1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package com.sun.tools.javac.comp;
27
28 import java.util.*;
29 import java.util.function.BiConsumer;
30 import java.util.function.Consumer;
31 import java.util.stream.Stream;
32
33 import javax.lang.model.element.ElementKind;
34 import javax.tools.JavaFileObject;
35
36 import com.sun.source.tree.CaseTree;
37 import com.sun.source.tree.IdentifierTree;
38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
39 import com.sun.source.tree.MemberSelectTree;
40 import com.sun.source.tree.TreeVisitor;
41 import com.sun.source.util.SimpleTreeVisitor;
42 import com.sun.tools.javac.code.*;
43 import com.sun.tools.javac.code.Lint.LintCategory;
44 import com.sun.tools.javac.code.LintMapper;
45 import com.sun.tools.javac.code.Scope.WriteableScope;
46 import com.sun.tools.javac.code.Source.Feature;
47 import com.sun.tools.javac.code.Symbol.*;
48 import com.sun.tools.javac.code.Type.*;
49 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
50 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
51 import com.sun.tools.javac.comp.Check.CheckContext;
52 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
53 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
54 import com.sun.tools.javac.jvm.*;
55
56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
59
60 import com.sun.tools.javac.resources.CompilerProperties.Errors;
61 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
62 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
63 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
64 import com.sun.tools.javac.tree.*;
65 import com.sun.tools.javac.tree.JCTree.*;
66 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
67 import com.sun.tools.javac.util.*;
68 import com.sun.tools.javac.util.DefinedBy.Api;
69 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
70 import com.sun.tools.javac.util.JCDiagnostic.Error;
71 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
72 import com.sun.tools.javac.util.JCDiagnostic.Warning;
73 import com.sun.tools.javac.util.List;
74
75 import static com.sun.tools.javac.code.Flags.*;
76 import static com.sun.tools.javac.code.Flags.ANNOTATION;
77 import static com.sun.tools.javac.code.Flags.BLOCK;
78 import static com.sun.tools.javac.code.Kinds.*;
79 import static com.sun.tools.javac.code.Kinds.Kind.*;
80 import static com.sun.tools.javac.code.TypeTag.*;
81 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
82 import static com.sun.tools.javac.tree.JCTree.Tag.*;
83
84 /** This is the main context-dependent analysis phase in GJC. It
85 * encompasses name resolution, type checking and constant folding as
86 * subtasks. Some subtasks involve auxiliary classes.
87 * @see Check
88 * @see Resolve
89 * @see ConstFold
90 * @see Infer
91 *
92 * <p><b>This is NOT part of any supported API.
93 * If you write code that depends on this, you do so at your own risk.
94 * This code and its internal interfaces are subject to change or
95 * deletion without notice.</b>
96 */
97 public class Attr extends JCTree.Visitor {
98 protected static final Context.Key<Attr> attrKey = new Context.Key<>();
99
100 final Names names;
101 final Log log;
102 final LintMapper lintMapper;
103 final Symtab syms;
104 final Resolve rs;
105 final Operators operators;
106 final Infer infer;
107 final Analyzer analyzer;
108 final DeferredAttr deferredAttr;
109 final Check chk;
110 final Flow flow;
111 final MemberEnter memberEnter;
112 final TypeEnter typeEnter;
113 final TreeMaker make;
114 final ConstFold cfolder;
115 final Enter enter;
116 final Target target;
117 final Types types;
118 final Preview preview;
119 final JCDiagnostic.Factory diags;
120 final TypeAnnotations typeAnnotations;
121 final TypeEnvs typeEnvs;
122 final Dependencies dependencies;
123 final Annotate annotate;
124 final ArgumentAttr argumentAttr;
125 final MatchBindingsComputer matchBindingsComputer;
126 final AttrRecover attrRecover;
127 final LocalProxyVarsGen localProxyVarsGen;
128 final boolean captureMRefReturnType;
129
130 public static Attr instance(Context context) {
131 Attr instance = context.get(attrKey);
132 if (instance == null)
133 instance = new Attr(context);
134 return instance;
135 }
136
137 @SuppressWarnings("this-escape")
138 protected Attr(Context context) {
139 context.put(attrKey, this);
140
141 names = Names.instance(context);
142 log = Log.instance(context);
143 lintMapper = LintMapper.instance(context);
144 syms = Symtab.instance(context);
145 rs = Resolve.instance(context);
146 operators = Operators.instance(context);
147 chk = Check.instance(context);
148 flow = Flow.instance(context);
149 memberEnter = MemberEnter.instance(context);
150 typeEnter = TypeEnter.instance(context);
151 make = TreeMaker.instance(context);
152 enter = Enter.instance(context);
153 infer = Infer.instance(context);
154 analyzer = Analyzer.instance(context);
155 deferredAttr = DeferredAttr.instance(context);
156 cfolder = ConstFold.instance(context);
157 target = Target.instance(context);
158 types = Types.instance(context);
159 preview = Preview.instance(context);
160 diags = JCDiagnostic.Factory.instance(context);
161 annotate = Annotate.instance(context);
162 typeAnnotations = TypeAnnotations.instance(context);
163 typeEnvs = TypeEnvs.instance(context);
164 dependencies = Dependencies.instance(context);
165 argumentAttr = ArgumentAttr.instance(context);
166 matchBindingsComputer = MatchBindingsComputer.instance(context);
167 attrRecover = AttrRecover.instance(context);
168 localProxyVarsGen = LocalProxyVarsGen.instance(context);
169
170 Options options = Options.instance(context);
171
172 Source source = Source.instance(context);
173 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
174 allowRecords = Feature.RECORDS.allowedInSource(source);
175 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
176 Feature.PATTERN_SWITCH.allowedInSource(source);
177 allowUnconditionalPatternsInstanceOf =
178 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
179 sourceName = source.name;
180 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
181 captureMRefReturnType = Source.Feature.CAPTURE_MREF_RETURN_TYPE.allowedInSource(source);
182
183 statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
184 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
185 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
186 methodAttrInfo = new MethodAttrInfo();
187 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
188 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
189 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
190 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
191 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
192 Feature.VALUE_CLASSES.allowedInSource(source);
193 }
194
195 /** Switch: reifiable types in instanceof enabled?
196 */
197 boolean allowReifiableTypesInInstanceof;
198
199 /** Are records allowed
200 */
201 private final boolean allowRecords;
202
203 /** Are patterns in switch allowed
204 */
205 private final boolean allowPatternSwitch;
206
207 /** Are unconditional patterns in instanceof allowed
208 */
209 private final boolean allowUnconditionalPatternsInstanceOf;
210
211 /** Are value classes allowed
212 */
213 private final boolean allowValueClasses;
214
215 /**
216 * Switch: warn about use of variable before declaration?
217 * RFE: 6425594
218 */
219 boolean useBeforeDeclarationWarning;
220
221 /**
222 * Switch: name of source level; used for error reporting.
223 */
224 String sourceName;
225
226 /** Check kind and type of given tree against protokind and prototype.
227 * If check succeeds, store type in tree and return it.
228 * If check fails, store errType in tree and return it.
229 * No checks are performed if the prototype is a method type.
230 * It is not necessary in this case since we know that kind and type
231 * are correct.
232 *
233 * @param tree The tree whose kind and type is checked
234 * @param found The computed type of the tree
235 * @param ownkind The computed kind of the tree
236 * @param resultInfo The expected result of the tree
237 */
238 Type check(final JCTree tree,
239 final Type found,
240 final KindSelector ownkind,
241 final ResultInfo resultInfo) {
242 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
243 Type owntype;
244 boolean shouldCheck = !found.hasTag(ERROR) &&
245 !resultInfo.pt.hasTag(METHOD) &&
246 !resultInfo.pt.hasTag(FORALL);
247 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
248 log.error(tree.pos(),
249 Errors.UnexpectedType(resultInfo.pkind.kindNames(),
250 ownkind.kindNames()));
251 owntype = types.createErrorType(found);
252 } else if (inferenceContext.free(found)) {
253 //delay the check if there are inference variables in the found type
254 //this means we are dealing with a partially inferred poly expression
255 owntype = shouldCheck ? resultInfo.pt : found;
256 if (resultInfo.checkMode.installPostInferenceHook()) {
257 inferenceContext.addFreeTypeListener(List.of(found),
258 instantiatedContext -> {
259 ResultInfo pendingResult =
260 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
261 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
262 });
263 }
264 } else {
265 owntype = shouldCheck ?
266 resultInfo.check(tree, found) :
267 found;
268 }
269 if (resultInfo.checkMode.updateTreeType()) {
270 tree.type = owntype;
271 }
272 return owntype;
273 }
274
275 /** Is given blank final variable assignable, i.e. in a scope where it
276 * may be assigned to even though it is final?
277 * @param v The blank final variable.
278 * @param env The current environment.
279 */
280 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
281 Symbol owner = env.info.scope.owner;
282 // owner refers to the innermost variable, method or
283 // initializer block declaration at this point.
284 boolean isAssignable =
285 v.owner == owner
286 ||
287 ((owner.name == names.init || // i.e. we are in a constructor
288 owner.kind == VAR || // i.e. we are in a variable initializer
289 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
290 &&
291 v.owner == owner.owner
292 &&
293 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
294 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
295 return isAssignable & !insideCompactConstructor;
296 }
297
298 /** Check that variable can be assigned to.
299 * @param pos The current source code position.
300 * @param v The assigned variable
301 * @param base If the variable is referred to in a Select, the part
302 * to the left of the `.', null otherwise.
303 * @param env The current environment.
304 */
305 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
306 if (v.name == names._this) {
307 log.error(pos, Errors.CantAssignValToThis);
308 } else if ((v.flags() & FINAL) != 0 &&
309 ((v.flags() & HASINIT) != 0
310 ||
311 !((base == null ||
312 TreeInfo.isThisQualifier(base)) &&
313 isAssignableAsBlankFinal(v, env)))) {
314 if (v.isResourceVariable()) { //TWR resource
315 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
316 } else {
317 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
318 }
319 }
320 }
321
322 /** Does tree represent a static reference to an identifier?
323 * It is assumed that tree is either a SELECT or an IDENT.
324 * We have to weed out selects from non-type names here.
325 * @param tree The candidate tree.
326 */
327 boolean isStaticReference(JCTree tree) {
328 if (tree.hasTag(SELECT)) {
329 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
330 if (lsym == null || lsym.kind != TYP) {
331 return false;
332 }
333 }
334 return true;
335 }
336
337 /** Is this symbol a type?
338 */
339 static boolean isType(Symbol sym) {
340 return sym != null && sym.kind == TYP;
341 }
342
343 /** Attribute a parsed identifier.
344 * @param tree Parsed identifier name
345 * @param topLevel The toplevel to use
346 */
347 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
348 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
349 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
350 syms.errSymbol.name,
351 null, null, null, null);
352 localEnv.enclClass.sym = syms.errSymbol;
353 return attribIdent(tree, localEnv);
354 }
355
356 /** Attribute a parsed identifier.
357 * @param tree Parsed identifier name
358 * @param env The env to use
359 */
360 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
361 return tree.accept(identAttributer, env);
362 }
363 // where
364 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
365 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
366 @Override @DefinedBy(Api.COMPILER_TREE)
367 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
368 Symbol site = visit(node.getExpression(), env);
369 if (site == null || site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
370 return site;
371 Name name = (Name)node.getIdentifier();
372 if (site.kind == PCK) {
373 env.toplevel.packge = (PackageSymbol)site;
374 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
375 KindSelector.TYP_PCK);
376 } else {
377 env.enclClass.sym = (ClassSymbol)site;
378 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
379 }
380 }
381
382 @Override @DefinedBy(Api.COMPILER_TREE)
383 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
384 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
385 }
386 }
387
388 public Type coerce(Type etype, Type ttype) {
389 return cfolder.coerce(etype, ttype);
390 }
391
392 public Type attribType(JCTree node, TypeSymbol sym) {
393 Env<AttrContext> env = typeEnvs.get(sym);
394 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
395 return attribTree(node, localEnv, unknownTypeInfo);
396 }
397
398 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
399 // Attribute qualifying package or class.
400 JCFieldAccess s = tree.qualid;
401 return attribTree(s.selected, env,
402 new ResultInfo(tree.staticImport ?
403 KindSelector.TYP : KindSelector.TYP_PCK,
404 Type.noType));
405 }
406
407 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
408 return attribToTree(expr, env, tree, unknownExprInfo);
409 }
410
411 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
412 return attribToTree(stmt, env, tree, statInfo);
413 }
414
415 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
416 breakTree = tree;
417 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
418 try {
419 deferredAttr.attribSpeculative(root, env, resultInfo,
420 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
421 argumentAttr.withLocalCacheContext());
422 attrRecover.doRecovery();
423 } catch (BreakAttr b) {
424 return b.env;
425 } catch (AssertionError ae) {
426 if (ae.getCause() instanceof BreakAttr breakAttr) {
427 return breakAttr.env;
428 } else {
429 throw ae;
430 }
431 } finally {
432 breakTree = null;
433 log.useSource(prev);
434 }
435 return env;
436 }
437
438 private JCTree breakTree = null;
439
440 private static class BreakAttr extends RuntimeException {
441 static final long serialVersionUID = -6924771130405446405L;
442 private transient Env<AttrContext> env;
443 private BreakAttr(Env<AttrContext> env) {
444 this.env = env;
445 }
446 }
447
448 /**
449 * Mode controlling behavior of Attr.Check
450 */
451 enum CheckMode {
452
453 NORMAL,
454
455 /**
456 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
457 * that the captured var cache in {@code InferenceContext} will be used in read-only
458 * mode when performing inference checks.
459 */
460 NO_TREE_UPDATE {
461 @Override
462 public boolean updateTreeType() {
463 return false;
464 }
465 },
466 /**
467 * Mode signalling that caller will manage free types in tree decorations.
468 */
469 NO_INFERENCE_HOOK {
470 @Override
471 public boolean installPostInferenceHook() {
472 return false;
473 }
474 };
475
476 public boolean updateTreeType() {
477 return true;
478 }
479 public boolean installPostInferenceHook() {
480 return true;
481 }
482 }
483
484
485 class ResultInfo {
486 final KindSelector pkind;
487 final Type pt;
488 final CheckContext checkContext;
489 final CheckMode checkMode;
490
491 ResultInfo(KindSelector pkind, Type pt) {
492 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
493 }
494
495 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
496 this(pkind, pt, chk.basicHandler, checkMode);
497 }
498
499 protected ResultInfo(KindSelector pkind,
500 Type pt, CheckContext checkContext) {
501 this(pkind, pt, checkContext, CheckMode.NORMAL);
502 }
503
504 protected ResultInfo(KindSelector pkind,
505 Type pt, CheckContext checkContext, CheckMode checkMode) {
506 this.pkind = pkind;
507 this.pt = pt;
508 this.checkContext = checkContext;
509 this.checkMode = checkMode;
510 }
511
512 /**
513 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
514 * @param tree The tree to be type-checked.
515 * @return true if {@code ArgumentAttr} should be used.
516 */
517 protected boolean needsArgumentAttr(JCTree tree) { return false; }
518
519 protected Type check(final DiagnosticPosition pos, final Type found) {
520 return chk.checkType(pos, found, pt, checkContext);
521 }
522
523 protected ResultInfo dup(Type newPt) {
524 return new ResultInfo(pkind, newPt, checkContext, checkMode);
525 }
526
527 protected ResultInfo dup(CheckContext newContext) {
528 return new ResultInfo(pkind, pt, newContext, checkMode);
529 }
530
531 protected ResultInfo dup(Type newPt, CheckContext newContext) {
532 return new ResultInfo(pkind, newPt, newContext, checkMode);
533 }
534
535 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
536 return new ResultInfo(pkind, newPt, newContext, newMode);
537 }
538
539 protected ResultInfo dup(CheckMode newMode) {
540 return new ResultInfo(pkind, pt, checkContext, newMode);
541 }
542
543 @Override
544 public String toString() {
545 if (pt != null) {
546 return pt.toString();
547 } else {
548 return "";
549 }
550 }
551 }
552
553 class MethodAttrInfo extends ResultInfo {
554 public MethodAttrInfo() {
555 this(chk.basicHandler);
556 }
557
558 public MethodAttrInfo(CheckContext checkContext) {
559 super(KindSelector.VAL, Infer.anyPoly, checkContext);
560 }
561
562 @Override
563 protected boolean needsArgumentAttr(JCTree tree) {
564 return true;
565 }
566
567 protected ResultInfo dup(Type newPt) {
568 throw new IllegalStateException();
569 }
570
571 protected ResultInfo dup(CheckContext newContext) {
572 return new MethodAttrInfo(newContext);
573 }
574
575 protected ResultInfo dup(Type newPt, CheckContext newContext) {
576 throw new IllegalStateException();
577 }
578
579 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
580 throw new IllegalStateException();
581 }
582
583 protected ResultInfo dup(CheckMode newMode) {
584 throw new IllegalStateException();
585 }
586 }
587
588 class RecoveryInfo extends ResultInfo {
589
590 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
591 this(deferredAttrContext, Type.recoveryType);
592 }
593
594 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
595 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
596 @Override
597 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
598 return deferredAttrContext;
599 }
600 @Override
601 public boolean compatible(Type found, Type req, Warner warn) {
602 return true;
603 }
604 @Override
605 public void report(DiagnosticPosition pos, JCDiagnostic details) {
606 boolean needsReport = pt == Type.recoveryType ||
607 (details.getDiagnosticPosition() != null &&
608 details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
609 if (needsReport) {
610 chk.basicHandler.report(pos, details);
611 }
612 }
613 });
614 }
615 }
616
617 final ResultInfo statInfo;
618 final ResultInfo varAssignmentInfo;
619 final ResultInfo methodAttrInfo;
620 final ResultInfo unknownExprInfo;
621 final ResultInfo unknownTypeInfo;
622 final ResultInfo unknownTypeExprInfo;
623 final ResultInfo recoveryInfo;
624 final MethodType initBlockType;
625
626 Type pt() {
627 return resultInfo.pt;
628 }
629
630 KindSelector pkind() {
631 return resultInfo.pkind;
632 }
633
634 /* ************************************************************************
635 * Visitor methods
636 *************************************************************************/
637
638 /** Visitor argument: the current environment.
639 */
640 Env<AttrContext> env;
641
642 /** Visitor argument: the currently expected attribution result.
643 */
644 ResultInfo resultInfo;
645
646 /** Visitor result: the computed type.
647 */
648 Type result;
649
650 MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
651
652 /** Visitor method: attribute a tree, catching any completion failure
653 * exceptions. Return the tree's type.
654 *
655 * @param tree The tree to be visited.
656 * @param env The environment visitor argument.
657 * @param resultInfo The result info visitor argument.
658 */
659 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
660 Env<AttrContext> prevEnv = this.env;
661 ResultInfo prevResult = this.resultInfo;
662 try {
663 this.env = env;
664 this.resultInfo = resultInfo;
665 if (resultInfo.needsArgumentAttr(tree)) {
666 result = argumentAttr.attribArg(tree, env);
667 } else {
668 tree.accept(this);
669 }
670 matchBindings = matchBindingsComputer.finishBindings(tree,
671 matchBindings);
672 if (tree == breakTree &&
673 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
674 breakTreeFound(copyEnv(env));
675 }
676 return result;
677 } catch (CompletionFailure ex) {
678 tree.type = syms.errType;
679 return chk.completionError(tree.pos(), ex);
680 } finally {
681 this.env = prevEnv;
682 this.resultInfo = prevResult;
683 }
684 }
685
686 protected void breakTreeFound(Env<AttrContext> env) {
687 throw new BreakAttr(env);
688 }
689
690 Env<AttrContext> copyEnv(Env<AttrContext> env) {
691 Env<AttrContext> newEnv =
692 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
693 if (newEnv.outer != null) {
694 newEnv.outer = copyEnv(newEnv.outer);
695 }
696 return newEnv;
697 }
698
699 WriteableScope copyScope(WriteableScope sc) {
700 WriteableScope newScope = WriteableScope.create(sc.owner);
701 List<Symbol> elemsList = List.nil();
702 for (Symbol sym : sc.getSymbols()) {
703 elemsList = elemsList.prepend(sym);
704 }
705 for (Symbol s : elemsList) {
706 newScope.enter(s);
707 }
708 return newScope;
709 }
710
711 /** Derived visitor method: attribute an expression tree.
712 */
713 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
714 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
715 }
716
717 /** Derived visitor method: attribute an expression tree with
718 * no constraints on the computed type.
719 */
720 public Type attribExpr(JCTree tree, Env<AttrContext> env) {
721 return attribTree(tree, env, unknownExprInfo);
722 }
723
724 /** Derived visitor method: attribute a type tree.
725 */
726 public Type attribType(JCTree tree, Env<AttrContext> env) {
727 Type result = attribType(tree, env, Type.noType);
728 return result;
729 }
730
731 /** Derived visitor method: attribute a type tree.
732 */
733 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
734 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
735 return result;
736 }
737
738 /** Derived visitor method: attribute a statement or definition tree.
739 */
740 public Type attribStat(JCTree tree, Env<AttrContext> env) {
741 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
742 Type result = attribTree(tree, env, statInfo);
743 analyzer.analyzeIfNeeded(tree, analyzeEnv);
744 attrRecover.doRecovery();
745 return result;
746 }
747
748 /** Attribute a list of expressions, returning a list of types.
749 */
750 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
751 ListBuffer<Type> ts = new ListBuffer<>();
752 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
753 ts.append(attribExpr(l.head, env, pt));
754 return ts.toList();
755 }
756
757 /** Attribute a list of statements, returning nothing.
758 */
759 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
760 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
761 attribStat(l.head, env);
762 }
763
764 /** Attribute the arguments in a method call, returning the method kind.
765 */
766 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
767 KindSelector kind = initialKind;
768 for (JCExpression arg : trees) {
769 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
770 if (argtype.hasTag(DEFERRED)) {
771 kind = KindSelector.of(KindSelector.POLY, kind);
772 }
773 argtypes.append(argtype);
774 }
775 return kind;
776 }
777
778 /** Attribute a type argument list, returning a list of types.
779 * Caller is responsible for calling checkRefTypes.
780 */
781 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
782 ListBuffer<Type> argtypes = new ListBuffer<>();
783 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
784 argtypes.append(attribType(l.head, env));
785 return argtypes.toList();
786 }
787
788 /** Attribute a type argument list, returning a list of types.
789 * Check that all the types are references.
790 */
791 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
792 List<Type> types = attribAnyTypes(trees, env);
793 return chk.checkRefTypes(trees, types);
794 }
795
796 /**
797 * Attribute type variables (of generic classes or methods).
798 * Compound types are attributed later in attribBounds.
799 * @param typarams the type variables to enter
800 * @param env the current environment
801 */
802 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
803 for (JCTypeParameter tvar : typarams) {
804 TypeVar a = (TypeVar)tvar.type;
805 a.tsym.flags_field |= UNATTRIBUTED;
806 a.setUpperBound(Type.noType);
807 if (!tvar.bounds.isEmpty()) {
808 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
809 for (JCExpression bound : tvar.bounds.tail)
810 bounds = bounds.prepend(attribType(bound, env));
811 types.setBounds(a, bounds.reverse());
812 } else {
813 // if no bounds are given, assume a single bound of
814 // java.lang.Object.
815 types.setBounds(a, List.of(syms.objectType));
816 }
817 a.tsym.flags_field &= ~UNATTRIBUTED;
818 }
819 if (checkCyclic) {
820 for (JCTypeParameter tvar : typarams) {
821 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
822 }
823 }
824 }
825
826 /**
827 * Attribute the type references in a list of annotations.
828 */
829 void attribAnnotationTypes(List<JCAnnotation> annotations,
830 Env<AttrContext> env) {
831 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
832 JCAnnotation a = al.head;
833 attribType(a.annotationType, env);
834 }
835 }
836
837 /**
838 * Attribute a "lazy constant value".
839 * @param env The env for the const value
840 * @param variable The initializer for the const value
841 * @param type The expected type, or null
842 * @see VarSymbol#setLazyConstValue
843 */
844 public Object attribLazyConstantValue(Env<AttrContext> env,
845 Env<AttrContext> enclosingEnv,
846 JCVariableDecl variable,
847 Type type) {
848 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
849 try {
850 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv);
851 Type itype = attribExpr(variable.init, env, type);
852 if (variable.isImplicitlyTyped()) {
853 //fixup local variable type
854 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
855 }
856 if (itype.constValue() != null) {
857 return coerce(itype, type).constValue();
858 } else {
859 return null;
860 }
861 } finally {
862 log.useSource(prevSource);
863 }
864 }
865
866 /** Attribute type reference in an `extends', `implements', or 'permits' clause.
867 * Supertypes of anonymous inner classes are usually already attributed.
868 *
869 * @param tree The tree making up the type reference.
870 * @param env The environment current at the reference.
871 * @param classExpected true if only a class is expected here.
872 * @param interfaceExpected true if only an interface is expected here.
