     }
5472                 }
5473 
5474                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5475                                                       .stream()
5476                                                       .filter(s -> s.tsym.isSealed())
5477                                                       .map(s -> (ClassSymbol) s.tsym)
5478                                                       .collect(List.collector());
5479 
5480                 if (sealedSupers.isEmpty()) {
5481                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5482                         boolean hasErrorSuper = false;
5483 
5484                         hasErrorSuper |= types.directSupertypes(c.type)
5485                                               .stream()
5486                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5487 
5488                         ClassType ct = (ClassType) c.type;
5489 
5490                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5491 
5492                         if (!hasErrorSuper) {
5493                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5494                         }
5495                     }
5496                 } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5497                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5498                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5499                     }
5500 
5501                     if (!c.type.isCompound()) {
5502                         for (ClassSymbol supertypeSym : sealedSupers) {
5503                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5504                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5505                             }
5506                         }
5507                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5508                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5509                                     c.isInterface() ?
5510                                             Errors.NonSealedOrSealedExpected :
5511                                             Errors.NonSealedSealedOrFinalExpected);
5512                         }
5513                     }
5514                 }
5515 
5516                 deferredLintHandler.flush(env.tree, env.info.lint);
5517                 env.info.returnResult = null;
5518                 // java.lang.Enum may not be subclassed by a non-enum
5519                 if (st.tsym == syms.enumSym &&
5520                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5521                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5522 
5523                 // Enums may not be extended by source-level classes
5524                 if (st.tsym != null &&
5525                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5526                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5527                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5528                 }
5529 
5530                 if (rs.isSerializable(c.type)) {
5531                     env.info.isSerializable = true;
5532                 }
5533 
5534                 if (c.isValueClass()) {
5535                     Assert.check(env.tree.hasTag(CLASSDEF));
5536                     chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c);
5537                 }
5538 
5539                 attribClassBody(env, c);
5540 
5541                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5542                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5543                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5544                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5545 
5546                 if (c.isImplicit()) {
5547                     chk.checkHasMain(env.tree.pos(), c);
5548                 }
5549             } finally {
5550                 env.info.returnResult = prevReturnRes;
5551                 log.useSource(prev);
5552                 chk.setLint(prevLint);
5553             }
5554 
5555         }
5556     }
5557 
5558     public void visitImport(JCImport tree) {
5559         // nothing to do
5560     }
5561 
5562     public void visitModuleDef(JCModuleDecl tree) {
5563         tree.sym.completeUsesProvides();
5564         ModuleSymbol msym = tree.sym;
5565         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5566         Lint prevLint = chk.setLint(lint);
5567         chk.checkModuleName(tree);
5568         chk.checkDeprecatedAnnotation(tree, msym);
5569 
5570         try {
5571             deferredLintHandler.flush(tree.pos(), lint);
5572         } finally {
5573             chk.setLint(prevLint);
5574         }
5575     }
5576 
5577     /** Finish the attribution of a class. */
5578     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5579         JCClassDecl tree = (JCClassDecl)env.tree;
5580         Assert.check(c == tree.sym);
5581 
5582         // Validate type parameters, supertype and interfaces.
5583         attribStats(tree.typarams, env);
5584         if (!c.isAnonymous()) {
5585             //already checked if anonymous
5586             chk.validate(tree.typarams, env);
5587             chk.validate(tree.extending, env);
5588             chk.validate(tree.implementing, env);
5589         }
5590 
5591         c.markAbstractIfNeeded(types);
5592 
5593         // If this is a non-abstract class, check that it has no abstract
5594         // methods or unimplemented methods of an implemented interface.
