1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 128 public static Attr instance(Context context) { 129 Attr instance = context.get(attrKey); 130 if (instance == null) 131 instance = new Attr(context); 132 return instance; 133 } 134 135 @SuppressWarnings("this-escape") 136 protected Attr(Context context) { 137 context.put(attrKey, this); 138 139 names = Names.instance(context); 140 log = Log.instance(context); 141 syms = Symtab.instance(context); 142 rs = Resolve.instance(context); 143 operators = Operators.instance(context); 144 chk = Check.instance(context); 145 flow = Flow.instance(context); 146 memberEnter = MemberEnter.instance(context); 147 typeEnter = TypeEnter.instance(context); 148 make = TreeMaker.instance(context); 149 enter = Enter.instance(context); 150 infer = Infer.instance(context); 151 analyzer = Analyzer.instance(context); 152 deferredAttr = DeferredAttr.instance(context); 153 cfolder = ConstFold.instance(context); 154 target = Target.instance(context); 155 types = Types.instance(context); 156 preview = Preview.instance(context); 157 diags = JCDiagnostic.Factory.instance(context); 158 annotate = Annotate.instance(context); 159 typeAnnotations = TypeAnnotations.instance(context); 160 deferredLintHandler = DeferredLintHandler.instance(context); 161 typeEnvs = TypeEnvs.instance(context); 162 dependencies = Dependencies.instance(context); 163 argumentAttr = ArgumentAttr.instance(context); 164 matchBindingsComputer = MatchBindingsComputer.instance(context); 165 attrRecover = AttrRecover.instance(context); 166 167 Options options = Options.instance(context); 168 169 Source source = Source.instance(context); 170 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 171 allowRecords = Feature.RECORDS.allowedInSource(source); 172 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 173 Feature.PATTERN_SWITCH.allowedInSource(source); 174 allowUnconditionalPatternsInstanceOf = 175 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 176 sourceName = source.name; 177 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 178 179 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 180 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 181 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 182 methodAttrInfo = new MethodAttrInfo(); 183 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 184 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 185 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 186 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 187 } 188 189 /** Switch: reifiable types in instanceof enabled? 190 */ 191 boolean allowReifiableTypesInInstanceof; 192 193 /** Are records allowed 194 */ 195 private final boolean allowRecords; 196 197 /** Are patterns in switch allowed 198 */ 199 private final boolean allowPatternSwitch; 200 201 /** Are unconditional patterns in instanceof allowed 202 */ 203 private final boolean allowUnconditionalPatternsInstanceOf; 204 205 /** 206 * Switch: warn about use of variable before declaration? 207 * RFE: 6425594 208 */ 209 boolean useBeforeDeclarationWarning; 210 211 /** 212 * Switch: name of source level; used for error reporting. 213 */ 214 String sourceName; 215 216 /** Check kind and type of given tree against protokind and prototype. 217 * If check succeeds, store type in tree and return it. 218 * If check fails, store errType in tree and return it. 219 * No checks are performed if the prototype is a method type. 220 * It is not necessary in this case since we know that kind and type 221 * are correct. 222 * 223 * @param tree The tree whose kind and type is checked 224 * @param found The computed type of the tree 225 * @param ownkind The computed kind of the tree 226 * @param resultInfo The expected result of the tree 227 */ 228 Type check(final JCTree tree, 229 final Type found, 230 final KindSelector ownkind, 231 final ResultInfo resultInfo) { 232 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 233 Type owntype; 234 boolean shouldCheck = !found.hasTag(ERROR) && 235 !resultInfo.pt.hasTag(METHOD) && 236 !resultInfo.pt.hasTag(FORALL); 237 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 238 log.error(tree.pos(), 239 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 240 ownkind.kindNames())); 241 owntype = types.createErrorType(found); 242 } else if (inferenceContext.free(found)) { 243 //delay the check if there are inference variables in the found type 244 //this means we are dealing with a partially inferred poly expression 245 owntype = shouldCheck ? resultInfo.pt : found; 246 if (resultInfo.checkMode.installPostInferenceHook()) { 247 inferenceContext.addFreeTypeListener(List.of(found), 248 instantiatedContext -> { 249 ResultInfo pendingResult = 250 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 251 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 252 }); 253 } 254 } else { 255 owntype = shouldCheck ? 256 resultInfo.check(tree, found) : 257 found; 258 } 259 if (resultInfo.checkMode.updateTreeType()) { 260 tree.type = owntype; 261 } 262 return owntype; 263 } 264 265 /** Is given blank final variable assignable, i.e. in a scope where it 266 * may be assigned to even though it is final? 267 * @param v The blank final variable. 268 * @param env The current environment. 269 */ 270 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 271 Symbol owner = env.info.scope.owner; 272 // owner refers to the innermost variable, method or 273 // initializer block declaration at this point. 274 boolean isAssignable = 275 v.owner == owner 276 || 277 ((owner.name == names.init || // i.e. we are in a constructor 278 owner.kind == VAR || // i.e. we are in a variable initializer 279 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 280 && 281 v.owner == owner.owner 282 && 283 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 284 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 285 return isAssignable & !insideCompactConstructor; 286 } 287 288 /** Check that variable can be assigned to. 289 * @param pos The current source code position. 290 * @param v The assigned variable 291 * @param base If the variable is referred to in a Select, the part 292 * to the left of the `.', null otherwise. 293 * @param env The current environment. 294 */ 295 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 296 if (v.name == names._this) { 297 log.error(pos, Errors.CantAssignValToThis); 298 return; 299 } 300 if ((v.flags() & FINAL) != 0 && 301 ((v.flags() & HASINIT) != 0 302 || 303 !((base == null || 304 TreeInfo.isThisQualifier(base)) && 305 isAssignableAsBlankFinal(v, env)))) { 306 if (v.isResourceVariable()) { //TWR resource 307 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 308 } else { 309 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 310 } 311 return; 312 } 313 314 // Check instance field assignments that appear in constructor prologues 315 if (rs.isEarlyReference(env, base, v)) { 316 317 // Field may not be inherited from a superclass 318 if (v.owner != env.enclClass.sym) { 319 log.error(pos, Errors.CantRefBeforeCtorCalled(v)); 320 return; 321 } 322 323 // Field may not have an initializer 324 if ((v.flags() & HASINIT) != 0) { 325 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v)); 326 return; 327 } 328 } 329 } 330 331 /** Does tree represent a static reference to an identifier? 332 * It is assumed that tree is either a SELECT or an IDENT. 333 * We have to weed out selects from non-type names here. 334 * @param tree The candidate tree. 335 */ 336 boolean isStaticReference(JCTree tree) { 337 if (tree.hasTag(SELECT)) { 338 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 339 if (lsym == null || lsym.kind != TYP) { 340 return false; 341 } 342 } 343 return true; 344 } 345 346 /** Is this symbol a type? 347 */ 348 static boolean isType(Symbol sym) { 349 return sym != null && sym.kind == TYP; 350 } 351 352 /** Attribute a parsed identifier. 353 * @param tree Parsed identifier name 354 * @param topLevel The toplevel to use 355 */ 356 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 357 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 358 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 359 syms.errSymbol.name, 360 null, null, null, null); 361 localEnv.enclClass.sym = syms.errSymbol; 362 return attribIdent(tree, localEnv); 363 } 364 365 /** Attribute a parsed identifier. 366 * @param tree Parsed identifier name 367 * @param env The env to use 368 */ 369 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 370 return tree.accept(identAttributer, env); 371 } 372 // where 373 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 374 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 375 @Override @DefinedBy(Api.COMPILER_TREE) 376 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 377 Symbol site = visit(node.getExpression(), env); 378 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 379 return site; 380 Name name = (Name)node.getIdentifier(); 381 if (site.kind == PCK) { 382 env.toplevel.packge = (PackageSymbol)site; 383 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 384 KindSelector.TYP_PCK); 385 } else { 386 env.enclClass.sym = (ClassSymbol)site; 387 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 388 } 389 } 390 391 @Override @DefinedBy(Api.COMPILER_TREE) 392 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 393 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 394 } 395 } 396 397 public Type coerce(Type etype, Type ttype) { 398 return cfolder.coerce(etype, ttype); 399 } 400 401 public Type attribType(JCTree node, TypeSymbol sym) { 402 Env<AttrContext> env = typeEnvs.get(sym); 403 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 404 return attribTree(node, localEnv, unknownTypeInfo); 405 } 406 407 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 408 // Attribute qualifying package or class. 409 JCFieldAccess s = tree.qualid; 410 return attribTree(s.selected, env, 411 new ResultInfo(tree.staticImport ? 412 KindSelector.TYP : KindSelector.TYP_PCK, 413 Type.noType)); 414 } 415 416 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 417 return attribToTree(expr, env, tree, unknownExprInfo); 418 } 419 420 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 421 return attribToTree(stmt, env, tree, statInfo); 422 } 423 424 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 425 breakTree = tree; 426 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 427 try { 428 deferredAttr.attribSpeculative(root, env, resultInfo, 429 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 430 argumentAttr.withLocalCacheContext()); 431 attrRecover.doRecovery(); 432 } catch (BreakAttr b) { 433 return b.env; 434 } catch (AssertionError ae) { 435 if (ae.getCause() instanceof BreakAttr breakAttr) { 436 return breakAttr.env; 437 } else { 438 throw ae; 439 } 440 } finally { 441 breakTree = null; 442 log.useSource(prev); 443 } 444 return env; 445 } 446 447 private JCTree breakTree = null; 448 449 private static class BreakAttr extends RuntimeException { 450 static final long serialVersionUID = -6924771130405446405L; 451 private transient Env<AttrContext> env; 452 private BreakAttr(Env<AttrContext> env) { 453 this.env = env; 454 } 455 } 456 457 /** 458 * Mode controlling behavior of Attr.Check 459 */ 460 enum CheckMode { 461 462 NORMAL, 463 464 /** 465 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 466 * that the captured var cache in {@code InferenceContext} will be used in read-only 467 * mode when performing inference checks. 468 */ 469 NO_TREE_UPDATE { 470 @Override 471 public boolean updateTreeType() { 472 return false; 473 } 474 }, 475 /** 476 * Mode signalling that caller will manage free types in tree decorations. 477 */ 478 NO_INFERENCE_HOOK { 479 @Override 480 public boolean installPostInferenceHook() { 481 return false; 482 } 483 }; 484 485 public boolean updateTreeType() { 486 return true; 487 } 488 public boolean installPostInferenceHook() { 489 return true; 490 } 491 } 492 493 494 class ResultInfo { 495 final KindSelector pkind; 496 final Type pt; 497 final CheckContext checkContext; 498 final CheckMode checkMode; 499 500 ResultInfo(KindSelector pkind, Type pt) { 501 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 502 } 503 504 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 505 this(pkind, pt, chk.basicHandler, checkMode); 506 } 507 508 protected ResultInfo(KindSelector pkind, 509 Type pt, CheckContext checkContext) { 510 this(pkind, pt, checkContext, CheckMode.NORMAL); 511 } 512 513 protected ResultInfo(KindSelector pkind, 514 Type pt, CheckContext checkContext, CheckMode checkMode) { 515 this.pkind = pkind; 516 this.pt = pt; 517 this.checkContext = checkContext; 518 this.checkMode = checkMode; 519 } 520 521 /** 522 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 523 * @param tree The tree to be type-checked. 524 * @return true if {@code ArgumentAttr} should be used. 525 */ 526 protected boolean needsArgumentAttr(JCTree tree) { return false; } 527 528 protected Type check(final DiagnosticPosition pos, final Type found) { 529 return chk.checkType(pos, found, pt, checkContext); 530 } 531 532 protected ResultInfo dup(Type newPt) { 533 return new ResultInfo(pkind, newPt, checkContext, checkMode); 534 } 535 536 protected ResultInfo dup(CheckContext newContext) { 537 return new ResultInfo(pkind, pt, newContext, checkMode); 538 } 539 540 protected ResultInfo dup(Type newPt, CheckContext newContext) { 541 return new ResultInfo(pkind, newPt, newContext, checkMode); 542 } 543 544 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 545 return new ResultInfo(pkind, newPt, newContext, newMode); 546 } 547 548 protected ResultInfo dup(CheckMode newMode) { 549 return new ResultInfo(pkind, pt, checkContext, newMode); 550 } 551 552 @Override 553 public String toString() { 554 if (pt != null) { 555 return pt.toString(); 556 } else { 557 return ""; 558 } 559 } 560 } 561 562 class MethodAttrInfo extends ResultInfo { 563 public MethodAttrInfo() { 564 this(chk.basicHandler); 565 } 566 567 public MethodAttrInfo(CheckContext checkContext) { 568 super(KindSelector.VAL, Infer.anyPoly, checkContext); 569 } 570 571 @Override 572 protected boolean needsArgumentAttr(JCTree tree) { 573 return true; 574 } 575 576 protected ResultInfo dup(Type newPt) { 577 throw new IllegalStateException(); 578 } 579 580 protected ResultInfo dup(CheckContext newContext) { 581 return new MethodAttrInfo(newContext); 582 } 583 584 protected ResultInfo dup(Type newPt, CheckContext newContext) { 585 throw new IllegalStateException(); 586 } 587 588 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 589 throw new IllegalStateException(); 590 } 591 592 protected ResultInfo dup(CheckMode newMode) { 593 throw new IllegalStateException(); 594 } 595 } 596 597 class RecoveryInfo extends ResultInfo { 598 599 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 600 this(deferredAttrContext, Type.recoveryType); 601 } 602 603 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 604 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 605 @Override 606 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 607 return deferredAttrContext; 608 } 609 @Override 610 public boolean compatible(Type found, Type req, Warner warn) { 611 return true; 612 } 613 @Override 614 public void report(DiagnosticPosition pos, JCDiagnostic details) { 615 boolean needsReport = pt == Type.recoveryType || 616 (details.getDiagnosticPosition() != null && 617 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 618 if (needsReport) { 619 chk.basicHandler.report(pos, details); 620 } 621 } 622 }); 623 } 624 } 625 626 final ResultInfo statInfo; 627 final ResultInfo varAssignmentInfo; 628 final ResultInfo methodAttrInfo; 629 final ResultInfo unknownExprInfo; 630 final ResultInfo unknownTypeInfo; 631 final ResultInfo unknownTypeExprInfo; 632 final ResultInfo recoveryInfo; 633 final MethodType initBlockType; 634 635 Type pt() { 636 return resultInfo.pt; 637 } 638 639 KindSelector pkind() { 640 return resultInfo.pkind; 641 } 642 643 /* ************************************************************************ 644 * Visitor methods 645 *************************************************************************/ 646 647 /** Visitor argument: the current environment. 648 */ 649 Env<AttrContext> env; 650 651 /** Visitor argument: the currently expected attribution result. 652 */ 653 ResultInfo resultInfo; 654 655 /** Visitor result: the computed type. 656 */ 657 Type result; 658 659 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 660 661 /** Visitor method: attribute a tree, catching any completion failure 662 * exceptions. Return the tree's type. 663 * 664 * @param tree The tree to be visited. 665 * @param env The environment visitor argument. 666 * @param resultInfo The result info visitor argument. 667 */ 668 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 669 Env<AttrContext> prevEnv = this.env; 670 ResultInfo prevResult = this.resultInfo; 671 try { 672 this.env = env; 673 this.resultInfo = resultInfo; 674 if (resultInfo.needsArgumentAttr(tree)) { 675 result = argumentAttr.attribArg(tree, env); 676 } else { 677 tree.accept(this); 678 } 679 matchBindings = matchBindingsComputer.finishBindings(tree, 680 matchBindings); 681 if (tree == breakTree && 682 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 683 breakTreeFound(copyEnv(env)); 684 } 685 return result; 686 } catch (CompletionFailure ex) { 687 tree.type = syms.errType; 688 return chk.completionError(tree.pos(), ex); 689 } finally { 690 this.env = prevEnv; 691 this.resultInfo = prevResult; 692 } 693 } 694 695 protected void breakTreeFound(Env<AttrContext> env) { 696 throw new BreakAttr(env); 697 } 698 699 Env<AttrContext> copyEnv(Env<AttrContext> env) { 700 Env<AttrContext> newEnv = 701 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 702 if (newEnv.outer != null) { 703 newEnv.outer = copyEnv(newEnv.outer); 704 } 705 return newEnv; 706 } 707 708 WriteableScope copyScope(WriteableScope sc) { 709 WriteableScope newScope = WriteableScope.create(sc.owner); 710 List<Symbol> elemsList = List.nil(); 711 for (Symbol sym : sc.getSymbols()) { 712 elemsList = elemsList.prepend(sym); 713 } 714 for (Symbol s : elemsList) { 715 newScope.enter(s); 716 } 717 return newScope; 718 } 719 720 /** Derived visitor method: attribute an expression tree. 721 */ 722 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 723 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 724 } 725 726 /** Derived visitor method: attribute an expression tree with 727 * no constraints on the computed type. 728 */ 729 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 730 return attribTree(tree, env, unknownExprInfo); 731 } 732 733 /** Derived visitor method: attribute a type tree. 734 */ 735 public Type attribType(JCTree tree, Env<AttrContext> env) { 736 Type result = attribType(tree, env, Type.noType); 737 return result; 738 } 739 740 /** Derived visitor method: attribute a type tree. 741 */ 742 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 743 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 744 return result; 745 } 746 747 /** Derived visitor method: attribute a statement or definition tree. 748 */ 749 public Type attribStat(JCTree tree, Env<AttrContext> env) { 750 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 751 Type result = attribTree(tree, env, statInfo); 752 analyzer.analyzeIfNeeded(tree, analyzeEnv); 753 attrRecover.doRecovery(); 754 return result; 755 } 756 757 /** Attribute a list of expressions, returning a list of types. 758 */ 759 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 760 ListBuffer<Type> ts = new ListBuffer<>(); 761 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 762 ts.append(attribExpr(l.head, env, pt)); 763 return ts.toList(); 764 } 765 766 /** Attribute a list of statements, returning nothing. 767 */ 768 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 769 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 770 attribStat(l.head, env); 771 } 772 773 /** Attribute the arguments in a method call, returning the method kind. 774 */ 775 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 776 KindSelector kind = initialKind; 777 for (JCExpression arg : trees) { 778 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 779 if (argtype.hasTag(DEFERRED)) { 780 kind = KindSelector.of(KindSelector.POLY, kind); 781 } 782 argtypes.append(argtype); 783 } 784 return kind; 785 } 786 787 /** Attribute a type argument list, returning a list of types. 788 * Caller is responsible for calling checkRefTypes. 789 */ 790 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 791 ListBuffer<Type> argtypes = new ListBuffer<>(); 792 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 793 argtypes.append(attribType(l.head, env)); 794 return argtypes.toList(); 795 } 796 797 /** Attribute a type argument list, returning a list of types. 798 * Check that all the types are references. 799 */ 800 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 801 List<Type> types = attribAnyTypes(trees, env); 802 return chk.checkRefTypes(trees, types); 803 } 804 805 /** 806 * Attribute type variables (of generic classes or methods). 807 * Compound types are attributed later in attribBounds. 808 * @param typarams the type variables to enter 809 * @param env the current environment 810 */ 811 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 812 for (JCTypeParameter tvar : typarams) { 813 TypeVar a = (TypeVar)tvar.type; 814 a.tsym.flags_field |= UNATTRIBUTED; 815 a.setUpperBound(Type.noType); 816 if (!tvar.bounds.isEmpty()) { 817 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 818 for (JCExpression bound : tvar.bounds.tail) 819 bounds = bounds.prepend(attribType(bound, env)); 820 types.setBounds(a, bounds.reverse()); 821 } else { 822 // if no bounds are given, assume a single bound of 823 // java.lang.Object. 824 types.setBounds(a, List.of(syms.objectType)); 825 } 826 a.tsym.flags_field &= ~UNATTRIBUTED; 827 } 828 if (checkCyclic) { 829 for (JCTypeParameter tvar : typarams) { 830 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 831 } 832 } 833 } 834 835 /** 836 * Attribute the type references in a list of annotations. 837 */ 838 void attribAnnotationTypes(List<JCAnnotation> annotations, 839 Env<AttrContext> env) { 840 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 841 JCAnnotation a = al.head; 842 attribType(a.annotationType, env); 843 } 844 } 845 846 /** 847 * Attribute a "lazy constant value". 848 * @param env The env for the const value 849 * @param variable The initializer for the const value 850 * @param type The expected type, or null 851 * @see VarSymbol#setLazyConstValue 852 */ 853 public Object attribLazyConstantValue(Env<AttrContext> env, 854 Env<AttrContext> enclosingEnv, 855 JCVariableDecl variable, 856 Type type) { 857 deferredLintHandler.push(variable); 858 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 859 try { 860 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 861 Type itype = attribExpr(variable.init, env, type); 862 if (variable.isImplicitlyTyped()) { 863 //fixup local variable type 864 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 865 } 866 if (itype.constValue() != null) { 867 return coerce(itype, type).constValue(); 868 } else { 869 return null; 870 } 871 } finally { 872 log.useSource(prevSource); 873 deferredLintHandler.pop(); 874 } 875 } 876 877 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 878 * Supertypes of anonymous inner classes are usually already attributed. 879 * 880 * @param tree The tree making up the type reference. 881 * @param env The environment current at the reference. 882 * @param classExpected true if only a class is expected here. 883 * @param interfaceExpected true if only an interface is expected here. 884 */ 885 Type attribBase(JCTree tree, 886 Env<AttrContext> env, 887 boolean classExpected, 888 boolean interfaceExpected, 889 boolean checkExtensible) { 890 Type t = tree.type != null ? 891 tree.type : 892 attribType(tree, env); 893 try { 894 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 895 } catch (CompletionFailure ex) { 896 chk.completionError(tree.pos(), ex); 897 return t; 898 } 899 } 900 Type checkBase(Type t, 901 JCTree tree, 902 Env<AttrContext> env, 903 boolean classExpected, 904 boolean interfaceExpected, 905 boolean checkExtensible) { 906 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 907 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 908 if (t.tsym.isAnonymous()) { 909 log.error(pos, Errors.CantInheritFromAnon); 910 return types.createErrorType(t); 911 } 912 if (t.isErroneous()) 913 return t; 914 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 915 // check that type variable is already visible 916 if (t.getUpperBound() == null) { 917 log.error(pos, Errors.IllegalForwardRef); 918 return types.createErrorType(t); 919 } 920 } else { 921 t = chk.checkClassType(pos, t, checkExtensible); 922 } 923 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 924 log.error(pos, Errors.IntfExpectedHere); 925 // return errType is necessary since otherwise there might 926 // be undetected cycles which cause attribution to loop 927 return types.createErrorType(t); 928 } else if (checkExtensible && 929 classExpected && 930 (t.tsym.flags() & INTERFACE) != 0) { 931 log.error(pos, Errors.NoIntfExpectedHere); 932 return types.createErrorType(t); 933 } 934 if (checkExtensible && 935 ((t.tsym.flags() & FINAL) != 0)) { 936 log.error(pos, 937 Errors.CantInheritFromFinal(t.tsym)); 938 } 939 chk.checkNonCyclic(pos, t); 940 return t; 941 } 942 943 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 944 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 945 id.type = env.info.scope.owner.enclClass().type; 946 id.sym = env.info.scope.owner.enclClass(); 947 return id.type; 948 } 949 950 public void visitClassDef(JCClassDecl tree) { 951 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 952 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 953 argumentAttr.withLocalCacheContext() : null); 954 boolean ctorProloguePrev = env.info.ctorPrologue; 955 try { 956 // Local and anonymous classes have not been entered yet, so we need to 957 // do it now. 958 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 959 enter.classEnter(tree, env); 960 } else { 961 // If this class declaration is part of a class level annotation, 962 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 963 // order to simplify later steps and allow for sensible error 964 // messages. 