1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.IdentifierTree;
  38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  39 import com.sun.source.tree.MemberSelectTree;
  40 import com.sun.source.tree.TreeVisitor;
  41 import com.sun.source.util.SimpleTreeVisitor;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Lint.LintCategory;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Source.Feature;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  53 import com.sun.tools.javac.jvm.*;
  54 
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  58 
  59 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  60 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  62 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  63 import com.sun.tools.javac.tree.*;
  64 import com.sun.tools.javac.tree.JCTree.*;
  65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  66 import com.sun.tools.javac.util.*;
  67 import com.sun.tools.javac.util.DefinedBy.Api;
  68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  69 import com.sun.tools.javac.util.JCDiagnostic.Error;
  70 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  71 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  72 import com.sun.tools.javac.util.List;
  73 
  74 import static com.sun.tools.javac.code.Flags.*;
  75 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  76 import static com.sun.tools.javac.code.Flags.BLOCK;
  77 import static com.sun.tools.javac.code.Kinds.*;
  78 import static com.sun.tools.javac.code.Kinds.Kind.*;
  79 import static com.sun.tools.javac.code.TypeTag.*;
  80 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  81 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  83 
  84 /** This is the main context-dependent analysis phase in GJC. It
  85  *  encompasses name resolution, type checking and constant folding as
  86  *  subtasks. Some subtasks involve auxiliary classes.
  87  *  @see Check
  88  *  @see Resolve
  89  *  @see ConstFold
  90  *  @see Infer
  91  *
  92  *  <p><b>This is NOT part of any supported API.
  93  *  If you write code that depends on this, you do so at your own risk.
  94  *  This code and its internal interfaces are subject to change or
  95  *  deletion without notice.</b>
  96  */
  97 public class Attr extends JCTree.Visitor {
  98     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  99 
 100     final Names names;
 101     final Log log;
 102     final Symtab syms;
 103     final Resolve rs;
 104     final Operators operators;
 105     final Infer infer;
 106     final Analyzer analyzer;
 107     final DeferredAttr deferredAttr;
 108     final Check chk;
 109     final Flow flow;
 110     final MemberEnter memberEnter;
 111     final TypeEnter typeEnter;
 112     final TreeMaker make;
 113     final ConstFold cfolder;
 114     final Enter enter;
 115     final Target target;
 116     final Types types;
 117     final Preview preview;
 118     final JCDiagnostic.Factory diags;
 119     final TypeAnnotations typeAnnotations;
 120     final DeferredLintHandler deferredLintHandler;
 121     final TypeEnvs typeEnvs;
 122     final Dependencies dependencies;
 123     final Annotate annotate;
 124     final ArgumentAttr argumentAttr;
 125     final MatchBindingsComputer matchBindingsComputer;
 126     final AttrRecover attrRecover;
 127 
 128     public static Attr instance(Context context) {
 129         Attr instance = context.get(attrKey);
 130         if (instance == null)
 131             instance = new Attr(context);
 132         return instance;
 133     }
 134 
 135     @SuppressWarnings("this-escape")
 136     protected Attr(Context context) {
 137         context.put(attrKey, this);
 138 
 139         names = Names.instance(context);
 140         log = Log.instance(context);
 141         syms = Symtab.instance(context);
 142         rs = Resolve.instance(context);
 143         operators = Operators.instance(context);
 144         chk = Check.instance(context);
 145         flow = Flow.instance(context);
 146         memberEnter = MemberEnter.instance(context);
 147         typeEnter = TypeEnter.instance(context);
 148         make = TreeMaker.instance(context);
 149         enter = Enter.instance(context);
 150         infer = Infer.instance(context);
 151         analyzer = Analyzer.instance(context);
 152         deferredAttr = DeferredAttr.instance(context);
 153         cfolder = ConstFold.instance(context);
 154         target = Target.instance(context);
 155         types = Types.instance(context);
 156         preview = Preview.instance(context);
 157         diags = JCDiagnostic.Factory.instance(context);
 158         annotate = Annotate.instance(context);
 159         typeAnnotations = TypeAnnotations.instance(context);
 160         deferredLintHandler = DeferredLintHandler.instance(context);
 161         typeEnvs = TypeEnvs.instance(context);
 162         dependencies = Dependencies.instance(context);
 163         argumentAttr = ArgumentAttr.instance(context);
 164         matchBindingsComputer = MatchBindingsComputer.instance(context);
 165         attrRecover = AttrRecover.instance(context);
 166 
 167         Options options = Options.instance(context);
 168 
 169         Source source = Source.instance(context);
 170         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 171         allowRecords = Feature.RECORDS.allowedInSource(source);
 172         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 173                              Feature.PATTERN_SWITCH.allowedInSource(source);
 174         allowUnconditionalPatternsInstanceOf =
 175                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 176         sourceName = source.name;
 177         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 178 
 179         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 180         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 181         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 182         methodAttrInfo = new MethodAttrInfo();
 183         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 184         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 185         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 186         initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
 187         allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 188                 Feature.VALUE_CLASSES.allowedInSource(source);
 189     }
 190 
 191     /** Switch: reifiable types in instanceof enabled?
 192      */
 193     boolean allowReifiableTypesInInstanceof;
 194 
 195     /** Are records allowed
 196      */
 197     private final boolean allowRecords;
 198 
 199     /** Are patterns in switch allowed
 200      */
 201     private final boolean allowPatternSwitch;
 202 
 203     /** Are unconditional patterns in instanceof allowed
 204      */
 205     private final boolean allowUnconditionalPatternsInstanceOf;
 206 
 207     /** Are value classes allowed
 208      */
 209     private final boolean allowValueClasses;
 210 
 211     /**
 212      * Switch: warn about use of variable before declaration?
 213      * RFE: 6425594
 214      */
 215     boolean useBeforeDeclarationWarning;
 216 
 217     /**
 218      * Switch: name of source level; used for error reporting.
 219      */
 220     String sourceName;
 221 
 222     /** Check kind and type of given tree against protokind and prototype.
 223      *  If check succeeds, store type in tree and return it.
 224      *  If check fails, store errType in tree and return it.
 225      *  No checks are performed if the prototype is a method type.
 226      *  It is not necessary in this case since we know that kind and type
 227      *  are correct.
 228      *
 229      *  @param tree     The tree whose kind and type is checked
 230      *  @param found    The computed type of the tree
 231      *  @param ownkind  The computed kind of the tree
 232      *  @param resultInfo  The expected result of the tree
 233      */
 234     Type check(final JCTree tree,
 235                final Type found,
 236                final KindSelector ownkind,
 237                final ResultInfo resultInfo) {
 238         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 239         Type owntype;
 240         boolean shouldCheck = !found.hasTag(ERROR) &&
 241                 !resultInfo.pt.hasTag(METHOD) &&
 242                 !resultInfo.pt.hasTag(FORALL);
 243         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 244             log.error(tree.pos(),
 245                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 246                                             ownkind.kindNames()));
 247             owntype = types.createErrorType(found);
 248         } else if (inferenceContext.free(found)) {
 249             //delay the check if there are inference variables in the found type
 250             //this means we are dealing with a partially inferred poly expression
 251             owntype = shouldCheck ? resultInfo.pt : found;
 252             if (resultInfo.checkMode.installPostInferenceHook()) {
 253                 inferenceContext.addFreeTypeListener(List.of(found),
 254                         instantiatedContext -> {
 255                             ResultInfo pendingResult =
 256                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 257                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 258                         });
 259             }
 260         } else {
 261             owntype = shouldCheck ?
 262             resultInfo.check(tree, found) :
 263             found;
 264         }
 265         if (resultInfo.checkMode.updateTreeType()) {
 266             tree.type = owntype;
 267         }
 268         return owntype;
 269     }
 270 
 271     /** Is given blank final variable assignable, i.e. in a scope where it
 272      *  may be assigned to even though it is final?
 273      *  @param v      The blank final variable.
 274      *  @param env    The current environment.
 275      */
 276     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 277         Symbol owner = env.info.scope.owner;
 278            // owner refers to the innermost variable, method or
 279            // initializer block declaration at this point.
 280         boolean isAssignable =
 281             v.owner == owner
 282             ||
 283             ((owner.name == names.init ||    // i.e. we are in a constructor
 284               owner.kind == VAR ||           // i.e. we are in a variable initializer
 285               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 286              &&
 287              v.owner == owner.owner
 288              &&
 289              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 290         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 291         return isAssignable & !insideCompactConstructor;
 292     }
 293 
 294     /** Check that variable can be assigned to.
 295      *  @param pos    The current source code position.
 296      *  @param v      The assigned variable
 297      *  @param base   If the variable is referred to in a Select, the part
 298      *                to the left of the `.', null otherwise.
 299      *  @param env    The current environment.
 300      */
 301     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 302         if (v.name == names._this) {
 303             log.error(pos, Errors.CantAssignValToThis);
 304             return;
 305         }
 306         if ((v.flags() & FINAL) != 0 &&
 307             ((v.flags() & HASINIT) != 0
 308              ||
 309              !((base == null ||
 310                TreeInfo.isThisQualifier(base)) &&
 311                isAssignableAsBlankFinal(v, env)))) {
 312             if (v.isResourceVariable()) { //TWR resource
 313                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 314             } else {
 315                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 316             }
 317             return;
 318         }
 319 
 320         // Check instance field assignments that appear in constructor prologues
 321         if (rs.isEarlyReference(env, base, v)) {
 322 
 323             // Field may not be inherited from a superclass
 324             if (v.owner != env.enclClass.sym) {
 325                 log.error(pos, Errors.CantRefBeforeCtorCalled(v));
 326                 return;
 327             }
 328 
 329             // Field may not have an initializer
 330             if ((v.flags() & HASINIT) != 0) {
 331                 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v));
 332                 return;
 333             }
 334         }
 335     }
 336 
 337     /** Does tree represent a static reference to an identifier?
 338      *  It is assumed that tree is either a SELECT or an IDENT.
 339      *  We have to weed out selects from non-type names here.
 340      *  @param tree    The candidate tree.
 341      */
 342     boolean isStaticReference(JCTree tree) {
 343         if (tree.hasTag(SELECT)) {
 344             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 345             if (lsym == null || lsym.kind != TYP) {
 346                 return false;
 347             }
 348         }
 349         return true;
 350     }
 351 
 352     /** Is this symbol a type?
 353      */
 354     static boolean isType(Symbol sym) {
 355         return sym != null && sym.kind == TYP;
 356     }
 357 
 358     /** Attribute a parsed identifier.
 359      * @param tree Parsed identifier name
 360      * @param topLevel The toplevel to use
 361      */
 362     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 363         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 364         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 365                                            syms.errSymbol.name,
 366                                            null, null, null, null);
 367         localEnv.enclClass.sym = syms.errSymbol;
 368         return attribIdent(tree, localEnv);
 369     }
 370 
 371     /** Attribute a parsed identifier.
 372      * @param tree Parsed identifier name
 373      * @param env The env to use
 374      */
 375     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 376         return tree.accept(identAttributer, env);
 377     }
 378     // where
 379         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 380         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 381             @Override @DefinedBy(Api.COMPILER_TREE)
 382             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 383                 Symbol site = visit(node.getExpression(), env);
 384                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 385                     return site;
 386                 Name name = (Name)node.getIdentifier();
 387                 if (site.kind == PCK) {
 388                     env.toplevel.packge = (PackageSymbol)site;
 389                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 390                             KindSelector.TYP_PCK);
 391                 } else {
 392                     env.enclClass.sym = (ClassSymbol)site;
 393                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 394                 }
 395             }
 396 
 397             @Override @DefinedBy(Api.COMPILER_TREE)
 398             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 399                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 400             }
 401         }
 402 
 403     public Type coerce(Type etype, Type ttype) {
 404         return cfolder.coerce(etype, ttype);
 405     }
 406 
 407     public Type attribType(JCTree node, TypeSymbol sym) {
 408         Env<AttrContext> env = typeEnvs.get(sym);
 409         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 410         return attribTree(node, localEnv, unknownTypeInfo);
 411     }
 412 
 413     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 414         // Attribute qualifying package or class.
 415         JCFieldAccess s = tree.qualid;
 416         return attribTree(s.selected, env,
 417                           new ResultInfo(tree.staticImport ?
 418                                          KindSelector.TYP : KindSelector.TYP_PCK,
 419                        Type.noType));
 420     }
 421 
 422     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 423         return attribToTree(expr, env, tree, unknownExprInfo);
 424     }
 425 
 426     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 427         return attribToTree(stmt, env, tree, statInfo);
 428     }
 429 
 430     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 431         breakTree = tree;
 432         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 433         try {
 434             deferredAttr.attribSpeculative(root, env, resultInfo,
 435                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 436                     argumentAttr.withLocalCacheContext());
 437             attrRecover.doRecovery();
 438         } catch (BreakAttr b) {
 439             return b.env;
 440         } catch (AssertionError ae) {
 441             if (ae.getCause() instanceof BreakAttr breakAttr) {
 442                 return breakAttr.env;
 443             } else {
 444                 throw ae;
 445             }
 446         } finally {
 447             breakTree = null;
 448             log.useSource(prev);
 449         }
 450         return env;
 451     }
 452 
 453     private JCTree breakTree = null;
 454 
 455     private static class BreakAttr extends RuntimeException {
 456         static final long serialVersionUID = -6924771130405446405L;
 457         private transient Env<AttrContext> env;
 458         private BreakAttr(Env<AttrContext> env) {
 459             this.env = env;
 460         }
 461     }
 462 
 463     /**
 464      * Mode controlling behavior of Attr.Check
 465      */
 466     enum CheckMode {
 467 
 468         NORMAL,
 469 
 470         /**
 471          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 472          * that the captured var cache in {@code InferenceContext} will be used in read-only
 473          * mode when performing inference checks.
 474          */
 475         NO_TREE_UPDATE {
 476             @Override
 477             public boolean updateTreeType() {
 478                 return false;
 479             }
 480         },
 481         /**
 482          * Mode signalling that caller will manage free types in tree decorations.
 483          */
 484         NO_INFERENCE_HOOK {
 485             @Override
 486             public boolean installPostInferenceHook() {
 487                 return false;
 488             }
 489         };
 490 
 491         public boolean updateTreeType() {
 492             return true;
 493         }
 494         public boolean installPostInferenceHook() {
 495             return true;
 496         }
 497     }
 498 
 499 
 500     class ResultInfo {
 501         final KindSelector pkind;
 502         final Type pt;
 503         final CheckContext checkContext;
 504         final CheckMode checkMode;
 505 
 506         ResultInfo(KindSelector pkind, Type pt) {
 507             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 508         }
 509 
 510         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 511             this(pkind, pt, chk.basicHandler, checkMode);
 512         }
 513 
 514         protected ResultInfo(KindSelector pkind,
 515                              Type pt, CheckContext checkContext) {
 516             this(pkind, pt, checkContext, CheckMode.NORMAL);
 517         }
 518 
 519         protected ResultInfo(KindSelector pkind,
 520                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 521             this.pkind = pkind;
 522             this.pt = pt;
 523             this.checkContext = checkContext;
 524             this.checkMode = checkMode;
 525         }
 526 
 527         /**
 528          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 529          * @param tree The tree to be type-checked.
 530          * @return true if {@code ArgumentAttr} should be used.
 531          */
 532         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 533 
 534         protected Type check(final DiagnosticPosition pos, final Type found) {
 535             return chk.checkType(pos, found, pt, checkContext);
 536         }
 537 
 538         protected ResultInfo dup(Type newPt) {
 539             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 540         }
 541 
 542         protected ResultInfo dup(CheckContext newContext) {
 543             return new ResultInfo(pkind, pt, newContext, checkMode);
 544         }
 545 
 546         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 547             return new ResultInfo(pkind, newPt, newContext, checkMode);
 548         }
 549 
 550         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 551             return new ResultInfo(pkind, newPt, newContext, newMode);
 552         }
 553 
 554         protected ResultInfo dup(CheckMode newMode) {
 555             return new ResultInfo(pkind, pt, checkContext, newMode);
 556         }
 557 
 558         @Override
 559         public String toString() {
 560             if (pt != null) {
 561                 return pt.toString();
 562             } else {
 563                 return "";
 564             }
 565         }
 566     }
 567 
 568     class MethodAttrInfo extends ResultInfo {
 569         public MethodAttrInfo() {
 570             this(chk.basicHandler);
 571         }
 572 
 573         public MethodAttrInfo(CheckContext checkContext) {
 574             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 575         }
 576 
 577         @Override
 578         protected boolean needsArgumentAttr(JCTree tree) {
 579             return true;
 580         }
 581 
 582         protected ResultInfo dup(Type newPt) {
 583             throw new IllegalStateException();
 584         }
 585 
 586         protected ResultInfo dup(CheckContext newContext) {
 587             return new MethodAttrInfo(newContext);
 588         }
 589 
 590         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 591             throw new IllegalStateException();
 592         }
 593 
 594         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 595             throw new IllegalStateException();
 596         }
 597 
 598         protected ResultInfo dup(CheckMode newMode) {
 599             throw new IllegalStateException();
 600         }
 601     }
 602 
 603     class RecoveryInfo extends ResultInfo {
 604 
 605         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 606             this(deferredAttrContext, Type.recoveryType);
 607         }
 608 
 609         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 610             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 611                 @Override
 612                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 613                     return deferredAttrContext;
 614                 }
 615                 @Override
 616                 public boolean compatible(Type found, Type req, Warner warn) {
 617                     return true;
 618                 }
 619                 @Override
 620                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 621                     boolean needsReport = pt == Type.recoveryType ||
 622                             (details.getDiagnosticPosition() != null &&
 623                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 624                     if (needsReport) {
 625                         chk.basicHandler.report(pos, details);
 626                     }
 627                 }
 628             });
 629         }
 630     }
 631 
 632     final ResultInfo statInfo;
 633     final ResultInfo varAssignmentInfo;
 634     final ResultInfo methodAttrInfo;
 635     final ResultInfo unknownExprInfo;
 636     final ResultInfo unknownTypeInfo;
 637     final ResultInfo unknownTypeExprInfo;
 638     final ResultInfo recoveryInfo;
 639     final MethodType initBlockType;
 640 
 641     Type pt() {
 642         return resultInfo.pt;
 643     }
 644 
 645     KindSelector pkind() {
 646         return resultInfo.pkind;
 647     }
 648 
 649 /* ************************************************************************
 650  * Visitor methods
 651  *************************************************************************/
 652 
 653     /** Visitor argument: the current environment.
 654      */
 655     Env<AttrContext> env;
 656 
 657     /** Visitor argument: the currently expected attribution result.
 658      */
 659     ResultInfo resultInfo;
 660 
 661     /** Visitor result: the computed type.
 662      */
 663     Type result;
 664 
 665     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 666 
 667     /** Visitor method: attribute a tree, catching any completion failure
 668      *  exceptions. Return the tree's type.
 669      *
 670      *  @param tree    The tree to be visited.
 671      *  @param env     The environment visitor argument.
 672      *  @param resultInfo   The result info visitor argument.
 673      */
 674     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 675         Env<AttrContext> prevEnv = this.env;
 676         ResultInfo prevResult = this.resultInfo;
 677         try {
 678             this.env = env;
 679             this.resultInfo = resultInfo;
 680             if (resultInfo.needsArgumentAttr(tree)) {
 681                 result = argumentAttr.attribArg(tree, env);
 682             } else {
 683                 tree.accept(this);
 684             }
 685             matchBindings = matchBindingsComputer.finishBindings(tree,
 686                                                                  matchBindings);
 687             if (tree == breakTree &&
 688                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 689                 breakTreeFound(copyEnv(env));
 690             }
 691             return result;
 692         } catch (CompletionFailure ex) {
 693             tree.type = syms.errType;
 694             return chk.completionError(tree.pos(), ex);
 695         } finally {
 696             this.env = prevEnv;
 697             this.resultInfo = prevResult;
 698         }
 699     }
 700 
 701     protected void breakTreeFound(Env<AttrContext> env) {
 702         throw new BreakAttr(env);
 703     }
 704 
 705     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 706         Env<AttrContext> newEnv =
 707                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 708         if (newEnv.outer != null) {
 709             newEnv.outer = copyEnv(newEnv.outer);
 710         }
 711         return newEnv;
 712     }
 713 
 714     WriteableScope copyScope(WriteableScope sc) {
 715         WriteableScope newScope = WriteableScope.create(sc.owner);
 716         List<Symbol> elemsList = List.nil();
 717         for (Symbol sym : sc.getSymbols()) {
 718             elemsList = elemsList.prepend(sym);
 719         }
 720         for (Symbol s : elemsList) {
 721             newScope.enter(s);
 722         }
 723         return newScope;
 724     }
 725 
 726     /** Derived visitor method: attribute an expression tree.
 727      */
 728     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 729         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 730     }
 731 
 732     /** Derived visitor method: attribute an expression tree with
 733      *  no constraints on the computed type.
 734      */
 735     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 736         return attribTree(tree, env, unknownExprInfo);
 737     }
 738 
 739     /** Derived visitor method: attribute a type tree.
 740      */
 741     public Type attribType(JCTree tree, Env<AttrContext> env) {
 742         Type result = attribType(tree, env, Type.noType);
 743         return result;
 744     }
 745 
 746     /** Derived visitor method: attribute a type tree.
 747      */
 748     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 749         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 750         return result;
 751     }
 752 
 753     /** Derived visitor method: attribute a statement or definition tree.
 754      */
 755     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 756         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 757         Type result = attribTree(tree, env, statInfo);
 758         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 759         attrRecover.doRecovery();
 760         return result;
 761     }
 762 
 763     /** Attribute a list of expressions, returning a list of types.
 764      */
 765     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 766         ListBuffer<Type> ts = new ListBuffer<>();
 767         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 768             ts.append(attribExpr(l.head, env, pt));
 769         return ts.toList();
 770     }
 771 
 772     /** Attribute a list of statements, returning nothing.
 773      */
 774     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 775         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 776             attribStat(l.head, env);
 777     }
 778 
 779     /** Attribute the arguments in a method call, returning the method kind.
 780      */
 781     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 782         KindSelector kind = initialKind;
 783         for (JCExpression arg : trees) {
 784             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 785             if (argtype.hasTag(DEFERRED)) {
 786                 kind = KindSelector.of(KindSelector.POLY, kind);
 787             }
 788             argtypes.append(argtype);
 789         }
 790         return kind;
 791     }
 792 
 793     /** Attribute a type argument list, returning a list of types.
 794      *  Caller is responsible for calling checkRefTypes.
 795      */
 796     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 797         ListBuffer<Type> argtypes = new ListBuffer<>();
 798         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 799             argtypes.append(attribType(l.head, env));
 800         return argtypes.toList();
 801     }
 802 
 803     /** Attribute a type argument list, returning a list of types.
 804      *  Check that all the types are references.
 805      */
 806     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 807         List<Type> types = attribAnyTypes(trees, env);
 808         return chk.checkRefTypes(trees, types);
 809     }
 810 
 811     /**
 812      * Attribute type variables (of generic classes or methods).
 813      * Compound types are attributed later in attribBounds.
 814      * @param typarams the type variables to enter
 815      * @param env      the current environment
 816      */
 817     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 818         for (JCTypeParameter tvar : typarams) {
 819             TypeVar a = (TypeVar)tvar.type;
 820             a.tsym.flags_field |= UNATTRIBUTED;
 821             a.setUpperBound(Type.noType);
 822             if (!tvar.bounds.isEmpty()) {
 823                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 824                 for (JCExpression bound : tvar.bounds.tail)
 825                     bounds = bounds.prepend(attribType(bound, env));
 826                 types.setBounds(a, bounds.reverse());
 827             } else {
 828                 // if no bounds are given, assume a single bound of
 829                 // java.lang.Object.
 830                 types.setBounds(a, List.of(syms.objectType));
 831             }
 832             a.tsym.flags_field &= ~UNATTRIBUTED;
 833         }
 834         if (checkCyclic) {
 835             for (JCTypeParameter tvar : typarams) {
 836                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 837             }
 838         }
 839     }
 840 
 841     /**
 842      * Attribute the type references in a list of annotations.
