1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.IdentifierTree;
  38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  39 import com.sun.source.tree.MemberSelectTree;
  40 import com.sun.source.tree.TreeVisitor;
  41 import com.sun.source.util.SimpleTreeVisitor;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Lint.LintCategory;
  44 import com.sun.tools.javac.code.Scope.WriteableScope;
  45 import com.sun.tools.javac.code.Source.Feature;
  46 import com.sun.tools.javac.code.Symbol.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  53 import com.sun.tools.javac.jvm.*;
  54 
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  58 
  59 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  60 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  61 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  62 import com.sun.tools.javac.tree.*;
  63 import com.sun.tools.javac.tree.JCTree.*;
  64 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  65 import com.sun.tools.javac.util.*;
  66 import com.sun.tools.javac.util.DefinedBy.Api;
  67 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  68 import com.sun.tools.javac.util.JCDiagnostic.Error;
  69 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  70 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  71 import com.sun.tools.javac.util.List;
  72 
  73 import static com.sun.tools.javac.code.Flags.*;
  74 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  75 import static com.sun.tools.javac.code.Flags.BLOCK;
  76 import static com.sun.tools.javac.code.Kinds.*;
  77 import static com.sun.tools.javac.code.Kinds.Kind.*;
  78 import static com.sun.tools.javac.code.TypeTag.*;
  79 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  82 
  83 /** This is the main context-dependent analysis phase in GJC. It
  84  *  encompasses name resolution, type checking and constant folding as
  85  *  subtasks. Some subtasks involve auxiliary classes.
  86  *  @see Check
  87  *  @see Resolve
  88  *  @see ConstFold
  89  *  @see Infer
  90  *
  91  *  <p><b>This is NOT part of any supported API.
  92  *  If you write code that depends on this, you do so at your own risk.
  93  *  This code and its internal interfaces are subject to change or
  94  *  deletion without notice.</b>
  95  */
  96 public class Attr extends JCTree.Visitor {
  97     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  98 
  99     final Names names;
 100     final Log log;
 101     final Symtab syms;
 102     final Resolve rs;
 103     final Operators operators;
 104     final Infer infer;
 105     final Analyzer analyzer;
 106     final DeferredAttr deferredAttr;
 107     final Check chk;
 108     final Flow flow;
 109     final MemberEnter memberEnter;
 110     final TypeEnter typeEnter;
 111     final TreeMaker make;
 112     final ConstFold cfolder;
 113     final Enter enter;
 114     final Target target;
 115     final Types types;
 116     final Preview preview;
 117     final JCDiagnostic.Factory diags;
 118     final TypeAnnotations typeAnnotations;
 119     final DeferredLintHandler deferredLintHandler;
 120     final TypeEnvs typeEnvs;
 121     final Dependencies dependencies;
 122     final Annotate annotate;
 123     final ArgumentAttr argumentAttr;
 124     final MatchBindingsComputer matchBindingsComputer;
 125     final AttrRecover attrRecover;
 126 
 127     public static Attr instance(Context context) {
 128         Attr instance = context.get(attrKey);
 129         if (instance == null)
 130             instance = new Attr(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Attr(Context context) {
 136         context.put(attrKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         syms = Symtab.instance(context);
 141         rs = Resolve.instance(context);
 142         operators = Operators.instance(context);
 143         chk = Check.instance(context);
 144         flow = Flow.instance(context);
 145         memberEnter = MemberEnter.instance(context);
 146         typeEnter = TypeEnter.instance(context);
 147         make = TreeMaker.instance(context);
 148         enter = Enter.instance(context);
 149         infer = Infer.instance(context);
 150         analyzer = Analyzer.instance(context);
 151         deferredAttr = DeferredAttr.instance(context);
 152         cfolder = ConstFold.instance(context);
 153         target = Target.instance(context);
 154         types = Types.instance(context);
 155         preview = Preview.instance(context);
 156         diags = JCDiagnostic.Factory.instance(context);
 157         annotate = Annotate.instance(context);
 158         typeAnnotations = TypeAnnotations.instance(context);
 159         deferredLintHandler = DeferredLintHandler.instance(context);
 160         typeEnvs = TypeEnvs.instance(context);
 161         dependencies = Dependencies.instance(context);
 162         argumentAttr = ArgumentAttr.instance(context);
 163         matchBindingsComputer = MatchBindingsComputer.instance(context);
 164         attrRecover = AttrRecover.instance(context);
 165 
 166         Options options = Options.instance(context);
 167 
 168         Source source = Source.instance(context);
 169         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 170         allowRecords = Feature.RECORDS.allowedInSource(source);
 171         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 172                              Feature.PATTERN_SWITCH.allowedInSource(source);
 173         allowUnconditionalPatternsInstanceOf =
 174                              Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 175         sourceName = source.name;
 176         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 177 
 178         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 179         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 180         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 181         methodAttrInfo = new MethodAttrInfo();
 182         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 183         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 184         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 185     }
 186 
 187     /** Switch: reifiable types in instanceof enabled?
 188      */
 189     boolean allowReifiableTypesInInstanceof;
 190 
 191     /** Are records allowed
 192      */
 193     private final boolean allowRecords;
 194 
 195     /** Are patterns in switch allowed
 196      */
 197     private final boolean allowPatternSwitch;
 198 
 199     /** Are unconditional patterns in instanceof allowed
 200      */
 201     private final boolean allowUnconditionalPatternsInstanceOf;
 202 
 203     /**
 204      * Switch: warn about use of variable before declaration?
 205      * RFE: 6425594
 206      */
 207     boolean useBeforeDeclarationWarning;
 208 
 209     /**
 210      * Switch: name of source level; used for error reporting.
 211      */
 212     String sourceName;
 213 
 214     /** Check kind and type of given tree against protokind and prototype.
 215      *  If check succeeds, store type in tree and return it.
 216      *  If check fails, store errType in tree and return it.
 217      *  No checks are performed if the prototype is a method type.
 218      *  It is not necessary in this case since we know that kind and type
 219      *  are correct.
 220      *
 221      *  @param tree     The tree whose kind and type is checked
 222      *  @param found    The computed type of the tree
 223      *  @param ownkind  The computed kind of the tree
 224      *  @param resultInfo  The expected result of the tree
 225      */
 226     Type check(final JCTree tree,
 227                final Type found,
 228                final KindSelector ownkind,
 229                final ResultInfo resultInfo) {
 230         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 231         Type owntype;
 232         boolean shouldCheck = !found.hasTag(ERROR) &&
 233                 !resultInfo.pt.hasTag(METHOD) &&
 234                 !resultInfo.pt.hasTag(FORALL);
 235         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 236             log.error(tree.pos(),
 237                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 238                                             ownkind.kindNames()));
 239             owntype = types.createErrorType(found);
 240         } else if (inferenceContext.free(found)) {
 241             //delay the check if there are inference variables in the found type
 242             //this means we are dealing with a partially inferred poly expression
 243             owntype = shouldCheck ? resultInfo.pt : found;
 244             if (resultInfo.checkMode.installPostInferenceHook()) {
 245                 inferenceContext.addFreeTypeListener(List.of(found),
 246                         instantiatedContext -> {
 247                             ResultInfo pendingResult =
 248                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 249                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 250                         });
 251             }
 252         } else {
 253             owntype = shouldCheck ?
 254             resultInfo.check(tree, found) :
 255             found;
 256         }
 257         if (resultInfo.checkMode.updateTreeType()) {
 258             tree.type = owntype;
 259         }
 260         return owntype;
 261     }
 262 
 263     /** Is given blank final variable assignable, i.e. in a scope where it
 264      *  may be assigned to even though it is final?
 265      *  @param v      The blank final variable.
 266      *  @param env    The current environment.
 267      */
 268     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 269         Symbol owner = env.info.scope.owner;
 270            // owner refers to the innermost variable, method or
 271            // initializer block declaration at this point.
 272         boolean isAssignable =
 273             v.owner == owner
 274             ||
 275             ((owner.name == names.init ||    // i.e. we are in a constructor
 276               owner.kind == VAR ||           // i.e. we are in a variable initializer
 277               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 278              &&
 279              v.owner == owner.owner
 280              &&
 281              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 282         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 283         return isAssignable & !insideCompactConstructor;
 284     }
 285 
 286     /** Check that variable can be assigned to.
 287      *  @param pos    The current source code position.
 288      *  @param v      The assigned variable
 289      *  @param base   If the variable is referred to in a Select, the part
 290      *                to the left of the `.', null otherwise.
 291      *  @param env    The current environment.
 292      */
 293     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 294         if (v.name == names._this) {
 295             log.error(pos, Errors.CantAssignValToThis);
 296         } else if ((v.flags() & FINAL) != 0 &&
 297             ((v.flags() & HASINIT) != 0
 298              ||
 299              !((base == null ||
 300                TreeInfo.isThisQualifier(base)) &&
 301                isAssignableAsBlankFinal(v, env)))) {
 302             if (v.isResourceVariable()) { //TWR resource
 303                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 304             } else {
 305                 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
 306             }
 307         }











 308     }
 309 
 310     /** Does tree represent a static reference to an identifier?
 311      *  It is assumed that tree is either a SELECT or an IDENT.
 312      *  We have to weed out selects from non-type names here.
 313      *  @param tree    The candidate tree.
 314      */
 315     boolean isStaticReference(JCTree tree) {
 316         if (tree.hasTag(SELECT)) {
 317             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 318             if (lsym == null || lsym.kind != TYP) {
 319                 return false;
 320             }
 321         }
 322         return true;
 323     }
 324 
 325     /** Is this symbol a type?
 326      */
 327     static boolean isType(Symbol sym) {
 328         return sym != null && sym.kind == TYP;
 329     }
 330 
 331     /** The current `this' symbol.
 332      *  @param env    The current environment.
 333      */
 334     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 335         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 336     }
 337 
 338     /** Attribute a parsed identifier.
 339      * @param tree Parsed identifier name
 340      * @param topLevel The toplevel to use
 341      */
 342     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 343         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 344         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 345                                            syms.errSymbol.name,
 346                                            null, null, null, null);
 347         localEnv.enclClass.sym = syms.errSymbol;
 348         return attribIdent(tree, localEnv);
 349     }
 350 
 351     /** Attribute a parsed identifier.
 352      * @param tree Parsed identifier name
 353      * @param env The env to use
 354      */
 355     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 356         return tree.accept(identAttributer, env);
 357     }
 358     // where
 359         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 360         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 361             @Override @DefinedBy(Api.COMPILER_TREE)
 362             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 363                 Symbol site = visit(node.getExpression(), env);
 364                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 365                     return site;
 366                 Name name = (Name)node.getIdentifier();
 367                 if (site.kind == PCK) {
 368                     env.toplevel.packge = (PackageSymbol)site;
 369                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 370                             KindSelector.TYP_PCK);
 371                 } else {
 372                     env.enclClass.sym = (ClassSymbol)site;
 373                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 374                 }
 375             }
 376 
 377             @Override @DefinedBy(Api.COMPILER_TREE)
 378             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 379                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 380             }
 381         }
 382 
 383     public Type coerce(Type etype, Type ttype) {
 384         return cfolder.coerce(etype, ttype);
 385     }
 386 
 387     public Type attribType(JCTree node, TypeSymbol sym) {
 388         Env<AttrContext> env = typeEnvs.get(sym);
 389         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 390         return attribTree(node, localEnv, unknownTypeInfo);
 391     }
 392 
 393     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 394         // Attribute qualifying package or class.
 395         JCFieldAccess s = tree.qualid;
 396         return attribTree(s.selected, env,
 397                           new ResultInfo(tree.staticImport ?
 398                                          KindSelector.TYP : KindSelector.TYP_PCK,
 399                        Type.noType));
 400     }
 401 
 402     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 403         return attribToTree(expr, env, tree, unknownExprInfo);
 404     }
 405 
 406     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 407         return attribToTree(stmt, env, tree, statInfo);
 408     }
 409 
 410     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 411         breakTree = tree;
 412         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 413         try {
 414             deferredAttr.attribSpeculative(root, env, resultInfo,
 415                     null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
 416                     argumentAttr.withLocalCacheContext());
 417             attrRecover.doRecovery();
 418         } catch (BreakAttr b) {
 419             return b.env;
 420         } catch (AssertionError ae) {
 421             if (ae.getCause() instanceof BreakAttr breakAttr) {
 422                 return breakAttr.env;
 423             } else {
 424                 throw ae;
 425             }
 426         } finally {
 427             breakTree = null;
 428             log.useSource(prev);
 429         }
 430         return env;
 431     }
 432 
 433     private JCTree breakTree = null;
 434 
 435     private static class BreakAttr extends RuntimeException {
 436         static final long serialVersionUID = -6924771130405446405L;
 437         private transient Env<AttrContext> env;
 438         private BreakAttr(Env<AttrContext> env) {
 439             this.env = env;
 440         }
 441     }
 442 
 443     /**
 444      * Mode controlling behavior of Attr.Check
 445      */
 446     enum CheckMode {
 447 
 448         NORMAL,
 449 
 450         /**
 451          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 452          * that the captured var cache in {@code InferenceContext} will be used in read-only
 453          * mode when performing inference checks.
 454          */
 455         NO_TREE_UPDATE {
 456             @Override
 457             public boolean updateTreeType() {
 458                 return false;
 459             }
 460         },
 461         /**
 462          * Mode signalling that caller will manage free types in tree decorations.
 463          */
 464         NO_INFERENCE_HOOK {
 465             @Override
 466             public boolean installPostInferenceHook() {
 467                 return false;
 468             }
 469         };
 470 
 471         public boolean updateTreeType() {
 472             return true;
 473         }
 474         public boolean installPostInferenceHook() {
 475             return true;
 476         }
 477     }
 478 
 479 
 480     class ResultInfo {
 481         final KindSelector pkind;
 482         final Type pt;
 483         final CheckContext checkContext;
 484         final CheckMode checkMode;
 485 
 486         ResultInfo(KindSelector pkind, Type pt) {
 487             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 488         }
 489 
 490         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 491             this(pkind, pt, chk.basicHandler, checkMode);
 492         }
 493 
 494         protected ResultInfo(KindSelector pkind,
 495                              Type pt, CheckContext checkContext) {
 496             this(pkind, pt, checkContext, CheckMode.NORMAL);
 497         }
 498 
 499         protected ResultInfo(KindSelector pkind,
 500                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 501             this.pkind = pkind;
 502             this.pt = pt;
 503             this.checkContext = checkContext;
 504             this.checkMode = checkMode;
 505         }
 506 
 507         /**
 508          * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
 509          * @param tree The tree to be type-checked.
 510          * @return true if {@code ArgumentAttr} should be used.
 511          */
 512         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 513 
 514         protected Type check(final DiagnosticPosition pos, final Type found) {
 515             return chk.checkType(pos, found, pt, checkContext);
 516         }
 517 
 518         protected ResultInfo dup(Type newPt) {
 519             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 520         }
 521 
 522         protected ResultInfo dup(CheckContext newContext) {
 523             return new ResultInfo(pkind, pt, newContext, checkMode);
 524         }
 525 
 526         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 527             return new ResultInfo(pkind, newPt, newContext, checkMode);
 528         }
 529 
 530         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 531             return new ResultInfo(pkind, newPt, newContext, newMode);
 532         }
 533 
 534         protected ResultInfo dup(CheckMode newMode) {
 535             return new ResultInfo(pkind, pt, checkContext, newMode);
 536         }
 537 
 538         @Override
 539         public String toString() {
 540             if (pt != null) {
 541                 return pt.toString();
 542             } else {
 543                 return "";
 544             }
 545         }
 546     }
 547 
 548     class MethodAttrInfo extends ResultInfo {
 549         public MethodAttrInfo() {
 550             this(chk.basicHandler);
 551         }
 552 
 553         public MethodAttrInfo(CheckContext checkContext) {
 554             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 555         }
 556 
 557         @Override
 558         protected boolean needsArgumentAttr(JCTree tree) {
 559             return true;
 560         }
 561 
 562         protected ResultInfo dup(Type newPt) {
 563             throw new IllegalStateException();
 564         }
 565 
 566         protected ResultInfo dup(CheckContext newContext) {
 567             return new MethodAttrInfo(newContext);
 568         }
 569 
 570         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 571             throw new IllegalStateException();
 572         }
 573 
 574         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 575             throw new IllegalStateException();
 576         }
 577 
 578         protected ResultInfo dup(CheckMode newMode) {
 579             throw new IllegalStateException();
 580         }
 581     }
 582 
 583     class RecoveryInfo extends ResultInfo {
 584 
 585         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 586             this(deferredAttrContext, Type.recoveryType);
 587         }
 588 
 589         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 590             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 591                 @Override
 592                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 593                     return deferredAttrContext;
 594                 }
 595                 @Override
 596                 public boolean compatible(Type found, Type req, Warner warn) {
 597                     return true;
 598                 }
 599                 @Override
 600                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 601                     boolean needsReport = pt == Type.recoveryType ||
 602                             (details.getDiagnosticPosition() != null &&
 603                             details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
 604                     if (needsReport) {
 605                         chk.basicHandler.report(pos, details);
 606                     }
 607                 }
 608             });
 609         }
 610     }
 611 
 612     final ResultInfo statInfo;
 613     final ResultInfo varAssignmentInfo;
 614     final ResultInfo methodAttrInfo;
 615     final ResultInfo unknownExprInfo;
 616     final ResultInfo unknownTypeInfo;
 617     final ResultInfo unknownTypeExprInfo;
 618     final ResultInfo recoveryInfo;
 619 
 620     Type pt() {
 621         return resultInfo.pt;
 622     }
 623 
 624     KindSelector pkind() {
 625         return resultInfo.pkind;
 626     }
 627 
 628 /* ************************************************************************
 629  * Visitor methods
 630  *************************************************************************/
 631 
 632     /** Visitor argument: the current environment.
 633      */
 634     Env<AttrContext> env;
 635 
 636     /** Visitor argument: the currently expected attribution result.
 637      */
 638     ResultInfo resultInfo;
 639 
 640     /** Visitor result: the computed type.
 641      */
 642     Type result;
 643 
 644     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
 645 
 646     /** Visitor method: attribute a tree, catching any completion failure
 647      *  exceptions. Return the tree's type.
 648      *
 649      *  @param tree    The tree to be visited.
 650      *  @param env     The environment visitor argument.
 651      *  @param resultInfo   The result info visitor argument.
 652      */
 653     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 654         Env<AttrContext> prevEnv = this.env;
 655         ResultInfo prevResult = this.resultInfo;
 656         try {
 657             this.env = env;
 658             this.resultInfo = resultInfo;
 659             if (resultInfo.needsArgumentAttr(tree)) {
 660                 result = argumentAttr.attribArg(tree, env);
 661             } else {
 662                 tree.accept(this);
 663             }
 664             matchBindings = matchBindingsComputer.finishBindings(tree,
 665                                                                  matchBindings);
 666             if (tree == breakTree &&
 667                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 668                 breakTreeFound(copyEnv(env));
 669             }
 670             return result;
 671         } catch (CompletionFailure ex) {
 672             tree.type = syms.errType;
 673             return chk.completionError(tree.pos(), ex);
 674         } finally {
 675             this.env = prevEnv;
 676             this.resultInfo = prevResult;
 677         }
 678     }
 679 
 680     protected void breakTreeFound(Env<AttrContext> env) {
 681         throw new BreakAttr(env);
 682     }
 683 
 684     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 685         Env<AttrContext> newEnv =
 686                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 687         if (newEnv.outer != null) {
 688             newEnv.outer = copyEnv(newEnv.outer);
 689         }
 690         return newEnv;
 691     }
 692 
 693     WriteableScope copyScope(WriteableScope sc) {
 694         WriteableScope newScope = WriteableScope.create(sc.owner);
 695         List<Symbol> elemsList = List.nil();
 696         for (Symbol sym : sc.getSymbols()) {
 697             elemsList = elemsList.prepend(sym);
 698         }
 699         for (Symbol s : elemsList) {
 700             newScope.enter(s);
 701         }
 702         return newScope;
 703     }
 704 
 705     /** Derived visitor method: attribute an expression tree.
 706      */
 707     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 708         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 709     }
 710 
 711     /** Derived visitor method: attribute an expression tree with
 712      *  no constraints on the computed type.
 713      */
 714     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 715         return attribTree(tree, env, unknownExprInfo);
 716     }
 717 
 718     /** Derived visitor method: attribute a type tree.
 719      */
 720     public Type attribType(JCTree tree, Env<AttrContext> env) {
 721         Type result = attribType(tree, env, Type.noType);
 722         return result;
 723     }
 724 
 725     /** Derived visitor method: attribute a type tree.
 726      */
 727     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 728         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 729         return result;
 730     }
 731 
 732     /** Derived visitor method: attribute a statement or definition tree.
 733      */
 734     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 735         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 736         Type result = attribTree(tree, env, statInfo);
 737         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 738         attrRecover.doRecovery();
 739         return result;
 740     }
 741 
 742     /** Attribute a list of expressions, returning a list of types.
 743      */
 744     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 745         ListBuffer<Type> ts = new ListBuffer<>();
 746         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 747             ts.append(attribExpr(l.head, env, pt));
 748         return ts.toList();
 749     }
 750 
 751     /** Attribute a list of statements, returning nothing.