965 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 966 enter.classEnter(tree, env); 967 } 968 969 ClassSymbol c = tree.sym; 970 if (c == null) { 971 // exit in case something drastic went wrong during enter. 972 result = null; 973 } else { 974 // make sure class has been completed: 975 c.complete(); 976 977 // If a class declaration appears in a constructor prologue, 978 // that means it's either a local class or an anonymous class. 979 // Either way, there is no immediately enclosing instance. 980 if (ctorProloguePrev) { 981 c.flags_field |= NOOUTERTHIS; 982 } 983 attribClass(tree.pos(), c); 984 result = tree.type = c.type; 985 } 986 } finally { 987 localCacheContext.ifPresent(LocalCacheContext::leave); 988 env.info.ctorPrologue = ctorProloguePrev; 989 } 990 } 991 992 public void visitMethodDef(JCMethodDecl tree) { 993 MethodSymbol m = tree.sym; 994 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 995 996 Lint lint = env.info.lint.augment(m); 997 Lint prevLint = chk.setLint(lint); 998 boolean ctorProloguePrev = env.info.ctorPrologue; 999 Assert.check(!env.info.ctorPrologue); 1000 MethodSymbol prevMethod = chk.setMethod(m); 1001 try { 1002 deferredLintHandler.flush(tree, lint); 1003 chk.checkDeprecatedAnnotation(tree.pos(), m); 1004 1005 1006 // Create a new environment with local scope 1007 // for attributing the method. 1008 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 1009 localEnv.info.lint = lint; 1010 1011 attribStats(tree.typarams, localEnv); 1012 1013 // If we override any other methods, check that we do so properly. 1014 // JLS ??? 1015 if (m.isStatic()) { 1016 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1017 } else { 1018 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1019 } 1020 chk.checkOverride(env, tree, m); 1021 1022 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1023 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1024 } 1025 1026 // Enter all type parameters into the local method scope. 1027 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1028 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1029 1030 ClassSymbol owner = env.enclClass.sym; 1031 if ((owner.flags() & ANNOTATION) != 0 && 1032 (tree.params.nonEmpty() || 1033 tree.recvparam != null)) 1034 log.error(tree.params.nonEmpty() ? 1035 tree.params.head.pos() : 1036 tree.recvparam.pos(), 1037 Errors.IntfAnnotationMembersCantHaveParams); 1038 1039 // Attribute all value parameters. 1040 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1041 attribStat(l.head, localEnv); 1042 } 1043 1044 chk.checkVarargsMethodDecl(localEnv, tree); 1045 1046 // Check that type parameters are well-formed. 1047 chk.validate(tree.typarams, localEnv); 1048 1049 // Check that result type is well-formed. 1050 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1051 chk.validate(tree.restype, localEnv); 1052 1053 // Check that receiver type is well-formed. 1054 if (tree.recvparam != null) { 1055 // Use a new environment to check the receiver parameter. 1056 // Otherwise I get "might not have been initialized" errors. 1057 // Is there a better way? 1058 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1059 attribType(tree.recvparam, newEnv); 1060 chk.validate(tree.recvparam, newEnv); 1061 } 1062 1063 // Is this method a constructor? 1064 boolean isConstructor = TreeInfo.isConstructor(tree); 1065 1066 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1067 // lets find if this method is an accessor 1068 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1069 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1070 if (recordComponent.isPresent()) { 1071 // the method is a user defined accessor lets check that everything is fine 1072 if (!tree.sym.isPublic()) { 1073 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1074 } 1075 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1076 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1077 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1078 } 1079 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1080 log.error(tree, 1081 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1082 } 1083 if (!tree.typarams.isEmpty()) { 1084 log.error(tree, 1085 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1086 } 1087 if (tree.sym.isStatic()) { 1088 log.error(tree, 1089 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1090 } 1091 } 1092 1093 if (isConstructor) { 1094 // if this a constructor other than the canonical one 1095 if ((tree.sym.flags_field & RECORD) == 0) { 1096 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1097 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1098 } 1099 } else { 1100 // but if it is the canonical: 1101 1102 /* if user generated, then it shouldn't: 1103 * - have an accessibility stricter than that of the record type 1104 * - explicitly invoke any other constructor 1105 */ 1106 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1107 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1108 log.error(tree, 1109 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1110 Errors.InvalidCanonicalConstructorInRecord( 1111 Fragments.Canonical, 1112 env.enclClass.sym.name, 1113 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1114 ) : 1115 Errors.InvalidCanonicalConstructorInRecord( 1116 Fragments.Canonical, 1117 env.enclClass.sym.name, 1118 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1119 ) 1120 ); 1121 } 1122 1123 if (TreeInfo.hasAnyConstructorCall(tree)) { 1124 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1125 Fragments.Canonical, env.enclClass.sym.name, 1126 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1127 } 1128 } 1129 1130 // also we want to check that no type variables have been defined 1131 if (!tree.typarams.isEmpty()) { 1132 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1133 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1134 } 1135 1136 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1137 * record components 1138 */ 1139 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1140 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1141 for (JCVariableDecl param: tree.params) { 1142 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1143 if (!types.isSameType(param.type, recordFieldTypes.head) || 1144 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1145 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1146 Fragments.Canonical, env.enclClass.sym.name, 1147 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1148 } 1149 recordComponents = recordComponents.tail; 1150 recordFieldTypes = recordFieldTypes.tail; 1151 } 1152 } 1153 } 1154 } 1155 1156 // annotation method checks 1157 if ((owner.flags() & ANNOTATION) != 0) { 1158 // annotation method cannot have throws clause 1159 if (tree.thrown.nonEmpty()) { 1160 log.error(tree.thrown.head.pos(), 1161 Errors.ThrowsNotAllowedInIntfAnnotation); 1162 } 1163 // annotation method cannot declare type-parameters 1164 if (tree.typarams.nonEmpty()) { 1165 log.error(tree.typarams.head.pos(), 1166 Errors.IntfAnnotationMembersCantHaveTypeParams); 1167 } 1168 // validate annotation method's return type (could be an annotation type) 1169 chk.validateAnnotationType(tree.restype); 1170 // ensure that annotation method does not clash with members of Object/Annotation 1171 chk.validateAnnotationMethod(tree.pos(), m); 1172 } 1173 1174 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1175 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1176 1177 if (tree.body == null) { 1178 // Empty bodies are only allowed for 1179 // abstract, native, or interface methods, or for methods 1180 // in a retrofit signature class. 1181 if (tree.defaultValue != null) { 1182 if ((owner.flags() & ANNOTATION) == 0) 1183 log.error(tree.pos(), 1184 Errors.DefaultAllowedInIntfAnnotationMember); 1185 } 1186 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1187 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1188 } else { 1189 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1190 if ((owner.flags() & INTERFACE) != 0) { 1191 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1192 } else { 1193 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1194 } 1195 } else if ((tree.mods.flags & NATIVE) != 0) { 1196 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1197 } 1198 // Add an implicit super() call unless an explicit call to 1199 // super(...) or this(...) is given 1200 // or we are compiling class java.lang.Object. 1201 if (isConstructor && owner.type != syms.objectType) { 1202 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1203 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1204 make.Ident(names._super), make.Idents(List.nil()))); 1205 tree.body.stats = tree.body.stats.prepend(supCall); 1206 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1207 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1208 TreeInfo.hasConstructorCall(tree, names._super)) { 1209 // enum constructors are not allowed to call super 1210 // directly, so make sure there aren't any super calls 1211 // in enum constructors, except in the compiler 1212 // generated one. 1213 log.error(tree.body.stats.head.pos(), 1214 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1215 } 1216 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1217 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1218 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1219 if (!initParamNames.equals(recordComponentNames)) { 1220 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1221 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1222 } 1223 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1224 log.error(tree, 1225 Errors.InvalidCanonicalConstructorInRecord( 1226 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1227 env.enclClass.sym.name, 1228 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1229 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1230 } 1231 } 1232 } 1233 1234 // Attribute all type annotations in the body 1235 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1236 annotate.flush(); 1237 1238 // Start of constructor prologue 1239 localEnv.info.ctorPrologue = isConstructor; 1240 1241 // Attribute method body. 1242 attribStat(tree.body, localEnv); 1243 } 1244 1245 localEnv.info.scope.leave(); 1246 result = tree.type = m.type; 1247 } finally { 1248 chk.setLint(prevLint); 1249 chk.setMethod(prevMethod); 1250 env.info.ctorPrologue = ctorProloguePrev; 1251 } 1252 } 1253 1254 public void visitVarDef(JCVariableDecl tree) { 1255 // Local variables have not been entered yet, so we need to do it now: 1256 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1257 if (tree.sym != null) { 1258 // parameters have already been entered 1259 env.info.scope.enter(tree.sym); 1260 } else { 1261 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1262 if (tree.init == null) { 1263 //cannot use 'var' without initializer 1264 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1265 tree.vartype = make.Erroneous(); 1266 } else { 1267 Fragment msg = canInferLocalVarType(tree); 1268 if (msg != null) { 1269 //cannot use 'var' with initializer which require an explicit target 1270 //(e.g. lambda, method reference, array initializer). 1271 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1272 tree.vartype = make.Erroneous(); 1273 } 1274 } 1275 } 1276 try { 1277 annotate.blockAnnotations(); 1278 memberEnter.memberEnter(tree, env); 1279 } finally { 1280 annotate.unblockAnnotations(); 1281 } 1282 } 1283 } else { 1284 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1285 } 1286 1287 VarSymbol v = tree.sym; 1288 Lint lint = env.info.lint.augment(v); 1289 Lint prevLint = chk.setLint(lint); 1290 1291 // Check that the variable's declared type is well-formed. 1292 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1293 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1294 (tree.sym.flags() & PARAMETER) != 0; 1295 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1296 1297 try { 1298 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1299 deferredLintHandler.flush(tree, lint); 1300 chk.checkDeprecatedAnnotation(tree.pos(), v); 1301 1302 if (tree.init != null) { 1303 if ((v.flags_field & FINAL) == 0 || 1304 !memberEnter.needsLazyConstValue(tree.init)) { 1305 // Not a compile-time constant 1306 // Attribute initializer in a new environment 1307 // with the declared variable as owner. 1308 // Check that initializer conforms to variable's declared type. 1309 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1310 initEnv.info.lint = lint; 1311 // In order to catch self-references, we set the variable's 1312 // declaration position to maximal possible value, effectively 1313 // marking the variable as undefined. 1314 initEnv.info.enclVar = v; 1315 attribExpr(tree.init, initEnv, v.type); 1316 if (tree.isImplicitlyTyped()) { 1317 //fixup local variable type 1318 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1319 } 1320 } 1321 if (tree.isImplicitlyTyped()) { 1322 setSyntheticVariableType(tree, v.type); 1323 } 1324 } 1325 result = tree.type = v.type; 1326 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1327 if (isNonArgsMethodInObject(v.name)) { 1328 log.error(tree, Errors.IllegalRecordComponentName(v)); 1329 } 1330 } 1331 } 1332 finally { 1333 chk.setLint(prevLint); 1334 } 1335 } 1336 1337 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1338 if (tree.init != null && 1339 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1340 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1341 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1342 // Field initializer expression need to be entered. 1343 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1344 annotate.flush(); 1345 } 1346 } 1347 1348 private boolean isNonArgsMethodInObject(Name name) { 1349 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1350 if (s.type.getParameterTypes().isEmpty()) { 1351 return true; 1352 } 1353 } 1354 return false; 1355 } 1356 1357 Fragment canInferLocalVarType(JCVariableDecl tree) { 1358 LocalInitScanner lis = new LocalInitScanner(); 1359 lis.scan(tree.init); 1360 return lis.badInferenceMsg; 1361 } 1362 1363 static class LocalInitScanner extends TreeScanner { 1364 Fragment badInferenceMsg = null; 1365 boolean needsTarget = true; 1366 1367 @Override 1368 public void visitNewArray(JCNewArray tree) { 1369 if (tree.elemtype == null && needsTarget) { 1370 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1371 } 1372 } 1373 1374 @Override 1375 public void visitLambda(JCLambda tree) { 1376 if (needsTarget) { 1377 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1378 } 1379 } 1380 1381 @Override 1382 public void visitTypeCast(JCTypeCast tree) { 1383 boolean prevNeedsTarget = needsTarget; 1384 try { 1385 needsTarget = false; 1386 super.visitTypeCast(tree); 1387 } finally { 1388 needsTarget = prevNeedsTarget; 1389 } 1390 } 1391 1392 @Override 1393 public void visitReference(JCMemberReference tree) { 1394 if (needsTarget) { 1395 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1396 } 1397 } 1398 1399 @Override 1400 public void visitNewClass(JCNewClass tree) { 1401 boolean prevNeedsTarget = needsTarget; 1402 try { 1403 needsTarget = false; 1404 super.visitNewClass(tree); 1405 } finally { 1406 needsTarget = prevNeedsTarget; 1407 } 1408 } 1409 1410 @Override 1411 public void visitApply(JCMethodInvocation tree) { 1412 boolean prevNeedsTarget = needsTarget; 1413 try { 1414 needsTarget = false; 1415 super.visitApply(tree); 1416 } finally { 1417 needsTarget = prevNeedsTarget; 1418 } 1419 } 1420 } 1421 1422 public void visitSkip(JCSkip tree) { 1423 result = null; 1424 } 1425 1426 public void visitBlock(JCBlock tree) { 1427 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1428 // Block is a static or instance initializer; 1429 // let the owner of the environment be a freshly 1430 // created BLOCK-method. 1431 Symbol fakeOwner = 1432 new MethodSymbol(tree.flags | BLOCK | 1433 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1434 env.info.scope.owner); 1435 final Env<AttrContext> localEnv = 1436 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1437 1438 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; 1439 // Attribute all type annotations in the block 1440 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1441 annotate.flush(); 1442 attribStats(tree.stats, localEnv); 1443 1444 { 1445 // Store init and clinit type annotations with the ClassSymbol 1446 // to allow output in Gen.normalizeDefs. 1447 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1448 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1449 if ((tree.flags & STATIC) != 0) { 1450 cs.appendClassInitTypeAttributes(tas); 1451 } else { 1452 cs.appendInitTypeAttributes(tas); 1453 } 1454 } 1455 } else { 1456 // Create a new local environment with a local scope. 1457 Env<AttrContext> localEnv = 1458 env.dup(tree, env.info.dup(env.info.scope.dup())); 1459 try { 1460 attribStats(tree.stats, localEnv); 1461 } finally { 1462 localEnv.info.scope.leave(); 1463 } 1464 } 1465 result = null; 1466 } 1467 1468 public void visitDoLoop(JCDoWhileLoop tree) { 1469 attribStat(tree.body, env.dup(tree)); 1470 attribExpr(tree.cond, env, syms.booleanType); 1471 handleLoopConditionBindings(matchBindings, tree, tree.body); 1472 result = null; 1473 } 1474 1475 public void visitWhileLoop(JCWhileLoop tree) { 1476 attribExpr(tree.cond, env, syms.booleanType); 1477 MatchBindings condBindings = matchBindings; 1478 // include condition's bindings when true in the body: 1479 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1480 try { 1481 attribStat(tree.body, whileEnv.dup(tree)); 1482 } finally { 1483 whileEnv.info.scope.leave(); 1484 } 1485 handleLoopConditionBindings(condBindings, tree, tree.body); 1486 result = null; 1487 } 1488 1489 public void visitForLoop(JCForLoop tree) { 1490 Env<AttrContext> loopEnv = 1491 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1492 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1493 try { 1494 attribStats(tree.init, loopEnv); 1495 if (tree.cond != null) { 1496 attribExpr(tree.cond, loopEnv, syms.booleanType); 1497 // include condition's bindings when true in the body and step: 1498 condBindings = matchBindings; 1499 } 1500 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1501 try { 1502 bodyEnv.tree = tree; // before, we were not in loop! 1503 attribStats(tree.step, bodyEnv); 1504 attribStat(tree.body, bodyEnv); 1505 } finally { 1506 bodyEnv.info.scope.leave(); 1507 } 1508 result = null; 1509 } 1510 finally { 1511 loopEnv.info.scope.leave(); 1512 } 1513 handleLoopConditionBindings(condBindings, tree, tree.body); 1514 } 1515 1516 /** 1517 * Include condition's bindings when false after the loop, if cannot get out of the loop 1518 */ 1519 private void handleLoopConditionBindings(MatchBindings condBindings, 1520 JCStatement loop, 1521 JCStatement loopBody) { 1522 if (condBindings.bindingsWhenFalse.nonEmpty() && 1523 !breaksTo(env, loop, loopBody)) { 1524 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1525 } 1526 } 1527 1528 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1529 preFlow(body); 1530 return flow.breaksToTree(env, loop, body, make); 1531 } 1532 1533 /** 1534 * Add given bindings to the current scope, unless there's a break to 1535 * an immediately enclosing labeled statement. 1536 */ 1537 private void addBindings2Scope(JCStatement introducingStatement, 1538 List<BindingSymbol> bindings) { 1539 if (bindings.isEmpty()) { 1540 return ; 1541 } 1542 1543 var searchEnv = env; 1544 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1545 labeled.body == introducingStatement) { 1546 if (breaksTo(env, labeled, labeled.body)) { 1547 //breaking to an immediately enclosing labeled statement 1548 return ; 1549 } 1550 searchEnv = searchEnv.next; 1551 introducingStatement = labeled; 1552 } 1553 1554 //include condition's body when false after the while, if cannot get out of the loop 1555 bindings.forEach(env.info.scope::enter); 1556 bindings.forEach(BindingSymbol::preserveBinding); 1557 } 1558 1559 public void visitForeachLoop(JCEnhancedForLoop tree) { 1560 Env<AttrContext> loopEnv = 1561 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1562 try { 1563 //the Formal Parameter of a for-each loop is not in the scope when 1564 //attributing the for-each expression; we mimic this by attributing 1565 //the for-each expression first (against original scope). 1566 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1567 chk.checkNonVoid(tree.pos(), exprType); 1568 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1569 if (elemtype == null) { 1570 // or perhaps expr implements Iterable<T>? 1571 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1572 if (base == null) { 1573 log.error(tree.expr.pos(), 1574 Errors.ForeachNotApplicableToType(exprType, 1575 Fragments.TypeReqArrayOrIterable)); 1576 elemtype = types.createErrorType(exprType); 1577 } else { 1578 List<Type> iterableParams = base.allparams(); 1579 elemtype = iterableParams.isEmpty() 1580 ? syms.objectType 1581 : types.wildUpperBound(iterableParams.head); 1582 1583 // Check the return type of the method iterator(). 1584 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1585 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1586 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1587 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1588 log.error(tree.pos(), 1589 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1590 } 1591 } 1592 } 1593 if (tree.var.isImplicitlyTyped()) { 1594 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1595 setSyntheticVariableType(tree.var, inferredType); 1596 } 1597 attribStat(tree.var, loopEnv); 1598 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1599 loopEnv.tree = tree; // before, we were not in loop! 1600 attribStat(tree.body, loopEnv); 1601 result = null; 1602 } 1603 finally { 1604 loopEnv.info.scope.leave(); 1605 } 1606 } 1607 1608 public void visitLabelled(JCLabeledStatement tree) { 1609 // Check that label is not used in an enclosing statement 1610 Env<AttrContext> env1 = env; 1611 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1612 if (env1.tree.hasTag(LABELLED) && 1613 ((JCLabeledStatement) env1.tree).label == tree.label) { 1614 log.error(tree.pos(), 1615 Errors.LabelAlreadyInUse(tree.label)); 1616 break; 1617 } 1618 env1 = env1.next; 1619 } 1620 1621 attribStat(tree.body, env.dup(tree)); 1622 result = null; 1623 } 1624 1625 public void visitSwitch(JCSwitch tree) { 1626 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1627 attribStats(c.stats, caseEnv); 1628 }); 1629 result = null; 1630 } 1631 1632 public void visitSwitchExpression(JCSwitchExpression tree) { 1633 boolean wrongContext = false; 1634 1635 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1636 PolyKind.STANDALONE : PolyKind.POLY; 1637 1638 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1639 //this means we are returning a poly conditional from void-compatible lambda expression 1640 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1641 resultInfo = recoveryInfo; 1642 wrongContext = true; 1643 } 1644 1645 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1646 unknownExprInfo : 1647 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1648 1649 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1650 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1651 1652 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1653 caseEnv.info.yieldResult = condInfo; 1654 attribStats(c.stats, caseEnv); 1655 new TreeScanner() { 1656 @Override 1657 public void visitYield(JCYield brk) { 1658 if (brk.target == tree) { 1659 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1660 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1661 } 1662 super.visitYield(brk); 1663 } 1664 1665 @Override public void visitClassDef(JCClassDecl tree) {} 1666 @Override public void visitLambda(JCLambda tree) {} 1667 }.scan(c.stats); 1668 }); 1669 1670 if (tree.cases.isEmpty()) { 1671 log.error(tree.pos(), 1672 Errors.SwitchExpressionEmpty); 1673 } else if (caseTypes.isEmpty()) { 1674 log.error(tree.pos(), 1675 Errors.SwitchExpressionNoResultExpressions); 1676 } 1677 1678 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1679 1680 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1681 } 1682 //where: 1683 CheckContext switchExpressionContext(CheckContext checkContext) { 1684 return new Check.NestedCheckContext(checkContext) { 1685 //this will use enclosing check context to check compatibility of 1686 //subexpression against target type; if we are in a method check context, 1687 //depending on whether boxing is allowed, we could have incompatibilities 1688 @Override 1689 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1690 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1691 } 1692 }; 1693 } 1694 1695 private void handleSwitch(JCTree switchTree, 1696 JCExpression selector, 1697 List<JCCase> cases, 1698 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1699 Type seltype = attribExpr(selector, env); 1700 1701 Env<AttrContext> switchEnv = 1702 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1703 1704 try { 1705 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1706 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1707 boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType); 1708 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1709 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1710 boolean patternSwitch; 1711 if (seltype.isPrimitive() && !intSwitch) { 1712 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1713 patternSwitch = true; 1714 } 1715 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1716 !intSwitch) { 1717 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1718 patternSwitch = true; 1719 } else { 1720 patternSwitch = cases.stream() 1721 .flatMap(c -> c.labels.stream()) 1722 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1723 TreeInfo.isNullCaseLabel(l)); 1724 } 1725 1726 // Attribute all cases and 1727 // check that there are no duplicate case labels or default clauses. 