 843      */
 844     void attribAnnotationTypes(List<JCAnnotation> annotations,
 845                                Env<AttrContext> env) {
 846         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 847             JCAnnotation a = al.head;
 848             attribType(a.annotationType, env);
 849         }
 850     }
 851 
 852     /**
 853      * Attribute a "lazy constant value".
 854      *  @param env         The env for the const value
 855      *  @param variable    The initializer for the const value
 856      *  @param type        The expected type, or null
 857      *  @see VarSymbol#setLazyConstValue
 858      */
 859     public Object attribLazyConstantValue(Env<AttrContext> env,
 860                                       Env<AttrContext> enclosingEnv,
 861                                       JCVariableDecl variable,
 862                                       Type type) {
 863         deferredLintHandler.push(variable);
 864         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 865         try {
 866             doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv);
 867             Type itype = attribExpr(variable.init, env, type);
 868             if (variable.isImplicitlyTyped()) {
 869                 //fixup local variable type
 870                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 871             }
 872             if (itype.constValue() != null) {
 873                 return coerce(itype, type).constValue();
 874             } else {
 875                 return null;
 876             }
 877         } finally {
 878             log.useSource(prevSource);
 879             deferredLintHandler.pop();
 880         }
 881     }
 882 
 883     /** Attribute type reference in an `extends', `implements', or 'permits' clause.
 884      *  Supertypes of anonymous inner classes are usually already attributed.
 885      *
 886      *  @param tree              The tree making up the type reference.
 887      *  @param env               The environment current at the reference.
 888      *  @param classExpected     true if only a class is expected here.
 889      *  @param interfaceExpected true if only an interface is expected here.
 890      */
 891     Type attribBase(JCTree tree,
 892                     Env<AttrContext> env,
 893                     boolean classExpected,
 894                     boolean interfaceExpected,
 895                     boolean checkExtensible) {
 896         Type t = tree.type != null ?
 897             tree.type :
 898             attribType(tree, env);
 899         try {
 900             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 901         } catch (CompletionFailure ex) {
 902             chk.completionError(tree.pos(), ex);
 903             return t;
 904         }
 905     }
 906     Type checkBase(Type t,
 907                    JCTree tree,
 908                    Env<AttrContext> env,
 909                    boolean classExpected,
 910                    boolean interfaceExpected,
 911                    boolean checkExtensible) {
 912         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 913                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 914         if (t.tsym.isAnonymous()) {
 915             log.error(pos, Errors.CantInheritFromAnon);
 916             return types.createErrorType(t);
 917         }
 918         if (t.isErroneous())
 919             return t;
 920         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 921             // check that type variable is already visible
 922             if (t.getUpperBound() == null) {
 923                 log.error(pos, Errors.IllegalForwardRef);
 924                 return types.createErrorType(t);
 925             }
 926         } else {
 927             t = chk.checkClassType(pos, t, checkExtensible);
 928         }
 929         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 930             log.error(pos, Errors.IntfExpectedHere);
 931             // return errType is necessary since otherwise there might
 932             // be undetected cycles which cause attribution to loop
 933             return types.createErrorType(t);
 934         } else if (checkExtensible &&
 935                    classExpected &&
 936                    (t.tsym.flags() & INTERFACE) != 0) {
 937             log.error(pos, Errors.NoIntfExpectedHere);
 938             return types.createErrorType(t);
 939         }
 940         if (checkExtensible &&
 941             ((t.tsym.flags() & FINAL) != 0)) {
 942             log.error(pos,
 943                       Errors.CantInheritFromFinal(t.tsym));
 944         }
 945         chk.checkNonCyclic(pos, t);
 946         return t;
 947     }
 948 
 949     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 950         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 951         id.type = env.info.scope.owner.enclClass().type;
 952         id.sym = env.info.scope.owner.enclClass();
 953         return id.type;
 954     }
 955 
 956     public void visitClassDef(JCClassDecl tree) {
 957         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 958                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 959                         argumentAttr.withLocalCacheContext() : null);
 960         boolean ctorProloguePrev = env.info.ctorPrologue;
 961         try {
 962             // Local and anonymous classes have not been entered yet, so we need to
 963             // do it now.
 964             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 965                 enter.classEnter(tree, env);
 966             } else {
 967                 // If this class declaration is part of a class level annotation,
 968                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 969                 // order to simplify later steps and allow for sensible error
 970                 // messages.
 971                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 972                     enter.classEnter(tree, env);
 973             }
 974 
 975             ClassSymbol c = tree.sym;
 976             if (c == null) {
 977                 // exit in case something drastic went wrong during enter.
 978                 result = null;
 979             } else {
 980                 // make sure class has been completed:
 981                 c.complete();
 982 
 983                 // If a class declaration appears in a constructor prologue,
 984                 // that means it's either a local class or an anonymous class.
 985                 // Either way, there is no immediately enclosing instance.
 986                 if (ctorProloguePrev) {
 987                     c.flags_field |= NOOUTERTHIS;
 988                 }
 989                 attribClass(tree.pos(), c);
 990                 result = tree.type = c.type;
 991             }
 992         } finally {
 993             localCacheContext.ifPresent(LocalCacheContext::leave);
 994             env.info.ctorPrologue = ctorProloguePrev;
 995         }
 996     }
 997 
 998     public void visitMethodDef(JCMethodDecl tree) {
 999         MethodSymbol m = tree.sym;
1000         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
1001 
1002         Lint lint = env.info.lint.augment(m);
1003         Lint prevLint = chk.setLint(lint);
1004         boolean ctorProloguePrev = env.info.ctorPrologue;
1005         Assert.check(!env.info.ctorPrologue);
1006         MethodSymbol prevMethod = chk.setMethod(m);
1007         try {
1008             deferredLintHandler.flush(tree, lint);
1009             chk.checkDeprecatedAnnotation(tree.pos(), m);
1010 
1011 
1012             // Create a new environment with local scope
1013             // for attributing the method.
1014             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
1015             localEnv.info.lint = lint;
1016 
1017             attribStats(tree.typarams, localEnv);
1018 
1019             // If we override any other methods, check that we do so properly.
1020             // JLS ???
1021             if (m.isStatic()) {
1022                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1023             } else {
1024                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1025             }
1026             chk.checkOverride(env, tree, m);
1027 
1028             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1029                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1030             }
1031 
1032             // Enter all type parameters into the local method scope.
1033             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1034                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1035 
1036             ClassSymbol owner = env.enclClass.sym;
1037             if ((owner.flags() & ANNOTATION) != 0 &&
1038                     (tree.params.nonEmpty() ||
1039                     tree.recvparam != null))
1040                 log.error(tree.params.nonEmpty() ?
1041                         tree.params.head.pos() :
1042                         tree.recvparam.pos(),
1043                         Errors.IntfAnnotationMembersCantHaveParams);
1044 
1045             // Attribute all value parameters.
1046             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1047                 attribStat(l.head, localEnv);
1048             }
1049 
1050             chk.checkVarargsMethodDecl(localEnv, tree);
1051 
1052             // Check that type parameters are well-formed.
1053             chk.validate(tree.typarams, localEnv);
1054 
1055             // Check that result type is well-formed.
1056             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1057                 chk.validate(tree.restype, localEnv);
1058 
1059             // Check that receiver type is well-formed.
1060             if (tree.recvparam != null) {
1061                 // Use a new environment to check the receiver parameter.
1062                 // Otherwise I get "might not have been initialized" errors.
1063                 // Is there a better way?
1064                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1065                 attribType(tree.recvparam, newEnv);
1066                 chk.validate(tree.recvparam, newEnv);
1067             }
1068 
1069             // Is this method a constructor?
1070             boolean isConstructor = TreeInfo.isConstructor(tree);
1071 
1072             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1073                 // lets find if this method is an accessor
1074                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1075                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1076                 if (recordComponent.isPresent()) {
1077                     // the method is a user defined accessor lets check that everything is fine
1078                     if (!tree.sym.isPublic()) {
1079                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1080                     }
1081                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1082                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1083                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1084                     }
1085                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1086                         log.error(tree,
1087                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1088                     }
1089                     if (!tree.typarams.isEmpty()) {
1090                         log.error(tree,
1091                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1092                     }
1093                     if (tree.sym.isStatic()) {
1094                         log.error(tree,
1095                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1096                     }
1097                 }
1098 
1099                 if (isConstructor) {
1100                     // if this a constructor other than the canonical one
1101                     if ((tree.sym.flags_field & RECORD) == 0) {
1102                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1103                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1104                         }
1105                     } else {
1106                         // but if it is the canonical:
1107 
1108                         /* if user generated, then it shouldn't:
1109                          *     - have an accessibility stricter than that of the record type
1110                          *     - explicitly invoke any other constructor
1111                          */
1112                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1113                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1114                                 log.error(tree,
1115                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1116                                             Errors.InvalidCanonicalConstructorInRecord(
1117                                                 Fragments.Canonical,
1118                                                 env.enclClass.sym.name,
1119                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1120                                             ) :
1121                                             Errors.InvalidCanonicalConstructorInRecord(
1122                                                     Fragments.Canonical,
1123                                                     env.enclClass.sym.name,
1124                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1125                                             )
1126                                 );
1127                             }
1128 
1129                             if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) {
1130                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1131                                         Fragments.Canonical, env.enclClass.sym.name,
1132                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1133                             }
1134                         }
1135 
1136                         // also we want to check that no type variables have been defined
1137                         if (!tree.typarams.isEmpty()) {
1138                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1139                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1140                         }
1141 
1142                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1143                          * record components
1144                          */
1145                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1146                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1147                         for (JCVariableDecl param: tree.params) {
1148                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1149                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1150                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1151                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1152                                         Fragments.Canonical, env.enclClass.sym.name,
1153                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1154                             }
1155                             recordComponents = recordComponents.tail;
1156                             recordFieldTypes = recordFieldTypes.tail;
1157                         }
1158                     }
1159                 }
1160             }
1161 
1162             // annotation method checks
1163             if ((owner.flags() & ANNOTATION) != 0) {
1164                 // annotation method cannot have throws clause
1165                 if (tree.thrown.nonEmpty()) {
1166                     log.error(tree.thrown.head.pos(),
1167                               Errors.ThrowsNotAllowedInIntfAnnotation);
1168                 }
1169                 // annotation method cannot declare type-parameters
1170                 if (tree.typarams.nonEmpty()) {
1171                     log.error(tree.typarams.head.pos(),
1172                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1173                 }
1174                 // validate annotation method's return type (could be an annotation type)
1175                 chk.validateAnnotationType(tree.restype);
1176                 // ensure that annotation method does not clash with members of Object/Annotation
1177                 chk.validateAnnotationMethod(tree.pos(), m);
1178             }
1179 
1180             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1181                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1182 
1183             if (tree.body == null) {
1184                 // Empty bodies are only allowed for
1185                 // abstract, native, or interface methods, or for methods
1186                 // in a retrofit signature class.
1187                 if (tree.defaultValue != null) {
1188                     if ((owner.flags() & ANNOTATION) == 0)
1189                         log.error(tree.pos(),
1190                                   Errors.DefaultAllowedInIntfAnnotationMember);
1191                 }
1192                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1193                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1194             } else {
1195                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1196                     if ((owner.flags() & INTERFACE) != 0) {
1197                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1198                     } else {
1199                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1200                     }
1201                 } else if ((tree.mods.flags & NATIVE) != 0) {
1202                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1203                 }
1204                 // Add an implicit super() call unless an explicit call to
1205                 // super(...) or this(...) is given
1206                 // or we are compiling class java.lang.Object.
1207                 if (isConstructor && owner.type != syms.objectType) {
1208                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1209                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1210                                 make.Ident(names._super), make.Idents(List.nil())));
1211                         if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) {
1212                             tree.body.stats = tree.body.stats.append(supCall);
1213                         } else {
1214                             tree.body.stats = tree.body.stats.prepend(supCall);
1215                         }
1216                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1217                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1218                             TreeInfo.hasConstructorCall(tree, names._super)) {
1219                         // enum constructors are not allowed to call super
1220                         // directly, so make sure there aren't any super calls
1221                         // in enum constructors, except in the compiler
1222                         // generated one.
1223                         log.error(tree.body.stats.head.pos(),
1224                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1225                     }
1226                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1227                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1228                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1229                         if (!initParamNames.equals(recordComponentNames)) {
1230                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1231                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1232                         }
1233                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1234                             log.error(tree,
1235                                     Errors.InvalidCanonicalConstructorInRecord(
1236                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1237                                             env.enclClass.sym.name,
1238                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1239                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1240                         }
1241                     }
1242                 }
1243 
1244                 // Attribute all type annotations in the body
1245                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1246                 annotate.flush();
1247 
1248                 // Start of constructor prologue
1249                 localEnv.info.ctorPrologue = isConstructor;
1250 
1251                 // Attribute method body.
1252                 attribStat(tree.body, localEnv);
1253             }
1254 
1255             localEnv.info.scope.leave();
1256             result = tree.type = m.type;
1257         } finally {
1258             chk.setLint(prevLint);
1259             chk.setMethod(prevMethod);
1260             env.info.ctorPrologue = ctorProloguePrev;
1261         }
1262     }
1263 
1264     public void visitVarDef(JCVariableDecl tree) {
1265         // Local variables have not been entered yet, so we need to do it now:
1266         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1267             if (tree.sym != null) {
1268                 // parameters have already been entered
1269                 env.info.scope.enter(tree.sym);
1270             } else {
1271                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1272                     if (tree.init == null) {
1273                         //cannot use 'var' without initializer
1274                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1275                         tree.vartype = make.Erroneous();
1276                     } else {
1277                         Fragment msg = canInferLocalVarType(tree);
1278                         if (msg != null) {
1279                             //cannot use 'var' with initializer which require an explicit target
1280                             //(e.g. lambda, method reference, array initializer).
1281                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1282                             tree.vartype = make.Erroneous();
1283                         }
1284                     }
1285                 }
1286                 try {
1287                     annotate.blockAnnotations();
1288                     memberEnter.memberEnter(tree, env);
1289                 } finally {
1290                     annotate.unblockAnnotations();
1291                 }
1292             }
1293         } else {
1294             doQueueScanTreeAndTypeAnnotateForVarInit(tree, env);
1295         }
1296 
1297         VarSymbol v = tree.sym;
1298         Lint lint = env.info.lint.augment(v);
1299         Lint prevLint = chk.setLint(lint);
1300 
1301         // Check that the variable's declared type is well-formed.
1302         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1303                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1304                 (tree.sym.flags() & PARAMETER) != 0;
1305         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1306 
1307         try {
1308             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1309             deferredLintHandler.flush(tree, lint);
1310             chk.checkDeprecatedAnnotation(tree.pos(), v);
1311 
1312             if (tree.init != null) {
1313                 if ((v.flags_field & FINAL) == 0 ||
1314                     !memberEnter.needsLazyConstValue(tree.init)) {
1315                     // Not a compile-time constant
1316                     // Attribute initializer in a new environment
1317                     // with the declared variable as owner.
1318                     // Check that initializer conforms to variable's declared type.
1319                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1320                     initEnv.info.lint = lint;
1321                     // In order to catch self-references, we set the variable's
1322                     // declaration position to maximal possible value, effectively
1323                     // marking the variable as undefined.
1324                     initEnv.info.enclVar = v;
1325                     boolean previousCtorPrologue = initEnv.info.ctorPrologue;
1326                     try {
1327                         if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) {
1328                             // strict instance initializer in a value class
1329                             initEnv.info.ctorPrologue = true;
1330                         }
1331                         attribExpr(tree.init, initEnv, v.type);
1332                         if (tree.isImplicitlyTyped()) {
1333                             //fixup local variable type
1334                             v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1335                         }
1336                     } finally {
1337                         initEnv.info.ctorPrologue = previousCtorPrologue;
1338                     }
1339                 }
1340                 if (tree.isImplicitlyTyped()) {
1341                     setSyntheticVariableType(tree, v.type);
1342                 }
1343             }
1344             result = tree.type = v.type;
1345             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1346                 if (isNonArgsMethodInObject(v.name)) {
1347                     log.error(tree, Errors.IllegalRecordComponentName(v));
1348                 }
1349             }
1350         }
1351         finally {
1352             chk.setLint(prevLint);
1353         }
1354     }
1355 
1356     private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) {
1357         if (tree.init != null &&
1358             (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 &&
1359             env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) {
1360             tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED;
1361             // Field initializer expression need to be entered.
1362             annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree);
1363             annotate.flush();
1364         }
1365     }
1366 
1367     private boolean isNonArgsMethodInObject(Name name) {
1368         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1369             if (s.type.getParameterTypes().isEmpty()) {
1370                 return true;
1371             }
1372         }
1373         return false;
1374     }
1375 
1376     Fragment canInferLocalVarType(JCVariableDecl tree) {
1377         LocalInitScanner lis = new LocalInitScanner();
1378         lis.scan(tree.init);
1379         return lis.badInferenceMsg;
1380     }
1381 
1382     static class LocalInitScanner extends TreeScanner {
1383         Fragment badInferenceMsg = null;
1384         boolean needsTarget = true;
1385 
1386         @Override
1387         public void visitNewArray(JCNewArray tree) {
1388             if (tree.elemtype == null && needsTarget) {
1389                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1390             }
1391         }
1392 
1393         @Override
1394         public void visitLambda(JCLambda tree) {
1395             if (needsTarget) {
1396                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1397             }
1398         }
1399 
1400         @Override
1401         public void visitTypeCast(JCTypeCast tree) {
1402             boolean prevNeedsTarget = needsTarget;
1403             try {
1404                 needsTarget = false;
1405                 super.visitTypeCast(tree);
1406             } finally {
1407                 needsTarget = prevNeedsTarget;
1408             }
1409         }
1410 
1411         @Override
1412         public void visitReference(JCMemberReference tree) {
1413             if (needsTarget) {
1414                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1415             }
1416         }
1417 
1418         @Override
1419         public void visitNewClass(JCNewClass tree) {
1420             boolean prevNeedsTarget = needsTarget;
1421             try {
1422                 needsTarget = false;
1423                 super.visitNewClass(tree);
1424             } finally {
1425                 needsTarget = prevNeedsTarget;
1426             }
1427         }
1428 
1429         @Override
1430         public void visitApply(JCMethodInvocation tree) {
1431             boolean prevNeedsTarget = needsTarget;
1432             try {
1433                 needsTarget = false;
1434                 super.visitApply(tree);
1435             } finally {
1436                 needsTarget = prevNeedsTarget;
1437             }
1438         }
1439     }
1440 
1441     public void visitSkip(JCSkip tree) {
1442         result = null;
1443     }
1444 
1445     public void visitBlock(JCBlock tree) {
1446         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1447             // Block is a static or instance initializer;
1448             // let the owner of the environment be a freshly
1449             // created BLOCK-method.
1450             Symbol fakeOwner =
1451                 new MethodSymbol(tree.flags | BLOCK |
1452                     env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1453                     env.info.scope.owner);
1454             final Env<AttrContext> localEnv =
1455                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1456 
1457             if ((tree.flags & STATIC) != 0) {
1458                 localEnv.info.staticLevel++;
1459             } else {
1460                 localEnv.info.instanceInitializerBlock = true;
1461             }
1462             // Attribute all type annotations in the block
1463             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1464             annotate.flush();
1465             attribStats(tree.stats, localEnv);
1466 
1467             {
1468                 // Store init and clinit type annotations with the ClassSymbol
1469                 // to allow output in Gen.normalizeDefs.
1470                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1471                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1472                 if ((tree.flags & STATIC) != 0) {
1473                     cs.appendClassInitTypeAttributes(tas);
1474                 } else {
1475                     cs.appendInitTypeAttributes(tas);
1476                 }
1477             }
1478         } else {
1479             // Create a new local environment with a local scope.
1480             Env<AttrContext> localEnv =
1481                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1482             try {
1483                 attribStats(tree.stats, localEnv);
1484             } finally {
1485                 localEnv.info.scope.leave();
1486             }
1487         }
1488         result = null;
1489     }
1490 
1491     public void visitDoLoop(JCDoWhileLoop tree) {
1492         attribStat(tree.body, env.dup(tree));
1493         attribExpr(tree.cond, env, syms.booleanType);
1494         handleLoopConditionBindings(matchBindings, tree, tree.body);
1495         result = null;
1496     }
1497 
1498     public void visitWhileLoop(JCWhileLoop tree) {
1499         attribExpr(tree.cond, env, syms.booleanType);
1500         MatchBindings condBindings = matchBindings;
1501         // include condition's bindings when true in the body:
1502         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1503         try {
1504             attribStat(tree.body, whileEnv.dup(tree));
1505         } finally {
1506             whileEnv.info.scope.leave();
1507         }
1508         handleLoopConditionBindings(condBindings, tree, tree.body);
1509         result = null;
1510     }
1511 
1512     public void visitForLoop(JCForLoop tree) {
1513         Env<AttrContext> loopEnv =
1514             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1515         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1516         try {
1517             attribStats(tree.init, loopEnv);
1518             if (tree.cond != null) {
1519                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1520                 // include condition's bindings when true in the body and step:
1521                 condBindings = matchBindings;
1522             }
1523             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1524             try {
1525                 bodyEnv.tree = tree; // before, we were not in loop!
1526                 attribStats(tree.step, bodyEnv);
1527                 attribStat(tree.body, bodyEnv);
1528             } finally {
1529                 bodyEnv.info.scope.leave();
1530             }
1531             result = null;
1532         }
1533         finally {
1534             loopEnv.info.scope.leave();
1535         }
1536         handleLoopConditionBindings(condBindings, tree, tree.body);
1537     }
1538 
1539     /**
1540      * Include condition's bindings when false after the loop, if cannot get out of the loop
1541      */
1542     private void handleLoopConditionBindings(MatchBindings condBindings,
1543                                              JCStatement loop,
1544                                              JCStatement loopBody) {
1545         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1546             !breaksTo(env, loop, loopBody)) {
1547             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1548         }
1549     }
1550 
1551     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1552         preFlow(body);
1553         return flow.breaksToTree(env, loop, body, make);
1554     }
1555 
1556     /**
1557      * Add given bindings to the current scope, unless there's a break to
1558      * an immediately enclosing labeled statement.
1559      */
1560     private void addBindings2Scope(JCStatement introducingStatement,
1561                                    List<BindingSymbol> bindings) {
1562         if (bindings.isEmpty()) {
1563             return ;
1564         }
1565 
1566         var searchEnv = env;
1567         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1568                labeled.body == introducingStatement) {
1569             if (breaksTo(env, labeled, labeled.body)) {
1570                 //breaking to an immediately enclosing labeled statement
1571                 return ;
1572             }
1573             searchEnv = searchEnv.next;
1574             introducingStatement = labeled;
1575         }
1576 
1577         //include condition's body when false after the while, if cannot get out of the loop
1578         bindings.forEach(env.info.scope::enter);
1579         bindings.forEach(BindingSymbol::preserveBinding);
1580     }
1581 
1582     public void visitForeachLoop(JCEnhancedForLoop tree) {
1583         Env<AttrContext> loopEnv =
1584             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1585         try {
1586             //the Formal Parameter of a for-each loop is not in the scope when
1587             //attributing the for-each expression; we mimic this by attributing
1588             //the for-each expression first (against original scope).
1589             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1590             chk.checkNonVoid(tree.pos(), exprType);
1591             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1592             if (elemtype == null) {
1593                 // or perhaps expr implements Iterable<T>?
1594                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1595                 if (base == null) {
1596                     log.error(tree.expr.pos(),
1597                               Errors.ForeachNotApplicableToType(exprType,
1598                                                                 Fragments.TypeReqArrayOrIterable));
1599                     elemtype = types.createErrorType(exprType);
1600                 } else {
1601                     List<Type> iterableParams = base.allparams();
1602                     elemtype = iterableParams.isEmpty()
1603                         ? syms.objectType
1604                         : types.wildUpperBound(iterableParams.head);
1605 
1606                     // Check the return type of the method iterator().