873 */
874 Type attribBase(JCTree tree,
875 Env<AttrContext> env,
876 boolean classExpected,
877 boolean interfaceExpected,
878 boolean checkExtensible) {
879 Type t = tree.type != null ?
880 tree.type :
881 attribType(tree, env);
882 try {
883 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
884 } catch (CompletionFailure ex) {
885 chk.completionError(tree.pos(), ex);
886 return t;
887 }
888 }
889 Type checkBase(Type t,
890 JCTree tree,
891 Env<AttrContext> env,
892 boolean classExpected,
893 boolean interfaceExpected,
894 boolean checkExtensible) {
895 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
896 (((JCTypeApply) tree).clazz).pos() : tree.pos();
897 if (t.tsym.isAnonymous()) {
898 log.error(pos, Errors.CantInheritFromAnon);
899 return types.createErrorType(t);
900 }
901 if (t.isErroneous())
902 return t;
903 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
904 // check that type variable is already visible
905 if (t.getUpperBound() == null) {
906 log.error(pos, Errors.IllegalForwardRef);
907 return types.createErrorType(t);
908 }
909 } else {
910 t = chk.checkClassType(pos, t, checkExtensible);
911 }
912 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
913 log.error(pos, Errors.IntfExpectedHere);
914 // return errType is necessary since otherwise there might
915 // be undetected cycles which cause attribution to loop
916 return types.createErrorType(t);
917 } else if (checkExtensible &&
918 classExpected &&
919 (t.tsym.flags() & INTERFACE) != 0) {
920 log.error(pos, Errors.NoIntfExpectedHere);
921 return types.createErrorType(t);
922 }
923 if (checkExtensible &&
924 ((t.tsym.flags() & FINAL) != 0)) {
925 log.error(pos,
926 Errors.CantInheritFromFinal(t.tsym));
927 }
928 chk.checkNonCyclic(pos, t);
929 return t;
930 }
931
932 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
933 Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
934 id.type = env.info.scope.owner.enclClass().type;
935 id.sym = env.info.scope.owner.enclClass();
936 return id.type;
937 }
938
939 public void visitClassDef(JCClassDecl tree) {
940 Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
941 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
942 argumentAttr.withLocalCacheContext() : null);
943 boolean ctorProloguePrev = env.info.ctorPrologue;
944 try {
945 // Local and anonymous classes have not been entered yet, so we need to
946 // do it now.
947 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
948 enter.classEnter(tree, env);
949 } else {
950 // If this class declaration is part of a class level annotation,
951 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
952 // order to simplify later steps and allow for sensible error
953 // messages.
954 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
955 enter.classEnter(tree, env);
956 }
957
958 ClassSymbol c = tree.sym;
959 if (c == null) {
960 // exit in case something drastic went wrong during enter.
961 result = null;
962 } else {
963 // make sure class has been completed:
964 c.complete();
965
966 // If a class declaration appears in a constructor prologue,
967 // that means it's either a local class or an anonymous class.
968 // Either way, there is no immediately enclosing instance.
969 if (ctorProloguePrev) {
970 c.flags_field |= NOOUTERTHIS;
971 }
972 attribClass(tree.pos(), c);
973 result = tree.type = c.type;
974 }
975 } finally {
976 localCacheContext.ifPresent(LocalCacheContext::leave);
977 env.info.ctorPrologue = ctorProloguePrev;
978 }
979 }
980
981 public void visitMethodDef(JCMethodDecl tree) {
982 MethodSymbol m = tree.sym;
983 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
984
985 Lint lint = env.info.lint.augment(m);
986 Lint prevLint = chk.setLint(lint);
987 boolean ctorProloguePrev = env.info.ctorPrologue;
988 Assert.check(!env.info.ctorPrologue);
989 MethodSymbol prevMethod = chk.setMethod(m);
990 try {
991 chk.checkDeprecatedAnnotation(tree.pos(), m);
992
993
994 // Create a new environment with local scope
995 // for attributing the method.
996 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
997 localEnv.info.lint = lint;
998
999 attribStats(tree.typarams, localEnv);
1000
1001 // If we override any other methods, check that we do so properly.
1002 // JLS ???
1003 if (m.isStatic()) {
1004 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1005 } else {
1006 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1007 }
1008 chk.checkOverride(env, tree, m);
1009
1010 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1011 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1012 }
1013
1014 // Enter all type parameters into the local method scope.
1015 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1016 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1017
1018 ClassSymbol owner = env.enclClass.sym;
1019 if ((owner.flags() & ANNOTATION) != 0 &&
1020 (tree.params.nonEmpty() ||
1021 tree.recvparam != null))
1022 log.error(tree.params.nonEmpty() ?
1023 tree.params.head.pos() :
1024 tree.recvparam.pos(),
1025 Errors.IntfAnnotationMembersCantHaveParams);
1026
1027 // Attribute all value parameters.
1028 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1029 attribStat(l.head, localEnv);
1030 }
1031
1032 chk.checkVarargsMethodDecl(localEnv, tree);
1033
1034 // Check that type parameters are well-formed.
1035 chk.validate(tree.typarams, localEnv);
1036
1037 // Check that result type is well-formed.
1038 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) {
1039 chk.validate(tree.restype, localEnv);
1040 }
1041 chk.checkRequiresIdentity(tree, env.info.lint);
1042
1043 // Check that receiver type is well-formed.
1044 if (tree.recvparam != null) {
1045 // Use a new environment to check the receiver parameter.
1046 // Otherwise I get "might not have been initialized" errors.
1047 // Is there a better way?
1048 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1049 attribType(tree.recvparam, newEnv);
1050 chk.validate(tree.recvparam, newEnv);
1051 }
1052
1053 // Is this method a constructor?
1054 boolean isConstructor = TreeInfo.isConstructor(tree);
1055
1056 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1057 // lets find if this method is an accessor
1058 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1059 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1060 if (recordComponent.isPresent()) {
1061 // the method is a user defined accessor lets check that everything is fine
1062 if (!tree.sym.isPublic()) {
1063 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1064 }
1065 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1066 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1067 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1068 }
1069 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1070 log.error(tree,
1071 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1072 }
1073 if (!tree.typarams.isEmpty()) {
1074 log.error(tree,
1075 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1076 }
1077 if (tree.sym.isStatic()) {
1078 log.error(tree,
1079 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1080 }
1081 }
1082
1083 if (isConstructor) {
1084 // if this a constructor other than the canonical one
1085 if ((tree.sym.flags_field & RECORD) == 0) {
1086 if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1087 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1088 }
1089 } else {
1090 // but if it is the canonical:
1091
1092 /* if user generated, then it shouldn't:
1093 * - have an accessibility stricter than that of the record type
1094 * - explicitly invoke any other constructor
1095 */
1096 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1097 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1098 log.error(tree,
1099 (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1100 Errors.InvalidCanonicalConstructorInRecord(
1101 Fragments.Canonical,
1102 env.enclClass.sym.name,
1103 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1104 ) :
1105 Errors.InvalidCanonicalConstructorInRecord(
1106 Fragments.Canonical,
1107 env.enclClass.sym.name,
1108 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1109 )
1110 );
1111 }
1112
1113 if ((!allowValueClasses || TreeInfo.isCompactConstructor(tree)) &&
1114 TreeInfo.hasAnyConstructorCall(tree)) {
1115 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1116 Fragments.Canonical, env.enclClass.sym.name,
1117 Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1118 }
1119 }
1120
1121 // also we want to check that no type variables have been defined
1122 if (!tree.typarams.isEmpty()) {
1123 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1124 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1125 }
1126
1127 /* and now we need to check that the constructor's arguments are exactly the same as those of the
1128 * record components
1129 */
1130 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1131 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1132 for (JCVariableDecl param: tree.params) {
1133 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1134 if (!types.isSameType(param.type, recordFieldTypes.head) ||
1135 (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1136 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1137 Fragments.Canonical, env.enclClass.sym.name,
1138 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1139 }
1140 recordComponents = recordComponents.tail;
1141 recordFieldTypes = recordFieldTypes.tail;
1142 }
1143 }
1144 }
1145 }
1146
1147 // annotation method checks
1148 if ((owner.flags() & ANNOTATION) != 0) {
1149 // annotation method cannot have throws clause
1150 if (tree.thrown.nonEmpty()) {
1151 log.error(tree.thrown.head.pos(),
1152 Errors.ThrowsNotAllowedInIntfAnnotation);
1153 }
1154 // annotation method cannot declare type-parameters
1155 if (tree.typarams.nonEmpty()) {
1156 log.error(tree.typarams.head.pos(),
1157 Errors.IntfAnnotationMembersCantHaveTypeParams);
1158 }
1159 // validate annotation method's return type (could be an annotation type)
1160 chk.validateAnnotationType(tree.restype);
1161 // ensure that annotation method does not clash with members of Object/Annotation
1162 chk.validateAnnotationMethod(tree.pos(), m);
1163 }
1164
1165 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1166 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1167
1168 if (tree.body == null) {
1169 // Empty bodies are only allowed for
1170 // abstract, native, or interface methods, or for methods
1171 // in a retrofit signature class.
1172 if (tree.defaultValue != null) {
1173 if ((owner.flags() & ANNOTATION) == 0)
1174 log.error(tree.pos(),
1175 Errors.DefaultAllowedInIntfAnnotationMember);
1176 }
1177 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1178 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract(tree.sym, owner));
1179 } else {
1180 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1181 if ((owner.flags() & INTERFACE) != 0) {
1182 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1183 } else {
1184 log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1185 }
1186 } else if ((tree.mods.flags & NATIVE) != 0) {
1187 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1188 }
1189 // Add an implicit super() call unless an explicit call to
1190 // super(...) or this(...) is given
1191 // or we are compiling class java.lang.Object.
1192 boolean addedSuperInIdentityClass = false;
1193 if (isConstructor && owner.type != syms.objectType) {
1194 if (!TreeInfo.hasAnyConstructorCall(tree)) {
1195 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1196 make.Ident(names._super), make.Idents(List.nil())));
1197 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) {
1198 tree.body.stats = tree.body.stats.append(supCall);
1199 } else {
1200 tree.body.stats = tree.body.stats.prepend(supCall);
1201 addedSuperInIdentityClass = true;
1202 }
1203 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1204 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1205 TreeInfo.hasConstructorCall(tree, names._super)) {
1206 // enum constructors are not allowed to call super
1207 // directly, so make sure there aren't any super calls
1208 // in enum constructors, except in the compiler
1209 // generated one.
1210 log.error(tree.body.stats.head.pos(),
1211 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1212 }
1213 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1214 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1215 List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1216 if (!initParamNames.equals(recordComponentNames)) {
1217 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1218 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1219 }
1220 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1221 log.error(tree,
1222 Errors.InvalidCanonicalConstructorInRecord(
1223 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1224 env.enclClass.sym.name,
1225 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1226 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1227 }
1228 }
1229 }
1230
1231 // Attribute all type annotations in the body
1232 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m);
1233 annotate.flush();
1234
1235 // Start of constructor prologue (if not in java.lang.Object constructor)
1236 localEnv.info.ctorPrologue = isConstructor && owner.type != syms.objectType;
1237
1238 // Attribute method body.
1239 attribStat(tree.body, localEnv);
1240 if (localEnv.info.ctorPrologue) {
1241 boolean thisInvocation = false;
1242 ListBuffer<JCTree> prologueCode = new ListBuffer<>();
1243 for (JCTree stat : tree.body.stats) {
1244 prologueCode.add(stat);
1245 /* gather all the stats in the body until a `super` or `this` constructor invocation is found,
1246 * including the constructor invocation, that way we don't need to worry in the visitor below if
1247 * if we are dealing or not with prologue code
1248 */
1249 if (stat instanceof JCExpressionStatement expStmt &&
1250 expStmt.expr instanceof JCMethodInvocation mi &&
1251 TreeInfo.isConstructorCall(mi)) {
1252 thisInvocation = TreeInfo.name(mi.meth) == names._this;
1253 if (!addedSuperInIdentityClass || !allowValueClasses) {
1254 break;
1255 }
1256 }
1257 }
1258 if (!prologueCode.isEmpty()) {
1259 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv,
1260 addedSuperInIdentityClass && allowValueClasses ?
1261 PrologueVisitorMode.WARNINGS_ONLY :
1262 thisInvocation ?
1263 PrologueVisitorMode.THIS_CONSTRUCTOR :
1264 PrologueVisitorMode.SUPER_CONSTRUCTOR,
1265 false);
1266 ctorPrologueVisitor.scan(prologueCode.toList());
1267 }
1268 }
1269 }
1270
1271 localEnv.info.scope.leave();
1272 result = tree.type = m.type;
1273 } finally {
1274 chk.setLint(prevLint);
1275 chk.setMethod(prevMethod);
1276 env.info.ctorPrologue = ctorProloguePrev;
1277 }
1278 }
1279
1280 enum PrologueVisitorMode {
1281 WARNINGS_ONLY,
1282 SUPER_CONSTRUCTOR,
1283 THIS_CONSTRUCTOR
1284 }
1285
1286 class CtorPrologueVisitor extends TreeScanner {
1287 Env<AttrContext> localEnv;
1288 PrologueVisitorMode mode;
1289 boolean isInitializer;
1290
1291 CtorPrologueVisitor(Env<AttrContext> localEnv, PrologueVisitorMode mode, boolean isInitializer) {
1292 this.localEnv = localEnv;
1293 currentClassSym = localEnv.enclClass.sym;
1294 this.mode = mode;
1295 this.isInitializer = isInitializer;
1296 }
1297
1298 boolean insideLambdaOrClassDef = false;
1299
1300 @Override
1301 public void visitLambda(JCLambda lambda) {
1302 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1303 try {
1304 insideLambdaOrClassDef = true;
1305 super.visitLambda(lambda);
1306 } finally {
1307 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1308 }
1309 }
1310
1311 ClassSymbol currentClassSym;
1312
1313 @Override
1314 public void visitClassDef(JCClassDecl classDecl) {
1315 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1316 ClassSymbol previousClassSym = currentClassSym;
1317 try {
1318 insideLambdaOrClassDef = true;
1319 currentClassSym = classDecl.sym;
1320 super.visitClassDef(classDecl);
1321 } finally {
1322 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1323 currentClassSym = previousClassSym;
1324 }
1325 }
1326
1327 private void reportPrologueError(JCTree tree, Symbol sym) {
1328 reportPrologueError(tree, sym, false);
1329 }
1330
1331 private void reportPrologueError(JCTree tree, Symbol sym, boolean hasInit) {
1332 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS);
1333 if (mode != PrologueVisitorMode.WARNINGS_ONLY) {
1334 if (hasInit) {
1335 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym));
1336 } else {
1337 log.error(tree, Errors.CantRefBeforeCtorCalled(sym));
1338 }
1339 } else if (allowValueClasses) {
1340 // issue lint warning
1341 log.warning(tree, LintWarnings.WouldNotBeAllowedInPrologue(sym));
1342 }
1343 }
1344
1345 @Override
1346 public void visitApply(JCMethodInvocation tree) {
1347 super.visitApply(tree);
1348 Name name = TreeInfo.name(tree.meth);
1349 boolean isConstructorCall = name == names._this || name == names._super;
1350 Symbol msym = TreeInfo.symbolFor(tree.meth);
1351 // is this an instance method call or an illegal constructor invocation like: `this.super()`?
1352 if (msym != null && // for erroneous invocations msym can be null, ignore those
1353 (!isConstructorCall ||
1354 isConstructorCall && tree.meth.hasTag(SELECT))) {
1355 if (isEarlyReference(localEnv, tree.meth, msym))
1356 reportPrologueError(tree.meth, msym);
1357 }
1358 }
1359
1360 @Override
1361 public void visitIdent(JCIdent tree) {
1362 analyzeSymbol(tree);
1363 }
1364
1365 boolean isIndexed = false;
1366
1367 @Override
1368 public void visitIndexed(JCArrayAccess tree) {
1369 boolean previousIsIndexed = isIndexed;
1370 try {
1371 isIndexed = true;
1372 scan(tree.indexed);
1373 } finally {
1374 isIndexed = previousIsIndexed;
1375 }
1376 scan(tree.index);
1377 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR && isInstanceField(tree.indexed)) {
1378 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(tree.indexed));
1379 }
1380 }
1381
1382 @Override
1383 public void visitSelect(JCFieldAccess tree) {
1384 SelectScanner ss = new SelectScanner();
1385 ss.scan(tree);
1386 if (ss.scanLater == null) {
1387 Symbol sym = TreeInfo.symbolFor(tree);
1388 // if this is a field access
1389 if (sym.kind == VAR && sym.owner.kind == TYP) {
1390 // Type.super.field or super.field expressions are forbidden in early construction contexts
1391 for (JCTree subtree : ss.selectorTrees) {
1392 if (TreeInfo.isSuperOrSelectorDotSuper(subtree)) {
1393 reportPrologueError(tree, sym);
1394 return;
1395 }
1396 }
1397 }
1398 analyzeSymbol(tree);
1399 } else {
1400 boolean prevLhs = isInLHS;
1401 try {
1402 isInLHS = false;
1403 scan(ss.scanLater);
1404 } finally {
1405 isInLHS = prevLhs;
1406 }
1407 }
1408 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1409 for (JCTree subtree : ss.selectorTrees) {
1410 if (isInstanceField(subtree)) {
1411 // we need to add a proxy for this one
1412 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(subtree));
1413 }
1414 }
1415 }
1416 }
1417
1418 boolean isInstanceField(JCTree tree) {
1419 Symbol sym = TreeInfo.symbolFor(tree);
1420 return (sym != null &&
1421 !sym.isStatic() &&
1422 sym.kind == VAR &&
1423 sym.owner.kind == TYP &&
1424 sym.name != names._this &&
1425 sym.name != names._super &&
1426 isEarlyReference(localEnv, tree, sym));
1427 }
1428
1429 @Override
1430 public void visitNewClass(JCNewClass tree) {
1431 super.visitNewClass(tree);
1432 checkNewClassAndMethRefs(tree, tree.type);
1433 }
1434
1435 @Override
1436 public void visitReference(JCMemberReference tree) {
1437 super.visitReference(tree);
1438 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) {
1439 checkNewClassAndMethRefs(tree, tree.expr.type);
1440 }
1441 }
1442
1443 void checkNewClassAndMethRefs(JCTree tree, Type t) {
1444 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) &&
1445 !t.tsym.isStatic() &&
1446 !t.tsym.isDirectlyOrIndirectlyLocal()) {
1447 reportPrologueError(tree, t.getEnclosingType().tsym);
1448 }
1449 }
1450
1451 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate
1452 * for a proxy local variable later on
1453 */
1454 boolean isInLHS = false;
1455
1456 @Override
1457 public void visitAssign(JCAssign tree) {
1458 boolean previousIsInLHS = isInLHS;
1459 try {
1460 isInLHS = true;
1461 scan(tree.lhs);
1462 } finally {
1463 isInLHS = previousIsInLHS;
1464 }
1465 scan(tree.rhs);
1466 }
1467
1468 @Override
1469 public void visitMethodDef(JCMethodDecl tree) {
1470 // ignore any declarative part, mainly to avoid scanning receiver parameters
1471 scan(tree.body);
1472 }
1473
1474 void analyzeSymbol(JCTree tree) {
1475 Symbol sym = TreeInfo.symbolFor(tree);
1476 // make sure that there is a symbol and it is not static
1477 if (sym == null || sym.isStatic()) {
1478 return;
1479 }
1480 if (isInLHS && !insideLambdaOrClassDef) {
1481 // Check instance field assignments that appear in constructor prologues
1482 if (isEarlyReference(localEnv, tree, sym)) {
1483 // Field may not be inherited from a superclass
1484 if (sym.owner != localEnv.enclClass.sym) {
1485 reportPrologueError(tree, sym);
1486 return;
1487 }
1488 // Field may not have an initializer
1489 if ((sym.flags() & HASINIT) != 0) {
1490 if (!localEnv.enclClass.sym.isValueClass() || !sym.type.hasTag(ARRAY) || !isIndexed) {
1491 reportPrologueError(tree, sym, true);
1492 }
1493 return;
1494 }
1495 // cant reference an instance field before a this constructor
1496 if (allowValueClasses && mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1497 reportPrologueError(tree, sym);
1498 return;
1499 }
1500 }
1501 return;
1502 }
1503 tree = TreeInfo.skipParens(tree);
1504 if (sym.kind == VAR && sym.owner.kind == TYP) {
1505 if (sym.name == names._this || sym.name == names._super) {
1506 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`?
1507 if (TreeInfo.isExplicitThisReference(
1508 types,
1509 (ClassType)localEnv.enclClass.sym.type,
1510 tree)) {
1511 reportPrologueError(tree, sym);
1512 }
1513 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only
1514 if (sym.owner != localEnv.enclClass.sym) {
1515 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) &&
1516 sym.isInheritedIn(localEnv.enclClass.sym, types)) {
1517 /* if we are dealing with a field that doesn't belong to the current class, but the
1518 * field is inherited, this is an error. Unless, the super class is also an outer
1519 * class and the field's qualifier refers to the outer class
1520 */
1521 if (tree.hasTag(IDENT) ||
1522 TreeInfo.isExplicitThisReference(
1523 types,
1524 (ClassType)localEnv.enclClass.sym.type,
1525 ((JCFieldAccess)tree).selected)) {
1526 reportPrologueError(tree, sym);
1527 }
1528 }
1529 } else if (isEarlyReference(localEnv, tree, sym)) {
1530 /* now this is a `proper` instance field of the current class
1531 * references to fields of identity classes which happen to have initializers are
1532 * not allowed in the prologue.
1533 * But it is OK for a field with initializer to refer to another field with initializer,
1534 * so no warning or error if we are analyzing a field initializer.
1535 */
1536 if (insideLambdaOrClassDef ||
1537 (!localEnv.enclClass.sym.isValueClass() &&
1538 (sym.flags_field & HASINIT) != 0 &&
1539 !isInitializer))
1540 reportPrologueError(tree, sym);
1541 // we will need to generate a proxy for this field later on
1542 if (!isInLHS) {
1543 if (!allowValueClasses) {
1544 reportPrologueError(tree, sym);
1545 } else {
1546 if (mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1547 reportPrologueError(tree, sym);
1548 } else if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1549 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym);
1550 }
1551 /* we do nothing in warnings only mode, as in that mode we are simulating what
1552 * the compiler would do in case the constructor code would be in the prologue
1553 * phase
1554 */
1555 }
1556 }
1557 }
1558 }
1559 }
1560 }
1561
1562 /**
1563 * Determine if the symbol appearance constitutes an early reference to the current class.
1564 *
1565 * <p>
1566 * This means the symbol is an instance field, or method, of the current class and it appears
1567 * in an early initialization context of it (i.e., one of its constructor prologues).
1568 *
1569 * @param env The current environment
1570 * @param tree the AST referencing the variable
1571 * @param sym The symbol
1572 */
1573 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) {
1574 if ((sym.kind == VAR || sym.kind == MTH) &&
1575 sym.isMemberOf(env.enclClass.sym, types) &&
1576 ((sym.flags() & STATIC) == 0 ||
1577 (sym.kind == MTH && tree instanceof JCFieldAccess))) {
1578 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance
1579 if (tree instanceof JCFieldAccess fa) {
1580 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected);
1581 } else if (currentClassSym != env.enclClass.sym) {
1582 /* so we are inside a class, CI, in the prologue of an outer class, CO, and the symbol being
1583 * analyzed has no qualifier. So if the symbol is a member of CI the reference is allowed,
1584 * otherwise it is not.
1585 * It could be that the reference to CI's member happens inside CI's own prologue, but that
1586 * will be checked separately, when CI's prologue is analyzed.
1587 */
1588 return !sym.isMemberOf(currentClassSym, types);
1589 }
1590 return true;
1591 }
1592 return false;
1593 }
1594
1595 /* scanner for a select expression, anything that is not a select or identifier
1596 * will be stored for further analysis
1597 */
1598 class SelectScanner extends DeferredAttr.FilterScanner {
1599 JCTree scanLater;
1600 java.util.List<JCTree> selectorTrees = new ArrayList<>();
1601
1602 SelectScanner() {
1603 super(Set.of(IDENT, SELECT, PARENS));
1604 }
1605
1606 @Override
1607 public void visitSelect(JCFieldAccess tree) {
1608 super.visitSelect(tree);
1609 selectorTrees.add(tree.selected);
1610 }
1611
1612 @Override
1613 void skip(JCTree tree) {
1614 scanLater = tree;
1615 }
1616 }
1617 }
1618
1619 public void visitVarDef(JCVariableDecl tree) {
1620 // Local variables have not been entered yet, so we need to do it now:
1621 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1622 if (tree.sym != null) {
1623 // parameters have already been entered
1624 env.info.scope.enter(tree.sym);
1625 } else {
1626 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1627 if (tree.init == null) {
1628 //cannot use 'var' without initializer
1629 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1630 tree.vartype = make.at(tree.pos()).Erroneous();
1631 } else {
1632 Fragment msg = canInferLocalVarType(tree);
1633 if (msg != null) {
1634 //cannot use 'var' with initializer which require an explicit target
1635 //(e.g. lambda, method reference, array initializer).
1636 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1637 tree.vartype = make.at(tree.pos()).Erroneous();
1638 }
1639 }
1640 }
1641 try {
1642 annotate.blockAnnotations();
1643 memberEnter.memberEnter(tree, env);
1644 } finally {
1645 annotate.unblockAnnotations();
1646 }
1647 }
1648 } else {
1649 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env);
1650 }
1651
1652 VarSymbol v = tree.sym;
1653 Lint lint = env.info.lint.augment(v);
1654 Lint prevLint = chk.setLint(lint);
1655
1656 // Check that the variable's declared type is well-formed.
1657 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1658 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1659 (tree.sym.flags() & PARAMETER) != 0;
1660 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1661
1662 try {
1663 v.getConstValue(); // ensure compile-time constant initializer is evaluated
1664 chk.checkDeprecatedAnnotation(tree.pos(), v);
1665
1666 if (tree.init != null) {
1667 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1668 if ((v.flags_field & FINAL) == 0 ||
1669 !memberEnter.needsLazyConstValue(tree.init)) {
1670 // Not a compile-time constant
1671 // Attribute initializer in a new environment
1672 // with the declared variable as owner.
1673 // Check that initializer conforms to variable's declared type.
1674 initEnv.info.lint = lint;
1675 // In order to catch self-references, we set the variable's
1676 // declaration position to maximal possible value, effectively
1677 // marking the variable as undefined.