1728 Set<Object> constants = new HashSet<>(); // The set of case constants. 1729 boolean hasDefault = false; // Is there a default label? 1730 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1731 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1732 boolean hasNullPattern = false; // Is there a null pattern? 1733 CaseTree.CaseKind caseKind = null; 1734 boolean wasError = false; 1735 JCCaseLabel unconditionalCaseLabel = null; 1736 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1737 JCCase c = l.head; 1738 if (caseKind == null) { 1739 caseKind = c.caseKind; 1740 } else if (caseKind != c.caseKind && !wasError) { 1741 log.error(c.pos(), 1742 Errors.SwitchMixingCaseTypes); 1743 wasError = true; 1744 } 1745 MatchBindings currentBindings = null; 1746 MatchBindings guardBindings = null; 1747 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1748 JCCaseLabel label = labels.head; 1749 if (label instanceof JCConstantCaseLabel constLabel) { 1750 JCExpression expr = constLabel.expr; 1751 if (TreeInfo.isNull(expr)) { 1752 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1753 if (hasNullPattern) { 1754 log.error(label.pos(), Errors.DuplicateCaseLabel); 1755 } 1756 hasNullPattern = true; 1757 attribExpr(expr, switchEnv, seltype); 1758 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1759 } else if (enumSwitch) { 1760 Symbol sym = enumConstant(expr, seltype); 1761 if (sym == null) { 1762 if (allowPatternSwitch) { 1763 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1764 Symbol enumSym = TreeInfo.symbol(expr); 1765 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1766 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1767 } else if (!constants.add(enumSym)) { 1768 log.error(label.pos(), Errors.DuplicateCaseLabel); 1769 } 1770 } else { 1771 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1772 } 1773 } else if (!constants.add(sym)) { 1774 log.error(label.pos(), Errors.DuplicateCaseLabel); 1775 } 1776 } else if (errorEnumSwitch) { 1777 //error recovery: the selector is erroneous, and all the case labels 1778 //are identifiers. This could be an enum switch - don't report resolve 1779 //error for the case label: 1780 var prevResolveHelper = rs.basicLogResolveHelper; 1781 try { 1782 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1783 attribExpr(expr, switchEnv, seltype); 1784 } finally { 1785 rs.basicLogResolveHelper = prevResolveHelper; 1786 } 1787 } else { 1788 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1789 if (!pattype.hasTag(ERROR)) { 1790 if (pattype.constValue() == null) { 1791 Symbol s = TreeInfo.symbol(expr); 1792 if (s != null && s.kind == TYP) { 1793 log.error(expr.pos(), 1794 Errors.PatternExpected); 1795 } else if (s == null || !s.isEnum()) { 1796 log.error(expr.pos(), 1797 (stringSwitch ? Errors.StringConstReq 1798 : intSwitch ? Errors.ConstExprReq 1799 : Errors.PatternOrEnumReq)); 1800 } else if (!constants.add(s)) { 1801 log.error(label.pos(), Errors.DuplicateCaseLabel); 1802 } 1803 } 1804 else { 1805 if (!stringSwitch && !intSwitch && 1806 !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) && 1807 types.isSameType(types.unboxedTypeOrType(seltype), pattype))) { 1808 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1809 } else if (!constants.add(pattype.constValue())) { 1810 log.error(c.pos(), Errors.DuplicateCaseLabel); 1811 } 1812 } 1813 } 1814 } 1815 } else if (label instanceof JCDefaultCaseLabel def) { 1816 if (hasDefault) { 1817 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1818 } else if (hasUnconditionalPattern) { 1819 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1820 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1821 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 1822 } 1823 hasDefault = true; 1824 matchBindings = MatchBindingsComputer.EMPTY; 1825 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1826 //pattern 1827 JCPattern pat = patternlabel.pat; 1828 attribExpr(pat, switchEnv, seltype); 1829 Type primaryType = TreeInfo.primaryPatternType(pat); 1830 1831 if (primaryType.isPrimitive()) { 1832 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 1833 } else if (!primaryType.hasTag(TYPEVAR)) { 1834 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1835 } 1836 checkCastablePattern(pat.pos(), seltype, primaryType); 1837 Type patternType = types.erasure(primaryType); 1838 JCExpression guard = c.guard; 1839 if (guardBindings == null && guard != null) { 1840 MatchBindings afterPattern = matchBindings; 1841 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1842 try { 1843 attribExpr(guard, bodyEnv, syms.booleanType); 1844 } finally { 1845 bodyEnv.info.scope.leave(); 1846 } 1847 1848 guardBindings = matchBindings; 1849 matchBindings = afterPattern; 1850 1851 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1852 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1853 } 1854 } 1855 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1856 boolean unconditional = 1857 unguarded && 1858 !patternType.isErroneous() && 1859 types.isUnconditionallyExact(seltype, patternType); 1860 if (unconditional) { 1861 if (hasUnconditionalPattern) { 1862 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1863 } else if (hasDefault) { 1864 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1865 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1866 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 1867 } 1868 hasUnconditionalPattern = true; 1869 unconditionalCaseLabel = label; 1870 } 1871 lastPatternErroneous = patternType.isErroneous(); 1872 } else { 1873 Assert.error(); 1874 } 1875 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1876 } 1877 1878 if (guardBindings != null) { 1879 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1880 } 1881 1882 Env<AttrContext> caseEnv = 1883 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1884 try { 1885 attribCase.accept(c, caseEnv); 1886 } finally { 1887 caseEnv.info.scope.leave(); 1888 } 1889 addVars(c.stats, switchEnv.info.scope); 1890 1891 preFlow(c); 1892 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1893 } 1894 if (patternSwitch) { 1895 chk.checkSwitchCaseStructure(cases); 1896 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 1897 } 1898 if (switchTree.hasTag(SWITCH)) { 1899 ((JCSwitch) switchTree).hasUnconditionalPattern = 1900 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1901 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1902 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1903 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1904 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1905 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1906 } else { 1907 Assert.error(switchTree.getTag().name()); 1908 } 1909 } finally { 1910 switchEnv.info.scope.leave(); 1911 } 1912 } 1913 // where 1914 private ResultInfo caseLabelResultInfo(Type seltype) { 1915 return new ResultInfo(KindSelector.VAL_TYP, 1916 !seltype.hasTag(ERROR) ? seltype 1917 : Type.noType); 1918 } 1919 /** Add any variables defined in stats to the switch scope. */ 1920 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1921 for (;stats.nonEmpty(); stats = stats.tail) { 1922 JCTree stat = stats.head; 1923 if (stat.hasTag(VARDEF)) 1924 switchScope.enter(((JCVariableDecl) stat).sym); 1925 } 1926 } 1927 // where 1928 /** Return the selected enumeration constant symbol, or null. */ 1929 private Symbol enumConstant(JCTree tree, Type enumType) { 1930 if (tree.hasTag(IDENT)) { 1931 JCIdent ident = (JCIdent)tree; 1932 Name name = ident.name; 1933 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1934 if (sym.kind == VAR) { 1935 Symbol s = ident.sym = sym; 1936 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1937 ident.type = s.type; 1938 return ((s.flags_field & Flags.ENUM) == 0) 1939 ? null : s; 1940 } 1941 } 1942 } 1943 return null; 1944 } 1945 1946 public void visitSynchronized(JCSynchronized tree) { 1947 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); 1948 if (isValueBased(tree.lock.type)) { 1949 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1950 } 1951 attribStat(tree.body, env); 1952 result = null; 1953 } 1954 // where 1955 private boolean isValueBased(Type t) { 1956 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1957 } 1958 1959 1960 public void visitTry(JCTry tree) { 1961 // Create a new local environment with a local 1962 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1963 try { 1964 boolean isTryWithResource = tree.resources.nonEmpty(); 1965 // Create a nested environment for attributing the try block if needed 1966 Env<AttrContext> tryEnv = isTryWithResource ? 1967 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1968 localEnv; 1969 try { 1970 // Attribute resource declarations 1971 for (JCTree resource : tree.resources) { 1972 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1973 @Override 1974 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1975 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1976 } 1977 }; 1978 ResultInfo twrResult = 1979 new ResultInfo(KindSelector.VAR, 1980 syms.autoCloseableType, 1981 twrContext); 1982 if (resource.hasTag(VARDEF)) { 1983 attribStat(resource, tryEnv); 1984 twrResult.check(resource, resource.type); 1985 1986 //check that resource type cannot throw InterruptedException 1987 checkAutoCloseable(resource.pos(), localEnv, resource.type); 1988 1989 VarSymbol var = ((JCVariableDecl) resource).sym; 1990 1991 var.flags_field |= Flags.FINAL; 1992 var.setData(ElementKind.RESOURCE_VARIABLE); 1993 } else { 1994 attribTree(resource, tryEnv, twrResult); 1995 } 1996 } 1997 // Attribute body 1998 attribStat(tree.body, tryEnv); 1999 } finally { 2000 if (isTryWithResource) 2001 tryEnv.info.scope.leave(); 2002 } 2003 2004 // Attribute catch clauses 2005 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2006 JCCatch c = l.head; 2007 Env<AttrContext> catchEnv = 2008 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2009 try { 2010 Type ctype = attribStat(c.param, catchEnv); 2011 if (TreeInfo.isMultiCatch(c)) { 2012 //multi-catch parameter is implicitly marked as final 2013 c.param.sym.flags_field |= FINAL | UNION; 2014 } 2015 if (c.param.sym.kind == VAR) { 2016 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2017 } 2018 chk.checkType(c.param.vartype.pos(), 2019 chk.checkClassType(c.param.vartype.pos(), ctype), 2020 syms.throwableType); 2021 attribStat(c.body, catchEnv); 2022 } finally { 2023 catchEnv.info.scope.leave(); 2024 } 2025 } 2026 2027 // Attribute finalizer 2028 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2029 result = null; 2030 } 2031 finally { 2032 localEnv.info.scope.leave(); 2033 } 2034 } 2035 2036 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2037 if (!resource.isErroneous() && 2038 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2039 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2040 Symbol close = syms.noSymbol; 2041 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); 2042 try { 2043 close = rs.resolveQualifiedMethod(pos, 2044 env, 2045 types.skipTypeVars(resource, false), 2046 names.close, 2047 List.nil(), 2048 List.nil()); 2049 } 2050 finally { 2051 log.popDiagnosticHandler(discardHandler); 2052 } 2053 if (close.kind == MTH && 2054 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2055 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2056 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2057 } 2058 } 2059 } 2060 2061 public void visitConditional(JCConditional tree) { 2062 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2063 MatchBindings condBindings = matchBindings; 2064 2065 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2066 isBooleanOrNumeric(env, tree)) ? 2067 PolyKind.STANDALONE : PolyKind.POLY; 2068 2069 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2070 //this means we are returning a poly conditional from void-compatible lambda expression 2071 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2072 result = tree.type = types.createErrorType(resultInfo.pt); 2073 return; 2074 } 2075 2076 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2077 unknownExprInfo : 2078 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2079 2080 2081 // x ? y : z 2082 // include x's bindings when true in y 2083 // include x's bindings when false in z 2084 2085 Type truetype; 2086 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2087 try { 2088 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2089 } finally { 2090 trueEnv.info.scope.leave(); 2091 } 2092 2093 MatchBindings trueBindings = matchBindings; 2094 2095 Type falsetype; 2096 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2097 try { 2098 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2099 } finally { 2100 falseEnv.info.scope.leave(); 2101 } 2102 2103 MatchBindings falseBindings = matchBindings; 2104 2105 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2106 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2107 List.of(truetype, falsetype)) : pt(); 2108 if (condtype.constValue() != null && 2109 truetype.constValue() != null && 2110 falsetype.constValue() != null && 2111 !owntype.hasTag(NONE)) { 2112 //constant folding 2113 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2114 } 2115 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2116 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2117 } 2118 //where 2119 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2120 switch (tree.getTag()) { 2121 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2122 ((JCLiteral)tree).typetag == BOOLEAN || 2123 ((JCLiteral)tree).typetag == BOT; 2124 case LAMBDA: case REFERENCE: return false; 2125 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2126 case CONDEXPR: 2127 JCConditional condTree = (JCConditional)tree; 2128 return isBooleanOrNumeric(env, condTree.truepart) && 2129 isBooleanOrNumeric(env, condTree.falsepart); 2130 case APPLY: 2131 JCMethodInvocation speculativeMethodTree = 2132 (JCMethodInvocation)deferredAttr.attribSpeculative( 2133 tree, env, unknownExprInfo, 2134 argumentAttr.withLocalCacheContext()); 2135 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2136 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2137 env.enclClass.type : 2138 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2139 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2140 return primitiveOrBoxed(owntype); 2141 case NEWCLASS: 2142 JCExpression className = 2143 removeClassParams.translate(((JCNewClass)tree).clazz); 2144 JCExpression speculativeNewClassTree = 2145 (JCExpression)deferredAttr.attribSpeculative( 2146 className, env, unknownTypeInfo, 2147 argumentAttr.withLocalCacheContext()); 2148 return primitiveOrBoxed(speculativeNewClassTree.type); 2149 default: 2150 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2151 argumentAttr.withLocalCacheContext()).type; 2152 return primitiveOrBoxed(speculativeType); 2153 } 2154 } 2155 //where 2156 boolean primitiveOrBoxed(Type t) { 2157 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2158 } 2159 2160 TreeTranslator removeClassParams = new TreeTranslator() { 2161 @Override 2162 public void visitTypeApply(JCTypeApply tree) { 2163 result = translate(tree.clazz); 2164 } 2165 }; 2166 2167 CheckContext conditionalContext(CheckContext checkContext) { 2168 return new Check.NestedCheckContext(checkContext) { 2169 //this will use enclosing check context to check compatibility of 2170 //subexpression against target type; if we are in a method check context, 2171 //depending on whether boxing is allowed, we could have incompatibilities 2172 @Override 2173 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2174 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2175 } 2176 }; 2177 } 2178 2179 /** Compute the type of a conditional expression, after 2180 * checking that it exists. See JLS 15.25. Does not take into 2181 * account the special case where condition and both arms 2182 * are constants. 2183 * 2184 * @param pos The source position to be used for error 2185 * diagnostics. 2186 * @param thentype The type of the expression's then-part. 2187 * @param elsetype The type of the expression's else-part. 2188 */ 2189 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2190 if (condTypes.isEmpty()) { 2191 return syms.objectType; //TODO: how to handle? 2192 } 2193 Type first = condTypes.head; 2194 // If same type, that is the result 2195 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2196 return first.baseType(); 2197 2198 List<Type> unboxedTypes = condTypes.stream() 2199 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2200 .collect(List.collector()); 2201 2202 // Otherwise, if both arms can be converted to a numeric 2203 // type, return the least numeric type that fits both arms 2204 // (i.e. return larger of the two, or return int if one 2205 // arm is short, the other is char). 2206 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2207 // If one arm has an integer subrange type (i.e., byte, 2208 // short, or char), and the other is an integer constant 2209 // that fits into the subrange, return the subrange type. 2210 for (Type type : unboxedTypes) { 2211 if (!type.getTag().isStrictSubRangeOf(INT)) { 2212 continue; 2213 } 2214 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2215 return type.baseType(); 2216 } 2217 2218 for (TypeTag tag : primitiveTags) { 2219 Type candidate = syms.typeOfTag[tag.ordinal()]; 2220 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2221 return candidate; 2222 } 2223 } 2224 } 2225 2226 // Those were all the cases that could result in a primitive 2227 condTypes = condTypes.stream() 2228 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2229 .collect(List.collector()); 2230 2231 for (Type type : condTypes) { 2232 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2233 return type.baseType(); 2234 } 2235 2236 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2237 2238 condTypes = condTypes.stream() 2239 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2240 .collect(List.collector()); 2241 2242 // both are known to be reference types. The result is 2243 // lub(thentype,elsetype). This cannot fail, as it will 2244 // always be possible to infer "Object" if nothing better. 2245 return types.lub(condTypes.stream() 2246 .map(t -> t.baseType()) 2247 .filter(t -> !t.hasTag(BOT)) 2248 .collect(List.collector())); 2249 } 2250 2251 static final TypeTag[] primitiveTags = new TypeTag[]{ 2252 BYTE, 2253 CHAR, 2254 SHORT, 2255 INT, 2256 LONG, 2257 FLOAT, 2258 DOUBLE, 2259 BOOLEAN, 2260 }; 2261 2262 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2263 return bindingEnv(env, env.tree, bindings); 2264 } 2265 2266 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2267 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2268 bindings.forEach(env1.info.scope::enter); 2269 return env1; 2270 } 2271 2272 public void visitIf(JCIf tree) { 2273 attribExpr(tree.cond, env, syms.booleanType); 2274 2275 // if (x) { y } [ else z ] 2276 // include x's bindings when true in y 2277 // include x's bindings when false in z 2278 2279 MatchBindings condBindings = matchBindings; 2280 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2281 2282 try { 2283 attribStat(tree.thenpart, thenEnv); 2284 } finally { 2285 thenEnv.info.scope.leave(); 2286 } 2287 2288 preFlow(tree.thenpart); 2289 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2290 boolean aliveAfterElse; 2291 2292 if (tree.elsepart != null) { 2293 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2294 try { 2295 attribStat(tree.elsepart, elseEnv); 2296 } finally { 2297 elseEnv.info.scope.leave(); 2298 } 2299 preFlow(tree.elsepart); 2300 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2301 } else { 2302 aliveAfterElse = true; 2303 } 2304 2305 chk.checkEmptyIf(tree); 2306 2307 List<BindingSymbol> afterIfBindings = List.nil(); 2308 2309 if (aliveAfterThen && !aliveAfterElse) { 2310 afterIfBindings = condBindings.bindingsWhenTrue; 2311 } else if (aliveAfterElse && !aliveAfterThen) { 2312 afterIfBindings = condBindings.bindingsWhenFalse; 2313 } 2314 2315 addBindings2Scope(tree, afterIfBindings); 2316 2317 result = null; 2318 } 2319 2320 void preFlow(JCTree tree) { 2321 attrRecover.doRecovery(); 2322 new PostAttrAnalyzer() { 2323 @Override 2324 public void scan(JCTree tree) { 2325 if (tree == null || 2326 (tree.type != null && 2327 tree.type == Type.stuckType)) { 2328 //don't touch stuck expressions! 2329 return; 2330 } 2331 super.scan(tree); 2332 } 2333 2334 @Override 2335 public void visitClassDef(JCClassDecl that) { 2336 if (that.sym != null) { 2337 // Method preFlow shouldn't visit class definitions 2338 // that have not been entered and attributed. 2339 // See JDK-8254557 and JDK-8203277 for more details. 2340 super.visitClassDef(that); 2341 } 2342 } 2343 2344 @Override 2345 public void visitLambda(JCLambda that) { 2346 if (that.type != null) { 2347 // Method preFlow shouldn't visit lambda expressions 2348 // that have not been entered and attributed. 2349 // See JDK-8254557 and JDK-8203277 for more details. 2350 super.visitLambda(that); 2351 } 2352 } 2353 }.scan(tree); 2354 } 2355 2356 public void visitExec(JCExpressionStatement tree) { 2357 //a fresh environment is required for 292 inference to work properly --- 2358 //see Infer.instantiatePolymorphicSignatureInstance() 2359 Env<AttrContext> localEnv = env.dup(tree); 2360 attribExpr(tree.expr, localEnv); 2361 result = null; 2362 } 2363 2364 public void visitBreak(JCBreak tree) { 2365 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2366 result = null; 2367 } 2368 2369 public void visitYield(JCYield tree) { 2370 if (env.info.yieldResult != null) { 2371 attribTree(tree.value, env, env.info.yieldResult); 2372 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2373 } else { 2374 log.error(tree.pos(), tree.value.hasTag(PARENS) 2375 ? Errors.NoSwitchExpressionQualify 2376 : Errors.NoSwitchExpression); 2377 attribTree(tree.value, env, unknownExprInfo); 2378 } 2379 result = null; 2380 } 2381 2382 public void visitContinue(JCContinue tree) { 2383 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2384 result = null; 2385 } 2386 //where 2387 /** Return the target of a break, continue or yield statement, 2388 * if it exists, report an error if not. 2389 * Note: The target of a labelled break or continue is the 2390 * (non-labelled) statement tree referred to by the label, 2391 * not the tree representing the labelled statement itself. 2392 * 2393 * @param pos The position to be used for error diagnostics 2394 * @param tag The tag of the jump statement. This is either 2395 * Tree.BREAK or Tree.CONTINUE. 2396 * @param label The label of the jump statement, or null if no 2397 * label is given. 2398 * @param env The environment current at the jump statement. 2399 */ 2400 private JCTree findJumpTarget(DiagnosticPosition pos, 2401 JCTree.Tag tag, 2402 Name label, 2403 Env<AttrContext> env) { 2404 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2405 2406 if (jumpTarget.snd != null) { 2407 log.error(pos, jumpTarget.snd); 2408 } 2409 2410 return jumpTarget.fst; 2411 } 2412 /** Return the target of a break or continue statement, if it exists, 2413 * report an error if not. 2414 * Note: The target of a labelled break or continue is the 2415 * (non-labelled) statement tree referred to by the label, 2416 * not the tree representing the labelled statement itself. 2417 * 2418 * @param tag The tag of the jump statement. This is either 2419 * Tree.BREAK or Tree.CONTINUE. 2420 * @param label The label of the jump statement, or null if no 2421 * label is given. 2422 * @param env The environment current at the jump statement. 