5595         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5596             chk.checkAllDefined(tree.pos(), c);
5597         }
5598 
5599         if ((c.flags() & ANNOTATION) != 0) {
5600             if (tree.implementing.nonEmpty())
5601                 log.error(tree.implementing.head.pos(),
5602                           Errors.CantExtendIntfAnnotation);
5603             if (tree.typarams.nonEmpty()) {
5604                 log.error(tree.typarams.head.pos(),
5605                           Errors.IntfAnnotationCantHaveTypeParams(c));
5606             }
5607 
5608             // If this annotation type has a @Repeatable, validate
5609             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5610             // If this annotation type has a @Repeatable, validate
5611             if (repeatable != null) {
5612                 // get diagnostic position for error reporting
5613                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5614                 Assert.checkNonNull(cbPos);
5615 
5616                 chk.validateRepeatable(c, repeatable, cbPos);
5617             }
5618         } else {
5619             // Check that all extended classes and interfaces
5620             // are compatible (i.e. no two define methods with same arguments
5621             // yet different return types).  (JLS 8.4.8.3)
5622             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5623             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5624             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5625         }
5626 
5627         // Check that class does not import the same parameterized interface
5628         // with two different argument lists.
5629         chk.checkClassBounds(tree.pos(), c.type);
5630 
5631         tree.type = c.type;
5632 
5633         for (List<JCTypeParameter> l = tree.typarams;
5634              l.nonEmpty(); l = l.tail) {
5635              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5636         }
5637 
5638         // Check that a generic class doesn't extend Throwable
5639         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5640             log.error(tree.extending.pos(), Errors.GenericThrowable);
5641 
5642         // Check that all methods which implement some
5643         // method conform to the method they implement.
5644         chk.checkImplementations(tree);
5645 
5646         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5647         checkAutoCloseable(tree.pos(), env, c.type);
5648 
5649         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5650             // Attribute declaration
5651             attribStat(l.head, env);
5652             // Check that declarations in inner classes are not static (JLS 8.1.2)
5653             // Make an exception for static constants.
5654             if (!allowRecords &&
5655                     c.owner.kind != PCK &&
5656                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5657                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5658                 VarSymbol sym = null;
5659                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5660                 if (sym == null ||
5661                         sym.kind != VAR ||
5662                         sym.getConstValue() == null)
5663                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5664             }
5665         }
5666 
5667         // Check for proper placement of super()/this() calls.
5668         chk.checkSuperInitCalls(tree);
5669 
5670         // Check for cycles among non-initial constructors.
5671         chk.checkCyclicConstructors(tree);
5672 
5673         // Check for cycles among annotation elements.
5674         chk.checkNonCyclicElements(tree);
5675 
5676         // Check for proper use of serialVersionUID and other
5677         // serialization-related fields and methods
5678         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5679                 && rs.isSerializable(c.type)
5680                 && !c.isAnonymous()) {
5681             chk.checkSerialStructure(env, tree, c);
5682         }
5683         // Correctly organize the positions of the type annotations
5684         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5685 
5686         // Check type annotations applicability rules
5687         validateTypeAnnotations(tree, false);
5688     }
5689         // where
5690         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5691         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5692             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5693                 if (types.isSameType(al.head.annotationType.type, t))
5694                     return al.head.pos();
5695             }
5696 
5697             return null;
5698         }
5699 
5700     private Type capture(Type type) {
5701         return types.capture(type);
5702     }
5703 
5704     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5705         if (type.isErroneous()) {
5706             tree.vartype = make.at(Position.NOPOS).Erroneous();
5707         } else {
5708             tree.vartype = make.at(Position.NOPOS).Type(type);
5709         }
5710     }
5711 
5712     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5713         tree.accept(new TypeAnnotationsValidator(sigOnly));
5714     }
5715     //where
5716     private final class TypeAnnotationsValidator extends TreeScanner {
5717 
5718         private final boolean sigOnly;
5719         public TypeAnnotationsValidator(boolean sigOnly) {
5720             this.sigOnly = sigOnly;
5721         }
5722 
5723         public void visitAnnotation(JCAnnotation tree) {
5724             chk.validateTypeAnnotation(tree, null, false);
5725             super.visitAnnotation(tree);
5726         }
5727         public void visitAnnotatedType(JCAnnotatedType tree) {
5728             if (!tree.underlyingType.type.isErroneous()) {
5729                 super.visitAnnotatedType(tree);
5730             }
5731         }
5732         public void visitTypeParameter(JCTypeParameter tree) {
5733             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5734             scan(tree.bounds);
5735             // Don't call super.