1678 initEnv.info.enclVar = v;
1679 boolean previousCtorPrologue = initEnv.info.ctorPrologue;
1680 try {
1681 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) {
1682 // strict instance initializer in a value class
1683 initEnv.info.ctorPrologue = true;
1684 }
1685 attribExpr(tree.init, initEnv, v.type);
1686 if (tree.isImplicitlyTyped()) {
1687 //fixup local variable type
1688 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1689 }
1690 } finally {
1691 initEnv.info.ctorPrologue = previousCtorPrologue;
1692 }
1693 }
1694 if (allowValueClasses && v.owner.kind == TYP && !v.isStatic()) {
1695 // strict field initializers are inlined in constructor's prologues
1696 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv,
1697 !v.isStrict() ? PrologueVisitorMode.WARNINGS_ONLY : PrologueVisitorMode.SUPER_CONSTRUCTOR,
1698 true);
1699 ctorPrologueVisitor.scan(tree.init);
1700 }
1701 if (tree.isImplicitlyTyped()) {
1702 setSyntheticVariableType(tree, v.type);
1703 }
1704 }
1705 result = tree.type = v.type;
1706 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1707 if (isNonArgsMethodInObject(v.name)) {
1708 log.error(tree, Errors.IllegalRecordComponentName(v));
1709 }
1710 }
1711 chk.checkRequiresIdentity(tree, env.info.lint);
1712 }
1713 finally {
1714 chk.setLint(prevLint);
1715 }
1716 }
1717
1718 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) {
1719 if (tree.init != null &&
1720 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 &&
1721 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) {
1722 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED;
1723 // Field initializer expression need to be entered.
1724 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym);
1725 annotate.flush();
1726 }
1727 }
1728
1729 private boolean isNonArgsMethodInObject(Name name) {
1730 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1731 if (s.type.getParameterTypes().isEmpty()) {
1732 return true;
1733 }
1734 }
1735 return false;
1736 }
1737
1738 Fragment canInferLocalVarType(JCVariableDecl tree) {
1739 LocalInitScanner lis = new LocalInitScanner();
1740 lis.scan(tree.init);
1741 return lis.badInferenceMsg;
1742 }
1743
1744 static class LocalInitScanner extends TreeScanner {
1745 Fragment badInferenceMsg = null;
1746 boolean needsTarget = true;
1747
1748 @Override
1749 public void visitNewArray(JCNewArray tree) {
1750 if (tree.elemtype == null && needsTarget) {
1751 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1752 }
1753 }
1754
1755 @Override
1756 public void visitLambda(JCLambda tree) {
1757 if (needsTarget) {
1758 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1759 }
1760 }
1761
1762 @Override
1763 public void visitTypeCast(JCTypeCast tree) {
1764 boolean prevNeedsTarget = needsTarget;
1765 try {
1766 needsTarget = false;
1767 super.visitTypeCast(tree);
1768 } finally {
1769 needsTarget = prevNeedsTarget;
1770 }
1771 }
1772
1773 @Override
1774 public void visitReference(JCMemberReference tree) {
1775 if (needsTarget) {
1776 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1777 }
1778 }
1779
1780 @Override
1781 public void visitNewClass(JCNewClass tree) {
1782 boolean prevNeedsTarget = needsTarget;
1783 try {
1784 needsTarget = false;
1785 super.visitNewClass(tree);
1786 } finally {
1787 needsTarget = prevNeedsTarget;
1788 }
1789 }
1790
1791 @Override
1792 public void visitApply(JCMethodInvocation tree) {
1793 boolean prevNeedsTarget = needsTarget;
1794 try {
1795 needsTarget = false;
1796 super.visitApply(tree);
1797 } finally {
1798 needsTarget = prevNeedsTarget;
1799 }
1800 }
1801 }
1802
1803 public void visitSkip(JCSkip tree) {
1804 result = null;
1805 }
1806
1807 public void visitBlock(JCBlock tree) {
1808 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1809 // Block is a static or instance initializer;
1810 // let the owner of the environment be a freshly
1811 // created BLOCK-method.
1812 Symbol fakeOwner =
1813 new MethodSymbol(tree.flags | BLOCK |
1814 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1815 env.info.scope.owner);
1816 final Env<AttrContext> localEnv =
1817 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1818
1819 if ((tree.flags & STATIC) != 0) {
1820 localEnv.info.staticLevel++;
1821 } else {
1822 localEnv.info.instanceInitializerBlock = true;
1823 }
1824 // Attribute all type annotations in the block
1825 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner);
1826 annotate.flush();
1827 attribStats(tree.stats, localEnv);
1828
1829 {
1830 // Store init and clinit type annotations with the ClassSymbol
1831 // to allow output in Gen.normalizeDefs.
1832 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1833 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1834 if ((tree.flags & STATIC) != 0) {
1835 cs.appendClassInitTypeAttributes(tas);
1836 } else {
1837 cs.appendInitTypeAttributes(tas);
1838 }
1839 }
1840 } else {
1841 // Create a new local environment with a local scope.
1842 Env<AttrContext> localEnv =
1843 env.dup(tree, env.info.dup(env.info.scope.dup()));
1844 try {
1845 attribStats(tree.stats, localEnv);
1846 } finally {
1847 localEnv.info.scope.leave();
1848 }
1849 }
1850 result = null;
1851 }
1852
1853 public void visitDoLoop(JCDoWhileLoop tree) {
1854 attribStat(tree.body, env.dup(tree));
1855 attribExpr(tree.cond, env, syms.booleanType);
1856 handleLoopConditionBindings(matchBindings, tree, tree.body);
1857 result = null;
1858 }
1859
1860 public void visitWhileLoop(JCWhileLoop tree) {
1861 attribExpr(tree.cond, env, syms.booleanType);
1862 MatchBindings condBindings = matchBindings;
1863 // include condition's bindings when true in the body:
1864 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1865 try {
1866 attribStat(tree.body, whileEnv.dup(tree));
1867 } finally {
1868 whileEnv.info.scope.leave();
1869 }
1870 handleLoopConditionBindings(condBindings, tree, tree.body);
1871 result = null;
1872 }
1873
1874 public void visitForLoop(JCForLoop tree) {
1875 Env<AttrContext> loopEnv =
1876 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1877 MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1878 try {
1879 attribStats(tree.init, loopEnv);
1880 if (tree.cond != null) {
1881 attribExpr(tree.cond, loopEnv, syms.booleanType);
1882 // include condition's bindings when true in the body and step:
1883 condBindings = matchBindings;
1884 }
1885 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1886 try {
1887 bodyEnv.tree = tree; // before, we were not in loop!
1888 attribStats(tree.step, bodyEnv);
1889 attribStat(tree.body, bodyEnv);
1890 } finally {
1891 bodyEnv.info.scope.leave();
1892 }
1893 result = null;
1894 }
1895 finally {
1896 loopEnv.info.scope.leave();
1897 }
1898 handleLoopConditionBindings(condBindings, tree, tree.body);
1899 }
1900
1901 /**
1902 * Include condition's bindings when false after the loop, if cannot get out of the loop
1903 */
1904 private void handleLoopConditionBindings(MatchBindings condBindings,
1905 JCStatement loop,
1906 JCStatement loopBody) {
1907 if (condBindings.bindingsWhenFalse.nonEmpty() &&
1908 !breaksTo(env, loop, loopBody)) {
1909 addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1910 }
1911 }
1912
1913 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1914 preFlow(body);
1915 return flow.breaksToTree(env, loop, body, make);
1916 }
1917
1918 /**
1919 * Add given bindings to the current scope, unless there's a break to
1920 * an immediately enclosing labeled statement.
1921 */
1922 private void addBindings2Scope(JCStatement introducingStatement,
1923 List<BindingSymbol> bindings) {
1924 if (bindings.isEmpty()) {
1925 return ;
1926 }
1927
1928 var searchEnv = env;
1929 while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1930 labeled.body == introducingStatement) {
1931 if (breaksTo(env, labeled, labeled.body)) {
1932 //breaking to an immediately enclosing labeled statement
1933 return ;
1934 }
1935 searchEnv = searchEnv.next;
1936 introducingStatement = labeled;
1937 }
1938
1939 //include condition's body when false after the while, if cannot get out of the loop
1940 bindings.forEach(env.info.scope::enter);
1941 bindings.forEach(BindingSymbol::preserveBinding);
1942 }
1943
1944 public void visitForeachLoop(JCEnhancedForLoop tree) {
1945 Env<AttrContext> loopEnv =
1946 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1947 try {
1948 //the Formal Parameter of a for-each loop is not in the scope when
1949 //attributing the for-each expression; we mimic this by attributing
1950 //the for-each expression first (against original scope).
1951 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1952 chk.checkNonVoid(tree.pos(), exprType);
1953 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1954 if (elemtype == null) {
1955 // or perhaps expr implements Iterable<T>?
1956 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1957 if (base == null) {
1958 log.error(tree.expr.pos(),
1959 Errors.ForeachNotApplicableToType(exprType,
1960 Fragments.TypeReqArrayOrIterable));
1961 elemtype = types.createErrorType(exprType);
1962 } else {
1963 List<Type> iterableParams = base.allparams();
1964 elemtype = iterableParams.isEmpty()
1965 ? syms.objectType
1966 : types.wildUpperBound(iterableParams.head);
1967
1968 // Check the return type of the method iterator().
1969 // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1970 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1971 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1972 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1973 log.error(tree.pos(),
1974 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1975 }
1976 }
1977 }
1978 if (tree.var.isImplicitlyTyped()) {
1979 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1980 setSyntheticVariableType(tree.var, inferredType);
1981 }
1982 attribStat(tree.var, loopEnv);
1983 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1984 loopEnv.tree = tree; // before, we were not in loop!
1985 attribStat(tree.body, loopEnv);
1986 result = null;
1987 }
1988 finally {
1989 loopEnv.info.scope.leave();
1990 }
1991 }
1992
1993 public void visitLabelled(JCLabeledStatement tree) {
1994 // Check that label is not used in an enclosing statement
1995 Env<AttrContext> env1 = env;
1996 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1997 if (env1.tree.hasTag(LABELLED) &&
1998 ((JCLabeledStatement) env1.tree).label == tree.label) {
1999 log.error(tree.pos(),
2000 Errors.LabelAlreadyInUse(tree.label));
2001 break;
2002 }
2003 env1 = env1.next;
2004 }
2005
2006 attribStat(tree.body, env.dup(tree));
2007 result = null;
2008 }
2009
2010 public void visitSwitch(JCSwitch tree) {
2011 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
2012 attribStats(c.stats, caseEnv);
2013 });
2014 result = null;
2015 }
2016
2017 public void visitSwitchExpression(JCSwitchExpression tree) {
2018 boolean wrongContext = false;
2019
2020 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
2021 PolyKind.STANDALONE : PolyKind.POLY;
2022
2023 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2024 //this means we are returning a poly conditional from void-compatible lambda expression
2025 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
2026 resultInfo = recoveryInfo;
2027 wrongContext = true;
2028 }
2029
2030 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2031 unknownExprInfo :
2032 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
2033
2034 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
2035 ListBuffer<Type> caseTypes = new ListBuffer<>();
2036
2037 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
2038 caseEnv.info.yieldResult = condInfo;
2039 attribStats(c.stats, caseEnv);
2040 new TreeScanner() {
2041 @Override
2042 public void visitYield(JCYield brk) {
2043 if (brk.target == tree) {
2044 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
2045 caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
2046 }
2047 super.visitYield(brk);
2048 }
2049
2050 @Override public void visitClassDef(JCClassDecl tree) {}
2051 @Override public void visitLambda(JCLambda tree) {}
2052 }.scan(c.stats);
2053 });
2054
2055 if (tree.cases.isEmpty()) {
2056 log.error(tree.pos(),
2057 Errors.SwitchExpressionEmpty);
2058 } else if (caseTypes.isEmpty()) {
2059 log.error(tree.pos(),
2060 Errors.SwitchExpressionNoResultExpressions);
2061 }
2062
2063 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
2064
2065 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
2066 }
2067 //where:
2068 CheckContext switchExpressionContext(CheckContext checkContext) {
2069 return new Check.NestedCheckContext(checkContext) {
2070 //this will use enclosing check context to check compatibility of
2071 //subexpression against target type; if we are in a method check context,
2072 //depending on whether boxing is allowed, we could have incompatibilities
2073 @Override
2074 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2075 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
2076 }
2077 };
2078 }
2079
2080 private void handleSwitch(JCTree switchTree,
2081 JCExpression selector,
2082 List<JCCase> cases,
2083 BiConsumer<JCCase, Env<AttrContext>> attribCase) {
2084 Type seltype = attribExpr(selector, env);
2085 Type seltypeUnboxed = types.unboxedTypeOrType(seltype);
2086
2087 Env<AttrContext> switchEnv =
2088 env.dup(switchTree, env.info.dup(env.info.scope.dup()));
2089
2090 try {
2091 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
2092 boolean stringSwitch = types.isSameType(seltype, syms.stringType);
2093 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType);
2094 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
2095 boolean intSwitch = types.isAssignable(seltype, syms.intType);
2096 boolean patternSwitch;
2097 if (seltype.isPrimitive() && !intSwitch) {
2098 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
2099 patternSwitch = true;
2100 }
2101 if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
2102 !intSwitch) {
2103 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
2104 patternSwitch = true;
2105 } else {
2106 patternSwitch = cases.stream()
2107 .flatMap(c -> c.labels.stream())
2108 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
2109 TreeInfo.isNullCaseLabel(l));
2110 }
2111
2112 // Attribute all cases and
2113 // check that there are no duplicate case labels or default clauses.
2114 Set<Object> constants = new HashSet<>(); // The set of case constants.
2115 boolean hasDefault = false; // Is there a default label?
2116 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
2117 boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
2118 boolean hasNullPattern = false; // Is there a null pattern?
2119 CaseTree.CaseKind caseKind = null;
2120 boolean wasError = false;
2121 JCCaseLabel unconditionalCaseLabel = null;
2122 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
2123 JCCase c = l.head;
2124 if (caseKind == null) {
2125 caseKind = c.caseKind;
2126 } else if (caseKind != c.caseKind && !wasError) {
2127 log.error(c.pos(),
2128 Errors.SwitchMixingCaseTypes);
2129 wasError = true;
2130 }
2131 MatchBindings currentBindings = null;
2132 MatchBindings guardBindings = null;
2133 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
2134 JCCaseLabel label = labels.head;
2135 if (label instanceof JCConstantCaseLabel constLabel) {
2136 JCExpression expr = constLabel.expr;
2137 if (TreeInfo.isNull(expr)) {
2138 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
2139 if (hasNullPattern) {
2140 log.error(label.pos(), Errors.DuplicateCaseLabel);
2141 }
2142 hasNullPattern = true;
2143 attribExpr(expr, switchEnv, seltype);
2144 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
2145 } else if (enumSwitch) {
2146 Symbol sym = enumConstant(expr, seltype);
2147 if (sym == null) {
2148 if (allowPatternSwitch) {
2149 attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2150 Symbol enumSym = TreeInfo.symbol(expr);
2151 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
2152 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
2153 } else if (!constants.add(enumSym)) {
2154 log.error(label.pos(), Errors.DuplicateCaseLabel);
2155 }
2156 } else {
2157 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
2158 }
2159 } else if (!constants.add(sym)) {
2160 log.error(label.pos(), Errors.DuplicateCaseLabel);
2161 }
2162 } else if (errorEnumSwitch) {
2163 //error recovery: the selector is erroneous, and all the case labels
2164 //are identifiers. This could be an enum switch - don't report resolve
2165 //error for the case label:
2166 var prevResolveHelper = rs.basicLogResolveHelper;
2167 try {
2168 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
2169 attribExpr(expr, switchEnv, seltype);
2170 } finally {
2171 rs.basicLogResolveHelper = prevResolveHelper;
2172 }
2173 } else {
2174 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2175 if (!pattype.hasTag(ERROR)) {
2176 if (pattype.constValue() == null) {
2177 Symbol s = TreeInfo.symbol(expr);
2178 if (s != null && s.kind == TYP) {
2179 log.error(expr.pos(),
2180 Errors.PatternExpected);
2181 } else if (s == null || !s.isEnum()) {
2182 log.error(expr.pos(),
2183 (stringSwitch ? Errors.StringConstReq
2184 : intSwitch ? Errors.ConstExprReq
2185 : Errors.PatternOrEnumReq));
2186 } else if (!constants.add(s)) {
2187 log.error(label.pos(), Errors.DuplicateCaseLabel);
2188 }
2189 }
2190 else {
2191 boolean isLongFloatDoubleOrBooleanConstant =
2192 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN);
2193 if (isLongFloatDoubleOrBooleanConstant) {
2194 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS);
2195 }
2196 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) {
2197 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
2198 } else if (!constants.add(pattype.constValue())) {
2199 log.error(c.pos(), Errors.DuplicateCaseLabel);
2200 }
2201 }
2202 }
2203 }
2204 } else if (label instanceof JCDefaultCaseLabel def) {
2205 if (hasDefault) {
2206 log.error(label.pos(), Errors.DuplicateDefaultLabel);
2207 } else if (hasUnconditionalPattern) {
2208 log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
2209 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2210 log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
2211 }
2212 hasDefault = true;
2213 matchBindings = MatchBindingsComputer.EMPTY;
2214 } else if (label instanceof JCPatternCaseLabel patternlabel) {
2215 //pattern
2216 JCPattern pat = patternlabel.pat;
2217 attribExpr(pat, switchEnv, seltype);
2218 Type primaryType = TreeInfo.primaryPatternType(pat);
2219
2220 if (primaryType.isPrimitive()) {
2221 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
2222 } else if (!primaryType.hasTag(TYPEVAR)) {
2223 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
2224 }
2225 checkCastablePattern(pat.pos(), seltype, primaryType);
2226 Type patternType = types.erasure(primaryType);
2227 JCExpression guard = c.guard;
2228 if (guardBindings == null && guard != null) {
2229 MatchBindings afterPattern = matchBindings;
2230 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
2231 try {
2232 attribExpr(guard, bodyEnv, syms.booleanType);
2233 } finally {
2234 bodyEnv.info.scope.leave();
2235 }
2236
2237 guardBindings = matchBindings;
2238 matchBindings = afterPattern;
2239
2240 if (TreeInfo.isBooleanWithValue(guard, 0)) {
2241 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
2242 }
2243 }
2244 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
2245 boolean unconditional =
2246 unguarded &&
2247 !patternType.isErroneous() &&
2248 types.isUnconditionallyExactTypeBased(seltype, patternType);
2249 if (unconditional) {
2250 if (hasUnconditionalPattern) {
2251 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
2252 } else if (hasDefault) {
2253 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
2254 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2255 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
2256 }
2257 hasUnconditionalPattern = true;
2258 unconditionalCaseLabel = label;
2259 }
2260 lastPatternErroneous = patternType.isErroneous();
2261 } else {
2262 Assert.error();
2263 }
2264 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
2265 }
2266
2267 if (guardBindings != null) {
2268 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
2269 }
2270
2271 Env<AttrContext> caseEnv =
2272 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
2273 try {
2274 attribCase.accept(c, caseEnv);
2275 } finally {
2276 caseEnv.info.scope.leave();
2277 }
2278 addVars(c.stats, switchEnv.info.scope);
2279
2280 preFlow(c);
2281 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
2282 }
2283 if (patternSwitch) {
2284 chk.checkSwitchCaseStructure(cases);
2285 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
2286 }
2287 if (switchTree.hasTag(SWITCH)) {
2288 ((JCSwitch) switchTree).hasUnconditionalPattern =
2289 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2290 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
2291 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
2292 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
2293 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2294 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
2295 } else {
2296 Assert.error(switchTree.getTag().name());
2297 }
2298 } finally {
2299 switchEnv.info.scope.leave();
2300 }
2301 }
2302 // where
2303 private ResultInfo caseLabelResultInfo(Type seltype) {
2304 return new ResultInfo(KindSelector.VAL_TYP,
2305 !seltype.hasTag(ERROR) ? seltype
2306 : Type.noType);
2307 }
2308 /** Add any variables defined in stats to the switch scope. */
2309 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
2310 for (;stats.nonEmpty(); stats = stats.tail) {
2311 JCTree stat = stats.head;
2312 if (stat.hasTag(VARDEF))
2313 switchScope.enter(((JCVariableDecl) stat).sym);
2314 }
2315 }
2316 // where
2317 /** Return the selected enumeration constant symbol, or null. */
2318 private Symbol enumConstant(JCTree tree, Type enumType) {
2319 if (tree.hasTag(IDENT)) {
2320 JCIdent ident = (JCIdent)tree;
2321 Name name = ident.name;
2322 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
2323 if (sym.kind == VAR) {
2324 Symbol s = ident.sym = sym;
2325 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
2326 ident.type = s.type;
2327 return ((s.flags_field & Flags.ENUM) == 0)
2328 ? null : s;
2329 }
2330 }
2331 }
2332 return null;
2333 }
2334
2335 public void visitSynchronized(JCSynchronized tree) {
2336 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
2337 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) {
2338 log.warning(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
2339 }
2340 attribStat(tree.body, env);
2341 result = null;
2342 }
2343
2344 public void visitTry(JCTry tree) {
2345 // Create a new local environment with a local
2346 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
2347 try {
2348 boolean isTryWithResource = tree.resources.nonEmpty();
2349 // Create a nested environment for attributing the try block if needed
2350 Env<AttrContext> tryEnv = isTryWithResource ?
2351 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
2352 localEnv;
2353 try {
2354 // Attribute resource declarations
2355 for (JCTree resource : tree.resources) {
2356 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
2357 @Override
2358 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2359 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
2360 }
2361 };
2362 ResultInfo twrResult =
2363 new ResultInfo(KindSelector.VAR,
2364 syms.autoCloseableType,
2365 twrContext);
2366 if (resource.hasTag(VARDEF)) {
2367 attribStat(resource, tryEnv);
2368 twrResult.check(resource, resource.type);
2369
2370 //check that resource type cannot throw InterruptedException
2371 checkAutoCloseable(localEnv, resource, true);
2372
2373 VarSymbol var = ((JCVariableDecl) resource).sym;
2374
2375 var.flags_field |= Flags.FINAL;
2376 var.setData(ElementKind.RESOURCE_VARIABLE);
2377 } else {
2378 attribTree(resource, tryEnv, twrResult);
2379 }
2380 }
2381 // Attribute body
2382 attribStat(tree.body, tryEnv);
2383 } finally {
2384 if (isTryWithResource)
2385 tryEnv.info.scope.leave();
2386 }
2387
2388 // Attribute catch clauses
2389 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2390 JCCatch c = l.head;
2391 Env<AttrContext> catchEnv =
2392 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2393 try {
2394 Type ctype = attribStat(c.param, catchEnv);
2395 if (TreeInfo.isMultiCatch(c)) {
2396 //multi-catch parameter is implicitly marked as final
2397 c.param.sym.flags_field |= FINAL | UNION;
2398 }
2399 if (c.param.sym.kind == VAR) {
2400 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2401 }
2402 chk.checkType(c.param.vartype.pos(),
2403 chk.checkClassType(c.param.vartype.pos(), ctype),
2404 syms.throwableType);
2405 attribStat(c.body, catchEnv);
2406 } finally {
2407 catchEnv.info.scope.leave();
2408 }
2409 }
2410
2411 // Attribute finalizer
2412 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2413 result = null;
2414 }
2415 finally {
2416 localEnv.info.scope.leave();
2417 }
2418 }
2419
2420 void checkAutoCloseable(Env<AttrContext> env, JCTree tree, boolean useSite) {
2421 DiagnosticPosition pos = tree.pos();
2422 Type resource = tree.type;
2423 if (!resource.isErroneous() &&
2424 types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2425 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2426 Symbol close = syms.noSymbol;
2427 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
2428 try {
2429 close = rs.resolveQualifiedMethod(pos,
2430 env,
2431 types.skipTypeVars(resource, false),
2432 names.close,
2433 List.nil(),
2434 List.nil());
2435 }
2436 finally {
2437 log.popDiagnosticHandler(discardHandler);
2438 }
2439 if (close.kind == MTH &&
2440 (useSite || close.owner != syms.autoCloseableType.tsym) &&
2441 ((MethodSymbol)close).binaryOverrides(syms.autoCloseableClose, resource.tsym, types) &&
2442 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) {
2443 if (!useSite && close.owner == resource.tsym) {
2444 log.warning(TreeInfo.diagnosticPositionFor(close, tree),
2445 LintWarnings.TryResourceCanThrowInterruptedExc(resource));
2446 } else {
2447 log.warning(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource));
2448 }
2449 }
2450 }
2451 }
2452
2453 public void visitConditional(JCConditional tree) {
2454 Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2455 MatchBindings condBindings = matchBindings;
2456
2457 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2458 isBooleanOrNumeric(env, tree)) ?
2459 PolyKind.STANDALONE : PolyKind.POLY;
2460
2461 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2462 //this means we are returning a poly conditional from void-compatible lambda expression
2463 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2464 result = tree.type = types.createErrorType(resultInfo.pt);
2465 return;
2466 }
2467
2468 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2469 unknownExprInfo :
2470 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2471
2472
2473 // x ? y : z
2474 // include x's bindings when true in y
2475 // include x's bindings when false in z
2476
2477 Type truetype;
2478 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2479 try {
2480 truetype = attribTree(tree.truepart, trueEnv, condInfo);
2481 } finally {
2482 trueEnv.info.scope.leave();
2483 }
2484
2485 MatchBindings trueBindings = matchBindings;
2486
2487 Type falsetype;
2488 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2489 try {
2490 falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2491 } finally {
2492 falseEnv.info.scope.leave();
2493 }
2494
2495 MatchBindings falseBindings = matchBindings;
2496
2497 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2498 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2499 List.of(truetype, falsetype)) : pt();
2500 if (condtype.constValue() != null &&
2501 truetype.constValue() != null &&
2502 falsetype.constValue() != null &&
2503 !owntype.hasTag(NONE)) {
2504 //constant folding
2505 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2506 }
2507 result = check(tree, owntype, KindSelector.VAL, resultInfo);
2508 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2509 }
2510 //where
2511 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2512 switch (tree.getTag()) {
2513 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2514 ((JCLiteral)tree).typetag == BOOLEAN ||
2515 ((JCLiteral)tree).typetag == BOT;
2516 case LAMBDA: case REFERENCE: return false;
2517 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2518 case CONDEXPR:
2519 JCConditional condTree = (JCConditional)tree;
2520 return isBooleanOrNumeric(env, condTree.truepart) &&
2521 isBooleanOrNumeric(env, condTree.falsepart);
2522 case APPLY:
2523 JCMethodInvocation speculativeMethodTree =
2524 (JCMethodInvocation)deferredAttr.attribSpeculative(
2525 tree, env, unknownExprInfo,
2526 argumentAttr.withLocalCacheContext());
2527 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2528 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2529 env.enclClass.type :
2530 ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2531 Type owntype = types.memberType(receiverType, msym).getReturnType();
2532 return primitiveOrBoxed(owntype);
2533 case NEWCLASS:
2534 JCExpression className =
2535 removeClassParams.translate(((JCNewClass)tree).clazz);
2536 JCExpression speculativeNewClassTree =
2537 (JCExpression)deferredAttr.attribSpeculative(
2538 className, env, unknownTypeInfo,
2539 argumentAttr.withLocalCacheContext());
2540 return primitiveOrBoxed(speculativeNewClassTree.type);
2541 default:
2542 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2543 argumentAttr.withLocalCacheContext()).type;
2544 return primitiveOrBoxed(speculativeType);
2545 }
2546 }
2547 //where
2548 boolean primitiveOrBoxed(Type t) {
2549 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2550 }
2551
2552 TreeTranslator removeClassParams = new TreeTranslator() {
2553 @Override
2554 public void visitTypeApply(JCTypeApply tree) {
2555 result = translate(tree.clazz);
2556 }
2557 };
2558
2559 CheckContext conditionalContext(CheckContext checkContext) {
2560 return new Check.NestedCheckContext(checkContext) {
2561 //this will use enclosing check context to check compatibility of
2562 //subexpression against target type; if we are in a method check context,
2563 //depending on whether boxing is allowed, we could have incompatibilities
2564 @Override
2565 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2566 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2567 }
2568 };
2569 }
2570
2571 /** Compute the type of a conditional expression, after
2572 * checking that it exists. See JLS 15.25. Does not take into
2573 * account the special case where condition and both arms
2574 * are constants.