2423 */ 2424 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2425 Name label, 2426 Env<AttrContext> env) { 2427 // Search environments outwards from the point of jump. 2428 Env<AttrContext> env1 = env; 2429 JCDiagnostic.Error pendingError = null; 2430 LOOP: 2431 while (env1 != null) { 2432 switch (env1.tree.getTag()) { 2433 case LABELLED: 2434 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2435 if (label == labelled.label) { 2436 // If jump is a continue, check that target is a loop. 2437 if (tag == CONTINUE) { 2438 if (!labelled.body.hasTag(DOLOOP) && 2439 !labelled.body.hasTag(WHILELOOP) && 2440 !labelled.body.hasTag(FORLOOP) && 2441 !labelled.body.hasTag(FOREACHLOOP)) { 2442 pendingError = Errors.NotLoopLabel(label); 2443 } 2444 // Found labelled statement target, now go inwards 2445 // to next non-labelled tree. 2446 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2447 } else { 2448 return Pair.of(labelled, pendingError); 2449 } 2450 } 2451 break; 2452 case DOLOOP: 2453 case WHILELOOP: 2454 case FORLOOP: 2455 case FOREACHLOOP: 2456 if (label == null) return Pair.of(env1.tree, pendingError); 2457 break; 2458 case SWITCH: 2459 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2460 break; 2461 case SWITCH_EXPRESSION: 2462 if (tag == YIELD) { 2463 return Pair.of(env1.tree, null); 2464 } else if (tag == BREAK) { 2465 pendingError = Errors.BreakOutsideSwitchExpression; 2466 } else { 2467 pendingError = Errors.ContinueOutsideSwitchExpression; 2468 } 2469 break; 2470 case LAMBDA: 2471 case METHODDEF: 2472 case CLASSDEF: 2473 break LOOP; 2474 default: 2475 } 2476 env1 = env1.next; 2477 } 2478 if (label != null) 2479 return Pair.of(null, Errors.UndefLabel(label)); 2480 else if (pendingError != null) 2481 return Pair.of(null, pendingError); 2482 else if (tag == CONTINUE) 2483 return Pair.of(null, Errors.ContOutsideLoop); 2484 else 2485 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2486 } 2487 2488 public void visitReturn(JCReturn tree) { 2489 // Check that there is an enclosing method which is 2490 // nested within than the enclosing class. 2491 if (env.info.returnResult == null) { 2492 log.error(tree.pos(), Errors.RetOutsideMeth); 2493 } else if (env.info.yieldResult != null) { 2494 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2495 if (tree.expr != null) { 2496 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2497 } 2498 } else if (!env.info.isLambda && 2499 !env.info.isNewClass && 2500 env.enclMethod != null && 2501 TreeInfo.isCompactConstructor(env.enclMethod)) { 2502 log.error(env.enclMethod, 2503 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2504 } else { 2505 // Attribute return expression, if it exists, and check that 2506 // it conforms to result type of enclosing method. 2507 if (tree.expr != null) { 2508 if (env.info.returnResult.pt.hasTag(VOID)) { 2509 env.info.returnResult.checkContext.report(tree.expr.pos(), 2510 diags.fragment(Fragments.UnexpectedRetVal)); 2511 } 2512 attribTree(tree.expr, env, env.info.returnResult); 2513 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2514 !env.info.returnResult.pt.hasTag(NONE)) { 2515 env.info.returnResult.checkContext.report(tree.pos(), 2516 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2517 } 2518 } 2519 result = null; 2520 } 2521 2522 public void visitThrow(JCThrow tree) { 2523 Type owntype = attribExpr(tree.expr, env, Type.noType); 2524 chk.checkType(tree, owntype, syms.throwableType); 2525 result = null; 2526 } 2527 2528 public void visitAssert(JCAssert tree) { 2529 attribExpr(tree.cond, env, syms.booleanType); 2530 if (tree.detail != null) { 2531 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2532 } 2533 result = null; 2534 } 2535 2536 /** Visitor method for method invocations. 2537 * NOTE: The method part of an application will have in its type field 2538 * the return type of the method, not the method's type itself! 2539 */ 2540 public void visitApply(JCMethodInvocation tree) { 2541 // The local environment of a method application is 2542 // a new environment nested in the current one. 2543 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2544 2545 // The types of the actual method arguments. 2546 List<Type> argtypes; 2547 2548 // The types of the actual method type arguments. 2549 List<Type> typeargtypes = null; 2550 2551 Name methName = TreeInfo.name(tree.meth); 2552 2553 boolean isConstructorCall = 2554 methName == names._this || methName == names._super; 2555 2556 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2557 if (isConstructorCall) { 2558 2559 // Attribute arguments, yielding list of argument types. 2560 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2561 argtypes = argtypesBuf.toList(); 2562 typeargtypes = attribTypes(tree.typeargs, localEnv); 2563 2564 // Done with this()/super() parameters. End of constructor prologue. 2565 env.info.ctorPrologue = false; 2566 2567 // Variable `site' points to the class in which the called 2568 // constructor is defined. 2569 Type site = env.enclClass.sym.type; 2570 if (methName == names._super) { 2571 if (site == syms.objectType) { 2572 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2573 site = types.createErrorType(syms.objectType); 2574 } else { 2575 site = types.supertype(site); 2576 } 2577 } 2578 2579 if (site.hasTag(CLASS)) { 2580 Type encl = site.getEnclosingType(); 2581 while (encl != null && encl.hasTag(TYPEVAR)) 2582 encl = encl.getUpperBound(); 2583 if (encl.hasTag(CLASS)) { 2584 // we are calling a nested class 2585 2586 if (tree.meth.hasTag(SELECT)) { 2587 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2588 2589 // We are seeing a prefixed call, of the form 2590 // <expr>.super(...). 2591 // Check that the prefix expression conforms 2592 // to the outer instance type of the class. 2593 chk.checkRefType(qualifier.pos(), 2594 attribExpr(qualifier, localEnv, 2595 encl)); 2596 } 2597 } else if (tree.meth.hasTag(SELECT)) { 2598 log.error(tree.meth.pos(), 2599 Errors.IllegalQualNotIcls(site.tsym)); 2600 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2601 } 2602 2603 if (tree.meth.hasTag(IDENT)) { 2604 // non-qualified super(...) call; check whether explicit constructor 2605 // invocation is well-formed. If the super class is an inner class, 2606 // make sure that an appropriate implicit qualifier exists. If the super 2607 // class is a local class, make sure that the current class is defined 2608 // in the same context as the local class. 2609 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2610 } 2611 2612 // if we're calling a java.lang.Enum constructor, 2613 // prefix the implicit String and int parameters 2614 if (site.tsym == syms.enumSym) 2615 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2616 2617 // Resolve the called constructor under the assumption 2618 // that we are referring to a superclass instance of the 2619 // current instance (JLS ???). 2620 boolean selectSuperPrev = localEnv.info.selectSuper; 2621 localEnv.info.selectSuper = true; 2622 localEnv.info.pendingResolutionPhase = null; 2623 Symbol sym = rs.resolveConstructor( 2624 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2625 localEnv.info.selectSuper = selectSuperPrev; 2626 2627 // Set method symbol to resolved constructor... 2628 TreeInfo.setSymbol(tree.meth, sym); 2629 2630 // ...and check that it is legal in the current context. 2631 // (this will also set the tree's type) 2632 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2633 checkId(tree.meth, site, sym, localEnv, 2634 new ResultInfo(kind, mpt)); 2635 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2636 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2637 } 2638 // Otherwise, `site' is an error type and we do nothing 2639 result = tree.type = syms.voidType; 2640 } else { 2641 // Otherwise, we are seeing a regular method call. 2642 // Attribute the arguments, yielding list of argument types, ... 2643 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2644 argtypes = argtypesBuf.toList(); 2645 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2646 2647 // ... and attribute the method using as a prototype a methodtype 2648 // whose formal argument types is exactly the list of actual 2649 // arguments (this will also set the method symbol). 2650 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2651 localEnv.info.pendingResolutionPhase = null; 2652 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2653 2654 // Compute the result type. 2655 Type restype = mtype.getReturnType(); 2656 if (restype.hasTag(WILDCARD)) 2657 throw new AssertionError(mtype); 2658 2659 Type qualifier = (tree.meth.hasTag(SELECT)) 2660 ? ((JCFieldAccess) tree.meth).selected.type 2661 : env.enclClass.sym.type; 2662 Symbol msym = TreeInfo.symbol(tree.meth); 2663 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2664 2665 chk.checkRefTypes(tree.typeargs, typeargtypes); 2666 2667 // Check that value of resulting type is admissible in the 2668 // current context. Also, capture the return type 2669 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2670 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2671 } 2672 chk.validate(tree.typeargs, localEnv); 2673 } 2674 //where 2675 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2676 if (msym != null && 2677 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2678 methodName == names.getClass && 2679 argtypes.isEmpty()) { 2680 // as a special case, x.getClass() has type Class<? extends |X|> 2681 return new ClassType(restype.getEnclosingType(), 2682 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2683 BoundKind.EXTENDS, 2684 syms.boundClass)), 2685 restype.tsym, 2686 restype.getMetadata()); 2687 } else if (msym != null && 2688 msym.owner == syms.arrayClass && 2689 methodName == names.clone && 2690 types.isArray(qualifierType)) { 2691 // as a special case, array.clone() has a result that is 2692 // the same as static type of the array being cloned 2693 return qualifierType; 2694 } else { 2695 return restype; 2696 } 2697 } 2698 2699 /** Obtain a method type with given argument types. 2700 */ 2701 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2702 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2703 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2704 } 2705 2706 public void visitNewClass(final JCNewClass tree) { 2707 Type owntype = types.createErrorType(tree.type); 2708 2709 // The local environment of a class creation is 2710 // a new environment nested in the current one. 2711 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2712 2713 // The anonymous inner class definition of the new expression, 2714 // if one is defined by it. 2715 JCClassDecl cdef = tree.def; 2716 2717 // If enclosing class is given, attribute it, and 2718 // complete class name to be fully qualified 2719 JCExpression clazz = tree.clazz; // Class field following new 2720 JCExpression clazzid; // Identifier in class field 2721 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2722 annoclazzid = null; 2723 2724 if (clazz.hasTag(TYPEAPPLY)) { 2725 clazzid = ((JCTypeApply) clazz).clazz; 2726 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2727 annoclazzid = (JCAnnotatedType) clazzid; 2728 clazzid = annoclazzid.underlyingType; 2729 } 2730 } else { 2731 if (clazz.hasTag(ANNOTATED_TYPE)) { 2732 annoclazzid = (JCAnnotatedType) clazz; 2733 clazzid = annoclazzid.underlyingType; 2734 } else { 2735 clazzid = clazz; 2736 } 2737 } 2738 2739 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2740 2741 if (tree.encl != null) { 2742 // We are seeing a qualified new, of the form 2743 // <expr>.new C <...> (...) ... 2744 // In this case, we let clazz stand for the name of the 2745 // allocated class C prefixed with the type of the qualifier 2746 // expression, so that we can 2747 // resolve it with standard techniques later. I.e., if 2748 // <expr> has type T, then <expr>.new C <...> (...) 2749 // yields a clazz T.C. 2750 Type encltype = chk.checkRefType(tree.encl.pos(), 2751 attribExpr(tree.encl, env)); 2752 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2753 // from expr to the combined type, or not? Yes, do this. 2754 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2755 ((JCIdent) clazzid).name); 2756 2757 EndPosTable endPosTable = this.env.toplevel.endPositions; 2758 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2759 if (clazz.hasTag(ANNOTATED_TYPE)) { 2760 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2761 List<JCAnnotation> annos = annoType.annotations; 2762 2763 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2764 clazzid1 = make.at(tree.pos). 2765 TypeApply(clazzid1, 2766 ((JCTypeApply) clazz).arguments); 2767 } 2768 2769 clazzid1 = make.at(tree.pos). 2770 AnnotatedType(annos, clazzid1); 2771 } else if (clazz.hasTag(TYPEAPPLY)) { 2772 clazzid1 = make.at(tree.pos). 2773 TypeApply(clazzid1, 2774 ((JCTypeApply) clazz).arguments); 2775 } 2776 2777 clazz = clazzid1; 2778 } 2779 2780 // Attribute clazz expression and store 2781 // symbol + type back into the attributed tree. 2782 Type clazztype; 2783 2784 try { 2785 env.info.isNewClass = true; 2786 clazztype = TreeInfo.isEnumInit(env.tree) ? 2787 attribIdentAsEnumType(env, (JCIdent)clazz) : 2788 attribType(clazz, env); 2789 } finally { 2790 env.info.isNewClass = false; 2791 } 2792 2793 clazztype = chk.checkDiamond(tree, clazztype); 2794 chk.validate(clazz, localEnv); 2795 if (tree.encl != null) { 2796 // We have to work in this case to store 2797 // symbol + type back into the attributed tree. 2798 tree.clazz.type = clazztype; 2799 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2800 clazzid.type = ((JCIdent) clazzid).sym.type; 2801 if (annoclazzid != null) { 2802 annoclazzid.type = clazzid.type; 2803 } 2804 if (!clazztype.isErroneous()) { 2805 if (cdef != null && clazztype.tsym.isInterface()) { 2806 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2807 } else if (clazztype.tsym.isStatic()) { 2808 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2809 } 2810 } 2811 } else { 2812 // Check for the existence of an apropos outer instance 2813 checkNewInnerClass(tree.pos(), env, clazztype, false); 2814 } 2815 2816 // Attribute constructor arguments. 2817 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2818 final KindSelector pkind = 2819 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2820 List<Type> argtypes = argtypesBuf.toList(); 2821 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2822 2823 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2824 // Enums may not be instantiated except implicitly 2825 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2826 (!env.tree.hasTag(VARDEF) || 2827 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2828 ((JCVariableDecl) env.tree).init != tree)) 2829 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2830 2831 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2832 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2833 boolean skipNonDiamondPath = false; 2834 // Check that class is not abstract 2835 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2836 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2837 log.error(tree.pos(), 2838 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2839 skipNonDiamondPath = true; 2840 } else if (cdef != null && clazztype.tsym.isInterface()) { 2841 // Check that no constructor arguments are given to 2842 // anonymous classes implementing an interface 2843 if (!argtypes.isEmpty()) 2844 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2845 2846 if (!typeargtypes.isEmpty()) 2847 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2848 2849 // Error recovery: pretend no arguments were supplied. 2850 argtypes = List.nil(); 2851 typeargtypes = List.nil(); 2852 skipNonDiamondPath = true; 2853 } 2854 if (TreeInfo.isDiamond(tree)) { 2855 ClassType site = new ClassType(clazztype.getEnclosingType(), 2856 clazztype.tsym.type.getTypeArguments(), 2857 clazztype.tsym, 2858 clazztype.getMetadata()); 2859 2860 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2861 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2862 diamondEnv.info.pendingResolutionPhase = null; 2863 2864 //if the type of the instance creation expression is a class type 2865 //apply method resolution inference (JLS 15.12.2.7). The return type 2866 //of the resolved constructor will be a partially instantiated type 2867 Symbol constructor = rs.resolveDiamond(tree.pos(), 2868 diamondEnv, 2869 site, 2870 argtypes, 2871 typeargtypes); 2872 tree.constructor = constructor.baseSymbol(); 2873 2874 final TypeSymbol csym = clazztype.tsym; 2875 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2876 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2877 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2878 constructorType = checkId(tree, site, 2879 constructor, 2880 diamondEnv, 2881 diamondResult); 2882 2883 tree.clazz.type = types.createErrorType(clazztype); 2884 if (!constructorType.isErroneous()) { 2885 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2886 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2887 } 2888 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2889 } 2890 2891 // Resolve the called constructor under the assumption 2892 // that we are referring to a superclass instance of the 2893 // current instance (JLS ???). 2894 else if (!skipNonDiamondPath) { 2895 //the following code alters some of the fields in the current 2896 //AttrContext - hence, the current context must be dup'ed in 2897 //order to avoid downstream failures 2898 Env<AttrContext> rsEnv = localEnv.dup(tree); 2899 rsEnv.info.selectSuper = cdef != null; 2900 rsEnv.info.pendingResolutionPhase = null; 2901 tree.constructor = rs.resolveConstructor( 2902 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2903 if (cdef == null) { //do not check twice! 2904 tree.constructorType = checkId(tree, 2905 clazztype, 2906 tree.constructor, 2907 rsEnv, 2908 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2909 if (rsEnv.info.lastResolveVarargs()) 2910 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2911 } 2912 } 2913 2914 if (cdef != null) { 2915 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2916 return; 2917 } 2918 2919 if (tree.constructor != null && tree.constructor.kind == MTH) 2920 owntype = clazztype; 2921 } 2922 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2923 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2924 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2925 //we need to wait for inference to finish and then replace inference vars in the constructor type 2926 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2927 instantiatedContext -> { 2928 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2929 }); 2930 } 2931 chk.validate(tree.typeargs, localEnv); 2932 } 2933 2934 // where 2935 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2936 JCClassDecl cdef, Env<AttrContext> localEnv, 2937 List<Type> argtypes, List<Type> typeargtypes, 2938 KindSelector pkind) { 2939 // We are seeing an anonymous class instance creation. 2940 // In this case, the class instance creation 2941 // expression 2942 // 2943 // E.new <typeargs1>C<typargs2>(args) { ... } 2944 // 2945 // is represented internally as 2946 // 2947 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2948 // 2949 // This expression is then *transformed* as follows: 2950 // 2951 // (1) add an extends or implements clause 2952 // (2) add a constructor. 2953 // 2954 // For instance, if C is a class, and ET is the type of E, 2955 // the expression 2956 // 2957 // E.new <typeargs1>C<typargs2>(args) { ... } 2958 // 2959 // is translated to (where X is a fresh name and typarams is the 2960 // parameter list of the super constructor): 2961 // 2962 // new <typeargs1>X(<*nullchk*>E, args) where 2963 // X extends C<typargs2> { 2964 // <typarams> X(ET e, args) { 2965 // e.<typeargs1>super(args) 2966 // } 2967 // ... 2968 // } 2969 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2970 Type enclType = clazztype.getEnclosingType(); 2971 if (enclType != null && 2972 enclType.hasTag(CLASS) && 2973 !chk.checkDenotable((ClassType)enclType)) { 2974 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2975 } 2976 final boolean isDiamond = TreeInfo.isDiamond(tree); 2977 if (isDiamond 2978 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2979 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2980 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2981 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 2982 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 2983 instantiatedContext -> { 2984 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2985 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 2986 ResultInfo prevResult = this.resultInfo; 2987 try { 2988 this.resultInfo = resultInfoForClassDefinition; 2989 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 2990 dupLocalEnv, argtypes, typeargtypes, pkind); 2991 } finally { 2992 this.resultInfo = prevResult; 2993 } 2994 }); 2995 } else { 2996 if (isDiamond && clazztype.hasTag(CLASS)) { 2997 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 2998 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 2999 // One or more types inferred in the previous steps is non-denotable. 3000 Fragment fragment = Diamond(clazztype.tsym); 3001 log.error(tree.clazz.pos(), 3002 Errors.CantApplyDiamond1( 3003 fragment, 3004 invalidDiamondArgs.size() > 1 ? 3005 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3006 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3007 } 3008 // For <>(){}, inferred types must also be accessible. 3009 for (Type t : clazztype.getTypeArguments()) { 3010 rs.checkAccessibleType(env, t); 3011 } 3012 } 3013 3014 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3015 // false for isInterface call even when the original type is an interface. 3016 boolean implementing = clazztype.tsym.isInterface() || 3017 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3018 clazztype.getOriginalType().tsym.isInterface(); 3019 3020 if (implementing) { 3021 cdef.implementing = List.of(clazz); 3022 } else { 3023 cdef.extending = clazz; 3024 } 3025 3026 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3027 rs.isSerializable(clazztype)) { 3028 localEnv.info.isSerializable = true; 3029 } 3030 3031 attribStat(cdef, localEnv); 3032 3033 List<Type> finalargtypes; 3034 // If an outer instance is given, 3035 // prefix it to the constructor arguments 3036 // and delete it from the new expression 3037 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3038 finalargtypes = argtypes.prepend(tree.encl.type); 3039 } else { 3040 finalargtypes = argtypes; 3041 } 3042 3043 // Reassign clazztype and recompute constructor. As this necessarily involves 3044 // another attribution pass for deferred types in the case of <>, replicate 3045 // them. Original arguments have right decorations already. 3046 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3047 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3048 } 3049 3050 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3051 : cdef.sym.type; 3052 Symbol sym = tree.constructor = rs.resolveConstructor( 3053 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3054 Assert.check(!sym.kind.isResolutionError()); 3055 tree.constructor = sym; 3056 tree.constructorType = checkId(tree, 3057 clazztype, 3058 tree.constructor, 3059 localEnv, 3060 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3061 } 3062 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3063 clazztype : types.createErrorType(tree.type); 3064 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3065 chk.validate(tree.typeargs, localEnv); 3066 } 3067 3068 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3069 return new Check.NestedCheckContext(checkContext) { 3070 @Override 3071 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3072 enclosingContext.report(clazz.clazz, 3073 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3074 } 3075 }; 3076 } 3077 3078 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3079 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3080 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3081 (!isLocal && !type.tsym.isInner()) || 3082 (isSuper && env.enclClass.sym.isAnonymous())) { 3083 // nothing to check 3084 return; 3085 } 3086 Symbol res = isLocal ? 3087 rs.findLocalClassOwner(env, type.tsym) : 3088 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3089 if (res.exists()) { 3090 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3091 } else { 3092 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3093 } 3094 } 3095 3096 /** Make an attributed null check tree. 3097 */ 3098 public JCExpression makeNullCheck(JCExpression arg) { 3099 // optimization: new Outer() can never be null; skip null check 3100 if (arg.getTag() == NEWCLASS) 3101 return arg; 3102 // optimization: X.this is never null; skip null check 3103 Name name = TreeInfo.name(arg); 3104 if (name == names._this || name == names._super) return arg; 3105 3106 JCTree.Tag optag = NULLCHK; 3107 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3108 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3109 tree.type = arg.type; 3110 return tree; 3111 } 3112 3113 public void visitNewArray(JCNewArray tree) { 3114 Type owntype = types.createErrorType(tree.type); 3115 Env<AttrContext> localEnv = env.dup(tree); 3116 Type elemtype; 3117 if (tree.elemtype != null) { 3118 elemtype = attribType(tree.elemtype, localEnv); 3119 chk.validate(tree.elemtype, localEnv); 3120 owntype = elemtype; 3121 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3122 attribExpr(l.head, localEnv, syms.intType); 3123 owntype = new ArrayType(owntype, syms.arrayClass); 3124 } 3125 } else { 3126 // we are seeing an untyped aggregate { ... } 3127 // this is allowed only if the prototype is an array 3128 if (pt().hasTag(ARRAY)) { 3129 elemtype = types.elemtype(pt()); 3130 } else { 3131 if (!pt().hasTag(ERROR) && 3132 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3133 log.error(tree.pos(), 3134 Errors.IllegalInitializerForType(pt())); 3135 } 3136 elemtype = types.createErrorType(pt()); 3137 } 3138 } 3139 if (tree.elems != null) { 3140 attribExprs(tree.elems, localEnv, elemtype); 3141 owntype = new ArrayType(elemtype, syms.arrayClass); 3142 } 3143 if (!types.isReifiable(elemtype)) 3144 log.error(tree.pos(), Errors.GenericArrayCreation); 3145 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3146 } 3147 3148 /* 3149 * A lambda expression can only be attributed when a target-type is available. 