5736             // This is needed because above we call validateTypeAnnotation with
5737             // false, which would forbid annotations on type parameters.
5738             // super.visitTypeParameter(tree);
5739         }
5740         public void visitMethodDef(JCMethodDecl tree) {
5741             if (tree.recvparam != null &&
5742                     !tree.recvparam.vartype.type.isErroneous()) {
5743                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5744             }
5745             if (tree.restype != null && tree.restype.type != null) {
5746                 validateAnnotatedType(tree.restype, tree.restype.type);
5747             }
5748             if (sigOnly) {
5749                 scan(tree.mods);
5750                 scan(tree.restype);
5751                 scan(tree.typarams);
5752                 scan(tree.recvparam);
5753                 scan(tree.params);
5754                 scan(tree.thrown);
5755             } else {
5756                 scan(tree.defaultValue);
5757                 scan(tree.body);
5758             }
5759         }
5760         public void visitVarDef(final JCVariableDecl tree) {
5761             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5762             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5763                 validateAnnotatedType(tree.vartype, tree.sym.type);
5764             scan(tree.mods);
5765             scan(tree.vartype);
5766             if (!sigOnly) {
5767                 scan(tree.init);
5768             }
5769         }
5770         public void visitTypeCast(JCTypeCast tree) {
5771             if (tree.clazz != null && tree.clazz.type != null)
5772                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5773             super.visitTypeCast(tree);
5774         }
5775         public void visitTypeTest(JCInstanceOf tree) {
5776             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5777                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5778             super.visitTypeTest(tree);
5779         }
5780         public void visitNewClass(JCNewClass tree) {
5781             if (tree.clazz != null && tree.clazz.type != null) {
5782                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5783                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5784                             tree.clazz.type.tsym);
5785                 }
5786                 if (tree.def != null) {
5787                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5788                 }
5789 
5790                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5791             }
5792             super.visitNewClass(tree);
5793         }
5794         public void visitNewArray(JCNewArray tree) {
5795             if (tree.elemtype != null && tree.elemtype.type != null) {
5796                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5797                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5798                             tree.elemtype.type.tsym);
5799                 }
5800                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5801             }
5802             super.visitNewArray(tree);
5803         }
5804         public void visitClassDef(JCClassDecl tree) {
5805             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5806             if (sigOnly) {
5807                 scan(tree.mods);
5808                 scan(tree.typarams);
5809                 scan(tree.extending);
5810                 scan(tree.implementing);
5811             }
5812             for (JCTree member : tree.defs) {
5813                 if (member.hasTag(Tag.CLASSDEF)) {
5814                     continue;
5815                 }
5816                 scan(member);
5817             }
5818         }
5819         public void visitBlock(JCBlock tree) {
5820             if (!sigOnly) {
5821                 scan(tree.stats);
5822             }
5823         }
5824 
5825         /* I would want to model this after
5826          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5827          * and override visitSelect and visitTypeApply.
5828          * However, we only set the annotated type in the top-level type
5829          * of the symbol.
5830          * Therefore, we need to override each individual location where a type
5831          * can occur.
5832          */
5833         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5834             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5835 
5836             if (type.isPrimitiveOrVoid()) {
5837                 return;
5838             }
5839 
5840             JCTree enclTr = errtree;
5841             Type enclTy = type;
5842 
5843             boolean repeat = true;
5844             while (repeat) {
5845                 if (enclTr.hasTag(TYPEAPPLY)) {
5846                     List<Type> tyargs = enclTy.getTypeArguments();
5847                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5848                     if (trargs.length() > 0) {
5849                         // Nothing to do for diamonds
5850                         if (tyargs.length() == trargs.length()) {
5851                             for (int i = 0; i < tyargs.length(); ++i) {
5852                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5853                             }
5854                         }
5855                         // If the lengths don't match, it's either a diamond
5856                         // or some nested type that redundantly provides
5857                         // type arguments in the tree.