 752      */
 753     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 754         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 755             attribStat(l.head, env);
 756     }
 757 
 758     /** Attribute the arguments in a method call, returning the method kind.
 759      */
 760     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 761         KindSelector kind = initialKind;
 762         for (JCExpression arg : trees) {
 763             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
 764             if (argtype.hasTag(DEFERRED)) {
 765                 kind = KindSelector.of(KindSelector.POLY, kind);
 766             }
 767             argtypes.append(argtype);
 768         }
 769         return kind;
 770     }
 771 
 772     /** Attribute a type argument list, returning a list of types.
 773      *  Caller is responsible for calling checkRefTypes.
 774      */
 775     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 776         ListBuffer<Type> argtypes = new ListBuffer<>();
 777         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 778             argtypes.append(attribType(l.head, env));
 779         return argtypes.toList();
 780     }
 781 
 782     /** Attribute a type argument list, returning a list of types.
 783      *  Check that all the types are references.
 784      */
 785     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 786         List<Type> types = attribAnyTypes(trees, env);
 787         return chk.checkRefTypes(trees, types);
 788     }
 789 
 790     /**
 791      * Attribute type variables (of generic classes or methods).
 792      * Compound types are attributed later in attribBounds.
 793      * @param typarams the type variables to enter
 794      * @param env      the current environment
 795      */
 796     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 797         for (JCTypeParameter tvar : typarams) {
 798             TypeVar a = (TypeVar)tvar.type;
 799             a.tsym.flags_field |= UNATTRIBUTED;
 800             a.setUpperBound(Type.noType);
 801             if (!tvar.bounds.isEmpty()) {
 802                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 803                 for (JCExpression bound : tvar.bounds.tail)
 804                     bounds = bounds.prepend(attribType(bound, env));
 805                 types.setBounds(a, bounds.reverse());
 806             } else {
 807                 // if no bounds are given, assume a single bound of
 808                 // java.lang.Object.
 809                 types.setBounds(a, List.of(syms.objectType));
 810             }
 811             a.tsym.flags_field &= ~UNATTRIBUTED;
 812         }
 813         if (checkCyclic) {
 814             for (JCTypeParameter tvar : typarams) {
 815                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 816             }
 817         }
 818     }
 819 
 820     /**
 821      * Attribute the type references in a list of annotations.
 822      */
 823     void attribAnnotationTypes(List<JCAnnotation> annotations,
 824                                Env<AttrContext> env) {
 825         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 826             JCAnnotation a = al.head;
 827             attribType(a.annotationType, env);
 828         }
 829     }
 830 
 831     /**
 832      * Attribute a "lazy constant value".
 833      *  @param env         The env for the const value
 834      *  @param variable    The initializer for the const value
 835      *  @param type        The expected type, or null
 836      *  @see VarSymbol#setLazyConstValue
 837      */
 838     public Object attribLazyConstantValue(Env<AttrContext> env,
 839                                       JCVariableDecl variable,
 840                                       Type type) {
 841 
 842         DiagnosticPosition prevLintPos
 843                 = deferredLintHandler.setPos(variable.pos());
 844 
 845         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 846         try {
 847             Type itype = attribExpr(variable.init, env, type);
 848             if (variable.isImplicitlyTyped()) {
 849                 //fixup local variable type
 850                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
 851             }
 852             if (itype.constValue() != null) {
 853                 return coerce(itype, type).constValue();
 854             } else {
 855                 return null;
 856             }
 857         } finally {
 858             log.useSource(prevSource);
 859             deferredLintHandler.setPos(prevLintPos);
 860         }
 861     }
 862 
 863     /** Attribute type reference in an `extends' or `implements' clause.
 864      *  Supertypes of anonymous inner classes are usually already attributed.
 865      *
 866      *  @param tree              The tree making up the type reference.
 867      *  @param env               The environment current at the reference.
 868      *  @param classExpected     true if only a class is expected here.
 869      *  @param interfaceExpected true if only an interface is expected here.
 870      */
 871     Type attribBase(JCTree tree,
 872                     Env<AttrContext> env,
 873                     boolean classExpected,
 874                     boolean interfaceExpected,
 875                     boolean checkExtensible) {
 876         Type t = tree.type != null ?
 877             tree.type :
 878             attribType(tree, env);
 879         try {
 880             return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 881         } catch (CompletionFailure ex) {
 882             chk.completionError(tree.pos(), ex);
 883             return t;
 884         }
 885     }
 886     Type checkBase(Type t,
 887                    JCTree tree,
 888                    Env<AttrContext> env,
 889                    boolean classExpected,
 890                    boolean interfaceExpected,
 891                    boolean checkExtensible) {
 892         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 893                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 894         if (t.tsym.isAnonymous()) {
 895             log.error(pos, Errors.CantInheritFromAnon);
 896             return types.createErrorType(t);
 897         }
 898         if (t.isErroneous())
 899             return t;
 900         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 901             // check that type variable is already visible
 902             if (t.getUpperBound() == null) {
 903                 log.error(pos, Errors.IllegalForwardRef);
 904                 return types.createErrorType(t);
 905             }
 906         } else {
 907             t = chk.checkClassType(pos, t, checkExtensible);
 908         }
 909         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 910             log.error(pos, Errors.IntfExpectedHere);
 911             // return errType is necessary since otherwise there might
 912             // be undetected cycles which cause attribution to loop
 913             return types.createErrorType(t);
 914         } else if (checkExtensible &&
 915                    classExpected &&
 916                    (t.tsym.flags() & INTERFACE) != 0) {
 917             log.error(pos, Errors.NoIntfExpectedHere);
 918             return types.createErrorType(t);
 919         }
 920         if (checkExtensible &&
 921             ((t.tsym.flags() & FINAL) != 0)) {
 922             log.error(pos,
 923                       Errors.CantInheritFromFinal(t.tsym));
 924         }
 925         chk.checkNonCyclic(pos, t);
 926         return t;
 927     }
 928 
 929     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 930         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 931         id.type = env.info.scope.owner.enclClass().type;
 932         id.sym = env.info.scope.owner.enclClass();
 933         return id.type;
 934     }
 935 
 936     public void visitClassDef(JCClassDecl tree) {
 937         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 938                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 939                         argumentAttr.withLocalCacheContext() : null);
 940         boolean ctorProloguePrev = env.info.ctorPrologue;
 941         env.info.ctorPrologue = false;
 942         try {
 943             // Local and anonymous classes have not been entered yet, so we need to
 944             // do it now.
 945             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 946                 enter.classEnter(tree, env);
 947             } else {
 948                 // If this class declaration is part of a class level annotation,
 949                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 950                 // order to simplify later steps and allow for sensible error
 951                 // messages.
 952                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 953                     enter.classEnter(tree, env);
 954             }
 955 
 956             ClassSymbol c = tree.sym;
 957             if (c == null) {
 958                 // exit in case something drastic went wrong during enter.
 959                 result = null;
 960             } else {
 961                 // make sure class has been completed:
 962                 c.complete();
 963 
 964                 // If this class appears as an anonymous class in a constructor
 965                 // prologue, disable implicit outer instance from being passed.
 966                 // (This would be an illegal access to "this before super").
 967                 if (ctorProloguePrev && env.tree.hasTag(NEWCLASS)) {
 968                     c.flags_field |= NOOUTERTHIS;
 969                 }
 970                 attribClass(tree.pos(), c);
 971                 result = tree.type = c.type;
 972             }
 973         } finally {
 974             localCacheContext.ifPresent(LocalCacheContext::leave);
 975             env.info.ctorPrologue = ctorProloguePrev;
 976         }
 977     }
 978 
 979     public void visitMethodDef(JCMethodDecl tree) {
 980         MethodSymbol m = tree.sym;
 981         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 982 
 983         Lint lint = env.info.lint.augment(m);
 984         Lint prevLint = chk.setLint(lint);
 985         boolean ctorProloguePrev = env.info.ctorPrologue;
 986         env.info.ctorPrologue = false;
 987         MethodSymbol prevMethod = chk.setMethod(m);
 988         try {
 989             deferredLintHandler.flush(tree.pos());
 990             chk.checkDeprecatedAnnotation(tree.pos(), m);
 991 
 992 
 993             // Create a new environment with local scope
 994             // for attributing the method.
 995             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 996             localEnv.info.lint = lint;
 997 
 998             attribStats(tree.typarams, localEnv);
 999 
1000             // If we override any other methods, check that we do so properly.
1001             // JLS ???
1002             if (m.isStatic()) {
1003                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1004             } else {
1005                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1006             }
1007             chk.checkOverride(env, tree, m);
1008 
1009             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1010                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1011             }
1012 
1013             // Enter all type parameters into the local method scope.
1014             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1015                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1016 
1017             ClassSymbol owner = env.enclClass.sym;
1018             if ((owner.flags() & ANNOTATION) != 0 &&
1019                     (tree.params.nonEmpty() ||
1020                     tree.recvparam != null))
1021                 log.error(tree.params.nonEmpty() ?
1022                         tree.params.head.pos() :
1023                         tree.recvparam.pos(),
1024                         Errors.IntfAnnotationMembersCantHaveParams);
1025 
1026             // Attribute all value parameters.
1027             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1028                 attribStat(l.head, localEnv);
1029             }
1030 
1031             chk.checkVarargsMethodDecl(localEnv, tree);
1032 
1033             // Check that type parameters are well-formed.
1034             chk.validate(tree.typarams, localEnv);
1035 
1036             // Check that result type is well-formed.
1037             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1038                 chk.validate(tree.restype, localEnv);
1039 
1040             // Check that receiver type is well-formed.
1041             if (tree.recvparam != null) {
1042                 // Use a new environment to check the receiver parameter.
1043                 // Otherwise I get "might not have been initialized" errors.
1044                 // Is there a better way?
1045                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1046                 attribType(tree.recvparam, newEnv);
1047                 chk.validate(tree.recvparam, newEnv);
1048             }
1049 
1050             // Is this method a constructor?
1051             boolean isConstructor = TreeInfo.isConstructor(tree);
1052 
1053             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1054                 // lets find if this method is an accessor
1055                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1056                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1057                 if (recordComponent.isPresent()) {
1058                     // the method is a user defined accessor lets check that everything is fine
1059                     if (!tree.sym.isPublic()) {
1060                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1061                     }
1062                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1063                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1064                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1065                     }
1066                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1067                         log.error(tree,
1068                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1069                     }
1070                     if (!tree.typarams.isEmpty()) {
1071                         log.error(tree,
1072                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1073                     }
1074                     if (tree.sym.isStatic()) {
1075                         log.error(tree,
1076                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1077                     }
1078                 }
1079 
1080                 if (isConstructor) {
1081                     // if this a constructor other than the canonical one
1082                     if ((tree.sym.flags_field & RECORD) == 0) {
1083                         if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1084                             log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1085                         }
1086                     } else {
1087                         // but if it is the canonical:
1088 
1089                         /* if user generated, then it shouldn't:
1090                          *     - have an accessibility stricter than that of the record type
1091                          *     - explicitly invoke any other constructor
1092                          */
1093                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1094                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1095                                 log.error(tree,
1096                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1097                                             Errors.InvalidCanonicalConstructorInRecord(
1098                                                 Fragments.Canonical,
1099                                                 env.enclClass.sym.name,
1100                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1101                                             ) :
1102                                             Errors.InvalidCanonicalConstructorInRecord(
1103                                                     Fragments.Canonical,
1104                                                     env.enclClass.sym.name,
1105                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1106                                             )
1107                                 );
1108                             }
1109 
1110                             if (TreeInfo.hasAnyConstructorCall(tree)) {
1111                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1112                                         Fragments.Canonical, env.enclClass.sym.name,
1113                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1114                             }
1115                         }
1116 
1117                         // also we want to check that no type variables have been defined
1118                         if (!tree.typarams.isEmpty()) {
1119                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1120                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1121                         }
1122 
1123                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1124                          * record components
1125                          */
1126                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1127                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1128                         for (JCVariableDecl param: tree.params) {
1129                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1130                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1131                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1132                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1133                                         Fragments.Canonical, env.enclClass.sym.name,
1134                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1135                             }
1136                             recordComponents = recordComponents.tail;
1137                             recordFieldTypes = recordFieldTypes.tail;
1138                         }
1139                     }
1140                 }
1141             }
1142 
1143             // annotation method checks
1144             if ((owner.flags() & ANNOTATION) != 0) {
1145                 // annotation method cannot have throws clause
1146                 if (tree.thrown.nonEmpty()) {
1147                     log.error(tree.thrown.head.pos(),
1148                               Errors.ThrowsNotAllowedInIntfAnnotation);
1149                 }
1150                 // annotation method cannot declare type-parameters
1151                 if (tree.typarams.nonEmpty()) {
1152                     log.error(tree.typarams.head.pos(),
1153                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1154                 }
1155                 // validate annotation method's return type (could be an annotation type)
1156                 chk.validateAnnotationType(tree.restype);
1157                 // ensure that annotation method does not clash with members of Object/Annotation
1158                 chk.validateAnnotationMethod(tree.pos(), m);
1159             }
1160 
1161             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1162                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1163 
1164             if (tree.body == null) {
1165                 // Empty bodies are only allowed for
1166                 // abstract, native, or interface methods, or for methods
1167                 // in a retrofit signature class.
1168                 if (tree.defaultValue != null) {
1169                     if ((owner.flags() & ANNOTATION) == 0)
1170                         log.error(tree.pos(),
1171                                   Errors.DefaultAllowedInIntfAnnotationMember);
1172                 }
1173                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1174                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1175             } else {
1176                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1177                     if ((owner.flags() & INTERFACE) != 0) {
1178                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1179                     } else {
1180                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1181                     }
1182                 } else if ((tree.mods.flags & NATIVE) != 0) {
1183                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1184                 }
1185                 // Add an implicit super() call unless an explicit call to
1186                 // super(...) or this(...) is given
1187                 // or we are compiling class java.lang.Object.
1188                 if (isConstructor && owner.type != syms.objectType) {
1189                     if (!TreeInfo.hasAnyConstructorCall(tree)) {
1190                         JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1191                                 make.Ident(names._super), make.Idents(List.nil())));
1192                         tree.body.stats = tree.body.stats.prepend(supCall);




1193                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1194                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1195                             TreeInfo.hasConstructorCall(tree, names._super)) {
1196                         // enum constructors are not allowed to call super
1197                         // directly, so make sure there aren't any super calls
1198                         // in enum constructors, except in the compiler
1199                         // generated one.
1200                         log.error(tree.body.stats.head.pos(),
1201                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1202                     }
1203                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1204                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1205                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1206                         if (!initParamNames.equals(recordComponentNames)) {
1207                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1208                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1209                         }
1210                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1211                             log.error(tree,
1212                                     Errors.InvalidCanonicalConstructorInRecord(
1213                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1214                                             env.enclClass.sym.name,
1215                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1216                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1217                         }
1218                     }
1219                 }
1220 
1221                 // Attribute all type annotations in the body
1222                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1223                 annotate.flush();
1224 
1225                 // Start of constructor prologue
1226                 localEnv.info.ctorPrologue = isConstructor;
1227 
1228                 // Attribute method body.
1229                 attribStat(tree.body, localEnv);
1230             }
1231 
1232             localEnv.info.scope.leave();
1233             result = tree.type = m.type;
1234         } finally {
1235             chk.setLint(prevLint);
1236             chk.setMethod(prevMethod);
1237             env.info.ctorPrologue = ctorProloguePrev;
1238         }
1239     }
1240 
1241     public void visitVarDef(JCVariableDecl tree) {
1242         // Local variables have not been entered yet, so we need to do it now:
1243         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1244             if (tree.sym != null) {
1245                 // parameters have already been entered
1246                 env.info.scope.enter(tree.sym);
1247             } else {
1248                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1249                     if (tree.init == null) {
1250                         //cannot use 'var' without initializer
1251                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1252                         tree.vartype = make.Erroneous();
1253                     } else {
1254                         Fragment msg = canInferLocalVarType(tree);
1255                         if (msg != null) {
1256                             //cannot use 'var' with initializer which require an explicit target
1257                             //(e.g. lambda, method reference, array initializer).
1258                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1259                             tree.vartype = make.Erroneous();
1260                         }
1261                     }
1262                 }
1263                 try {
1264                     annotate.blockAnnotations();
1265                     memberEnter.memberEnter(tree, env);
1266                 } finally {
1267                     annotate.unblockAnnotations();
1268                 }
1269             }
1270         } else {
1271             if (tree.init != null) {
1272                 // Field initializer expression need to be entered.
1273                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1274                 annotate.flush();
1275             }
1276         }
1277 
1278         VarSymbol v = tree.sym;
1279         Lint lint = env.info.lint.augment(v);
1280         Lint prevLint = chk.setLint(lint);
1281 
1282         // Check that the variable's declared type is well-formed.
1283         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1284                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1285                 (tree.sym.flags() & PARAMETER) != 0;
1286         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1287 
1288         try {
1289             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1290             deferredLintHandler.flush(tree.pos());
1291             chk.checkDeprecatedAnnotation(tree.pos(), v);
1292 
1293             if (tree.init != null) {
1294                 if ((v.flags_field & FINAL) == 0 ||
1295                     !memberEnter.needsLazyConstValue(tree.init)) {
1296                     // Not a compile-time constant
1297                     // Attribute initializer in a new environment
1298                     // with the declared variable as owner.
1299                     // Check that initializer conforms to variable's declared type.
1300                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1301                     initEnv.info.lint = lint;
1302                     // In order to catch self-references, we set the variable's
1303                     // declaration position to maximal possible value, effectively
1304                     // marking the variable as undefined.
1305                     initEnv.info.enclVar = v;
1306                     attribExpr(tree.init, initEnv, v.type);
1307                     if (tree.isImplicitlyTyped()) {
1308                         //fixup local variable type
1309                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);









1310                     }
1311                 }
1312                 if (tree.isImplicitlyTyped()) {
1313                     setSyntheticVariableType(tree, v.type);
1314                 }
1315             }
1316             result = tree.type = v.type;
1317             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1318                 if (isNonArgsMethodInObject(v.name)) {
1319                     log.error(tree, Errors.IllegalRecordComponentName(v));
1320                 }
1321             }
1322         }
1323         finally {
1324             chk.setLint(prevLint);
1325         }
1326     }
1327 
1328     private boolean isNonArgsMethodInObject(Name name) {
1329         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1330             if (s.type.getParameterTypes().isEmpty()) {
1331                 return true;
1332             }
1333         }
1334         return false;
1335     }
1336 
1337     Fragment canInferLocalVarType(JCVariableDecl tree) {
1338         LocalInitScanner lis = new LocalInitScanner();
1339         lis.scan(tree.init);
1340         return lis.badInferenceMsg;
1341     }
1342 
1343     static class LocalInitScanner extends TreeScanner {
1344         Fragment badInferenceMsg = null;
1345         boolean needsTarget = true;
1346 
1347         @Override
1348         public void visitNewArray(JCNewArray tree) {
1349             if (tree.elemtype == null && needsTarget) {
1350                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1351             }
1352         }
1353 
1354         @Override
1355         public void visitLambda(JCLambda tree) {
1356             if (needsTarget) {
1357                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1358             }
1359         }
1360 
1361         @Override
1362         public void visitTypeCast(JCTypeCast tree) {
1363             boolean prevNeedsTarget = needsTarget;
1364             try {
1365                 needsTarget = false;
1366                 super.visitTypeCast(tree);
1367             } finally {
1368                 needsTarget = prevNeedsTarget;
1369             }
1370         }
1371 
1372         @Override
1373         public void visitReference(JCMemberReference tree) {
1374             if (needsTarget) {
1375                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1376             }
1377         }
1378 
1379         @Override
1380         public void visitNewClass(JCNewClass tree) {
1381             boolean prevNeedsTarget = needsTarget;
1382             try {
1383                 needsTarget = false;
1384                 super.visitNewClass(tree);
1385             } finally {
1386                 needsTarget = prevNeedsTarget;
1387             }
1388         }
1389 
1390         @Override
1391         public void visitApply(JCMethodInvocation tree) {
1392             boolean prevNeedsTarget = needsTarget;
1393             try {
1394                 needsTarget = false;
1395                 super.visitApply(tree);
1396             } finally {
1397                 needsTarget = prevNeedsTarget;
1398             }
1399         }
1400     }
1401 
1402     public void visitSkip(JCSkip tree) {
1403         result = null;
1404     }
1405 
1406     public void visitBlock(JCBlock tree) {
1407         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1408             // Block is a static or instance initializer;
1409             // let the owner of the environment be a freshly
1410             // created BLOCK-method.
1411             Symbol fakeOwner =
1412                 new MethodSymbol(tree.flags | BLOCK |
1413                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1414                     env.info.scope.owner);
1415             final Env<AttrContext> localEnv =
1416                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1417 
1418             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;




1419             // Attribute all type annotations in the block
1420             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1421             annotate.flush();
1422             attribStats(tree.stats, localEnv);
1423 
1424             {
1425                 // Store init and clinit type annotations with the ClassSymbol
1426                 // to allow output in Gen.normalizeDefs.