3150 * In addition, if the target-type is that of a functional interface whose 3151 * descriptor contains inference variables in argument position the lambda expression 3152 * is 'stuck' (see DeferredAttr). 3153 */ 3154 @Override 3155 public void visitLambda(final JCLambda that) { 3156 boolean wrongContext = false; 3157 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3158 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3159 //lambda only allowed in assignment or method invocation/cast context 3160 log.error(that.pos(), Errors.UnexpectedLambda); 3161 } 3162 resultInfo = recoveryInfo; 3163 wrongContext = true; 3164 } 3165 //create an environment for attribution of the lambda expression 3166 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3167 boolean needsRecovery = 3168 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3169 try { 3170 if (needsRecovery && rs.isSerializable(pt())) { 3171 localEnv.info.isSerializable = true; 3172 localEnv.info.isSerializableLambda = true; 3173 } 3174 List<Type> explicitParamTypes = null; 3175 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3176 //attribute lambda parameters 3177 attribStats(that.params, localEnv); 3178 explicitParamTypes = TreeInfo.types(that.params); 3179 } 3180 3181 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3182 Type currentTarget = targetInfo.target; 3183 Type lambdaType = targetInfo.descriptor; 3184 3185 if (currentTarget.isErroneous()) { 3186 result = that.type = currentTarget; 3187 return; 3188 } 3189 3190 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3191 3192 if (lambdaType.hasTag(FORALL)) { 3193 //lambda expression target desc cannot be a generic method 3194 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3195 kindName(currentTarget.tsym), 3196 currentTarget.tsym); 3197 resultInfo.checkContext.report(that, diags.fragment(msg)); 3198 result = that.type = types.createErrorType(pt()); 3199 return; 3200 } 3201 3202 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3203 //add param type info in the AST 3204 List<Type> actuals = lambdaType.getParameterTypes(); 3205 List<JCVariableDecl> params = that.params; 3206 3207 boolean arityMismatch = false; 3208 3209 while (params.nonEmpty()) { 3210 if (actuals.isEmpty()) { 3211 //not enough actuals to perform lambda parameter inference 3212 arityMismatch = true; 3213 } 3214 //reset previously set info 3215 Type argType = arityMismatch ? 3216 syms.errType : 3217 actuals.head; 3218 if (params.head.isImplicitlyTyped()) { 3219 setSyntheticVariableType(params.head, argType); 3220 } 3221 params.head.sym = null; 3222 actuals = actuals.isEmpty() ? 3223 actuals : 3224 actuals.tail; 3225 params = params.tail; 3226 } 3227 3228 //attribute lambda parameters 3229 attribStats(that.params, localEnv); 3230 3231 if (arityMismatch) { 3232 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3233 result = that.type = types.createErrorType(currentTarget); 3234 return; 3235 } 3236 } 3237 3238 //from this point on, no recovery is needed; if we are in assignment context 3239 //we will be able to attribute the whole lambda body, regardless of errors; 3240 //if we are in a 'check' method context, and the lambda is not compatible 3241 //with the target-type, it will be recovered anyway in Attr.checkId 3242 needsRecovery = false; 3243 3244 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3245 lambdaBodyResult(that, lambdaType, resultInfo); 3246 3247 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3248 attribTree(that.getBody(), localEnv, bodyResultInfo); 3249 } else { 3250 JCBlock body = (JCBlock)that.body; 3251 if (body == breakTree && 3252 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3253 breakTreeFound(copyEnv(localEnv)); 3254 } 3255 attribStats(body.stats, localEnv); 3256 } 3257 3258 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3259 3260 boolean isSpeculativeRound = 3261 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3262 3263 preFlow(that); 3264 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3265 3266 that.type = currentTarget; //avoids recovery at this stage 3267 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3268 3269 if (!isSpeculativeRound) { 3270 //add thrown types as bounds to the thrown types free variables if needed: 3271 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3272 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3273 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3274 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3275 } 3276 } 3277 3278 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3279 } 3280 result = wrongContext ? that.type = types.createErrorType(pt()) 3281 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3282 } catch (Types.FunctionDescriptorLookupError ex) { 3283 JCDiagnostic cause = ex.getDiagnostic(); 3284 resultInfo.checkContext.report(that, cause); 3285 result = that.type = types.createErrorType(pt()); 3286 return; 3287 } catch (CompletionFailure cf) { 3288 chk.completionError(that.pos(), cf); 3289 } catch (Throwable t) { 3290 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3291 //as that would likely cause the same exception again. 3292 needsRecovery = false; 3293 throw t; 3294 } finally { 3295 localEnv.info.scope.leave(); 3296 if (needsRecovery) { 3297 Type prevResult = result; 3298 try { 3299 attribTree(that, env, recoveryInfo); 3300 } finally { 3301 if (result == Type.recoveryType) { 3302 result = prevResult; 3303 } 3304 } 3305 } 3306 } 3307 } 3308 //where 3309 class TargetInfo { 3310 Type target; 3311 Type descriptor; 3312 3313 public TargetInfo(Type target, Type descriptor) { 3314 this.target = target; 3315 this.descriptor = descriptor; 3316 } 3317 } 3318 3319 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3320 Type lambdaType; 3321 Type currentTarget = resultInfo.pt; 3322 if (resultInfo.pt != Type.recoveryType) { 3323 /* We need to adjust the target. If the target is an 3324 * intersection type, for example: SAM & I1 & I2 ... 3325 * the target will be updated to SAM 3326 */ 3327 currentTarget = targetChecker.visit(currentTarget, that); 3328 if (!currentTarget.isIntersection()) { 3329 if (explicitParamTypes != null) { 3330 currentTarget = infer.instantiateFunctionalInterface(that, 3331 currentTarget, explicitParamTypes, resultInfo.checkContext); 3332 } 3333 currentTarget = types.removeWildcards(currentTarget); 3334 lambdaType = types.findDescriptorType(currentTarget); 3335 } else { 3336 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3337 ListBuffer<Type> components = new ListBuffer<>(); 3338 for (Type bound : ict.getExplicitComponents()) { 3339 if (explicitParamTypes != null) { 3340 try { 3341 bound = infer.instantiateFunctionalInterface(that, 3342 bound, explicitParamTypes, resultInfo.checkContext); 3343 } catch (FunctionDescriptorLookupError t) { 3344 // do nothing 3345 } 3346 } 3347 bound = types.removeWildcards(bound); 3348 components.add(bound); 3349 } 3350 currentTarget = types.makeIntersectionType(components.toList()); 3351 currentTarget.tsym.flags_field |= INTERFACE; 3352 lambdaType = types.findDescriptorType(currentTarget); 3353 } 3354 3355 } else { 3356 currentTarget = Type.recoveryType; 3357 lambdaType = fallbackDescriptorType(that); 3358 } 3359 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3360 //lambda expression target desc cannot be a generic method 3361 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3362 kindName(currentTarget.tsym), 3363 currentTarget.tsym); 3364 resultInfo.checkContext.report(that, diags.fragment(msg)); 3365 currentTarget = types.createErrorType(pt()); 3366 } 3367 return new TargetInfo(currentTarget, lambdaType); 3368 } 3369 3370 void preFlow(JCLambda tree) { 3371 attrRecover.doRecovery(); 3372 new PostAttrAnalyzer() { 3373 @Override 3374 public void scan(JCTree tree) { 3375 if (tree == null || 3376 (tree.type != null && 3377 tree.type == Type.stuckType)) { 3378 //don't touch stuck expressions! 3379 return; 3380 } 3381 super.scan(tree); 3382 } 3383 3384 @Override 3385 public void visitClassDef(JCClassDecl that) { 3386 // or class declaration trees! 3387 } 3388 3389 public void visitLambda(JCLambda that) { 3390 // or lambda expressions! 3391 } 3392 }.scan(tree.body); 3393 } 3394 3395 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3396 3397 @Override 3398 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3399 return t.isIntersection() ? 3400 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3401 } 3402 3403 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3404 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3405 return ict; 3406 } 3407 3408 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3409 ListBuffer<Type> targs = new ListBuffer<>(); 3410 ListBuffer<Type> supertypes = new ListBuffer<>(); 3411 for (Type i : ict.interfaces_field) { 3412 if (i.isParameterized()) { 3413 targs.appendList(i.tsym.type.allparams()); 3414 } 3415 supertypes.append(i.tsym.type); 3416 } 3417 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3418 notionalIntf.allparams_field = targs.toList(); 3419 notionalIntf.tsym.flags_field |= INTERFACE; 3420 return notionalIntf.tsym; 3421 } 3422 }; 3423 3424 private Type fallbackDescriptorType(JCExpression tree) { 3425 switch (tree.getTag()) { 3426 case LAMBDA: 3427 JCLambda lambda = (JCLambda)tree; 3428 List<Type> argtypes = List.nil(); 3429 for (JCVariableDecl param : lambda.params) { 3430 argtypes = param.vartype != null && param.vartype.type != null ? 3431 argtypes.append(param.vartype.type) : 3432 argtypes.append(syms.errType); 3433 } 3434 return new MethodType(argtypes, Type.recoveryType, 3435 List.of(syms.throwableType), syms.methodClass); 3436 case REFERENCE: 3437 return new MethodType(List.nil(), Type.recoveryType, 3438 List.of(syms.throwableType), syms.methodClass); 3439 default: 3440 Assert.error("Cannot get here!"); 3441 } 3442 return null; 3443 } 3444 3445 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3446 final InferenceContext inferenceContext, final Type... ts) { 3447 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3448 } 3449 3450 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3451 final InferenceContext inferenceContext, final List<Type> ts) { 3452 if (inferenceContext.free(ts)) { 3453 inferenceContext.addFreeTypeListener(ts, 3454 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3455 } else { 3456 for (Type t : ts) { 3457 rs.checkAccessibleType(env, t); 3458 } 3459 } 3460 } 3461 3462 /** 3463 * Lambda/method reference have a special check context that ensures 3464 * that i.e. a lambda return type is compatible with the expected 3465 * type according to both the inherited context and the assignment 3466 * context. 3467 */ 3468 class FunctionalReturnContext extends Check.NestedCheckContext { 3469 3470 FunctionalReturnContext(CheckContext enclosingContext) { 3471 super(enclosingContext); 3472 } 3473 3474 @Override 3475 public boolean compatible(Type found, Type req, Warner warn) { 3476 //return type must be compatible in both current context and assignment context 3477 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3478 } 3479 3480 @Override 3481 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3482 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3483 } 3484 } 3485 3486 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3487 3488 JCExpression expr; 3489 boolean expStmtExpected; 3490 3491 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3492 super(enclosingContext); 3493 this.expr = expr; 3494 } 3495 3496 @Override 3497 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3498 if (expStmtExpected) { 3499 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3500 } else { 3501 super.report(pos, details); 3502 } 3503 } 3504 3505 @Override 3506 public boolean compatible(Type found, Type req, Warner warn) { 3507 //a void return is compatible with an expression statement lambda 3508 if (req.hasTag(VOID)) { 3509 expStmtExpected = true; 3510 return TreeInfo.isExpressionStatement(expr); 3511 } else { 3512 return super.compatible(found, req, warn); 3513 } 3514 } 3515 } 3516 3517 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3518 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3519 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3520 new FunctionalReturnContext(resultInfo.checkContext); 3521 3522 return descriptor.getReturnType() == Type.recoveryType ? 3523 recoveryInfo : 3524 new ResultInfo(KindSelector.VAL, 3525 descriptor.getReturnType(), funcContext); 3526 } 3527 3528 /** 3529 * Lambda compatibility. Check that given return types, thrown types, parameter types 3530 * are compatible with the expected functional interface descriptor. This means that: 3531 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3532 * types must be compatible with the return type of the expected descriptor. 3533 */ 3534 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3535 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3536 3537 //return values have already been checked - but if lambda has no return 3538 //values, we must ensure that void/value compatibility is correct; 3539 //this amounts at checking that, if a lambda body can complete normally, 3540 //the descriptor's return type must be void 3541 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3542 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3543 Fragment msg = 3544 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3545 checkContext.report(tree, 3546 diags.fragment(msg)); 3547 } 3548 3549 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3550 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3551 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3552 } 3553 } 3554 3555 /* This method returns an environment to be used to attribute a lambda 3556 * expression. 3557 * 3558 * The owner of this environment is a method symbol. If the current owner 3559 * is not a method (e.g. if the lambda occurs in a field initializer), then 3560 * a synthetic method symbol owner is created. 3561 */ 3562 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3563 Env<AttrContext> lambdaEnv; 3564 Symbol owner = env.info.scope.owner; 3565 if (owner.kind == VAR && owner.owner.kind == TYP) { 3566 // If the lambda is nested in a field initializer, we need to create a fake init method. 3567 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3568 // init symbol's owner). 3569 ClassSymbol enclClass = owner.enclClass(); 3570 Name initName = owner.isStatic() ? names.clinit : names.init; 3571 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3572 initName, initBlockType, enclClass); 3573 initSym.params = List.nil(); 3574 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3575 } else { 3576 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3577 } 3578 lambdaEnv.info.yieldResult = null; 3579 lambdaEnv.info.isLambda = true; 3580 return lambdaEnv; 3581 } 3582 3583 @Override 3584 public void visitReference(final JCMemberReference that) { 3585 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3586 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3587 //method reference only allowed in assignment or method invocation/cast context 3588 log.error(that.pos(), Errors.UnexpectedMref); 3589 } 3590 result = that.type = types.createErrorType(pt()); 3591 return; 3592 } 3593 final Env<AttrContext> localEnv = env.dup(that); 3594 try { 3595 //attribute member reference qualifier - if this is a constructor 3596 //reference, the expected kind must be a type 3597 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3598 3599 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3600 exprType = chk.checkConstructorRefType(that.expr, exprType); 3601 if (!exprType.isErroneous() && 3602 exprType.isRaw() && 3603 that.typeargs != null) { 3604 log.error(that.expr.pos(), 3605 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3606 Fragments.MrefInferAndExplicitParams)); 3607 exprType = types.createErrorType(exprType); 3608 } 3609 } 3610 3611 if (exprType.isErroneous()) { 3612 //if the qualifier expression contains problems, 3613 //give up attribution of method reference 3614 result = that.type = exprType; 3615 return; 3616 } 3617 3618 if (TreeInfo.isStaticSelector(that.expr, names)) { 3619 //if the qualifier is a type, validate it; raw warning check is 3620 //omitted as we don't know at this stage as to whether this is a 3621 //raw selector (because of inference) 3622 chk.validate(that.expr, env, false); 3623 } else { 3624 Symbol lhsSym = TreeInfo.symbol(that.expr); 3625 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3626 } 3627 //attrib type-arguments 3628 List<Type> typeargtypes = List.nil(); 3629 if (that.typeargs != null) { 3630 typeargtypes = attribTypes(that.typeargs, localEnv); 3631 } 3632 3633 boolean isTargetSerializable = 3634 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3635 rs.isSerializable(pt()); 3636 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3637 Type currentTarget = targetInfo.target; 3638 Type desc = targetInfo.descriptor; 3639 3640 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3641 List<Type> argtypes = desc.getParameterTypes(); 3642 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3643 3644 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3645 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3646 } 3647 3648 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3649 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3650 try { 3651 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3652 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3653 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3654 } finally { 3655 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3656 } 3657 3658 Symbol refSym = refResult.fst; 3659 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3660 3661 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3662 * JDK-8075541 3663 */ 3664 if (refSym.kind != MTH) { 3665 boolean targetError; 3666 switch (refSym.kind) { 3667 case ABSENT_MTH: 3668 targetError = false; 3669 break; 3670 case WRONG_MTH: 3671 case WRONG_MTHS: 3672 case AMBIGUOUS: 3673 case HIDDEN: 3674 case STATICERR: 3675 targetError = true; 3676 break; 3677 default: 3678 Assert.error("unexpected result kind " + refSym.kind); 3679 targetError = false; 3680 } 3681 3682 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3683 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3684 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3685 3686 JCDiagnostic diag = diags.create(log.currentSource(), that, 3687 targetError ? 3688 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3689 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3690 3691 if (targetError && currentTarget == Type.recoveryType) { 3692 //a target error doesn't make sense during recovery stage 3693 //as we don't know what actual parameter types are 3694 result = that.type = currentTarget; 3695 return; 3696 } else { 3697 if (targetError) { 3698 resultInfo.checkContext.report(that, diag); 3699 } else { 3700 log.report(diag); 3701 } 3702 result = that.type = types.createErrorType(currentTarget); 3703 return; 3704 } 3705 } 3706 3707 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3708 that.kind = lookupHelper.referenceKind(that.sym); 3709 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3710 3711 if (desc.getReturnType() == Type.recoveryType) { 3712 // stop here 3713 result = that.type = currentTarget; 3714 return; 3715 } 3716 3717 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3718 checkNewInnerClass(that.pos(), env, exprType, false); 3719 } 3720 3721 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3722 3723 if (that.getMode() == ReferenceMode.INVOKE && 3724 TreeInfo.isStaticSelector(that.expr, names) && 3725 that.kind.isUnbound() && 3726 lookupHelper.site.isRaw()) { 3727 chk.checkRaw(that.expr, localEnv); 3728 } 3729 3730 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3731 exprType.getTypeArguments().nonEmpty()) { 3732 //static ref with class type-args 3733 log.error(that.expr.pos(), 3734 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3735 Fragments.StaticMrefWithTargs)); 3736 result = that.type = types.createErrorType(currentTarget); 3737 return; 3738 } 3739 3740 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3741 // Check that super-qualified symbols are not abstract (JLS) 3742 rs.checkNonAbstract(that.pos(), that.sym); 3743 } 3744 3745 if (isTargetSerializable) { 3746 chk.checkAccessFromSerializableElement(that, true); 3747 } 3748 } 3749 3750 ResultInfo checkInfo = 3751 resultInfo.dup(newMethodTemplate( 3752 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3753 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3754 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3755 3756 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3757 3758 if (that.kind.isUnbound() && 3759 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3760 //re-generate inference constraints for unbound receiver 3761 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3762 //cannot happen as this has already been checked - we just need 3763 //to regenerate the inference constraints, as that has been lost 3764 //as a result of the call to inferenceContext.save() 3765 Assert.error("Can't get here"); 3766 } 3767 } 3768 3769 if (!refType.isErroneous()) { 3770 refType = types.createMethodTypeWithReturn(refType, 3771 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3772 } 3773 3774 //go ahead with standard method reference compatibility check - note that param check 3775 //is a no-op (as this has been taken care during method applicability) 3776 boolean isSpeculativeRound = 3777 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3778 3779 that.type = currentTarget; //avoids recovery at this stage 3780 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3781 if (!isSpeculativeRound) { 3782 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3783 } 3784 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3785 } catch (Types.FunctionDescriptorLookupError ex) { 3786 JCDiagnostic cause = ex.getDiagnostic(); 3787 resultInfo.checkContext.report(that, cause); 3788 result = that.type = types.createErrorType(pt()); 3789 return; 3790 } 3791 } 3792 //where 3793 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3794 //if this is a constructor reference, the expected kind must be a type 3795 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3796 KindSelector.VAL_TYP : KindSelector.TYP, 3797 Type.noType); 3798 } 3799 3800 3801 @SuppressWarnings("fallthrough") 3802 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3803 InferenceContext inferenceContext = checkContext.inferenceContext(); 3804 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3805 3806 Type resType; 3807 switch (tree.getMode()) { 3808 case NEW: 3809 if (!tree.expr.type.isRaw()) { 3810 resType = tree.expr.type; 3811 break; 3812 } 3813 default: 3814 resType = refType.getReturnType(); 3815 } 3816 3817 Type incompatibleReturnType = resType; 3818 3819 if (returnType.hasTag(VOID)) { 3820 incompatibleReturnType = null; 3821 } 3822 3823 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3824 if (resType.isErroneous() || 3825 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3826 checkContext.checkWarner(tree, resType, returnType))) { 3827 incompatibleReturnType = null; 3828 } 3829 } 3830 3831 if (incompatibleReturnType != null) { 3832 Fragment msg = 3833 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3834 checkContext.report(tree, diags.fragment(msg)); 3835 } else { 3836 if (inferenceContext.free(refType)) { 3837 // we need to wait for inference to finish and then replace inference vars in the referent type 3838 inferenceContext.addFreeTypeListener(List.of(refType), 3839 instantiatedContext -> { 3840 tree.referentType = instantiatedContext.asInstType(refType); 3841 }); 3842 } else { 3843 tree.referentType = refType; 3844 } 3845 } 3846 3847 if (!speculativeAttr) { 3848 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3849 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3850 } 3851 } 3852 } 3853 3854 boolean checkExConstraints( 3855 List<Type> thrownByFuncExpr, 3856 List<Type> thrownAtFuncType, 3857 InferenceContext inferenceContext) { 3858 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3859 * are not proper types 3860 */ 3861 List<Type> nonProperList = thrownAtFuncType.stream() 3862 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3863 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3864 3865 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3866 * in the throws clause of the invocation type of the method reference's compile-time 3867 * declaration 3868 */ 3869 List<Type> checkedList = thrownByFuncExpr.stream() 3870 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3871 3872 /** If n = 0 (the function type's throws clause consists only of proper types), then 3873 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3874 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3875 * reduces to true 3876 */ 3877 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3878 for (Type checked : checkedList) { 3879 boolean isSubtype = false; 3880 for (Type proper : properList) { 3881 if (types.isSubtype(checked, proper)) { 3882 isSubtype = true; 3883 break; 3884 } 3885 } 3886 if (!isSubtype) { 3887 uncaughtByProperTypes.add(checked); 3888 } 3889 } 3890 3891 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3892 return false; 3893 } 3894 3895 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3896 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3897 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3898 */ 3899 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3900 uncaughtByProperTypes.forEach(checkedEx -> { 3901 nonProperAsUndet.forEach(nonProper -> { 3902 types.isSubtype(checkedEx, nonProper); 3903 }); 3904 }); 3905 3906 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3907 */ 3908 nonProperAsUndet.stream() 3909 .filter(t -> t.hasTag(UNDETVAR)) 3910 .forEach(t -> ((UndetVar)t).setThrow()); 3911 return true; 3912 } 3913 3914 /** 3915 * Set functional type info on the underlying AST. Note: as the target descriptor 3916 * might contain inference variables, we might need to register an hook in the 3917 * current inference context. 