2575 *
2576 * @param pos The source position to be used for error
2577 * diagnostics.
2578 * @param thentype The type of the expression's then-part.
2579 * @param elsetype The type of the expression's else-part.
2580 */
2581 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2582 if (condTypes.isEmpty()) {
2583 return syms.objectType; //TODO: how to handle?
2584 }
2585 Type first = condTypes.head;
2586 // If same type, that is the result
2587 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2588 return first.baseType();
2589
2590 List<Type> unboxedTypes = condTypes.stream()
2591 .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2592 .collect(List.collector());
2593
2594 // Otherwise, if both arms can be converted to a numeric
2595 // type, return the least numeric type that fits both arms
2596 // (i.e. return larger of the two, or return int if one
2597 // arm is short, the other is char).
2598 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2599 // If one arm has an integer subrange type (i.e., byte,
2600 // short, or char), and the other is an integer constant
2601 // that fits into the subrange, return the subrange type.
2602 for (Type type : unboxedTypes) {
2603 if (!type.getTag().isStrictSubRangeOf(INT)) {
2604 continue;
2605 }
2606 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2607 return type.baseType();
2608 }
2609
2610 for (TypeTag tag : primitiveTags) {
2611 Type candidate = syms.typeOfTag[tag.ordinal()];
2612 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2613 return candidate;
2614 }
2615 }
2616 }
2617
2618 // Those were all the cases that could result in a primitive
2619 condTypes = condTypes.stream()
2620 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2621 .collect(List.collector());
2622
2623 for (Type type : condTypes) {
2624 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2625 return type.baseType();
2626 }
2627
2628 Iterator<DiagnosticPosition> posIt = positions.iterator();
2629
2630 condTypes = condTypes.stream()
2631 .map(t -> chk.checkNonVoid(posIt.next(), t))
2632 .collect(List.collector());
2633
2634 // both are known to be reference types. The result is
2635 // lub(thentype,elsetype). This cannot fail, as it will
2636 // always be possible to infer "Object" if nothing better.
2637 return types.lub(condTypes.stream()
2638 .map(t -> t.baseType())
2639 .filter(t -> !t.hasTag(BOT))
2640 .collect(List.collector()));
2641 }
2642
2643 static final TypeTag[] primitiveTags = new TypeTag[]{
2644 BYTE,
2645 CHAR,
2646 SHORT,
2647 INT,
2648 LONG,
2649 FLOAT,
2650 DOUBLE,
2651 BOOLEAN,
2652 };
2653
2654 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2655 return bindingEnv(env, env.tree, bindings);
2656 }
2657
2658 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2659 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2660 bindings.forEach(env1.info.scope::enter);
2661 return env1;
2662 }
2663
2664 public void visitIf(JCIf tree) {
2665 attribExpr(tree.cond, env, syms.booleanType);
2666
2667 // if (x) { y } [ else z ]
2668 // include x's bindings when true in y
2669 // include x's bindings when false in z
2670
2671 MatchBindings condBindings = matchBindings;
2672 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2673
2674 try {
2675 attribStat(tree.thenpart, thenEnv);
2676 } finally {
2677 thenEnv.info.scope.leave();
2678 }
2679
2680 preFlow(tree.thenpart);
2681 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2682 boolean aliveAfterElse;
2683
2684 if (tree.elsepart != null) {
2685 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2686 try {
2687 attribStat(tree.elsepart, elseEnv);
2688 } finally {
2689 elseEnv.info.scope.leave();
2690 }
2691 preFlow(tree.elsepart);
2692 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2693 } else {
2694 aliveAfterElse = true;
2695 }
2696
2697 chk.checkEmptyIf(tree);
2698
2699 List<BindingSymbol> afterIfBindings = List.nil();
2700
2701 if (aliveAfterThen && !aliveAfterElse) {
2702 afterIfBindings = condBindings.bindingsWhenTrue;
2703 } else if (aliveAfterElse && !aliveAfterThen) {
2704 afterIfBindings = condBindings.bindingsWhenFalse;
2705 }
2706
2707 addBindings2Scope(tree, afterIfBindings);
2708
2709 result = null;
2710 }
2711
2712 void preFlow(JCTree tree) {
2713 attrRecover.doRecovery();
2714 new PostAttrAnalyzer() {
2715 @Override
2716 public void scan(JCTree tree) {
2717 if (tree == null ||
2718 (tree.type != null &&
2719 tree.type == Type.stuckType)) {
2720 //don't touch stuck expressions!
2721 return;
2722 }
2723 super.scan(tree);
2724 }
2725
2726 @Override
2727 public void visitClassDef(JCClassDecl that) {
2728 if (that.sym != null) {
2729 // Method preFlow shouldn't visit class definitions
2730 // that have not been entered and attributed.
2731 // See JDK-8254557 and JDK-8203277 for more details.
2732 super.visitClassDef(that);
2733 }
2734 }
2735
2736 @Override
2737 public void visitLambda(JCLambda that) {
2738 if (that.type != null) {
2739 // Method preFlow shouldn't visit lambda expressions
2740 // that have not been entered and attributed.
2741 // See JDK-8254557 and JDK-8203277 for more details.
2742 super.visitLambda(that);
2743 }
2744 }
2745 }.scan(tree);
2746 }
2747
2748 public void visitExec(JCExpressionStatement tree) {
2749 //a fresh environment is required for 292 inference to work properly ---
2750 //see Infer.instantiatePolymorphicSignatureInstance()
2751 Env<AttrContext> localEnv = env.dup(tree);
2752 attribExpr(tree.expr, localEnv);
2753 result = null;
2754 }
2755
2756 public void visitBreak(JCBreak tree) {
2757 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2758 result = null;
2759 }
2760
2761 public void visitYield(JCYield tree) {
2762 if (env.info.yieldResult != null) {
2763 attribTree(tree.value, env, env.info.yieldResult);
2764 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2765 } else {
2766 log.error(tree.pos(), tree.value.hasTag(PARENS)
2767 ? Errors.NoSwitchExpressionQualify
2768 : Errors.NoSwitchExpression);
2769 attribTree(tree.value, env, unknownExprInfo);
2770 }
2771 result = null;
2772 }
2773
2774 public void visitContinue(JCContinue tree) {
2775 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2776 result = null;
2777 }
2778 //where
2779 /** Return the target of a break, continue or yield statement,
2780 * if it exists, report an error if not.
2781 * Note: The target of a labelled break or continue is the
2782 * (non-labelled) statement tree referred to by the label,
2783 * not the tree representing the labelled statement itself.
2784 *
2785 * @param pos The position to be used for error diagnostics
2786 * @param tag The tag of the jump statement. This is either
2787 * Tree.BREAK or Tree.CONTINUE.
2788 * @param label The label of the jump statement, or null if no
2789 * label is given.
2790 * @param env The environment current at the jump statement.
2791 */
2792 private JCTree findJumpTarget(DiagnosticPosition pos,
2793 JCTree.Tag tag,
2794 Name label,
2795 Env<AttrContext> env) {
2796 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2797
2798 if (jumpTarget.snd != null) {
2799 log.error(pos, jumpTarget.snd);
2800 }
2801
2802 return jumpTarget.fst;
2803 }
2804 /** Return the target of a break or continue statement, if it exists,
2805 * report an error if not.
2806 * Note: The target of a labelled break or continue is the
2807 * (non-labelled) statement tree referred to by the label,
2808 * not the tree representing the labelled statement itself.
2809 *
2810 * @param tag The tag of the jump statement. This is either
2811 * Tree.BREAK or Tree.CONTINUE.
2812 * @param label The label of the jump statement, or null if no
2813 * label is given.
2814 * @param env The environment current at the jump statement.
2815 */
2816 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2817 Name label,
2818 Env<AttrContext> env) {
2819 // Search environments outwards from the point of jump.
2820 Env<AttrContext> env1 = env;
2821 JCDiagnostic.Error pendingError = null;
2822 LOOP:
2823 while (env1 != null) {
2824 switch (env1.tree.getTag()) {
2825 case LABELLED:
2826 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2827 if (label == labelled.label) {
2828 // If jump is a continue, check that target is a loop.
2829 if (tag == CONTINUE) {
2830 if (!labelled.body.hasTag(DOLOOP) &&
2831 !labelled.body.hasTag(WHILELOOP) &&
2832 !labelled.body.hasTag(FORLOOP) &&
2833 !labelled.body.hasTag(FOREACHLOOP)) {
2834 pendingError = Errors.NotLoopLabel(label);
2835 }
2836 // Found labelled statement target, now go inwards
2837 // to next non-labelled tree.
2838 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2839 } else {
2840 return Pair.of(labelled, pendingError);
2841 }
2842 }
2843 break;
2844 case DOLOOP:
2845 case WHILELOOP:
2846 case FORLOOP:
2847 case FOREACHLOOP:
2848 if (label == null) return Pair.of(env1.tree, pendingError);
2849 break;
2850 case SWITCH:
2851 if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2852 break;
2853 case SWITCH_EXPRESSION:
2854 if (tag == YIELD) {
2855 return Pair.of(env1.tree, null);
2856 } else if (tag == BREAK) {
2857 pendingError = Errors.BreakOutsideSwitchExpression;
2858 } else {
2859 pendingError = Errors.ContinueOutsideSwitchExpression;
2860 }
2861 break;
2862 case LAMBDA:
2863 case METHODDEF:
2864 case CLASSDEF:
2865 break LOOP;
2866 default:
2867 }
2868 env1 = env1.next;
2869 }
2870 if (label != null)
2871 return Pair.of(null, Errors.UndefLabel(label));
2872 else if (pendingError != null)
2873 return Pair.of(null, pendingError);
2874 else if (tag == CONTINUE)
2875 return Pair.of(null, Errors.ContOutsideLoop);
2876 else
2877 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2878 }
2879
2880 public void visitReturn(JCReturn tree) {
2881 // Check that there is an enclosing method which is
2882 // nested within than the enclosing class.
2883 if (env.info.returnResult == null) {
2884 log.error(tree.pos(), Errors.RetOutsideMeth);
2885 } else if (env.info.yieldResult != null) {
2886 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2887 if (tree.expr != null) {
2888 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2889 }
2890 } else if (!env.info.isLambda &&
2891 env.enclMethod != null &&
2892 TreeInfo.isCompactConstructor(env.enclMethod)) {
2893 log.error(env.enclMethod,
2894 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2895 } else {
2896 // Attribute return expression, if it exists, and check that
2897 // it conforms to result type of enclosing method.
2898 if (tree.expr != null) {
2899 if (env.info.returnResult.pt.hasTag(VOID)) {
2900 env.info.returnResult.checkContext.report(tree.expr.pos(),
2901 diags.fragment(Fragments.UnexpectedRetVal));
2902 }
2903 attribTree(tree.expr, env, env.info.returnResult);
2904 } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2905 !env.info.returnResult.pt.hasTag(NONE)) {
2906 env.info.returnResult.checkContext.report(tree.pos(),
2907 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2908 }
2909 }
2910 result = null;
2911 }
2912
2913 public void visitThrow(JCThrow tree) {
2914 Type owntype = attribExpr(tree.expr, env, Type.noType);
2915 chk.checkType(tree, owntype, syms.throwableType);
2916 result = null;
2917 }
2918
2919 public void visitAssert(JCAssert tree) {
2920 attribExpr(tree.cond, env, syms.booleanType);
2921 if (tree.detail != null) {
2922 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2923 }
2924 result = null;
2925 }
2926
2927 /** Visitor method for method invocations.
2928 * NOTE: The method part of an application will have in its type field
2929 * the return type of the method, not the method's type itself!
2930 */
2931 public void visitApply(JCMethodInvocation tree) {
2932 // The local environment of a method application is
2933 // a new environment nested in the current one.
2934 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2935
2936 // The types of the actual method arguments.
2937 List<Type> argtypes;
2938
2939 // The types of the actual method type arguments.
2940 List<Type> typeargtypes = null;
2941
2942 Name methName = TreeInfo.name(tree.meth);
2943
2944 boolean isConstructorCall =
2945 methName == names._this || methName == names._super;
2946
2947 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2948 if (isConstructorCall) {
2949
2950 // Attribute arguments, yielding list of argument types.
2951 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2952 argtypes = argtypesBuf.toList();
2953 typeargtypes = attribTypes(tree.typeargs, localEnv);
2954
2955 // Done with this()/super() parameters. End of constructor prologue.
2956 env.info.ctorPrologue = false;
2957
2958 // Variable `site' points to the class in which the called
2959 // constructor is defined.
2960 Type site = env.enclClass.sym.type;
2961 if (methName == names._super) {
2962 if (site == syms.objectType) {
2963 log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2964 site = types.createErrorType(syms.objectType);
2965 } else {
2966 site = types.supertype(site);
2967 }
2968 }
2969
2970 if (site.hasTag(CLASS)) {
2971 Type encl = site.getEnclosingType();
2972 while (encl != null && encl.hasTag(TYPEVAR))
2973 encl = encl.getUpperBound();
2974 if (encl.hasTag(CLASS)) {
2975 // we are calling a nested class
2976
2977 if (tree.meth.hasTag(SELECT)) {
2978 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2979
2980 // We are seeing a prefixed call, of the form
2981 // <expr>.super(...).
2982 // Check that the prefix expression conforms
2983 // to the outer instance type of the class.
2984 chk.checkRefType(qualifier.pos(),
2985 attribExpr(qualifier, localEnv,
2986 encl));
2987 }
2988 } else if (tree.meth.hasTag(SELECT)) {
2989 log.error(tree.meth.pos(),
2990 Errors.IllegalQualNotIcls(site.tsym));
2991 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2992 }
2993
2994 if (tree.meth.hasTag(IDENT)) {
2995 // non-qualified super(...) call; check whether explicit constructor
2996 // invocation is well-formed. If the super class is an inner class,
2997 // make sure that an appropriate implicit qualifier exists. If the super
2998 // class is a local class, make sure that the current class is defined
2999 // in the same context as the local class.
3000 checkNewInnerClass(tree.meth.pos(), localEnv, site, true);
3001 }
3002
3003 // if we're calling a java.lang.Enum constructor,
3004 // prefix the implicit String and int parameters
3005 if (site.tsym == syms.enumSym)
3006 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
3007
3008 // Resolve the called constructor under the assumption
3009 // that we are referring to a superclass instance of the
3010 // current instance (JLS ???).
3011 boolean selectSuperPrev = localEnv.info.selectSuper;
3012 localEnv.info.selectSuper = true;
3013 localEnv.info.pendingResolutionPhase = null;
3014 Symbol sym = rs.resolveConstructor(
3015 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
3016 localEnv.info.selectSuper = selectSuperPrev;
3017
3018 // Set method symbol to resolved constructor...
3019 TreeInfo.setSymbol(tree.meth, sym);
3020
3021 // ...and check that it is legal in the current context.
3022 // (this will also set the tree's type)
3023 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
3024 checkId(tree.meth, site, sym, localEnv,
3025 new ResultInfo(kind, mpt));
3026 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
3027 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
3028 }
3029 // Otherwise, `site' is an error type and we do nothing
3030 result = tree.type = syms.voidType;
3031 } else {
3032 // Otherwise, we are seeing a regular method call.
3033 // Attribute the arguments, yielding list of argument types, ...
3034 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3035 argtypes = argtypesBuf.toList();
3036 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
3037
3038 // ... and attribute the method using as a prototype a methodtype
3039 // whose formal argument types is exactly the list of actual
3040 // arguments (this will also set the method symbol).
3041 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
3042 localEnv.info.pendingResolutionPhase = null;
3043 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
3044
3045 // Compute the result type.
3046 Type restype = mtype.getReturnType();
3047 if (restype.hasTag(WILDCARD))
3048 throw new AssertionError(mtype);
3049
3050 Type qualifier = (tree.meth.hasTag(SELECT))
3051 ? ((JCFieldAccess) tree.meth).selected.type
3052 : env.enclClass.sym.type;
3053 Symbol msym = TreeInfo.symbol(tree.meth);
3054 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
3055
3056 chk.checkRefTypes(tree.typeargs, typeargtypes);
3057
3058 // Check that value of resulting type is admissible in the
3059 // current context. Also, capture the return type
3060 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
3061 result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
3062 }
3063 chk.checkRequiresIdentity(tree, env.info.lint);
3064 chk.validate(tree.typeargs, localEnv);
3065 }
3066 //where
3067 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
3068 if (msym != null &&
3069 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
3070 methodName == names.getClass &&
3071 argtypes.isEmpty()) {
3072 // as a special case, x.getClass() has type Class<? extends |X|>
3073 return new ClassType(restype.getEnclosingType(),
3074 List.of(new WildcardType(types.erasure(qualifierType.baseType()),
3075 BoundKind.EXTENDS,
3076 syms.boundClass)),
3077 restype.tsym,
3078 restype.getMetadata());
3079 } else if (msym != null &&
3080 msym.owner == syms.arrayClass &&
3081 methodName == names.clone &&
3082 types.isArray(qualifierType)) {
3083 // as a special case, array.clone() has a result that is
3084 // the same as static type of the array being cloned
3085 return qualifierType;
3086 } else {
3087 return restype;
3088 }
3089 }
3090
3091 /** Obtain a method type with given argument types.
3092 */
3093 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
3094 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
3095 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
3096 }
3097
3098 public void visitNewClass(final JCNewClass tree) {
3099 Type owntype = types.createErrorType(tree.type);
3100
3101 // The local environment of a class creation is
3102 // a new environment nested in the current one.
3103 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
3104
3105 // The anonymous inner class definition of the new expression,
3106 // if one is defined by it.
3107 JCClassDecl cdef = tree.def;
3108
3109 // If enclosing class is given, attribute it, and
3110 // complete class name to be fully qualified
3111 JCExpression clazz = tree.clazz; // Class field following new
3112 JCExpression clazzid; // Identifier in class field
3113 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid
3114 annoclazzid = null;
3115
3116 if (clazz.hasTag(TYPEAPPLY)) {
3117 clazzid = ((JCTypeApply) clazz).clazz;
3118 if (clazzid.hasTag(ANNOTATED_TYPE)) {
3119 annoclazzid = (JCAnnotatedType) clazzid;
3120 clazzid = annoclazzid.underlyingType;
3121 }
3122 } else {
3123 if (clazz.hasTag(ANNOTATED_TYPE)) {
3124 annoclazzid = (JCAnnotatedType) clazz;
3125 clazzid = annoclazzid.underlyingType;
3126 } else {
3127 clazzid = clazz;
3128 }
3129 }
3130
3131 JCExpression clazzid1 = clazzid; // The same in fully qualified form
3132
3133 if (tree.encl != null) {
3134 // We are seeing a qualified new, of the form
3135 // <expr>.new C <...> (...) ...
3136 // In this case, we let clazz stand for the name of the
3137 // allocated class C prefixed with the type of the qualifier
3138 // expression, so that we can
3139 // resolve it with standard techniques later. I.e., if
3140 // <expr> has type T, then <expr>.new C <...> (...)
3141 // yields a clazz T.C.
3142 Type encltype = chk.checkRefType(tree.encl.pos(),
3143 attribExpr(tree.encl, env));
3144 // TODO 308: in <expr>.new C, do we also want to add the type annotations
3145 // from expr to the combined type, or not? Yes, do this.
3146 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
3147 ((JCIdent) clazzid).name);
3148
3149 EndPosTable endPosTable = this.env.toplevel.endPositions;
3150 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
3151 if (clazz.hasTag(ANNOTATED_TYPE)) {
3152 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
3153 List<JCAnnotation> annos = annoType.annotations;
3154
3155 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
3156 clazzid1 = make.at(tree.pos).
3157 TypeApply(clazzid1,
3158 ((JCTypeApply) clazz).arguments);
3159 }
3160
3161 clazzid1 = make.at(tree.pos).
3162 AnnotatedType(annos, clazzid1);
3163 } else if (clazz.hasTag(TYPEAPPLY)) {
3164 clazzid1 = make.at(tree.pos).
3165 TypeApply(clazzid1,
3166 ((JCTypeApply) clazz).arguments);
3167 }
3168
3169 clazz = clazzid1;
3170 }
3171
3172 // Attribute clazz expression and store
3173 // symbol + type back into the attributed tree.
3174 Type clazztype = TreeInfo.isEnumInit(env.tree) ?
3175 attribIdentAsEnumType(env, (JCIdent)clazz) :
3176 attribType(clazz, env);
3177
3178 clazztype = chk.checkDiamond(tree, clazztype);
3179 chk.validate(clazz, localEnv);
3180 if (tree.encl != null) {
3181 // We have to work in this case to store
3182 // symbol + type back into the attributed tree.
3183 tree.clazz.type = clazztype;
3184 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
3185 clazzid.type = ((JCIdent) clazzid).sym.type;
3186 if (annoclazzid != null) {
3187 annoclazzid.type = clazzid.type;
3188 }
3189 if (!clazztype.isErroneous()) {
3190 if (cdef != null && clazztype.tsym.isInterface()) {
3191 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
3192 } else if (clazztype.tsym.isStatic()) {
3193 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
3194 }
3195 }
3196 } else {
3197 // Check for the existence of an apropos outer instance
3198 checkNewInnerClass(tree.pos(), env, clazztype, false);
3199 }
3200
3201 // Attribute constructor arguments.
3202 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
3203 final KindSelector pkind =
3204 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3205 List<Type> argtypes = argtypesBuf.toList();
3206 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
3207
3208 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
3209 // Enums may not be instantiated except implicitly
3210 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
3211 (!env.tree.hasTag(VARDEF) ||
3212 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
3213 ((JCVariableDecl) env.tree).init != tree))
3214 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
3215
3216 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
3217 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3218 boolean skipNonDiamondPath = false;
3219 // Check that class is not abstract
3220 if (cdef == null && !tree.classDeclRemoved() && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
3221 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
3222 log.error(tree.pos(),
3223 Errors.AbstractCantBeInstantiated(clazztype.tsym));
3224 skipNonDiamondPath = true;
3225 } else if (cdef != null && clazztype.tsym.isInterface()) {
3226 // Check that no constructor arguments are given to
3227 // anonymous classes implementing an interface
3228 if (!argtypes.isEmpty())
3229 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
3230
3231 if (!typeargtypes.isEmpty())
3232 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
3233
3234 // Error recovery: pretend no arguments were supplied.
3235 argtypes = List.nil();
3236 typeargtypes = List.nil();
3237 skipNonDiamondPath = true;
3238 }
3239 if (TreeInfo.isDiamond(tree)) {
3240 ClassType site = new ClassType(clazztype.getEnclosingType(),
3241 clazztype.tsym.type.getTypeArguments(),
3242 clazztype.tsym,
3243 clazztype.getMetadata());
3244
3245 Env<AttrContext> diamondEnv = localEnv.dup(tree);
3246 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
3247 diamondEnv.info.pendingResolutionPhase = null;
3248
3249 //if the type of the instance creation expression is a class type
3250 //apply method resolution inference (JLS 15.12.2.7). The return type
3251 //of the resolved constructor will be a partially instantiated type
3252 Symbol constructor = rs.resolveDiamond(tree.pos(),
3253 diamondEnv,
3254 site,
3255 argtypes,
3256 typeargtypes);
3257 tree.constructor = constructor.baseSymbol();
3258
3259 final TypeSymbol csym = clazztype.tsym;
3260 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
3261 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3262 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
3263 constructorType = checkId(tree, site,
3264 constructor,
3265 diamondEnv,
3266 diamondResult);
3267
3268 tree.clazz.type = types.createErrorType(clazztype);
3269 if (!constructorType.isErroneous()) {
3270 tree.clazz.type = clazz.type = constructorType.getReturnType();
3271 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
3272 }
3273 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
3274 }
3275
3276 // Resolve the called constructor under the assumption
3277 // that we are referring to a superclass instance of the
3278 // current instance (JLS ???).
3279 else if (!skipNonDiamondPath) {
3280 //the following code alters some of the fields in the current
3281 //AttrContext - hence, the current context must be dup'ed in
3282 //order to avoid downstream failures
3283 Env<AttrContext> rsEnv = localEnv.dup(tree);
3284 rsEnv.info.selectSuper = cdef != null;
3285 rsEnv.info.pendingResolutionPhase = null;
3286 tree.constructor = rs.resolveConstructor(
3287 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
3288 if (cdef == null) { //do not check twice!