1607                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1608                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1609                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1610                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1611                         log.error(tree.pos(),
1612                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1613                     }
1614                 }
1615             }
1616             if (tree.var.isImplicitlyTyped()) {
1617                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1618                 setSyntheticVariableType(tree.var, inferredType);
1619             }
1620             attribStat(tree.var, loopEnv);
1621             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1622             loopEnv.tree = tree; // before, we were not in loop!
1623             attribStat(tree.body, loopEnv);
1624             result = null;
1625         }
1626         finally {
1627             loopEnv.info.scope.leave();
1628         }
1629     }
1630 
1631     public void visitLabelled(JCLabeledStatement tree) {
1632         // Check that label is not used in an enclosing statement
1633         Env<AttrContext> env1 = env;
1634         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1635             if (env1.tree.hasTag(LABELLED) &&
1636                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1637                 log.error(tree.pos(),
1638                           Errors.LabelAlreadyInUse(tree.label));
1639                 break;
1640             }
1641             env1 = env1.next;
1642         }
1643 
1644         attribStat(tree.body, env.dup(tree));
1645         result = null;
1646     }
1647 
1648     public void visitSwitch(JCSwitch tree) {
1649         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1650             attribStats(c.stats, caseEnv);
1651         });
1652         result = null;
1653     }
1654 
1655     public void visitSwitchExpression(JCSwitchExpression tree) {
1656         boolean wrongContext = false;
1657 
1658         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1659                 PolyKind.STANDALONE : PolyKind.POLY;
1660 
1661         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1662             //this means we are returning a poly conditional from void-compatible lambda expression
1663             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1664             resultInfo = recoveryInfo;
1665             wrongContext = true;
1666         }
1667 
1668         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1669                 unknownExprInfo :
1670                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1671 
1672         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1673         ListBuffer<Type> caseTypes = new ListBuffer<>();
1674 
1675         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1676             caseEnv.info.yieldResult = condInfo;
1677             attribStats(c.stats, caseEnv);
1678             new TreeScanner() {
1679                 @Override
1680                 public void visitYield(JCYield brk) {
1681                     if (brk.target == tree) {
1682                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1683                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1684                     }
1685                     super.visitYield(brk);
1686                 }
1687 
1688                 @Override public void visitClassDef(JCClassDecl tree) {}
1689                 @Override public void visitLambda(JCLambda tree) {}
1690             }.scan(c.stats);
1691         });
1692 
1693         if (tree.cases.isEmpty()) {
1694             log.error(tree.pos(),
1695                       Errors.SwitchExpressionEmpty);
1696         } else if (caseTypes.isEmpty()) {
1697             log.error(tree.pos(),
1698                       Errors.SwitchExpressionNoResultExpressions);
1699         }
1700 
1701         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1702 
1703         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1704     }
1705     //where:
1706         CheckContext switchExpressionContext(CheckContext checkContext) {
1707             return new Check.NestedCheckContext(checkContext) {
1708                 //this will use enclosing check context to check compatibility of
1709                 //subexpression against target type; if we are in a method check context,
1710                 //depending on whether boxing is allowed, we could have incompatibilities
1711                 @Override
1712                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1713                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1714                 }
1715             };
1716         }
1717 
1718     private void handleSwitch(JCTree switchTree,
1719                               JCExpression selector,
1720                               List<JCCase> cases,
1721                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1722         Type seltype = attribExpr(selector, env);
1723 
1724         Env<AttrContext> switchEnv =
1725             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1726 
1727         try {
1728             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1729             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1730             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1731             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1732             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1733             boolean patternSwitch;
1734             if (seltype.isPrimitive() && !intSwitch) {
1735                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1736                 patternSwitch = true;
1737             }
1738             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1739                 !intSwitch) {
1740                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1741                 patternSwitch = true;
1742             } else {
1743                 patternSwitch = cases.stream()
1744                                      .flatMap(c -> c.labels.stream())
1745                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1746                                                     TreeInfo.isNullCaseLabel(l));
1747             }
1748 
1749             // Attribute all cases and
1750             // check that there are no duplicate case labels or default clauses.
1751             Set<Object> constants = new HashSet<>(); // The set of case constants.
1752             boolean hasDefault = false;           // Is there a default label?
1753             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1754             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1755             boolean hasNullPattern = false;       // Is there a null pattern?
1756             CaseTree.CaseKind caseKind = null;
1757             boolean wasError = false;
1758             JCCaseLabel unconditionalCaseLabel = null;
1759             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1760                 JCCase c = l.head;
1761                 if (caseKind == null) {
1762                     caseKind = c.caseKind;
1763                 } else if (caseKind != c.caseKind && !wasError) {
1764                     log.error(c.pos(),
1765                               Errors.SwitchMixingCaseTypes);
1766                     wasError = true;
1767                 }
1768                 MatchBindings currentBindings = null;
1769                 MatchBindings guardBindings = null;
1770                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1771                     JCCaseLabel label = labels.head;
1772                     if (label instanceof JCConstantCaseLabel constLabel) {
1773                         JCExpression expr = constLabel.expr;
1774                         if (TreeInfo.isNull(expr)) {
1775                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1776                             if (hasNullPattern) {
1777                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1778                             }
1779                             hasNullPattern = true;
1780                             attribExpr(expr, switchEnv, seltype);
1781                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1782                         } else if (enumSwitch) {
1783                             Symbol sym = enumConstant(expr, seltype);
1784                             if (sym == null) {
1785                                 if (allowPatternSwitch) {
1786                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1787                                     Symbol enumSym = TreeInfo.symbol(expr);
1788                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1789                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1790                                     } else if (!constants.add(enumSym)) {
1791                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1792                                     }
1793                                 } else {
1794                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1795                                 }
1796                             } else if (!constants.add(sym)) {
1797                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1798                             }
1799                         } else if (errorEnumSwitch) {
1800                             //error recovery: the selector is erroneous, and all the case labels
1801                             //are identifiers. This could be an enum switch - don't report resolve
1802                             //error for the case label:
1803                             var prevResolveHelper = rs.basicLogResolveHelper;
1804                             try {
1805                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1806                                 attribExpr(expr, switchEnv, seltype);
1807                             } finally {
1808                                 rs.basicLogResolveHelper = prevResolveHelper;
1809                             }
1810                         } else {
1811                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1812                             if (!pattype.hasTag(ERROR)) {
1813                                 if (pattype.constValue() == null) {
1814                                     Symbol s = TreeInfo.symbol(expr);
1815                                     if (s != null && s.kind == TYP) {
1816                                         log.error(expr.pos(),
1817                                                   Errors.PatternExpected);
1818                                     } else if (s == null || !s.isEnum()) {
1819                                         log.error(expr.pos(),
1820                                                   (stringSwitch ? Errors.StringConstReq
1821                                                                 : intSwitch ? Errors.ConstExprReq
1822                                                                             : Errors.PatternOrEnumReq));
1823                                     } else if (!constants.add(s)) {
1824                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1825                                     }
1826                                 }
1827                                 else {
1828                                     if (!stringSwitch && !intSwitch &&
1829                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1830                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1831                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1832                                     } else if (!constants.add(pattype.constValue())) {
1833                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1834                                     }
1835                                 }
1836                             }
1837                         }
1838                     } else if (label instanceof JCDefaultCaseLabel def) {
1839                         if (hasDefault) {
1840                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1841                         } else if (hasUnconditionalPattern) {
1842                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1843                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1844                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1845                         }
1846                         hasDefault = true;
1847                         matchBindings = MatchBindingsComputer.EMPTY;
1848                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1849                         //pattern
1850                         JCPattern pat = patternlabel.pat;
1851                         attribExpr(pat, switchEnv, seltype);
1852                         Type primaryType = TreeInfo.primaryPatternType(pat);
1853 
1854                         if (primaryType.isPrimitive()) {
1855                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1856                         } else if (!primaryType.hasTag(TYPEVAR)) {
1857                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1858                         }
1859                         checkCastablePattern(pat.pos(), seltype, primaryType);
1860                         Type patternType = types.erasure(primaryType);
1861                         JCExpression guard = c.guard;
1862                         if (guardBindings == null && guard != null) {
1863                             MatchBindings afterPattern = matchBindings;
1864                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1865                             try {
1866                                 attribExpr(guard, bodyEnv, syms.booleanType);
1867                             } finally {
1868                                 bodyEnv.info.scope.leave();
1869                             }
1870 
1871                             guardBindings = matchBindings;
1872                             matchBindings = afterPattern;
1873 
1874                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1875                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1876                             }
1877                         }
1878                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1879                         boolean unconditional =
1880                                 unguarded &&
1881                                 !patternType.isErroneous() &&
1882                                 types.isUnconditionallyExact(seltype, patternType);
1883                         if (unconditional) {
1884                             if (hasUnconditionalPattern) {
1885                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1886                             } else if (hasDefault) {
1887                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1888                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1889                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1890                             }
1891                             hasUnconditionalPattern = true;
1892                             unconditionalCaseLabel = label;
1893                         }
1894                         lastPatternErroneous = patternType.isErroneous();
1895                     } else {
1896                         Assert.error();
1897                     }
1898                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1899                 }
1900 
1901                 if (guardBindings != null) {
1902                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1903                 }
1904 
1905                 Env<AttrContext> caseEnv =
1906                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1907                 try {
1908                     attribCase.accept(c, caseEnv);
1909                 } finally {
1910                     caseEnv.info.scope.leave();
1911                 }
1912                 addVars(c.stats, switchEnv.info.scope);
1913 
1914                 preFlow(c);
1915                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1916             }
1917             if (patternSwitch) {
1918                 chk.checkSwitchCaseStructure(cases);
1919                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1920             }
1921             if (switchTree.hasTag(SWITCH)) {
1922                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1923                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1924                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1925             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1926                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1927                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1928                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1929             } else {
1930                 Assert.error(switchTree.getTag().name());
1931             }
1932         } finally {
1933             switchEnv.info.scope.leave();
1934         }
1935     }
1936     // where
1937         private ResultInfo caseLabelResultInfo(Type seltype) {
1938             return new ResultInfo(KindSelector.VAL_TYP,
1939                                   !seltype.hasTag(ERROR) ? seltype
1940                                                          : Type.noType);
1941         }
1942         /** Add any variables defined in stats to the switch scope. */
1943         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1944             for (;stats.nonEmpty(); stats = stats.tail) {
1945                 JCTree stat = stats.head;
1946                 if (stat.hasTag(VARDEF))
1947                     switchScope.enter(((JCVariableDecl) stat).sym);
1948             }
1949         }
1950     // where
1951     /** Return the selected enumeration constant symbol, or null. */
1952     private Symbol enumConstant(JCTree tree, Type enumType) {
1953         if (tree.hasTag(IDENT)) {
1954             JCIdent ident = (JCIdent)tree;
1955             Name name = ident.name;
1956             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1957                 if (sym.kind == VAR) {
1958                     Symbol s = ident.sym = sym;
1959                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1960                     ident.type = s.type;
1961                     return ((s.flags_field & Flags.ENUM) == 0)
1962                         ? null : s;
1963                 }
1964             }
1965         }
1966         return null;
1967     }
1968 
1969     public void visitSynchronized(JCSynchronized tree) {
1970         boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
1971         if (identityType && isValueBased(tree.lock.type)) {
1972             env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1973         }
1974         attribStat(tree.body, env);
1975         result = null;
1976     }
1977         // where
1978         private boolean isValueBased(Type t) {
1979             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1980         }
1981 
1982     public void visitTry(JCTry tree) {
1983         // Create a new local environment with a local
1984         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1985         try {
1986             boolean isTryWithResource = tree.resources.nonEmpty();
1987             // Create a nested environment for attributing the try block if needed
1988             Env<AttrContext> tryEnv = isTryWithResource ?
1989                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1990                 localEnv;
1991             try {
1992                 // Attribute resource declarations
1993                 for (JCTree resource : tree.resources) {
1994                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1995                         @Override
1996                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1997                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1998                         }
1999                     };
2000                     ResultInfo twrResult =
2001                         new ResultInfo(KindSelector.VAR,
2002                                        syms.autoCloseableType,
2003                                        twrContext);
2004                     if (resource.hasTag(VARDEF)) {
2005                         attribStat(resource, tryEnv);
2006                         twrResult.check(resource, resource.type);
2007 
2008                         //check that resource type cannot throw InterruptedException
2009                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
2010 
2011                         VarSymbol var = ((JCVariableDecl) resource).sym;
2012 
2013                         var.flags_field |= Flags.FINAL;
2014                         var.setData(ElementKind.RESOURCE_VARIABLE);
2015                     } else {
2016                         attribTree(resource, tryEnv, twrResult);
2017                     }
2018                 }
2019                 // Attribute body
2020                 attribStat(tree.body, tryEnv);
2021             } finally {
2022                 if (isTryWithResource)
2023                     tryEnv.info.scope.leave();
2024             }
2025 
2026             // Attribute catch clauses
2027             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2028                 JCCatch c = l.head;
2029                 Env<AttrContext> catchEnv =
2030                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2031                 try {
2032                     Type ctype = attribStat(c.param, catchEnv);
2033                     if (TreeInfo.isMultiCatch(c)) {
2034                         //multi-catch parameter is implicitly marked as final
2035                         c.param.sym.flags_field |= FINAL | UNION;
2036                     }
2037                     if (c.param.sym.kind == VAR) {
2038                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2039                     }
2040                     chk.checkType(c.param.vartype.pos(),
2041                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2042                                   syms.throwableType);
2043                     attribStat(c.body, catchEnv);
2044                 } finally {
2045                     catchEnv.info.scope.leave();
2046                 }
2047             }
2048 
2049             // Attribute finalizer
2050             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2051             result = null;
2052         }
2053         finally {
2054             localEnv.info.scope.leave();
2055         }
2056     }
2057 
2058     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2059         if (!resource.isErroneous() &&
2060             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2061             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2062             Symbol close = syms.noSymbol;
2063             Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
2064             try {
2065                 close = rs.resolveQualifiedMethod(pos,
2066                         env,
2067                         types.skipTypeVars(resource, false),
2068                         names.close,
2069                         List.nil(),
2070                         List.nil());
2071             }
2072             finally {
2073                 log.popDiagnosticHandler(discardHandler);
2074             }
2075             if (close.kind == MTH &&
2076                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2077                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) {
2078                 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource));
2079             }
2080         }
2081     }
2082 
2083     public void visitConditional(JCConditional tree) {
2084         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2085         MatchBindings condBindings = matchBindings;
2086 
2087         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2088                 isBooleanOrNumeric(env, tree)) ?
2089                 PolyKind.STANDALONE : PolyKind.POLY;
2090 
2091         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2092             //this means we are returning a poly conditional from void-compatible lambda expression
2093             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2094             result = tree.type = types.createErrorType(resultInfo.pt);
2095             return;
2096         }
2097 
2098         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2099                 unknownExprInfo :
2100                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2101 
2102 
2103         // x ? y : z
2104         // include x's bindings when true in y
2105         // include x's bindings when false in z
2106 
2107         Type truetype;
2108         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2109         try {
2110             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2111         } finally {
2112             trueEnv.info.scope.leave();
2113         }
2114 
2115         MatchBindings trueBindings = matchBindings;
2116 
2117         Type falsetype;
2118         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2119         try {
2120             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2121         } finally {
2122             falseEnv.info.scope.leave();
2123         }
2124 
2125         MatchBindings falseBindings = matchBindings;
2126 
2127         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2128                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2129                          List.of(truetype, falsetype)) : pt();
2130         if (condtype.constValue() != null &&
2131                 truetype.constValue() != null &&
2132                 falsetype.constValue() != null &&
2133                 !owntype.hasTag(NONE)) {
2134             //constant folding
2135             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2136         }
2137         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2138         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2139     }
2140     //where
2141         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2142             switch (tree.getTag()) {
2143                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2144                               ((JCLiteral)tree).typetag == BOOLEAN ||
2145                               ((JCLiteral)tree).typetag == BOT;
2146                 case LAMBDA: case REFERENCE: return false;
2147                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2148                 case CONDEXPR:
2149                     JCConditional condTree = (JCConditional)tree;
2150                     return isBooleanOrNumeric(env, condTree.truepart) &&
2151                             isBooleanOrNumeric(env, condTree.falsepart);
2152                 case APPLY:
2153                     JCMethodInvocation speculativeMethodTree =
2154                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2155                                     tree, env, unknownExprInfo,
2156                                     argumentAttr.withLocalCacheContext());
2157                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2158                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2159                             env.enclClass.type :
2160                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2161                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2162                     return primitiveOrBoxed(owntype);
2163                 case NEWCLASS:
2164                     JCExpression className =
2165                             removeClassParams.translate(((JCNewClass)tree).clazz);
2166                     JCExpression speculativeNewClassTree =
2167                             (JCExpression)deferredAttr.attribSpeculative(
2168                                     className, env, unknownTypeInfo,
2169                                     argumentAttr.withLocalCacheContext());
2170                     return primitiveOrBoxed(speculativeNewClassTree.type);
2171                 default:
2172                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2173                             argumentAttr.withLocalCacheContext()).type;
2174                     return primitiveOrBoxed(speculativeType);
2175             }
2176         }
2177         //where
2178             boolean primitiveOrBoxed(Type t) {
2179                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2180             }
2181 
2182             TreeTranslator removeClassParams = new TreeTranslator() {
2183                 @Override
2184                 public void visitTypeApply(JCTypeApply tree) {
2185                     result = translate(tree.clazz);
2186                 }
2187             };
2188 
2189         CheckContext conditionalContext(CheckContext checkContext) {
2190             return new Check.NestedCheckContext(checkContext) {
2191                 //this will use enclosing check context to check compatibility of
2192                 //subexpression against target type; if we are in a method check context,
2193                 //depending on whether boxing is allowed, we could have incompatibilities
2194                 @Override
2195                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2196                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2197                 }
2198             };
2199         }
2200 
2201         /** Compute the type of a conditional expression, after
2202          *  checking that it exists.  See JLS 15.25. Does not take into
2203          *  account the special case where condition and both arms
2204          *  are constants.
2205          *
2206          *  @param pos      The source position to be used for error
2207          *                  diagnostics.
2208          *  @param thentype The type of the expression's then-part.
2209          *  @param elsetype The type of the expression's else-part.
2210          */
2211         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2212             if (condTypes.isEmpty()) {
2213                 return syms.objectType; //TODO: how to handle?
2214             }
2215             Type first = condTypes.head;
2216             // If same type, that is the result
2217             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2218                 return first.baseType();
2219 
2220             List<Type> unboxedTypes = condTypes.stream()
2221                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2222                                                .collect(List.collector());
2223 
2224             // Otherwise, if both arms can be converted to a numeric
2225             // type, return the least numeric type that fits both arms
2226             // (i.e. return larger of the two, or return int if one
2227             // arm is short, the other is char).
2228             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2229                 // If one arm has an integer subrange type (i.e., byte,
2230                 // short, or char), and the other is an integer constant
2231                 // that fits into the subrange, return the subrange type.
2232                 for (Type type : unboxedTypes) {
2233                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2234                         continue;
2235                     }
2236                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2237                         return type.baseType();
2238                 }
2239 
2240                 for (TypeTag tag : primitiveTags) {
2241                     Type candidate = syms.typeOfTag[tag.ordinal()];
2242                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2243                         return candidate;
2244                     }
2245                 }
2246             }
2247 
2248             // Those were all the cases that could result in a primitive
2249             condTypes = condTypes.stream()
2250                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2251                                  .collect(List.collector());
2252 
2253             for (Type type : condTypes) {
2254                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2255                     return type.baseType();
2256             }
2257 
2258             Iterator<DiagnosticPosition> posIt = positions.iterator();
2259 
2260             condTypes = condTypes.stream()
2261                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2262                                  .collect(List.collector());
2263 
2264             // both are known to be reference types.  The result is
2265             // lub(thentype,elsetype). This cannot fail, as it will
2266             // always be possible to infer "Object" if nothing better.
2267             return types.lub(condTypes.stream()
2268                         .map(t -> t.baseType())
2269                         .filter(t -> !t.hasTag(BOT))
2270                         .collect(List.collector()));
2271         }
2272 
2273     static final TypeTag[] primitiveTags = new TypeTag[]{
2274         BYTE,
2275         CHAR,
2276         SHORT,
2277         INT,
2278         LONG,
2279         FLOAT,
2280         DOUBLE,
2281         BOOLEAN,
2282     };
2283 
2284     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2285         return bindingEnv(env, env.tree, bindings);
2286     }
2287 
2288     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2289         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2290         bindings.forEach(env1.info.scope::enter);
2291         return env1;
2292     }
2293 
2294     public void visitIf(JCIf tree) {
2295         attribExpr(tree.cond, env, syms.booleanType);
2296 
2297         // if (x) { y } [ else z ]
2298         // include x's bindings when true in y
2299         // include x's bindings when false in z
2300 
2301         MatchBindings condBindings = matchBindings;
2302         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2303 
2304         try {
2305             attribStat(tree.thenpart, thenEnv);
2306         } finally {
2307             thenEnv.info.scope.leave();
2308         }
2309 
2310         preFlow(tree.thenpart);
2311         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2312         boolean aliveAfterElse;
2313 
2314         if (tree.elsepart != null) {
2315             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2316             try {
2317                 attribStat(tree.elsepart, elseEnv);
2318             } finally {
2319                 elseEnv.info.scope.leave();
2320             }
2321             preFlow(tree.elsepart);
2322             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2323         } else {
2324             aliveAfterElse = true;
2325         }
2326 
2327         chk.checkEmptyIf(tree);
2328 
2329         List<BindingSymbol> afterIfBindings = List.nil();
2330 
2331         if (aliveAfterThen && !aliveAfterElse) {
2332             afterIfBindings = condBindings.bindingsWhenTrue;
2333         } else if (aliveAfterElse && !aliveAfterThen) {
2334             afterIfBindings = condBindings.bindingsWhenFalse;
2335         }
2336 
2337         addBindings2Scope(tree, afterIfBindings);
2338 
2339         result = null;
2340     }
2341 
2342         void preFlow(JCTree tree) {
2343             attrRecover.doRecovery();
2344             new PostAttrAnalyzer() {
2345                 @Override
2346                 public void scan(JCTree tree) {
2347                     if (tree == null ||
2348                             (tree.type != null &&
2349                             tree.type == Type.stuckType)) {
2350                         //don't touch stuck expressions!
2351                         return;
2352                     }
2353                     super.scan(tree);
2354                 }
2355 
2356                 @Override
2357                 public void visitClassDef(JCClassDecl that) {
2358                     if (that.sym != null) {
2359                         // Method preFlow shouldn't visit class definitions
2360                         // that have not been entered and attributed.
2361                         // See JDK-8254557 and JDK-8203277 for more details.
2362                         super.visitClassDef(that);
2363                     }
2364                 }
2365 
2366                 @Override
2367                 public void visitLambda(JCLambda that) {
2368                     if (that.type != null) {
2369                         // Method preFlow shouldn't visit lambda expressions
2370                         // that have not been entered and attributed.
2371                         // See JDK-8254557 and JDK-8203277 for more details.
2372                         super.visitLambda(that);
2373                     }
2374                 }
2375             }.scan(tree);
2376         }
2377 
2378     public void visitExec(JCExpressionStatement tree) {
2379         //a fresh environment is required for 292 inference to work properly ---
2380         //see Infer.instantiatePolymorphicSignatureInstance()
2381         Env<AttrContext> localEnv = env.dup(tree);
2382         attribExpr(tree.expr, localEnv);
2383         result = null;
2384     }
2385 
2386     public void visitBreak(JCBreak tree) {
2387         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2388         result = null;
2389     }
2390 
2391     public void visitYield(JCYield tree) {
2392         if (env.info.yieldResult != null) {
2393             attribTree(tree.value, env, env.info.yieldResult);
2394             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2395         } else {
2396             log.error(tree.pos(), tree.value.hasTag(PARENS)
2397                     ? Errors.NoSwitchExpressionQualify
2398                     : Errors.NoSwitchExpression);
2399             attribTree(tree.value, env, unknownExprInfo);
2400         }
2401         result = null;
2402     }
2403 
2404     public void visitContinue(JCContinue tree) {
2405         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2406         result = null;
2407     }
2408     //where
2409         /** Return the target of a break, continue or yield statement,
2410          *  if it exists, report an error if not.