1427                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1428                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1429                 if ((tree.flags & STATIC) != 0) {
1430                     cs.appendClassInitTypeAttributes(tas);
1431                 } else {
1432                     cs.appendInitTypeAttributes(tas);
1433                 }
1434             }
1435         } else {
1436             // Create a new local environment with a local scope.
1437             Env<AttrContext> localEnv =
1438                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1439             try {
1440                 attribStats(tree.stats, localEnv);
1441             } finally {
1442                 localEnv.info.scope.leave();
1443             }
1444         }
1445         result = null;
1446     }
1447 
1448     public void visitDoLoop(JCDoWhileLoop tree) {
1449         attribStat(tree.body, env.dup(tree));
1450         attribExpr(tree.cond, env, syms.booleanType);
1451         handleLoopConditionBindings(matchBindings, tree, tree.body);
1452         result = null;
1453     }
1454 
1455     public void visitWhileLoop(JCWhileLoop tree) {
1456         attribExpr(tree.cond, env, syms.booleanType);
1457         MatchBindings condBindings = matchBindings;
1458         // include condition's bindings when true in the body:
1459         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1460         try {
1461             attribStat(tree.body, whileEnv.dup(tree));
1462         } finally {
1463             whileEnv.info.scope.leave();
1464         }
1465         handleLoopConditionBindings(condBindings, tree, tree.body);
1466         result = null;
1467     }
1468 
1469     public void visitForLoop(JCForLoop tree) {
1470         Env<AttrContext> loopEnv =
1471             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1472         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1473         try {
1474             attribStats(tree.init, loopEnv);
1475             if (tree.cond != null) {
1476                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1477                 // include condition's bindings when true in the body and step:
1478                 condBindings = matchBindings;
1479             }
1480             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1481             try {
1482                 bodyEnv.tree = tree; // before, we were not in loop!
1483                 attribStats(tree.step, bodyEnv);
1484                 attribStat(tree.body, bodyEnv);
1485             } finally {
1486                 bodyEnv.info.scope.leave();
1487             }
1488             result = null;
1489         }
1490         finally {
1491             loopEnv.info.scope.leave();
1492         }
1493         handleLoopConditionBindings(condBindings, tree, tree.body);
1494     }
1495 
1496     /**
1497      * Include condition's bindings when false after the loop, if cannot get out of the loop
1498      */
1499     private void handleLoopConditionBindings(MatchBindings condBindings,
1500                                              JCStatement loop,
1501                                              JCStatement loopBody) {
1502         if (condBindings.bindingsWhenFalse.nonEmpty() &&
1503             !breaksTo(env, loop, loopBody)) {
1504             addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1505         }
1506     }
1507 
1508     private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1509         preFlow(body);
1510         return flow.breaksToTree(env, loop, body, make);
1511     }
1512 
1513     /**
1514      * Add given bindings to the current scope, unless there's a break to
1515      * an immediately enclosing labeled statement.
1516      */
1517     private void addBindings2Scope(JCStatement introducingStatement,
1518                                    List<BindingSymbol> bindings) {
1519         if (bindings.isEmpty()) {
1520             return ;
1521         }
1522 
1523         var searchEnv = env;
1524         while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1525                labeled.body == introducingStatement) {
1526             if (breaksTo(env, labeled, labeled.body)) {
1527                 //breaking to an immediately enclosing labeled statement
1528                 return ;
1529             }
1530             searchEnv = searchEnv.next;
1531             introducingStatement = labeled;
1532         }
1533 
1534         //include condition's body when false after the while, if cannot get out of the loop
1535         bindings.forEach(env.info.scope::enter);
1536         bindings.forEach(BindingSymbol::preserveBinding);
1537     }
1538 
1539     public void visitForeachLoop(JCEnhancedForLoop tree) {
1540         Env<AttrContext> loopEnv =
1541             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1542         try {
1543             //the Formal Parameter of a for-each loop is not in the scope when
1544             //attributing the for-each expression; we mimic this by attributing
1545             //the for-each expression first (against original scope).
1546             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1547             chk.checkNonVoid(tree.pos(), exprType);
1548             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1549             if (elemtype == null) {
1550                 // or perhaps expr implements Iterable<T>?
1551                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1552                 if (base == null) {
1553                     log.error(tree.expr.pos(),
1554                               Errors.ForeachNotApplicableToType(exprType,
1555                                                                 Fragments.TypeReqArrayOrIterable));
1556                     elemtype = types.createErrorType(exprType);
1557                 } else {
1558                     List<Type> iterableParams = base.allparams();
1559                     elemtype = iterableParams.isEmpty()
1560                         ? syms.objectType
1561                         : types.wildUpperBound(iterableParams.head);
1562 
1563                     // Check the return type of the method iterator().
1564                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1565                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1566                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1567                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1568                         log.error(tree.pos(),
1569                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1570                     }
1571                 }
1572             }
1573             if (tree.var.isImplicitlyTyped()) {
1574                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1575                 setSyntheticVariableType(tree.var, inferredType);
1576             }
1577             attribStat(tree.var, loopEnv);
1578             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1579             loopEnv.tree = tree; // before, we were not in loop!
1580             attribStat(tree.body, loopEnv);
1581             result = null;
1582         }
1583         finally {
1584             loopEnv.info.scope.leave();
1585         }
1586     }
1587 
1588     public void visitLabelled(JCLabeledStatement tree) {
1589         // Check that label is not used in an enclosing statement
1590         Env<AttrContext> env1 = env;
1591         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1592             if (env1.tree.hasTag(LABELLED) &&
1593                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1594                 log.error(tree.pos(),
1595                           Errors.LabelAlreadyInUse(tree.label));
1596                 break;
1597             }
1598             env1 = env1.next;
1599         }
1600 
1601         attribStat(tree.body, env.dup(tree));
1602         result = null;
1603     }
1604 
1605     public void visitSwitch(JCSwitch tree) {
1606         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1607             attribStats(c.stats, caseEnv);
1608         });
1609         result = null;
1610     }
1611 
1612     public void visitSwitchExpression(JCSwitchExpression tree) {
1613         boolean wrongContext = false;
1614 
1615         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1616                 PolyKind.STANDALONE : PolyKind.POLY;
1617 
1618         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1619             //this means we are returning a poly conditional from void-compatible lambda expression
1620             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1621             resultInfo = recoveryInfo;
1622             wrongContext = true;
1623         }
1624 
1625         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1626                 unknownExprInfo :
1627                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1628 
1629         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1630         ListBuffer<Type> caseTypes = new ListBuffer<>();
1631 
1632         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1633             caseEnv.info.yieldResult = condInfo;
1634             attribStats(c.stats, caseEnv);
1635             new TreeScanner() {
1636                 @Override
1637                 public void visitYield(JCYield brk) {
1638                     if (brk.target == tree) {
1639                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1640                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1641                     }
1642                     super.visitYield(brk);
1643                 }
1644 
1645                 @Override public void visitClassDef(JCClassDecl tree) {}
1646                 @Override public void visitLambda(JCLambda tree) {}
1647             }.scan(c.stats);
1648         });
1649 
1650         if (tree.cases.isEmpty()) {
1651             log.error(tree.pos(),
1652                       Errors.SwitchExpressionEmpty);
1653         } else if (caseTypes.isEmpty()) {
1654             log.error(tree.pos(),
1655                       Errors.SwitchExpressionNoResultExpressions);
1656         }
1657 
1658         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1659 
1660         result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
1661     }
1662     //where:
1663         CheckContext switchExpressionContext(CheckContext checkContext) {
1664             return new Check.NestedCheckContext(checkContext) {
1665                 //this will use enclosing check context to check compatibility of
1666                 //subexpression against target type; if we are in a method check context,
1667                 //depending on whether boxing is allowed, we could have incompatibilities
1668                 @Override
1669                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1670                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1671                 }
1672             };
1673         }
1674 
1675     private void handleSwitch(JCTree switchTree,
1676                               JCExpression selector,
1677                               List<JCCase> cases,
1678                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1679         Type seltype = attribExpr(selector, env);
1680 
1681         Env<AttrContext> switchEnv =
1682             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1683 
1684         try {
1685             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1686             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1687             boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType);
1688             boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
1689             boolean intSwitch = types.isAssignable(seltype, syms.intType);
1690             boolean patternSwitch;
1691             if (seltype.isPrimitive() && !intSwitch) {
1692                 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
1693                 patternSwitch = true;
1694             }
1695             if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
1696                 !intSwitch) {
1697                 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
1698                 patternSwitch = true;
1699             } else {
1700                 patternSwitch = cases.stream()
1701                                      .flatMap(c -> c.labels.stream())
1702                                      .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
1703                                                     TreeInfo.isNullCaseLabel(l));
1704             }
1705 
1706             // Attribute all cases and
1707             // check that there are no duplicate case labels or default clauses.
1708             Set<Object> constants = new HashSet<>(); // The set of case constants.
1709             boolean hasDefault = false;           // Is there a default label?
1710             boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
1711             boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
1712             boolean hasNullPattern = false;       // Is there a null pattern?
1713             CaseTree.CaseKind caseKind = null;
1714             boolean wasError = false;
1715             JCCaseLabel unconditionalCaseLabel = null;
1716             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1717                 JCCase c = l.head;
1718                 if (caseKind == null) {
1719                     caseKind = c.caseKind;
1720                 } else if (caseKind != c.caseKind && !wasError) {
1721                     log.error(c.pos(),
1722                               Errors.SwitchMixingCaseTypes);
1723                     wasError = true;
1724                 }
1725                 MatchBindings currentBindings = null;
1726                 MatchBindings guardBindings = null;
1727                 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
1728                     JCCaseLabel label = labels.head;
1729                     if (label instanceof JCConstantCaseLabel constLabel) {
1730                         JCExpression expr = constLabel.expr;
1731                         if (TreeInfo.isNull(expr)) {
1732                             preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
1733                             if (hasNullPattern) {
1734                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1735                             }
1736                             hasNullPattern = true;
1737                             attribExpr(expr, switchEnv, seltype);
1738                             matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
1739                         } else if (enumSwitch) {
1740                             Symbol sym = enumConstant(expr, seltype);
1741                             if (sym == null) {
1742                                 if (allowPatternSwitch) {
1743                                     attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1744                                     Symbol enumSym = TreeInfo.symbol(expr);
1745                                     if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
1746                                         log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
1747                                     } else if (!constants.add(enumSym)) {
1748                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1749                                     }
1750                                 } else {
1751                                     log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1752                                 }
1753                             } else if (!constants.add(sym)) {
1754                                 log.error(label.pos(), Errors.DuplicateCaseLabel);
1755                             }
1756                         } else if (errorEnumSwitch) {
1757                             //error recovery: the selector is erroneous, and all the case labels
1758                             //are identifiers. This could be an enum switch - don't report resolve
1759                             //error for the case label:
1760                             var prevResolveHelper = rs.basicLogResolveHelper;
1761                             try {
1762                                 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
1763                                 attribExpr(expr, switchEnv, seltype);
1764                             } finally {
1765                                 rs.basicLogResolveHelper = prevResolveHelper;
1766                             }
1767                         } else {
1768                             Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
1769                             if (!pattype.hasTag(ERROR)) {
1770                                 if (pattype.constValue() == null) {
1771                                     Symbol s = TreeInfo.symbol(expr);
1772                                     if (s != null && s.kind == TYP) {
1773                                         log.error(expr.pos(),
1774                                                   Errors.PatternExpected);
1775                                     } else if (s == null || !s.isEnum()) {
1776                                         log.error(expr.pos(),
1777                                                   (stringSwitch ? Errors.StringConstReq
1778                                                                 : intSwitch ? Errors.ConstExprReq
1779                                                                             : Errors.PatternOrEnumReq));
1780                                     } else if (!constants.add(s)) {
1781                                         log.error(label.pos(), Errors.DuplicateCaseLabel);
1782                                     }
1783                                 }
1784                                 else {
1785                                     if (!stringSwitch && !intSwitch &&
1786                                             !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) &&
1787                                               types.isSameType(types.unboxedTypeOrType(seltype), pattype))) {
1788                                         log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
1789                                     } else if (!constants.add(pattype.constValue())) {
1790                                         log.error(c.pos(), Errors.DuplicateCaseLabel);
1791                                     }
1792                                 }
1793                             }
1794                         }
1795                     } else if (label instanceof JCDefaultCaseLabel def) {
1796                         if (hasDefault) {
1797                             log.error(label.pos(), Errors.DuplicateDefaultLabel);
1798                         } else if (hasUnconditionalPattern) {
1799                             log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
1800                         }  else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1801                             log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
1802                         }
1803                         hasDefault = true;
1804                         matchBindings = MatchBindingsComputer.EMPTY;
1805                     } else if (label instanceof JCPatternCaseLabel patternlabel) {
1806                         //pattern
1807                         JCPattern pat = patternlabel.pat;
1808                         attribExpr(pat, switchEnv, seltype);
1809                         Type primaryType = TreeInfo.primaryPatternType(pat);
1810 
1811                         if (primaryType.isPrimitive()) {
1812                             preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
1813                         } else if (!primaryType.hasTag(TYPEVAR)) {
1814                             primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
1815                         }
1816                         checkCastablePattern(pat.pos(), seltype, primaryType);
1817                         Type patternType = types.erasure(primaryType);
1818                         JCExpression guard = c.guard;
1819                         if (guardBindings == null && guard != null) {
1820                             MatchBindings afterPattern = matchBindings;
1821                             Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
1822                             try {
1823                                 attribExpr(guard, bodyEnv, syms.booleanType);
1824                             } finally {
1825                                 bodyEnv.info.scope.leave();
1826                             }
1827 
1828                             guardBindings = matchBindings;
1829                             matchBindings = afterPattern;
1830 
1831                             if (TreeInfo.isBooleanWithValue(guard, 0)) {
1832                                 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
1833                             }
1834                         }
1835                         boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
1836                         boolean unconditional =
1837                                 unguarded &&
1838                                 !patternType.isErroneous() &&
1839                                 types.isUnconditionallyExact(seltype, patternType);
1840                         if (unconditional) {
1841                             if (hasUnconditionalPattern) {
1842                                 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
1843                             } else if (hasDefault) {
1844                                 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
1845                             } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
1846                                 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
1847                             }
1848                             hasUnconditionalPattern = true;
1849                             unconditionalCaseLabel = label;
1850                         }
1851                         lastPatternErroneous = patternType.isErroneous();
1852                     } else {
1853                         Assert.error();
1854                     }
1855                     currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
1856                 }
1857 
1858                 if (guardBindings != null) {
1859                     currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
1860                 }
1861 
1862                 Env<AttrContext> caseEnv =
1863                         bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
1864                 try {
1865                     attribCase.accept(c, caseEnv);
1866                 } finally {
1867                     caseEnv.info.scope.leave();
1868                 }
1869                 addVars(c.stats, switchEnv.info.scope);
1870 
1871                 preFlow(c);
1872                 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
1873             }
1874             if (patternSwitch) {
1875                 chk.checkSwitchCaseStructure(cases);
1876                 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
1877             }
1878             if (switchTree.hasTag(SWITCH)) {
1879                 ((JCSwitch) switchTree).hasUnconditionalPattern =
1880                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1881                 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
1882             } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
1883                 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
1884                         hasDefault || hasUnconditionalPattern || lastPatternErroneous;
1885                 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
1886             } else {
1887                 Assert.error(switchTree.getTag().name());
1888             }
1889         } finally {
1890             switchEnv.info.scope.leave();
1891         }
1892     }
1893     // where
1894         private ResultInfo caseLabelResultInfo(Type seltype) {
1895             return new ResultInfo(KindSelector.VAL_TYP,
1896                                   !seltype.hasTag(ERROR) ? seltype
1897                                                          : Type.noType);
1898         }
1899         /** Add any variables defined in stats to the switch scope. */
1900         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1901             for (;stats.nonEmpty(); stats = stats.tail) {
1902                 JCTree stat = stats.head;
1903                 if (stat.hasTag(VARDEF))
1904                     switchScope.enter(((JCVariableDecl) stat).sym);
1905             }
1906         }
1907     // where
1908     /** Return the selected enumeration constant symbol, or null. */
1909     private Symbol enumConstant(JCTree tree, Type enumType) {
1910         if (tree.hasTag(IDENT)) {
1911             JCIdent ident = (JCIdent)tree;
1912             Name name = ident.name;
1913             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1914                 if (sym.kind == VAR) {
1915                     Symbol s = ident.sym = sym;
1916                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1917                     ident.type = s.type;
1918                     return ((s.flags_field & Flags.ENUM) == 0)
1919                         ? null : s;
1920                 }
1921             }
1922         }
1923         return null;
1924     }
1925 
1926     public void visitSynchronized(JCSynchronized tree) {
1927         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1928         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {


1929             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1930         }
1931         attribStat(tree.body, env);
1932         result = null;
1933     }
1934         // where
1935         private boolean isValueBased(Type t) {
1936             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1937         }
1938 
1939 
1940     public void visitTry(JCTry tree) {
1941         // Create a new local environment with a local
1942         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1943         try {
1944             boolean isTryWithResource = tree.resources.nonEmpty();
1945             // Create a nested environment for attributing the try block if needed
1946             Env<AttrContext> tryEnv = isTryWithResource ?
1947                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1948                 localEnv;
1949             try {
1950                 // Attribute resource declarations
1951                 for (JCTree resource : tree.resources) {
1952                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1953                         @Override
1954                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1955                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1956                         }
1957                     };
1958                     ResultInfo twrResult =
1959                         new ResultInfo(KindSelector.VAR,
1960                                        syms.autoCloseableType,
1961                                        twrContext);
1962                     if (resource.hasTag(VARDEF)) {
1963                         attribStat(resource, tryEnv);
1964                         twrResult.check(resource, resource.type);
1965 
1966                         //check that resource type cannot throw InterruptedException
1967                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1968 
1969                         VarSymbol var = ((JCVariableDecl) resource).sym;
1970 
1971                         var.flags_field |= Flags.FINAL;
1972                         var.setData(ElementKind.RESOURCE_VARIABLE);
1973                     } else {
1974                         attribTree(resource, tryEnv, twrResult);
1975                     }
1976                 }
1977                 // Attribute body
1978                 attribStat(tree.body, tryEnv);
1979             } finally {
1980                 if (isTryWithResource)
1981                     tryEnv.info.scope.leave();
1982             }
1983 
1984             // Attribute catch clauses
1985             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1986                 JCCatch c = l.head;
1987                 Env<AttrContext> catchEnv =
1988                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1989                 try {
1990                     Type ctype = attribStat(c.param, catchEnv);
1991                     if (TreeInfo.isMultiCatch(c)) {
1992                         //multi-catch parameter is implicitly marked as final
1993                         c.param.sym.flags_field |= FINAL | UNION;
1994                     }
1995                     if (c.param.sym.kind == VAR) {
1996                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1997                     }
1998                     chk.checkType(c.param.vartype.pos(),
1999                                   chk.checkClassType(c.param.vartype.pos(), ctype),
2000                                   syms.throwableType);
2001                     attribStat(c.body, catchEnv);
2002                 } finally {
2003                     catchEnv.info.scope.leave();
2004                 }
2005             }
2006 
2007             // Attribute finalizer
2008             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2009             result = null;
2010         }
2011         finally {
2012             localEnv.info.scope.leave();
2013         }
2014     }
2015 
2016     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2017         if (!resource.isErroneous() &&
2018             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2019             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2020             Symbol close = syms.noSymbol;
2021             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
2022             try {
2023                 close = rs.resolveQualifiedMethod(pos,
2024                         env,
2025                         types.skipTypeVars(resource, false),
2026                         names.close,
2027                         List.nil(),
2028                         List.nil());
2029             }
2030             finally {
2031                 log.popDiagnosticHandler(discardHandler);
2032             }
2033             if (close.kind == MTH &&
2034                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2035                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2036                     env.info.lint.isEnabled(LintCategory.TRY)) {
2037                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2038             }
2039         }
2040     }
2041 
2042     public void visitConditional(JCConditional tree) {
2043         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2044         MatchBindings condBindings = matchBindings;
2045 
2046         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2047                 isBooleanOrNumeric(env, tree)) ?