3289 tree.constructorType = checkId(tree,
3290 clazztype,
3291 tree.constructor,
3292 rsEnv,
3293 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3294 if (rsEnv.info.lastResolveVarargs())
3295 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
3296 }
3297 }
3298
3299 chk.checkRequiresIdentity(tree, env.info.lint);
3300
3301 if (cdef != null) {
3302 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
3303 return;
3304 }
3305
3306 if (tree.constructor != null && tree.constructor.kind == MTH)
3307 owntype = clazztype;
3308 }
3309 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3310 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3311 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
3312 //we need to wait for inference to finish and then replace inference vars in the constructor type
3313 inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
3314 instantiatedContext -> {
3315 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3316 });
3317 }
3318 chk.validate(tree.typeargs, localEnv);
3319 }
3320
3321 // where
3322 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
3323 JCClassDecl cdef, Env<AttrContext> localEnv,
3324 List<Type> argtypes, List<Type> typeargtypes,
3325 KindSelector pkind) {
3326 // We are seeing an anonymous class instance creation.
3327 // In this case, the class instance creation
3328 // expression
3329 //
3330 // E.new <typeargs1>C<typargs2>(args) { ... }
3331 //
3332 // is represented internally as
3333 //
3334 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
3335 //
3336 // This expression is then *transformed* as follows:
3337 //
3338 // (1) add an extends or implements clause
3339 // (2) add a constructor.
3340 //
3341 // For instance, if C is a class, and ET is the type of E,
3342 // the expression
3343 //
3344 // E.new <typeargs1>C<typargs2>(args) { ... }
3345 //
3346 // is translated to (where X is a fresh name and typarams is the
3347 // parameter list of the super constructor):
3348 //
3349 // new <typeargs1>X(<*nullchk*>E, args) where
3350 // X extends C<typargs2> {
3351 // <typarams> X(ET e, args) {
3352 // e.<typeargs1>super(args)
3353 // }
3354 // ...
3355 // }
3356 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3357 Type enclType = clazztype.getEnclosingType();
3358 if (enclType != null &&
3359 enclType.hasTag(CLASS) &&
3360 !chk.checkDenotable((ClassType)enclType)) {
3361 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
3362 }
3363 final boolean isDiamond = TreeInfo.isDiamond(tree);
3364 if (isDiamond
3365 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
3366 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3367 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3368 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3369 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3370 instantiatedContext -> {
3371 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3372 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3373 ResultInfo prevResult = this.resultInfo;
3374 try {
3375 this.resultInfo = resultInfoForClassDefinition;
3376 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3377 dupLocalEnv, argtypes, typeargtypes, pkind);
3378 } finally {
3379 this.resultInfo = prevResult;
3380 }
3381 });
3382 } else {
3383 if (isDiamond && clazztype.hasTag(CLASS)) {
3384 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3385 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3386 // One or more types inferred in the previous steps is non-denotable.
3387 Fragment fragment = Diamond(clazztype.tsym);
3388 log.error(tree.clazz.pos(),
3389 Errors.CantApplyDiamond1(
3390 fragment,
3391 invalidDiamondArgs.size() > 1 ?
3392 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3393 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3394 }
3395 // For <>(){}, inferred types must also be accessible.
3396 for (Type t : clazztype.getTypeArguments()) {
3397 rs.checkAccessibleType(env, t);
3398 }
3399 }
3400
3401 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3402 // false for isInterface call even when the original type is an interface.
3403 boolean implementing = clazztype.tsym.isInterface() ||
3404 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3405 clazztype.getOriginalType().tsym.isInterface();
3406
3407 if (implementing) {
3408 cdef.implementing = List.of(clazz);
3409 } else {
3410 cdef.extending = clazz;
3411 }
3412
3413 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3414 rs.isSerializable(clazztype)) {
3415 localEnv.info.isSerializable = true;
3416 }
3417
3418 attribStat(cdef, localEnv);
3419
3420 List<Type> finalargtypes;
3421 // If an outer instance is given,
3422 // prefix it to the constructor arguments
3423 // and delete it from the new expression
3424 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3425 finalargtypes = argtypes.prepend(tree.encl.type);
3426 } else {
3427 finalargtypes = argtypes;
3428 }
3429
3430 // Reassign clazztype and recompute constructor. As this necessarily involves
3431 // another attribution pass for deferred types in the case of <>, replicate
3432 // them. Original arguments have right decorations already.
3433 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3434 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3435 }
3436
3437 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3438 : cdef.sym.type;
3439 Symbol sym = tree.constructor = rs.resolveConstructor(
3440 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3441 Assert.check(!sym.kind.isResolutionError());
3442 tree.constructor = sym;
3443 tree.constructorType = checkId(tree,
3444 clazztype,
3445 tree.constructor,
3446 localEnv,
3447 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3448 }
3449 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3450 clazztype : types.createErrorType(tree.type);
3451 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3452 chk.validate(tree.typeargs, localEnv);
3453 }
3454
3455 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3456 return new Check.NestedCheckContext(checkContext) {
3457 @Override
3458 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3459 enclosingContext.report(clazz.clazz,
3460 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3461 }
3462 };
3463 }
3464
3465 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) {
3466 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH;
3467 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 ||
3468 (!isLocal && !type.tsym.isInner()) ||
3469 (isSuper && env.enclClass.sym.isAnonymous())) {
3470 // nothing to check
3471 return;
3472 }
3473 Symbol res = isLocal ?
3474 rs.findLocalClassOwner(env, type.tsym) :
3475 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper);
3476 if (res.exists()) {
3477 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true);
3478 } else {
3479 log.error(pos, Errors.EnclClassRequired(type.tsym));
3480 }
3481 }
3482
3483 /** Make an attributed null check tree.
3484 */
3485 public JCExpression makeNullCheck(JCExpression arg) {
3486 // optimization: new Outer() can never be null; skip null check
3487 if (arg.getTag() == NEWCLASS)
3488 return arg;
3489 // optimization: X.this is never null; skip null check
3490 Name name = TreeInfo.name(arg);
3491 if (name == names._this || name == names._super) return arg;
3492
3493 JCTree.Tag optag = NULLCHK;
3494 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3495 tree.operator = operators.resolveUnary(arg, optag, arg.type);
3496 tree.type = arg.type;
3497 return tree;
3498 }
3499
3500 public void visitNewArray(JCNewArray tree) {
3501 Type owntype = types.createErrorType(tree.type);
3502 Env<AttrContext> localEnv = env.dup(tree);
3503 Type elemtype;
3504 if (tree.elemtype != null) {
3505 elemtype = attribType(tree.elemtype, localEnv);
3506 chk.validate(tree.elemtype, localEnv);
3507 owntype = elemtype;
3508 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3509 attribExpr(l.head, localEnv, syms.intType);
3510 owntype = new ArrayType(owntype, syms.arrayClass);
3511 }
3512 } else {
3513 // we are seeing an untyped aggregate { ... }
3514 // this is allowed only if the prototype is an array
3515 if (pt().hasTag(ARRAY)) {
3516 elemtype = types.elemtype(pt());
3517 } else {
3518 if (!pt().hasTag(ERROR) &&
3519 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3520 log.error(tree.pos(),
3521 Errors.IllegalInitializerForType(pt()));
3522 }
3523 elemtype = types.createErrorType(pt());
3524 }
3525 }
3526 if (tree.elems != null) {
3527 attribExprs(tree.elems, localEnv, elemtype);
3528 owntype = new ArrayType(elemtype, syms.arrayClass);
3529 }
3530 if (!types.isReifiable(elemtype))
3531 log.error(tree.pos(), Errors.GenericArrayCreation);
3532 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3533 }
3534
3535 /*
3536 * A lambda expression can only be attributed when a target-type is available.
3537 * In addition, if the target-type is that of a functional interface whose
3538 * descriptor contains inference variables in argument position the lambda expression
3539 * is 'stuck' (see DeferredAttr).
3540 */
3541 @Override
3542 public void visitLambda(final JCLambda that) {
3543 boolean wrongContext = false;
3544 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3545 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3546 //lambda only allowed in assignment or method invocation/cast context
3547 log.error(that.pos(), Errors.UnexpectedLambda);
3548 }
3549 resultInfo = recoveryInfo;
3550 wrongContext = true;
3551 }
3552 //create an environment for attribution of the lambda expression
3553 final Env<AttrContext> localEnv = lambdaEnv(that, env);
3554 boolean needsRecovery =
3555 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3556 try {
3557 if (needsRecovery && rs.isSerializable(pt())) {
3558 localEnv.info.isSerializable = true;
3559 localEnv.info.isSerializableLambda = true;
3560 }
3561 List<Type> explicitParamTypes = null;
3562 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3563 //attribute lambda parameters
3564 attribStats(that.params, localEnv);
3565 explicitParamTypes = TreeInfo.types(that.params);
3566 }
3567
3568 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3569 Type currentTarget = targetInfo.target;
3570 Type lambdaType = targetInfo.descriptor;
3571
3572 if (currentTarget.isErroneous()) {
3573 result = that.type = currentTarget;
3574 return;
3575 }
3576
3577 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3578
3579 if (lambdaType.hasTag(FORALL)) {
3580 //lambda expression target desc cannot be a generic method
3581 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3582 kindName(currentTarget.tsym),
3583 currentTarget.tsym);
3584 resultInfo.checkContext.report(that, diags.fragment(msg));
3585 result = that.type = types.createErrorType(pt());
3586 return;
3587 }
3588
3589 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3590 //add param type info in the AST
3591 List<Type> actuals = lambdaType.getParameterTypes();
3592 List<JCVariableDecl> params = that.params;
3593
3594 boolean arityMismatch = false;
3595
3596 while (params.nonEmpty()) {
3597 if (actuals.isEmpty()) {
3598 //not enough actuals to perform lambda parameter inference
3599 arityMismatch = true;
3600 }
3601 //reset previously set info
3602 Type argType = arityMismatch ?
3603 syms.errType :
3604 actuals.head;
3605 if (params.head.isImplicitlyTyped()) {
3606 setSyntheticVariableType(params.head, argType);
3607 }
3608 params.head.sym = null;
3609 actuals = actuals.isEmpty() ?
3610 actuals :
3611 actuals.tail;
3612 params = params.tail;
3613 }
3614
3615 //attribute lambda parameters
3616 attribStats(that.params, localEnv);
3617
3618 if (arityMismatch) {
3619 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3620 result = that.type = types.createErrorType(currentTarget);
3621 return;
3622 }
3623 }
3624
3625 //from this point on, no recovery is needed; if we are in assignment context
3626 //we will be able to attribute the whole lambda body, regardless of errors;
3627 //if we are in a 'check' method context, and the lambda is not compatible
3628 //with the target-type, it will be recovered anyway in Attr.checkId
3629 needsRecovery = false;
3630
3631 ResultInfo bodyResultInfo = localEnv.info.returnResult =
3632 lambdaBodyResult(that, lambdaType, resultInfo);
3633
3634 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3635 attribTree(that.getBody(), localEnv, bodyResultInfo);
3636 } else {
3637 JCBlock body = (JCBlock)that.body;
3638 if (body == breakTree &&
3639 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3640 breakTreeFound(copyEnv(localEnv));
3641 }
3642 attribStats(body.stats, localEnv);
3643 }
3644
3645 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3646
3647 boolean isSpeculativeRound =
3648 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3649
3650 preFlow(that);
3651 flow.analyzeLambda(env, that, make, isSpeculativeRound);
3652
3653 that.type = currentTarget; //avoids recovery at this stage
3654 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3655
3656 if (!isSpeculativeRound) {
3657 //add thrown types as bounds to the thrown types free variables if needed:
3658 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3659 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3660 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3661 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3662 }
3663 }
3664
3665 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3666 }
3667 result = wrongContext ? that.type = types.createErrorType(pt())
3668 : check(that, currentTarget, KindSelector.VAL, resultInfo);
3669 } catch (Types.FunctionDescriptorLookupError ex) {
3670 JCDiagnostic cause = ex.getDiagnostic();
3671 resultInfo.checkContext.report(that, cause);
3672 result = that.type = types.createErrorType(pt());
3673 return;
3674 } catch (CompletionFailure cf) {
3675 chk.completionError(that.pos(), cf);
3676 } catch (Throwable t) {
3677 //when an unexpected exception happens, avoid attempts to attribute the same tree again
3678 //as that would likely cause the same exception again.
3679 needsRecovery = false;
3680 throw t;
3681 } finally {
3682 localEnv.info.scope.leave();
3683 if (needsRecovery) {
3684 Type prevResult = result;
3685 try {
3686 attribTree(that, env, recoveryInfo);
3687 } finally {
3688 if (result == Type.recoveryType) {
3689 result = prevResult;
3690 }
3691 }
3692 }
3693 }
3694 }
3695 //where
3696 class TargetInfo {
3697 Type target;
3698 Type descriptor;
3699
3700 public TargetInfo(Type target, Type descriptor) {
3701 this.target = target;
3702 this.descriptor = descriptor;
3703 }
3704 }
3705
3706 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3707 Type lambdaType;
3708 Type currentTarget = resultInfo.pt;
3709 if (resultInfo.pt != Type.recoveryType) {
3710 /* We need to adjust the target. If the target is an
3711 * intersection type, for example: SAM & I1 & I2 ...
3712 * the target will be updated to SAM
3713 */
3714 currentTarget = targetChecker.visit(currentTarget, that);
3715 if (!currentTarget.isIntersection()) {
3716 if (explicitParamTypes != null) {
3717 currentTarget = infer.instantiateFunctionalInterface(that,
3718 currentTarget, explicitParamTypes, resultInfo.checkContext);
3719 }
3720 currentTarget = types.removeWildcards(currentTarget);
3721 lambdaType = types.findDescriptorType(currentTarget);
3722 } else {
3723 IntersectionClassType ict = (IntersectionClassType)currentTarget;
3724 ListBuffer<Type> components = new ListBuffer<>();
3725 for (Type bound : ict.getExplicitComponents()) {
3726 if (explicitParamTypes != null) {
3727 try {
3728 bound = infer.instantiateFunctionalInterface(that,
3729 bound, explicitParamTypes, resultInfo.checkContext);
3730 } catch (FunctionDescriptorLookupError t) {
3731 // do nothing
3732 }
3733 }
3734 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) {
3735 // bound must be j.l.Object or an interface, but not an annotation
3736 reportIntersectionError(that, "not.an.intf.component", bound);
3737 }
3738 bound = types.removeWildcards(bound);
3739 components.add(bound);
3740 }
3741 currentTarget = types.makeIntersectionType(components.toList());
3742 currentTarget.tsym.flags_field |= INTERFACE;
3743 lambdaType = types.findDescriptorType(currentTarget);
3744 }
3745
3746 } else {
3747 currentTarget = Type.recoveryType;
3748 lambdaType = fallbackDescriptorType(that);
3749 }
3750 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3751 //lambda expression target desc cannot be a generic method
3752 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3753 kindName(currentTarget.tsym),
3754 currentTarget.tsym);
3755 resultInfo.checkContext.report(that, diags.fragment(msg));
3756 currentTarget = types.createErrorType(pt());
3757 }
3758 return new TargetInfo(currentTarget, lambdaType);
3759 }
3760
3761 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
3762 resultInfo.checkContext.report(pos,
3763 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
3764 }
3765
3766 void preFlow(JCLambda tree) {
3767 attrRecover.doRecovery();
3768 new PostAttrAnalyzer() {
3769 @Override
3770 public void scan(JCTree tree) {
3771 if (tree == null ||
3772 (tree.type != null &&
3773 tree.type == Type.stuckType)) {
3774 //don't touch stuck expressions!
3775 return;
3776 }
3777 super.scan(tree);
3778 }
3779
3780 @Override
3781 public void visitClassDef(JCClassDecl that) {
3782 // or class declaration trees!
3783 }
3784
3785 public void visitLambda(JCLambda that) {
3786 // or lambda expressions!
3787 }
3788 }.scan(tree.body);
3789 }
3790
3791 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3792
3793 @Override
3794 public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3795 return t.isIntersection() ?
3796 visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3797 }
3798
3799 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3800 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3801 return ict;
3802 }
3803
3804 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3805 ListBuffer<Type> targs = new ListBuffer<>();
3806 ListBuffer<Type> supertypes = new ListBuffer<>();
3807 for (Type i : ict.interfaces_field) {
3808 if (i.isParameterized()) {
3809 targs.appendList(i.tsym.type.allparams());
3810 }
3811 supertypes.append(i.tsym.type);
3812 }
3813 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3814 notionalIntf.allparams_field = targs.toList();
3815 notionalIntf.tsym.flags_field |= INTERFACE;
3816 return notionalIntf.tsym;
3817 }
3818 };
3819
3820 private Type fallbackDescriptorType(JCExpression tree) {
3821 switch (tree.getTag()) {
3822 case LAMBDA:
3823 JCLambda lambda = (JCLambda)tree;
3824 List<Type> argtypes = List.nil();
3825 for (JCVariableDecl param : lambda.params) {
3826 argtypes = param.vartype != null && param.vartype.type != null ?
3827 argtypes.append(param.vartype.type) :
3828 argtypes.append(syms.errType);
3829 }
3830 return new MethodType(argtypes, Type.recoveryType,
3831 List.of(syms.throwableType), syms.methodClass);
3832 case REFERENCE:
3833 return new MethodType(List.nil(), Type.recoveryType,
3834 List.of(syms.throwableType), syms.methodClass);
3835 default:
3836 Assert.error("Cannot get here!");
3837 }
3838 return null;
3839 }
3840
3841 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3842 final InferenceContext inferenceContext, final Type... ts) {
3843 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3844 }
3845
3846 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3847 final InferenceContext inferenceContext, final List<Type> ts) {
3848 if (inferenceContext.free(ts)) {
3849 inferenceContext.addFreeTypeListener(ts,
3850 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3851 } else {
3852 for (Type t : ts) {
3853 rs.checkAccessibleType(env, t);
3854 }
3855 }
3856 }
3857
3858 /**
3859 * Lambda/method reference have a special check context that ensures
3860 * that i.e. a lambda return type is compatible with the expected
3861 * type according to both the inherited context and the assignment
3862 * context.
3863 */
3864 class FunctionalReturnContext extends Check.NestedCheckContext {
3865
3866 FunctionalReturnContext(CheckContext enclosingContext) {
3867 super(enclosingContext);
3868 }
3869
3870 @Override
3871 public boolean compatible(Type found, Type req, Warner warn) {
3872 //return type must be compatible in both current context and assignment context
3873 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3874 }
3875
3876 @Override
3877 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3878 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3879 }
3880 }
3881
3882 class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3883
3884 JCExpression expr;
3885 boolean expStmtExpected;
3886
3887 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3888 super(enclosingContext);
3889 this.expr = expr;
3890 }
3891
3892 @Override
3893 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3894 if (expStmtExpected) {
3895 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3896 } else {
3897 super.report(pos, details);
3898 }
3899 }
3900
3901 @Override
3902 public boolean compatible(Type found, Type req, Warner warn) {
3903 //a void return is compatible with an expression statement lambda
3904 if (req.hasTag(VOID)) {
3905 expStmtExpected = true;
3906 return TreeInfo.isExpressionStatement(expr);
3907 } else {
3908 return super.compatible(found, req, warn);
3909 }
3910 }
3911 }
3912
3913 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3914 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3915 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3916 new FunctionalReturnContext(resultInfo.checkContext);
3917
3918 return descriptor.getReturnType() == Type.recoveryType ?
3919 recoveryInfo :
3920 new ResultInfo(KindSelector.VAL,
3921 descriptor.getReturnType(), funcContext);
3922 }
3923
3924 /**
3925 * Lambda compatibility. Check that given return types, thrown types, parameter types
3926 * are compatible with the expected functional interface descriptor. This means that:
3927 * (i) parameter types must be identical to those of the target descriptor; (ii) return
3928 * types must be compatible with the return type of the expected descriptor.
3929 */
3930 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3931 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3932
3933 //return values have already been checked - but if lambda has no return
3934 //values, we must ensure that void/value compatibility is correct;
3935 //this amounts at checking that, if a lambda body can complete normally,
3936 //the descriptor's return type must be void
3937 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3938 !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3939 Fragment msg =
3940 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3941 checkContext.report(tree,
3942 diags.fragment(msg));
3943 }
3944
3945 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3946 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3947 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3948 }
3949 }
3950
3951 /* This method returns an environment to be used to attribute a lambda
3952 * expression.
3953 *
3954 * The owner of this environment is a method symbol. If the current owner
3955 * is not a method (e.g. if the lambda occurs in a field initializer), then
3956 * a synthetic method symbol owner is created.
3957 */
3958 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3959 Env<AttrContext> lambdaEnv;
3960 Symbol owner = env.info.scope.owner;
3961 if (owner.kind == VAR && owner.owner.kind == TYP) {
3962 // If the lambda is nested in a field initializer, we need to create a fake init method.
3963 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3964 // init symbol's owner).
3965 ClassSymbol enclClass = owner.enclClass();
3966 Name initName = owner.isStatic() ? names.clinit : names.init;
3967 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3968 initName, initBlockType, enclClass);
3969 initSym.params = List.nil();
3970 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3971 } else {
3972 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3973 }
3974 lambdaEnv.info.yieldResult = null;
3975 lambdaEnv.info.isLambda = true;
3976 return lambdaEnv;
3977 }
3978
3979 @Override
3980 public void visitReference(final JCMemberReference that) {
3981 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3982 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3983 //method reference only allowed in assignment or method invocation/cast context
3984 log.error(that.pos(), Errors.UnexpectedMref);
3985 }
3986 result = that.type = types.createErrorType(pt());
3987 return;
3988 }
3989 final Env<AttrContext> localEnv = env.dup(that);
3990 try {
3991 //attribute member reference qualifier - if this is a constructor
3992 //reference, the expected kind must be a type
3993 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3994
3995 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3996 exprType = chk.checkConstructorRefType(that.expr, exprType);
3997 if (!exprType.isErroneous() &&
3998 exprType.isRaw() &&
3999 that.typeargs != null) {
4000 log.error(that.expr.pos(),
4001 Errors.InvalidMref(Kinds.kindName(that.getMode()),
4002 Fragments.MrefInferAndExplicitParams));
4003 exprType = types.createErrorType(exprType);
4004 }
4005 }
4006
4007 if (exprType.isErroneous()) {
4008 //if the qualifier expression contains problems,
4009 //give up attribution of method reference
4010 result = that.type = exprType;
4011 return;
4012 }
4013
4014 if (TreeInfo.isStaticSelector(that.expr, names)) {
4015 //if the qualifier is a type, validate it; raw warning check is
4016 //omitted as we don't know at this stage as to whether this is a
4017 //raw selector (because of inference)
4018 chk.validate(that.expr, env, false);
4019 } else {
4020 Symbol lhsSym = TreeInfo.symbol(that.expr);
4021 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
4022 }
4023 //attrib type-arguments
4024 List<Type> typeargtypes = List.nil();
4025 if (that.typeargs != null) {
4026 typeargtypes = attribTypes(that.typeargs, localEnv);
4027 }
4028
4029 boolean isTargetSerializable =
4030 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4031 rs.isSerializable(pt());
4032 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
4033 Type currentTarget = targetInfo.target;
4034 Type desc = targetInfo.descriptor;
4035
4036 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
4037 List<Type> argtypes = desc.getParameterTypes();
4038 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
4039
4040 if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
4041 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
4042 }
4043
4044 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
4045 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
4046 try {
4047 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
4048 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
4049 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
4050 } finally {
4051 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
4052 }
4053
4054 Symbol refSym = refResult.fst;
4055 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
4056
4057 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
4058 * JDK-8075541
4059 */
4060 if (refSym.kind != MTH) {
4061 boolean targetError;
4062 switch (refSym.kind) {
4063 case ABSENT_MTH:
4064 targetError = false;
4065 break;
4066 case WRONG_MTH:
4067 case WRONG_MTHS:
4068 case AMBIGUOUS:
4069 case HIDDEN:
4070 case STATICERR:
4071 targetError = true;
4072 break;
4073 default:
4074 Assert.error("unexpected result kind " + refSym.kind);
4075 targetError = false;
4076 }
4077
4078 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
4079 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
4080 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
4081
4082 JCDiagnostic diag = diags.create(log.currentSource(), that,
4083 targetError ?