2411          *  Note: The target of a labelled break or continue is the
2412          *  (non-labelled) statement tree referred to by the label,
2413          *  not the tree representing the labelled statement itself.
2414          *
2415          *  @param pos     The position to be used for error diagnostics
2416          *  @param tag     The tag of the jump statement. This is either
2417          *                 Tree.BREAK or Tree.CONTINUE.
2418          *  @param label   The label of the jump statement, or null if no
2419          *                 label is given.
2420          *  @param env     The environment current at the jump statement.
2421          */
2422         private JCTree findJumpTarget(DiagnosticPosition pos,
2423                                                    JCTree.Tag tag,
2424                                                    Name label,
2425                                                    Env<AttrContext> env) {
2426             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2427 
2428             if (jumpTarget.snd != null) {
2429                 log.error(pos, jumpTarget.snd);
2430             }
2431 
2432             return jumpTarget.fst;
2433         }
2434         /** Return the target of a break or continue statement, if it exists,
2435          *  report an error if not.
2436          *  Note: The target of a labelled break or continue is the
2437          *  (non-labelled) statement tree referred to by the label,
2438          *  not the tree representing the labelled statement itself.
2439          *
2440          *  @param tag     The tag of the jump statement. This is either
2441          *                 Tree.BREAK or Tree.CONTINUE.
2442          *  @param label   The label of the jump statement, or null if no
2443          *                 label is given.
2444          *  @param env     The environment current at the jump statement.
2445          */
2446         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2447                                                                        Name label,
2448                                                                        Env<AttrContext> env) {
2449             // Search environments outwards from the point of jump.
2450             Env<AttrContext> env1 = env;
2451             JCDiagnostic.Error pendingError = null;
2452             LOOP:
2453             while (env1 != null) {
2454                 switch (env1.tree.getTag()) {
2455                     case LABELLED:
2456                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2457                         if (label == labelled.label) {
2458                             // If jump is a continue, check that target is a loop.
2459                             if (tag == CONTINUE) {
2460                                 if (!labelled.body.hasTag(DOLOOP) &&
2461                                         !labelled.body.hasTag(WHILELOOP) &&
2462                                         !labelled.body.hasTag(FORLOOP) &&
2463                                         !labelled.body.hasTag(FOREACHLOOP)) {
2464                                     pendingError = Errors.NotLoopLabel(label);
2465                                 }
2466                                 // Found labelled statement target, now go inwards
2467                                 // to next non-labelled tree.
2468                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2469                             } else {
2470                                 return Pair.of(labelled, pendingError);
2471                             }
2472                         }
2473                         break;
2474                     case DOLOOP:
2475                     case WHILELOOP:
2476                     case FORLOOP:
2477                     case FOREACHLOOP:
2478                         if (label == null) return Pair.of(env1.tree, pendingError);
2479                         break;
2480                     case SWITCH:
2481                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2482                         break;
2483                     case SWITCH_EXPRESSION:
2484                         if (tag == YIELD) {
2485                             return Pair.of(env1.tree, null);
2486                         } else if (tag == BREAK) {
2487                             pendingError = Errors.BreakOutsideSwitchExpression;
2488                         } else {
2489                             pendingError = Errors.ContinueOutsideSwitchExpression;
2490                         }
2491                         break;
2492                     case LAMBDA:
2493                     case METHODDEF:
2494                     case CLASSDEF:
2495                         break LOOP;
2496                     default:
2497                 }
2498                 env1 = env1.next;
2499             }
2500             if (label != null)
2501                 return Pair.of(null, Errors.UndefLabel(label));
2502             else if (pendingError != null)
2503                 return Pair.of(null, pendingError);
2504             else if (tag == CONTINUE)
2505                 return Pair.of(null, Errors.ContOutsideLoop);
2506             else
2507                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2508         }
2509 
2510     public void visitReturn(JCReturn tree) {
2511         // Check that there is an enclosing method which is
2512         // nested within than the enclosing class.
2513         if (env.info.returnResult == null) {
2514             log.error(tree.pos(), Errors.RetOutsideMeth);
2515         } else if (env.info.yieldResult != null) {
2516             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2517             if (tree.expr != null) {
2518                 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2519             }
2520         } else if (!env.info.isLambda &&
2521                 env.enclMethod != null &&
2522                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2523             log.error(env.enclMethod,
2524                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2525         } else {
2526             // Attribute return expression, if it exists, and check that
2527             // it conforms to result type of enclosing method.
2528             if (tree.expr != null) {
2529                 if (env.info.returnResult.pt.hasTag(VOID)) {
2530                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2531                               diags.fragment(Fragments.UnexpectedRetVal));
2532                 }
2533                 attribTree(tree.expr, env, env.info.returnResult);
2534             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2535                     !env.info.returnResult.pt.hasTag(NONE)) {
2536                 env.info.returnResult.checkContext.report(tree.pos(),
2537                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2538             }
2539         }
2540         result = null;
2541     }
2542 
2543     public void visitThrow(JCThrow tree) {
2544         Type owntype = attribExpr(tree.expr, env, Type.noType);
2545         chk.checkType(tree, owntype, syms.throwableType);
2546         result = null;
2547     }
2548 
2549     public void visitAssert(JCAssert tree) {
2550         attribExpr(tree.cond, env, syms.booleanType);
2551         if (tree.detail != null) {
2552             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2553         }
2554         result = null;
2555     }
2556 
2557      /** Visitor method for method invocations.
2558      *  NOTE: The method part of an application will have in its type field
2559      *        the return type of the method, not the method's type itself!
2560      */
2561     public void visitApply(JCMethodInvocation tree) {
2562         // The local environment of a method application is
2563         // a new environment nested in the current one.
2564         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2565 
2566         // The types of the actual method arguments.
2567         List<Type> argtypes;
2568 
2569         // The types of the actual method type arguments.
2570         List<Type> typeargtypes = null;
2571 
2572         Name methName = TreeInfo.name(tree.meth);
2573 
2574         boolean isConstructorCall =
2575             methName == names._this || methName == names._super;
2576 
2577         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2578         if (isConstructorCall) {
2579 
2580             // Attribute arguments, yielding list of argument types.
2581             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2582             argtypes = argtypesBuf.toList();
2583             typeargtypes = attribTypes(tree.typeargs, localEnv);
2584 
2585             // Done with this()/super() parameters. End of constructor prologue.
2586             env.info.ctorPrologue = false;
2587 
2588             // Variable `site' points to the class in which the called
2589             // constructor is defined.
2590             Type site = env.enclClass.sym.type;
2591             if (methName == names._super) {
2592                 if (site == syms.objectType) {
2593                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2594                     site = types.createErrorType(syms.objectType);
2595                 } else {
2596                     site = types.supertype(site);
2597                 }
2598             }
2599 
2600             if (site.hasTag(CLASS)) {
2601                 Type encl = site.getEnclosingType();
2602                 while (encl != null && encl.hasTag(TYPEVAR))
2603                     encl = encl.getUpperBound();
2604                 if (encl.hasTag(CLASS)) {
2605                     // we are calling a nested class
2606 
2607                     if (tree.meth.hasTag(SELECT)) {
2608                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2609 
2610                         // We are seeing a prefixed call, of the form
2611                         //     <expr>.super(...).
2612                         // Check that the prefix expression conforms
2613                         // to the outer instance type of the class.
2614                         chk.checkRefType(qualifier.pos(),
2615                                          attribExpr(qualifier, localEnv,
2616                                                     encl));
2617                     }
2618                 } else if (tree.meth.hasTag(SELECT)) {
2619                     log.error(tree.meth.pos(),
2620                               Errors.IllegalQualNotIcls(site.tsym));
2621                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2622                 }
2623 
2624                 if (tree.meth.hasTag(IDENT)) {
2625                     // non-qualified super(...) call; check whether explicit constructor
2626                     // invocation is well-formed. If the super class is an inner class,
2627                     // make sure that an appropriate implicit qualifier exists. If the super
2628                     // class is a local class, make sure that the current class is defined
2629                     // in the same context as the local class.
2630                     checkNewInnerClass(tree.meth.pos(), localEnv, site, true);
2631                 }
2632 
2633                 // if we're calling a java.lang.Enum constructor,
2634                 // prefix the implicit String and int parameters
2635                 if (site.tsym == syms.enumSym)
2636                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2637 
2638                 // Resolve the called constructor under the assumption
2639                 // that we are referring to a superclass instance of the
2640                 // current instance (JLS ???).
2641                 boolean selectSuperPrev = localEnv.info.selectSuper;
2642                 localEnv.info.selectSuper = true;
2643                 localEnv.info.pendingResolutionPhase = null;
2644                 Symbol sym = rs.resolveConstructor(
2645                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2646                 localEnv.info.selectSuper = selectSuperPrev;
2647 
2648                 // Set method symbol to resolved constructor...
2649                 TreeInfo.setSymbol(tree.meth, sym);
2650 
2651                 // ...and check that it is legal in the current context.
2652                 // (this will also set the tree's type)
2653                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2654                 checkId(tree.meth, site, sym, localEnv,
2655                         new ResultInfo(kind, mpt));
2656             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2657                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2658             }
2659             // Otherwise, `site' is an error type and we do nothing
2660             result = tree.type = syms.voidType;
2661         } else {
2662             // Otherwise, we are seeing a regular method call.
2663             // Attribute the arguments, yielding list of argument types, ...
2664             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2665             argtypes = argtypesBuf.toList();
2666             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2667 
2668             // ... and attribute the method using as a prototype a methodtype
2669             // whose formal argument types is exactly the list of actual
2670             // arguments (this will also set the method symbol).
2671             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2672             localEnv.info.pendingResolutionPhase = null;
2673             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2674 
2675             // Compute the result type.
2676             Type restype = mtype.getReturnType();
2677             if (restype.hasTag(WILDCARD))
2678                 throw new AssertionError(mtype);
2679 
2680             Type qualifier = (tree.meth.hasTag(SELECT))
2681                     ? ((JCFieldAccess) tree.meth).selected.type
2682                     : env.enclClass.sym.type;
2683             Symbol msym = TreeInfo.symbol(tree.meth);
2684             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2685 
2686             chk.checkRefTypes(tree.typeargs, typeargtypes);
2687 
2688             // Check that value of resulting type is admissible in the
2689             // current context.  Also, capture the return type
2690             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2691             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2692         }
2693         chk.validate(tree.typeargs, localEnv);
2694     }
2695     //where
2696         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2697             if (msym != null &&
2698                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2699                     methodName == names.getClass &&
2700                     argtypes.isEmpty()) {
2701                 // as a special case, x.getClass() has type Class<? extends |X|>
2702                 return new ClassType(restype.getEnclosingType(),
2703                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2704                                 BoundKind.EXTENDS,
2705                                 syms.boundClass)),
2706                         restype.tsym,
2707                         restype.getMetadata());
2708             } else if (msym != null &&
2709                     msym.owner == syms.arrayClass &&
2710                     methodName == names.clone &&
2711                     types.isArray(qualifierType)) {
2712                 // as a special case, array.clone() has a result that is
2713                 // the same as static type of the array being cloned
2714                 return qualifierType;
2715             } else {
2716                 return restype;
2717             }
2718         }
2719 
2720         /** Obtain a method type with given argument types.
2721          */
2722         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2723             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2724             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2725         }
2726 
2727     public void visitNewClass(final JCNewClass tree) {
2728         Type owntype = types.createErrorType(tree.type);
2729 
2730         // The local environment of a class creation is
2731         // a new environment nested in the current one.
2732         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2733 
2734         // The anonymous inner class definition of the new expression,
2735         // if one is defined by it.
2736         JCClassDecl cdef = tree.def;
2737 
2738         // If enclosing class is given, attribute it, and
2739         // complete class name to be fully qualified
2740         JCExpression clazz = tree.clazz; // Class field following new
2741         JCExpression clazzid;            // Identifier in class field
2742         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2743         annoclazzid = null;
2744 
2745         if (clazz.hasTag(TYPEAPPLY)) {
2746             clazzid = ((JCTypeApply) clazz).clazz;
2747             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2748                 annoclazzid = (JCAnnotatedType) clazzid;
2749                 clazzid = annoclazzid.underlyingType;
2750             }
2751         } else {
2752             if (clazz.hasTag(ANNOTATED_TYPE)) {
2753                 annoclazzid = (JCAnnotatedType) clazz;
2754                 clazzid = annoclazzid.underlyingType;
2755             } else {
2756                 clazzid = clazz;
2757             }
2758         }
2759 
2760         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2761 
2762         if (tree.encl != null) {
2763             // We are seeing a qualified new, of the form
2764             //    <expr>.new C <...> (...) ...
2765             // In this case, we let clazz stand for the name of the
2766             // allocated class C prefixed with the type of the qualifier
2767             // expression, so that we can
2768             // resolve it with standard techniques later. I.e., if
2769             // <expr> has type T, then <expr>.new C <...> (...)
2770             // yields a clazz T.C.
2771             Type encltype = chk.checkRefType(tree.encl.pos(),
2772                                              attribExpr(tree.encl, env));
2773             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2774             // from expr to the combined type, or not? Yes, do this.
2775             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2776                                                  ((JCIdent) clazzid).name);
2777 
2778             EndPosTable endPosTable = this.env.toplevel.endPositions;
2779             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2780             if (clazz.hasTag(ANNOTATED_TYPE)) {
2781                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2782                 List<JCAnnotation> annos = annoType.annotations;
2783 
2784                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2785                     clazzid1 = make.at(tree.pos).
2786                         TypeApply(clazzid1,
2787                                   ((JCTypeApply) clazz).arguments);
2788                 }
2789 
2790                 clazzid1 = make.at(tree.pos).
2791                     AnnotatedType(annos, clazzid1);
2792             } else if (clazz.hasTag(TYPEAPPLY)) {
2793                 clazzid1 = make.at(tree.pos).
2794                     TypeApply(clazzid1,
2795                               ((JCTypeApply) clazz).arguments);
2796             }
2797 
2798             clazz = clazzid1;
2799         }
2800 
2801         // Attribute clazz expression and store
2802         // symbol + type back into the attributed tree.
2803         Type clazztype;
2804 
2805         try {
2806             env.info.isAnonymousNewClass = tree.def != null;
2807             clazztype = TreeInfo.isEnumInit(env.tree) ?
2808                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2809                 attribType(clazz, env);
2810         } finally {
2811             env.info.isAnonymousNewClass = false;
2812         }
2813 
2814         clazztype = chk.checkDiamond(tree, clazztype);
2815         chk.validate(clazz, localEnv);
2816         if (tree.encl != null) {
2817             // We have to work in this case to store
2818             // symbol + type back into the attributed tree.
2819             tree.clazz.type = clazztype;
2820             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2821             clazzid.type = ((JCIdent) clazzid).sym.type;
2822             if (annoclazzid != null) {
2823                 annoclazzid.type = clazzid.type;
2824             }
2825             if (!clazztype.isErroneous()) {
2826                 if (cdef != null && clazztype.tsym.isInterface()) {
2827                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2828                 } else if (clazztype.tsym.isStatic()) {
2829                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2830                 }
2831             }
2832         } else {
2833             // Check for the existence of an apropos outer instance
2834             checkNewInnerClass(tree.pos(), env, clazztype, false);
2835         }
2836 
2837         // Attribute constructor arguments.
2838         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2839         final KindSelector pkind =
2840             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2841         List<Type> argtypes = argtypesBuf.toList();
2842         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2843 
2844         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2845             // Enums may not be instantiated except implicitly
2846             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2847                 (!env.tree.hasTag(VARDEF) ||
2848                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2849                  ((JCVariableDecl) env.tree).init != tree))
2850                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2851 
2852             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2853                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2854             boolean skipNonDiamondPath = false;
2855             // Check that class is not abstract
2856             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2857                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2858                 log.error(tree.pos(),
2859                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2860                 skipNonDiamondPath = true;
2861             } else if (cdef != null && clazztype.tsym.isInterface()) {
2862                 // Check that no constructor arguments are given to
2863                 // anonymous classes implementing an interface
2864                 if (!argtypes.isEmpty())
2865                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2866 
2867                 if (!typeargtypes.isEmpty())
2868                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2869 
2870                 // Error recovery: pretend no arguments were supplied.
2871                 argtypes = List.nil();
2872                 typeargtypes = List.nil();
2873                 skipNonDiamondPath = true;
2874             }
2875             if (TreeInfo.isDiamond(tree)) {
2876                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2877                             clazztype.tsym.type.getTypeArguments(),
2878                                                clazztype.tsym,
2879                                                clazztype.getMetadata());
2880 
2881                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2882                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2883                 diamondEnv.info.pendingResolutionPhase = null;
2884 
2885                 //if the type of the instance creation expression is a class type
2886                 //apply method resolution inference (JLS 15.12.2.7). The return type
2887                 //of the resolved constructor will be a partially instantiated type
2888                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2889                             diamondEnv,
2890                             site,
2891                             argtypes,
2892                             typeargtypes);
2893                 tree.constructor = constructor.baseSymbol();
2894 
2895                 final TypeSymbol csym = clazztype.tsym;
2896                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2897                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2898                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2899                 constructorType = checkId(tree, site,
2900                         constructor,
2901                         diamondEnv,
2902                         diamondResult);
2903 
2904                 tree.clazz.type = types.createErrorType(clazztype);
2905                 if (!constructorType.isErroneous()) {
2906                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2907                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2908                 }
2909                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2910             }
2911 
2912             // Resolve the called constructor under the assumption
2913             // that we are referring to a superclass instance of the
2914             // current instance (JLS ???).
2915             else if (!skipNonDiamondPath) {
2916                 //the following code alters some of the fields in the current
2917                 //AttrContext - hence, the current context must be dup'ed in
2918                 //order to avoid downstream failures
2919                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2920                 rsEnv.info.selectSuper = cdef != null;
2921                 rsEnv.info.pendingResolutionPhase = null;
2922                 tree.constructor = rs.resolveConstructor(
2923                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2924                 if (cdef == null) { //do not check twice!
2925                     tree.constructorType = checkId(tree,
2926                             clazztype,
2927                             tree.constructor,
2928                             rsEnv,
2929                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2930                     if (rsEnv.info.lastResolveVarargs())
2931                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2932                 }
2933             }
2934 
2935             if (cdef != null) {
2936                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2937                 return;
2938             }
2939 
2940             if (tree.constructor != null && tree.constructor.kind == MTH)
2941                 owntype = clazztype;
2942         }
2943         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2944         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2945         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2946             //we need to wait for inference to finish and then replace inference vars in the constructor type
2947             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2948                     instantiatedContext -> {
2949                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2950                     });
2951         }
2952         chk.validate(tree.typeargs, localEnv);
2953     }
2954 
2955         // where
2956         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2957                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2958                                                    List<Type> argtypes, List<Type> typeargtypes,
2959                                                    KindSelector pkind) {
2960             // We are seeing an anonymous class instance creation.
2961             // In this case, the class instance creation
2962             // expression
2963             //
2964             //    E.new <typeargs1>C<typargs2>(args) { ... }
2965             //
2966             // is represented internally as
2967             //
2968             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2969             //
2970             // This expression is then *transformed* as follows:
2971             //
2972             // (1) add an extends or implements clause
2973             // (2) add a constructor.
2974             //
2975             // For instance, if C is a class, and ET is the type of E,
2976             // the expression
2977             //
2978             //    E.new <typeargs1>C<typargs2>(args) { ... }
2979             //
2980             // is translated to (where X is a fresh name and typarams is the
2981             // parameter list of the super constructor):
2982             //
2983             //   new <typeargs1>X(<*nullchk*>E, args) where
2984             //     X extends C<typargs2> {
2985             //       <typarams> X(ET e, args) {
2986             //         e.<typeargs1>super(args)
2987             //       }
2988             //       ...
2989             //     }
2990             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2991             Type enclType = clazztype.getEnclosingType();
2992             if (enclType != null &&
2993                     enclType.hasTag(CLASS) &&
2994                     !chk.checkDenotable((ClassType)enclType)) {
2995                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2996             }
2997             final boolean isDiamond = TreeInfo.isDiamond(tree);
2998             if (isDiamond
2999                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
3000                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3001                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3002                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3003                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3004                         instantiatedContext -> {
3005                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3006                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3007                             ResultInfo prevResult = this.resultInfo;
3008                             try {
3009                                 this.resultInfo = resultInfoForClassDefinition;
3010                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3011                                         dupLocalEnv, argtypes, typeargtypes, pkind);
3012                             } finally {
3013                                 this.resultInfo = prevResult;
3014                             }
3015                         });
3016             } else {
3017                 if (isDiamond && clazztype.hasTag(CLASS)) {
3018                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3019                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3020                         // One or more types inferred in the previous steps is non-denotable.
3021                         Fragment fragment = Diamond(clazztype.tsym);
3022                         log.error(tree.clazz.pos(),
3023                                 Errors.CantApplyDiamond1(
3024                                         fragment,
3025                                         invalidDiamondArgs.size() > 1 ?
3026                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3027                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3028                     }
3029                     // For <>(){}, inferred types must also be accessible.
3030                     for (Type t : clazztype.getTypeArguments()) {
3031                         rs.checkAccessibleType(env, t);
3032                     }
3033                 }
3034 
3035                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3036                 // false for isInterface call even when the original type is an interface.
3037                 boolean implementing = clazztype.tsym.isInterface() ||
3038                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3039                         clazztype.getOriginalType().tsym.isInterface();
3040 
3041                 if (implementing) {
3042                     cdef.implementing = List.of(clazz);
3043                 } else {
3044                     cdef.extending = clazz;
3045                 }
3046 
3047                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3048                     rs.isSerializable(clazztype)) {
3049                     localEnv.info.isSerializable = true;
3050                 }
3051 
3052                 attribStat(cdef, localEnv);
3053 
3054                 List<Type> finalargtypes;
3055                 // If an outer instance is given,
3056                 // prefix it to the constructor arguments
3057                 // and delete it from the new expression
3058                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3059                     finalargtypes = argtypes.prepend(tree.encl.type);
3060                 } else {
3061                     finalargtypes = argtypes;
3062                 }
3063 
3064                 // Reassign clazztype and recompute constructor. As this necessarily involves
3065                 // another attribution pass for deferred types in the case of <>, replicate
3066                 // them. Original arguments have right decorations already.
3067                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3068                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3069                 }
3070 
3071                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3072                                                     : cdef.sym.type;
3073                 Symbol sym = tree.constructor = rs.resolveConstructor(
3074                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3075                 Assert.check(!sym.kind.isResolutionError());
3076                 tree.constructor = sym;
3077                 tree.constructorType = checkId(tree,
3078                         clazztype,
3079                         tree.constructor,
3080                         localEnv,
3081                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3082             }
3083             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3084                                 clazztype : types.createErrorType(tree.type);
3085             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3086             chk.validate(tree.typeargs, localEnv);
3087         }
3088 
3089         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3090             return new Check.NestedCheckContext(checkContext) {
3091                 @Override
3092                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3093                     enclosingContext.report(clazz.clazz,
3094                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3095                 }
3096             };
3097         }
3098 
3099         void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) {
3100             boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH;
3101             if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 ||
3102                     (!isLocal && !type.tsym.isInner()) ||
3103                     (isSuper && env.enclClass.sym.isAnonymous())) {
3104                 // nothing to check
3105                 return;
3106             }
3107             Symbol res = isLocal ?
3108                     rs.findLocalClassOwner(env, type.tsym) :
3109                     rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper);
3110             if (res.exists()) {
3111                 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true);
3112             } else {
3113                 log.error(pos, Errors.EnclClassRequired(type.tsym));
3114             }
3115         }
3116 
3117     /** Make an attributed null check tree.