2048                 PolyKind.STANDALONE : PolyKind.POLY;
2049 
2050         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2051             //this means we are returning a poly conditional from void-compatible lambda expression
2052             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2053             result = tree.type = types.createErrorType(resultInfo.pt);
2054             return;
2055         }
2056 
2057         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2058                 unknownExprInfo :
2059                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2060 
2061 
2062         // x ? y : z
2063         // include x's bindings when true in y
2064         // include x's bindings when false in z
2065 
2066         Type truetype;
2067         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2068         try {
2069             truetype = attribTree(tree.truepart, trueEnv, condInfo);
2070         } finally {
2071             trueEnv.info.scope.leave();
2072         }
2073 
2074         MatchBindings trueBindings = matchBindings;
2075 
2076         Type falsetype;
2077         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2078         try {
2079             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2080         } finally {
2081             falseEnv.info.scope.leave();
2082         }
2083 
2084         MatchBindings falseBindings = matchBindings;
2085 
2086         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2087                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2088                          List.of(truetype, falsetype)) : pt();
2089         if (condtype.constValue() != null &&
2090                 truetype.constValue() != null &&
2091                 falsetype.constValue() != null &&
2092                 !owntype.hasTag(NONE)) {
2093             //constant folding
2094             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2095         }
2096         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2097         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2098     }
2099     //where
2100         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2101             switch (tree.getTag()) {
2102                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2103                               ((JCLiteral)tree).typetag == BOOLEAN ||
2104                               ((JCLiteral)tree).typetag == BOT;
2105                 case LAMBDA: case REFERENCE: return false;
2106                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2107                 case CONDEXPR:
2108                     JCConditional condTree = (JCConditional)tree;
2109                     return isBooleanOrNumeric(env, condTree.truepart) &&
2110                             isBooleanOrNumeric(env, condTree.falsepart);
2111                 case APPLY:
2112                     JCMethodInvocation speculativeMethodTree =
2113                             (JCMethodInvocation)deferredAttr.attribSpeculative(
2114                                     tree, env, unknownExprInfo,
2115                                     argumentAttr.withLocalCacheContext());
2116                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2117                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2118                             env.enclClass.type :
2119                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2120                     Type owntype = types.memberType(receiverType, msym).getReturnType();
2121                     return primitiveOrBoxed(owntype);
2122                 case NEWCLASS:
2123                     JCExpression className =
2124                             removeClassParams.translate(((JCNewClass)tree).clazz);
2125                     JCExpression speculativeNewClassTree =
2126                             (JCExpression)deferredAttr.attribSpeculative(
2127                                     className, env, unknownTypeInfo,
2128                                     argumentAttr.withLocalCacheContext());
2129                     return primitiveOrBoxed(speculativeNewClassTree.type);
2130                 default:
2131                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2132                             argumentAttr.withLocalCacheContext()).type;
2133                     return primitiveOrBoxed(speculativeType);
2134             }
2135         }
2136         //where
2137             boolean primitiveOrBoxed(Type t) {
2138                 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2139             }
2140 
2141             TreeTranslator removeClassParams = new TreeTranslator() {
2142                 @Override
2143                 public void visitTypeApply(JCTypeApply tree) {
2144                     result = translate(tree.clazz);
2145                 }
2146             };
2147 
2148         CheckContext conditionalContext(CheckContext checkContext) {
2149             return new Check.NestedCheckContext(checkContext) {
2150                 //this will use enclosing check context to check compatibility of
2151                 //subexpression against target type; if we are in a method check context,
2152                 //depending on whether boxing is allowed, we could have incompatibilities
2153                 @Override
2154                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2155                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2156                 }
2157             };
2158         }
2159 
2160         /** Compute the type of a conditional expression, after
2161          *  checking that it exists.  See JLS 15.25. Does not take into
2162          *  account the special case where condition and both arms
2163          *  are constants.
2164          *
2165          *  @param pos      The source position to be used for error
2166          *                  diagnostics.
2167          *  @param thentype The type of the expression's then-part.
2168          *  @param elsetype The type of the expression's else-part.
2169          */
2170         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2171             if (condTypes.isEmpty()) {
2172                 return syms.objectType; //TODO: how to handle?
2173             }
2174             Type first = condTypes.head;
2175             // If same type, that is the result
2176             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2177                 return first.baseType();
2178 
2179             List<Type> unboxedTypes = condTypes.stream()
2180                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2181                                                .collect(List.collector());
2182 
2183             // Otherwise, if both arms can be converted to a numeric
2184             // type, return the least numeric type that fits both arms
2185             // (i.e. return larger of the two, or return int if one
2186             // arm is short, the other is char).
2187             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2188                 // If one arm has an integer subrange type (i.e., byte,
2189                 // short, or char), and the other is an integer constant
2190                 // that fits into the subrange, return the subrange type.
2191                 for (Type type : unboxedTypes) {
2192                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2193                         continue;
2194                     }
2195                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2196                         return type.baseType();
2197                 }
2198 
2199                 for (TypeTag tag : primitiveTags) {
2200                     Type candidate = syms.typeOfTag[tag.ordinal()];
2201                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2202                         return candidate;
2203                     }
2204                 }
2205             }
2206 
2207             // Those were all the cases that could result in a primitive
2208             condTypes = condTypes.stream()
2209                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2210                                  .collect(List.collector());
2211 
2212             for (Type type : condTypes) {
2213                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2214                     return type.baseType();
2215             }
2216 
2217             Iterator<DiagnosticPosition> posIt = positions.iterator();
2218 
2219             condTypes = condTypes.stream()
2220                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2221                                  .collect(List.collector());
2222 
2223             // both are known to be reference types.  The result is
2224             // lub(thentype,elsetype). This cannot fail, as it will
2225             // always be possible to infer "Object" if nothing better.
2226             return types.lub(condTypes.stream()
2227                         .map(t -> t.baseType())
2228                         .filter(t -> !t.hasTag(BOT))
2229                         .collect(List.collector()));
2230         }
2231 
2232     static final TypeTag[] primitiveTags = new TypeTag[]{
2233         BYTE,
2234         CHAR,
2235         SHORT,
2236         INT,
2237         LONG,
2238         FLOAT,
2239         DOUBLE,
2240         BOOLEAN,
2241     };
2242 
2243     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2244         return bindingEnv(env, env.tree, bindings);
2245     }
2246 
2247     Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2248         Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2249         bindings.forEach(env1.info.scope::enter);
2250         return env1;
2251     }
2252 
2253     public void visitIf(JCIf tree) {
2254         attribExpr(tree.cond, env, syms.booleanType);
2255 
2256         // if (x) { y } [ else z ]
2257         // include x's bindings when true in y
2258         // include x's bindings when false in z
2259 
2260         MatchBindings condBindings = matchBindings;
2261         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2262 
2263         try {
2264             attribStat(tree.thenpart, thenEnv);
2265         } finally {
2266             thenEnv.info.scope.leave();
2267         }
2268 
2269         preFlow(tree.thenpart);
2270         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2271         boolean aliveAfterElse;
2272 
2273         if (tree.elsepart != null) {
2274             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2275             try {
2276                 attribStat(tree.elsepart, elseEnv);
2277             } finally {
2278                 elseEnv.info.scope.leave();
2279             }
2280             preFlow(tree.elsepart);
2281             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2282         } else {
2283             aliveAfterElse = true;
2284         }
2285 
2286         chk.checkEmptyIf(tree);
2287 
2288         List<BindingSymbol> afterIfBindings = List.nil();
2289 
2290         if (aliveAfterThen && !aliveAfterElse) {
2291             afterIfBindings = condBindings.bindingsWhenTrue;
2292         } else if (aliveAfterElse && !aliveAfterThen) {
2293             afterIfBindings = condBindings.bindingsWhenFalse;
2294         }
2295 
2296         addBindings2Scope(tree, afterIfBindings);
2297 
2298         result = null;
2299     }
2300 
2301         void preFlow(JCTree tree) {
2302             attrRecover.doRecovery();
2303             new PostAttrAnalyzer() {
2304                 @Override
2305                 public void scan(JCTree tree) {
2306                     if (tree == null ||
2307                             (tree.type != null &&
2308                             tree.type == Type.stuckType)) {
2309                         //don't touch stuck expressions!
2310                         return;
2311                     }
2312                     super.scan(tree);
2313                 }
2314 
2315                 @Override
2316                 public void visitClassDef(JCClassDecl that) {
2317                     if (that.sym != null) {
2318                         // Method preFlow shouldn't visit class definitions
2319                         // that have not been entered and attributed.
2320                         // See JDK-8254557 and JDK-8203277 for more details.
2321                         super.visitClassDef(that);
2322                     }
2323                 }
2324 
2325                 @Override
2326                 public void visitLambda(JCLambda that) {
2327                     if (that.type != null) {
2328                         // Method preFlow shouldn't visit lambda expressions
2329                         // that have not been entered and attributed.
2330                         // See JDK-8254557 and JDK-8203277 for more details.
2331                         super.visitLambda(that);
2332                     }
2333                 }
2334             }.scan(tree);
2335         }
2336 
2337     public void visitExec(JCExpressionStatement tree) {
2338         //a fresh environment is required for 292 inference to work properly ---
2339         //see Infer.instantiatePolymorphicSignatureInstance()
2340         Env<AttrContext> localEnv = env.dup(tree);
2341         attribExpr(tree.expr, localEnv);
2342         result = null;
2343     }
2344 
2345     public void visitBreak(JCBreak tree) {
2346         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2347         result = null;
2348     }
2349 
2350     public void visitYield(JCYield tree) {
2351         if (env.info.yieldResult != null) {
2352             attribTree(tree.value, env, env.info.yieldResult);
2353             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2354         } else {
2355             log.error(tree.pos(), tree.value.hasTag(PARENS)
2356                     ? Errors.NoSwitchExpressionQualify
2357                     : Errors.NoSwitchExpression);
2358             attribTree(tree.value, env, unknownExprInfo);
2359         }
2360         result = null;
2361     }
2362 
2363     public void visitContinue(JCContinue tree) {
2364         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2365         result = null;
2366     }
2367     //where
2368         /** Return the target of a break, continue or yield statement,
2369          *  if it exists, report an error if not.
2370          *  Note: The target of a labelled break or continue is the
2371          *  (non-labelled) statement tree referred to by the label,
2372          *  not the tree representing the labelled statement itself.
2373          *
2374          *  @param pos     The position to be used for error diagnostics
2375          *  @param tag     The tag of the jump statement. This is either
2376          *                 Tree.BREAK or Tree.CONTINUE.
2377          *  @param label   The label of the jump statement, or null if no
2378          *                 label is given.
2379          *  @param env     The environment current at the jump statement.
2380          */
2381         private JCTree findJumpTarget(DiagnosticPosition pos,
2382                                                    JCTree.Tag tag,
2383                                                    Name label,
2384                                                    Env<AttrContext> env) {
2385             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2386 
2387             if (jumpTarget.snd != null) {
2388                 log.error(pos, jumpTarget.snd);
2389             }
2390 
2391             return jumpTarget.fst;
2392         }
2393         /** Return the target of a break or continue statement, if it exists,
2394          *  report an error if not.
2395          *  Note: The target of a labelled break or continue is the
2396          *  (non-labelled) statement tree referred to by the label,
2397          *  not the tree representing the labelled statement itself.
2398          *
2399          *  @param tag     The tag of the jump statement. This is either
2400          *                 Tree.BREAK or Tree.CONTINUE.
2401          *  @param label   The label of the jump statement, or null if no
2402          *                 label is given.
2403          *  @param env     The environment current at the jump statement.
2404          */
2405         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2406                                                                        Name label,
2407                                                                        Env<AttrContext> env) {
2408             // Search environments outwards from the point of jump.
2409             Env<AttrContext> env1 = env;
2410             JCDiagnostic.Error pendingError = null;
2411             LOOP:
2412             while (env1 != null) {
2413                 switch (env1.tree.getTag()) {
2414                     case LABELLED:
2415                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2416                         if (label == labelled.label) {
2417                             // If jump is a continue, check that target is a loop.
2418                             if (tag == CONTINUE) {
2419                                 if (!labelled.body.hasTag(DOLOOP) &&
2420                                         !labelled.body.hasTag(WHILELOOP) &&
2421                                         !labelled.body.hasTag(FORLOOP) &&
2422                                         !labelled.body.hasTag(FOREACHLOOP)) {
2423                                     pendingError = Errors.NotLoopLabel(label);
2424                                 }
2425                                 // Found labelled statement target, now go inwards
2426                                 // to next non-labelled tree.
2427                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2428                             } else {
2429                                 return Pair.of(labelled, pendingError);
2430                             }
2431                         }
2432                         break;
2433                     case DOLOOP:
2434                     case WHILELOOP:
2435                     case FORLOOP:
2436                     case FOREACHLOOP:
2437                         if (label == null) return Pair.of(env1.tree, pendingError);
2438                         break;
2439                     case SWITCH:
2440                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2441                         break;
2442                     case SWITCH_EXPRESSION:
2443                         if (tag == YIELD) {
2444                             return Pair.of(env1.tree, null);
2445                         } else if (tag == BREAK) {
2446                             pendingError = Errors.BreakOutsideSwitchExpression;
2447                         } else {
2448                             pendingError = Errors.ContinueOutsideSwitchExpression;
2449                         }
2450                         break;
2451                     case LAMBDA:
2452                     case METHODDEF:
2453                     case CLASSDEF:
2454                         break LOOP;
2455                     default:
2456                 }
2457                 env1 = env1.next;
2458             }
2459             if (label != null)
2460                 return Pair.of(null, Errors.UndefLabel(label));
2461             else if (pendingError != null)
2462                 return Pair.of(null, pendingError);
2463             else if (tag == CONTINUE)
2464                 return Pair.of(null, Errors.ContOutsideLoop);
2465             else
2466                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2467         }
2468 
2469     public void visitReturn(JCReturn tree) {
2470         // Check that there is an enclosing method which is
2471         // nested within than the enclosing class.
2472         if (env.info.returnResult == null) {
2473             log.error(tree.pos(), Errors.RetOutsideMeth);
2474         } else if (env.info.yieldResult != null) {
2475             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2476         } else if (!env.info.isLambda &&
2477                 !env.info.isNewClass &&
2478                 env.enclMethod != null &&
2479                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2480             log.error(env.enclMethod,
2481                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2482         } else {
2483             // Attribute return expression, if it exists, and check that
2484             // it conforms to result type of enclosing method.
2485             if (tree.expr != null) {
2486                 if (env.info.returnResult.pt.hasTag(VOID)) {
2487                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2488                               diags.fragment(Fragments.UnexpectedRetVal));
2489                 }
2490                 attribTree(tree.expr, env, env.info.returnResult);
2491             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2492                     !env.info.returnResult.pt.hasTag(NONE)) {
2493                 env.info.returnResult.checkContext.report(tree.pos(),
2494                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2495             }
2496         }
2497         result = null;
2498     }
2499 
2500     public void visitThrow(JCThrow tree) {
2501         Type owntype = attribExpr(tree.expr, env, Type.noType);
2502         chk.checkType(tree, owntype, syms.throwableType);
2503         result = null;
2504     }
2505 
2506     public void visitAssert(JCAssert tree) {
2507         attribExpr(tree.cond, env, syms.booleanType);
2508         if (tree.detail != null) {
2509             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2510         }
2511         result = null;
2512     }
2513 
2514      /** Visitor method for method invocations.
2515      *  NOTE: The method part of an application will have in its type field
2516      *        the return type of the method, not the method's type itself!
2517      */
2518     public void visitApply(JCMethodInvocation tree) {
2519         // The local environment of a method application is
2520         // a new environment nested in the current one.
2521         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2522 
2523         // The types of the actual method arguments.
2524         List<Type> argtypes;
2525 
2526         // The types of the actual method type arguments.
2527         List<Type> typeargtypes = null;
2528 
2529         Name methName = TreeInfo.name(tree.meth);
2530 
2531         boolean isConstructorCall =
2532             methName == names._this || methName == names._super;
2533 
2534         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2535         if (isConstructorCall) {
2536 
2537             // Attribute arguments, yielding list of argument types.
2538             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2539             argtypes = argtypesBuf.toList();
2540             typeargtypes = attribTypes(tree.typeargs, localEnv);
2541 
2542             // Done with this()/super() parameters. End of constructor prologue.
2543             env.info.ctorPrologue = false;
2544 
2545             // Variable `site' points to the class in which the called
2546             // constructor is defined.
2547             Type site = env.enclClass.sym.type;
2548             if (methName == names._super) {
2549                 if (site == syms.objectType) {
2550                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2551                     site = types.createErrorType(syms.objectType);
2552                 } else {
2553                     site = types.supertype(site);
2554                 }
2555             }
2556 
2557             if (site.hasTag(CLASS)) {
2558                 Type encl = site.getEnclosingType();
2559                 while (encl != null && encl.hasTag(TYPEVAR))
2560                     encl = encl.getUpperBound();
2561                 if (encl.hasTag(CLASS)) {
2562                     // we are calling a nested class
2563 
2564                     if (tree.meth.hasTag(SELECT)) {
2565                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2566 
2567                         // We are seeing a prefixed call, of the form
2568                         //     <expr>.super(...).
2569                         // Check that the prefix expression conforms
2570                         // to the outer instance type of the class.
2571                         chk.checkRefType(qualifier.pos(),
2572                                          attribExpr(qualifier, localEnv,
2573                                                     encl));
2574                     } else if (methName == names._super) {
2575                         // qualifier omitted; check for existence
2576                         // of an appropriate implicit qualifier.
2577                         rs.resolveImplicitThis(tree.meth.pos(),
2578                                                localEnv, site, true);
2579                     }
2580                 } else if (tree.meth.hasTag(SELECT)) {
2581                     log.error(tree.meth.pos(),
2582                               Errors.IllegalQualNotIcls(site.tsym));
2583                     attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2584                 }
2585 
2586                 // if we're calling a java.lang.Enum constructor,
2587                 // prefix the implicit String and int parameters
2588                 if (site.tsym == syms.enumSym)
2589                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2590 
2591                 // Resolve the called constructor under the assumption
2592                 // that we are referring to a superclass instance of the
2593                 // current instance (JLS ???).
2594                 boolean selectSuperPrev = localEnv.info.selectSuper;
2595                 localEnv.info.selectSuper = true;
2596                 localEnv.info.pendingResolutionPhase = null;
2597                 Symbol sym = rs.resolveConstructor(
2598                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2599                 localEnv.info.selectSuper = selectSuperPrev;
2600 
2601                 // Set method symbol to resolved constructor...
2602                 TreeInfo.setSymbol(tree.meth, sym);
2603 
2604                 // ...and check that it is legal in the current context.
2605                 // (this will also set the tree's type)
2606                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2607                 checkId(tree.meth, site, sym, localEnv,
2608                         new ResultInfo(kind, mpt));
2609             } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
2610                 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2611             }
2612             // Otherwise, `site' is an error type and we do nothing
2613             result = tree.type = syms.voidType;
2614         } else {
2615             // Otherwise, we are seeing a regular method call.
2616             // Attribute the arguments, yielding list of argument types, ...
2617             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2618             argtypes = argtypesBuf.toList();
2619             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2620 
2621             // ... and attribute the method using as a prototype a methodtype
2622             // whose formal argument types is exactly the list of actual
2623             // arguments (this will also set the method symbol).
2624             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2625             localEnv.info.pendingResolutionPhase = null;
2626             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2627 
2628             // Compute the result type.
2629             Type restype = mtype.getReturnType();
2630             if (restype.hasTag(WILDCARD))
2631                 throw new AssertionError(mtype);
2632 
2633             Type qualifier = (tree.meth.hasTag(SELECT))
2634                     ? ((JCFieldAccess) tree.meth).selected.type
2635                     : env.enclClass.sym.type;
2636             Symbol msym = TreeInfo.symbol(tree.meth);
2637             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2638 
2639             chk.checkRefTypes(tree.typeargs, typeargtypes);
2640 
2641             // Check that value of resulting type is admissible in the
2642             // current context.  Also, capture the return type
2643             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2644             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2645         }
2646         chk.validate(tree.typeargs, localEnv);
2647     }
2648     //where
2649         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2650             if (msym != null &&
2651                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2652                     methodName == names.getClass &&
2653                     argtypes.isEmpty()) {
2654                 // as a special case, x.getClass() has type Class<? extends |X|>
2655                 return new ClassType(restype.getEnclosingType(),
2656                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2657                                 BoundKind.EXTENDS,
2658                                 syms.boundClass)),
2659                         restype.tsym,
2660                         restype.getMetadata());
2661             } else if (msym != null &&
2662                     msym.owner == syms.arrayClass &&
2663                     methodName == names.clone &&
2664                     types.isArray(qualifierType)) {
2665                 // as a special case, array.clone() has a result that is
2666                 // the same as static type of the array being cloned
2667                 return qualifierType;
2668             } else {
2669                 return restype;
2670             }
2671         }
2672 
2673         /** Obtain a method type with given argument types.
2674          */
2675         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2676             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2677             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2678         }
2679 
2680     public void visitNewClass(final JCNewClass tree) {
2681         Type owntype = types.createErrorType(tree.type);
2682 
2683         // The local environment of a class creation is
2684         // a new environment nested in the current one.
2685         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2686 
2687         // The anonymous inner class definition of the new expression,
2688         // if one is defined by it.
2689         JCClassDecl cdef = tree.def;
2690 
2691         // If enclosing class is given, attribute it, and
2692         // complete class name to be fully qualified
2693         JCExpression clazz = tree.clazz; // Class field following new
2694         JCExpression clazzid;            // Identifier in class field
2695         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2696         annoclazzid = null;
2697 
2698         if (clazz.hasTag(TYPEAPPLY)) {
2699             clazzid = ((JCTypeApply) clazz).clazz;
2700             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2701                 annoclazzid = (JCAnnotatedType) clazzid;
2702                 clazzid = annoclazzid.underlyingType;
2703             }
2704         } else {
2705             if (clazz.hasTag(ANNOTATED_TYPE)) {
2706                 annoclazzid = (JCAnnotatedType) clazz;
2707                 clazzid = annoclazzid.underlyingType;
2708             } else {
2709                 clazzid = clazz;
2710             }
2711         }
2712 
2713         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2714 
2715         if (tree.encl != null) {
2716             // We are seeing a qualified new, of the form
2717             //    <expr>.new C <...> (...) ...