3918 */ 3919 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3920 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3921 if (checkContext.inferenceContext().free(descriptorType)) { 3922 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3923 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3924 inferenceContext.asInstType(primaryTarget), checkContext)); 3925 } else { 3926 fExpr.owner = env.info.scope.owner; 3927 if (pt.hasTag(CLASS)) { 3928 fExpr.target = primaryTarget; 3929 } 3930 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3931 pt != Type.recoveryType) { 3932 //check that functional interface class is well-formed 3933 try { 3934 /* Types.makeFunctionalInterfaceClass() may throw an exception 3935 * when it's executed post-inference. See the listener code 3936 * above. 3937 */ 3938 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3939 names.empty, fExpr.target, ABSTRACT); 3940 if (csym != null) { 3941 chk.checkImplementations(env.tree, csym, csym); 3942 try { 3943 //perform an additional functional interface check on the synthetic class, 3944 //as there may be spurious errors for raw targets - because of existing issues 3945 //with membership and inheritance (see JDK-8074570). 3946 csym.flags_field |= INTERFACE; 3947 types.findDescriptorType(csym.type); 3948 } catch (FunctionDescriptorLookupError err) { 3949 resultInfo.checkContext.report(fExpr, 3950 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 3951 } 3952 } 3953 } catch (Types.FunctionDescriptorLookupError ex) { 3954 JCDiagnostic cause = ex.getDiagnostic(); 3955 resultInfo.checkContext.report(env.tree, cause); 3956 } 3957 } 3958 } 3959 } 3960 3961 public void visitParens(JCParens tree) { 3962 Type owntype = attribTree(tree.expr, env, resultInfo); 3963 result = check(tree, owntype, pkind(), resultInfo); 3964 Symbol sym = TreeInfo.symbol(tree); 3965 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 3966 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 3967 } 3968 3969 public void visitAssign(JCAssign tree) { 3970 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 3971 Type capturedType = capture(owntype); 3972 attribExpr(tree.rhs, env, owntype); 3973 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 3974 } 3975 3976 public void visitAssignop(JCAssignOp tree) { 3977 // Attribute arguments. 3978 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 3979 Type operand = attribExpr(tree.rhs, env); 3980 // Find operator. 3981 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 3982 if (operator != operators.noOpSymbol && 3983 !owntype.isErroneous() && 3984 !operand.isErroneous()) { 3985 chk.checkDivZero(tree.rhs.pos(), operator, operand); 3986 chk.checkCastable(tree.rhs.pos(), 3987 operator.type.getReturnType(), 3988 owntype); 3989 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 3990 } 3991 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3992 } 3993 3994 public void visitUnary(JCUnary tree) { 3995 // Attribute arguments. 3996 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 3997 ? attribTree(tree.arg, env, varAssignmentInfo) 3998 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 3999 4000 // Find operator. 4001 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4002 Type owntype = types.createErrorType(tree.type); 4003 if (operator != operators.noOpSymbol && 4004 !argtype.isErroneous()) { 4005 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4006 ? tree.arg.type 4007 : operator.type.getReturnType(); 4008 int opc = operator.opcode; 4009 4010 // If the argument is constant, fold it. 4011 if (argtype.constValue() != null) { 4012 Type ctype = cfolder.fold1(opc, argtype); 4013 if (ctype != null) { 4014 owntype = cfolder.coerce(ctype, owntype); 4015 } 4016 } 4017 } 4018 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4019 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4020 } 4021 4022 public void visitBinary(JCBinary tree) { 4023 // Attribute arguments. 4024 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4025 // x && y 4026 // include x's bindings when true in y 4027 4028 // x || y 4029 // include x's bindings when false in y 4030 4031 MatchBindings lhsBindings = matchBindings; 4032 List<BindingSymbol> propagatedBindings; 4033 switch (tree.getTag()) { 4034 case AND: 4035 propagatedBindings = lhsBindings.bindingsWhenTrue; 4036 break; 4037 case OR: 4038 propagatedBindings = lhsBindings.bindingsWhenFalse; 4039 break; 4040 default: 4041 propagatedBindings = List.nil(); 4042 break; 4043 } 4044 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4045 Type right; 4046 try { 4047 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4048 } finally { 4049 rhsEnv.info.scope.leave(); 4050 } 4051 4052 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4053 4054 // Find operator. 4055 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4056 Type owntype = types.createErrorType(tree.type); 4057 if (operator != operators.noOpSymbol && 4058 !left.isErroneous() && 4059 !right.isErroneous()) { 4060 owntype = operator.type.getReturnType(); 4061 int opc = operator.opcode; 4062 // If both arguments are constants, fold them. 4063 if (left.constValue() != null && right.constValue() != null) { 4064 Type ctype = cfolder.fold2(opc, left, right); 4065 if (ctype != null) { 4066 owntype = cfolder.coerce(ctype, owntype); 4067 } 4068 } 4069 4070 // Check that argument types of a reference ==, != are 4071 // castable to each other, (JLS 15.21). Note: unboxing 4072 // comparisons will not have an acmp* opc at this point. 4073 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4074 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4075 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4076 } 4077 } 4078 4079 chk.checkDivZero(tree.rhs.pos(), operator, right); 4080 } 4081 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4082 } 4083 4084 public void visitTypeCast(final JCTypeCast tree) { 4085 Type clazztype = attribType(tree.clazz, env); 4086 chk.validate(tree.clazz, env, false); 4087 //a fresh environment is required for 292 inference to work properly --- 4088 //see Infer.instantiatePolymorphicSignatureInstance() 4089 Env<AttrContext> localEnv = env.dup(tree); 4090 //should we propagate the target type? 4091 final ResultInfo castInfo; 4092 JCExpression expr = TreeInfo.skipParens(tree.expr); 4093 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4094 if (isPoly) { 4095 //expression is a poly - we need to propagate target type info 4096 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4097 new Check.NestedCheckContext(resultInfo.checkContext) { 4098 @Override 4099 public boolean compatible(Type found, Type req, Warner warn) { 4100 return types.isCastable(found, req, warn); 4101 } 4102 }); 4103 } else { 4104 //standalone cast - target-type info is not propagated 4105 castInfo = unknownExprInfo; 4106 } 4107 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4108 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4109 if (exprtype.constValue() != null) 4110 owntype = cfolder.coerce(exprtype, owntype); 4111 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4112 if (!isPoly) 4113 chk.checkRedundantCast(localEnv, tree); 4114 } 4115 4116 public void visitTypeTest(JCInstanceOf tree) { 4117 Type exprtype = attribExpr(tree.expr, env); 4118 if (exprtype.isPrimitive()) { 4119 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4120 } else { 4121 exprtype = chk.checkNullOrRefType( 4122 tree.expr.pos(), exprtype); 4123 } 4124 Type clazztype; 4125 JCTree typeTree; 4126 if (tree.pattern.getTag() == BINDINGPATTERN || 4127 tree.pattern.getTag() == RECORDPATTERN) { 4128 attribExpr(tree.pattern, env, exprtype); 4129 clazztype = tree.pattern.type; 4130 if (types.isSubtype(exprtype, clazztype) && 4131 !exprtype.isErroneous() && !clazztype.isErroneous() && 4132 tree.pattern.getTag() != RECORDPATTERN) { 4133 if (!allowUnconditionalPatternsInstanceOf) { 4134 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4135 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4136 } 4137 } 4138 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4139 } else { 4140 clazztype = attribType(tree.pattern, env); 4141 typeTree = tree.pattern; 4142 chk.validate(typeTree, env, false); 4143 } 4144 if (clazztype.isPrimitive()) { 4145 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4146 } else { 4147 if (!clazztype.hasTag(TYPEVAR)) { 4148 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4149 } 4150 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4151 boolean valid = false; 4152 if (allowReifiableTypesInInstanceof) { 4153 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4154 } else { 4155 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4156 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4157 allowReifiableTypesInInstanceof = true; 4158 } 4159 if (!valid) { 4160 clazztype = types.createErrorType(clazztype); 4161 } 4162 } 4163 } 4164 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4165 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4166 } 4167 4168 private boolean checkCastablePattern(DiagnosticPosition pos, 4169 Type exprType, 4170 Type pattType) { 4171 Warner warner = new Warner(); 4172 // if any type is erroneous, the problem is reported elsewhere 4173 if (exprType.isErroneous() || pattType.isErroneous()) { 4174 return false; 4175 } 4176 if (!types.isCastable(exprType, pattType, warner)) { 4177 chk.basicHandler.report(pos, 4178 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4179 return false; 4180 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4181 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4182 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4183 return true; 4184 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4185 log.error(pos, 4186 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4187 return false; 4188 } else { 4189 return true; 4190 } 4191 } 4192 4193 @Override 4194 public void visitAnyPattern(JCAnyPattern tree) { 4195 result = tree.type = resultInfo.pt; 4196 } 4197 4198 public void visitBindingPattern(JCBindingPattern tree) { 4199 Type type; 4200 if (tree.var.vartype != null) { 4201 type = attribType(tree.var.vartype, env); 4202 } else { 4203 type = resultInfo.pt; 4204 } 4205 tree.type = tree.var.type = type; 4206 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4207 v.pos = tree.pos; 4208 tree.var.sym = v; 4209 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4210 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4211 } 4212 chk.validate(tree.var.vartype, env, true); 4213 if (tree.var.isImplicitlyTyped()) { 4214 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4215 : type); 4216 } 4217 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4218 if (!tree.var.isImplicitlyTyped()) { 4219 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4220 } 4221 annotate.flush(); 4222 result = tree.type; 4223 if (v.isUnnamedVariable()) { 4224 matchBindings = MatchBindingsComputer.EMPTY; 4225 } else { 4226 matchBindings = new MatchBindings(List.of(v), List.nil()); 4227 } 4228 } 4229 4230 @Override 4231 public void visitRecordPattern(JCRecordPattern tree) { 4232 Type site; 4233 4234 if (tree.deconstructor == null) { 4235 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4236 tree.record = syms.errSymbol; 4237 site = tree.type = types.createErrorType(tree.record.type); 4238 } else { 4239 Type type = attribType(tree.deconstructor, env); 4240 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4241 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4242 if (inferred == null) { 4243 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4244 } else { 4245 type = inferred; 4246 } 4247 } 4248 tree.type = tree.deconstructor.type = type; 4249 site = types.capture(tree.type); 4250 } 4251 4252 List<Type> expectedRecordTypes; 4253 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4254 ClassSymbol record = (ClassSymbol) site.tsym; 4255 expectedRecordTypes = record.getRecordComponents() 4256 .stream() 4257 .map(rc -> types.memberType(site, rc)) 4258 .map(t -> types.upward(t, types.captures(t)).baseType()) 4259 .collect(List.collector()); 4260 tree.record = record; 4261 } else { 4262 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4263 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4264 .limit(tree.nested.size()) 4265 .collect(List.collector()); 4266 tree.record = syms.errSymbol; 4267 } 4268 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4269 List<Type> recordTypes = expectedRecordTypes; 4270 List<JCPattern> nestedPatterns = tree.nested; 4271 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4272 try { 4273 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4274 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4275 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4276 outBindings.addAll(matchBindings.bindingsWhenTrue); 4277 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4278 nestedPatterns = nestedPatterns.tail; 4279 recordTypes = recordTypes.tail; 4280 } 4281 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4282 while (nestedPatterns.nonEmpty()) { 4283 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4284 nestedPatterns = nestedPatterns.tail; 4285 } 4286 List<Type> nestedTypes = 4287 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4288 log.error(tree.pos(), 4289 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4290 nestedTypes)); 4291 } 4292 } finally { 4293 localEnv.info.scope.leave(); 4294 } 4295 chk.validate(tree.deconstructor, env, true); 4296 result = tree.type; 4297 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4298 } 4299 4300 public void visitIndexed(JCArrayAccess tree) { 4301 Type owntype = types.createErrorType(tree.type); 4302 Type atype = attribExpr(tree.indexed, env); 4303 attribExpr(tree.index, env, syms.intType); 4304 if (types.isArray(atype)) 4305 owntype = types.elemtype(atype); 4306 else if (!atype.hasTag(ERROR)) 4307 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4308 if (!pkind().contains(KindSelector.VAL)) 4309 owntype = capture(owntype); 4310 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4311 } 4312 4313 public void visitIdent(JCIdent tree) { 4314 Symbol sym; 4315 4316 // Find symbol 4317 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4318 // If we are looking for a method, the prototype `pt' will be a 4319 // method type with the type of the call's arguments as parameters. 4320 env.info.pendingResolutionPhase = null; 4321 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4322 } else if (tree.sym != null && tree.sym.kind != VAR) { 4323 sym = tree.sym; 4324 } else { 4325 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4326 } 4327 tree.sym = sym; 4328 4329 // Also find the environment current for the class where 4330 // sym is defined (`symEnv'). 4331 Env<AttrContext> symEnv = env; 4332 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4333 sym.kind.matches(KindSelector.VAL_MTH) && 4334 sym.owner.kind == TYP && 4335 tree.name != names._this && tree.name != names._super) { 4336 4337 // Find environment in which identifier is defined. 4338 while (symEnv.outer != null && 4339 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4340 symEnv = symEnv.outer; 4341 } 4342 } 4343 4344 // If symbol is a variable, ... 4345 if (sym.kind == VAR) { 4346 VarSymbol v = (VarSymbol)sym; 4347 4348 // ..., evaluate its initializer, if it has one, and check for 4349 // illegal forward reference. 4350 checkInit(tree, env, v, false); 4351 4352 // If we are expecting a variable (as opposed to a value), check 4353 // that the variable is assignable in the current environment. 4354 if (KindSelector.ASG.subset(pkind())) 4355 checkAssignable(tree.pos(), v, null, env); 4356 } 4357 4358 Env<AttrContext> env1 = env; 4359 if (sym.kind != ERR && sym.kind != TYP && 4360 sym.owner != null && sym.owner != env1.enclClass.sym) { 4361 // If the found symbol is inaccessible, then it is 4362 // accessed through an enclosing instance. Locate this 4363 // enclosing instance: 4364 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4365 env1 = env1.outer; 4366 } 4367 4368 if (env.info.isSerializable) { 4369 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4370 } 4371 4372 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4373 } 4374 4375 public void visitSelect(JCFieldAccess tree) { 4376 // Determine the expected kind of the qualifier expression. 4377 KindSelector skind = KindSelector.NIL; 4378 if (tree.name == names._this || tree.name == names._super || 4379 tree.name == names._class) 4380 { 4381 skind = KindSelector.TYP; 4382 } else { 4383 if (pkind().contains(KindSelector.PCK)) 4384 skind = KindSelector.of(skind, KindSelector.PCK); 4385 if (pkind().contains(KindSelector.TYP)) 4386 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4387 if (pkind().contains(KindSelector.VAL_MTH)) 4388 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4389 } 4390 4391 // Attribute the qualifier expression, and determine its symbol (if any). 4392 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4393 if (!pkind().contains(KindSelector.TYP_PCK)) 4394 site = capture(site); // Capture field access 4395 4396 // don't allow T.class T[].class, etc 4397 if (skind == KindSelector.TYP) { 4398 Type elt = site; 4399 while (elt.hasTag(ARRAY)) 4400 elt = ((ArrayType)elt).elemtype; 4401 if (elt.hasTag(TYPEVAR)) { 4402 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4403 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4404 tree.sym = tree.type.tsym; 4405 return ; 4406 } 4407 } 4408 4409 // If qualifier symbol is a type or `super', assert `selectSuper' 4410 // for the selection. This is relevant for determining whether 4411 // protected symbols are accessible. 4412 Symbol sitesym = TreeInfo.symbol(tree.selected); 4413 boolean selectSuperPrev = env.info.selectSuper; 4414 env.info.selectSuper = 4415 sitesym != null && 4416 sitesym.name == names._super; 4417 4418 // Determine the symbol represented by the selection. 4419 env.info.pendingResolutionPhase = null; 4420 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4421 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4422 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4423 sym = syms.errSymbol; 4424 } 4425 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4426 site = capture(site); 4427 sym = selectSym(tree, sitesym, site, env, resultInfo); 4428 } 4429 boolean varArgs = env.info.lastResolveVarargs(); 4430 tree.sym = sym; 4431 4432 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4433 site = types.skipTypeVars(site, true); 4434 } 4435 4436 // If that symbol is a variable, ... 4437 if (sym.kind == VAR) { 4438 VarSymbol v = (VarSymbol)sym; 4439 4440 // ..., evaluate its initializer, if it has one, and check for 4441 // illegal forward reference. 4442 checkInit(tree, env, v, true); 4443 4444 // If we are expecting a variable (as opposed to a value), check 4445 // that the variable is assignable in the current environment. 4446 if (KindSelector.ASG.subset(pkind())) 4447 checkAssignable(tree.pos(), v, tree.selected, env); 4448 } 4449 4450 if (sitesym != null && 4451 sitesym.kind == VAR && 4452 ((VarSymbol)sitesym).isResourceVariable() && 4453 sym.kind == MTH && 4454 sym.name.equals(names.close) && 4455 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4456 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4457 } 4458 4459 // Disallow selecting a type from an expression 4460 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4461 tree.type = check(tree.selected, pt(), 4462 sitesym == null ? 4463 KindSelector.VAL : sitesym.kind.toSelector(), 4464 new ResultInfo(KindSelector.TYP_PCK, pt())); 4465 } 4466 4467 if (isType(sitesym)) { 4468 if (sym.name != names._this && sym.name != names._super) { 4469 // Check if type-qualified fields or methods are static (JLS) 4470 if ((sym.flags() & STATIC) == 0 && 4471 sym.name != names._super && 4472 (sym.kind == VAR || sym.kind == MTH)) { 4473 rs.accessBase(rs.new StaticError(sym), 4474 tree.pos(), site, sym.name, true); 4475 } 4476 } 4477 } else if (sym.kind != ERR && 4478 (sym.flags() & STATIC) != 0 && 4479 sym.name != names._class) { 4480 // If the qualified item is not a type and the selected item is static, report 4481 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4482 if (!sym.owner.isAnonymous()) { 4483 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4484 } else { 4485 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4486 } 4487 } 4488 4489 // If we are selecting an instance member via a `super', ... 4490 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4491 4492 // Check that super-qualified symbols are not abstract (JLS) 4493 rs.checkNonAbstract(tree.pos(), sym); 4494 4495 if (site.isRaw()) { 4496 // Determine argument types for site. 4497 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4498 if (site1 != null) site = site1; 4499 } 4500 } 4501 4502 if (env.info.isSerializable) { 4503 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4504 } 4505 4506 env.info.selectSuper = selectSuperPrev; 4507 result = checkId(tree, site, sym, env, resultInfo); 4508 } 4509 //where 4510 /** Determine symbol referenced by a Select expression, 4511 * 4512 * @param tree The select tree. 4513 * @param site The type of the selected expression, 4514 * @param env The current environment. 4515 * @param resultInfo The current result. 4516 */ 4517 private Symbol selectSym(JCFieldAccess tree, 4518 Symbol location, 4519 Type site, 4520 Env<AttrContext> env, 4521 ResultInfo resultInfo) { 4522 DiagnosticPosition pos = tree.pos(); 4523 Name name = tree.name; 4524 switch (site.getTag()) { 4525 case PACKAGE: 4526 return rs.accessBase( 4527 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4528 pos, location, site, name, true); 4529 case ARRAY: 4530 case CLASS: 4531 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4532 return rs.resolveQualifiedMethod( 4533 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4534 } else if (name == names._this || name == names._super) { 4535 return rs.resolveSelf(pos, env, site.tsym, name); 4536 } else if (name == names._class) { 4537 // In this case, we have already made sure in 4538 // visitSelect that qualifier expression is a type. 4539 return syms.getClassField(site, types); 4540 } else { 4541 // We are seeing a plain identifier as selector. 4542 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4543 sym = rs.accessBase(sym, pos, location, site, name, true); 4544 return sym; 4545 } 4546 case WILDCARD: 4547 throw new AssertionError(tree); 4548 case TYPEVAR: 4549 // Normally, site.getUpperBound() shouldn't be null. 4550 // It should only happen during memberEnter/attribBase 4551 // when determining the supertype which *must* be 4552 // done before attributing the type variables. In 4553 // other words, we are seeing this illegal program: 4554 // class B<T> extends A<T.foo> {} 4555 Symbol sym = (site.getUpperBound() != null) 4556 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4557 : null; 4558 if (sym == null) { 4559 log.error(pos, Errors.TypeVarCantBeDeref); 4560 return syms.errSymbol; 4561 } else { 4562 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4563 rs.new AccessError(env, site, sym) : 4564 sym; 4565 rs.accessBase(sym2, pos, location, site, name, true); 4566 return sym; 4567 } 4568 case ERROR: 4569 // preserve identifier names through errors 4570 return types.createErrorType(name, site.tsym, site).tsym; 4571 default: 4572 // The qualifier expression is of a primitive type -- only 4573 // .class is allowed for these. 4574 if (name == names._class) { 4575 // In this case, we have already made sure in Select that 4576 // qualifier expression is a type. 4577 return syms.getClassField(site, types); 4578 } else { 4579 log.error(pos, Errors.CantDeref(site)); 4580 return syms.errSymbol; 4581 } 4582 } 4583 } 4584 4585 /** Determine type of identifier or select expression and check that 4586 * (1) the referenced symbol is not deprecated 4587 * (2) the symbol's type is safe (@see checkSafe) 4588 * (3) if symbol is a variable, check that its type and kind are 4589 * compatible with the prototype and protokind. 4590 * (4) if symbol is an instance field of a raw type, 4591 * which is being assigned to, issue an unchecked warning if its 4592 * type changes under erasure. 4593 * (5) if symbol is an instance method of a raw type, issue an 4594 * unchecked warning if its argument types change under erasure. 