3118      */
3119     public JCExpression makeNullCheck(JCExpression arg) {
3120         // optimization: new Outer() can never be null; skip null check
3121         if (arg.getTag() == NEWCLASS)
3122             return arg;
3123         // optimization: X.this is never null; skip null check
3124         Name name = TreeInfo.name(arg);
3125         if (name == names._this || name == names._super) return arg;
3126 
3127         JCTree.Tag optag = NULLCHK;
3128         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3129         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3130         tree.type = arg.type;
3131         return tree;
3132     }
3133 
3134     public void visitNewArray(JCNewArray tree) {
3135         Type owntype = types.createErrorType(tree.type);
3136         Env<AttrContext> localEnv = env.dup(tree);
3137         Type elemtype;
3138         if (tree.elemtype != null) {
3139             elemtype = attribType(tree.elemtype, localEnv);
3140             chk.validate(tree.elemtype, localEnv);
3141             owntype = elemtype;
3142             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3143                 attribExpr(l.head, localEnv, syms.intType);
3144                 owntype = new ArrayType(owntype, syms.arrayClass);
3145             }
3146         } else {
3147             // we are seeing an untyped aggregate { ... }
3148             // this is allowed only if the prototype is an array
3149             if (pt().hasTag(ARRAY)) {
3150                 elemtype = types.elemtype(pt());
3151             } else {
3152                 if (!pt().hasTag(ERROR) &&
3153                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3154                     log.error(tree.pos(),
3155                               Errors.IllegalInitializerForType(pt()));
3156                 }
3157                 elemtype = types.createErrorType(pt());
3158             }
3159         }
3160         if (tree.elems != null) {
3161             attribExprs(tree.elems, localEnv, elemtype);
3162             owntype = new ArrayType(elemtype, syms.arrayClass);
3163         }
3164         if (!types.isReifiable(elemtype))
3165             log.error(tree.pos(), Errors.GenericArrayCreation);
3166         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3167     }
3168 
3169     /*
3170      * A lambda expression can only be attributed when a target-type is available.
3171      * In addition, if the target-type is that of a functional interface whose
3172      * descriptor contains inference variables in argument position the lambda expression
3173      * is 'stuck' (see DeferredAttr).
3174      */
3175     @Override
3176     public void visitLambda(final JCLambda that) {
3177         boolean wrongContext = false;
3178         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3179             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3180                 //lambda only allowed in assignment or method invocation/cast context
3181                 log.error(that.pos(), Errors.UnexpectedLambda);
3182             }
3183             resultInfo = recoveryInfo;
3184             wrongContext = true;
3185         }
3186         //create an environment for attribution of the lambda expression
3187         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3188         boolean needsRecovery =
3189                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3190         try {
3191             if (needsRecovery && rs.isSerializable(pt())) {
3192                 localEnv.info.isSerializable = true;
3193                 localEnv.info.isSerializableLambda = true;
3194             }
3195             List<Type> explicitParamTypes = null;
3196             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3197                 //attribute lambda parameters
3198                 attribStats(that.params, localEnv);
3199                 explicitParamTypes = TreeInfo.types(that.params);
3200             }
3201 
3202             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3203             Type currentTarget = targetInfo.target;
3204             Type lambdaType = targetInfo.descriptor;
3205 
3206             if (currentTarget.isErroneous()) {
3207                 result = that.type = currentTarget;
3208                 return;
3209             }
3210 
3211             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3212 
3213             if (lambdaType.hasTag(FORALL)) {
3214                 //lambda expression target desc cannot be a generic method
3215                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3216                                                                     kindName(currentTarget.tsym),
3217                                                                     currentTarget.tsym);
3218                 resultInfo.checkContext.report(that, diags.fragment(msg));
3219                 result = that.type = types.createErrorType(pt());
3220                 return;
3221             }
3222 
3223             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3224                 //add param type info in the AST
3225                 List<Type> actuals = lambdaType.getParameterTypes();
3226                 List<JCVariableDecl> params = that.params;
3227 
3228                 boolean arityMismatch = false;
3229 
3230                 while (params.nonEmpty()) {
3231                     if (actuals.isEmpty()) {
3232                         //not enough actuals to perform lambda parameter inference
3233                         arityMismatch = true;
3234                     }
3235                     //reset previously set info
3236                     Type argType = arityMismatch ?
3237                             syms.errType :
3238                             actuals.head;
3239                     if (params.head.isImplicitlyTyped()) {
3240                         setSyntheticVariableType(params.head, argType);
3241                     }
3242                     params.head.sym = null;
3243                     actuals = actuals.isEmpty() ?
3244                             actuals :
3245                             actuals.tail;
3246                     params = params.tail;
3247                 }
3248 
3249                 //attribute lambda parameters
3250                 attribStats(that.params, localEnv);
3251 
3252                 if (arityMismatch) {
3253                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3254                         result = that.type = types.createErrorType(currentTarget);
3255                         return;
3256                 }
3257             }
3258 
3259             //from this point on, no recovery is needed; if we are in assignment context
3260             //we will be able to attribute the whole lambda body, regardless of errors;
3261             //if we are in a 'check' method context, and the lambda is not compatible
3262             //with the target-type, it will be recovered anyway in Attr.checkId
3263             needsRecovery = false;
3264 
3265             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3266                     lambdaBodyResult(that, lambdaType, resultInfo);
3267 
3268             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3269                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3270             } else {
3271                 JCBlock body = (JCBlock)that.body;
3272                 if (body == breakTree &&
3273                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3274                     breakTreeFound(copyEnv(localEnv));
3275                 }
3276                 attribStats(body.stats, localEnv);
3277             }
3278 
3279             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3280 
3281             boolean isSpeculativeRound =
3282                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3283 
3284             preFlow(that);
3285             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3286 
3287             that.type = currentTarget; //avoids recovery at this stage
3288             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3289 
3290             if (!isSpeculativeRound) {
3291                 //add thrown types as bounds to the thrown types free variables if needed:
3292                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3293                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3294                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3295                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3296                     }
3297                 }
3298 
3299                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3300             }
3301             result = wrongContext ? that.type = types.createErrorType(pt())
3302                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3303         } catch (Types.FunctionDescriptorLookupError ex) {
3304             JCDiagnostic cause = ex.getDiagnostic();
3305             resultInfo.checkContext.report(that, cause);
3306             result = that.type = types.createErrorType(pt());
3307             return;
3308         } catch (CompletionFailure cf) {
3309             chk.completionError(that.pos(), cf);
3310         } catch (Throwable t) {
3311             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3312             //as that would likely cause the same exception again.
3313             needsRecovery = false;
3314             throw t;
3315         } finally {
3316             localEnv.info.scope.leave();
3317             if (needsRecovery) {
3318                 Type prevResult = result;
3319                 try {
3320                     attribTree(that, env, recoveryInfo);
3321                 } finally {
3322                     if (result == Type.recoveryType) {
3323                         result = prevResult;
3324                     }
3325                 }
3326             }
3327         }
3328     }
3329     //where
3330         class TargetInfo {
3331             Type target;
3332             Type descriptor;
3333 
3334             public TargetInfo(Type target, Type descriptor) {
3335                 this.target = target;
3336                 this.descriptor = descriptor;
3337             }
3338         }
3339 
3340         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3341             Type lambdaType;
3342             Type currentTarget = resultInfo.pt;
3343             if (resultInfo.pt != Type.recoveryType) {
3344                 /* We need to adjust the target. If the target is an
3345                  * intersection type, for example: SAM & I1 & I2 ...
3346                  * the target will be updated to SAM
3347                  */
3348                 currentTarget = targetChecker.visit(currentTarget, that);
3349                 if (!currentTarget.isIntersection()) {
3350                     if (explicitParamTypes != null) {
3351                         currentTarget = infer.instantiateFunctionalInterface(that,
3352                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3353                     }
3354                     currentTarget = types.removeWildcards(currentTarget);
3355                     lambdaType = types.findDescriptorType(currentTarget);
3356                 } else {
3357                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3358                     ListBuffer<Type> components = new ListBuffer<>();
3359                     for (Type bound : ict.getExplicitComponents()) {
3360                         if (explicitParamTypes != null) {
3361                             try {
3362                                 bound = infer.instantiateFunctionalInterface(that,
3363                                         bound, explicitParamTypes, resultInfo.checkContext);
3364                             } catch (FunctionDescriptorLookupError t) {
3365                                 // do nothing
3366                             }
3367                         }
3368                         bound = types.removeWildcards(bound);
3369                         components.add(bound);
3370                     }
3371                     currentTarget = types.makeIntersectionType(components.toList());
3372                     currentTarget.tsym.flags_field |= INTERFACE;
3373                     lambdaType = types.findDescriptorType(currentTarget);
3374                 }
3375 
3376             } else {
3377                 currentTarget = Type.recoveryType;
3378                 lambdaType = fallbackDescriptorType(that);
3379             }
3380             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3381                 //lambda expression target desc cannot be a generic method
3382                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3383                                                                     kindName(currentTarget.tsym),
3384                                                                     currentTarget.tsym);
3385                 resultInfo.checkContext.report(that, diags.fragment(msg));
3386                 currentTarget = types.createErrorType(pt());
3387             }
3388             return new TargetInfo(currentTarget, lambdaType);
3389         }
3390 
3391         void preFlow(JCLambda tree) {
3392             attrRecover.doRecovery();
3393             new PostAttrAnalyzer() {
3394                 @Override
3395                 public void scan(JCTree tree) {
3396                     if (tree == null ||
3397                             (tree.type != null &&
3398                             tree.type == Type.stuckType)) {
3399                         //don't touch stuck expressions!
3400                         return;
3401                     }
3402                     super.scan(tree);
3403                 }
3404 
3405                 @Override
3406                 public void visitClassDef(JCClassDecl that) {
3407                     // or class declaration trees!
3408                 }
3409 
3410                 public void visitLambda(JCLambda that) {
3411                     // or lambda expressions!
3412                 }
3413             }.scan(tree.body);
3414         }
3415 
3416         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3417 
3418             @Override
3419             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3420                 return t.isIntersection() ?
3421                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3422             }
3423 
3424             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3425                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3426                 return ict;
3427             }
3428 
3429             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3430                 ListBuffer<Type> targs = new ListBuffer<>();
3431                 ListBuffer<Type> supertypes = new ListBuffer<>();
3432                 for (Type i : ict.interfaces_field) {
3433                     if (i.isParameterized()) {
3434                         targs.appendList(i.tsym.type.allparams());
3435                     }
3436                     supertypes.append(i.tsym.type);
3437                 }
3438                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3439                 notionalIntf.allparams_field = targs.toList();
3440                 notionalIntf.tsym.flags_field |= INTERFACE;
3441                 return notionalIntf.tsym;
3442             }
3443         };
3444 
3445         private Type fallbackDescriptorType(JCExpression tree) {
3446             switch (tree.getTag()) {
3447                 case LAMBDA:
3448                     JCLambda lambda = (JCLambda)tree;
3449                     List<Type> argtypes = List.nil();
3450                     for (JCVariableDecl param : lambda.params) {
3451                         argtypes = param.vartype != null && param.vartype.type != null ?
3452                                 argtypes.append(param.vartype.type) :
3453                                 argtypes.append(syms.errType);
3454                     }
3455                     return new MethodType(argtypes, Type.recoveryType,
3456                             List.of(syms.throwableType), syms.methodClass);
3457                 case REFERENCE:
3458                     return new MethodType(List.nil(), Type.recoveryType,
3459                             List.of(syms.throwableType), syms.methodClass);
3460                 default:
3461                     Assert.error("Cannot get here!");
3462             }
3463             return null;
3464         }
3465 
3466         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3467                 final InferenceContext inferenceContext, final Type... ts) {
3468             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3469         }
3470 
3471         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3472                 final InferenceContext inferenceContext, final List<Type> ts) {
3473             if (inferenceContext.free(ts)) {
3474                 inferenceContext.addFreeTypeListener(ts,
3475                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3476             } else {
3477                 for (Type t : ts) {
3478                     rs.checkAccessibleType(env, t);
3479                 }
3480             }
3481         }
3482 
3483         /**
3484          * Lambda/method reference have a special check context that ensures
3485          * that i.e. a lambda return type is compatible with the expected
3486          * type according to both the inherited context and the assignment
3487          * context.
3488          */
3489         class FunctionalReturnContext extends Check.NestedCheckContext {
3490 
3491             FunctionalReturnContext(CheckContext enclosingContext) {
3492                 super(enclosingContext);
3493             }
3494 
3495             @Override
3496             public boolean compatible(Type found, Type req, Warner warn) {
3497                 //return type must be compatible in both current context and assignment context
3498                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3499             }
3500 
3501             @Override
3502             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3503                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3504             }
3505         }
3506 
3507         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3508 
3509             JCExpression expr;
3510             boolean expStmtExpected;
3511 
3512             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3513                 super(enclosingContext);
3514                 this.expr = expr;
3515             }
3516 
3517             @Override
3518             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3519                 if (expStmtExpected) {
3520                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3521                 } else {
3522                     super.report(pos, details);
3523                 }
3524             }
3525 
3526             @Override
3527             public boolean compatible(Type found, Type req, Warner warn) {
3528                 //a void return is compatible with an expression statement lambda
3529                 if (req.hasTag(VOID)) {
3530                     expStmtExpected = true;
3531                     return TreeInfo.isExpressionStatement(expr);
3532                 } else {
3533                     return super.compatible(found, req, warn);
3534                 }
3535             }
3536         }
3537 
3538         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3539             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3540                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3541                     new FunctionalReturnContext(resultInfo.checkContext);
3542 
3543             return descriptor.getReturnType() == Type.recoveryType ?
3544                     recoveryInfo :
3545                     new ResultInfo(KindSelector.VAL,
3546                             descriptor.getReturnType(), funcContext);
3547         }
3548 
3549         /**
3550         * Lambda compatibility. Check that given return types, thrown types, parameter types
3551         * are compatible with the expected functional interface descriptor. This means that:
3552         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3553         * types must be compatible with the return type of the expected descriptor.
3554         */
3555         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3556             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3557 
3558             //return values have already been checked - but if lambda has no return
3559             //values, we must ensure that void/value compatibility is correct;
3560             //this amounts at checking that, if a lambda body can complete normally,
3561             //the descriptor's return type must be void
3562             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3563                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3564                 Fragment msg =
3565                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3566                 checkContext.report(tree,
3567                                     diags.fragment(msg));
3568             }
3569 
3570             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3571             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3572                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3573             }
3574         }
3575 
3576         /* This method returns an environment to be used to attribute a lambda
3577          * expression.
3578          *
3579          * The owner of this environment is a method symbol. If the current owner
3580          * is not a method (e.g. if the lambda occurs in a field initializer), then
3581          * a synthetic method symbol owner is created.
3582          */
3583         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3584             Env<AttrContext> lambdaEnv;
3585             Symbol owner = env.info.scope.owner;
3586             if (owner.kind == VAR && owner.owner.kind == TYP) {
3587                 // If the lambda is nested in a field initializer, we need to create a fake init method.
3588                 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3589                 // init symbol's owner).
3590                 ClassSymbol enclClass = owner.enclClass();
3591                 Name initName = owner.isStatic() ? names.clinit : names.init;
3592                 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3593                         initName, initBlockType, enclClass);
3594                 initSym.params = List.nil();
3595                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3596             } else {
3597                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3598             }
3599             lambdaEnv.info.yieldResult = null;
3600             lambdaEnv.info.isLambda = true;
3601             return lambdaEnv;
3602         }
3603 
3604     @Override
3605     public void visitReference(final JCMemberReference that) {
3606         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3607             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3608                 //method reference only allowed in assignment or method invocation/cast context
3609                 log.error(that.pos(), Errors.UnexpectedMref);
3610             }
3611             result = that.type = types.createErrorType(pt());
3612             return;
3613         }
3614         final Env<AttrContext> localEnv = env.dup(that);
3615         try {
3616             //attribute member reference qualifier - if this is a constructor
3617             //reference, the expected kind must be a type
3618             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3619 
3620             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3621                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3622                 if (!exprType.isErroneous() &&
3623                     exprType.isRaw() &&
3624                     that.typeargs != null) {
3625                     log.error(that.expr.pos(),
3626                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3627                                                  Fragments.MrefInferAndExplicitParams));
3628                     exprType = types.createErrorType(exprType);
3629                 }
3630             }
3631 
3632             if (exprType.isErroneous()) {
3633                 //if the qualifier expression contains problems,
3634                 //give up attribution of method reference
3635                 result = that.type = exprType;
3636                 return;
3637             }
3638 
3639             if (TreeInfo.isStaticSelector(that.expr, names)) {
3640                 //if the qualifier is a type, validate it; raw warning check is
3641                 //omitted as we don't know at this stage as to whether this is a
3642                 //raw selector (because of inference)
3643                 chk.validate(that.expr, env, false);
3644             } else {
3645                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3646                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3647             }
3648             //attrib type-arguments
3649             List<Type> typeargtypes = List.nil();
3650             if (that.typeargs != null) {
3651                 typeargtypes = attribTypes(that.typeargs, localEnv);
3652             }
3653 
3654             boolean isTargetSerializable =
3655                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3656                     rs.isSerializable(pt());
3657             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3658             Type currentTarget = targetInfo.target;
3659             Type desc = targetInfo.descriptor;
3660 
3661             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3662             List<Type> argtypes = desc.getParameterTypes();
3663             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3664 
3665             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3666                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3667             }
3668 
3669             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3670             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3671             try {
3672                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3673                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3674                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3675             } finally {
3676                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3677             }
3678 
3679             Symbol refSym = refResult.fst;
3680             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3681 
3682             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3683              *  JDK-8075541
3684              */
3685             if (refSym.kind != MTH) {
3686                 boolean targetError;
3687                 switch (refSym.kind) {
3688                     case ABSENT_MTH:
3689                         targetError = false;
3690                         break;
3691                     case WRONG_MTH:
3692                     case WRONG_MTHS:
3693                     case AMBIGUOUS:
3694                     case HIDDEN:
3695                     case STATICERR:
3696                         targetError = true;
3697                         break;
3698                     default:
3699                         Assert.error("unexpected result kind " + refSym.kind);
3700                         targetError = false;
3701                 }
3702 
3703                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3704                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3705                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3706 
3707                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3708                         targetError ?
3709                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3710                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3711 
3712                 if (targetError && currentTarget == Type.recoveryType) {
3713                     //a target error doesn't make sense during recovery stage
3714                     //as we don't know what actual parameter types are
3715                     result = that.type = currentTarget;
3716                     return;
3717                 } else {
3718                     if (targetError) {
3719                         resultInfo.checkContext.report(that, diag);
3720                     } else {
3721                         log.report(diag);
3722                     }
3723                     result = that.type = types.createErrorType(currentTarget);
3724                     return;
3725                 }
3726             }
3727 
3728             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3729             that.kind = lookupHelper.referenceKind(that.sym);
3730             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3731 
3732             if (desc.getReturnType() == Type.recoveryType) {
3733                 // stop here
3734                 result = that.type = currentTarget;
3735                 return;
3736             }
3737 
3738             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3739                 checkNewInnerClass(that.pos(), env, exprType, false);
3740             }
3741 
3742             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3743 
3744                 if (that.getMode() == ReferenceMode.INVOKE &&
3745                         TreeInfo.isStaticSelector(that.expr, names) &&
3746                         that.kind.isUnbound() &&
3747                         lookupHelper.site.isRaw()) {
3748                     chk.checkRaw(that.expr, localEnv);
3749                 }
3750 
3751                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3752                         exprType.getTypeArguments().nonEmpty()) {
3753                     //static ref with class type-args
3754                     log.error(that.expr.pos(),
3755                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3756                                                  Fragments.StaticMrefWithTargs));
3757                     result = that.type = types.createErrorType(currentTarget);
3758                     return;
3759                 }
3760 
3761                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3762                     // Check that super-qualified symbols are not abstract (JLS)
3763                     rs.checkNonAbstract(that.pos(), that.sym);
3764                 }
3765 
3766                 if (isTargetSerializable) {
3767                     chk.checkAccessFromSerializableElement(that, true);
3768                 }
3769             }
3770 
3771             ResultInfo checkInfo =
3772                     resultInfo.dup(newMethodTemplate(
3773                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3774                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3775                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3776 
3777             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3778 
3779             if (that.kind.isUnbound() &&
3780                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3781                 //re-generate inference constraints for unbound receiver
3782                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3783                     //cannot happen as this has already been checked - we just need
3784                     //to regenerate the inference constraints, as that has been lost
3785                     //as a result of the call to inferenceContext.save()
3786                     Assert.error("Can't get here");
3787                 }
3788             }
3789 
3790             if (!refType.isErroneous()) {
3791                 refType = types.createMethodTypeWithReturn(refType,
3792                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3793             }
3794 
3795             //go ahead with standard method reference compatibility check - note that param check
3796             //is a no-op (as this has been taken care during method applicability)
3797             boolean isSpeculativeRound =
3798                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3799 
3800             that.type = currentTarget; //avoids recovery at this stage
3801             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3802             if (!isSpeculativeRound) {
3803                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3804             }
3805             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3806         } catch (Types.FunctionDescriptorLookupError ex) {
3807             JCDiagnostic cause = ex.getDiagnostic();
3808             resultInfo.checkContext.report(that, cause);
3809             result = that.type = types.createErrorType(pt());
3810             return;
3811         }
3812     }
3813     //where
3814         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3815             //if this is a constructor reference, the expected kind must be a type
3816             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3817                                   KindSelector.VAL_TYP : KindSelector.TYP,
3818                                   Type.noType);
3819         }
3820 
3821 
3822     @SuppressWarnings("fallthrough")
3823     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3824         InferenceContext inferenceContext = checkContext.inferenceContext();
3825         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3826 
3827         Type resType;
3828         switch (tree.getMode()) {
3829             case NEW:
3830                 if (!tree.expr.type.isRaw()) {
3831                     resType = tree.expr.type;
3832                     break;
3833                 }
3834             default:
3835                 resType = refType.getReturnType();
3836         }
3837 
3838         Type incompatibleReturnType = resType;
3839 
3840         if (returnType.hasTag(VOID)) {
3841             incompatibleReturnType = null;
3842         }
3843 
3844         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3845             if (resType.isErroneous() ||
3846                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3847                             checkContext.checkWarner(tree, resType, returnType))) {
3848                 incompatibleReturnType = null;
3849             }
3850         }
3851 
3852         if (incompatibleReturnType != null) {
3853             Fragment msg =
3854                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3855             checkContext.report(tree, diags.fragment(msg));
3856         } else {
3857             if (inferenceContext.free(refType)) {
3858                 // we need to wait for inference to finish and then replace inference vars in the referent type
3859                 inferenceContext.addFreeTypeListener(List.of(refType),
3860                         instantiatedContext -> {
3861                             tree.referentType = instantiatedContext.asInstType(refType);
3862                         });
3863             } else {
3864                 tree.referentType = refType;
3865             }
3866         }
3867 
3868         if (!speculativeAttr) {
3869             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3870                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3871             }
3872         }
3873     }
3874 
3875     boolean checkExConstraints(
3876             List<Type> thrownByFuncExpr,
3877             List<Type> thrownAtFuncType,
3878             InferenceContext inferenceContext) {
3879         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3880          *  are not proper types
3881          */
3882         List<Type> nonProperList = thrownAtFuncType.stream()
3883                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3884         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3885 
3886         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3887          *  in the throws clause of the invocation type of the method reference's compile-time
3888          *  declaration
3889          */
3890         List<Type> checkedList = thrownByFuncExpr.stream()
3891                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3892 
3893         /** If n = 0 (the function type's throws clause consists only of proper types), then
3894          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3895          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3896          *  reduces to true
3897          */
3898         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3899         for (Type checked : checkedList) {
3900             boolean isSubtype = false;
3901             for (Type proper : properList) {
3902                 if (types.isSubtype(checked, proper)) {
3903                     isSubtype = true;
3904                     break;
3905                 }
3906             }
3907             if (!isSubtype) {
3908                 uncaughtByProperTypes.add(checked);
3909             }
3910         }
3911 
3912         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3913             return false;
3914         }
3915 
3916         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3917          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3918          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3919          */
3920         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3921         uncaughtByProperTypes.forEach(checkedEx -> {
3922             nonProperAsUndet.forEach(nonProper -> {
3923                 types.isSubtype(checkedEx, nonProper);
3924             });
3925         });
3926 
3927         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3928          */
3929         nonProperAsUndet.stream()
3930                 .filter(t -> t.hasTag(UNDETVAR))
3931                 .forEach(t -> ((UndetVar)t).setThrow());
3932         return true;
3933     }
3934 
3935     /**
3936      * Set functional type info on the underlying AST. Note: as the target descriptor
3937      * might contain inference variables, we might need to register an hook in the
3938      * current inference context.