2718             // In this case, we let clazz stand for the name of the
2719             // allocated class C prefixed with the type of the qualifier
2720             // expression, so that we can
2721             // resolve it with standard techniques later. I.e., if
2722             // <expr> has type T, then <expr>.new C <...> (...)
2723             // yields a clazz T.C.
2724             Type encltype = chk.checkRefType(tree.encl.pos(),
2725                                              attribExpr(tree.encl, env));
2726             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2727             // from expr to the combined type, or not? Yes, do this.
2728             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2729                                                  ((JCIdent) clazzid).name);
2730 
2731             EndPosTable endPosTable = this.env.toplevel.endPositions;
2732             endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
2733             if (clazz.hasTag(ANNOTATED_TYPE)) {
2734                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2735                 List<JCAnnotation> annos = annoType.annotations;
2736 
2737                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2738                     clazzid1 = make.at(tree.pos).
2739                         TypeApply(clazzid1,
2740                                   ((JCTypeApply) clazz).arguments);
2741                 }
2742 
2743                 clazzid1 = make.at(tree.pos).
2744                     AnnotatedType(annos, clazzid1);
2745             } else if (clazz.hasTag(TYPEAPPLY)) {
2746                 clazzid1 = make.at(tree.pos).
2747                     TypeApply(clazzid1,
2748                               ((JCTypeApply) clazz).arguments);
2749             }
2750 
2751             clazz = clazzid1;
2752         }
2753 
2754         // Attribute clazz expression and store
2755         // symbol + type back into the attributed tree.
2756         Type clazztype;
2757 
2758         try {
2759             env.info.isNewClass = true;
2760             clazztype = TreeInfo.isEnumInit(env.tree) ?
2761                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2762                 attribType(clazz, env);
2763         } finally {
2764             env.info.isNewClass = false;
2765         }
2766 
2767         clazztype = chk.checkDiamond(tree, clazztype);
2768         chk.validate(clazz, localEnv);
2769         if (tree.encl != null) {
2770             // We have to work in this case to store
2771             // symbol + type back into the attributed tree.
2772             tree.clazz.type = clazztype;
2773             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2774             clazzid.type = ((JCIdent) clazzid).sym.type;
2775             if (annoclazzid != null) {
2776                 annoclazzid.type = clazzid.type;
2777             }
2778             if (!clazztype.isErroneous()) {
2779                 if (cdef != null && clazztype.tsym.isInterface()) {
2780                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2781                 } else if (clazztype.tsym.isStatic()) {
2782                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2783                 }
2784             }
2785         } else if (!clazztype.tsym.isInterface() &&
2786                    clazztype.getEnclosingType().hasTag(CLASS)) {
2787             // Check for the existence of an apropos outer instance
2788             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2789         }
2790 
2791         // Attribute constructor arguments.
2792         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2793         final KindSelector pkind =
2794             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2795         List<Type> argtypes = argtypesBuf.toList();
2796         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2797 
2798         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2799             // Enums may not be instantiated except implicitly
2800             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2801                 (!env.tree.hasTag(VARDEF) ||
2802                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2803                  ((JCVariableDecl) env.tree).init != tree))
2804                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2805 
2806             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2807                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2808             boolean skipNonDiamondPath = false;
2809             // Check that class is not abstract
2810             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2811                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2812                 log.error(tree.pos(),
2813                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2814                 skipNonDiamondPath = true;
2815             } else if (cdef != null && clazztype.tsym.isInterface()) {
2816                 // Check that no constructor arguments are given to
2817                 // anonymous classes implementing an interface
2818                 if (!argtypes.isEmpty())
2819                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2820 
2821                 if (!typeargtypes.isEmpty())
2822                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2823 
2824                 // Error recovery: pretend no arguments were supplied.
2825                 argtypes = List.nil();
2826                 typeargtypes = List.nil();
2827                 skipNonDiamondPath = true;
2828             }
2829             if (TreeInfo.isDiamond(tree)) {
2830                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2831                             clazztype.tsym.type.getTypeArguments(),
2832                                                clazztype.tsym,
2833                                                clazztype.getMetadata());
2834 
2835                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2836                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2837                 diamondEnv.info.pendingResolutionPhase = null;
2838 
2839                 //if the type of the instance creation expression is a class type
2840                 //apply method resolution inference (JLS 15.12.2.7). The return type
2841                 //of the resolved constructor will be a partially instantiated type
2842                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2843                             diamondEnv,
2844                             site,
2845                             argtypes,
2846                             typeargtypes);
2847                 tree.constructor = constructor.baseSymbol();
2848 
2849                 final TypeSymbol csym = clazztype.tsym;
2850                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2851                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2852                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2853                 constructorType = checkId(tree, site,
2854                         constructor,
2855                         diamondEnv,
2856                         diamondResult);
2857 
2858                 tree.clazz.type = types.createErrorType(clazztype);
2859                 if (!constructorType.isErroneous()) {
2860                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2861                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2862                 }
2863                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2864             }
2865 
2866             // Resolve the called constructor under the assumption
2867             // that we are referring to a superclass instance of the
2868             // current instance (JLS ???).
2869             else if (!skipNonDiamondPath) {
2870                 //the following code alters some of the fields in the current
2871                 //AttrContext - hence, the current context must be dup'ed in
2872                 //order to avoid downstream failures
2873                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2874                 rsEnv.info.selectSuper = cdef != null;
2875                 rsEnv.info.pendingResolutionPhase = null;
2876                 tree.constructor = rs.resolveConstructor(
2877                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2878                 if (cdef == null) { //do not check twice!
2879                     tree.constructorType = checkId(tree,
2880                             clazztype,
2881                             tree.constructor,
2882                             rsEnv,
2883                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2884                     if (rsEnv.info.lastResolveVarargs())
2885                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2886                 }
2887             }
2888 
2889             if (cdef != null) {
2890                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2891                 return;
2892             }
2893 
2894             if (tree.constructor != null && tree.constructor.kind == MTH)
2895                 owntype = clazztype;
2896         }
2897         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2898         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2899         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2900             //we need to wait for inference to finish and then replace inference vars in the constructor type
2901             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2902                     instantiatedContext -> {
2903                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2904                     });
2905         }
2906         chk.validate(tree.typeargs, localEnv);
2907     }
2908 
2909         // where
2910         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2911                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2912                                                    List<Type> argtypes, List<Type> typeargtypes,
2913                                                    KindSelector pkind) {
2914             // We are seeing an anonymous class instance creation.
2915             // In this case, the class instance creation
2916             // expression
2917             //
2918             //    E.new <typeargs1>C<typargs2>(args) { ... }
2919             //
2920             // is represented internally as
2921             //
2922             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2923             //
2924             // This expression is then *transformed* as follows:
2925             //
2926             // (1) add an extends or implements clause
2927             // (2) add a constructor.
2928             //
2929             // For instance, if C is a class, and ET is the type of E,
2930             // the expression
2931             //
2932             //    E.new <typeargs1>C<typargs2>(args) { ... }
2933             //
2934             // is translated to (where X is a fresh name and typarams is the
2935             // parameter list of the super constructor):
2936             //
2937             //   new <typeargs1>X(<*nullchk*>E, args) where
2938             //     X extends C<typargs2> {
2939             //       <typarams> X(ET e, args) {
2940             //         e.<typeargs1>super(args)
2941             //       }
2942             //       ...
2943             //     }
2944             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2945             Type enclType = clazztype.getEnclosingType();
2946             if (enclType != null &&
2947                     enclType.hasTag(CLASS) &&
2948                     !chk.checkDenotable((ClassType)enclType)) {
2949                 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
2950             }
2951             final boolean isDiamond = TreeInfo.isDiamond(tree);
2952             if (isDiamond
2953                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2954                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2955                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2956                 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
2957                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2958                         instantiatedContext -> {
2959                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2960                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2961                             ResultInfo prevResult = this.resultInfo;
2962                             try {
2963                                 this.resultInfo = resultInfoForClassDefinition;
2964                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2965                                         dupLocalEnv, argtypes, typeargtypes, pkind);
2966                             } finally {
2967                                 this.resultInfo = prevResult;
2968                             }
2969                         });
2970             } else {
2971                 if (isDiamond && clazztype.hasTag(CLASS)) {
2972                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2973                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2974                         // One or more types inferred in the previous steps is non-denotable.
2975                         Fragment fragment = Diamond(clazztype.tsym);
2976                         log.error(tree.clazz.pos(),
2977                                 Errors.CantApplyDiamond1(
2978                                         fragment,
2979                                         invalidDiamondArgs.size() > 1 ?
2980                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2981                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2982                     }
2983                     // For <>(){}, inferred types must also be accessible.
2984                     for (Type t : clazztype.getTypeArguments()) {
2985                         rs.checkAccessibleType(env, t);
2986                     }
2987                 }
2988 
2989                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2990                 // false for isInterface call even when the original type is an interface.
2991                 boolean implementing = clazztype.tsym.isInterface() ||
2992                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2993                         clazztype.getOriginalType().tsym.isInterface();
2994 
2995                 if (implementing) {
2996                     cdef.implementing = List.of(clazz);
2997                 } else {
2998                     cdef.extending = clazz;
2999                 }
3000 
3001                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3002                     rs.isSerializable(clazztype)) {
3003                     localEnv.info.isSerializable = true;
3004                 }
3005 
3006                 attribStat(cdef, localEnv);
3007 
3008                 List<Type> finalargtypes;
3009                 // If an outer instance is given,
3010                 // prefix it to the constructor arguments
3011                 // and delete it from the new expression
3012                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3013                     finalargtypes = argtypes.prepend(tree.encl.type);
3014                 } else {
3015                     finalargtypes = argtypes;
3016                 }
3017 
3018                 // Reassign clazztype and recompute constructor. As this necessarily involves
3019                 // another attribution pass for deferred types in the case of <>, replicate
3020                 // them. Original arguments have right decorations already.
3021                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3022                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3023                 }
3024 
3025                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3026                                                     : cdef.sym.type;
3027                 Symbol sym = tree.constructor = rs.resolveConstructor(
3028                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3029                 Assert.check(!sym.kind.isResolutionError());
3030                 tree.constructor = sym;
3031                 tree.constructorType = checkId(tree,
3032                         clazztype,
3033                         tree.constructor,
3034                         localEnv,
3035                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3036             }
3037             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3038                                 clazztype : types.createErrorType(tree.type);
3039             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3040             chk.validate(tree.typeargs, localEnv);
3041         }
3042 
3043         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3044             return new Check.NestedCheckContext(checkContext) {
3045                 @Override
3046                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3047                     enclosingContext.report(clazz.clazz,
3048                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3049                 }
3050             };
3051         }
3052 
3053     /** Make an attributed null check tree.
3054      */
3055     public JCExpression makeNullCheck(JCExpression arg) {
3056         // optimization: new Outer() can never be null; skip null check
3057         if (arg.getTag() == NEWCLASS)
3058             return arg;
3059         // optimization: X.this is never null; skip null check
3060         Name name = TreeInfo.name(arg);
3061         if (name == names._this || name == names._super) return arg;
3062 
3063         JCTree.Tag optag = NULLCHK;
3064         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3065         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3066         tree.type = arg.type;
3067         return tree;
3068     }
3069 
3070     public void visitNewArray(JCNewArray tree) {
3071         Type owntype = types.createErrorType(tree.type);
3072         Env<AttrContext> localEnv = env.dup(tree);
3073         Type elemtype;
3074         if (tree.elemtype != null) {
3075             elemtype = attribType(tree.elemtype, localEnv);
3076             chk.validate(tree.elemtype, localEnv);
3077             owntype = elemtype;
3078             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3079                 attribExpr(l.head, localEnv, syms.intType);
3080                 owntype = new ArrayType(owntype, syms.arrayClass);
3081             }
3082         } else {
3083             // we are seeing an untyped aggregate { ... }
3084             // this is allowed only if the prototype is an array
3085             if (pt().hasTag(ARRAY)) {
3086                 elemtype = types.elemtype(pt());
3087             } else {
3088                 if (!pt().hasTag(ERROR) &&
3089                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3090                     log.error(tree.pos(),
3091                               Errors.IllegalInitializerForType(pt()));
3092                 }
3093                 elemtype = types.createErrorType(pt());
3094             }
3095         }
3096         if (tree.elems != null) {
3097             attribExprs(tree.elems, localEnv, elemtype);
3098             owntype = new ArrayType(elemtype, syms.arrayClass);
3099         }
3100         if (!types.isReifiable(elemtype))
3101             log.error(tree.pos(), Errors.GenericArrayCreation);
3102         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3103     }
3104 
3105     /*
3106      * A lambda expression can only be attributed when a target-type is available.
3107      * In addition, if the target-type is that of a functional interface whose
3108      * descriptor contains inference variables in argument position the lambda expression
3109      * is 'stuck' (see DeferredAttr).
3110      */
3111     @Override
3112     public void visitLambda(final JCLambda that) {
3113         boolean wrongContext = false;
3114         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3115             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3116                 //lambda only allowed in assignment or method invocation/cast context
3117                 log.error(that.pos(), Errors.UnexpectedLambda);
3118             }
3119             resultInfo = recoveryInfo;
3120             wrongContext = true;
3121         }
3122         //create an environment for attribution of the lambda expression
3123         final Env<AttrContext> localEnv = lambdaEnv(that, env);
3124         boolean needsRecovery =
3125                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3126         try {
3127             if (needsRecovery && rs.isSerializable(pt())) {
3128                 localEnv.info.isSerializable = true;
3129                 localEnv.info.isSerializableLambda = true;
3130             }
3131             List<Type> explicitParamTypes = null;
3132             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3133                 //attribute lambda parameters
3134                 attribStats(that.params, localEnv);
3135                 explicitParamTypes = TreeInfo.types(that.params);
3136             }
3137 
3138             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3139             Type currentTarget = targetInfo.target;
3140             Type lambdaType = targetInfo.descriptor;
3141 
3142             if (currentTarget.isErroneous()) {
3143                 result = that.type = currentTarget;
3144                 return;
3145             }
3146 
3147             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3148 
3149             if (lambdaType.hasTag(FORALL)) {
3150                 //lambda expression target desc cannot be a generic method
3151                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3152                                                                     kindName(currentTarget.tsym),
3153                                                                     currentTarget.tsym);
3154                 resultInfo.checkContext.report(that, diags.fragment(msg));
3155                 result = that.type = types.createErrorType(pt());
3156                 return;
3157             }
3158 
3159             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3160                 //add param type info in the AST
3161                 List<Type> actuals = lambdaType.getParameterTypes();
3162                 List<JCVariableDecl> params = that.params;
3163 
3164                 boolean arityMismatch = false;
3165 
3166                 while (params.nonEmpty()) {
3167                     if (actuals.isEmpty()) {
3168                         //not enough actuals to perform lambda parameter inference
3169                         arityMismatch = true;
3170                     }
3171                     //reset previously set info
3172                     Type argType = arityMismatch ?
3173                             syms.errType :
3174                             actuals.head;
3175                     if (params.head.isImplicitlyTyped()) {
3176                         setSyntheticVariableType(params.head, argType);
3177                     }
3178                     params.head.sym = null;
3179                     actuals = actuals.isEmpty() ?
3180                             actuals :
3181                             actuals.tail;
3182                     params = params.tail;
3183                 }
3184 
3185                 //attribute lambda parameters
3186                 attribStats(that.params, localEnv);
3187 
3188                 if (arityMismatch) {
3189                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3190                         result = that.type = types.createErrorType(currentTarget);
3191                         return;
3192                 }
3193             }
3194 
3195             //from this point on, no recovery is needed; if we are in assignment context
3196             //we will be able to attribute the whole lambda body, regardless of errors;
3197             //if we are in a 'check' method context, and the lambda is not compatible
3198             //with the target-type, it will be recovered anyway in Attr.checkId
3199             needsRecovery = false;
3200 
3201             ResultInfo bodyResultInfo = localEnv.info.returnResult =
3202                     lambdaBodyResult(that, lambdaType, resultInfo);
3203 
3204             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3205                 attribTree(that.getBody(), localEnv, bodyResultInfo);
3206             } else {
3207                 JCBlock body = (JCBlock)that.body;
3208                 if (body == breakTree &&
3209                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3210                     breakTreeFound(copyEnv(localEnv));
3211                 }
3212                 attribStats(body.stats, localEnv);
3213             }
3214 
3215             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3216 
3217             boolean isSpeculativeRound =
3218                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3219 
3220             preFlow(that);
3221             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3222 
3223             that.type = currentTarget; //avoids recovery at this stage
3224             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3225 
3226             if (!isSpeculativeRound) {
3227                 //add thrown types as bounds to the thrown types free variables if needed:
3228                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3229                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3230                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3231                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3232                     }
3233                 }
3234 
3235                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3236             }
3237             result = wrongContext ? that.type = types.createErrorType(pt())
3238                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3239         } catch (Types.FunctionDescriptorLookupError ex) {
3240             JCDiagnostic cause = ex.getDiagnostic();
3241             resultInfo.checkContext.report(that, cause);
3242             result = that.type = types.createErrorType(pt());
3243             return;
3244         } catch (CompletionFailure cf) {
3245             chk.completionError(that.pos(), cf);
3246         } catch (Throwable t) {
3247             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3248             //as that would likely cause the same exception again.
3249             needsRecovery = false;
3250             throw t;
3251         } finally {
3252             localEnv.info.scope.leave();
3253             if (needsRecovery) {
3254                 Type prevResult = result;
3255                 try {
3256                     attribTree(that, env, recoveryInfo);
3257                 } finally {
3258                     if (result == Type.recoveryType) {
3259                         result = prevResult;
3260                     }
3261                 }
3262             }
3263         }
3264     }
3265     //where
3266         class TargetInfo {
3267             Type target;
3268             Type descriptor;
3269 
3270             public TargetInfo(Type target, Type descriptor) {
3271                 this.target = target;
3272                 this.descriptor = descriptor;
3273             }
3274         }
3275 
3276         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3277             Type lambdaType;
3278             Type currentTarget = resultInfo.pt;
3279             if (resultInfo.pt != Type.recoveryType) {
3280                 /* We need to adjust the target. If the target is an
3281                  * intersection type, for example: SAM & I1 & I2 ...
3282                  * the target will be updated to SAM
3283                  */
3284                 currentTarget = targetChecker.visit(currentTarget, that);
3285                 if (!currentTarget.isIntersection()) {
3286                     if (explicitParamTypes != null) {
3287                         currentTarget = infer.instantiateFunctionalInterface(that,
3288                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3289                     }
3290                     currentTarget = types.removeWildcards(currentTarget);
3291                     lambdaType = types.findDescriptorType(currentTarget);
3292                 } else {
3293                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3294                     ListBuffer<Type> components = new ListBuffer<>();
3295                     for (Type bound : ict.getExplicitComponents()) {
3296                         if (explicitParamTypes != null) {
3297                             try {
3298                                 bound = infer.instantiateFunctionalInterface(that,
3299                                         bound, explicitParamTypes, resultInfo.checkContext);
3300                             } catch (FunctionDescriptorLookupError t) {
3301                                 // do nothing
3302                             }
3303                         }
3304                         bound = types.removeWildcards(bound);
3305                         components.add(bound);
3306                     }
3307                     currentTarget = types.makeIntersectionType(components.toList());
3308                     currentTarget.tsym.flags_field |= INTERFACE;
3309                     lambdaType = types.findDescriptorType(currentTarget);
3310                 }
3311 
3312             } else {
3313                 currentTarget = Type.recoveryType;
3314                 lambdaType = fallbackDescriptorType(that);
3315             }
3316             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3317                 //lambda expression target desc cannot be a generic method
3318                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3319                                                                     kindName(currentTarget.tsym),
3320                                                                     currentTarget.tsym);
3321                 resultInfo.checkContext.report(that, diags.fragment(msg));
3322                 currentTarget = types.createErrorType(pt());
3323             }
3324             return new TargetInfo(currentTarget, lambdaType);
3325         }
3326 
3327         void preFlow(JCLambda tree) {
3328             attrRecover.doRecovery();
3329             new PostAttrAnalyzer() {
3330                 @Override
3331                 public void scan(JCTree tree) {
3332                     if (tree == null ||
3333                             (tree.type != null &&
3334                             tree.type == Type.stuckType)) {
3335                         //don't touch stuck expressions!
3336                         return;
3337                     }
3338                     super.scan(tree);
3339                 }
3340 
3341                 @Override
3342                 public void visitClassDef(JCClassDecl that) {
3343                     // or class declaration trees!
3344                 }
3345 
3346                 public void visitLambda(JCLambda that) {
3347                     // or lambda expressions!
3348                 }
3349             }.scan(tree.body);
3350         }
3351 
3352         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3353 
3354             @Override
3355             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3356                 return t.isIntersection() ?