4084 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
4085 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
4086
4087 if (targetError && currentTarget == Type.recoveryType) {
4088 //a target error doesn't make sense during recovery stage
4089 //as we don't know what actual parameter types are
4090 result = that.type = currentTarget;
4091 return;
4092 } else {
4093 if (targetError) {
4094 resultInfo.checkContext.report(that, diag);
4095 } else {
4096 log.report(diag);
4097 }
4098 result = that.type = types.createErrorType(currentTarget);
4099 return;
4100 }
4101 }
4102
4103 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
4104 that.kind = lookupHelper.referenceKind(that.sym);
4105 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
4106
4107 if (desc.getReturnType() == Type.recoveryType) {
4108 // stop here
4109 result = that.type = currentTarget;
4110 return;
4111 }
4112
4113 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
4114 checkNewInnerClass(that.pos(), env, exprType, false);
4115 }
4116
4117 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
4118
4119 if (that.getMode() == ReferenceMode.INVOKE &&
4120 TreeInfo.isStaticSelector(that.expr, names) &&
4121 that.kind.isUnbound() &&
4122 lookupHelper.site.isRaw()) {
4123 chk.checkRaw(that.expr, localEnv);
4124 }
4125
4126 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
4127 exprType.getTypeArguments().nonEmpty()) {
4128 //static ref with class type-args
4129 log.error(that.expr.pos(),
4130 Errors.InvalidMref(Kinds.kindName(that.getMode()),
4131 Fragments.StaticMrefWithTargs));
4132 result = that.type = types.createErrorType(currentTarget);
4133 return;
4134 }
4135
4136 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
4137 // Check that super-qualified symbols are not abstract (JLS)
4138 rs.checkNonAbstract(that.pos(), that.sym);
4139 }
4140
4141 if (isTargetSerializable) {
4142 chk.checkAccessFromSerializableElement(that, true);
4143 }
4144 }
4145
4146 ResultInfo checkInfo =
4147 resultInfo.dup(newMethodTemplate(
4148 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
4149 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
4150 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
4151
4152 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
4153
4154 if (that.kind.isUnbound() &&
4155 resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
4156 //re-generate inference constraints for unbound receiver
4157 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
4158 //cannot happen as this has already been checked - we just need
4159 //to regenerate the inference constraints, as that has been lost
4160 //as a result of the call to inferenceContext.save()
4161 Assert.error("Can't get here");
4162 }
4163 }
4164
4165 if (!refType.isErroneous()) {
4166 refType = types.createMethodTypeWithReturn(refType,
4167 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
4168 }
4169
4170 //go ahead with standard method reference compatibility check - note that param check
4171 //is a no-op (as this has been taken care during method applicability)
4172 boolean isSpeculativeRound =
4173 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
4174
4175 that.type = currentTarget; //avoids recovery at this stage
4176 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
4177 if (!isSpeculativeRound) {
4178 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
4179 }
4180 chk.checkRequiresIdentity(that, localEnv.info.lint);
4181 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
4182 } catch (Types.FunctionDescriptorLookupError ex) {
4183 JCDiagnostic cause = ex.getDiagnostic();
4184 resultInfo.checkContext.report(that, cause);
4185 result = that.type = types.createErrorType(pt());
4186 return;
4187 }
4188 }
4189 //where
4190 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
4191 //if this is a constructor reference, the expected kind must be a type
4192 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
4193 KindSelector.VAL_TYP : KindSelector.TYP,
4194 Type.noType);
4195 }
4196
4197
4198 @SuppressWarnings("fallthrough")
4199 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
4200 InferenceContext inferenceContext = checkContext.inferenceContext();
4201 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
4202
4203 Type resType;
4204 switch (tree.getMode()) {
4205 case NEW:
4206 if (!tree.expr.type.isRaw()) {
4207 resType = tree.expr.type;
4208 break;
4209 }
4210 default:
4211 resType = refType.getReturnType();
4212 }
4213
4214 Type incompatibleReturnType = resType;
4215
4216 if (returnType.hasTag(VOID)) {
4217 incompatibleReturnType = null;
4218 }
4219
4220 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
4221 Type capturedResType = captureMRefReturnType ? types.capture(resType) : resType;
4222 if (resType.isErroneous() ||
4223 new FunctionalReturnContext(checkContext).compatible(capturedResType, returnType,
4224 checkContext.checkWarner(tree, capturedResType, returnType))) {
4225 incompatibleReturnType = null;
4226 }
4227 }
4228
4229 if (incompatibleReturnType != null) {
4230 Fragment msg =
4231 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
4232 checkContext.report(tree, diags.fragment(msg));
4233 } else {
4234 if (inferenceContext.free(refType)) {
4235 // we need to wait for inference to finish and then replace inference vars in the referent type
4236 inferenceContext.addFreeTypeListener(List.of(refType),
4237 instantiatedContext -> {
4238 tree.referentType = instantiatedContext.asInstType(refType);
4239 });
4240 } else {
4241 tree.referentType = refType;
4242 }
4243 }
4244
4245 if (!speculativeAttr) {
4246 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
4247 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
4248 }
4249 }
4250 }
4251
4252 boolean checkExConstraints(
4253 List<Type> thrownByFuncExpr,
4254 List<Type> thrownAtFuncType,
4255 InferenceContext inferenceContext) {
4256 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
4257 * are not proper types
4258 */
4259 List<Type> nonProperList = thrownAtFuncType.stream()
4260 .filter(e -> inferenceContext.free(e)).collect(List.collector());
4261 List<Type> properList = thrownAtFuncType.diff(nonProperList);
4262
4263 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
4264 * in the throws clause of the invocation type of the method reference's compile-time
4265 * declaration
4266 */
4267 List<Type> checkedList = thrownByFuncExpr.stream()
4268 .filter(e -> chk.isChecked(e)).collect(List.collector());
4269
4270 /** If n = 0 (the function type's throws clause consists only of proper types), then
4271 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
4272 * in the throws clause, the constraint reduces to false; otherwise, the constraint
4273 * reduces to true
4274 */
4275 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
4276 for (Type checked : checkedList) {
4277 boolean isSubtype = false;
4278 for (Type proper : properList) {
4279 if (types.isSubtype(checked, proper)) {
4280 isSubtype = true;
4281 break;
4282 }
4283 }
4284 if (!isSubtype) {
4285 uncaughtByProperTypes.add(checked);
4286 }
4287 }
4288
4289 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
4290 return false;
4291 }
4292
4293 /** If n > 0, the constraint reduces to a set of subtyping constraints:
4294 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
4295 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
4296 */
4297 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
4298 uncaughtByProperTypes.forEach(checkedEx -> {
4299 nonProperAsUndet.forEach(nonProper -> {
4300 types.isSubtype(checkedEx, nonProper);
4301 });
4302 });
4303
4304 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
4305 */
4306 nonProperAsUndet.stream()
4307 .filter(t -> t.hasTag(UNDETVAR))
4308 .forEach(t -> ((UndetVar)t).setThrow());
4309 return true;
4310 }
4311
4312 /**
4313 * Set functional type info on the underlying AST. Note: as the target descriptor
4314 * might contain inference variables, we might need to register an hook in the
4315 * current inference context.
4316 */
4317 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
4318 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
4319 if (checkContext.inferenceContext().free(descriptorType)) {
4320 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
4321 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
4322 inferenceContext.asInstType(primaryTarget), checkContext));
4323 } else {
4324 fExpr.owner = env.info.scope.owner;
4325 if (pt.hasTag(CLASS)) {
4326 fExpr.target = primaryTarget;
4327 }
4328 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4329 pt != Type.recoveryType) {
4330 //check that functional interface class is well-formed
4331 try {
4332 /* Types.makeFunctionalInterfaceClass() may throw an exception
4333 * when it's executed post-inference. See the listener code
4334 * above.
4335 */
4336 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
4337 names.empty, fExpr.target, ABSTRACT);
4338 if (csym != null) {
4339 chk.checkImplementations(env.tree, csym, csym);
4340 try {
4341 //perform an additional functional interface check on the synthetic class,
4342 //as there may be spurious errors for raw targets - because of existing issues
4343 //with membership and inheritance (see JDK-8074570).
4344 csym.flags_field |= INTERFACE;
4345 types.findDescriptorType(csym.type);
4346 } catch (FunctionDescriptorLookupError err) {
4347 resultInfo.checkContext.report(fExpr,
4348 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
4349 }
4350 }
4351 } catch (Types.FunctionDescriptorLookupError ex) {
4352 JCDiagnostic cause = ex.getDiagnostic();
4353 resultInfo.checkContext.report(env.tree, cause);
4354 }
4355 }
4356 }
4357 }
4358
4359 public void visitParens(JCParens tree) {
4360 Type owntype = attribTree(tree.expr, env, resultInfo);
4361 result = check(tree, owntype, pkind(), resultInfo);
4362 Symbol sym = TreeInfo.symbol(tree);
4363 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
4364 log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
4365 }
4366
4367 public void visitAssign(JCAssign tree) {
4368 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
4369 Type capturedType = capture(owntype);
4370 attribExpr(tree.rhs, env, owntype);
4371 result = check(tree, capturedType, KindSelector.VAL, resultInfo);
4372 }
4373
4374 public void visitAssignop(JCAssignOp tree) {
4375 // Attribute arguments.
4376 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4377 Type operand = attribExpr(tree.rhs, env);
4378 // Find operator.
4379 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4380 if (operator != operators.noOpSymbol &&
4381 !owntype.isErroneous() &&
4382 !operand.isErroneous()) {
4383 chk.checkDivZero(tree.rhs.pos(), operator, operand);
4384 chk.checkCastable(tree.rhs.pos(),
4385 operator.type.getReturnType(),
4386 owntype);
4387 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4388 chk.checkOutOfRangeShift(tree.rhs.pos(), operator, operand);
4389 }
4390 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4391 }
4392
4393 public void visitUnary(JCUnary tree) {
4394 // Attribute arguments.
4395 Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4396 ? attribTree(tree.arg, env, varAssignmentInfo)
4397 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4398
4399 // Find operator.
4400 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4401 Type owntype = types.createErrorType(tree.type);
4402 if (operator != operators.noOpSymbol &&
4403 !argtype.isErroneous()) {
4404 owntype = (tree.getTag().isIncOrDecUnaryOp())
4405 ? tree.arg.type
4406 : operator.type.getReturnType();
4407 int opc = operator.opcode;
4408
4409 // If the argument is constant, fold it.
4410 if (argtype.constValue() != null) {
4411 Type ctype = cfolder.fold1(opc, argtype);
4412 if (ctype != null) {
4413 owntype = cfolder.coerce(ctype, owntype);
4414 }
4415 }
4416 }
4417 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4418 matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4419 }
4420
4421 public void visitBinary(JCBinary tree) {
4422 // Attribute arguments.
4423 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4424 // x && y
4425 // include x's bindings when true in y
4426
4427 // x || y
4428 // include x's bindings when false in y
4429
4430 MatchBindings lhsBindings = matchBindings;
4431 List<BindingSymbol> propagatedBindings;
4432 switch (tree.getTag()) {
4433 case AND:
4434 propagatedBindings = lhsBindings.bindingsWhenTrue;
4435 break;
4436 case OR:
4437 propagatedBindings = lhsBindings.bindingsWhenFalse;
4438 break;
4439 default:
4440 propagatedBindings = List.nil();
4441 break;
4442 }
4443 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4444 Type right;
4445 try {
4446 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4447 } finally {
4448 rhsEnv.info.scope.leave();
4449 }
4450
4451 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4452
4453 // Find operator.
4454 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4455 Type owntype = types.createErrorType(tree.type);
4456 if (operator != operators.noOpSymbol &&
4457 !left.isErroneous() &&
4458 !right.isErroneous()) {
4459 owntype = operator.type.getReturnType();
4460 int opc = operator.opcode;
4461 // If both arguments are constants, fold them.
4462 if (left.constValue() != null && right.constValue() != null) {
4463 Type ctype = cfolder.fold2(opc, left, right);
4464 if (ctype != null) {
4465 owntype = cfolder.coerce(ctype, owntype);
4466 }
4467 }
4468
4469 // Check that argument types of a reference ==, != are
4470 // castable to each other, (JLS 15.21). Note: unboxing
4471 // comparisons will not have an acmp* opc at this point.
4472 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4473 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4474 log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4475 }
4476 }
4477
4478 chk.checkDivZero(tree.rhs.pos(), operator, right);
4479 chk.checkOutOfRangeShift(tree.rhs.pos(), operator, right);
4480 }
4481 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4482 }
4483
4484 public void visitTypeCast(final JCTypeCast tree) {
4485 Type clazztype = attribType(tree.clazz, env);
4486 chk.validate(tree.clazz, env, false);
4487 chk.checkRequiresIdentity(tree, env.info.lint);
4488 //a fresh environment is required for 292 inference to work properly ---
4489 //see Infer.instantiatePolymorphicSignatureInstance()
4490 Env<AttrContext> localEnv = env.dup(tree);
4491 //should we propagate the target type?
4492 final ResultInfo castInfo;
4493 JCExpression expr = TreeInfo.skipParens(tree.expr);
4494 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4495 if (isPoly) {
4496 //expression is a poly - we need to propagate target type info
4497 castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4498 new Check.NestedCheckContext(resultInfo.checkContext) {
4499 @Override
4500 public boolean compatible(Type found, Type req, Warner warn) {
4501 return types.isCastable(found, req, warn);
4502 }
4503 });
4504 } else {
4505 //standalone cast - target-type info is not propagated
4506 castInfo = unknownExprInfo;
4507 }
4508 Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4509 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4510 if (exprtype.constValue() != null)
4511 owntype = cfolder.coerce(exprtype, owntype);
4512 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4513 if (!isPoly)
4514 chk.checkRedundantCast(localEnv, tree);
4515 }
4516
4517 public void visitTypeTest(JCInstanceOf tree) {
4518 Type exprtype = attribExpr(tree.expr, env);
4519 if (exprtype.isPrimitive()) {
4520 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4521 } else {
4522 exprtype = chk.checkNullOrRefType(
4523 tree.expr.pos(), exprtype);
4524 }
4525 Type clazztype;
4526 JCTree typeTree;
4527 if (tree.pattern.getTag() == BINDINGPATTERN ||
4528 tree.pattern.getTag() == RECORDPATTERN) {
4529 attribExpr(tree.pattern, env, exprtype);
4530 clazztype = tree.pattern.type;
4531 if (types.isSubtype(exprtype, clazztype) &&
4532 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4533 tree.pattern.getTag() != RECORDPATTERN) {
4534 if (!allowUnconditionalPatternsInstanceOf) {
4535 log.error(tree.pos(), Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4536 }
4537 }
4538 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4539 } else {
4540 clazztype = attribType(tree.pattern, env);
4541 typeTree = tree.pattern;
4542 chk.validate(typeTree, env, false);
4543 }
4544 if (clazztype.isPrimitive()) {
4545 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4546 } else {
4547 if (!clazztype.hasTag(TYPEVAR)) {
4548 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4549 }
4550 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4551 boolean valid = false;
4552 if (allowReifiableTypesInInstanceof) {
4553 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4554 } else {
4555 log.error(tree.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4556 allowReifiableTypesInInstanceof = true;
4557 }
4558 if (!valid) {
4559 clazztype = types.createErrorType(clazztype);
4560 }
4561 }
4562 }
4563 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4564 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4565 }
4566
4567 private boolean checkCastablePattern(DiagnosticPosition pos,
4568 Type exprType,
4569 Type pattType) {
4570 Warner warner = new Warner();
4571 // if any type is erroneous, the problem is reported elsewhere
4572 if (exprType.isErroneous() || pattType.isErroneous()) {
4573 return false;
4574 }
4575 if (!types.isCastable(exprType, pattType, warner)) {
4576 chk.basicHandler.report(pos,
4577 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4578 return false;
4579 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4580 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4581 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4582 return true;
4583 } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4584 log.error(pos,
4585 Errors.InstanceofReifiableNotSafe(exprType, pattType));
4586 return false;
4587 } else {
4588 return true;
4589 }
4590 }
4591
4592 @Override
4593 public void visitAnyPattern(JCAnyPattern tree) {
4594 result = tree.type = resultInfo.pt;
4595 }
4596
4597 public void visitBindingPattern(JCBindingPattern tree) {
4598 Type type;
4599 if (tree.var.vartype != null) {
4600 type = attribType(tree.var.vartype, env);
4601 } else {
4602 type = resultInfo.pt;
4603 }
4604 tree.type = tree.var.type = type;
4605 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4606 v.pos = tree.pos;
4607 tree.var.sym = v;
4608 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4609 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4610 }
4611 chk.validate(tree.var.vartype, env, true);
4612 if (tree.var.isImplicitlyTyped()) {
4613 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4614 : type);
4615 }
4616 annotate.annotateLater(tree.var.mods.annotations, env, v);
4617 if (!tree.var.isImplicitlyTyped()) {
4618 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v);
4619 }
4620 annotate.flush();
4621 result = tree.type;
4622 if (v.isUnnamedVariable()) {
4623 matchBindings = MatchBindingsComputer.EMPTY;
4624 } else {
4625 matchBindings = new MatchBindings(List.of(v), List.nil());
4626 }
4627 chk.checkRequiresIdentity(tree, env.info.lint);
4628 }
4629
4630 @Override
4631 public void visitRecordPattern(JCRecordPattern tree) {
4632 Type site;
4633
4634 if (tree.deconstructor == null) {
4635 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4636 tree.record = syms.errSymbol;
4637 site = tree.type = types.createErrorType(tree.record.type);
4638 } else {
4639 Type type = attribType(tree.deconstructor, env);
4640 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4641 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4642 if (inferred == null) {
4643 log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4644 } else {
4645 type = inferred;
4646 }
4647 }
4648 tree.type = tree.deconstructor.type = type;
4649 site = types.capture(tree.type);
4650 }
4651
4652 List<Type> expectedRecordTypes;
4653 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4654 ClassSymbol record = (ClassSymbol) site.tsym;
4655 expectedRecordTypes = record.getRecordComponents()
4656 .stream()
4657 .map(rc -> types.memberType(site, rc))
4658 .map(t -> types.upward(t, types.captures(t)).baseType())
4659 .collect(List.collector());
4660 tree.record = record;
4661 } else {
4662 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4663 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4664 .limit(tree.nested.size())
4665 .collect(List.collector());
4666 tree.record = syms.errSymbol;
4667 }
4668 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4669 List<Type> recordTypes = expectedRecordTypes;
4670 List<JCPattern> nestedPatterns = tree.nested;
4671 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4672 try {
4673 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4674 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4675 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4676 outBindings.addAll(matchBindings.bindingsWhenTrue);
4677 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4678 nestedPatterns = nestedPatterns.tail;
4679 recordTypes = recordTypes.tail;
4680 }
4681 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4682 while (nestedPatterns.nonEmpty()) {
4683 attribExpr(nestedPatterns.head, localEnv, Type.noType);
4684 nestedPatterns = nestedPatterns.tail;
4685 }
4686 List<Type> nestedTypes =
4687 tree.nested.stream().map(p -> p.type).collect(List.collector());
4688 log.error(tree.pos(),
4689 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4690 nestedTypes));
4691 }
4692 } finally {
4693 localEnv.info.scope.leave();
4694 }
4695 chk.validate(tree.deconstructor, env, true);
4696 result = tree.type;
4697 matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4698 }
4699
4700 public void visitIndexed(JCArrayAccess tree) {
4701 Type owntype = types.createErrorType(tree.type);
4702 Type atype = attribExpr(tree.indexed, env);
4703 attribExpr(tree.index, env, syms.intType);
4704 if (types.isArray(atype))
4705 owntype = types.elemtype(atype);
4706 else if (!atype.hasTag(ERROR))
4707 log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4708 if (!pkind().contains(KindSelector.VAL))
4709 owntype = capture(owntype);
4710 result = check(tree, owntype, KindSelector.VAR, resultInfo);
4711 }
4712
4713 public void visitIdent(JCIdent tree) {
4714 Symbol sym;
4715
4716 // Find symbol
4717 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4718 // If we are looking for a method, the prototype `pt' will be a
4719 // method type with the type of the call's arguments as parameters.
4720 env.info.pendingResolutionPhase = null;
4721 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4722 } else if (tree.sym != null && tree.sym.kind != VAR) {
4723 sym = tree.sym;
4724 } else {
4725 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4726 }
4727 tree.sym = sym;
4728
4729 // Also find the environment current for the class where
4730 // sym is defined (`symEnv').
4731 Env<AttrContext> symEnv = env;
4732 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4733 sym.kind.matches(KindSelector.VAL_MTH) &&
4734 sym.owner.kind == TYP &&
4735 tree.name != names._this && tree.name != names._super) {
4736
4737 // Find environment in which identifier is defined.
4738 while (symEnv.outer != null &&
4739 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4740 symEnv = symEnv.outer;
4741 }
4742 }
4743
4744 // If symbol is a variable, ...
4745 if (sym.kind == VAR) {
4746 VarSymbol v = (VarSymbol)sym;
4747
4748 // ..., evaluate its initializer, if it has one, and check for
4749 // illegal forward reference.
4750 checkInit(tree, env, v, false);
4751
4752 // If we are expecting a variable (as opposed to a value), check
4753 // that the variable is assignable in the current environment.
4754 if (KindSelector.ASG.subset(pkind()))
4755 checkAssignable(tree.pos(), v, null, env);
4756 }
4757
4758 Env<AttrContext> env1 = env;
4759 if (sym.kind != ERR && sym.kind != TYP &&
4760 sym.owner != null && sym.owner != env1.enclClass.sym) {
4761 // If the found symbol is inaccessible, then it is
4762 // accessed through an enclosing instance. Locate this
4763 // enclosing instance:
4764 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4765 env1 = env1.outer;
4766 }
4767
4768 if (env.info.isSerializable) {
4769 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4770 }
4771
4772 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4773 }
4774
4775 public void visitSelect(JCFieldAccess tree) {
4776 // Determine the expected kind of the qualifier expression.
4777 KindSelector skind = KindSelector.NIL;
4778 if (tree.name == names._this || tree.name == names._super ||
4779 tree.name == names._class)
4780 {
4781 skind = KindSelector.TYP;
4782 } else {
4783 if (pkind().contains(KindSelector.PCK))
4784 skind = KindSelector.of(skind, KindSelector.PCK);
4785 if (pkind().contains(KindSelector.TYP))
4786 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4787 if (pkind().contains(KindSelector.VAL_MTH))
4788 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4789 }
4790
4791 // Attribute the qualifier expression, and determine its symbol (if any).
4792 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4793 Assert.check(site == tree.selected.type);
4794 if (!pkind().contains(KindSelector.TYP_PCK))
4795 site = capture(site); // Capture field access
4796
4797 // don't allow T.class T[].class, etc
4798 if (skind == KindSelector.TYP) {
4799 Type elt = site;
4800 while (elt.hasTag(ARRAY))
4801 elt = ((ArrayType)elt).elemtype;
4802 if (elt.hasTag(TYPEVAR)) {
4803 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4804 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4805 tree.sym = tree.type.tsym;
4806 return ;
4807 }
4808 }
4809
4810 // If qualifier symbol is a type or `super', assert `selectSuper'
4811 // for the selection. This is relevant for determining whether
4812 // protected symbols are accessible.
4813 Symbol sitesym = TreeInfo.symbol(tree.selected);
4814 boolean selectSuperPrev = env.info.selectSuper;
4815 env.info.selectSuper =
4816 sitesym != null &&
4817 sitesym.name == names._super;
4818
4819 // Determine the symbol represented by the selection.
4820 env.info.pendingResolutionPhase = null;
4821 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4822 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4823 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4824 sym = syms.errSymbol;
4825 }
4826 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4827 site = capture(site);
4828 sym = selectSym(tree, sitesym, site, env, resultInfo);
4829 }
4830 boolean varArgs = env.info.lastResolveVarargs();
4831 tree.sym = sym;
4832
4833 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4834 site = types.skipTypeVars(site, true);
4835 }
4836
4837 // If that symbol is a variable, ...
4838 if (sym.kind == VAR) {
4839 VarSymbol v = (VarSymbol)sym;
4840
4841 // ..., evaluate its initializer, if it has one, and check for
4842 // illegal forward reference.
4843 checkInit(tree, env, v, true);
4844
4845 // If we are expecting a variable (as opposed to a value), check
4846 // that the variable is assignable in the current environment.
4847 if (KindSelector.ASG.subset(pkind()))
4848 checkAssignable(tree.pos(), v, tree.selected, env);
4849 }
4850
4851 if (sitesym != null &&
4852 sitesym.kind == VAR &&
4853 ((VarSymbol)sitesym).isResourceVariable() &&
4854 sym.kind == MTH &&
4855 sym.name.equals(names.close) &&
4856 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) {
4857 log.warning(tree, LintWarnings.TryExplicitCloseCall);
4858 }
4859
4860 // Disallow selecting a type from an expression
4861 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4862 tree.type = check(tree.selected, pt(),
4863 sitesym == null ?
4864 KindSelector.VAL : sitesym.kind.toSelector(),
4865 new ResultInfo(KindSelector.TYP_PCK, pt()));
4866 }
4867
4868 if (isType(sitesym)) {
4869 if (sym.name != names._this && sym.name != names._super) {
4870 // Check if type-qualified fields or methods are static (JLS)
4871 if ((sym.flags() & STATIC) == 0 &&
4872 sym.name != names._super &&
4873 (sym.kind == VAR || sym.kind == MTH)) {
4874 rs.accessBase(rs.new StaticError(sym),
4875 tree.pos(), site, sym.name, true);
4876 }
4877 }
4878 } else if (sym.kind != ERR &&
4879 (sym.flags() & STATIC) != 0 &&
4880 sym.name != names._class) {
4881 // If the qualified item is not a type and the selected item is static, report
4882 // a warning. Make allowance for the class of an array type e.g. Object[].class)
4883 if (!sym.owner.isAnonymous()) {
4884 log.warning(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4885 } else {
4886 log.warning(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4887 }
4888 }
4889
4890 // If we are selecting an instance member via a `super', ...
4891 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4892
4893 // Check that super-qualified symbols are not abstract (JLS)
4894 rs.checkNonAbstract(tree.pos(), sym);
4895
4896 if (site.isRaw()) {
4897 // Determine argument types for site.
4898 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4899 if (site1 != null) site = site1;
4900 }
4901 }
4902
4903 if (env.info.isSerializable) {
4904 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4905 }
4906
4907 env.info.selectSuper = selectSuperPrev;
4908 result = checkId(tree, site, sym, env, resultInfo);
4909 }
4910 //where
4911 /** Determine symbol referenced by a Select expression,
4912 *
4913 * @param tree The select tree.
4914 * @param site The type of the selected expression,
4915 * @param env The current environment.
4916 * @param resultInfo The current result.
4917 */
4918 private Symbol selectSym(JCFieldAccess tree,
4919 Symbol location,
4920 Type site,
4921 Env<AttrContext> env,
4922 ResultInfo resultInfo) {
4923 DiagnosticPosition pos = tree.pos();
4924 Name name = tree.name;
4925 switch (site.getTag()) {
4926 case PACKAGE:
4927 return rs.accessBase(
4928 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4929 pos, location, site, name, true);
4930 case ARRAY:
4931 case CLASS:
4932 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4933 return rs.resolveQualifiedMethod(
4934 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4935 } else if (name == names._this || name == names._super) {
4936 return rs.resolveSelf(pos, env, site.tsym, tree);
4937 } else if (name == names._class) {
4938 // In this case, we have already made sure in
4939 // visitSelect that qualifier expression is a type.
4940 return syms.getClassField(site, types);
4941 } else {
4942 // We are seeing a plain identifier as selector.
4943 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4944 sym = rs.accessBase(sym, pos, location, site, name, true);
4945 return sym;
4946 }
4947 case WILDCARD:
4948 throw new AssertionError(tree);
4949 case TYPEVAR:
4950 // Normally, site.getUpperBound() shouldn't be null.