3939      */
3940     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3941             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3942         if (checkContext.inferenceContext().free(descriptorType)) {
3943             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3944                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3945                     inferenceContext.asInstType(primaryTarget), checkContext));
3946         } else {
3947             fExpr.owner = env.info.scope.owner;
3948             if (pt.hasTag(CLASS)) {
3949                 fExpr.target = primaryTarget;
3950             }
3951             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3952                     pt != Type.recoveryType) {
3953                 //check that functional interface class is well-formed
3954                 try {
3955                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3956                      * when it's executed post-inference. See the listener code
3957                      * above.
3958                      */
3959                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3960                             names.empty, fExpr.target, ABSTRACT);
3961                     if (csym != null) {
3962                         chk.checkImplementations(env.tree, csym, csym);
3963                         try {
3964                             //perform an additional functional interface check on the synthetic class,
3965                             //as there may be spurious errors for raw targets - because of existing issues
3966                             //with membership and inheritance (see JDK-8074570).
3967                             csym.flags_field |= INTERFACE;
3968                             types.findDescriptorType(csym.type);
3969                         } catch (FunctionDescriptorLookupError err) {
3970                             resultInfo.checkContext.report(fExpr,
3971                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3972                         }
3973                     }
3974                 } catch (Types.FunctionDescriptorLookupError ex) {
3975                     JCDiagnostic cause = ex.getDiagnostic();
3976                     resultInfo.checkContext.report(env.tree, cause);
3977                 }
3978             }
3979         }
3980     }
3981 
3982     public void visitParens(JCParens tree) {
3983         Type owntype = attribTree(tree.expr, env, resultInfo);
3984         result = check(tree, owntype, pkind(), resultInfo);
3985         Symbol sym = TreeInfo.symbol(tree);
3986         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
3987             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3988     }
3989 
3990     public void visitAssign(JCAssign tree) {
3991         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3992         Type capturedType = capture(owntype);
3993         attribExpr(tree.rhs, env, owntype);
3994         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3995     }
3996 
3997     public void visitAssignop(JCAssignOp tree) {
3998         // Attribute arguments.
3999         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4000         Type operand = attribExpr(tree.rhs, env);
4001         // Find operator.
4002         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4003         if (operator != operators.noOpSymbol &&
4004                 !owntype.isErroneous() &&
4005                 !operand.isErroneous()) {
4006             chk.checkDivZero(tree.rhs.pos(), operator, operand);
4007             chk.checkCastable(tree.rhs.pos(),
4008                               operator.type.getReturnType(),
4009                               owntype);
4010             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4011         }
4012         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4013     }
4014 
4015     public void visitUnary(JCUnary tree) {
4016         // Attribute arguments.
4017         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4018             ? attribTree(tree.arg, env, varAssignmentInfo)
4019             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4020 
4021         // Find operator.
4022         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4023         Type owntype = types.createErrorType(tree.type);
4024         if (operator != operators.noOpSymbol &&
4025                 !argtype.isErroneous()) {
4026             owntype = (tree.getTag().isIncOrDecUnaryOp())
4027                 ? tree.arg.type
4028                 : operator.type.getReturnType();
4029             int opc = operator.opcode;
4030 
4031             // If the argument is constant, fold it.
4032             if (argtype.constValue() != null) {
4033                 Type ctype = cfolder.fold1(opc, argtype);
4034                 if (ctype != null) {
4035                     owntype = cfolder.coerce(ctype, owntype);
4036                 }
4037             }
4038         }
4039         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4040         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4041     }
4042 
4043     public void visitBinary(JCBinary tree) {
4044         // Attribute arguments.
4045         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4046         // x && y
4047         // include x's bindings when true in y
4048 
4049         // x || y
4050         // include x's bindings when false in y
4051 
4052         MatchBindings lhsBindings = matchBindings;
4053         List<BindingSymbol> propagatedBindings;
4054         switch (tree.getTag()) {
4055             case AND:
4056                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4057                 break;
4058             case OR:
4059                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4060                 break;
4061             default:
4062                 propagatedBindings = List.nil();
4063                 break;
4064         }
4065         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4066         Type right;
4067         try {
4068             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4069         } finally {
4070             rhsEnv.info.scope.leave();
4071         }
4072 
4073         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4074 
4075         // Find operator.
4076         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4077         Type owntype = types.createErrorType(tree.type);
4078         if (operator != operators.noOpSymbol &&
4079                 !left.isErroneous() &&
4080                 !right.isErroneous()) {
4081             owntype = operator.type.getReturnType();
4082             int opc = operator.opcode;
4083             // If both arguments are constants, fold them.
4084             if (left.constValue() != null && right.constValue() != null) {
4085                 Type ctype = cfolder.fold2(opc, left, right);
4086                 if (ctype != null) {
4087                     owntype = cfolder.coerce(ctype, owntype);
4088                 }
4089             }
4090 
4091             // Check that argument types of a reference ==, != are
4092             // castable to each other, (JLS 15.21).  Note: unboxing
4093             // comparisons will not have an acmp* opc at this point.
4094             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4095                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4096                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4097                 }
4098             }
4099 
4100             chk.checkDivZero(tree.rhs.pos(), operator, right);
4101         }
4102         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4103     }
4104 
4105     public void visitTypeCast(final JCTypeCast tree) {
4106         Type clazztype = attribType(tree.clazz, env);
4107         chk.validate(tree.clazz, env, false);
4108         //a fresh environment is required for 292 inference to work properly ---
4109         //see Infer.instantiatePolymorphicSignatureInstance()
4110         Env<AttrContext> localEnv = env.dup(tree);
4111         //should we propagate the target type?
4112         final ResultInfo castInfo;
4113         JCExpression expr = TreeInfo.skipParens(tree.expr);
4114         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4115         if (isPoly) {
4116             //expression is a poly - we need to propagate target type info
4117             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4118                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4119                 @Override
4120                 public boolean compatible(Type found, Type req, Warner warn) {
4121                     return types.isCastable(found, req, warn);
4122                 }
4123             });
4124         } else {
4125             //standalone cast - target-type info is not propagated
4126             castInfo = unknownExprInfo;
4127         }
4128         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4129         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4130         if (exprtype.constValue() != null)
4131             owntype = cfolder.coerce(exprtype, owntype);
4132         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4133         if (!isPoly)
4134             chk.checkRedundantCast(localEnv, tree);
4135     }
4136 
4137     public void visitTypeTest(JCInstanceOf tree) {
4138         Type exprtype = attribExpr(tree.expr, env);
4139         if (exprtype.isPrimitive()) {
4140             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4141         } else {
4142             exprtype = chk.checkNullOrRefType(
4143                     tree.expr.pos(), exprtype);
4144         }
4145         Type clazztype;
4146         JCTree typeTree;
4147         if (tree.pattern.getTag() == BINDINGPATTERN ||
4148             tree.pattern.getTag() == RECORDPATTERN) {
4149             attribExpr(tree.pattern, env, exprtype);
4150             clazztype = tree.pattern.type;
4151             if (types.isSubtype(exprtype, clazztype) &&
4152                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4153                 tree.pattern.getTag() != RECORDPATTERN) {
4154                 if (!allowUnconditionalPatternsInstanceOf) {
4155                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4156                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4157                 }
4158             }
4159             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4160         } else {
4161             clazztype = attribType(tree.pattern, env);
4162             typeTree = tree.pattern;
4163             chk.validate(typeTree, env, false);
4164         }
4165         if (clazztype.isPrimitive()) {
4166             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4167         } else {
4168             if (!clazztype.hasTag(TYPEVAR)) {
4169                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4170             }
4171             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4172                 boolean valid = false;
4173                 if (allowReifiableTypesInInstanceof) {
4174                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4175                 } else {
4176                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4177                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4178                     allowReifiableTypesInInstanceof = true;
4179                 }
4180                 if (!valid) {
4181                     clazztype = types.createErrorType(clazztype);
4182                 }
4183             }
4184         }
4185         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4186         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4187     }
4188 
4189     private boolean checkCastablePattern(DiagnosticPosition pos,
4190                                          Type exprType,
4191                                          Type pattType) {
4192         Warner warner = new Warner();
4193         // if any type is erroneous, the problem is reported elsewhere
4194         if (exprType.isErroneous() || pattType.isErroneous()) {
4195             return false;
4196         }
4197         if (!types.isCastable(exprType, pattType, warner)) {
4198             chk.basicHandler.report(pos,
4199                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4200             return false;
4201         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4202                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4203             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4204             return true;
4205         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4206             log.error(pos,
4207                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4208             return false;
4209         } else {
4210             return true;
4211         }
4212     }
4213 
4214     @Override
4215     public void visitAnyPattern(JCAnyPattern tree) {
4216         result = tree.type = resultInfo.pt;
4217     }
4218 
4219     public void visitBindingPattern(JCBindingPattern tree) {
4220         Type type;
4221         if (tree.var.vartype != null) {
4222             type = attribType(tree.var.vartype, env);
4223         } else {
4224             type = resultInfo.pt;
4225         }
4226         tree.type = tree.var.type = type;
4227         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4228         v.pos = tree.pos;
4229         tree.var.sym = v;
4230         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4231             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4232         }
4233         chk.validate(tree.var.vartype, env, true);
4234         if (tree.var.isImplicitlyTyped()) {
4235             setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4236                                                                    : type);
4237         }
4238         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var);
4239         if (!tree.var.isImplicitlyTyped()) {
4240             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var);
4241         }
4242         annotate.flush();
4243         result = tree.type;
4244         if (v.isUnnamedVariable()) {
4245             matchBindings = MatchBindingsComputer.EMPTY;
4246         } else {
4247             matchBindings = new MatchBindings(List.of(v), List.nil());
4248         }
4249     }
4250 
4251     @Override
4252     public void visitRecordPattern(JCRecordPattern tree) {
4253         Type site;
4254 
4255         if (tree.deconstructor == null) {
4256             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4257             tree.record = syms.errSymbol;
4258             site = tree.type = types.createErrorType(tree.record.type);
4259         } else {
4260             Type type = attribType(tree.deconstructor, env);
4261             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4262                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4263                 if (inferred == null) {
4264                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4265                 } else {
4266                     type = inferred;
4267                 }
4268             }
4269             tree.type = tree.deconstructor.type = type;
4270             site = types.capture(tree.type);
4271         }
4272 
4273         List<Type> expectedRecordTypes;
4274         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4275             ClassSymbol record = (ClassSymbol) site.tsym;
4276             expectedRecordTypes = record.getRecordComponents()
4277                                         .stream()
4278                                         .map(rc -> types.memberType(site, rc))
4279                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4280                                         .collect(List.collector());
4281             tree.record = record;
4282         } else {
4283             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4284             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4285                                 .limit(tree.nested.size())
4286                                 .collect(List.collector());
4287             tree.record = syms.errSymbol;
4288         }
4289         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4290         List<Type> recordTypes = expectedRecordTypes;
4291         List<JCPattern> nestedPatterns = tree.nested;
4292         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4293         try {
4294             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4295                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4296                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4297                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4298                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4299                 nestedPatterns = nestedPatterns.tail;
4300                 recordTypes = recordTypes.tail;
4301             }
4302             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4303                 while (nestedPatterns.nonEmpty()) {
4304                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4305                     nestedPatterns = nestedPatterns.tail;
4306                 }
4307                 List<Type> nestedTypes =
4308                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4309                 log.error(tree.pos(),
4310                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4311                                                                  nestedTypes));
4312             }
4313         } finally {
4314             localEnv.info.scope.leave();
4315         }
4316         chk.validate(tree.deconstructor, env, true);
4317         result = tree.type;
4318         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4319     }
4320 
4321     public void visitIndexed(JCArrayAccess tree) {
4322         Type owntype = types.createErrorType(tree.type);
4323         Type atype = attribExpr(tree.indexed, env);
4324         attribExpr(tree.index, env, syms.intType);
4325         if (types.isArray(atype))
4326             owntype = types.elemtype(atype);
4327         else if (!atype.hasTag(ERROR))
4328             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4329         if (!pkind().contains(KindSelector.VAL))
4330             owntype = capture(owntype);
4331         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4332     }
4333 
4334     public void visitIdent(JCIdent tree) {
4335         Symbol sym;
4336 
4337         // Find symbol
4338         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4339             // If we are looking for a method, the prototype `pt' will be a
4340             // method type with the type of the call's arguments as parameters.
4341             env.info.pendingResolutionPhase = null;
4342             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4343         } else if (tree.sym != null && tree.sym.kind != VAR) {
4344             sym = tree.sym;
4345         } else {
4346             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4347         }
4348         tree.sym = sym;
4349 
4350         // Also find the environment current for the class where
4351         // sym is defined (`symEnv').
4352         Env<AttrContext> symEnv = env;
4353         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4354             sym.kind.matches(KindSelector.VAL_MTH) &&
4355             sym.owner.kind == TYP &&
4356             tree.name != names._this && tree.name != names._super) {
4357 
4358             // Find environment in which identifier is defined.
4359             while (symEnv.outer != null &&
4360                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4361                 symEnv = symEnv.outer;
4362             }
4363         }
4364 
4365         // If symbol is a variable, ...
4366         if (sym.kind == VAR) {
4367             VarSymbol v = (VarSymbol)sym;
4368 
4369             // ..., evaluate its initializer, if it has one, and check for
4370             // illegal forward reference.
4371             checkInit(tree, env, v, false);
4372 
4373             // If we are expecting a variable (as opposed to a value), check
4374             // that the variable is assignable in the current environment.
4375             if (KindSelector.ASG.subset(pkind()))
4376                 checkAssignable(tree.pos(), v, null, env);
4377         }
4378 
4379         Env<AttrContext> env1 = env;
4380         if (sym.kind != ERR && sym.kind != TYP &&
4381             sym.owner != null && sym.owner != env1.enclClass.sym) {
4382             // If the found symbol is inaccessible, then it is
4383             // accessed through an enclosing instance.  Locate this
4384             // enclosing instance:
4385             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4386                 env1 = env1.outer;
4387         }
4388 
4389         if (env.info.isSerializable) {
4390             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4391         }
4392 
4393         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4394     }
4395 
4396     public void visitSelect(JCFieldAccess tree) {
4397         // Determine the expected kind of the qualifier expression.
4398         KindSelector skind = KindSelector.NIL;
4399         if (tree.name == names._this || tree.name == names._super ||
4400                 tree.name == names._class)
4401         {
4402             skind = KindSelector.TYP;
4403         } else {
4404             if (pkind().contains(KindSelector.PCK))
4405                 skind = KindSelector.of(skind, KindSelector.PCK);
4406             if (pkind().contains(KindSelector.TYP))
4407                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4408             if (pkind().contains(KindSelector.VAL_MTH))
4409                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4410         }
4411 
4412         // Attribute the qualifier expression, and determine its symbol (if any).
4413         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4414         Assert.check(site == tree.selected.type);
4415         if (!pkind().contains(KindSelector.TYP_PCK))
4416             site = capture(site); // Capture field access
4417 
4418         // don't allow T.class T[].class, etc
4419         if (skind == KindSelector.TYP) {
4420             Type elt = site;
4421             while (elt.hasTag(ARRAY))
4422                 elt = ((ArrayType)elt).elemtype;
4423             if (elt.hasTag(TYPEVAR)) {
4424                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4425                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4426                 tree.sym = tree.type.tsym;
4427                 return ;
4428             }
4429         }
4430 
4431         // If qualifier symbol is a type or `super', assert `selectSuper'
4432         // for the selection. This is relevant for determining whether
4433         // protected symbols are accessible.
4434         Symbol sitesym = TreeInfo.symbol(tree.selected);
4435         boolean selectSuperPrev = env.info.selectSuper;
4436         env.info.selectSuper =
4437             sitesym != null &&
4438             sitesym.name == names._super;
4439 
4440         // Determine the symbol represented by the selection.
4441         env.info.pendingResolutionPhase = null;
4442         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4443         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4444             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4445             sym = syms.errSymbol;
4446         }
4447         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4448             site = capture(site);
4449             sym = selectSym(tree, sitesym, site, env, resultInfo);
4450         }
4451         boolean varArgs = env.info.lastResolveVarargs();
4452         tree.sym = sym;
4453 
4454         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4455             site = types.skipTypeVars(site, true);
4456         }
4457 
4458         // If that symbol is a variable, ...
4459         if (sym.kind == VAR) {
4460             VarSymbol v = (VarSymbol)sym;
4461 
4462             // ..., evaluate its initializer, if it has one, and check for
4463             // illegal forward reference.
4464             checkInit(tree, env, v, true);
4465 
4466             // If we are expecting a variable (as opposed to a value), check
4467             // that the variable is assignable in the current environment.
4468             if (KindSelector.ASG.subset(pkind()))
4469                 checkAssignable(tree.pos(), v, tree.selected, env);
4470         }
4471 
4472         if (sitesym != null &&
4473                 sitesym.kind == VAR &&
4474                 ((VarSymbol)sitesym).isResourceVariable() &&
4475                 sym.kind == MTH &&
4476                 sym.name.equals(names.close) &&
4477                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) {
4478             env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall);
4479         }
4480 
4481         // Disallow selecting a type from an expression
4482         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4483             tree.type = check(tree.selected, pt(),
4484                               sitesym == null ?
4485                                       KindSelector.VAL : sitesym.kind.toSelector(),
4486                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4487         }
4488 
4489         if (isType(sitesym)) {
4490             if (sym.name != names._this && sym.name != names._super) {
4491                 // Check if type-qualified fields or methods are static (JLS)
4492                 if ((sym.flags() & STATIC) == 0 &&
4493                     sym.name != names._super &&
4494                     (sym.kind == VAR || sym.kind == MTH)) {
4495                     rs.accessBase(rs.new StaticError(sym),
4496                               tree.pos(), site, sym.name, true);
4497                 }
4498             }
4499         } else if (sym.kind != ERR &&
4500                    (sym.flags() & STATIC) != 0 &&
4501                    sym.name != names._class) {
4502             // If the qualified item is not a type and the selected item is static, report
4503             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4504             if (!sym.owner.isAnonymous()) {
4505                 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4506             } else {
4507                 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4508             }
4509         }
4510 
4511         // If we are selecting an instance member via a `super', ...
4512         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4513 
4514             // Check that super-qualified symbols are not abstract (JLS)
4515             rs.checkNonAbstract(tree.pos(), sym);
4516 
4517             if (site.isRaw()) {
4518                 // Determine argument types for site.
4519                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4520                 if (site1 != null) site = site1;
4521             }
4522         }
4523 
4524         if (env.info.isSerializable) {
4525             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4526         }
4527 
4528         env.info.selectSuper = selectSuperPrev;
4529         result = checkId(tree, site, sym, env, resultInfo);
4530     }
4531     //where
4532         /** Determine symbol referenced by a Select expression,
4533          *
4534          *  @param tree   The select tree.
4535          *  @param site   The type of the selected expression,
4536          *  @param env    The current environment.
4537          *  @param resultInfo The current result.
4538          */
4539         private Symbol selectSym(JCFieldAccess tree,
4540                                  Symbol location,
4541                                  Type site,
4542                                  Env<AttrContext> env,
4543                                  ResultInfo resultInfo) {
4544             DiagnosticPosition pos = tree.pos();
4545             Name name = tree.name;
4546             switch (site.getTag()) {
4547             case PACKAGE:
4548                 return rs.accessBase(
4549                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4550                     pos, location, site, name, true);
4551             case ARRAY:
4552             case CLASS:
4553                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4554                     return rs.resolveQualifiedMethod(
4555                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4556                 } else if (name == names._this || name == names._super) {
4557                     return rs.resolveSelf(pos, env, site.tsym, name);
4558                 } else if (name == names._class) {
4559                     // In this case, we have already made sure in
4560                     // visitSelect that qualifier expression is a type.
4561                     return syms.getClassField(site, types);
4562                 } else {
4563                     // We are seeing a plain identifier as selector.
4564                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4565                         sym = rs.accessBase(sym, pos, location, site, name, true);
4566                     return sym;
4567                 }
4568             case WILDCARD:
4569                 throw new AssertionError(tree);
4570             case TYPEVAR:
4571                 // Normally, site.getUpperBound() shouldn't be null.
4572                 // It should only happen during memberEnter/attribBase
4573                 // when determining the supertype which *must* be
4574                 // done before attributing the type variables.  In
4575                 // other words, we are seeing this illegal program:
4576                 // class B<T> extends A<T.foo> {}
4577                 Symbol sym = (site.getUpperBound() != null)
4578                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4579                     : null;
4580                 if (sym == null) {
4581                     log.error(pos, Errors.TypeVarCantBeDeref);
4582                     return syms.errSymbol;
4583                 } else {
4584                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4585                         rs.new AccessError(env, site, sym) :
4586                                 sym;
4587                     rs.accessBase(sym2, pos, location, site, name, true);
4588                     return sym;
4589                 }
4590             case ERROR:
4591                 // preserve identifier names through errors
4592                 return types.createErrorType(name, site.tsym, site).tsym;
4593             default:
4594                 // The qualifier expression is of a primitive type -- only
4595                 // .class is allowed for these.
4596                 if (name == names._class) {
4597                     // In this case, we have already made sure in Select that
4598                     // qualifier expression is a type.
4599                     return syms.getClassField(site, types);
4600                 } else {
4601                     log.error(pos, Errors.CantDeref(site));
4602                     return syms.errSymbol;
4603                 }
4604             }
4605         }
4606 
4607         /** Determine type of identifier or select expression and check that
4608          *  (1) the referenced symbol is not deprecated
4609          *  (2) the symbol's type is safe (@see checkSafe)
4610          *  (3) if symbol is a variable, check that its type and kind are
4611          *      compatible with the prototype and protokind.
4612          *  (4) if symbol is an instance field of a raw type,
4613          *      which is being assigned to, issue an unchecked warning if its
4614          *      type changes under erasure.
4615          *  (5) if symbol is an instance method of a raw type, issue an
4616          *      unchecked warning if its argument types change under erasure.
4617          *  If checks succeed:
4618          *    If symbol is a constant, return its constant type
4619          *    else if symbol is a method, return its result type
4620          *    otherwise return its type.
4621          *  Otherwise return errType.
4622          *
4623          *  @param tree       The syntax tree representing the identifier
4624          *  @param site       If this is a select, the type of the selected
4625          *                    expression, otherwise the type of the current class.
4626          *  @param sym        The symbol representing the identifier.
4627          *  @param env        The current environment.