3357                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3358             }
3359 
3360             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3361                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3362                 return ict;
3363             }
3364 
3365             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3366                 ListBuffer<Type> targs = new ListBuffer<>();
3367                 ListBuffer<Type> supertypes = new ListBuffer<>();
3368                 for (Type i : ict.interfaces_field) {
3369                     if (i.isParameterized()) {
3370                         targs.appendList(i.tsym.type.allparams());
3371                     }
3372                     supertypes.append(i.tsym.type);
3373                 }
3374                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3375                 notionalIntf.allparams_field = targs.toList();
3376                 notionalIntf.tsym.flags_field |= INTERFACE;
3377                 return notionalIntf.tsym;
3378             }
3379         };
3380 
3381         private Type fallbackDescriptorType(JCExpression tree) {
3382             switch (tree.getTag()) {
3383                 case LAMBDA:
3384                     JCLambda lambda = (JCLambda)tree;
3385                     List<Type> argtypes = List.nil();
3386                     for (JCVariableDecl param : lambda.params) {
3387                         argtypes = param.vartype != null && param.vartype.type != null ?
3388                                 argtypes.append(param.vartype.type) :
3389                                 argtypes.append(syms.errType);
3390                     }
3391                     return new MethodType(argtypes, Type.recoveryType,
3392                             List.of(syms.throwableType), syms.methodClass);
3393                 case REFERENCE:
3394                     return new MethodType(List.nil(), Type.recoveryType,
3395                             List.of(syms.throwableType), syms.methodClass);
3396                 default:
3397                     Assert.error("Cannot get here!");
3398             }
3399             return null;
3400         }
3401 
3402         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3403                 final InferenceContext inferenceContext, final Type... ts) {
3404             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3405         }
3406 
3407         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3408                 final InferenceContext inferenceContext, final List<Type> ts) {
3409             if (inferenceContext.free(ts)) {
3410                 inferenceContext.addFreeTypeListener(ts,
3411                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3412             } else {
3413                 for (Type t : ts) {
3414                     rs.checkAccessibleType(env, t);
3415                 }
3416             }
3417         }
3418 
3419         /**
3420          * Lambda/method reference have a special check context that ensures
3421          * that i.e. a lambda return type is compatible with the expected
3422          * type according to both the inherited context and the assignment
3423          * context.
3424          */
3425         class FunctionalReturnContext extends Check.NestedCheckContext {
3426 
3427             FunctionalReturnContext(CheckContext enclosingContext) {
3428                 super(enclosingContext);
3429             }
3430 
3431             @Override
3432             public boolean compatible(Type found, Type req, Warner warn) {
3433                 //return type must be compatible in both current context and assignment context
3434                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3435             }
3436 
3437             @Override
3438             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3439                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3440             }
3441         }
3442 
3443         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3444 
3445             JCExpression expr;
3446             boolean expStmtExpected;
3447 
3448             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3449                 super(enclosingContext);
3450                 this.expr = expr;
3451             }
3452 
3453             @Override
3454             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3455                 if (expStmtExpected) {
3456                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3457                 } else {
3458                     super.report(pos, details);
3459                 }
3460             }
3461 
3462             @Override
3463             public boolean compatible(Type found, Type req, Warner warn) {
3464                 //a void return is compatible with an expression statement lambda
3465                 if (req.hasTag(VOID)) {
3466                     expStmtExpected = true;
3467                     return TreeInfo.isExpressionStatement(expr);
3468                 } else {
3469                     return super.compatible(found, req, warn);
3470                 }
3471             }
3472         }
3473 
3474         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3475             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3476                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3477                     new FunctionalReturnContext(resultInfo.checkContext);
3478 
3479             return descriptor.getReturnType() == Type.recoveryType ?
3480                     recoveryInfo :
3481                     new ResultInfo(KindSelector.VAL,
3482                             descriptor.getReturnType(), funcContext);
3483         }
3484 
3485         /**
3486         * Lambda compatibility. Check that given return types, thrown types, parameter types
3487         * are compatible with the expected functional interface descriptor. This means that:
3488         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3489         * types must be compatible with the return type of the expected descriptor.
3490         */
3491         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3492             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3493 
3494             //return values have already been checked - but if lambda has no return
3495             //values, we must ensure that void/value compatibility is correct;
3496             //this amounts at checking that, if a lambda body can complete normally,
3497             //the descriptor's return type must be void
3498             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3499                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3500                 Fragment msg =
3501                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3502                 checkContext.report(tree,
3503                                     diags.fragment(msg));
3504             }
3505 
3506             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3507             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3508                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3509             }
3510         }
3511 
3512         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
3513          * static field and that lambda has type annotations, these annotations will
3514          * also be stored at these fake clinit methods.
3515          *
3516          * LambdaToMethod also use fake clinit methods so they can be reused.
3517          * Also as LTM is a phase subsequent to attribution, the methods from
3518          * clinits can be safely removed by LTM to save memory.
3519          */
3520         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
3521 
3522         public MethodSymbol removeClinit(ClassSymbol sym) {
3523             return clinits.remove(sym);
3524         }
3525 
3526         /* This method returns an environment to be used to attribute a lambda
3527          * expression.
3528          *
3529          * The owner of this environment is a method symbol. If the current owner
3530          * is not a method, for example if the lambda is used to initialize
3531          * a field, then if the field is:
3532          *
3533          * - an instance field, we use the first constructor.
3534          * - a static field, we create a fake clinit method.
3535          */
3536         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3537             Env<AttrContext> lambdaEnv;
3538             Symbol owner = env.info.scope.owner;
3539             if (owner.kind == VAR && owner.owner.kind == TYP) {
3540                 //field initializer
3541                 ClassSymbol enclClass = owner.enclClass();
3542                 Symbol newScopeOwner = env.info.scope.owner;
3543                 /* if the field isn't static, then we can get the first constructor
3544                  * and use it as the owner of the environment. This is what
3545                  * LTM code is doing to look for type annotations so we are fine.
3546                  */
3547                 if ((owner.flags() & STATIC) == 0) {
3548                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
3549                         newScopeOwner = s;
3550                         break;
3551                     }
3552                 } else {
3553                     /* if the field is static then we need to create a fake clinit
3554                      * method, this method can later be reused by LTM.
3555                      */
3556                     MethodSymbol clinit = clinits.get(enclClass);
3557                     if (clinit == null) {
3558                         Type clinitType = new MethodType(List.nil(),
3559                                 syms.voidType, List.nil(), syms.methodClass);
3560                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3561                                 names.clinit, clinitType, enclClass);
3562                         clinit.params = List.nil();
3563                         clinits.put(enclClass, clinit);
3564                     }
3565                     newScopeOwner = clinit;
3566                 }
3567                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3568             } else {
3569                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3570             }
3571             lambdaEnv.info.yieldResult = null;
3572             lambdaEnv.info.isLambda = true;
3573             return lambdaEnv;
3574         }
3575 
3576     @Override
3577     public void visitReference(final JCMemberReference that) {
3578         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3579             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3580                 //method reference only allowed in assignment or method invocation/cast context
3581                 log.error(that.pos(), Errors.UnexpectedMref);
3582             }
3583             result = that.type = types.createErrorType(pt());
3584             return;
3585         }
3586         final Env<AttrContext> localEnv = env.dup(that);
3587         try {
3588             //attribute member reference qualifier - if this is a constructor
3589             //reference, the expected kind must be a type
3590             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3591 
3592             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3593                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3594                 if (!exprType.isErroneous() &&
3595                     exprType.isRaw() &&
3596                     that.typeargs != null) {
3597                     log.error(that.expr.pos(),
3598                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3599                                                  Fragments.MrefInferAndExplicitParams));
3600                     exprType = types.createErrorType(exprType);
3601                 }
3602             }
3603 
3604             if (exprType.isErroneous()) {
3605                 //if the qualifier expression contains problems,
3606                 //give up attribution of method reference
3607                 result = that.type = exprType;
3608                 return;
3609             }
3610 
3611             if (TreeInfo.isStaticSelector(that.expr, names)) {
3612                 //if the qualifier is a type, validate it; raw warning check is
3613                 //omitted as we don't know at this stage as to whether this is a
3614                 //raw selector (because of inference)
3615                 chk.validate(that.expr, env, false);
3616             } else {
3617                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3618                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3619             }
3620             //attrib type-arguments
3621             List<Type> typeargtypes = List.nil();
3622             if (that.typeargs != null) {
3623                 typeargtypes = attribTypes(that.typeargs, localEnv);
3624             }
3625 
3626             boolean isTargetSerializable =
3627                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3628                     rs.isSerializable(pt());
3629             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3630             Type currentTarget = targetInfo.target;
3631             Type desc = targetInfo.descriptor;
3632 
3633             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3634             List<Type> argtypes = desc.getParameterTypes();
3635             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3636 
3637             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3638                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3639             }
3640 
3641             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3642             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3643             try {
3644                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3645                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3646                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3647             } finally {
3648                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3649             }
3650 
3651             Symbol refSym = refResult.fst;
3652             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3653 
3654             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3655              *  JDK-8075541
3656              */
3657             if (refSym.kind != MTH) {
3658                 boolean targetError;
3659                 switch (refSym.kind) {
3660                     case ABSENT_MTH:
3661                     case MISSING_ENCL:
3662                         targetError = false;
3663                         break;
3664                     case WRONG_MTH:
3665                     case WRONG_MTHS:
3666                     case AMBIGUOUS:
3667                     case HIDDEN:
3668                     case STATICERR:
3669                         targetError = true;
3670                         break;
3671                     default:
3672                         Assert.error("unexpected result kind " + refSym.kind);
3673                         targetError = false;
3674                 }
3675 
3676                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3677                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3678                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3679 
3680                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3681                         targetError ?
3682                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3683                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3684 
3685                 if (targetError && currentTarget == Type.recoveryType) {
3686                     //a target error doesn't make sense during recovery stage
3687                     //as we don't know what actual parameter types are
3688                     result = that.type = currentTarget;
3689                     return;
3690                 } else {
3691                     if (targetError) {
3692                         resultInfo.checkContext.report(that, diag);
3693                     } else {
3694                         log.report(diag);
3695                     }
3696                     result = that.type = types.createErrorType(currentTarget);
3697                     return;
3698                 }
3699             }
3700 
3701             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3702             that.kind = lookupHelper.referenceKind(that.sym);
3703             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3704 
3705             if (desc.getReturnType() == Type.recoveryType) {
3706                 // stop here
3707                 result = that.type = currentTarget;
3708                 return;
3709             }
3710 
3711             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3712                 Type enclosingType = exprType.getEnclosingType();
3713                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3714                     // Check for the existence of an appropriate outer instance
3715                     rs.resolveImplicitThis(that.pos(), env, exprType);
3716                 }
3717             }
3718 
3719             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3720 
3721                 if (that.getMode() == ReferenceMode.INVOKE &&
3722                         TreeInfo.isStaticSelector(that.expr, names) &&
3723                         that.kind.isUnbound() &&
3724                         lookupHelper.site.isRaw()) {
3725                     chk.checkRaw(that.expr, localEnv);
3726                 }
3727 
3728                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3729                         exprType.getTypeArguments().nonEmpty()) {
3730                     //static ref with class type-args
3731                     log.error(that.expr.pos(),
3732                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3733                                                  Fragments.StaticMrefWithTargs));
3734                     result = that.type = types.createErrorType(currentTarget);
3735                     return;
3736                 }
3737 
3738                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3739                     // Check that super-qualified symbols are not abstract (JLS)
3740                     rs.checkNonAbstract(that.pos(), that.sym);
3741                 }
3742 
3743                 if (isTargetSerializable) {
3744                     chk.checkAccessFromSerializableElement(that, true);
3745                 }
3746             }
3747 
3748             ResultInfo checkInfo =
3749                     resultInfo.dup(newMethodTemplate(
3750                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3751                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3752                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3753 
3754             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3755 
3756             if (that.kind.isUnbound() &&
3757                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3758                 //re-generate inference constraints for unbound receiver
3759                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3760                     //cannot happen as this has already been checked - we just need
3761                     //to regenerate the inference constraints, as that has been lost
3762                     //as a result of the call to inferenceContext.save()
3763                     Assert.error("Can't get here");
3764                 }
3765             }
3766 
3767             if (!refType.isErroneous()) {
3768                 refType = types.createMethodTypeWithReturn(refType,
3769                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3770             }
3771 
3772             //go ahead with standard method reference compatibility check - note that param check
3773             //is a no-op (as this has been taken care during method applicability)
3774             boolean isSpeculativeRound =
3775                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3776 
3777             that.type = currentTarget; //avoids recovery at this stage
3778             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3779             if (!isSpeculativeRound) {
3780                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3781             }
3782             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3783         } catch (Types.FunctionDescriptorLookupError ex) {
3784             JCDiagnostic cause = ex.getDiagnostic();
3785             resultInfo.checkContext.report(that, cause);
3786             result = that.type = types.createErrorType(pt());
3787             return;
3788         }
3789     }
3790     //where
3791         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3792             //if this is a constructor reference, the expected kind must be a type
3793             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3794                                   KindSelector.VAL_TYP : KindSelector.TYP,
3795                                   Type.noType);
3796         }
3797 
3798 
3799     @SuppressWarnings("fallthrough")
3800     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3801         InferenceContext inferenceContext = checkContext.inferenceContext();
3802         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3803 
3804         Type resType;
3805         switch (tree.getMode()) {
3806             case NEW:
3807                 if (!tree.expr.type.isRaw()) {
3808                     resType = tree.expr.type;
3809                     break;
3810                 }
3811             default:
3812                 resType = refType.getReturnType();
3813         }
3814 
3815         Type incompatibleReturnType = resType;
3816 
3817         if (returnType.hasTag(VOID)) {
3818             incompatibleReturnType = null;
3819         }
3820 
3821         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3822             if (resType.isErroneous() ||
3823                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3824                             checkContext.checkWarner(tree, resType, returnType))) {
3825                 incompatibleReturnType = null;
3826             }
3827         }
3828 
3829         if (incompatibleReturnType != null) {
3830             Fragment msg =
3831                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3832             checkContext.report(tree, diags.fragment(msg));
3833         } else {
3834             if (inferenceContext.free(refType)) {
3835                 // we need to wait for inference to finish and then replace inference vars in the referent type
3836                 inferenceContext.addFreeTypeListener(List.of(refType),
3837                         instantiatedContext -> {
3838                             tree.referentType = instantiatedContext.asInstType(refType);
3839                         });
3840             } else {
3841                 tree.referentType = refType;
3842             }
3843         }
3844 
3845         if (!speculativeAttr) {
3846             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3847                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3848             }
3849         }
3850     }
3851 
3852     boolean checkExConstraints(
3853             List<Type> thrownByFuncExpr,
3854             List<Type> thrownAtFuncType,
3855             InferenceContext inferenceContext) {
3856         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3857          *  are not proper types
3858          */
3859         List<Type> nonProperList = thrownAtFuncType.stream()
3860                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3861         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3862 
3863         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3864          *  in the throws clause of the invocation type of the method reference's compile-time
3865          *  declaration
3866          */
3867         List<Type> checkedList = thrownByFuncExpr.stream()
3868                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3869 
3870         /** If n = 0 (the function type's throws clause consists only of proper types), then
3871          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3872          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3873          *  reduces to true
3874          */
3875         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3876         for (Type checked : checkedList) {
3877             boolean isSubtype = false;
3878             for (Type proper : properList) {
3879                 if (types.isSubtype(checked, proper)) {
3880                     isSubtype = true;
3881                     break;
3882                 }
3883             }
3884             if (!isSubtype) {
3885                 uncaughtByProperTypes.add(checked);
3886             }
3887         }
3888 
3889         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3890             return false;
3891         }
3892 
3893         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3894          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3895          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3896          */
3897         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3898         uncaughtByProperTypes.forEach(checkedEx -> {
3899             nonProperAsUndet.forEach(nonProper -> {
3900                 types.isSubtype(checkedEx, nonProper);
3901             });
3902         });
3903 
3904         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3905          */
3906         nonProperAsUndet.stream()
3907                 .filter(t -> t.hasTag(UNDETVAR))
3908                 .forEach(t -> ((UndetVar)t).setThrow());
3909         return true;
3910     }
3911 
3912     /**
3913      * Set functional type info on the underlying AST. Note: as the target descriptor
3914      * might contain inference variables, we might need to register an hook in the
3915      * current inference context.
3916      */
3917     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3918             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3919         if (checkContext.inferenceContext().free(descriptorType)) {
3920             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3921                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3922                     inferenceContext.asInstType(primaryTarget), checkContext));
3923         } else {
3924             if (pt.hasTag(CLASS)) {
3925                 fExpr.target = primaryTarget;
3926             }
3927             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3928                     pt != Type.recoveryType) {
3929                 //check that functional interface class is well-formed
3930                 try {
3931                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3932                      * when it's executed post-inference. See the listener code
3933                      * above.
3934                      */
3935                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3936                             names.empty, fExpr.target, ABSTRACT);
3937                     if (csym != null) {
3938                         chk.checkImplementations(env.tree, csym, csym);
3939                         try {
3940                             //perform an additional functional interface check on the synthetic class,
3941                             //as there may be spurious errors for raw targets - because of existing issues
3942                             //with membership and inheritance (see JDK-8074570).
3943                             csym.flags_field |= INTERFACE;
3944                             types.findDescriptorType(csym.type);
3945                         } catch (FunctionDescriptorLookupError err) {
3946                             resultInfo.checkContext.report(fExpr,
3947                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3948                         }
3949                     }
3950                 } catch (Types.FunctionDescriptorLookupError ex) {
3951                     JCDiagnostic cause = ex.getDiagnostic();
3952                     resultInfo.checkContext.report(env.tree, cause);
3953                 }
3954             }
3955         }
3956     }
3957 
3958     public void visitParens(JCParens tree) {
3959         Type owntype = attribTree(tree.expr, env, resultInfo);
3960         result = check(tree, owntype, pkind(), resultInfo);
3961         Symbol sym = TreeInfo.symbol(tree);
3962         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
3963             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3964     }
3965 
3966     public void visitAssign(JCAssign tree) {
3967         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3968         Type capturedType = capture(owntype);
3969         attribExpr(tree.rhs, env, owntype);
3970         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3971     }
3972 
3973     public void visitAssignop(JCAssignOp tree) {
3974         // Attribute arguments.
3975         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3976         Type operand = attribExpr(tree.rhs, env);
3977         // Find operator.
3978         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3979         if (operator != operators.noOpSymbol &&
3980                 !owntype.isErroneous() &&
3981                 !operand.isErroneous()) {
3982             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3983             chk.checkCastable(tree.rhs.pos(),
3984                               operator.type.getReturnType(),
3985                               owntype);
3986             chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
3987         }
3988         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3989     }
3990 
3991     public void visitUnary(JCUnary tree) {
3992         // Attribute arguments.
3993         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3994             ? attribTree(tree.arg, env, varAssignmentInfo)
3995             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3996 
3997         // Find operator.
3998         OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3999         Type owntype = types.createErrorType(tree.type);
4000         if (operator != operators.noOpSymbol &&
4001                 !argtype.isErroneous()) {
4002             owntype = (tree.getTag().isIncOrDecUnaryOp())
4003                 ? tree.arg.type
4004                 : operator.type.getReturnType();
4005             int opc = operator.opcode;
4006 
4007             // If the argument is constant, fold it.
4008             if (argtype.constValue() != null) {
4009                 Type ctype = cfolder.fold1(opc, argtype);
4010                 if (ctype != null) {
4011                     owntype = cfolder.coerce(ctype, owntype);
4012                 }
4013             }
4014         }
4015         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4016         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4017     }
4018 
4019     public void visitBinary(JCBinary tree) {
4020         // Attribute arguments.
4021         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4022         // x && y
4023         // include x's bindings when true in y
4024 
4025         // x || y
4026         // include x's bindings when false in y
4027 
4028         MatchBindings lhsBindings = matchBindings;
4029         List<BindingSymbol> propagatedBindings;
4030         switch (tree.getTag()) {
4031             case AND:
4032                 propagatedBindings = lhsBindings.bindingsWhenTrue;
4033                 break;
4034             case OR:
4035                 propagatedBindings = lhsBindings.bindingsWhenFalse;
4036                 break;
4037             default:
4038                 propagatedBindings = List.nil();
4039                 break;
4040         }
4041         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4042         Type right;
4043         try {
4044             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4045         } finally {
4046             rhsEnv.info.scope.leave();
4047         }
4048 
4049         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4050 
4051         // Find operator.
4052         OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4053         Type owntype = types.createErrorType(tree.type);
4054         if (operator != operators.noOpSymbol &&
4055                 !left.isErroneous() &&
4056                 !right.isErroneous()) {
4057             owntype = operator.type.getReturnType();
4058             int opc = operator.opcode;
4059             // If both arguments are constants, fold them.
4060             if (left.constValue() != null && right.constValue() != null) {
4061                 Type ctype = cfolder.fold2(opc, left, right);
4062                 if (ctype != null) {
4063                     owntype = cfolder.coerce(ctype, owntype);
4064                 }
4065             }
4066 
4067             // Check that argument types of a reference ==, != are
4068             // castable to each other, (JLS 15.21).  Note: unboxing
4069             // comparisons will not have an acmp* opc at this point.
4070             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4071                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4072                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4073                 }
4074             }
4075 
4076             chk.checkDivZero(tree.rhs.pos(), operator, right);
4077         }
4078         result = check(tree, owntype, KindSelector.VAL, resultInfo);
4079     }
4080 
4081     public void visitTypeCast(final JCTypeCast tree) {
4082         Type clazztype = attribType(tree.clazz, env);
4083         chk.validate(tree.clazz, env, false);
4084         //a fresh environment is required for 292 inference to work properly ---
4085         //see Infer.instantiatePolymorphicSignatureInstance()
4086         Env<AttrContext> localEnv = env.dup(tree);
4087         //should we propagate the target type?