5858                     }
5859 
5860                     // Look at the clazz part of a generic type
5861                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5862                 }
5863 
5864                 if (enclTr.hasTag(SELECT)) {
5865                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5866                     if (enclTy != null &&
5867                             !enclTy.hasTag(NONE)) {
5868                         enclTy = enclTy.getEnclosingType();
5869                     }
5870                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5871                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5872                     if (enclTy == null || enclTy.hasTag(NONE)) {
5873                         ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
5874                         for (JCAnnotation an : at.getAnnotations()) {
5875                             if (chk.isTypeAnnotation(an, false)) {
5876                                 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
5877                             }
5878                         }
5879                         List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
5880                         if (!onlyTypeAnnotations.isEmpty()) {
5881                             Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
5882                                     Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
5883                                     Fragments.TypeAnnotation(onlyTypeAnnotations);
5884                             JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
5885                                     type.stripMetadata().annotatedType(onlyTypeAnnotations));
5886                             log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
5887                                     type.tsym.owner, annotatedType));
5888                         }
5889                         repeat = false;
5890                     }
5891                     enclTr = at.underlyingType;
5892                     // enclTy doesn't need to be changed
5893                 } else if (enclTr.hasTag(IDENT)) {
5894                     repeat = false;
5895                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5896                     JCWildcard wc = (JCWildcard) enclTr;
5897                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5898                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5899                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5900                     } else {
5901                         // Nothing to do for UNBOUND
5902                     }
5903                     repeat = false;
5904                 } else if (enclTr.hasTag(TYPEARRAY)) {
5905                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5906                     validateAnnotatedType(art.getType(), art.elemtype.type);
5907                     repeat = false;
5908                 } else if (enclTr.hasTag(TYPEUNION)) {
5909                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5910                     for (JCTree t : ut.getTypeAlternatives()) {
5911                         validateAnnotatedType(t, t.type);
5912                     }
5913                     repeat = false;
5914                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5915                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5916                     for (JCTree t : it.getBounds()) {
5917                         validateAnnotatedType(t, t.type);
5918                     }
5919                     repeat = false;
5920                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5921                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5922                     repeat = false;
5923                 } else {
5924                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5925                             " within: "+ errtree + " with kind: " + errtree.getKind());
5926                 }
5927             }
5928         }
5929 
5930         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5931                 Symbol sym) {
5932             // Ensure that no declaration annotations are present.
5933             // Note that a tree type might be an AnnotatedType with
5934             // empty annotations, if only declaration annotations were given.
5935             // This method will raise an error for such a type.
5936             for (JCAnnotation ai : annotations) {
5937                 if (!ai.type.isErroneous() &&
5938                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5939                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5940                 }
5941             }
5942         }
5943     }
5944 
5945     // <editor-fold desc="post-attribution visitor">
5946 
5947     /**
5948      * Handle missing types/symbols in an AST. This routine is useful when
5949      * the compiler has encountered some errors (which might have ended up
5950      * terminating attribution abruptly); if the compiler is used in fail-over
5951      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5952      * prevents NPE to be propagated during subsequent compilation steps.
5953      */
5954     public void postAttr(JCTree tree) {
5955         new PostAttrAnalyzer().scan(tree);
5956     }
5957 
5958     class PostAttrAnalyzer extends TreeScanner {
5959 
5960         private void initTypeIfNeeded(JCTree that) {
5961             if (that.type == null) {
5962                 if (that.hasTag(METHODDEF)) {
5963                     that.type = dummyMethodType((JCMethodDecl)that);
5964                 } else {
5965                     that.type = syms.unknownType;
5966                 }
5967             }
5968         }
5969 
5970         /* Construct a dummy method type. If we have a method declaration,
5971          * and the declared return type is void, then use that return type
5972          * instead of UNKNOWN to avoid spurious error messages in lambda
5973          * bodies (see:JDK-8041704).