4628          *  @param resultInfo    The expected result
4629          */
4630         Type checkId(JCTree tree,
4631                      Type site,
4632                      Symbol sym,
4633                      Env<AttrContext> env,
4634                      ResultInfo resultInfo) {
4635             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4636                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4637                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4638         }
4639 
4640         Type checkMethodIdInternal(JCTree tree,
4641                      Type site,
4642                      Symbol sym,
4643                      Env<AttrContext> env,
4644                      ResultInfo resultInfo) {
4645             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4646                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4647             } else {
4648                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4649             }
4650         }
4651 
4652         Type checkIdInternal(JCTree tree,
4653                      Type site,
4654                      Symbol sym,
4655                      Type pt,
4656                      Env<AttrContext> env,
4657                      ResultInfo resultInfo) {
4658             Type owntype; // The computed type of this identifier occurrence.
4659             switch (sym.kind) {
4660             case TYP:
4661                 // For types, the computed type equals the symbol's type,
4662                 // except for two situations:
4663                 owntype = sym.type;
4664                 if (owntype.hasTag(CLASS)) {
4665                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4666                     Type ownOuter = owntype.getEnclosingType();
4667 
4668                     // (a) If the symbol's type is parameterized, erase it
4669                     // because no type parameters were given.
4670                     // We recover generic outer type later in visitTypeApply.
4671                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4672                         owntype = types.erasure(owntype);
4673                     }
4674 
4675                     // (b) If the symbol's type is an inner class, then
4676                     // we have to interpret its outer type as a superclass
4677                     // of the site type. Example:
4678                     //
4679                     // class Tree<A> { class Visitor { ... } }
4680                     // class PointTree extends Tree<Point> { ... }
4681                     // ...PointTree.Visitor...
4682                     //
4683                     // Then the type of the last expression above is
4684                     // Tree<Point>.Visitor.
4685                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4686                         Type normOuter = site;
4687                         if (normOuter.hasTag(CLASS)) {
4688                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4689                         }
4690                         if (normOuter == null) // perhaps from an import
4691                             normOuter = types.erasure(ownOuter);
4692                         if (normOuter != ownOuter)
4693                             owntype = new ClassType(
4694                                 normOuter, List.nil(), owntype.tsym,
4695                                 owntype.getMetadata());
4696                     }
4697                 }
4698                 break;
4699             case VAR:
4700                 VarSymbol v = (VarSymbol)sym;
4701 
4702                 if (env.info.enclVar != null
4703                         && v.type.hasTag(NONE)) {
4704                     //self reference to implicitly typed variable declaration
4705                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4706                     return tree.type = v.type = types.createErrorType(v.type);
4707                 }
4708 
4709                 // Test (4): if symbol is an instance field of a raw type,
4710                 // which is being assigned to, issue an unchecked warning if
4711                 // its type changes under erasure.
4712                 if (KindSelector.ASG.subset(pkind()) &&
4713                     v.owner.kind == TYP &&
4714                     (v.flags() & STATIC) == 0 &&
4715                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4716                     Type s = types.asOuterSuper(site, v.owner);
4717                     if (s != null &&
4718                         s.isRaw() &&
4719                         !types.isSameType(v.type, v.erasure(types))) {
4720                         chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s));
4721                     }
4722                 }
4723                 // The computed type of a variable is the type of the
4724                 // variable symbol, taken as a member of the site type.
4725                 owntype = (sym.owner.kind == TYP &&
4726                            sym.name != names._this && sym.name != names._super)
4727                     ? types.memberType(site, sym)
4728                     : sym.type;
4729 
4730                 // If the variable is a constant, record constant value in
4731                 // computed type.
4732                 if (v.getConstValue() != null && isStaticReference(tree))
4733                     owntype = owntype.constType(v.getConstValue());
4734 
4735                 if (resultInfo.pkind == KindSelector.VAL) {
4736                     owntype = capture(owntype); // capture "names as expressions"
4737                 }
4738                 break;
4739             case MTH: {
4740                 owntype = checkMethod(site, sym,
4741                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4742                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4743                         resultInfo.pt.getTypeArguments());
4744                 chk.checkRestricted(tree.pos(), sym);
4745                 break;
4746             }
4747             case PCK: case ERR:
4748                 owntype = sym.type;
4749                 break;
4750             default:
4751                 throw new AssertionError("unexpected kind: " + sym.kind +
4752                                          " in tree " + tree);
4753             }
4754 
4755             // Emit a `deprecation' warning if symbol is deprecated.
4756             // (for constructors (but not for constructor references), the error
4757             // was given when the constructor was resolved)
4758 
4759             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4760                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4761                 chk.checkSunAPI(tree.pos(), sym);
4762                 chk.checkProfile(tree.pos(), sym);
4763                 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym);
4764             }
4765 
4766             if (pt.isErroneous()) {
4767                 owntype = types.createErrorType(owntype);
4768             }
4769 
4770             // If symbol is a variable, check that its type and
4771             // kind are compatible with the prototype and protokind.
4772             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4773         }
4774 
4775         /** Check that variable is initialized and evaluate the variable's
4776          *  initializer, if not yet done. Also check that variable is not
4777          *  referenced before it is defined.
4778          *  @param tree    The tree making up the variable reference.
4779          *  @param env     The current environment.
4780          *  @param v       The variable's symbol.
4781          */
4782         private void checkInit(JCTree tree,
4783                                Env<AttrContext> env,
4784                                VarSymbol v,
4785                                boolean onlyWarning) {
4786             // A forward reference is diagnosed if the declaration position
4787             // of the variable is greater than the current tree position
4788             // and the tree and variable definition occur in the same class
4789             // definition.  Note that writes don't count as references.
4790             // This check applies only to class and instance
4791             // variables.  Local variables follow different scope rules,
4792             // and are subject to definite assignment checking.
4793             Env<AttrContext> initEnv = enclosingInitEnv(env);
4794             if (initEnv != null &&
4795                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4796                 v.owner.kind == TYP &&
4797                 v.owner == env.info.scope.owner.enclClass() &&
4798                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4799                 (!env.tree.hasTag(ASSIGN) ||
4800                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4801                 if (!onlyWarning || isStaticEnumField(v)) {
4802                     Error errkey = (initEnv.info.enclVar == v) ?
4803                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4804                     log.error(tree.pos(), errkey);
4805                 } else if (useBeforeDeclarationWarning) {
4806                     Warning warnkey = (initEnv.info.enclVar == v) ?
4807                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4808                     log.warning(tree.pos(), warnkey);
4809                 }
4810             }
4811 
4812             v.getConstValue(); // ensure initializer is evaluated
4813 
4814             checkEnumInitializer(tree, env, v);
4815         }
4816 
4817         /**
4818          * Returns the enclosing init environment associated with this env (if any). An init env
4819          * can be either a field declaration env or a static/instance initializer env.
4820          */
4821         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4822             while (true) {
4823                 switch (env.tree.getTag()) {
4824                     case VARDEF:
4825                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4826                         if (vdecl.sym.owner.kind == TYP) {
4827                             //field
4828                             return env;
4829                         }
4830                         break;
4831                     case BLOCK:
4832                         if (env.next.tree.hasTag(CLASSDEF)) {
4833                             //instance/static initializer
4834                             return env;
4835                         }
4836                         break;
4837                     case METHODDEF:
4838                     case CLASSDEF:
4839                     case TOPLEVEL:
4840                         return null;
4841                 }
4842                 Assert.checkNonNull(env.next);
4843                 env = env.next;
4844             }
4845         }
4846 
4847         /**
4848          * Check for illegal references to static members of enum.  In
4849          * an enum type, constructors and initializers may not
4850          * reference its static members unless they are constant.
4851          *
4852          * @param tree    The tree making up the variable reference.
4853          * @param env     The current environment.
4854          * @param v       The variable's symbol.
4855          * @jls 8.9 Enum Types
4856          */
4857         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4858             // JLS:
4859             //
4860             // "It is a compile-time error to reference a static field
4861             // of an enum type that is not a compile-time constant
4862             // (15.28) from constructors, instance initializer blocks,
4863             // or instance variable initializer expressions of that
4864             // type. It is a compile-time error for the constructors,
4865             // instance initializer blocks, or instance variable
4866             // initializer expressions of an enum constant e to refer
4867             // to itself or to an enum constant of the same type that
4868             // is declared to the right of e."
4869             if (isStaticEnumField(v)) {
4870                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4871 
4872                 if (enclClass == null || enclClass.owner == null)
4873                     return;
4874 
4875                 // See if the enclosing class is the enum (or a
4876                 // subclass thereof) declaring v.  If not, this
4877                 // reference is OK.
4878                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4879                     return;
4880 
4881                 // If the reference isn't from an initializer, then
4882                 // the reference is OK.
4883                 if (!Resolve.isInitializer(env))
4884                     return;
4885 
4886                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4887             }
4888         }
4889 
4890         /** Is the given symbol a static, non-constant field of an Enum?
4891          *  Note: enum literals should not be regarded as such
4892          */
4893         private boolean isStaticEnumField(VarSymbol v) {
4894             return Flags.isEnum(v.owner) &&
4895                    Flags.isStatic(v) &&
4896                    !Flags.isConstant(v) &&
4897                    v.name != names._class;
4898         }
4899 
4900     /**
4901      * Check that method arguments conform to its instantiation.
4902      **/
4903     public Type checkMethod(Type site,
4904                             final Symbol sym,
4905                             ResultInfo resultInfo,
4906                             Env<AttrContext> env,
4907                             final List<JCExpression> argtrees,
4908                             List<Type> argtypes,
4909                             List<Type> typeargtypes) {
4910         // Test (5): if symbol is an instance method of a raw type, issue
4911         // an unchecked warning if its argument types change under erasure.
4912         if ((sym.flags() & STATIC) == 0 &&
4913             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4914             Type s = types.asOuterSuper(site, sym.owner);
4915             if (s != null && s.isRaw() &&
4916                 !types.isSameTypes(sym.type.getParameterTypes(),
4917                                    sym.erasure(types).getParameterTypes())) {
4918                 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s));
4919             }
4920         }
4921 
4922         if (env.info.defaultSuperCallSite != null) {
4923             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4924                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4925                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4926                 List<MethodSymbol> icand_sup =
4927                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4928                 if (icand_sup.nonEmpty() &&
4929                         icand_sup.head != sym &&
4930                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4931                     log.error(env.tree.pos(),
4932                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4933                     break;
4934                 }
4935             }
4936             env.info.defaultSuperCallSite = null;
4937         }
4938 
4939         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4940             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4941             if (app.meth.hasTag(SELECT) &&
4942                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4943                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4944             }
4945         }
4946 
4947         // Compute the identifier's instantiated type.
4948         // For methods, we need to compute the instance type by
4949         // Resolve.instantiate from the symbol's type as well as
4950         // any type arguments and value arguments.
4951         Warner noteWarner = new Warner();
4952         try {
4953             Type owntype = rs.checkMethod(
4954                     env,
4955                     site,
4956                     sym,
4957                     resultInfo,
4958                     argtypes,
4959                     typeargtypes,
4960                     noteWarner);
4961 
4962             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4963                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4964 
4965             argtypes = argtypes.map(checkDeferredMap);
4966 
4967             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4968                 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym),
4969                         sym.name,
4970                         rs.methodArguments(sym.type.getParameterTypes()),
4971                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4972                         kindName(sym.location()),
4973                         sym.location()));
4974                 if (resultInfo.pt != Infer.anyPoly ||
4975                         !owntype.hasTag(METHOD) ||
4976                         !owntype.isPartial()) {
4977                     //if this is not a partially inferred method type, erase return type. Otherwise,
4978                     //erasure is carried out in PartiallyInferredMethodType.check().
4979                     owntype = new MethodType(owntype.getParameterTypes(),
4980                             types.erasure(owntype.getReturnType()),
4981                             types.erasure(owntype.getThrownTypes()),
4982                             syms.methodClass);
4983                 }
4984             }
4985 
4986             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4987                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4988                  PolyKind.POLY : PolyKind.STANDALONE;
4989             TreeInfo.setPolyKind(env.tree, pkind);
4990 
4991             return (resultInfo.pt == Infer.anyPoly) ?
4992                     owntype :
4993                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4994                             resultInfo.checkContext.inferenceContext());
4995         } catch (Infer.InferenceException ex) {
4996             //invalid target type - propagate exception outwards or report error
4997             //depending on the current check context
4998             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4999             return types.createErrorType(site);
5000         } catch (Resolve.InapplicableMethodException ex) {
5001             final JCDiagnostic diag = ex.getDiagnostic();
5002             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5003                 @Override
5004                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5005                     return new Pair<>(sym, diag);
5006                 }
5007             };
5008             List<Type> argtypes2 = argtypes.map(
5009                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5010             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5011                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5012             log.report(errDiag);
5013             return types.createErrorType(site);
5014         }
5015     }
5016 
5017     public void visitLiteral(JCLiteral tree) {
5018         result = check(tree, litType(tree.typetag).constType(tree.value),
5019                 KindSelector.VAL, resultInfo);
5020     }
5021     //where
5022     /** Return the type of a literal with given type tag.
5023      */
5024     Type litType(TypeTag tag) {
5025         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5026     }
5027 
5028     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5029         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5030     }
5031 
5032     public void visitTypeArray(JCArrayTypeTree tree) {
5033         Type etype = attribType(tree.elemtype, env);
5034         Type type = new ArrayType(etype, syms.arrayClass);
5035         result = check(tree, type, KindSelector.TYP, resultInfo);
5036     }
5037 
5038     /** Visitor method for parameterized types.
5039      *  Bound checking is left until later, since types are attributed
5040      *  before supertype structure is completely known
5041      */
5042     public void visitTypeApply(JCTypeApply tree) {
5043         Type owntype = types.createErrorType(tree.type);
5044 
5045         // Attribute functor part of application and make sure it's a class.
5046         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5047 
5048         // Attribute type parameters
5049         List<Type> actuals = attribTypes(tree.arguments, env);
5050 
5051         if (clazztype.hasTag(CLASS)) {
5052             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5053             if (actuals.isEmpty()) //diamond
5054                 actuals = formals;
5055 
5056             if (actuals.length() == formals.length()) {
5057                 List<Type> a = actuals;
5058                 List<Type> f = formals;
5059                 while (a.nonEmpty()) {
5060                     a.head = a.head.withTypeVar(f.head);
5061                     a = a.tail;
5062                     f = f.tail;
5063                 }
5064                 // Compute the proper generic outer
5065                 Type clazzOuter = clazztype.getEnclosingType();
5066                 if (clazzOuter.hasTag(CLASS)) {
5067                     Type site;
5068                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5069                     if (clazz.hasTag(IDENT)) {
5070                         site = env.enclClass.sym.type;
5071                     } else if (clazz.hasTag(SELECT)) {
5072                         site = ((JCFieldAccess) clazz).selected.type;
5073                     } else throw new AssertionError(""+tree);
5074                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5075                         if (site.hasTag(CLASS))
5076                             site = types.asOuterSuper(site, clazzOuter.tsym);
5077                         if (site == null)
5078                             site = types.erasure(clazzOuter);
5079                         clazzOuter = site;
5080                     }
5081                 }
5082                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5083                                         clazztype.getMetadata());
5084             } else {
5085                 if (formals.length() != 0) {
5086                     log.error(tree.pos(),
5087                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5088                 } else {
5089                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5090                 }
5091                 owntype = types.createErrorType(tree.type);
5092             }
5093         } else if (clazztype.hasTag(ERROR)) {
5094             ErrorType parameterizedErroneous =
5095                     new ErrorType(clazztype.getOriginalType(),
5096                                   clazztype.tsym,
5097                                   clazztype.getMetadata());
5098 
5099             parameterizedErroneous.typarams_field = actuals;
5100             owntype = parameterizedErroneous;
5101         }
5102         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5103     }
5104 
5105     public void visitTypeUnion(JCTypeUnion tree) {
5106         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5107         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5108         for (JCExpression typeTree : tree.alternatives) {
5109             Type ctype = attribType(typeTree, env);
5110             ctype = chk.checkType(typeTree.pos(),
5111                           chk.checkClassType(typeTree.pos(), ctype),
5112                           syms.throwableType);
5113             if (!ctype.isErroneous()) {
5114                 //check that alternatives of a union type are pairwise
5115                 //unrelated w.r.t. subtyping
5116                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5117                     for (Type t : multicatchTypes) {
5118                         boolean sub = types.isSubtype(ctype, t);
5119                         boolean sup = types.isSubtype(t, ctype);
5120                         if (sub || sup) {
5121                             //assume 'a' <: 'b'
5122                             Type a = sub ? ctype : t;
5123                             Type b = sub ? t : ctype;
5124                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5125                         }
5126                     }
5127                 }
5128                 multicatchTypes.append(ctype);
5129                 if (all_multicatchTypes != null)
5130                     all_multicatchTypes.append(ctype);
5131             } else {
5132                 if (all_multicatchTypes == null) {
5133                     all_multicatchTypes = new ListBuffer<>();
5134                     all_multicatchTypes.appendList(multicatchTypes);
5135                 }
5136                 all_multicatchTypes.append(ctype);
5137             }
5138         }
5139         Type t = check(tree, types.lub(multicatchTypes.toList()),
5140                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5141         if (t.hasTag(CLASS)) {
5142             List<Type> alternatives =
5143                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5144             t = new UnionClassType((ClassType) t, alternatives);
5145         }
5146         tree.type = result = t;
5147     }
5148 
5149     public void visitTypeIntersection(JCTypeIntersection tree) {
5150         attribTypes(tree.bounds, env);
5151         tree.type = result = checkIntersection(tree, tree.bounds);
5152     }
5153 
5154     public void visitTypeParameter(JCTypeParameter tree) {
5155         TypeVar typeVar = (TypeVar) tree.type;
5156 
5157         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5158             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5159         }
5160 
5161         if (!typeVar.getUpperBound().isErroneous()) {
5162             //fixup type-parameter bound computed in 'attribTypeVariables'
5163             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5164         }
5165     }
5166 
5167     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5168         Set<Symbol> boundSet = new HashSet<>();
5169         if (bounds.nonEmpty()) {
5170             // accept class or interface or typevar as first bound.
5171             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5172             boundSet.add(types.erasure(bounds.head.type).tsym);
5173             if (bounds.head.type.isErroneous()) {
5174                 return bounds.head.type;
5175             }
5176             else if (bounds.head.type.hasTag(TYPEVAR)) {
5177                 // if first bound was a typevar, do not accept further bounds.
5178                 if (bounds.tail.nonEmpty()) {
5179                     log.error(bounds.tail.head.pos(),
5180                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5181                     return bounds.head.type;
5182                 }
5183             } else {
5184                 // if first bound was a class or interface, accept only interfaces
5185                 // as further bounds.
5186                 for (JCExpression bound : bounds.tail) {
5187                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5188                     if (bound.type.isErroneous()) {
5189                         bounds = List.of(bound);
5190                     }
5191                     else if (bound.type.hasTag(CLASS)) {
5192                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5193                     }
5194                 }
5195             }
5196         }
5197 
5198         if (bounds.length() == 0) {
5199             return syms.objectType;
5200         } else if (bounds.length() == 1) {
5201             return bounds.head.type;
5202         } else {
5203             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5204             // ... the variable's bound is a class type flagged COMPOUND
5205             // (see comment for TypeVar.bound).
5206             // In this case, generate a class tree that represents the
5207             // bound class, ...
5208             JCExpression extending;
5209             List<JCExpression> implementing;
5210             if (!bounds.head.type.isInterface()) {
5211                 extending = bounds.head;
5212                 implementing = bounds.tail;
5213             } else {
5214                 extending = null;
5215                 implementing = bounds;
5216             }
5217             JCClassDecl cd = make.at(tree).ClassDef(
5218                 make.Modifiers(PUBLIC | ABSTRACT),
5219                 names.empty, List.nil(),
5220                 extending, implementing, List.nil());
5221 
5222             ClassSymbol c = (ClassSymbol)owntype.tsym;
5223             Assert.check((c.flags() & COMPOUND) != 0);
5224             cd.sym = c;
5225             c.sourcefile = env.toplevel.sourcefile;
5226 
5227             // ... and attribute the bound class
5228             c.flags_field |= UNATTRIBUTED;
5229             Env<AttrContext> cenv = enter.classEnv(cd, env);
5230             typeEnvs.put(c, cenv);
5231             attribClass(c);
5232             return owntype;
5233         }
5234     }
5235 
5236     public void visitWildcard(JCWildcard tree) {
5237         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5238         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5239             ? syms.objectType
5240             : attribType(tree.inner, env);
5241         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5242                                               tree.kind.kind,
5243                                               syms.boundClass),
5244                 KindSelector.TYP, resultInfo);
5245     }
5246 
5247     public void visitAnnotation(JCAnnotation tree) {
5248         Assert.error("should be handled in annotate");
5249     }
5250 
5251     @Override
5252     public void visitModifiers(JCModifiers tree) {
5253         //error recovery only:
5254         Assert.check(resultInfo.pkind == KindSelector.ERR);
5255 
5256         attribAnnotationTypes(tree.annotations, env);
5257     }
5258 
5259     public void visitAnnotatedType(JCAnnotatedType tree) {
5260         attribAnnotationTypes(tree.annotations, env);
5261         Type underlyingType = attribType(tree.underlyingType, env);
5262         Type annotatedType = underlyingType.preannotatedType();
5263 
5264         if (!env.info.isAnonymousNewClass)
5265             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5266         result = tree.type = annotatedType;
5267     }
5268 
5269     public void visitErroneous(JCErroneous tree) {
5270         if (tree.errs != null) {
5271             WriteableScope newScope = env.info.scope;
5272 
5273             if (env.tree instanceof JCClassDecl) {
5274                 Symbol fakeOwner =
5275                     new MethodSymbol(BLOCK, names.empty, null,
5276                         env.info.scope.owner);
5277                 newScope = newScope.dupUnshared(fakeOwner);
5278             }
5279 
5280             Env<AttrContext> errEnv =
5281                     env.dup(env.tree,
5282                             env.info.dup(newScope));
5283             errEnv.info.returnResult = unknownExprInfo;
5284             for (JCTree err : tree.errs)
5285                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5286         }
5287         result = tree.type = syms.errType;
5288     }
5289 
5290     /** Default visitor method for all other trees.
5291      */
5292     public void visitTree(JCTree tree) {
5293         throw new AssertionError();
5294     }
5295 
5296     /**
5297      * Attribute an env for either a top level tree or class or module declaration.
5298      */
5299     public void attrib(Env<AttrContext> env) {
5300         switch (env.tree.getTag()) {
5301             case MODULEDEF:
5302                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5303                 break;
5304             case PACKAGEDEF:
5305                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5306                 break;
5307             default:
5308                 attribClass(env.tree.pos(), env.enclClass.sym);
5309         }
5310 
5311         annotate.flush();
5312     }
5313 
5314     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5315         try {
5316             annotate.flush();
5317             attribPackage(p);
5318         } catch (CompletionFailure ex) {
5319             chk.completionError(pos, ex);
5320         }
5321     }
5322 
5323     void attribPackage(PackageSymbol p) {
5324         attribWithLint(p,
5325                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5326     }
5327 
5328     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5329         try {
5330             annotate.flush();
5331             attribModule(m);
5332         } catch (CompletionFailure ex) {
5333             chk.completionError(pos, ex);
5334         }
5335     }
5336 
5337     void attribModule(ModuleSymbol m) {
5338         attribWithLint(m, env -> attribStat(env.tree, env));
5339     }
5340 
5341     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5342         Env<AttrContext> env = typeEnvs.get(sym);
5343 
5344         Env<AttrContext> lintEnv = env;
5345         while (lintEnv.info.lint == null)
5346             lintEnv = lintEnv.next;
5347 
5348         Lint lint = lintEnv.info.lint.augment(sym);
5349 
5350         Lint prevLint = chk.setLint(lint);
5351         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5352 
5353         try {
5354             deferredLintHandler.flush(env.tree, lint);
5355             attrib.accept(env);
5356         } finally {
5357             log.useSource(prev);
5358             chk.setLint(prevLint);
5359         }
5360     }
5361 
5362     /** Main method: attribute class definition associated with given class symbol.
5363      *  reporting completion failures at the given position.
5364      *  @param pos The source position at which completion errors are to be
5365      *             reported.
5366      *  @param c   The class symbol whose definition will be attributed.