4088         final ResultInfo castInfo;
4089         JCExpression expr = TreeInfo.skipParens(tree.expr);
4090         boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4091         if (isPoly) {
4092             //expression is a poly - we need to propagate target type info
4093             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4094                                       new Check.NestedCheckContext(resultInfo.checkContext) {
4095                 @Override
4096                 public boolean compatible(Type found, Type req, Warner warn) {
4097                     return types.isCastable(found, req, warn);
4098                 }
4099             });
4100         } else {
4101             //standalone cast - target-type info is not propagated
4102             castInfo = unknownExprInfo;
4103         }
4104         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4105         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4106         if (exprtype.constValue() != null)
4107             owntype = cfolder.coerce(exprtype, owntype);
4108         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4109         if (!isPoly)
4110             chk.checkRedundantCast(localEnv, tree);
4111     }
4112 
4113     public void visitTypeTest(JCInstanceOf tree) {
4114         Type exprtype = attribExpr(tree.expr, env);
4115         if (exprtype.isPrimitive()) {
4116             preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4117         } else {
4118             exprtype = chk.checkNullOrRefType(
4119                     tree.expr.pos(), exprtype);
4120         }
4121         Type clazztype;
4122         JCTree typeTree;
4123         if (tree.pattern.getTag() == BINDINGPATTERN ||
4124             tree.pattern.getTag() == RECORDPATTERN) {
4125             attribExpr(tree.pattern, env, exprtype);
4126             clazztype = tree.pattern.type;
4127             if (types.isSubtype(exprtype, clazztype) &&
4128                 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4129                 tree.pattern.getTag() != RECORDPATTERN) {
4130                 if (!allowUnconditionalPatternsInstanceOf) {
4131                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4132                               Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4133                 }
4134             }
4135             typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4136         } else {
4137             clazztype = attribType(tree.pattern, env);
4138             typeTree = tree.pattern;
4139             chk.validate(typeTree, env, false);
4140         }
4141         if (clazztype.isPrimitive()) {
4142             preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4143         } else {
4144             if (!clazztype.hasTag(TYPEVAR)) {
4145                 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4146             }
4147             if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4148                 boolean valid = false;
4149                 if (allowReifiableTypesInInstanceof) {
4150                     valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4151                 } else {
4152                     log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
4153                             Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4154                     allowReifiableTypesInInstanceof = true;
4155                 }
4156                 if (!valid) {
4157                     clazztype = types.createErrorType(clazztype);
4158                 }
4159             }
4160         }
4161         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4162         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4163     }
4164 
4165     private boolean checkCastablePattern(DiagnosticPosition pos,
4166                                          Type exprType,
4167                                          Type pattType) {
4168         Warner warner = new Warner();
4169         // if any type is erroneous, the problem is reported elsewhere
4170         if (exprType.isErroneous() || pattType.isErroneous()) {
4171             return false;
4172         }
4173         if (!types.isCastable(exprType, pattType, warner)) {
4174             chk.basicHandler.report(pos,
4175                     diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4176             return false;
4177         } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4178                 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4179             preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4180             return true;
4181         } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4182             log.error(pos,
4183                     Errors.InstanceofReifiableNotSafe(exprType, pattType));
4184             return false;
4185         } else {
4186             return true;
4187         }
4188     }
4189 
4190     @Override
4191     public void visitAnyPattern(JCAnyPattern tree) {
4192         result = tree.type = resultInfo.pt;
4193     }
4194 
4195     public void visitBindingPattern(JCBindingPattern tree) {
4196         Type type;
4197         if (tree.var.vartype != null) {
4198             type = attribType(tree.var.vartype, env);
4199         } else {
4200             type = resultInfo.pt;
4201         }
4202         tree.type = tree.var.type = type;
4203         BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4204         v.pos = tree.pos;
4205         tree.var.sym = v;
4206         if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4207             chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4208         }
4209         annotate.annotateLater(tree.var.mods.annotations, env, v, tree.pos());
4210         if (!tree.var.isImplicitlyTyped()) {
4211             annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var.pos());
4212         }
4213         annotate.flush();
4214         chk.validate(tree.var.vartype, env, true);
4215         result = tree.type;
4216         if (v.isUnnamedVariable()) {
4217             matchBindings = MatchBindingsComputer.EMPTY;
4218         } else {
4219             matchBindings = new MatchBindings(List.of(v), List.nil());
4220         }
4221     }
4222 
4223     @Override
4224     public void visitRecordPattern(JCRecordPattern tree) {
4225         Type site;
4226 
4227         if (tree.deconstructor == null) {
4228             log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4229             tree.record = syms.errSymbol;
4230             site = tree.type = types.createErrorType(tree.record.type);
4231         } else {
4232             Type type = attribType(tree.deconstructor, env);
4233             if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4234                 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4235                 if (inferred == null) {
4236                     log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4237                 } else {
4238                     type = inferred;
4239                 }
4240             }
4241             tree.type = tree.deconstructor.type = type;
4242             site = types.capture(tree.type);
4243         }
4244 
4245         List<Type> expectedRecordTypes;
4246         if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4247             ClassSymbol record = (ClassSymbol) site.tsym;
4248             expectedRecordTypes = record.getRecordComponents()
4249                                         .stream()
4250                                         .map(rc -> types.memberType(site, rc))
4251                                         .map(t -> types.upward(t, types.captures(t)).baseType())
4252                                         .collect(List.collector());
4253             tree.record = record;
4254         } else {
4255             log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4256             expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4257                                 .limit(tree.nested.size())
4258                                 .collect(List.collector());
4259             tree.record = syms.errSymbol;
4260         }
4261         ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4262         List<Type> recordTypes = expectedRecordTypes;
4263         List<JCPattern> nestedPatterns = tree.nested;
4264         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4265         try {
4266             while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4267                 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4268                 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4269                 outBindings.addAll(matchBindings.bindingsWhenTrue);
4270                 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4271                 nestedPatterns = nestedPatterns.tail;
4272                 recordTypes = recordTypes.tail;
4273             }
4274             if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4275                 while (nestedPatterns.nonEmpty()) {
4276                     attribExpr(nestedPatterns.head, localEnv, Type.noType);
4277                     nestedPatterns = nestedPatterns.tail;
4278                 }
4279                 List<Type> nestedTypes =
4280                         tree.nested.stream().map(p -> p.type).collect(List.collector());
4281                 log.error(tree.pos(),
4282                           Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4283                                                                  nestedTypes));
4284             }
4285         } finally {
4286             localEnv.info.scope.leave();
4287         }
4288         chk.validate(tree.deconstructor, env, true);
4289         result = tree.type;
4290         matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4291     }
4292 
4293     public void visitIndexed(JCArrayAccess tree) {
4294         Type owntype = types.createErrorType(tree.type);
4295         Type atype = attribExpr(tree.indexed, env);
4296         attribExpr(tree.index, env, syms.intType);
4297         if (types.isArray(atype))
4298             owntype = types.elemtype(atype);
4299         else if (!atype.hasTag(ERROR))
4300             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4301         if (!pkind().contains(KindSelector.VAL))
4302             owntype = capture(owntype);
4303         result = check(tree, owntype, KindSelector.VAR, resultInfo);
4304     }
4305 
4306     public void visitIdent(JCIdent tree) {
4307         Symbol sym;
4308 
4309         // Find symbol
4310         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4311             // If we are looking for a method, the prototype `pt' will be a
4312             // method type with the type of the call's arguments as parameters.
4313             env.info.pendingResolutionPhase = null;
4314             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4315         } else if (tree.sym != null && tree.sym.kind != VAR) {
4316             sym = tree.sym;
4317         } else {
4318             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4319         }
4320         tree.sym = sym;
4321 
4322         // Also find the environment current for the class where
4323         // sym is defined (`symEnv').
4324         Env<AttrContext> symEnv = env;
4325         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4326             sym.kind.matches(KindSelector.VAL_MTH) &&
4327             sym.owner.kind == TYP &&
4328             tree.name != names._this && tree.name != names._super) {
4329 
4330             // Find environment in which identifier is defined.
4331             while (symEnv.outer != null &&
4332                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4333                 symEnv = symEnv.outer;
4334             }
4335         }
4336 
4337         // If symbol is a variable, ...
4338         if (sym.kind == VAR) {
4339             VarSymbol v = (VarSymbol)sym;
4340 
4341             // ..., evaluate its initializer, if it has one, and check for
4342             // illegal forward reference.
4343             checkInit(tree, env, v, false);
4344 
4345             // If we are expecting a variable (as opposed to a value), check
4346             // that the variable is assignable in the current environment.
4347             if (KindSelector.ASG.subset(pkind()))
4348                 checkAssignable(tree.pos(), v, null, env);
4349         }
4350 
4351         Env<AttrContext> env1 = env;
4352         if (sym.kind != ERR && sym.kind != TYP &&
4353             sym.owner != null && sym.owner != env1.enclClass.sym) {
4354             // If the found symbol is inaccessible, then it is
4355             // accessed through an enclosing instance.  Locate this
4356             // enclosing instance:
4357             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4358                 env1 = env1.outer;
4359         }
4360 
4361         if (env.info.isSerializable) {
4362             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4363         }
4364 
4365         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4366     }
4367 
4368     public void visitSelect(JCFieldAccess tree) {
4369         // Determine the expected kind of the qualifier expression.
4370         KindSelector skind = KindSelector.NIL;
4371         if (tree.name == names._this || tree.name == names._super ||
4372                 tree.name == names._class)
4373         {
4374             skind = KindSelector.TYP;
4375         } else {
4376             if (pkind().contains(KindSelector.PCK))
4377                 skind = KindSelector.of(skind, KindSelector.PCK);
4378             if (pkind().contains(KindSelector.TYP))
4379                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4380             if (pkind().contains(KindSelector.VAL_MTH))
4381                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4382         }
4383 
4384         // Attribute the qualifier expression, and determine its symbol (if any).
4385         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));

4386         if (!pkind().contains(KindSelector.TYP_PCK))
4387             site = capture(site); // Capture field access
4388 
4389         // don't allow T.class T[].class, etc
4390         if (skind == KindSelector.TYP) {
4391             Type elt = site;
4392             while (elt.hasTag(ARRAY))
4393                 elt = ((ArrayType)elt).elemtype;
4394             if (elt.hasTag(TYPEVAR)) {
4395                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4396                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4397                 tree.sym = tree.type.tsym;
4398                 return ;
4399             }
4400         }
4401 
4402         // If qualifier symbol is a type or `super', assert `selectSuper'
4403         // for the selection. This is relevant for determining whether
4404         // protected symbols are accessible.
4405         Symbol sitesym = TreeInfo.symbol(tree.selected);
4406         boolean selectSuperPrev = env.info.selectSuper;
4407         env.info.selectSuper =
4408             sitesym != null &&
4409             sitesym.name == names._super;
4410 
4411         // Determine the symbol represented by the selection.
4412         env.info.pendingResolutionPhase = null;
4413         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4414         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4415             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4416             sym = syms.errSymbol;
4417         }
4418         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4419             site = capture(site);
4420             sym = selectSym(tree, sitesym, site, env, resultInfo);
4421         }
4422         boolean varArgs = env.info.lastResolveVarargs();
4423         tree.sym = sym;
4424 
4425         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4426             site = types.skipTypeVars(site, true);
4427         }
4428 
4429         // If that symbol is a variable, ...
4430         if (sym.kind == VAR) {
4431             VarSymbol v = (VarSymbol)sym;
4432 
4433             // ..., evaluate its initializer, if it has one, and check for
4434             // illegal forward reference.
4435             checkInit(tree, env, v, true);
4436 
4437             // If we are expecting a variable (as opposed to a value), check
4438             // that the variable is assignable in the current environment.
4439             if (KindSelector.ASG.subset(pkind()))
4440                 checkAssignable(tree.pos(), v, tree.selected, env);
4441         }
4442 
4443         if (sitesym != null &&
4444                 sitesym.kind == VAR &&
4445                 ((VarSymbol)sitesym).isResourceVariable() &&
4446                 sym.kind == MTH &&
4447                 sym.name.equals(names.close) &&
4448                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4449                 env.info.lint.isEnabled(LintCategory.TRY)) {
4450             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4451         }
4452 
4453         // Disallow selecting a type from an expression
4454         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4455             tree.type = check(tree.selected, pt(),
4456                               sitesym == null ?
4457                                       KindSelector.VAL : sitesym.kind.toSelector(),
4458                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4459         }
4460 
4461         if (isType(sitesym)) {
4462             if (sym.name != names._this && sym.name != names._super) {
4463                 // Check if type-qualified fields or methods are static (JLS)
4464                 if ((sym.flags() & STATIC) == 0 &&
4465                     sym.name != names._super &&
4466                     (sym.kind == VAR || sym.kind == MTH)) {
4467                     rs.accessBase(rs.new StaticError(sym),
4468                               tree.pos(), site, sym.name, true);
4469                 }
4470             }
4471         } else if (sym.kind != ERR &&
4472                    (sym.flags() & STATIC) != 0 &&
4473                    sym.name != names._class) {
4474             // If the qualified item is not a type and the selected item is static, report
4475             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4476             if (!sym.owner.isAnonymous()) {
4477                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4478             } else {
4479                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4480             }
4481         }
4482 
4483         // If we are selecting an instance member via a `super', ...
4484         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4485 
4486             // Check that super-qualified symbols are not abstract (JLS)
4487             rs.checkNonAbstract(tree.pos(), sym);
4488 
4489             if (site.isRaw()) {
4490                 // Determine argument types for site.
4491                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4492                 if (site1 != null) site = site1;
4493             }
4494         }
4495 
4496         if (env.info.isSerializable) {
4497             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4498         }
4499 
4500         env.info.selectSuper = selectSuperPrev;
4501         result = checkId(tree, site, sym, env, resultInfo);
4502     }
4503     //where
4504         /** Determine symbol referenced by a Select expression,
4505          *
4506          *  @param tree   The select tree.
4507          *  @param site   The type of the selected expression,
4508          *  @param env    The current environment.
4509          *  @param resultInfo The current result.
4510          */
4511         private Symbol selectSym(JCFieldAccess tree,
4512                                  Symbol location,
4513                                  Type site,
4514                                  Env<AttrContext> env,
4515                                  ResultInfo resultInfo) {
4516             DiagnosticPosition pos = tree.pos();
4517             Name name = tree.name;
4518             switch (site.getTag()) {
4519             case PACKAGE:
4520                 return rs.accessBase(
4521                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4522                     pos, location, site, name, true);
4523             case ARRAY:
4524             case CLASS:
4525                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4526                     return rs.resolveQualifiedMethod(
4527                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4528                 } else if (name == names._this || name == names._super) {
4529                     return rs.resolveSelf(pos, env, site.tsym, name);
4530                 } else if (name == names._class) {
4531                     // In this case, we have already made sure in
4532                     // visitSelect that qualifier expression is a type.
4533                     return syms.getClassField(site, types);
4534                 } else {
4535                     // We are seeing a plain identifier as selector.
4536                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4537                         sym = rs.accessBase(sym, pos, location, site, name, true);
4538                     return sym;
4539                 }
4540             case WILDCARD:
4541                 throw new AssertionError(tree);
4542             case TYPEVAR:
4543                 // Normally, site.getUpperBound() shouldn't be null.
4544                 // It should only happen during memberEnter/attribBase
4545                 // when determining the supertype which *must* be
4546                 // done before attributing the type variables.  In
4547                 // other words, we are seeing this illegal program:
4548                 // class B<T> extends A<T.foo> {}
4549                 Symbol sym = (site.getUpperBound() != null)
4550                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4551                     : null;
4552                 if (sym == null) {
4553                     log.error(pos, Errors.TypeVarCantBeDeref);
4554                     return syms.errSymbol;
4555                 } else {
4556                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4557                         rs.new AccessError(env, site, sym) :
4558                                 sym;
4559                     rs.accessBase(sym2, pos, location, site, name, true);
4560                     return sym;
4561                 }
4562             case ERROR:
4563                 // preserve identifier names through errors
4564                 return types.createErrorType(name, site.tsym, site).tsym;
4565             default:
4566                 // The qualifier expression is of a primitive type -- only
4567                 // .class is allowed for these.
4568                 if (name == names._class) {
4569                     // In this case, we have already made sure in Select that
4570                     // qualifier expression is a type.
4571                     return syms.getClassField(site, types);
4572                 } else {
4573                     log.error(pos, Errors.CantDeref(site));
4574                     return syms.errSymbol;
4575                 }
4576             }
4577         }
4578 
4579         /** Determine type of identifier or select expression and check that
4580          *  (1) the referenced symbol is not deprecated
4581          *  (2) the symbol's type is safe (@see checkSafe)
4582          *  (3) if symbol is a variable, check that its type and kind are
4583          *      compatible with the prototype and protokind.
4584          *  (4) if symbol is an instance field of a raw type,
4585          *      which is being assigned to, issue an unchecked warning if its
4586          *      type changes under erasure.
4587          *  (5) if symbol is an instance method of a raw type, issue an
4588          *      unchecked warning if its argument types change under erasure.
4589          *  If checks succeed:
4590          *    If symbol is a constant, return its constant type
4591          *    else if symbol is a method, return its result type
4592          *    otherwise return its type.
4593          *  Otherwise return errType.
4594          *
4595          *  @param tree       The syntax tree representing the identifier
4596          *  @param site       If this is a select, the type of the selected
4597          *                    expression, otherwise the type of the current class.
4598          *  @param sym        The symbol representing the identifier.
4599          *  @param env        The current environment.
4600          *  @param resultInfo    The expected result
4601          */
4602         Type checkId(JCTree tree,
4603                      Type site,
4604                      Symbol sym,
4605                      Env<AttrContext> env,
4606                      ResultInfo resultInfo) {
4607             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4608                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4609                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4610         }
4611 
4612         Type checkMethodIdInternal(JCTree tree,
4613                      Type site,
4614                      Symbol sym,
4615                      Env<AttrContext> env,
4616                      ResultInfo resultInfo) {
4617             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4618                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4619             } else {
4620                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4621             }
4622         }
4623 
4624         Type checkIdInternal(JCTree tree,
4625                      Type site,
4626                      Symbol sym,
4627                      Type pt,
4628                      Env<AttrContext> env,
4629                      ResultInfo resultInfo) {
4630             if (pt.isErroneous()) {
4631                 return types.createErrorType(site);
4632             }
4633             Type owntype; // The computed type of this identifier occurrence.
4634             switch (sym.kind) {
4635             case TYP:
4636                 // For types, the computed type equals the symbol's type,
4637                 // except for two situations:
4638                 owntype = sym.type;
4639                 if (owntype.hasTag(CLASS)) {
4640                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4641                     Type ownOuter = owntype.getEnclosingType();
4642 
4643                     // (a) If the symbol's type is parameterized, erase it
4644                     // because no type parameters were given.
4645                     // We recover generic outer type later in visitTypeApply.
4646                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4647                         owntype = types.erasure(owntype);
4648                     }
4649 
4650                     // (b) If the symbol's type is an inner class, then
4651                     // we have to interpret its outer type as a superclass
4652                     // of the site type. Example:
4653                     //
4654                     // class Tree<A> { class Visitor { ... } }
4655                     // class PointTree extends Tree<Point> { ... }
4656                     // ...PointTree.Visitor...
4657                     //
4658                     // Then the type of the last expression above is
4659                     // Tree<Point>.Visitor.
4660                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4661                         Type normOuter = site;
4662                         if (normOuter.hasTag(CLASS)) {
4663                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4664                         }
4665                         if (normOuter == null) // perhaps from an import
4666                             normOuter = types.erasure(ownOuter);
4667                         if (normOuter != ownOuter)
4668                             owntype = new ClassType(
4669                                 normOuter, List.nil(), owntype.tsym,
4670                                 owntype.getMetadata());
4671                     }
4672                 }
4673                 break;
4674             case VAR:
4675                 VarSymbol v = (VarSymbol)sym;
4676 
4677                 if (env.info.enclVar != null
4678                         && v.type.hasTag(NONE)) {
4679                     //self reference to implicitly typed variable declaration
4680                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4681                     return tree.type = v.type = types.createErrorType(v.type);
4682                 }
4683 
4684                 // Test (4): if symbol is an instance field of a raw type,
4685                 // which is being assigned to, issue an unchecked warning if
4686                 // its type changes under erasure.
4687                 if (KindSelector.ASG.subset(pkind()) &&
4688                     v.owner.kind == TYP &&
4689                     (v.flags() & STATIC) == 0 &&
4690                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4691                     Type s = types.asOuterSuper(site, v.owner);
4692                     if (s != null &&
4693                         s.isRaw() &&
4694                         !types.isSameType(v.type, v.erasure(types))) {
4695                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4696                     }
4697                 }
4698                 // The computed type of a variable is the type of the
4699                 // variable symbol, taken as a member of the site type.
4700                 owntype = (sym.owner.kind == TYP &&
4701                            sym.name != names._this && sym.name != names._super)
4702                     ? types.memberType(site, sym)
4703                     : sym.type;
4704 
4705                 // If the variable is a constant, record constant value in
4706                 // computed type.