4951 // It should only happen during memberEnter/attribBase
4952 // when determining the supertype which *must* be
4953 // done before attributing the type variables. In
4954 // other words, we are seeing this illegal program:
4955 // class B<T> extends A<T.foo> {}
4956 Symbol sym = (site.getUpperBound() != null)
4957 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4958 : null;
4959 if (sym == null) {
4960 log.error(pos, Errors.TypeVarCantBeDeref);
4961 return syms.errSymbol;
4962 } else {
4963 // JLS 4.9 specifies the members are derived by inheritance.
4964 // We skip inducing a whole class by filtering members that
4965 // can never be inherited:
4966 Symbol sym2;
4967 if (sym.isPrivate()) {
4968 // Private members
4969 sym2 = rs.new AccessError(env, site, sym);
4970 } else if (sym.owner.isInterface() && sym.kind == MTH && (sym.flags() & STATIC) != 0) {
4971 // Interface static methods
4972 sym2 = rs.new SymbolNotFoundError(ABSENT_MTH);
4973 } else {
4974 sym2 = sym;
4975 }
4976 rs.accessBase(sym2, pos, location, site, name, true);
4977 return sym;
4978 }
4979 case ERROR:
4980 // preserve identifier names through errors
4981 return types.createErrorType(name, site.tsym, site).tsym;
4982 default:
4983 // The qualifier expression is of a primitive type -- only
4984 // .class is allowed for these.
4985 if (name == names._class) {
4986 // In this case, we have already made sure in Select that
4987 // qualifier expression is a type.
4988 return syms.getClassField(site, types);
4989 } else {
4990 log.error(pos, Errors.CantDeref(site));
4991 return syms.errSymbol;
4992 }
4993 }
4994 }
4995
4996 /** Determine type of identifier or select expression and check that
4997 * (1) the referenced symbol is not deprecated
4998 * (2) the symbol's type is safe (@see checkSafe)
4999 * (3) if symbol is a variable, check that its type and kind are
5000 * compatible with the prototype and protokind.
5001 * (4) if symbol is an instance field of a raw type,
5002 * which is being assigned to, issue an unchecked warning if its
5003 * type changes under erasure.
5004 * (5) if symbol is an instance method of a raw type, issue an
5005 * unchecked warning if its argument types change under erasure.
5006 * If checks succeed:
5007 * If symbol is a constant, return its constant type
5008 * else if symbol is a method, return its result type
5009 * otherwise return its type.
5010 * Otherwise return errType.
5011 *
5012 * @param tree The syntax tree representing the identifier
5013 * @param site If this is a select, the type of the selected
5014 * expression, otherwise the type of the current class.
5015 * @param sym The symbol representing the identifier.
5016 * @param env The current environment.
5017 * @param resultInfo The expected result
5018 */
5019 Type checkId(JCTree tree,
5020 Type site,
5021 Symbol sym,
5022 Env<AttrContext> env,
5023 ResultInfo resultInfo) {
5024 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
5025 checkMethodIdInternal(tree, site, sym, env, resultInfo) :
5026 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5027 }
5028
5029 Type checkMethodIdInternal(JCTree tree,
5030 Type site,
5031 Symbol sym,
5032 Env<AttrContext> env,
5033 ResultInfo resultInfo) {
5034 if (resultInfo.pkind.contains(KindSelector.POLY)) {
5035 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
5036 } else {
5037 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5038 }
5039 }
5040
5041 Type checkIdInternal(JCTree tree,
5042 Type site,
5043 Symbol sym,
5044 Type pt,
5045 Env<AttrContext> env,
5046 ResultInfo resultInfo) {
5047 Type owntype; // The computed type of this identifier occurrence.
5048 switch (sym.kind) {
5049 case TYP:
5050 // For types, the computed type equals the symbol's type,
5051 // except for two situations:
5052 owntype = sym.type;
5053 if (owntype.hasTag(CLASS)) {
5054 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
5055 Type ownOuter = owntype.getEnclosingType();
5056
5057 // (a) If the symbol's type is parameterized, erase it
5058 // because no type parameters were given.
5059 // We recover generic outer type later in visitTypeApply.
5060 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
5061 owntype = types.erasure(owntype);
5062 }
5063
5064 // (b) If the symbol's type is an inner class, then
5065 // we have to interpret its outer type as a superclass
5066 // of the site type. Example:
5067 //
5068 // class Tree<A> { class Visitor { ... } }
5069 // class PointTree extends Tree<Point> { ... }
5070 // ...PointTree.Visitor...
5071 //
5072 // Then the type of the last expression above is
5073 // Tree<Point>.Visitor.
5074 else if ((ownOuter.hasTag(CLASS) || ownOuter.hasTag(TYPEVAR)) && site != ownOuter) {
5075 Type normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
5076 if (normOuter == null) // perhaps from an import
5077 normOuter = types.erasure(ownOuter);
5078 if (normOuter != ownOuter)
5079 owntype = new ClassType(
5080 normOuter, List.nil(), owntype.tsym,
5081 owntype.getMetadata());
5082 }
5083 }
5084 break;
5085 case VAR:
5086 VarSymbol v = (VarSymbol)sym;
5087
5088 if (env.info.enclVar != null
5089 && v.type.hasTag(NONE)) {
5090 //self reference to implicitly typed variable declaration
5091 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
5092 return tree.type = v.type = types.createErrorType(v.type);
5093 }
5094
5095 // Test (4): if symbol is an instance field of a raw type,
5096 // which is being assigned to, issue an unchecked warning if
5097 // its type changes under erasure.
5098 if (KindSelector.ASG.subset(pkind()) &&
5099 v.owner.kind == TYP &&
5100 (v.flags() & STATIC) == 0 &&
5101 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5102 Type s = types.asOuterSuper(site, v.owner);
5103 if (s != null &&
5104 s.isRaw() &&
5105 !types.isSameType(v.type, v.erasure(types))) {
5106 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s));
5107 }
5108 }
5109 // The computed type of a variable is the type of the
5110 // variable symbol, taken as a member of the site type.
5111 owntype = (sym.owner.kind == TYP &&
5112 sym.name != names._this && sym.name != names._super)
5113 ? types.memberType(site, sym)
5114 : sym.type;
5115
5116 // If the variable is a constant, record constant value in
5117 // computed type.
5118 if (v.getConstValue() != null && isStaticReference(tree))
5119 owntype = owntype.constType(v.getConstValue());
5120
5121 if (resultInfo.pkind == KindSelector.VAL) {
5122 owntype = capture(owntype); // capture "names as expressions"
5123 }
5124 break;
5125 case MTH: {
5126 owntype = checkMethod(site, sym,
5127 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
5128 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
5129 resultInfo.pt.getTypeArguments());
5130 chk.checkRestricted(tree.pos(), sym);
5131 break;
5132 }
5133 case PCK: case ERR:
5134 owntype = sym.type;
5135 break;
5136 default:
5137 throw new AssertionError("unexpected kind: " + sym.kind +
5138 " in tree " + tree);
5139 }
5140
5141 // Emit a `deprecation' warning if symbol is deprecated.
5142 // (for constructors (but not for constructor references), the error
5143 // was given when the constructor was resolved)
5144
5145 if (sym.name != names.init || tree.hasTag(REFERENCE)) {
5146 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
5147 chk.checkSunAPI(tree.pos(), sym);
5148 chk.checkProfile(tree.pos(), sym);
5149 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym);
5150 }
5151
5152 if (pt.isErroneous()) {
5153 owntype = types.createErrorType(owntype);
5154 }
5155
5156 // If symbol is a variable, check that its type and
5157 // kind are compatible with the prototype and protokind.
5158 return check(tree, owntype, sym.kind.toSelector(), resultInfo);
5159 }
5160
5161 /** Check that variable is initialized and evaluate the variable's
5162 * initializer, if not yet done. Also check that variable is not
5163 * referenced before it is defined.
5164 * @param tree The tree making up the variable reference.
5165 * @param env The current environment.
5166 * @param v The variable's symbol.
5167 */
5168 private void checkInit(JCTree tree,
5169 Env<AttrContext> env,
5170 VarSymbol v,
5171 boolean onlyWarning) {
5172 // A forward reference is diagnosed if the declaration position
5173 // of the variable is greater than the current tree position
5174 // and the tree and variable definition occur in the same class
5175 // definition. Note that writes don't count as references.
5176 // This check applies only to class and instance
5177 // variables. Local variables follow different scope rules,
5178 // and are subject to definite assignment checking.
5179 Env<AttrContext> initEnv = enclosingInitEnv(env);
5180 if (initEnv != null &&
5181 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
5182 v.owner.kind == TYP &&
5183 v.owner == env.info.scope.owner.enclClass() &&
5184 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
5185 (!env.tree.hasTag(ASSIGN) ||
5186 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
5187 if (!onlyWarning || isStaticEnumField(v)) {
5188 Error errkey = (initEnv.info.enclVar == v) ?
5189 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
5190 log.error(tree.pos(), errkey);
5191 } else if (useBeforeDeclarationWarning) {
5192 Warning warnkey = (initEnv.info.enclVar == v) ?
5193 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
5194 log.warning(tree.pos(), warnkey);
5195 }
5196 }
5197
5198 v.getConstValue(); // ensure initializer is evaluated
5199
5200 checkEnumInitializer(tree, env, v);
5201 }
5202
5203 /**
5204 * Returns the enclosing init environment associated with this env (if any). An init env
5205 * can be either a field declaration env or a static/instance initializer env.
5206 */
5207 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
5208 while (true) {
5209 switch (env.tree.getTag()) {
5210 case VARDEF:
5211 JCVariableDecl vdecl = (JCVariableDecl)env.tree;
5212 if (vdecl.sym.owner.kind == TYP) {
5213 //field
5214 return env;
5215 }
5216 break;
5217 case BLOCK:
5218 if (env.next.tree.hasTag(CLASSDEF)) {
5219 //instance/static initializer
5220 return env;
5221 }
5222 break;
5223 case METHODDEF:
5224 case CLASSDEF:
5225 case TOPLEVEL:
5226 return null;
5227 }
5228 Assert.checkNonNull(env.next);
5229 env = env.next;
5230 }
5231 }
5232
5233 /**
5234 * Check for illegal references to static members of enum. In
5235 * an enum type, constructors and initializers may not
5236 * reference its static members unless they are constant.
5237 *
5238 * @param tree The tree making up the variable reference.
5239 * @param env The current environment.
5240 * @param v The variable's symbol.
5241 * @jls 8.9 Enum Types
5242 */
5243 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
5244 // JLS:
5245 //
5246 // "It is a compile-time error to reference a static field
5247 // of an enum type that is not a compile-time constant
5248 // (15.28) from constructors, instance initializer blocks,
5249 // or instance variable initializer expressions of that
5250 // type. It is a compile-time error for the constructors,
5251 // instance initializer blocks, or instance variable
5252 // initializer expressions of an enum constant e to refer
5253 // to itself or to an enum constant of the same type that
5254 // is declared to the right of e."
5255 if (isStaticEnumField(v)) {
5256 ClassSymbol enclClass = env.info.scope.owner.enclClass();
5257
5258 if (enclClass == null || enclClass.owner == null)
5259 return;
5260
5261 // See if the enclosing class is the enum (or a
5262 // subclass thereof) declaring v. If not, this
5263 // reference is OK.
5264 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
5265 return;
5266
5267 // If the reference isn't from an initializer, then
5268 // the reference is OK.
5269 if (!Resolve.isInitializer(env))
5270 return;
5271
5272 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
5273 }
5274 }
5275
5276 /** Is the given symbol a static, non-constant field of an Enum?
5277 * Note: enum literals should not be regarded as such
5278 */
5279 private boolean isStaticEnumField(VarSymbol v) {
5280 return Flags.isEnum(v.owner) &&
5281 Flags.isStatic(v) &&
5282 !Flags.isConstant(v) &&
5283 v.name != names._class;
5284 }
5285
5286 /**
5287 * Check that method arguments conform to its instantiation.
5288 **/
5289 public Type checkMethod(Type site,
5290 final Symbol sym,
5291 ResultInfo resultInfo,
5292 Env<AttrContext> env,
5293 final List<JCExpression> argtrees,
5294 List<Type> argtypes,
5295 List<Type> typeargtypes) {
5296 // Test (5): if symbol is an instance method of a raw type, issue
5297 // an unchecked warning if its argument types change under erasure.
5298 if ((sym.flags() & STATIC) == 0 &&
5299 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5300 Type s = types.asOuterSuper(site, sym.owner);
5301 if (s != null && s.isRaw() &&
5302 !types.isSameTypes(sym.type.getParameterTypes(),
5303 sym.erasure(types).getParameterTypes())) {
5304 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s));
5305 }
5306 }
5307
5308 if (env.info.defaultSuperCallSite != null) {
5309 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
5310 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
5311 types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
5312 List<MethodSymbol> icand_sup =
5313 types.interfaceCandidates(sup, (MethodSymbol)sym);
5314 if (icand_sup.nonEmpty() &&
5315 icand_sup.head != sym &&
5316 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
5317 log.error(env.tree.pos(),
5318 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
5319 break;
5320 }
5321 }
5322 env.info.defaultSuperCallSite = null;
5323 }
5324
5325 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
5326 JCMethodInvocation app = (JCMethodInvocation)env.tree;
5327 if (app.meth.hasTag(SELECT) &&
5328 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
5329 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
5330 }
5331 }
5332
5333 // Compute the identifier's instantiated type.
5334 // For methods, we need to compute the instance type by
5335 // Resolve.instantiate from the symbol's type as well as
5336 // any type arguments and value arguments.
5337 Warner noteWarner = new Warner();
5338 try {
5339 Type owntype = rs.checkMethod(
5340 env,
5341 site,
5342 sym,
5343 resultInfo,
5344 argtypes,
5345 typeargtypes,
5346 noteWarner);
5347
5348 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
5349 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
5350
5351 argtypes = argtypes.map(checkDeferredMap);
5352
5353 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
5354 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym),
5355 sym.name,
5356 rs.methodArguments(sym.type.getParameterTypes()),
5357 rs.methodArguments(argtypes.map(checkDeferredMap)),
5358 kindName(sym.location()),
5359 sym.location()));
5360 if (resultInfo.pt != Infer.anyPoly ||
5361 !owntype.hasTag(METHOD) ||
5362 !owntype.isPartial()) {
5363 //if this is not a partially inferred method type, erase return type. Otherwise,
5364 //erasure is carried out in PartiallyInferredMethodType.check().
5365 owntype = new MethodType(owntype.getParameterTypes(),
5366 types.erasure(owntype.getReturnType()),
5367 types.erasure(owntype.getThrownTypes()),
5368 syms.methodClass);
5369 }
5370 }
5371
5372 PolyKind pkind = (sym.type.hasTag(FORALL) &&
5373 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
5374 PolyKind.POLY : PolyKind.STANDALONE;
5375 TreeInfo.setPolyKind(env.tree, pkind);
5376
5377 return (resultInfo.pt == Infer.anyPoly) ?
5378 owntype :
5379 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
5380 resultInfo.checkContext.inferenceContext());
5381 } catch (Infer.InferenceException ex) {
5382 //invalid target type - propagate exception outwards or report error
5383 //depending on the current check context
5384 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5385 return types.createErrorType(site);
5386 } catch (Resolve.InapplicableMethodException ex) {
5387 final JCDiagnostic diag = ex.getDiagnostic();
5388 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5389 @Override
5390 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5391 return new Pair<>(sym, diag);
5392 }
5393 };
5394 List<Type> argtypes2 = argtypes.map(
5395 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5396 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5397 env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5398 log.report(errDiag);
5399 return types.createErrorType(site);
5400 }
5401 }
5402
5403 public void visitLiteral(JCLiteral tree) {
5404 result = check(tree, litType(tree.typetag).constType(tree.value),
5405 KindSelector.VAL, resultInfo);
5406 }
5407 //where
5408 /** Return the type of a literal with given type tag.
5409 */
5410 Type litType(TypeTag tag) {
5411 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5412 }
5413
5414 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5415 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5416 }
5417
5418 public void visitTypeArray(JCArrayTypeTree tree) {
5419 Type etype = attribType(tree.elemtype, env);
5420 Type type = new ArrayType(etype, syms.arrayClass);
5421 result = check(tree, type, KindSelector.TYP, resultInfo);
5422 }
5423
5424 /** Visitor method for parameterized types.
5425 * Bound checking is left until later, since types are attributed
5426 * before supertype structure is completely known
5427 */
5428 public void visitTypeApply(JCTypeApply tree) {
5429 Type owntype = types.createErrorType(tree.type);
5430
5431 // Attribute functor part of application and make sure it's a class.
5432 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5433
5434 // Attribute type parameters
5435 List<Type> actuals = attribTypes(tree.arguments, env);
5436
5437 if (clazztype.hasTag(CLASS)) {
5438 List<Type> formals = clazztype.tsym.type.getTypeArguments();
5439 if (actuals.isEmpty()) //diamond
5440 actuals = formals;
5441
5442 if (actuals.length() == formals.length()) {
5443 List<Type> a = actuals;
5444 List<Type> f = formals;
5445 while (a.nonEmpty()) {
5446 a.head = a.head.withTypeVar(f.head);
5447 a = a.tail;
5448 f = f.tail;
5449 }
5450 // Compute the proper generic outer
5451 Type clazzOuter = clazztype.getEnclosingType();
5452 if (clazzOuter.hasTag(CLASS)) {
5453 Type site;
5454 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5455 if (clazz.hasTag(IDENT)) {
5456 site = env.enclClass.sym.type;
5457 } else if (clazz.hasTag(SELECT)) {
5458 site = ((JCFieldAccess) clazz).selected.type;
5459 } else throw new AssertionError(""+tree);
5460 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5461 if (site.hasTag(CLASS) || site.hasTag(TYPEVAR))
5462 site = types.asEnclosingSuper(site, clazzOuter.tsym);
5463 if (site == null)
5464 site = types.erasure(clazzOuter);
5465 clazzOuter = site;
5466 }
5467 }
5468 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5469 clazztype.getMetadata());
5470 } else {
5471 if (formals.length() != 0) {
5472 log.error(tree.pos(),
5473 Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5474 } else {
5475 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5476 }
5477 owntype = types.createErrorType(tree.type);
5478 }
5479 } else if (clazztype.hasTag(ERROR)) {
5480 ErrorType parameterizedErroneous =
5481 new ErrorType(clazztype.getOriginalType(),
5482 clazztype.tsym,
5483 clazztype.getMetadata());
5484
5485 parameterizedErroneous.typarams_field = actuals;
5486 owntype = parameterizedErroneous;
5487 }
5488 result = check(tree, owntype, KindSelector.TYP, resultInfo);
5489 }
5490
5491 public void visitTypeUnion(JCTypeUnion tree) {
5492 ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5493 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5494 for (JCExpression typeTree : tree.alternatives) {
5495 Type ctype = attribType(typeTree, env);
5496 ctype = chk.checkType(typeTree.pos(),
5497 chk.checkClassType(typeTree.pos(), ctype),
5498 syms.throwableType);
5499 if (!ctype.isErroneous()) {
5500 //check that alternatives of a union type are pairwise
5501 //unrelated w.r.t. subtyping
5502 if (chk.intersects(ctype, multicatchTypes.toList())) {
5503 for (Type t : multicatchTypes) {
5504 boolean sub = types.isSubtype(ctype, t);
5505 boolean sup = types.isSubtype(t, ctype);
5506 if (sub || sup) {
5507 //assume 'a' <: 'b'
5508 Type a = sub ? ctype : t;
5509 Type b = sub ? t : ctype;
5510 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5511 }
5512 }
5513 }
5514 multicatchTypes.append(ctype);
5515 if (all_multicatchTypes != null)
5516 all_multicatchTypes.append(ctype);
5517 } else {
5518 if (all_multicatchTypes == null) {
5519 all_multicatchTypes = new ListBuffer<>();
5520 all_multicatchTypes.appendList(multicatchTypes);
5521 }
5522 all_multicatchTypes.append(ctype);
5523 }
5524 }
5525 Type t = check(tree, types.lub(multicatchTypes.toList()),
5526 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5527 if (t.hasTag(CLASS)) {
5528 List<Type> alternatives =
5529 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5530 t = new UnionClassType((ClassType) t, alternatives);
5531 }
5532 tree.type = result = t;
5533 }
5534
5535 public void visitTypeIntersection(JCTypeIntersection tree) {
5536 attribTypes(tree.bounds, env);
5537 tree.type = result = checkIntersection(tree, tree.bounds);
5538 }
5539
5540 public void visitTypeParameter(JCTypeParameter tree) {
5541 TypeVar typeVar = (TypeVar) tree.type;
5542
5543 if (tree.annotations != null && tree.annotations.nonEmpty()) {
5544 annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5545 }
5546
5547 if (!typeVar.getUpperBound().isErroneous()) {
5548 //fixup type-parameter bound computed in 'attribTypeVariables'
5549 typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5550 }
5551 }
5552
5553 Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5554 Set<Symbol> boundSet = new HashSet<>();
5555 if (bounds.nonEmpty()) {
5556 // accept class or interface or typevar as first bound.
5557 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5558 boundSet.add(types.erasure(bounds.head.type).tsym);
5559 if (bounds.head.type.isErroneous()) {
5560 return bounds.head.type;
5561 }
5562 else if (bounds.head.type.hasTag(TYPEVAR)) {
5563 // if first bound was a typevar, do not accept further bounds.
5564 if (bounds.tail.nonEmpty()) {
5565 log.error(bounds.tail.head.pos(),
5566 Errors.TypeVarMayNotBeFollowedByOtherBounds);
5567 return bounds.head.type;
5568 }
5569 } else {
5570 // if first bound was a class or interface, accept only interfaces
5571 // as further bounds.
5572 for (JCExpression bound : bounds.tail) {
5573 bound.type = checkBase(bound.type, bound, env, false, true, false);
5574 if (bound.type.isErroneous()) {
5575 bounds = List.of(bound);
5576 }
5577 else if (bound.type.hasTag(CLASS)) {
5578 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5579 }
5580 }
5581 }
5582 }
5583
5584 if (bounds.length() == 0) {
5585 return syms.objectType;
5586 } else if (bounds.length() == 1) {
5587 return bounds.head.type;
5588 } else {
5589 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5590 // ... the variable's bound is a class type flagged COMPOUND
5591 // (see comment for TypeVar.bound).
5592 // In this case, generate a class tree that represents the
5593 // bound class, ...
5594 JCExpression extending;
5595 List<JCExpression> implementing;
5596 if (!bounds.head.type.isInterface()) {
5597 extending = bounds.head;
5598 implementing = bounds.tail;
5599 } else {
5600 extending = null;
5601 implementing = bounds;
5602 }
5603 JCClassDecl cd = make.at(tree).ClassDef(
5604 make.Modifiers(PUBLIC | ABSTRACT),
5605 names.empty, List.nil(),
5606 extending, implementing, List.nil());
5607
5608 ClassSymbol c = (ClassSymbol)owntype.tsym;
5609 Assert.check((c.flags() & COMPOUND) != 0);
5610 cd.sym = c;
5611 c.sourcefile = env.toplevel.sourcefile;
5612
5613 // ... and attribute the bound class
5614 c.flags_field |= UNATTRIBUTED;
5615 Env<AttrContext> cenv = enter.classEnv(cd, env);
5616 typeEnvs.put(c, cenv);
5617 attribClass(c);
5618 return owntype;
5619 }
5620 }
5621
5622 public void visitWildcard(JCWildcard tree) {
5623 //- System.err.println("visitWildcard("+tree+");");//DEBUG
5624 Type type = (tree.kind.kind == BoundKind.UNBOUND)
5625 ? syms.objectType
5626 : attribType(tree.inner, env);
5627 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5628 tree.kind.kind,
5629 syms.boundClass),
5630 KindSelector.TYP, resultInfo);
5631 }
5632
5633 public void visitAnnotation(JCAnnotation tree) {
5634 Assert.error("should be handled in annotate");
5635 }
5636
5637 @Override
5638 public void visitModifiers(JCModifiers tree) {
5639 //error recovery only:
5640 Assert.check(resultInfo.pkind == KindSelector.ERR);
5641
5642 attribAnnotationTypes(tree.annotations, env);
5643 }
5644
5645 public void visitAnnotatedType(JCAnnotatedType tree) {
5646 attribAnnotationTypes(tree.annotations, env);
5647 Type underlyingType = attribType(tree.underlyingType, env);
5648 Type annotatedType = underlyingType.preannotatedType();
5649
5650 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5651 result = tree.type = annotatedType;
5652 }
5653
5654 public void visitErroneous(JCErroneous tree) {
5655 if (tree.errs != null) {
5656 WriteableScope newScope = env.info.scope;
5657
5658 if (env.tree instanceof JCClassDecl) {
5659 Symbol fakeOwner =
5660 new MethodSymbol(BLOCK, names.empty, null,
5661 env.info.scope.owner);
5662 newScope = newScope.dupUnshared(fakeOwner);
5663 }
5664
5665 Env<AttrContext> errEnv =
5666 env.dup(env.tree,
5667 env.info.dup(newScope));
5668 errEnv.info.returnResult = unknownExprInfo;
5669 for (JCTree err : tree.errs)
5670 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5671 }
5672 result = tree.type = syms.errType;
5673 }
5674
5675 /** Default visitor method for all other trees.
5676 */
5677 public void visitTree(JCTree tree) {
5678 throw new AssertionError();
5679 }
5680
5681 /**
5682 * Attribute an env for either a top level tree or class or module declaration.