4595 * If checks succeed: 4596 * If symbol is a constant, return its constant type 4597 * else if symbol is a method, return its result type 4598 * otherwise return its type. 4599 * Otherwise return errType. 4600 * 4601 * @param tree The syntax tree representing the identifier 4602 * @param site If this is a select, the type of the selected 4603 * expression, otherwise the type of the current class. 4604 * @param sym The symbol representing the identifier. 4605 * @param env The current environment. 4606 * @param resultInfo The expected result 4607 */ 4608 Type checkId(JCTree tree, 4609 Type site, 4610 Symbol sym, 4611 Env<AttrContext> env, 4612 ResultInfo resultInfo) { 4613 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4614 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4615 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4616 } 4617 4618 Type checkMethodIdInternal(JCTree tree, 4619 Type site, 4620 Symbol sym, 4621 Env<AttrContext> env, 4622 ResultInfo resultInfo) { 4623 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4624 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4625 } else { 4626 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4627 } 4628 } 4629 4630 Type checkIdInternal(JCTree tree, 4631 Type site, 4632 Symbol sym, 4633 Type pt, 4634 Env<AttrContext> env, 4635 ResultInfo resultInfo) { 4636 Type owntype; // The computed type of this identifier occurrence. 4637 switch (sym.kind) { 4638 case TYP: 4639 // For types, the computed type equals the symbol's type, 4640 // except for two situations: 4641 owntype = sym.type; 4642 if (owntype.hasTag(CLASS)) { 4643 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4644 Type ownOuter = owntype.getEnclosingType(); 4645 4646 // (a) If the symbol's type is parameterized, erase it 4647 // because no type parameters were given. 4648 // We recover generic outer type later in visitTypeApply. 4649 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4650 owntype = types.erasure(owntype); 4651 } 4652 4653 // (b) If the symbol's type is an inner class, then 4654 // we have to interpret its outer type as a superclass 4655 // of the site type. Example: 4656 // 4657 // class Tree<A> { class Visitor { ... } } 4658 // class PointTree extends Tree<Point> { ... } 4659 // ...PointTree.Visitor... 4660 // 4661 // Then the type of the last expression above is 4662 // Tree<Point>.Visitor. 4663 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4664 Type normOuter = site; 4665 if (normOuter.hasTag(CLASS)) { 4666 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4667 } 4668 if (normOuter == null) // perhaps from an import 4669 normOuter = types.erasure(ownOuter); 4670 if (normOuter != ownOuter) 4671 owntype = new ClassType( 4672 normOuter, List.nil(), owntype.tsym, 4673 owntype.getMetadata()); 4674 } 4675 } 4676 break; 4677 case VAR: 4678 VarSymbol v = (VarSymbol)sym; 4679 4680 if (env.info.enclVar != null 4681 && v.type.hasTag(NONE)) { 4682 //self reference to implicitly typed variable declaration 4683 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4684 return tree.type = v.type = types.createErrorType(v.type); 4685 } 4686 4687 // Test (4): if symbol is an instance field of a raw type, 4688 // which is being assigned to, issue an unchecked warning if 4689 // its type changes under erasure. 4690 if (KindSelector.ASG.subset(pkind()) && 4691 v.owner.kind == TYP && 4692 (v.flags() & STATIC) == 0 && 4693 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4694 Type s = types.asOuterSuper(site, v.owner); 4695 if (s != null && 4696 s.isRaw() && 4697 !types.isSameType(v.type, v.erasure(types))) { 4698 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4699 } 4700 } 4701 // The computed type of a variable is the type of the 4702 // variable symbol, taken as a member of the site type. 4703 owntype = (sym.owner.kind == TYP && 4704 sym.name != names._this && sym.name != names._super) 4705 ? types.memberType(site, sym) 4706 : sym.type; 4707 4708 // If the variable is a constant, record constant value in 4709 // computed type. 4710 if (v.getConstValue() != null && isStaticReference(tree)) 4711 owntype = owntype.constType(v.getConstValue()); 4712 4713 if (resultInfo.pkind == KindSelector.VAL) { 4714 owntype = capture(owntype); // capture "names as expressions" 4715 } 4716 break; 4717 case MTH: { 4718 owntype = checkMethod(site, sym, 4719 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4720 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4721 resultInfo.pt.getTypeArguments()); 4722 chk.checkRestricted(tree.pos(), sym); 4723 break; 4724 } 4725 case PCK: case ERR: 4726 owntype = sym.type; 4727 break; 4728 default: 4729 throw new AssertionError("unexpected kind: " + sym.kind + 4730 " in tree " + tree); 4731 } 4732 4733 // Emit a `deprecation' warning if symbol is deprecated. 4734 // (for constructors (but not for constructor references), the error 4735 // was given when the constructor was resolved) 4736 4737 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4738 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4739 chk.checkSunAPI(tree.pos(), sym); 4740 chk.checkProfile(tree.pos(), sym); 4741 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 4742 } 4743 4744 if (pt.isErroneous()) { 4745 owntype = types.createErrorType(owntype); 4746 } 4747 4748 // If symbol is a variable, check that its type and 4749 // kind are compatible with the prototype and protokind. 4750 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4751 } 4752 4753 /** Check that variable is initialized and evaluate the variable's 4754 * initializer, if not yet done. Also check that variable is not 4755 * referenced before it is defined. 4756 * @param tree The tree making up the variable reference. 4757 * @param env The current environment. 4758 * @param v The variable's symbol. 4759 */ 4760 private void checkInit(JCTree tree, 4761 Env<AttrContext> env, 4762 VarSymbol v, 4763 boolean onlyWarning) { 4764 // A forward reference is diagnosed if the declaration position 4765 // of the variable is greater than the current tree position 4766 // and the tree and variable definition occur in the same class 4767 // definition. Note that writes don't count as references. 4768 // This check applies only to class and instance 4769 // variables. Local variables follow different scope rules, 4770 // and are subject to definite assignment checking. 4771 Env<AttrContext> initEnv = enclosingInitEnv(env); 4772 if (initEnv != null && 4773 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4774 v.owner.kind == TYP && 4775 v.owner == env.info.scope.owner.enclClass() && 4776 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4777 (!env.tree.hasTag(ASSIGN) || 4778 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4779 if (!onlyWarning || isStaticEnumField(v)) { 4780 Error errkey = (initEnv.info.enclVar == v) ? 4781 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4782 log.error(tree.pos(), errkey); 4783 } else if (useBeforeDeclarationWarning) { 4784 Warning warnkey = (initEnv.info.enclVar == v) ? 4785 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4786 log.warning(tree.pos(), warnkey); 4787 } 4788 } 4789 4790 v.getConstValue(); // ensure initializer is evaluated 4791 4792 checkEnumInitializer(tree, env, v); 4793 } 4794 4795 /** 4796 * Returns the enclosing init environment associated with this env (if any). An init env 4797 * can be either a field declaration env or a static/instance initializer env. 4798 */ 4799 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4800 while (true) { 4801 switch (env.tree.getTag()) { 4802 case VARDEF: 4803 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4804 if (vdecl.sym.owner.kind == TYP) { 4805 //field 4806 return env; 4807 } 4808 break; 4809 case BLOCK: 4810 if (env.next.tree.hasTag(CLASSDEF)) { 4811 //instance/static initializer 4812 return env; 4813 } 4814 break; 4815 case METHODDEF: 4816 case CLASSDEF: 4817 case TOPLEVEL: 4818 return null; 4819 } 4820 Assert.checkNonNull(env.next); 4821 env = env.next; 4822 } 4823 } 4824 4825 /** 4826 * Check for illegal references to static members of enum. In 4827 * an enum type, constructors and initializers may not 4828 * reference its static members unless they are constant. 4829 * 4830 * @param tree The tree making up the variable reference. 4831 * @param env The current environment. 4832 * @param v The variable's symbol. 4833 * @jls 8.9 Enum Types 4834 */ 4835 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4836 // JLS: 4837 // 4838 // "It is a compile-time error to reference a static field 4839 // of an enum type that is not a compile-time constant 4840 // (15.28) from constructors, instance initializer blocks, 4841 // or instance variable initializer expressions of that 4842 // type. It is a compile-time error for the constructors, 4843 // instance initializer blocks, or instance variable 4844 // initializer expressions of an enum constant e to refer 4845 // to itself or to an enum constant of the same type that 4846 // is declared to the right of e." 4847 if (isStaticEnumField(v)) { 4848 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4849 4850 if (enclClass == null || enclClass.owner == null) 4851 return; 4852 4853 // See if the enclosing class is the enum (or a 4854 // subclass thereof) declaring v. If not, this 4855 // reference is OK. 4856 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4857 return; 4858 4859 // If the reference isn't from an initializer, then 4860 // the reference is OK. 4861 if (!Resolve.isInitializer(env)) 4862 return; 4863 4864 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4865 } 4866 } 4867 4868 /** Is the given symbol a static, non-constant field of an Enum? 4869 * Note: enum literals should not be regarded as such 4870 */ 4871 private boolean isStaticEnumField(VarSymbol v) { 4872 return Flags.isEnum(v.owner) && 4873 Flags.isStatic(v) && 4874 !Flags.isConstant(v) && 4875 v.name != names._class; 4876 } 4877 4878 /** 4879 * Check that method arguments conform to its instantiation. 4880 **/ 4881 public Type checkMethod(Type site, 4882 final Symbol sym, 4883 ResultInfo resultInfo, 4884 Env<AttrContext> env, 4885 final List<JCExpression> argtrees, 4886 List<Type> argtypes, 4887 List<Type> typeargtypes) { 4888 // Test (5): if symbol is an instance method of a raw type, issue 4889 // an unchecked warning if its argument types change under erasure. 4890 if ((sym.flags() & STATIC) == 0 && 4891 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4892 Type s = types.asOuterSuper(site, sym.owner); 4893 if (s != null && s.isRaw() && 4894 !types.isSameTypes(sym.type.getParameterTypes(), 4895 sym.erasure(types).getParameterTypes())) { 4896 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 4897 } 4898 } 4899 4900 if (env.info.defaultSuperCallSite != null) { 4901 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4902 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4903 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4904 List<MethodSymbol> icand_sup = 4905 types.interfaceCandidates(sup, (MethodSymbol)sym); 4906 if (icand_sup.nonEmpty() && 4907 icand_sup.head != sym && 4908 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4909 log.error(env.tree.pos(), 4910 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4911 break; 4912 } 4913 } 4914 env.info.defaultSuperCallSite = null; 4915 } 4916 4917 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 4918 JCMethodInvocation app = (JCMethodInvocation)env.tree; 4919 if (app.meth.hasTag(SELECT) && 4920 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 4921 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 4922 } 4923 } 4924 4925 // Compute the identifier's instantiated type. 4926 // For methods, we need to compute the instance type by 4927 // Resolve.instantiate from the symbol's type as well as 4928 // any type arguments and value arguments. 4929 Warner noteWarner = new Warner(); 4930 try { 4931 Type owntype = rs.checkMethod( 4932 env, 4933 site, 4934 sym, 4935 resultInfo, 4936 argtypes, 4937 typeargtypes, 4938 noteWarner); 4939 4940 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 4941 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 4942 4943 argtypes = argtypes.map(checkDeferredMap); 4944 4945 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 4946 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 4947 sym.name, 4948 rs.methodArguments(sym.type.getParameterTypes()), 4949 rs.methodArguments(argtypes.map(checkDeferredMap)), 4950 kindName(sym.location()), 4951 sym.location())); 4952 if (resultInfo.pt != Infer.anyPoly || 4953 !owntype.hasTag(METHOD) || 4954 !owntype.isPartial()) { 4955 //if this is not a partially inferred method type, erase return type. Otherwise, 4956 //erasure is carried out in PartiallyInferredMethodType.check(). 4957 owntype = new MethodType(owntype.getParameterTypes(), 4958 types.erasure(owntype.getReturnType()), 4959 types.erasure(owntype.getThrownTypes()), 4960 syms.methodClass); 4961 } 4962 } 4963 4964 PolyKind pkind = (sym.type.hasTag(FORALL) && 4965 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 4966 PolyKind.POLY : PolyKind.STANDALONE; 4967 TreeInfo.setPolyKind(env.tree, pkind); 4968 4969 return (resultInfo.pt == Infer.anyPoly) ? 4970 owntype : 4971 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 4972 resultInfo.checkContext.inferenceContext()); 4973 } catch (Infer.InferenceException ex) { 4974 //invalid target type - propagate exception outwards or report error 4975 //depending on the current check context 4976 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 4977 return types.createErrorType(site); 4978 } catch (Resolve.InapplicableMethodException ex) { 4979 final JCDiagnostic diag = ex.getDiagnostic(); 4980 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 4981 @Override 4982 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4983 return new Pair<>(sym, diag); 4984 } 4985 }; 4986 List<Type> argtypes2 = argtypes.map( 4987 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 4988 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 4989 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 4990 log.report(errDiag); 4991 return types.createErrorType(site); 4992 } 4993 } 4994 4995 public void visitLiteral(JCLiteral tree) { 4996 result = check(tree, litType(tree.typetag).constType(tree.value), 4997 KindSelector.VAL, resultInfo); 4998 } 4999 //where 5000 /** Return the type of a literal with given type tag. 5001 */ 5002 Type litType(TypeTag tag) { 5003 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5004 } 5005 5006 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5007 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5008 } 5009 5010 public void visitTypeArray(JCArrayTypeTree tree) { 5011 Type etype = attribType(tree.elemtype, env); 5012 Type type = new ArrayType(etype, syms.arrayClass); 5013 result = check(tree, type, KindSelector.TYP, resultInfo); 5014 } 5015 5016 /** Visitor method for parameterized types. 5017 * Bound checking is left until later, since types are attributed 5018 * before supertype structure is completely known 5019 */ 5020 public void visitTypeApply(JCTypeApply tree) { 5021 Type owntype = types.createErrorType(tree.type); 5022 5023 // Attribute functor part of application and make sure it's a class. 5024 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5025 5026 // Attribute type parameters 5027 List<Type> actuals = attribTypes(tree.arguments, env); 5028 5029 if (clazztype.hasTag(CLASS)) { 5030 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5031 if (actuals.isEmpty()) //diamond 5032 actuals = formals; 5033 5034 if (actuals.length() == formals.length()) { 5035 List<Type> a = actuals; 5036 List<Type> f = formals; 5037 while (a.nonEmpty()) { 5038 a.head = a.head.withTypeVar(f.head); 5039 a = a.tail; 5040 f = f.tail; 5041 } 5042 // Compute the proper generic outer 5043 Type clazzOuter = clazztype.getEnclosingType(); 5044 if (clazzOuter.hasTag(CLASS)) { 5045 Type site; 5046 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5047 if (clazz.hasTag(IDENT)) { 5048 site = env.enclClass.sym.type; 5049 } else if (clazz.hasTag(SELECT)) { 5050 site = ((JCFieldAccess) clazz).selected.type; 5051 } else throw new AssertionError(""+tree); 5052 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5053 if (site.hasTag(CLASS)) 5054 site = types.asOuterSuper(site, clazzOuter.tsym); 5055 if (site == null) 5056 site = types.erasure(clazzOuter); 5057 clazzOuter = site; 5058 } 5059 } 5060 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5061 clazztype.getMetadata()); 5062 } else { 5063 if (formals.length() != 0) { 5064 log.error(tree.pos(), 5065 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5066 } else { 5067 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5068 } 5069 owntype = types.createErrorType(tree.type); 5070 } 5071 } else if (clazztype.hasTag(ERROR)) { 5072 ErrorType parameterizedErroneous = 5073 new ErrorType(clazztype.getOriginalType(), 5074 clazztype.tsym, 5075 clazztype.getMetadata()); 5076 5077 parameterizedErroneous.typarams_field = actuals; 5078 owntype = parameterizedErroneous; 5079 } 5080 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5081 } 5082 5083 public void visitTypeUnion(JCTypeUnion tree) { 5084 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5085 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5086 for (JCExpression typeTree : tree.alternatives) { 5087 Type ctype = attribType(typeTree, env); 5088 ctype = chk.checkType(typeTree.pos(), 5089 chk.checkClassType(typeTree.pos(), ctype), 5090 syms.throwableType); 5091 if (!ctype.isErroneous()) { 5092 //check that alternatives of a union type are pairwise 5093 //unrelated w.r.t. subtyping 5094 if (chk.intersects(ctype, multicatchTypes.toList())) { 5095 for (Type t : multicatchTypes) { 5096 boolean sub = types.isSubtype(ctype, t); 5097 boolean sup = types.isSubtype(t, ctype); 5098 if (sub || sup) { 5099 //assume 'a' <: 'b' 5100 Type a = sub ? ctype : t; 5101 Type b = sub ? t : ctype; 5102 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5103 } 5104 } 5105 } 5106 multicatchTypes.append(ctype); 5107 if (all_multicatchTypes != null) 5108 all_multicatchTypes.append(ctype); 5109 } else { 5110 if (all_multicatchTypes == null) { 5111 all_multicatchTypes = new ListBuffer<>(); 5112 all_multicatchTypes.appendList(multicatchTypes); 5113 } 5114 all_multicatchTypes.append(ctype); 5115 } 5116 } 5117 Type t = check(tree, types.lub(multicatchTypes.toList()), 5118 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5119 if (t.hasTag(CLASS)) { 5120 List<Type> alternatives = 5121 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5122 t = new UnionClassType((ClassType) t, alternatives); 5123 } 5124 tree.type = result = t; 5125 } 5126 5127 public void visitTypeIntersection(JCTypeIntersection tree) { 5128 attribTypes(tree.bounds, env); 5129 tree.type = result = checkIntersection(tree, tree.bounds); 5130 } 5131 5132 public void visitTypeParameter(JCTypeParameter tree) { 5133 TypeVar typeVar = (TypeVar) tree.type; 5134 5135 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5136 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5137 } 5138 5139 if (!typeVar.getUpperBound().isErroneous()) { 5140 //fixup type-parameter bound computed in 'attribTypeVariables' 5141 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5142 } 5143 } 5144 5145 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5146 Set<Symbol> boundSet = new HashSet<>(); 5147 if (bounds.nonEmpty()) { 5148 // accept class or interface or typevar as first bound. 5149 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5150 boundSet.add(types.erasure(bounds.head.type).tsym); 5151 if (bounds.head.type.isErroneous()) { 5152 return bounds.head.type; 5153 } 5154 else if (bounds.head.type.hasTag(TYPEVAR)) { 5155 // if first bound was a typevar, do not accept further bounds. 5156 if (bounds.tail.nonEmpty()) { 5157 log.error(bounds.tail.head.pos(), 5158 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5159 return bounds.head.type; 5160 } 5161 } else { 5162 // if first bound was a class or interface, accept only interfaces 5163 // as further bounds. 5164 for (JCExpression bound : bounds.tail) { 5165 bound.type = checkBase(bound.type, bound, env, false, true, false); 5166 if (bound.type.isErroneous()) { 5167 bounds = List.of(bound); 5168 } 5169 else if (bound.type.hasTag(CLASS)) { 5170 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5171 } 5172 } 5173 } 5174 } 5175 5176 if (bounds.length() == 0) { 5177 return syms.objectType; 5178 } else if (bounds.length() == 1) { 5179 return bounds.head.type; 5180 } else { 5181 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5182 // ... the variable's bound is a class type flagged COMPOUND 5183 // (see comment for TypeVar.bound). 5184 // In this case, generate a class tree that represents the 5185 // bound class, ... 5186 JCExpression extending; 5187 List<JCExpression> implementing; 5188 if (!bounds.head.type.isInterface()) { 5189 extending = bounds.head; 5190 implementing = bounds.tail; 5191 } else { 5192 extending = null; 5193 implementing = bounds; 5194 } 5195 JCClassDecl cd = make.at(tree).ClassDef( 5196 make.Modifiers(PUBLIC | ABSTRACT), 5197 names.empty, List.nil(), 5198 extending, implementing, List.nil()); 5199 5200 ClassSymbol c = (ClassSymbol)owntype.tsym; 5201 Assert.check((c.flags() & COMPOUND) != 0); 5202 cd.sym = c; 5203 c.sourcefile = env.toplevel.sourcefile; 5204 5205 // ... and attribute the bound class 5206 c.flags_field |= UNATTRIBUTED; 5207 Env<AttrContext> cenv = enter.classEnv(cd, env); 5208 typeEnvs.put(c, cenv); 5209 attribClass(c); 5210 return owntype; 5211 } 5212 } 5213 5214 public void visitWildcard(JCWildcard tree) { 5215 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5216 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5217 ? syms.objectType 5218 : attribType(tree.inner, env); 5219 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5220 tree.kind.kind, 5221 syms.boundClass), 5222 KindSelector.TYP, resultInfo); 5223 } 5224 5225 public void visitAnnotation(JCAnnotation tree) { 5226 Assert.error("should be handled in annotate"); 5227 } 5228 5229 @Override 5230 public void visitModifiers(JCModifiers tree) { 5231 //error recovery only: 5232 Assert.check(resultInfo.pkind == KindSelector.ERR); 5233 5234 attribAnnotationTypes(tree.annotations, env); 5235 } 5236 5237 public void visitAnnotatedType(JCAnnotatedType tree) { 5238 attribAnnotationTypes(tree.annotations, env); 5239 Type underlyingType = attribType(tree.underlyingType, env); 5240 Type annotatedType = underlyingType.preannotatedType(); 5241 5242 if (!env.info.isNewClass) 5243 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5244 result = tree.type = annotatedType; 5245 } 5246 5247 public void visitErroneous(JCErroneous tree) { 5248 if (tree.errs != null) { 5249 WriteableScope newScope = env.info.scope; 5250 5251 if (env.tree instanceof JCClassDecl) { 5252 Symbol fakeOwner = 5253 new MethodSymbol(BLOCK, names.empty, null, 5254 env.info.scope.owner); 5255 newScope = newScope.dupUnshared(fakeOwner); 5256 } 5257 5258 Env<AttrContext> errEnv = 5259 env.dup(env.tree, 5260 env.info.dup(newScope)); 5261 errEnv.info.returnResult = unknownExprInfo; 5262 for (JCTree err : tree.errs) 5263 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5264 } 5265 result = tree.type = syms.errType; 5266 } 5267 5268 /** Default visitor method for all other trees. 5269 */ 5270 public void visitTree(JCTree tree) { 5271 throw new AssertionError(); 5272 } 5273 5274 /** 5275 * Attribute an env for either a top level tree or class or module declaration. 5276 */ 5277 public void attrib(Env<AttrContext> env) { 5278 switch (env.tree.getTag()) { 5279 case MODULEDEF: 5280 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5281 break; 5282 case PACKAGEDEF: 5283 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5284 break; 5285 default: 5286 attribClass(env.tree.pos(), env.enclClass.sym); 5287 } 5288 5289 annotate.flush(); 5290 } 5291 5292 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5293 try { 5294 annotate.flush(); 5295 attribPackage(p); 5296 } catch (CompletionFailure ex) { 5297 chk.completionError(pos, ex); 5298 } 5299 } 5300 5301 void attribPackage(PackageSymbol p) { 5302 attribWithLint(p, 5303 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5304 } 5305 5306 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5307 try { 5308 annotate.flush(); 5309 attribModule(m); 5310 } catch (CompletionFailure ex) { 5311 chk.completionError(pos, ex); 5312 } 5313 } 5314 5315 void attribModule(ModuleSymbol m) { 5316 attribWithLint(m, env -> attribStat(env.tree, env)); 5317 } 5318 5319 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5320 Env<AttrContext> env = typeEnvs.get(sym); 5321 5322 Env<AttrContext> lintEnv = env; 5323 while (lintEnv.info.lint == null) 5324 lintEnv = lintEnv.next; 5325 5326 Lint lint = lintEnv.info.lint.augment(sym); 5327 5328 Lint prevLint = chk.setLint(lint); 5329 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5330 5331 try { 5332 deferredLintHandler.flush(env.tree, lint); 5333 attrib.accept(env); 5334 } finally { 5335 log.useSource(prev); 5336 chk.setLint(prevLint); 5337 } 5338 } 5339 5340 /** Main method: attribute class definition associated with given class symbol. 5341 * reporting completion failures at the given position. 5342 * @param pos The source position at which completion errors are to be 5343 * reported. 