5367      */
5368     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5369         try {
5370             annotate.flush();
5371             attribClass(c);
5372         } catch (CompletionFailure ex) {
5373             chk.completionError(pos, ex);
5374         }
5375     }
5376 
5377     /** Attribute class definition associated with given class symbol.
5378      *  @param c   The class symbol whose definition will be attributed.
5379      */
5380     void attribClass(ClassSymbol c) throws CompletionFailure {
5381         if (c.type.hasTag(ERROR)) return;
5382 
5383         // Check for cycles in the inheritance graph, which can arise from
5384         // ill-formed class files.
5385         chk.checkNonCyclic(null, c.type);
5386 
5387         Type st = types.supertype(c.type);
5388         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5389             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5390             // First, attribute superclass.
5391             if (st.hasTag(CLASS))
5392                 attribClass((ClassSymbol)st.tsym);
5393 
5394             // Next attribute owner, if it is a class.
5395             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5396                 attribClass((ClassSymbol)c.owner);
5397 
5398             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5399         }
5400 
5401         // The previous operations might have attributed the current class
5402         // if there was a cycle. So we test first whether the class is still
5403         // UNATTRIBUTED.
5404         if ((c.flags_field & UNATTRIBUTED) != 0) {
5405             c.flags_field &= ~UNATTRIBUTED;
5406 
5407             // Get environment current at the point of class definition.
5408             Env<AttrContext> env = typeEnvs.get(c);
5409 
5410             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5411             // because the annotations were not available at the time the env was created. Therefore,
5412             // we look up the environment chain for the first enclosing environment for which the
5413             // lint value is set. Typically, this is the parent env, but might be further if there
5414             // are any envs created as a result of TypeParameter nodes.
5415             Env<AttrContext> lintEnv = env;
5416             while (lintEnv.info.lint == null)
5417                 lintEnv = lintEnv.next;
5418 
5419             // Having found the enclosing lint value, we can initialize the lint value for this class
5420             env.info.lint = lintEnv.info.lint.augment(c);
5421 
5422             Lint prevLint = chk.setLint(env.info.lint);
5423             JavaFileObject prev = log.useSource(c.sourcefile);
5424             ResultInfo prevReturnRes = env.info.returnResult;
5425 
5426             try {
5427                 if (c.isSealed() &&
5428                         !c.isEnum() &&
5429                         !c.isPermittedExplicit &&
5430                         c.getPermittedSubclasses().isEmpty()) {
5431                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5432                 }
5433 
5434                 if (c.isSealed()) {
5435                     Set<Symbol> permittedTypes = new HashSet<>();
5436                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5437                     for (Type subType : c.getPermittedSubclasses()) {
5438                         if (subType.isErroneous()) {
5439                             // the type already caused errors, don't produce more potentially misleading errors
5440                             continue;
5441                         }
5442                         boolean isTypeVar = false;
5443                         if (subType.getTag() == TYPEVAR) {
5444                             isTypeVar = true; //error recovery
5445                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5446                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5447                         }
5448                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5449                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5450                         }
5451                         if (permittedTypes.contains(subType.tsym)) {
5452                             DiagnosticPosition pos =
5453                                     env.enclClass.permitting.stream()
5454                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5455                                             .limit(2).collect(List.collector()).get(1);
5456                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5457                         } else {
5458                             permittedTypes.add(subType.tsym);
5459                         }
5460                         if (sealedInUnnamed) {
5461                             if (subType.tsym.packge() != c.packge()) {
5462                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5463                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5464                                 );
5465                             }
5466                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5467                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5468                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5469                             );
5470                         }
5471                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5472                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5473                                     Errors.InvalidPermitsClause(
5474                                             subType.tsym == c.type.tsym ?
5475                                                     Fragments.MustNotBeSameClass :
5476                                                     Fragments.MustNotBeSupertype(subType)
5477                                     )
5478                             );
5479                         } else if (!isTypeVar) {
5480                             boolean thisIsASuper = types.directSupertypes(subType)
5481                                                         .stream()
5482                                                         .anyMatch(d -> d.tsym == c);
5483                             if (!thisIsASuper) {
5484                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5485                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5486                             }
5487                         }
5488                     }
5489                 }
5490 
5491                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5492                                                       .stream()
5493                                                       .filter(s -> s.tsym.isSealed())
5494                                                       .map(s -> (ClassSymbol) s.tsym)
5495                                                       .collect(List.collector());
5496 
5497                 if (sealedSupers.isEmpty()) {
5498                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5499                         boolean hasErrorSuper = false;
5500 
5501                         hasErrorSuper |= types.directSupertypes(c.type)
5502                                               .stream()
5503                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5504 
5505                         ClassType ct = (ClassType) c.type;
5506 
5507                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5508 
5509                         if (!hasErrorSuper) {
5510                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5511                         }
5512                     }
5513                 } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5514                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5515                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5516                     }
5517 
5518                     if (!c.type.isCompound()) {
5519                         for (ClassSymbol supertypeSym : sealedSupers) {
5520                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5521                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5522                             }
5523                         }
5524                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5525                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5526                                     c.isInterface() ?
5527                                             Errors.NonSealedOrSealedExpected :
5528                                             Errors.NonSealedSealedOrFinalExpected);
5529                         }
5530                     }
5531                 }
5532 
5533                 deferredLintHandler.flush(env.tree, env.info.lint);
5534                 env.info.returnResult = null;
5535                 // java.lang.Enum may not be subclassed by a non-enum
5536                 if (st.tsym == syms.enumSym &&
5537                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5538                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5539 
5540                 // Enums may not be extended by source-level classes
5541                 if (st.tsym != null &&
5542                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5543                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5544                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5545                 }
5546 
5547                 if (rs.isSerializable(c.type)) {
5548                     env.info.isSerializable = true;
5549                 }
5550 
5551                 if (c.isValueClass()) {
5552                     Assert.check(env.tree.hasTag(CLASSDEF));
5553                     chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c);
5554                 }
5555 
5556                 attribClassBody(env, c);
5557 
5558                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5559                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5560                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5561                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5562 
5563                 if (c.isImplicit()) {
5564                     chk.checkHasMain(env.tree.pos(), c);
5565                 }
5566             } finally {
5567                 env.info.returnResult = prevReturnRes;
5568                 log.useSource(prev);
5569                 chk.setLint(prevLint);
5570             }
5571 
5572         }
5573     }
5574 
5575     public void visitImport(JCImport tree) {
5576         // nothing to do
5577     }
5578 
5579     public void visitModuleDef(JCModuleDecl tree) {
5580         tree.sym.completeUsesProvides();
5581         ModuleSymbol msym = tree.sym;
5582         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5583         Lint prevLint = chk.setLint(lint);
5584         chk.checkModuleName(tree);
5585         chk.checkDeprecatedAnnotation(tree, msym);
5586 
5587         try {
5588             deferredLintHandler.flush(tree, lint);
5589         } finally {
5590             chk.setLint(prevLint);
5591         }
5592     }
5593 
5594     /** Finish the attribution of a class. */
5595     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5596         JCClassDecl tree = (JCClassDecl)env.tree;
5597         Assert.check(c == tree.sym);
5598 
5599         // Validate type parameters, supertype and interfaces.
5600         attribStats(tree.typarams, env);
5601         if (!c.isAnonymous()) {
5602             //already checked if anonymous
5603             chk.validate(tree.typarams, env);
5604             chk.validate(tree.extending, env);
5605             chk.validate(tree.implementing, env);
5606         }
5607 
5608         c.markAbstractIfNeeded(types);
5609 
5610         // If this is a non-abstract class, check that it has no abstract
5611         // methods or unimplemented methods of an implemented interface.
5612         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5613             chk.checkAllDefined(tree.pos(), c);
5614         }
5615 
5616         if ((c.flags() & ANNOTATION) != 0) {
5617             if (tree.implementing.nonEmpty())
5618                 log.error(tree.implementing.head.pos(),
5619                           Errors.CantExtendIntfAnnotation);
5620             if (tree.typarams.nonEmpty()) {
5621                 log.error(tree.typarams.head.pos(),
5622                           Errors.IntfAnnotationCantHaveTypeParams(c));
5623             }
5624 
5625             // If this annotation type has a @Repeatable, validate
5626             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5627             // If this annotation type has a @Repeatable, validate
5628             if (repeatable != null) {
5629                 // get diagnostic position for error reporting
5630                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5631                 Assert.checkNonNull(cbPos);
5632 
5633                 chk.validateRepeatable(c, repeatable, cbPos);
5634             }
5635         } else {
5636             // Check that all extended classes and interfaces
5637             // are compatible (i.e. no two define methods with same arguments
5638             // yet different return types).  (JLS 8.4.8.3)
5639             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5640             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5641             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5642         }
5643 
5644         // Check that class does not import the same parameterized interface
5645         // with two different argument lists.
5646         chk.checkClassBounds(tree.pos(), c.type);
5647 
5648         tree.type = c.type;
5649 
5650         for (List<JCTypeParameter> l = tree.typarams;
5651              l.nonEmpty(); l = l.tail) {
5652              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5653         }
5654 
5655         // Check that a generic class doesn't extend Throwable
5656         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5657             log.error(tree.extending.pos(), Errors.GenericThrowable);
5658 
5659         // Check that all methods which implement some
5660         // method conform to the method they implement.
5661         chk.checkImplementations(tree);
5662 
5663         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5664         checkAutoCloseable(tree.pos(), env, c.type);
5665 
5666         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5667             // Attribute declaration
5668             attribStat(l.head, env);
5669             // Check that declarations in inner classes are not static (JLS 8.1.2)
5670             // Make an exception for static constants.
5671             if (!allowRecords &&
5672                     c.owner.kind != PCK &&
5673                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5674                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5675                 VarSymbol sym = null;
5676                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5677                 if (sym == null ||
5678                         sym.kind != VAR ||
5679                         sym.getConstValue() == null)
5680                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5681             }
5682         }
5683 
5684         // Check for proper placement of super()/this() calls.
5685         chk.checkSuperInitCalls(tree);
5686 
5687         // Check for cycles among non-initial constructors.
5688         chk.checkCyclicConstructors(tree);
5689 
5690         // Check for cycles among annotation elements.
5691         chk.checkNonCyclicElements(tree);
5692 
5693         // Check for proper use of serialVersionUID and other
5694         // serialization-related fields and methods
5695         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5696                 && rs.isSerializable(c.type)
5697                 && !c.isAnonymous()) {
5698             chk.checkSerialStructure(env, tree, c);
5699         }
5700         // Correctly organize the positions of the type annotations
5701         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5702 
5703         // Check type annotations applicability rules
5704         validateTypeAnnotations(tree, false);
5705     }
5706         // where
5707         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5708         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5709             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5710                 if (types.isSameType(al.head.annotationType.type, t))
5711                     return al.head.pos();
5712             }
5713 
5714             return null;
5715         }
5716 
5717     private Type capture(Type type) {
5718         return types.capture(type);
5719     }
5720 
5721     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5722         if (type.isErroneous()) {
5723             tree.vartype = make.at(Position.NOPOS).Erroneous();
5724         } else {
5725             tree.vartype = make.at(Position.NOPOS).Type(type);
5726         }
5727     }
5728 
5729     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5730         tree.accept(new TypeAnnotationsValidator(sigOnly));
5731     }
5732     //where
5733     private final class TypeAnnotationsValidator extends TreeScanner {
5734 
5735         private final boolean sigOnly;
5736         public TypeAnnotationsValidator(boolean sigOnly) {
5737             this.sigOnly = sigOnly;
5738         }
5739 
5740         public void visitAnnotation(JCAnnotation tree) {
5741             chk.validateTypeAnnotation(tree, null, false);
5742             super.visitAnnotation(tree);
5743         }
5744         public void visitAnnotatedType(JCAnnotatedType tree) {
5745             if (!tree.underlyingType.type.isErroneous()) {
5746                 super.visitAnnotatedType(tree);
5747             }
5748         }
5749         public void visitTypeParameter(JCTypeParameter tree) {
5750             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5751             scan(tree.bounds);
5752             // Don't call super.
5753             // This is needed because above we call validateTypeAnnotation with
5754             // false, which would forbid annotations on type parameters.
5755             // super.visitTypeParameter(tree);
5756         }
5757         public void visitMethodDef(JCMethodDecl tree) {
5758             if (tree.recvparam != null &&
5759                     !tree.recvparam.vartype.type.isErroneous()) {
5760                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5761             }
5762             if (tree.restype != null && tree.restype.type != null) {
5763                 validateAnnotatedType(tree.restype, tree.restype.type);
5764             }
5765             if (sigOnly) {
5766                 scan(tree.mods);
5767                 scan(tree.restype);
5768                 scan(tree.typarams);
5769                 scan(tree.recvparam);
5770                 scan(tree.params);
5771                 scan(tree.thrown);
5772             } else {
5773                 scan(tree.defaultValue);
5774                 scan(tree.body);
5775             }
5776         }
5777         public void visitVarDef(final JCVariableDecl tree) {
5778             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5779             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5780                 validateAnnotatedType(tree.vartype, tree.sym.type);
5781             scan(tree.mods);
5782             scan(tree.vartype);
5783             if (!sigOnly) {
5784                 scan(tree.init);
5785             }
5786         }
5787         public void visitTypeCast(JCTypeCast tree) {
5788             if (tree.clazz != null && tree.clazz.type != null)
5789                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5790             super.visitTypeCast(tree);
5791         }
5792         public void visitTypeTest(JCInstanceOf tree) {
5793             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5794                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5795             super.visitTypeTest(tree);
5796         }
5797         public void visitNewClass(JCNewClass tree) {
5798             if (tree.clazz != null && tree.clazz.type != null) {
5799                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5800                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5801                             tree.clazz.type.tsym);
5802                 }
5803                 if (tree.def != null) {
5804                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5805                 }
5806 
5807                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5808             }
5809             super.visitNewClass(tree);
5810         }
5811         public void visitNewArray(JCNewArray tree) {
5812             if (tree.elemtype != null && tree.elemtype.type != null) {
5813                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5814                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5815                             tree.elemtype.type.tsym);
5816                 }
5817                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5818             }
5819             super.visitNewArray(tree);
5820         }
5821         public void visitClassDef(JCClassDecl tree) {
5822             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5823             if (sigOnly) {
5824                 scan(tree.mods);
5825                 scan(tree.typarams);
5826                 scan(tree.extending);
5827                 scan(tree.implementing);
5828             }
5829             for (JCTree member : tree.defs) {
5830                 if (member.hasTag(Tag.CLASSDEF)) {
5831                     continue;
5832                 }
5833                 scan(member);
5834             }
5835         }
5836         public void visitBlock(JCBlock tree) {
5837             if (!sigOnly) {
5838                 scan(tree.stats);
5839             }
5840         }
5841 
5842         /* I would want to model this after
5843          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5844          * and override visitSelect and visitTypeApply.
5845          * However, we only set the annotated type in the top-level type
5846          * of the symbol.
5847          * Therefore, we need to override each individual location where a type
5848          * can occur.
5849          */
5850         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5851             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5852 
5853             if (type.isPrimitiveOrVoid()) {
5854                 return;
5855             }
5856 
5857             JCTree enclTr = errtree;
5858             Type enclTy = type;
5859 
5860             boolean repeat = true;
5861             while (repeat) {
5862                 if (enclTr.hasTag(TYPEAPPLY)) {
5863                     List<Type> tyargs = enclTy.getTypeArguments();
5864                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5865                     if (trargs.length() > 0) {
5866                         // Nothing to do for diamonds
5867                         if (tyargs.length() == trargs.length()) {
5868                             for (int i = 0; i < tyargs.length(); ++i) {
5869                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5870                             }
5871                         }
5872                         // If the lengths don't match, it's either a diamond
5873                         // or some nested type that redundantly provides
5874                         // type arguments in the tree.
5875                     }
5876 
5877                     // Look at the clazz part of a generic type
5878                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5879                 }
5880 
5881                 if (enclTr.hasTag(SELECT)) {
5882                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5883                     if (enclTy != null &&
5884                             !enclTy.hasTag(NONE)) {
5885                         enclTy = enclTy.getEnclosingType();
5886                     }
5887                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5888                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5889                     if (enclTy == null || enclTy.hasTag(NONE)) {
5890                         ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
5891                         for (JCAnnotation an : at.getAnnotations()) {
5892                             if (chk.isTypeAnnotation(an, false)) {
5893                                 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
5894                             }
5895                         }
5896                         List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
5897                         if (!onlyTypeAnnotations.isEmpty()) {
5898                             Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
5899                                     Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
5900                                     Fragments.TypeAnnotation(onlyTypeAnnotations);
5901                             JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
5902                                     type.stripMetadata().annotatedType(onlyTypeAnnotations));
5903                             log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
5904                                     type.tsym.owner, annotatedType));
5905                         }
5906                         repeat = false;
5907                     }
5908                     enclTr = at.underlyingType;
5909                     // enclTy doesn't need to be changed
5910                 } else if (enclTr.hasTag(IDENT)) {
5911                     repeat = false;
5912                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5913                     JCWildcard wc = (JCWildcard) enclTr;
5914                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5915                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5916                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5917                     } else {
5918                         // Nothing to do for UNBOUND
5919                     }
5920                     repeat = false;
5921                 } else if (enclTr.hasTag(TYPEARRAY)) {
5922                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5923                     validateAnnotatedType(art.getType(), art.elemtype.type);
5924                     repeat = false;
5925                 } else if (enclTr.hasTag(TYPEUNION)) {
5926                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5927                     for (JCTree t : ut.getTypeAlternatives()) {
5928                         validateAnnotatedType(t, t.type);
5929                     }
5930                     repeat = false;
5931                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5932                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5933                     for (JCTree t : it.getBounds()) {
5934                         validateAnnotatedType(t, t.type);
5935                     }
5936                     repeat = false;
5937                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5938                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5939                     repeat = false;
5940                 } else {
5941                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5942                             " within: "+ errtree + " with kind: " + errtree.getKind());
5943                 }
5944             }
5945         }
5946 
5947         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5948                 Symbol sym) {
5949             // Ensure that no declaration annotations are present.
5950             // Note that a tree type might be an AnnotatedType with
5951             // empty annotations, if only declaration annotations were given.
5952             // This method will raise an error for such a type.
5953             for (JCAnnotation ai : annotations) {
5954                 if (!ai.type.isErroneous() &&
5955                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5956                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5957                 }
5958             }
5959         }
5960     }
5961 
5962     // <editor-fold desc="post-attribution visitor">
5963 
5964     /**
5965      * Handle missing types/symbols in an AST. This routine is useful when
5966      * the compiler has encountered some errors (which might have ended up
5967      * terminating attribution abruptly); if the compiler is used in fail-over
5968      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5969      * prevents NPE to be propagated during subsequent compilation steps.
5970      */
5971     public void postAttr(JCTree tree) {
5972         new PostAttrAnalyzer().scan(tree);
5973     }
5974 
5975     class PostAttrAnalyzer extends TreeScanner {
5976 
5977         private void initTypeIfNeeded(JCTree that) {
5978             if (that.type == null) {
5979                 if (that.hasTag(METHODDEF)) {
5980                     that.type = dummyMethodType((JCMethodDecl)that);
5981                 } else {
5982                     that.type = syms.unknownType;
5983                 }
5984             }
5985         }
5986 
5987         /* Construct a dummy method type. If we have a method declaration,
5988          * and the declared return type is void, then use that return type
5989          * instead of UNKNOWN to avoid spurious error messages in lambda
5990          * bodies (see:JDK-8041704).
5991          */
5992         private Type dummyMethodType(JCMethodDecl md) {
5993             Type restype = syms.unknownType;
5994             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5995                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5996                 if (prim.typetag == VOID)
5997                     restype = syms.voidType;
5998             }
5999             return new MethodType(List.nil(), restype,
6000                                   List.nil(), syms.methodClass);
6001         }
6002         private Type dummyMethodType() {
6003             return dummyMethodType(null);
6004         }
6005 
6006         @Override
6007         public void scan(JCTree tree) {
6008             if (tree == null) return;
6009             if (tree instanceof JCExpression) {
6010                 initTypeIfNeeded(tree);
6011             }
6012             super.scan(tree);
6013         }
6014 
6015         @Override
6016         public void visitIdent(JCIdent that) {
6017             if (that.sym == null) {
6018                 that.sym = syms.unknownSymbol;
6019             }
6020         }
6021 
6022         @Override
6023         public void visitSelect(JCFieldAccess that) {
6024             if (that.sym == null) {
6025                 that.sym = syms.unknownSymbol;
6026             }
6027             super.visitSelect(that);
6028         }
6029 
6030         @Override
6031         public void visitClassDef(JCClassDecl that) {
6032             initTypeIfNeeded(that);
6033             if (that.sym == null) {
6034                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6035             }
6036             super.visitClassDef(that);
6037         }
6038 
6039         @Override
6040         public void visitMethodDef(JCMethodDecl that) {
6041             initTypeIfNeeded(that);
6042             if (that.sym == null) {
6043                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6044             }
6045             super.visitMethodDef(that);
6046         }
6047 
6048         @Override
6049         public void visitVarDef(JCVariableDecl that) {
6050             initTypeIfNeeded(that);
6051             if (that.sym == null) {
6052                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6053                 that.sym.adr = 0;
6054             }
6055             if (that.vartype == null) {
6056                 that.vartype = make.at(Position.NOPOS).Erroneous();
6057             }
6058             super.visitVarDef(that);
6059         }
6060 
6061         @Override
6062         public void visitBindingPattern(JCBindingPattern that) {
6063             initTypeIfNeeded(that);
6064             initTypeIfNeeded(that.var);
6065             if (that.var.sym == null) {
6066                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6067                 that.var.sym.adr = 0;
6068             }
6069             super.visitBindingPattern(that);
6070         }
6071 
6072         @Override
6073         public void visitRecordPattern(JCRecordPattern that) {
6074             initTypeIfNeeded(that);
6075             if (that.record == null) {
6076                 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6077                                               that.type, syms.noSymbol);
6078             }
6079             if (that.fullComponentTypes == null) {
6080                 that.fullComponentTypes = List.nil();
6081             }
6082             super.visitRecordPattern(that);
6083         }
6084 
6085         @Override
6086         public void visitNewClass(JCNewClass that) {
6087             if (that.constructor == null) {
6088                 that.constructor = new MethodSymbol(0, names.init,
6089                         dummyMethodType(), syms.noSymbol);
6090             }
6091             if (that.constructorType == null) {
6092                 that.constructorType = syms.unknownType;
6093             }
6094             super.visitNewClass(that);
6095         }
6096 
6097         @Override
6098         public void visitAssignop(JCAssignOp that) {
6099             if (that.operator == null) {
6100                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6101                         -1, syms.noSymbol);
6102             }
6103             super.visitAssignop(that);
6104         }
6105 
6106         @Override
6107         public void visitBinary(JCBinary that) {
6108             if (that.operator == null) {
6109                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6110                         -1, syms.noSymbol);
6111             }
6112             super.visitBinary(that);
6113         }
6114 
6115         @Override
6116         public void visitUnary(JCUnary that) {
6117             if (that.operator == null) {
6118                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6119                         -1, syms.noSymbol);
6120             }
6121             super.visitUnary(that);
6122         }
6123 
6124         @Override
6125         public void visitReference(JCMemberReference that) {
6126             super.visitReference(that);
6127             if (that.sym == null) {
6128                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6129                         syms.noSymbol);
6130             }
6131         }
6132     }
6133     // </editor-fold>
6134 
6135     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6136         new TreeScanner() {
6137             Symbol packge = pkg;
6138             @Override
6139             public void visitIdent(JCIdent that) {
6140                 that.sym = packge;
6141             }
6142 
6143             @Override
6144             public void visitSelect(JCFieldAccess that) {
6145                 that.sym = packge;
6146                 packge = packge.owner;
6147                 super.visitSelect(that);
6148             }
6149         }.scan(pid);
6150     }
6151 
6152 }