5974          */
5975         private Type dummyMethodType(JCMethodDecl md) {
5976             Type restype = syms.unknownType;
5977             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5978                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5979                 if (prim.typetag == VOID)
5980                     restype = syms.voidType;
5981             }
5982             return new MethodType(List.nil(), restype,
5983                                   List.nil(), syms.methodClass);
5984         }
5985         private Type dummyMethodType() {
5986             return dummyMethodType(null);
5987         }
5988 
5989         @Override
5990         public void scan(JCTree tree) {
5991             if (tree == null) return;
5992             if (tree instanceof JCExpression) {
5993                 initTypeIfNeeded(tree);
5994             }
5995             super.scan(tree);
5996         }
5997 
5998         @Override
5999         public void visitIdent(JCIdent that) {
6000             if (that.sym == null) {
6001                 that.sym = syms.unknownSymbol;
6002             }
6003         }
6004 
6005         @Override
6006         public void visitSelect(JCFieldAccess that) {
6007             if (that.sym == null) {
6008                 that.sym = syms.unknownSymbol;
6009             }
6010             super.visitSelect(that);
6011         }
6012 
6013         @Override
6014         public void visitClassDef(JCClassDecl that) {
6015             initTypeIfNeeded(that);
6016             if (that.sym == null) {
6017                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6018             }
6019             super.visitClassDef(that);
6020         }
6021 
6022         @Override
6023         public void visitMethodDef(JCMethodDecl that) {
6024             initTypeIfNeeded(that);
6025             if (that.sym == null) {
6026                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6027             }
6028             super.visitMethodDef(that);
6029         }
6030 
6031         @Override
6032         public void visitVarDef(JCVariableDecl that) {
6033             initTypeIfNeeded(that);
6034             if (that.sym == null) {
6035                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6036                 that.sym.adr = 0;
6037             }
6038             if (that.vartype == null) {
6039                 that.vartype = make.at(Position.NOPOS).Erroneous();
6040             }
6041             super.visitVarDef(that);
6042         }
6043 
6044         @Override
6045         public void visitBindingPattern(JCBindingPattern that) {
6046             initTypeIfNeeded(that);
6047             initTypeIfNeeded(that.var);
6048             if (that.var.sym == null) {
6049                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6050                 that.var.sym.adr = 0;
6051             }
6052             super.visitBindingPattern(that);
6053         }
6054 
6055         @Override
6056         public void visitRecordPattern(JCRecordPattern that) {
6057             initTypeIfNeeded(that);
6058             if (that.record == null) {
6059                 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6060                                               that.type, syms.noSymbol);
6061             }
6062             if (that.fullComponentTypes == null) {
6063                 that.fullComponentTypes = List.nil();
6064             }
6065             super.visitRecordPattern(that);
6066         }
6067 
6068         @Override
6069         public void visitNewClass(JCNewClass that) {
6070             if (that.constructor == null) {
6071                 that.constructor = new MethodSymbol(0, names.init,
6072                         dummyMethodType(), syms.noSymbol);
6073             }
6074             if (that.constructorType == null) {
6075                 that.constructorType = syms.unknownType;
6076             }
6077             super.visitNewClass(that);
6078         }
6079 
6080         @Override
6081         public void visitAssignop(JCAssignOp that) {
6082             if (that.operator == null) {
6083                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6084                         -1, syms.noSymbol);
6085             }
6086             super.visitAssignop(that);
6087         }
6088 
6089         @Override
6090         public void visitBinary(JCBinary that) {
6091             if (that.operator == null) {
6092                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6093                         -1, syms.noSymbol);
6094             }
6095             super.visitBinary(that);
6096         }
6097 
6098         @Override
6099         public void visitUnary(JCUnary that) {
6100             if (that.operator == null) {
6101                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6102                         -1, syms.noSymbol);
6103             }
6104             super.visitUnary(that);
6105         }
6106 
6107         @Override
6108         public void visitReference(JCMemberReference that) {
6109             super.visitReference(that);
6110             if (that.sym == null) {
6111                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6112                         syms.noSymbol);
6113             }
6114         }
6115     }
6116     // </editor-fold>
6117 
6118     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6119         new TreeScanner() {
6120             Symbol packge = pkg;
6121             @Override
6122             public void visitIdent(JCIdent that) {
6123                 that.sym = packge;
6124             }
6125 
6126             @Override
6127             public void visitSelect(JCFieldAccess that) {
6128                 that.sym = packge;
6129                 packge = packge.owner;
6130                 super.visitSelect(that);
6131             }
6132         }.scan(pid);
6133     }
6134 
6135 }