5344 * @param c The class symbol whose definition will be attributed. 5345 */ 5346 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5347 try { 5348 annotate.flush(); 5349 attribClass(c); 5350 } catch (CompletionFailure ex) { 5351 chk.completionError(pos, ex); 5352 } 5353 } 5354 5355 /** Attribute class definition associated with given class symbol. 5356 * @param c The class symbol whose definition will be attributed. 5357 */ 5358 void attribClass(ClassSymbol c) throws CompletionFailure { 5359 if (c.type.hasTag(ERROR)) return; 5360 5361 // Check for cycles in the inheritance graph, which can arise from 5362 // ill-formed class files. 5363 chk.checkNonCyclic(null, c.type); 5364 5365 Type st = types.supertype(c.type); 5366 if ((c.flags_field & Flags.COMPOUND) == 0 && 5367 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5368 // First, attribute superclass. 5369 if (st.hasTag(CLASS)) 5370 attribClass((ClassSymbol)st.tsym); 5371 5372 // Next attribute owner, if it is a class. 5373 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5374 attribClass((ClassSymbol)c.owner); 5375 5376 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5377 } 5378 5379 // The previous operations might have attributed the current class 5380 // if there was a cycle. So we test first whether the class is still 5381 // UNATTRIBUTED. 5382 if ((c.flags_field & UNATTRIBUTED) != 0) { 5383 c.flags_field &= ~UNATTRIBUTED; 5384 5385 // Get environment current at the point of class definition. 5386 Env<AttrContext> env = typeEnvs.get(c); 5387 5388 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5389 // because the annotations were not available at the time the env was created. Therefore, 5390 // we look up the environment chain for the first enclosing environment for which the 5391 // lint value is set. Typically, this is the parent env, but might be further if there 5392 // are any envs created as a result of TypeParameter nodes. 5393 Env<AttrContext> lintEnv = env; 5394 while (lintEnv.info.lint == null) 5395 lintEnv = lintEnv.next; 5396 5397 // Having found the enclosing lint value, we can initialize the lint value for this class 5398 env.info.lint = lintEnv.info.lint.augment(c); 5399 5400 Lint prevLint = chk.setLint(env.info.lint); 5401 JavaFileObject prev = log.useSource(c.sourcefile); 5402 ResultInfo prevReturnRes = env.info.returnResult; 5403 5404 try { 5405 if (c.isSealed() && 5406 !c.isEnum() && 5407 !c.isPermittedExplicit && 5408 c.getPermittedSubclasses().isEmpty()) { 5409 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5410 } 5411 5412 if (c.isSealed()) { 5413 Set<Symbol> permittedTypes = new HashSet<>(); 5414 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5415 for (Type subType : c.getPermittedSubclasses()) { 5416 if (subType.isErroneous()) { 5417 // the type already caused errors, don't produce more potentially misleading errors 5418 continue; 5419 } 5420 boolean isTypeVar = false; 5421 if (subType.getTag() == TYPEVAR) { 5422 isTypeVar = true; //error recovery 5423 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5424 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5425 } 5426 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5427 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5428 } 5429 if (permittedTypes.contains(subType.tsym)) { 5430 DiagnosticPosition pos = 5431 env.enclClass.permitting.stream() 5432 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5433 .limit(2).collect(List.collector()).get(1); 5434 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5435 } else { 5436 permittedTypes.add(subType.tsym); 5437 } 5438 if (sealedInUnnamed) { 5439 if (subType.tsym.packge() != c.packge()) { 5440 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5441 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5442 ); 5443 } 5444 } else if (subType.tsym.packge().modle != c.packge().modle) { 5445 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5446 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5447 ); 5448 } 5449 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5450 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5451 Errors.InvalidPermitsClause( 5452 subType.tsym == c.type.tsym ? 5453 Fragments.MustNotBeSameClass : 5454 Fragments.MustNotBeSupertype(subType) 5455 ) 5456 ); 5457 } else if (!isTypeVar) { 5458 boolean thisIsASuper = types.directSupertypes(subType) 5459 .stream() 5460 .anyMatch(d -> d.tsym == c); 5461 if (!thisIsASuper) { 5462 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5463 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5464 } 5465 } 5466 } 5467 } 5468 5469 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5470 .stream() 5471 .filter(s -> s.tsym.isSealed()) 5472 .map(s -> (ClassSymbol) s.tsym) 5473 .collect(List.collector()); 5474 5475 if (sealedSupers.isEmpty()) { 5476 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5477 boolean hasErrorSuper = false; 5478 5479 hasErrorSuper |= types.directSupertypes(c.type) 5480 .stream() 5481 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5482 5483 ClassType ct = (ClassType) c.type; 5484 5485 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5486 5487 if (!hasErrorSuper) { 5488 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5489 } 5490 } 5491 } else { 5492 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5493 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5494 } 5495 5496 if (!c.type.isCompound()) { 5497 for (ClassSymbol supertypeSym : sealedSupers) { 5498 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5499 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5500 } 5501 } 5502 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5503 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5504 c.isInterface() ? 5505 Errors.NonSealedOrSealedExpected : 5506 Errors.NonSealedSealedOrFinalExpected); 5507 } 5508 } 5509 } 5510 5511 deferredLintHandler.flush(env.tree, env.info.lint); 5512 env.info.returnResult = null; 5513 // java.lang.Enum may not be subclassed by a non-enum 5514 if (st.tsym == syms.enumSym && 5515 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5516 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5517 5518 // Enums may not be extended by source-level classes 5519 if (st.tsym != null && 5520 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5521 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5522 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5523 } 5524 5525 if (rs.isSerializable(c.type)) { 5526 env.info.isSerializable = true; 5527 } 5528 5529 attribClassBody(env, c); 5530 5531 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5532 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5533 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5534 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5535 5536 if (c.isImplicit()) { 5537 chk.checkHasMain(env.tree.pos(), c); 5538 } 5539 } finally { 5540 env.info.returnResult = prevReturnRes; 5541 log.useSource(prev); 5542 chk.setLint(prevLint); 5543 } 5544 5545 } 5546 } 5547 5548 public void visitImport(JCImport tree) { 5549 // nothing to do 5550 } 5551 5552 public void visitModuleDef(JCModuleDecl tree) { 5553 tree.sym.completeUsesProvides(); 5554 ModuleSymbol msym = tree.sym; 5555 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5556 Lint prevLint = chk.setLint(lint); 5557 chk.checkModuleName(tree); 5558 chk.checkDeprecatedAnnotation(tree, msym); 5559 5560 try { 5561 deferredLintHandler.flush(tree, lint); 5562 } finally { 5563 chk.setLint(prevLint); 5564 } 5565 } 5566 5567 /** Finish the attribution of a class. */ 5568 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5569 JCClassDecl tree = (JCClassDecl)env.tree; 5570 Assert.check(c == tree.sym); 5571 5572 // Validate type parameters, supertype and interfaces. 5573 attribStats(tree.typarams, env); 5574 if (!c.isAnonymous()) { 5575 //already checked if anonymous 5576 chk.validate(tree.typarams, env); 5577 chk.validate(tree.extending, env); 5578 chk.validate(tree.implementing, env); 5579 } 5580 5581 c.markAbstractIfNeeded(types); 5582 5583 // If this is a non-abstract class, check that it has no abstract 5584 // methods or unimplemented methods of an implemented interface. 5585 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5586 chk.checkAllDefined(tree.pos(), c); 5587 } 5588 5589 if ((c.flags() & ANNOTATION) != 0) { 5590 if (tree.implementing.nonEmpty()) 5591 log.error(tree.implementing.head.pos(), 5592 Errors.CantExtendIntfAnnotation); 5593 if (tree.typarams.nonEmpty()) { 5594 log.error(tree.typarams.head.pos(), 5595 Errors.IntfAnnotationCantHaveTypeParams(c)); 5596 } 5597 5598 // If this annotation type has a @Repeatable, validate 5599 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5600 // If this annotation type has a @Repeatable, validate 5601 if (repeatable != null) { 5602 // get diagnostic position for error reporting 5603 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5604 Assert.checkNonNull(cbPos); 5605 5606 chk.validateRepeatable(c, repeatable, cbPos); 5607 } 5608 } else { 5609 // Check that all extended classes and interfaces 5610 // are compatible (i.e. no two define methods with same arguments 5611 // yet different return types). (JLS 8.4.8.3) 5612 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5613 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5614 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5615 } 5616 5617 // Check that class does not import the same parameterized interface 5618 // with two different argument lists. 5619 chk.checkClassBounds(tree.pos(), c.type); 5620 5621 tree.type = c.type; 5622 5623 for (List<JCTypeParameter> l = tree.typarams; 5624 l.nonEmpty(); l = l.tail) { 5625 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5626 } 5627 5628 // Check that a generic class doesn't extend Throwable 5629 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5630 log.error(tree.extending.pos(), Errors.GenericThrowable); 5631 5632 // Check that all methods which implement some 5633 // method conform to the method they implement. 5634 chk.checkImplementations(tree); 5635 5636 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5637 checkAutoCloseable(tree.pos(), env, c.type); 5638 5639 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5640 // Attribute declaration 5641 attribStat(l.head, env); 5642 // Check that declarations in inner classes are not static (JLS 8.1.2) 5643 // Make an exception for static constants. 5644 if (!allowRecords && 5645 c.owner.kind != PCK && 5646 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5647 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5648 VarSymbol sym = null; 5649 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5650 if (sym == null || 5651 sym.kind != VAR || 5652 sym.getConstValue() == null) 5653 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5654 } 5655 } 5656 5657 // Check for proper placement of super()/this() calls. 5658 chk.checkSuperInitCalls(tree); 5659 5660 // Check for cycles among non-initial constructors. 5661 chk.checkCyclicConstructors(tree); 5662 5663 // Check for cycles among annotation elements. 5664 chk.checkNonCyclicElements(tree); 5665 5666 // Check for proper use of serialVersionUID and other 5667 // serialization-related fields and methods 5668 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5669 && rs.isSerializable(c.type) 5670 && !c.isAnonymous()) { 5671 chk.checkSerialStructure(tree, c); 5672 } 5673 // Correctly organize the positions of the type annotations 5674 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5675 5676 // Check type annotations applicability rules 5677 validateTypeAnnotations(tree, false); 5678 } 5679 // where 5680 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5681 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5682 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5683 if (types.isSameType(al.head.annotationType.type, t)) 5684 return al.head.pos(); 5685 } 5686 5687 return null; 5688 } 5689 5690 private Type capture(Type type) { 5691 return types.capture(type); 5692 } 5693 5694 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5695 if (type.isErroneous()) { 5696 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5697 } else { 5698 tree.vartype = make.at(Position.NOPOS).Type(type); 5699 } 5700 } 5701 5702 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5703 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5704 } 5705 //where 5706 private final class TypeAnnotationsValidator extends TreeScanner { 5707 5708 private final boolean sigOnly; 5709 public TypeAnnotationsValidator(boolean sigOnly) { 5710 this.sigOnly = sigOnly; 5711 } 5712 5713 public void visitAnnotation(JCAnnotation tree) { 5714 chk.validateTypeAnnotation(tree, null, false); 5715 super.visitAnnotation(tree); 5716 } 5717 public void visitAnnotatedType(JCAnnotatedType tree) { 5718 if (!tree.underlyingType.type.isErroneous()) { 5719 super.visitAnnotatedType(tree); 5720 } 5721 } 5722 public void visitTypeParameter(JCTypeParameter tree) { 5723 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5724 scan(tree.bounds); 5725 // Don't call super. 5726 // This is needed because above we call validateTypeAnnotation with 5727 // false, which would forbid annotations on type parameters. 5728 // super.visitTypeParameter(tree); 5729 } 5730 public void visitMethodDef(JCMethodDecl tree) { 5731 if (tree.recvparam != null && 5732 !tree.recvparam.vartype.type.isErroneous()) { 5733 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5734 } 5735 if (tree.restype != null && tree.restype.type != null) { 5736 validateAnnotatedType(tree.restype, tree.restype.type); 5737 } 5738 if (sigOnly) { 5739 scan(tree.mods); 5740 scan(tree.restype); 5741 scan(tree.typarams); 5742 scan(tree.recvparam); 5743 scan(tree.params); 5744 scan(tree.thrown); 5745 } else { 5746 scan(tree.defaultValue); 5747 scan(tree.body); 5748 } 5749 } 5750 public void visitVarDef(final JCVariableDecl tree) { 5751 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5752 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5753 validateAnnotatedType(tree.vartype, tree.sym.type); 5754 scan(tree.mods); 5755 scan(tree.vartype); 5756 if (!sigOnly) { 5757 scan(tree.init); 5758 } 5759 } 5760 public void visitTypeCast(JCTypeCast tree) { 5761 if (tree.clazz != null && tree.clazz.type != null) 5762 validateAnnotatedType(tree.clazz, tree.clazz.type); 5763 super.visitTypeCast(tree); 5764 } 5765 public void visitTypeTest(JCInstanceOf tree) { 5766 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5767 validateAnnotatedType(tree.pattern, tree.pattern.type); 5768 super.visitTypeTest(tree); 5769 } 5770 public void visitNewClass(JCNewClass tree) { 5771 if (tree.clazz != null && tree.clazz.type != null) { 5772 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5773 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5774 tree.clazz.type.tsym); 5775 } 5776 if (tree.def != null) { 5777 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5778 } 5779 5780 validateAnnotatedType(tree.clazz, tree.clazz.type); 5781 } 5782 super.visitNewClass(tree); 5783 } 5784 public void visitNewArray(JCNewArray tree) { 5785 if (tree.elemtype != null && tree.elemtype.type != null) { 5786 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5787 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5788 tree.elemtype.type.tsym); 5789 } 5790 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5791 } 5792 super.visitNewArray(tree); 5793 } 5794 public void visitClassDef(JCClassDecl tree) { 5795 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5796 if (sigOnly) { 5797 scan(tree.mods); 5798 scan(tree.typarams); 5799 scan(tree.extending); 5800 scan(tree.implementing); 5801 } 5802 for (JCTree member : tree.defs) { 5803 if (member.hasTag(Tag.CLASSDEF)) { 5804 continue; 5805 } 5806 scan(member); 5807 } 5808 } 5809 public void visitBlock(JCBlock tree) { 5810 if (!sigOnly) { 5811 scan(tree.stats); 5812 } 5813 } 5814 5815 /* I would want to model this after 5816 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5817 * and override visitSelect and visitTypeApply. 5818 * However, we only set the annotated type in the top-level type 5819 * of the symbol. 5820 * Therefore, we need to override each individual location where a type 5821 * can occur. 5822 */ 5823 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5824 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5825 5826 if (type.isPrimitiveOrVoid()) { 5827 return; 5828 } 5829 5830 JCTree enclTr = errtree; 5831 Type enclTy = type; 5832 5833 boolean repeat = true; 5834 while (repeat) { 5835 if (enclTr.hasTag(TYPEAPPLY)) { 5836 List<Type> tyargs = enclTy.getTypeArguments(); 5837 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5838 if (trargs.length() > 0) { 5839 // Nothing to do for diamonds 5840 if (tyargs.length() == trargs.length()) { 5841 for (int i = 0; i < tyargs.length(); ++i) { 5842 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5843 } 5844 } 5845 // If the lengths don't match, it's either a diamond 5846 // or some nested type that redundantly provides 5847 // type arguments in the tree. 5848 } 5849 5850 // Look at the clazz part of a generic type 5851 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5852 } 5853 5854 if (enclTr.hasTag(SELECT)) { 5855 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5856 if (enclTy != null && 5857 !enclTy.hasTag(NONE)) { 5858 enclTy = enclTy.getEnclosingType(); 5859 } 5860 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5861 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5862 if (enclTy == null || enclTy.hasTag(NONE)) { 5863 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 5864 for (JCAnnotation an : at.getAnnotations()) { 5865 if (chk.isTypeAnnotation(an, false)) { 5866 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 5867 } 5868 } 5869 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 5870 if (!onlyTypeAnnotations.isEmpty()) { 5871 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 5872 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 5873 Fragments.TypeAnnotation(onlyTypeAnnotations); 5874 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 5875 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 5876 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 5877 type.tsym.owner, annotatedType)); 5878 } 5879 repeat = false; 5880 } 5881 enclTr = at.underlyingType; 5882 // enclTy doesn't need to be changed 5883 } else if (enclTr.hasTag(IDENT)) { 5884 repeat = false; 5885 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5886 JCWildcard wc = (JCWildcard) enclTr; 5887 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 5888 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 5889 validateAnnotatedType(wc.getBound(), wc.getBound().type); 5890 } else { 5891 // Nothing to do for UNBOUND 5892 } 5893 repeat = false; 5894 } else if (enclTr.hasTag(TYPEARRAY)) { 5895 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 5896 validateAnnotatedType(art.getType(), art.elemtype.type); 5897 repeat = false; 5898 } else if (enclTr.hasTag(TYPEUNION)) { 5899 JCTypeUnion ut = (JCTypeUnion) enclTr; 5900 for (JCTree t : ut.getTypeAlternatives()) { 5901 validateAnnotatedType(t, t.type); 5902 } 5903 repeat = false; 5904 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 5905 JCTypeIntersection it = (JCTypeIntersection) enclTr; 5906 for (JCTree t : it.getBounds()) { 5907 validateAnnotatedType(t, t.type); 5908 } 5909 repeat = false; 5910 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 5911 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 5912 repeat = false; 5913 } else { 5914 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 5915 " within: "+ errtree + " with kind: " + errtree.getKind()); 5916 } 5917 } 5918 } 5919 5920 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 5921 Symbol sym) { 5922 // Ensure that no declaration annotations are present. 5923 // Note that a tree type might be an AnnotatedType with 5924 // empty annotations, if only declaration annotations were given. 5925 // This method will raise an error for such a type. 5926 for (JCAnnotation ai : annotations) { 5927 if (!ai.type.isErroneous() && 5928 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 5929 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 5930 } 5931 } 5932 } 5933 } 5934 5935 // <editor-fold desc="post-attribution visitor"> 5936 5937 /** 5938 * Handle missing types/symbols in an AST. This routine is useful when 5939 * the compiler has encountered some errors (which might have ended up 5940 * terminating attribution abruptly); if the compiler is used in fail-over 5941 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 5942 * prevents NPE to be propagated during subsequent compilation steps. 5943 */ 5944 public void postAttr(JCTree tree) { 5945 new PostAttrAnalyzer().scan(tree); 5946 } 5947 5948 class PostAttrAnalyzer extends TreeScanner { 5949 5950 private void initTypeIfNeeded(JCTree that) { 5951 if (that.type == null) { 5952 if (that.hasTag(METHODDEF)) { 5953 that.type = dummyMethodType((JCMethodDecl)that); 5954 } else { 5955 that.type = syms.unknownType; 5956 } 5957 } 5958 } 5959 5960 /* Construct a dummy method type. If we have a method declaration, 5961 * and the declared return type is void, then use that return type 5962 * instead of UNKNOWN to avoid spurious error messages in lambda 5963 * bodies (see:JDK-8041704). 5964 */ 5965 private Type dummyMethodType(JCMethodDecl md) { 5966 Type restype = syms.unknownType; 5967 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 5968 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 5969 if (prim.typetag == VOID) 5970 restype = syms.voidType; 5971 } 5972 return new MethodType(List.nil(), restype, 5973 List.nil(), syms.methodClass); 5974 } 5975 private Type dummyMethodType() { 5976 return dummyMethodType(null); 5977 } 5978 5979 @Override 5980 public void scan(JCTree tree) { 5981 if (tree == null) return; 5982 if (tree instanceof JCExpression) { 5983 initTypeIfNeeded(tree); 5984 } 5985 super.scan(tree); 5986 } 5987 5988 @Override 5989 public void visitIdent(JCIdent that) { 5990 if (that.sym == null) { 5991 that.sym = syms.unknownSymbol; 5992 } 5993 } 5994 5995 @Override 5996 public void visitSelect(JCFieldAccess that) { 5997 if (that.sym == null) { 5998 that.sym = syms.unknownSymbol; 5999 } 6000 super.visitSelect(that); 6001 } 6002 6003 @Override 6004 public void visitClassDef(JCClassDecl that) { 6005 initTypeIfNeeded(that); 6006 if (that.sym == null) { 6007 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6008 } 6009 super.visitClassDef(that); 6010 } 6011 6012 @Override 6013 public void visitMethodDef(JCMethodDecl that) { 6014 initTypeIfNeeded(that); 6015 if (that.sym == null) { 6016 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6017 } 6018 super.visitMethodDef(that); 6019 } 6020 6021 @Override 6022 public void visitVarDef(JCVariableDecl that) { 6023 initTypeIfNeeded(that); 6024 if (that.sym == null) { 6025 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6026 that.sym.adr = 0; 6027 } 6028 if (that.vartype == null) { 6029 that.vartype = make.at(Position.NOPOS).Erroneous(); 6030 } 6031 super.visitVarDef(that); 6032 } 6033 6034 @Override 6035 public void visitBindingPattern(JCBindingPattern that) { 6036 initTypeIfNeeded(that); 6037 initTypeIfNeeded(that.var); 6038 if (that.var.sym == null) { 6039 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6040 that.var.sym.adr = 0; 6041 } 6042 super.visitBindingPattern(that); 6043 } 6044 6045 @Override 6046 public void visitRecordPattern(JCRecordPattern that) { 6047 initTypeIfNeeded(that); 6048 if (that.record == null) { 6049 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6050 that.type, syms.noSymbol); 6051 } 6052 if (that.fullComponentTypes == null) { 6053 that.fullComponentTypes = List.nil(); 6054 } 6055 super.visitRecordPattern(that); 6056 } 6057 6058 @Override 6059 public void visitNewClass(JCNewClass that) { 6060 if (that.constructor == null) { 6061 that.constructor = new MethodSymbol(0, names.init, 6062 dummyMethodType(), syms.noSymbol); 6063 } 6064 if (that.constructorType == null) { 6065 that.constructorType = syms.unknownType; 6066 } 6067 super.visitNewClass(that); 6068 } 6069 6070 @Override 6071 public void visitAssignop(JCAssignOp that) { 6072 if (that.operator == null) { 6073 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6074 -1, syms.noSymbol); 6075 } 6076 super.visitAssignop(that); 6077 } 6078 6079 @Override 6080 public void visitBinary(JCBinary that) { 6081 if (that.operator == null) { 6082 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6083 -1, syms.noSymbol); 6084 } 6085 super.visitBinary(that); 6086 } 6087 6088 @Override 6089 public void visitUnary(JCUnary that) { 6090 if (that.operator == null) { 6091 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6092 -1, syms.noSymbol); 6093 } 6094 super.visitUnary(that); 6095 } 6096 6097 @Override 6098 public void visitReference(JCMemberReference that) { 6099 super.visitReference(that); 6100 if (that.sym == null) { 6101 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6102 syms.noSymbol); 6103 } 6104 } 6105 } 6106 // </editor-fold> 6107 6108 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6109 new TreeScanner() { 6110 Symbol packge = pkg; 6111 @Override 6112 public void visitIdent(JCIdent that) { 6113 that.sym = packge; 6114 } 6115 6116 @Override 6117 public void visitSelect(JCFieldAccess that) { 6118 that.sym = packge; 6119 packge = packge.owner; 6120 super.visitSelect(that); 6121 } 6122 }.scan(pid); 6123 } 6124 6125 } --- EOF ---