5683 */
5684 public void attrib(Env<AttrContext> env) {
5685 switch (env.tree.getTag()) {
5686 case MODULEDEF:
5687 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5688 break;
5689 case PACKAGEDEF:
5690 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5691 break;
5692 default:
5693 attribClass(env.tree.pos(), env.enclClass.sym);
5694 }
5695
5696 annotate.flush();
5697
5698 // Now that this tree is attributed, we can calculate the Lint configuration everywhere within it
5699 lintMapper.calculateLints(env.toplevel.sourcefile, env.tree, env.toplevel.endPositions);
5700 }
5701
5702 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5703 try {
5704 annotate.flush();
5705 attribPackage(p);
5706 } catch (CompletionFailure ex) {
5707 chk.completionError(pos, ex);
5708 }
5709 }
5710
5711 void attribPackage(PackageSymbol p) {
5712 attribWithLint(p,
5713 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5714 }
5715
5716 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5717 try {
5718 annotate.flush();
5719 attribModule(m);
5720 } catch (CompletionFailure ex) {
5721 chk.completionError(pos, ex);
5722 }
5723 }
5724
5725 void attribModule(ModuleSymbol m) {
5726 attribWithLint(m, env -> attribStat(env.tree, env));
5727 }
5728
5729 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5730 Env<AttrContext> env = typeEnvs.get(sym);
5731
5732 Env<AttrContext> lintEnv = env;
5733 while (lintEnv.info.lint == null)
5734 lintEnv = lintEnv.next;
5735
5736 Lint lint = lintEnv.info.lint.augment(sym);
5737
5738 Lint prevLint = chk.setLint(lint);
5739 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5740
5741 try {
5742 attrib.accept(env);
5743 } finally {
5744 log.useSource(prev);
5745 chk.setLint(prevLint);
5746 }
5747 }
5748
5749 /** Main method: attribute class definition associated with given class symbol.
5750 * reporting completion failures at the given position.
5751 * @param pos The source position at which completion errors are to be
5752 * reported.
5753 * @param c The class symbol whose definition will be attributed.
5754 */
5755 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5756 try {
5757 annotate.flush();
5758 attribClass(c);
5759 } catch (CompletionFailure ex) {
5760 chk.completionError(pos, ex);
5761 }
5762 }
5763
5764 /** Attribute class definition associated with given class symbol.
5765 * @param c The class symbol whose definition will be attributed.
5766 */
5767 void attribClass(ClassSymbol c) throws CompletionFailure {
5768 if (c.type.hasTag(ERROR)) return;
5769
5770 // Check for cycles in the inheritance graph, which can arise from
5771 // ill-formed class files.
5772 chk.checkNonCyclic(null, c.type);
5773
5774 Type st = types.supertype(c.type);
5775 if ((c.flags_field & Flags.COMPOUND) == 0 &&
5776 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5777 // First, attribute superclass.
5778 if (st.hasTag(CLASS))
5779 attribClass((ClassSymbol)st.tsym);
5780
5781 // Next attribute owner, if it is a class.
5782 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5783 attribClass((ClassSymbol)c.owner);
5784
5785 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5786 }
5787
5788 // The previous operations might have attributed the current class
5789 // if there was a cycle. So we test first whether the class is still
5790 // UNATTRIBUTED.
5791 if ((c.flags_field & UNATTRIBUTED) != 0) {
5792 c.flags_field &= ~UNATTRIBUTED;
5793
5794 // Get environment current at the point of class definition.
5795 Env<AttrContext> env = typeEnvs.get(c);
5796
5797 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5798 // because the annotations were not available at the time the env was created. Therefore,
5799 // we look up the environment chain for the first enclosing environment for which the
5800 // lint value is set. Typically, this is the parent env, but might be further if there
5801 // are any envs created as a result of TypeParameter nodes.
5802 Env<AttrContext> lintEnv = env;
5803 while (lintEnv.info.lint == null)
5804 lintEnv = lintEnv.next;
5805
5806 // Having found the enclosing lint value, we can initialize the lint value for this class
5807 env.info.lint = lintEnv.info.lint.augment(c);
5808
5809 Lint prevLint = chk.setLint(env.info.lint);
5810 JavaFileObject prev = log.useSource(c.sourcefile);
5811 ResultInfo prevReturnRes = env.info.returnResult;
5812
5813 try {
5814 if (c.isSealed() &&
5815 !c.isEnum() &&
5816 !c.isPermittedExplicit &&
5817 c.getPermittedSubclasses().isEmpty()) {
5818 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5819 }
5820
5821 if (c.isSealed()) {
5822 Set<Symbol> permittedTypes = new HashSet<>();
5823 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5824 for (Type subType : c.getPermittedSubclasses()) {
5825 if (subType.isErroneous()) {
5826 // the type already caused errors, don't produce more potentially misleading errors
5827 continue;
5828 }
5829 boolean isTypeVar = false;
5830 if (subType.getTag() == TYPEVAR) {
5831 isTypeVar = true; //error recovery
5832 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5833 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5834 }
5835 if (subType.tsym.isAnonymous() && !c.isEnum()) {
5836 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5837 }
5838 if (permittedTypes.contains(subType.tsym)) {
5839 DiagnosticPosition pos =
5840 env.enclClass.permitting.stream()
5841 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5842 .limit(2).collect(List.collector()).get(1);
5843 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5844 } else {
5845 permittedTypes.add(subType.tsym);
5846 }
5847 if (sealedInUnnamed) {
5848 if (subType.tsym.packge() != c.packge()) {
5849 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5850 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5851 );
5852 }
5853 } else if (subType.tsym.packge().modle != c.packge().modle) {
5854 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5855 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5856 );
5857 }
5858 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5859 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5860 Errors.InvalidPermitsClause(
5861 subType.tsym == c.type.tsym ?
5862 Fragments.MustNotBeSameClass :
5863 Fragments.MustNotBeSupertype(subType)
5864 )
5865 );
5866 } else if (!isTypeVar) {
5867 boolean thisIsASuper = types.directSupertypes(subType)
5868 .stream()
5869 .anyMatch(d -> d.tsym == c);
5870 if (!thisIsASuper) {
5871 if(c.isInterface()) {
5872 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5873 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType)));
5874 } else {
5875 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5876 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5877 }
5878 }
5879 }
5880 }
5881 }
5882
5883 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5884 .stream()
5885 .filter(s -> s.tsym.isSealed())
5886 .map(s -> (ClassSymbol) s.tsym)
5887 .collect(List.collector());
5888
5889 if (sealedSupers.isEmpty()) {
5890 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5891 boolean hasErrorSuper = false;
5892
5893 hasErrorSuper |= types.directSupertypes(c.type)
5894 .stream()
5895 .anyMatch(s -> s.tsym.kind == Kind.ERR);
5896
5897 ClassType ct = (ClassType) c.type;
5898
5899 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5900
5901 if (!hasErrorSuper) {
5902 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5903 }
5904 }
5905 } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5906 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5907 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5908 }
5909
5910 if (!c.type.isCompound()) {
5911 for (ClassSymbol supertypeSym : sealedSupers) {
5912 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5913 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5914 }
5915 }
5916 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5917 log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5918 c.isInterface() ?
5919 Errors.NonSealedOrSealedExpected :
5920 Errors.NonSealedSealedOrFinalExpected);
5921 }
5922 }
5923 }
5924
5925 env.info.returnResult = null;
5926 // java.lang.Enum may not be subclassed by a non-enum
5927 if (st.tsym == syms.enumSym &&
5928 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5929 log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5930
5931 // Enums may not be extended by source-level classes
5932 if (st.tsym != null &&
5933 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5934 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5935 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5936 }
5937
5938 if (rs.isSerializable(c.type)) {
5939 env.info.isSerializable = true;
5940 }
5941
5942 if (c.isValueClass()) {
5943 Assert.check(env.tree.hasTag(CLASSDEF));
5944 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c);
5945 }
5946
5947 attribClassBody(env, c);
5948
5949 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5950 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5951 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5952 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5953
5954 if (c.isImplicit()) {
5955 chk.checkHasMain(env.tree.pos(), c);
5956 }
5957 } finally {
5958 env.info.returnResult = prevReturnRes;
5959 log.useSource(prev);
5960 chk.setLint(prevLint);
5961 }
5962
5963 }
5964 }
5965
5966 public void visitImport(JCImport tree) {
5967 // nothing to do
5968 }
5969
5970 public void visitModuleDef(JCModuleDecl tree) {
5971 tree.sym.completeUsesProvides();
5972 ModuleSymbol msym = tree.sym;
5973 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5974 Lint prevLint = chk.setLint(lint);
5975 try {
5976 chk.checkModuleName(tree);
5977 chk.checkDeprecatedAnnotation(tree, msym);
5978 } finally {
5979 chk.setLint(prevLint);
5980 }
5981 }
5982
5983 /** Finish the attribution of a class. */
5984 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5985 JCClassDecl tree = (JCClassDecl)env.tree;
5986 Assert.check(c == tree.sym);
5987
5988 // Validate type parameters, supertype and interfaces.
5989 attribStats(tree.typarams, env);
5990 if (!c.isAnonymous()) {
5991 //already checked if anonymous
5992 chk.validate(tree.typarams, env);
5993 chk.validate(tree.extending, env);
5994 chk.validate(tree.implementing, env);
5995 }
5996
5997 chk.checkRequiresIdentity(tree, env.info.lint);
5998
5999 c.markAbstractIfNeeded(types);
6000
6001 // If this is a non-abstract class, check that it has no abstract
6002 // methods or unimplemented methods of an implemented interface.
6003 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
6004 chk.checkAllDefined(tree.pos(), c);
6005 }
6006
6007 if ((c.flags() & ANNOTATION) != 0) {
6008 if (tree.implementing.nonEmpty())
6009 log.error(tree.implementing.head.pos(),
6010 Errors.CantExtendIntfAnnotation);
6011 if (tree.typarams.nonEmpty()) {
6012 log.error(tree.typarams.head.pos(),
6013 Errors.IntfAnnotationCantHaveTypeParams(c));
6014 }
6015
6016 // If this annotation type has a @Repeatable, validate
6017 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
6018 // If this annotation type has a @Repeatable, validate
6019 if (repeatable != null) {
6020 // get diagnostic position for error reporting
6021 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
6022 Assert.checkNonNull(cbPos);
6023
6024 chk.validateRepeatable(c, repeatable, cbPos);
6025 }
6026 } else {
6027 try {
6028 // Check that all extended classes and interfaces
6029 // are compatible (i.e. no two define methods with same arguments
6030 // yet different return types). (JLS 8.4.8.3)
6031 chk.checkCompatibleSupertypes(tree.pos(), c.type);
6032 chk.checkDefaultMethodClashes(tree.pos(), c.type);
6033 chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
6034 } catch (CompletionFailure cf) {
6035 chk.completionError(tree.pos(), cf);
6036 }
6037 }
6038
6039 // Check that class does not import the same parameterized interface
6040 // with two different argument lists.
6041 chk.checkClassBounds(tree.pos(), c.type);
6042
6043 tree.type = c.type;
6044
6045 for (List<JCTypeParameter> l = tree.typarams;
6046 l.nonEmpty(); l = l.tail) {
6047 Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
6048 }
6049
6050 // Check that a generic class doesn't extend Throwable
6051 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
6052 log.error(tree.extending.pos(), Errors.GenericThrowable);
6053
6054 // Check that all methods which implement some
6055 // method conform to the method they implement.
6056 chk.checkImplementations(tree);
6057
6058 //check that a resource implementing AutoCloseable cannot throw InterruptedException
6059 checkAutoCloseable(env, tree, false);
6060
6061 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
6062 // Attribute declaration
6063 attribStat(l.head, env);
6064 // Check that declarations in inner classes are not static (JLS 8.1.2)
6065 // Make an exception for static constants.
6066 if (!allowRecords &&
6067 c.owner.kind != PCK &&
6068 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
6069 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
6070 VarSymbol sym = null;
6071 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
6072 if (sym == null ||
6073 sym.kind != VAR ||
6074 sym.getConstValue() == null)
6075 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
6076 }
6077 }
6078
6079 // Check for proper placement of super()/this() calls.
6080 chk.checkSuperInitCalls(tree);
6081
6082 // Check for cycles among non-initial constructors.
6083 chk.checkCyclicConstructors(tree);
6084
6085 // Check for cycles among annotation elements.
6086 chk.checkNonCyclicElements(tree);
6087
6088 // Check for proper use of serialVersionUID and other
6089 // serialization-related fields and methods
6090 if (env.info.lint.isEnabled(LintCategory.SERIAL)
6091 && rs.isSerializable(c.type)
6092 && !c.isAnonymous()) {
6093 chk.checkSerialStructure(env, tree, c);
6094 }
6095 // Correctly organize the positions of the type annotations
6096 typeAnnotations.organizeTypeAnnotationsBodies(tree);
6097
6098 // Check type annotations applicability rules
6099 validateTypeAnnotations(tree, false);
6100 }
6101 // where
6102 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
6103 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
6104 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
6105 if (types.isSameType(al.head.annotationType.type, t))
6106 return al.head.pos();
6107 }
6108
6109 return null;
6110 }
6111
6112 private Type capture(Type type) {
6113 return types.capture(type);
6114 }
6115
6116 private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
6117 if (type.isErroneous()) {
6118 tree.vartype = make.at(tree.pos()).Erroneous();
6119 } else if (tree.declaredUsingVar()) {
6120 Assert.check(tree.typePos != Position.NOPOS);
6121 tree.vartype = make.at(tree.typePos).Type(type);
6122 } else {
6123 tree.vartype = make.at(tree.pos()).Type(type);
6124 }
6125 }
6126
6127 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
6128 tree.accept(new TypeAnnotationsValidator(sigOnly));
6129 }
6130 //where
6131 private final class TypeAnnotationsValidator extends TreeScanner {
6132
6133 private final boolean sigOnly;
6134 public TypeAnnotationsValidator(boolean sigOnly) {
6135 this.sigOnly = sigOnly;
6136 }
6137
6138 public void visitAnnotation(JCAnnotation tree) {
6139 chk.validateTypeAnnotation(tree, null, false);
6140 super.visitAnnotation(tree);
6141 }
6142 public void visitAnnotatedType(JCAnnotatedType tree) {
6143 if (!tree.underlyingType.type.isErroneous()) {
6144 super.visitAnnotatedType(tree);
6145 }
6146 }
6147 public void visitTypeParameter(JCTypeParameter tree) {
6148 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
6149 scan(tree.bounds);
6150 // Don't call super.
6151 // This is needed because above we call validateTypeAnnotation with
6152 // false, which would forbid annotations on type parameters.
6153 // super.visitTypeParameter(tree);
6154 }
6155 public void visitMethodDef(JCMethodDecl tree) {
6156 if (tree.recvparam != null &&
6157 !tree.recvparam.vartype.type.isErroneous()) {
6158 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
6159 }
6160 if (tree.restype != null && tree.restype.type != null) {
6161 validateAnnotatedType(tree.restype, tree.restype.type);
6162 }
6163 if (sigOnly) {
6164 scan(tree.mods);
6165 scan(tree.restype);
6166 scan(tree.typarams);
6167 scan(tree.recvparam);
6168 scan(tree.params);
6169 scan(tree.thrown);
6170 } else {
6171 scan(tree.defaultValue);
6172 scan(tree.body);
6173 }
6174 }
6175 public void visitVarDef(final JCVariableDecl tree) {
6176 //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
6177 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
6178 validateAnnotatedType(tree.vartype, tree.sym.type);
6179 scan(tree.mods);
6180 scan(tree.vartype);
6181 if (!sigOnly) {
6182 scan(tree.init);
6183 }
6184 }
6185 public void visitTypeCast(JCTypeCast tree) {
6186 if (tree.clazz != null && tree.clazz.type != null)
6187 validateAnnotatedType(tree.clazz, tree.clazz.type);
6188 super.visitTypeCast(tree);
6189 }
6190 public void visitTypeTest(JCInstanceOf tree) {
6191 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
6192 validateAnnotatedType(tree.pattern, tree.pattern.type);
6193 super.visitTypeTest(tree);
6194 }
6195 public void visitNewClass(JCNewClass tree) {
6196 if (tree.clazz != null && tree.clazz.type != null) {
6197 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
6198 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
6199 tree.clazz.type.tsym);
6200 }
6201 if (tree.def != null) {
6202 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
6203 }
6204
6205 validateAnnotatedType(tree.clazz, tree.clazz.type);
6206 }
6207 super.visitNewClass(tree);
6208 }
6209 public void visitNewArray(JCNewArray tree) {
6210 if (tree.elemtype != null && tree.elemtype.type != null) {
6211 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
6212 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
6213 tree.elemtype.type.tsym);
6214 }
6215 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
6216 }
6217 super.visitNewArray(tree);
6218 }
6219 public void visitClassDef(JCClassDecl tree) {
6220 //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
6221 if (sigOnly) {
6222 scan(tree.mods);
6223 scan(tree.typarams);
6224 scan(tree.extending);
6225 scan(tree.implementing);
6226 }
6227 for (JCTree member : tree.defs) {
6228 if (member.hasTag(Tag.CLASSDEF)) {
6229 continue;
6230 }
6231 scan(member);
6232 }
6233 }
6234 public void visitBlock(JCBlock tree) {
6235 if (!sigOnly) {
6236 scan(tree.stats);
6237 }
6238 }
6239
6240 /* I would want to model this after
6241 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
6242 * and override visitSelect and visitTypeApply.
6243 * However, we only set the annotated type in the top-level type
6244 * of the symbol.
6245 * Therefore, we need to override each individual location where a type
6246 * can occur.
6247 */
6248 private void validateAnnotatedType(final JCTree errtree, final Type type) {
6249 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
6250
6251 if (type.isPrimitiveOrVoid()) {
6252 return;
6253 }
6254
6255 JCTree enclTr = errtree;
6256 Type enclTy = type;
6257
6258 boolean repeat = true;
6259 while (repeat) {
6260 if (enclTr.hasTag(TYPEAPPLY)) {
6261 List<Type> tyargs = enclTy.getTypeArguments();
6262 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
6263 if (trargs.length() > 0) {
6264 // Nothing to do for diamonds
6265 if (tyargs.length() == trargs.length()) {
6266 for (int i = 0; i < tyargs.length(); ++i) {
6267 validateAnnotatedType(trargs.get(i), tyargs.get(i));
6268 }
6269 }
6270 // If the lengths don't match, it's either a diamond
6271 // or some nested type that redundantly provides
6272 // type arguments in the tree.
6273 }
6274
6275 // Look at the clazz part of a generic type
6276 enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
6277 }
6278
6279 if (enclTr.hasTag(SELECT)) {
6280 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
6281 if (enclTy != null &&
6282 !enclTy.hasTag(NONE)) {
6283 enclTy = enclTy.getEnclosingType();
6284 }
6285 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
6286 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
6287 if (enclTy == null || enclTy.hasTag(NONE)) {
6288 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
6289 for (JCAnnotation an : at.getAnnotations()) {
6290 if (chk.isTypeAnnotation(an, false)) {
6291 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
6292 }
6293 }
6294 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
6295 if (!onlyTypeAnnotations.isEmpty()) {
6296 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
6297 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
6298 Fragments.TypeAnnotation(onlyTypeAnnotations);
6299 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
6300 type.stripMetadata().annotatedType(onlyTypeAnnotations));
6301 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
6302 type.tsym.owner, annotatedType));
6303 }
6304 repeat = false;
6305 }
6306 enclTr = at.underlyingType;
6307 // enclTy doesn't need to be changed
6308 } else if (enclTr.hasTag(IDENT)) {
6309 repeat = false;
6310 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
6311 JCWildcard wc = (JCWildcard) enclTr;
6312 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
6313 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
6314 validateAnnotatedType(wc.getBound(), wc.getBound().type);
6315 } else {
6316 // Nothing to do for UNBOUND
6317 }
6318 repeat = false;
6319 } else if (enclTr.hasTag(TYPEARRAY)) {
6320 JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
6321 validateAnnotatedType(art.getType(), art.elemtype.type);
6322 repeat = false;
6323 } else if (enclTr.hasTag(TYPEUNION)) {
6324 JCTypeUnion ut = (JCTypeUnion) enclTr;
6325 for (JCTree t : ut.getTypeAlternatives()) {
6326 validateAnnotatedType(t, t.type);
6327 }
6328 repeat = false;
6329 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
6330 JCTypeIntersection it = (JCTypeIntersection) enclTr;
6331 for (JCTree t : it.getBounds()) {
6332 validateAnnotatedType(t, t.type);
6333 }
6334 repeat = false;
6335 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
6336 enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
6337 repeat = false;
6338 } else {
6339 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
6340 " within: "+ errtree + " with kind: " + errtree.getKind());
6341 }
6342 }
6343 }
6344
6345 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
6346 Symbol sym) {
6347 // Ensure that no declaration annotations are present.
6348 // Note that a tree type might be an AnnotatedType with
6349 // empty annotations, if only declaration annotations were given.
6350 // This method will raise an error for such a type.
6351 for (JCAnnotation ai : annotations) {
6352 if (!ai.type.isErroneous() &&
6353 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
6354 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
6355 }
6356 }
6357 }
6358 }
6359
6360 // <editor-fold desc="post-attribution visitor">
6361
6362 /**
6363 * Handle missing types/symbols in an AST. This routine is useful when
6364 * the compiler has encountered some errors (which might have ended up
6365 * terminating attribution abruptly); if the compiler is used in fail-over
6366 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
6367 * prevents NPE to be propagated during subsequent compilation steps.
6368 */
6369 public void postAttr(JCTree tree) {
6370 new PostAttrAnalyzer().scan(tree);
6371 }
6372
6373 class PostAttrAnalyzer extends TreeScanner {
6374
6375 private void initTypeIfNeeded(JCTree that) {
6376 if (that.type == null) {
6377 if (that.hasTag(METHODDEF)) {
6378 that.type = dummyMethodType((JCMethodDecl)that);
6379 } else {
6380 that.type = syms.unknownType;
6381 }
6382 }
6383 }
6384
6385 /* Construct a dummy method type. If we have a method declaration,
6386 * and the declared return type is void, then use that return type
6387 * instead of UNKNOWN to avoid spurious error messages in lambda
6388 * bodies (see:JDK-8041704).
6389 */
6390 private Type dummyMethodType(JCMethodDecl md) {
6391 Type restype = syms.unknownType;
6392 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
6393 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
6394 if (prim.typetag == VOID)
6395 restype = syms.voidType;
6396 }
6397 return new MethodType(List.nil(), restype,
6398 List.nil(), syms.methodClass);
6399 }
6400 private Type dummyMethodType() {
6401 return dummyMethodType(null);
6402 }
6403
6404 @Override
6405 public void scan(JCTree tree) {
6406 if (tree == null) return;
6407 if (tree instanceof JCExpression) {
6408 initTypeIfNeeded(tree);
6409 }
6410 super.scan(tree);
6411 }
6412
6413 @Override
6414 public void visitIdent(JCIdent that) {
6415 if (that.sym == null) {
6416 that.sym = syms.unknownSymbol;
6417 }
6418 }
6419
6420 @Override
6421 public void visitSelect(JCFieldAccess that) {
6422 if (that.sym == null) {
6423 that.sym = syms.unknownSymbol;
6424 }
6425 super.visitSelect(that);
6426 }
6427
6428 @Override
6429 public void visitClassDef(JCClassDecl that) {
6430 initTypeIfNeeded(that);
6431 if (that.sym == null) {
6432 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6433 }
6434 super.visitClassDef(that);
6435 }
6436
6437 @Override
6438 public void visitMethodDef(JCMethodDecl that) {
6439 initTypeIfNeeded(that);
6440 if (that.sym == null) {
6441 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6442 }
6443 super.visitMethodDef(that);
6444 }
6445
6446 @Override
6447 public void visitVarDef(JCVariableDecl that) {
6448 initTypeIfNeeded(that);
6449 if (that.sym == null) {
6450 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6451 that.sym.adr = 0;
6452 }
6453 if (that.vartype == null) {
6454 that.vartype = make.at(Position.NOPOS).Erroneous();
6455 }
6456 super.visitVarDef(that);
6457 }
6458
6459 @Override
6460 public void visitBindingPattern(JCBindingPattern that) {
6461 initTypeIfNeeded(that);
6462 initTypeIfNeeded(that.var);
6463 if (that.var.sym == null) {
6464 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6465 that.var.sym.adr = 0;
6466 }
6467 super.visitBindingPattern(that);
6468 }
6469
6470 @Override
6471 public void visitRecordPattern(JCRecordPattern that) {
6472 initTypeIfNeeded(that);
6473 if (that.record == null) {
6474 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6475 that.type, syms.noSymbol);
6476 }
6477 if (that.fullComponentTypes == null) {
6478 that.fullComponentTypes = List.nil();
6479 }
6480 super.visitRecordPattern(that);
6481 }
6482
6483 @Override
6484 public void visitNewClass(JCNewClass that) {
6485 if (that.constructor == null) {
6486 that.constructor = new MethodSymbol(0, names.init,
6487 dummyMethodType(), syms.noSymbol);
6488 }
6489 if (that.constructorType == null) {
6490 that.constructorType = syms.unknownType;
6491 }
6492 super.visitNewClass(that);
6493 }
6494
6495 @Override
6496 public void visitAssignop(JCAssignOp that) {
6497 if (that.operator == null) {
6498 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6499 -1, syms.noSymbol);
6500 }
6501 super.visitAssignop(that);
6502 }
6503
6504 @Override
6505 public void visitBinary(JCBinary that) {
6506 if (that.operator == null) {
6507 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6508 -1, syms.noSymbol);
6509 }
6510 super.visitBinary(that);
6511 }
6512
6513 @Override
6514 public void visitUnary(JCUnary that) {
6515 if (that.operator == null) {
6516 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6517 -1, syms.noSymbol);
6518 }
6519 super.visitUnary(that);
6520 }
6521
6522 @Override
6523 public void visitReference(JCMemberReference that) {
6524 super.visitReference(that);
6525 if (that.sym == null) {
6526 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6527 syms.noSymbol);
6528 }
6529 }
6530 }
6531 // </editor-fold>
6532
6533 public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6534 new TreeScanner() {
6535 Symbol packge = pkg;
6536 @Override
6537 public void visitIdent(JCIdent that) {
6538 that.sym = packge;
6539 }
6540
6541 @Override
6542 public void visitSelect(JCFieldAccess that) {
6543 that.sym = packge;
6544 packge = packge.owner;
6545 super.visitSelect(that);
6546 }
6547 }.scan(pid);
6548 }
6549
6550 }