4707                 if (v.getConstValue() != null && isStaticReference(tree))
4708                     owntype = owntype.constType(v.getConstValue());
4709 
4710                 if (resultInfo.pkind == KindSelector.VAL) {
4711                     owntype = capture(owntype); // capture "names as expressions"
4712                 }
4713                 break;
4714             case MTH: {
4715                 owntype = checkMethod(site, sym,
4716                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4717                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4718                         resultInfo.pt.getTypeArguments());
4719                 chk.checkRestricted(tree.pos(), sym);
4720                 break;
4721             }
4722             case PCK: case ERR:
4723                 owntype = sym.type;
4724                 break;
4725             default:
4726                 throw new AssertionError("unexpected kind: " + sym.kind +
4727                                          " in tree " + tree);
4728             }
4729 
4730             // Emit a `deprecation' warning if symbol is deprecated.
4731             // (for constructors (but not for constructor references), the error
4732             // was given when the constructor was resolved)
4733 
4734             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4735                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4736                 chk.checkSunAPI(tree.pos(), sym);
4737                 chk.checkProfile(tree.pos(), sym);
4738                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4739             }
4740 
4741             // If symbol is a variable, check that its type and
4742             // kind are compatible with the prototype and protokind.
4743             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4744         }
4745 
4746         /** Check that variable is initialized and evaluate the variable's
4747          *  initializer, if not yet done. Also check that variable is not
4748          *  referenced before it is defined.
4749          *  @param tree    The tree making up the variable reference.
4750          *  @param env     The current environment.
4751          *  @param v       The variable's symbol.
4752          */
4753         private void checkInit(JCTree tree,
4754                                Env<AttrContext> env,
4755                                VarSymbol v,
4756                                boolean onlyWarning) {
4757             // A forward reference is diagnosed if the declaration position
4758             // of the variable is greater than the current tree position
4759             // and the tree and variable definition occur in the same class
4760             // definition.  Note that writes don't count as references.
4761             // This check applies only to class and instance
4762             // variables.  Local variables follow different scope rules,
4763             // and are subject to definite assignment checking.
4764             Env<AttrContext> initEnv = enclosingInitEnv(env);
4765             if (initEnv != null &&
4766                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4767                 v.owner.kind == TYP &&
4768                 v.owner == env.info.scope.owner.enclClass() &&
4769                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4770                 (!env.tree.hasTag(ASSIGN) ||
4771                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4772                 if (!onlyWarning || isStaticEnumField(v)) {
4773                     Error errkey = (initEnv.info.enclVar == v) ?
4774                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4775                     log.error(tree.pos(), errkey);
4776                 } else if (useBeforeDeclarationWarning) {
4777                     Warning warnkey = (initEnv.info.enclVar == v) ?
4778                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4779                     log.warning(tree.pos(), warnkey);
4780                 }
4781             }
4782 
4783             v.getConstValue(); // ensure initializer is evaluated
4784 
4785             checkEnumInitializer(tree, env, v);
4786         }
4787 
4788         /**
4789          * Returns the enclosing init environment associated with this env (if any). An init env
4790          * can be either a field declaration env or a static/instance initializer env.
4791          */
4792         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4793             while (true) {
4794                 switch (env.tree.getTag()) {
4795                     case VARDEF:
4796                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4797                         if (vdecl.sym.owner.kind == TYP) {
4798                             //field
4799                             return env;
4800                         }
4801                         break;
4802                     case BLOCK:
4803                         if (env.next.tree.hasTag(CLASSDEF)) {
4804                             //instance/static initializer
4805                             return env;
4806                         }
4807                         break;
4808                     case METHODDEF:
4809                     case CLASSDEF:
4810                     case TOPLEVEL:
4811                         return null;
4812                 }
4813                 Assert.checkNonNull(env.next);
4814                 env = env.next;
4815             }
4816         }
4817 
4818         /**
4819          * Check for illegal references to static members of enum.  In
4820          * an enum type, constructors and initializers may not
4821          * reference its static members unless they are constant.
4822          *
4823          * @param tree    The tree making up the variable reference.
4824          * @param env     The current environment.
4825          * @param v       The variable's symbol.
4826          * @jls 8.9 Enum Types
4827          */
4828         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4829             // JLS:
4830             //
4831             // "It is a compile-time error to reference a static field
4832             // of an enum type that is not a compile-time constant
4833             // (15.28) from constructors, instance initializer blocks,
4834             // or instance variable initializer expressions of that
4835             // type. It is a compile-time error for the constructors,
4836             // instance initializer blocks, or instance variable
4837             // initializer expressions of an enum constant e to refer
4838             // to itself or to an enum constant of the same type that
4839             // is declared to the right of e."
4840             if (isStaticEnumField(v)) {
4841                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4842 
4843                 if (enclClass == null || enclClass.owner == null)
4844                     return;
4845 
4846                 // See if the enclosing class is the enum (or a
4847                 // subclass thereof) declaring v.  If not, this
4848                 // reference is OK.
4849                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4850                     return;
4851 
4852                 // If the reference isn't from an initializer, then
4853                 // the reference is OK.
4854                 if (!Resolve.isInitializer(env))
4855                     return;
4856 
4857                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4858             }
4859         }
4860 
4861         /** Is the given symbol a static, non-constant field of an Enum?
4862          *  Note: enum literals should not be regarded as such
4863          */
4864         private boolean isStaticEnumField(VarSymbol v) {
4865             return Flags.isEnum(v.owner) &&
4866                    Flags.isStatic(v) &&
4867                    !Flags.isConstant(v) &&
4868                    v.name != names._class;
4869         }
4870 
4871     /**
4872      * Check that method arguments conform to its instantiation.
4873      **/
4874     public Type checkMethod(Type site,
4875                             final Symbol sym,
4876                             ResultInfo resultInfo,
4877                             Env<AttrContext> env,
4878                             final List<JCExpression> argtrees,
4879                             List<Type> argtypes,
4880                             List<Type> typeargtypes) {
4881         // Test (5): if symbol is an instance method of a raw type, issue
4882         // an unchecked warning if its argument types change under erasure.
4883         if ((sym.flags() & STATIC) == 0 &&
4884             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4885             Type s = types.asOuterSuper(site, sym.owner);
4886             if (s != null && s.isRaw() &&
4887                 !types.isSameTypes(sym.type.getParameterTypes(),
4888                                    sym.erasure(types).getParameterTypes())) {
4889                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4890             }
4891         }
4892 
4893         if (env.info.defaultSuperCallSite != null) {
4894             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4895                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4896                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4897                 List<MethodSymbol> icand_sup =
4898                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4899                 if (icand_sup.nonEmpty() &&
4900                         icand_sup.head != sym &&
4901                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4902                     log.error(env.tree.pos(),
4903                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4904                     break;
4905                 }
4906             }
4907             env.info.defaultSuperCallSite = null;
4908         }
4909 
4910         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4911             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4912             if (app.meth.hasTag(SELECT) &&
4913                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4914                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4915             }
4916         }
4917 
4918         // Compute the identifier's instantiated type.
4919         // For methods, we need to compute the instance type by
4920         // Resolve.instantiate from the symbol's type as well as
4921         // any type arguments and value arguments.
4922         Warner noteWarner = new Warner();
4923         try {
4924             Type owntype = rs.checkMethod(
4925                     env,
4926                     site,
4927                     sym,
4928                     resultInfo,
4929                     argtypes,
4930                     typeargtypes,
4931                     noteWarner);
4932 
4933             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4934                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4935 
4936             argtypes = argtypes.map(checkDeferredMap);
4937 
4938             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4939                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4940                         sym.name,
4941                         rs.methodArguments(sym.type.getParameterTypes()),
4942                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4943                         kindName(sym.location()),
4944                         sym.location()));
4945                 if (resultInfo.pt != Infer.anyPoly ||
4946                         !owntype.hasTag(METHOD) ||
4947                         !owntype.isPartial()) {
4948                     //if this is not a partially inferred method type, erase return type. Otherwise,
4949                     //erasure is carried out in PartiallyInferredMethodType.check().
4950                     owntype = new MethodType(owntype.getParameterTypes(),
4951                             types.erasure(owntype.getReturnType()),
4952                             types.erasure(owntype.getThrownTypes()),
4953                             syms.methodClass);
4954                 }
4955             }
4956 
4957             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4958                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4959                  PolyKind.POLY : PolyKind.STANDALONE;
4960             TreeInfo.setPolyKind(env.tree, pkind);
4961 
4962             return (resultInfo.pt == Infer.anyPoly) ?
4963                     owntype :
4964                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4965                             resultInfo.checkContext.inferenceContext());
4966         } catch (Infer.InferenceException ex) {
4967             //invalid target type - propagate exception outwards or report error
4968             //depending on the current check context
4969             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4970             return types.createErrorType(site);
4971         } catch (Resolve.InapplicableMethodException ex) {
4972             final JCDiagnostic diag = ex.getDiagnostic();
4973             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4974                 @Override
4975                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4976                     return new Pair<>(sym, diag);
4977                 }
4978             };
4979             List<Type> argtypes2 = argtypes.map(
4980                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4981             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4982                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4983             log.report(errDiag);
4984             return types.createErrorType(site);
4985         }
4986     }
4987 
4988     public void visitLiteral(JCLiteral tree) {
4989         result = check(tree, litType(tree.typetag).constType(tree.value),
4990                 KindSelector.VAL, resultInfo);
4991     }
4992     //where
4993     /** Return the type of a literal with given type tag.
4994      */
4995     Type litType(TypeTag tag) {
4996         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4997     }
4998 
4999     public void visitStringTemplate(JCStringTemplate tree) {
5000         JCExpression processor = tree.processor;
5001         Type processorType = attribTree(processor, env, new ResultInfo(KindSelector.VAL, Type.noType));
5002         chk.checkProcessorType(processor, processorType, env);
5003         Type processMethodType = getProcessMethodType(tree, processorType);
5004         tree.processMethodType = processMethodType;
5005         Type resultType = processMethodType.getReturnType();
5006 
5007         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
5008 
5009         for (JCExpression arg : tree.expressions) {
5010             chk.checkNonVoid(arg.pos(), attribExpr(arg, localEnv));
5011         }
5012 
5013         tree.type = resultType;
5014         result = resultType;
5015         check(tree, resultType, KindSelector.VAL, resultInfo);
5016     }
5017 
5018     private Type getProcessMethodType(JCStringTemplate tree, Type processorType) {
5019         MethodSymbol processSymbol = rs.resolveInternalMethod(tree.pos(),
5020                 env, types.skipTypeVars(processorType, false),
5021                 names.process, List.of(syms.stringTemplateType), List.nil());
5022         return types.memberType(processorType, processSymbol);
5023     }
5024 
5025     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5026         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5027     }
5028 
5029     public void visitTypeArray(JCArrayTypeTree tree) {
5030         Type etype = attribType(tree.elemtype, env);
5031         Type type = new ArrayType(etype, syms.arrayClass);
5032         result = check(tree, type, KindSelector.TYP, resultInfo);
5033     }
5034 
5035     /** Visitor method for parameterized types.
5036      *  Bound checking is left until later, since types are attributed
5037      *  before supertype structure is completely known
5038      */
5039     public void visitTypeApply(JCTypeApply tree) {
5040         Type owntype = types.createErrorType(tree.type);
5041 
5042         // Attribute functor part of application and make sure it's a class.
5043         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5044 
5045         // Attribute type parameters
5046         List<Type> actuals = attribTypes(tree.arguments, env);
5047 
5048         if (clazztype.hasTag(CLASS)) {
5049             List<Type> formals = clazztype.tsym.type.getTypeArguments();
5050             if (actuals.isEmpty()) //diamond
5051                 actuals = formals;
5052 
5053             if (actuals.length() == formals.length()) {
5054                 List<Type> a = actuals;
5055                 List<Type> f = formals;
5056                 while (a.nonEmpty()) {
5057                     a.head = a.head.withTypeVar(f.head);
5058                     a = a.tail;
5059                     f = f.tail;
5060                 }
5061                 // Compute the proper generic outer
5062                 Type clazzOuter = clazztype.getEnclosingType();
5063                 if (clazzOuter.hasTag(CLASS)) {
5064                     Type site;
5065                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5066                     if (clazz.hasTag(IDENT)) {
5067                         site = env.enclClass.sym.type;
5068                     } else if (clazz.hasTag(SELECT)) {
5069                         site = ((JCFieldAccess) clazz).selected.type;
5070                     } else throw new AssertionError(""+tree);
5071                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5072                         if (site.hasTag(CLASS))
5073                             site = types.asOuterSuper(site, clazzOuter.tsym);
5074                         if (site == null)
5075                             site = types.erasure(clazzOuter);
5076                         clazzOuter = site;
5077                     }
5078                 }
5079                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5080                                         clazztype.getMetadata());
5081             } else {
5082                 if (formals.length() != 0) {
5083                     log.error(tree.pos(),
5084                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5085                 } else {
5086                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5087                 }
5088                 owntype = types.createErrorType(tree.type);
5089             }
5090         }
5091         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5092     }
5093 
5094     public void visitTypeUnion(JCTypeUnion tree) {
5095         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5096         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5097         for (JCExpression typeTree : tree.alternatives) {
5098             Type ctype = attribType(typeTree, env);
5099             ctype = chk.checkType(typeTree.pos(),
5100                           chk.checkClassType(typeTree.pos(), ctype),
5101                           syms.throwableType);
5102             if (!ctype.isErroneous()) {
5103                 //check that alternatives of a union type are pairwise
5104                 //unrelated w.r.t. subtyping
5105                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
5106                     for (Type t : multicatchTypes) {
5107                         boolean sub = types.isSubtype(ctype, t);
5108                         boolean sup = types.isSubtype(t, ctype);
5109                         if (sub || sup) {
5110                             //assume 'a' <: 'b'
5111                             Type a = sub ? ctype : t;
5112                             Type b = sub ? t : ctype;
5113                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5114                         }
5115                     }
5116                 }
5117                 multicatchTypes.append(ctype);
5118                 if (all_multicatchTypes != null)
5119                     all_multicatchTypes.append(ctype);
5120             } else {
5121                 if (all_multicatchTypes == null) {
5122                     all_multicatchTypes = new ListBuffer<>();
5123                     all_multicatchTypes.appendList(multicatchTypes);
5124                 }
5125                 all_multicatchTypes.append(ctype);
5126             }
5127         }
5128         Type t = check(tree, types.lub(multicatchTypes.toList()),
5129                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5130         if (t.hasTag(CLASS)) {
5131             List<Type> alternatives =
5132                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5133             t = new UnionClassType((ClassType) t, alternatives);
5134         }
5135         tree.type = result = t;
5136     }
5137 
5138     public void visitTypeIntersection(JCTypeIntersection tree) {
5139         attribTypes(tree.bounds, env);
5140         tree.type = result = checkIntersection(tree, tree.bounds);
5141     }
5142 
5143     public void visitTypeParameter(JCTypeParameter tree) {
5144         TypeVar typeVar = (TypeVar) tree.type;
5145 
5146         if (tree.annotations != null && tree.annotations.nonEmpty()) {
5147             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5148         }
5149 
5150         if (!typeVar.getUpperBound().isErroneous()) {
5151             //fixup type-parameter bound computed in 'attribTypeVariables'
5152             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5153         }
5154     }
5155 
5156     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5157         Set<Symbol> boundSet = new HashSet<>();
5158         if (bounds.nonEmpty()) {
5159             // accept class or interface or typevar as first bound.
5160             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5161             boundSet.add(types.erasure(bounds.head.type).tsym);
5162             if (bounds.head.type.isErroneous()) {
5163                 return bounds.head.type;
5164             }
5165             else if (bounds.head.type.hasTag(TYPEVAR)) {
5166                 // if first bound was a typevar, do not accept further bounds.
5167                 if (bounds.tail.nonEmpty()) {
5168                     log.error(bounds.tail.head.pos(),
5169                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
5170                     return bounds.head.type;
5171                 }
5172             } else {
5173                 // if first bound was a class or interface, accept only interfaces
5174                 // as further bounds.
5175                 for (JCExpression bound : bounds.tail) {
5176                     bound.type = checkBase(bound.type, bound, env, false, true, false);
5177                     if (bound.type.isErroneous()) {
5178                         bounds = List.of(bound);
5179                     }
5180                     else if (bound.type.hasTag(CLASS)) {
5181                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5182                     }
5183                 }
5184             }
5185         }
5186 
5187         if (bounds.length() == 0) {
5188             return syms.objectType;
5189         } else if (bounds.length() == 1) {
5190             return bounds.head.type;
5191         } else {
5192             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5193             // ... the variable's bound is a class type flagged COMPOUND
5194             // (see comment for TypeVar.bound).
5195             // In this case, generate a class tree that represents the
5196             // bound class, ...
5197             JCExpression extending;
5198             List<JCExpression> implementing;
5199             if (!bounds.head.type.isInterface()) {
5200                 extending = bounds.head;
5201                 implementing = bounds.tail;
5202             } else {
5203                 extending = null;
5204                 implementing = bounds;
5205             }
5206             JCClassDecl cd = make.at(tree).ClassDef(
5207                 make.Modifiers(PUBLIC | ABSTRACT),
5208                 names.empty, List.nil(),
5209                 extending, implementing, List.nil());
5210 
5211             ClassSymbol c = (ClassSymbol)owntype.tsym;
5212             Assert.check((c.flags() & COMPOUND) != 0);
5213             cd.sym = c;
5214             c.sourcefile = env.toplevel.sourcefile;
5215 
5216             // ... and attribute the bound class
5217             c.flags_field |= UNATTRIBUTED;
5218             Env<AttrContext> cenv = enter.classEnv(cd, env);
5219             typeEnvs.put(c, cenv);
5220             attribClass(c);
5221             return owntype;
5222         }
5223     }
5224 
5225     public void visitWildcard(JCWildcard tree) {
5226         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5227         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5228             ? syms.objectType
5229             : attribType(tree.inner, env);
5230         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5231                                               tree.kind.kind,
5232                                               syms.boundClass),
5233                 KindSelector.TYP, resultInfo);
5234     }
5235 
5236     public void visitAnnotation(JCAnnotation tree) {
5237         Assert.error("should be handled in annotate");
5238     }
5239 
5240     @Override
5241     public void visitModifiers(JCModifiers tree) {
5242         //error recovery only:
5243         Assert.check(resultInfo.pkind == KindSelector.ERR);
5244 
5245         attribAnnotationTypes(tree.annotations, env);
5246     }
5247 
5248     public void visitAnnotatedType(JCAnnotatedType tree) {
5249         attribAnnotationTypes(tree.annotations, env);
5250         Type underlyingType = attribType(tree.underlyingType, env);
5251         Type annotatedType = underlyingType.preannotatedType();
5252 
5253         if (!env.info.isNewClass)
5254             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5255         result = tree.type = annotatedType;
5256     }
5257 
5258     public void visitErroneous(JCErroneous tree) {
5259         if (tree.errs != null) {
5260             Env<AttrContext> errEnv = env.dup(env.tree, env.info.dup());
5261             errEnv.info.returnResult = unknownExprInfo;
5262             for (JCTree err : tree.errs)
5263                 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5264         }
5265         result = tree.type = syms.errType;
5266     }
5267 
5268     /** Default visitor method for all other trees.
5269      */
5270     public void visitTree(JCTree tree) {
5271         throw new AssertionError();
5272     }
5273 
5274     /**
5275      * Attribute an env for either a top level tree or class or module declaration.
5276      */
5277     public void attrib(Env<AttrContext> env) {
5278         switch (env.tree.getTag()) {
5279             case MODULEDEF:
5280                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5281                 break;
5282             case PACKAGEDEF:
5283                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5284                 break;
5285             default:
5286                 attribClass(env.tree.pos(), env.enclClass.sym);
5287         }
5288     }
5289 
5290     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5291         try {
5292             annotate.flush();
5293             attribPackage(p);
5294         } catch (CompletionFailure ex) {
5295             chk.completionError(pos, ex);
5296         }
5297     }
5298 
5299     void attribPackage(PackageSymbol p) {
5300         attribWithLint(p,
5301                        env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5302     }
5303 
5304     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5305         try {
5306             annotate.flush();
5307             attribModule(m);
5308         } catch (CompletionFailure ex) {
5309             chk.completionError(pos, ex);
5310         }
5311     }
5312 
5313     void attribModule(ModuleSymbol m) {
5314         attribWithLint(m, env -> attribStat(env.tree, env));
5315     }
5316 
5317     private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5318         Env<AttrContext> env = typeEnvs.get(sym);
5319 
5320         Env<AttrContext> lintEnv = env;
5321         while (lintEnv.info.lint == null)
5322             lintEnv = lintEnv.next;
5323 
5324         Lint lint = lintEnv.info.lint.augment(sym);
5325 
5326         Lint prevLint = chk.setLint(lint);
5327         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5328 
5329         try {
5330             deferredLintHandler.flush(env.tree.pos());
5331             attrib.accept(env);
5332         } finally {
5333             log.useSource(prev);
5334             chk.setLint(prevLint);
5335         }
5336     }
5337 
5338     /** Main method: attribute class definition associated with given class symbol.
5339      *  reporting completion failures at the given position.
5340      *  @param pos The source position at which completion errors are to be
5341      *             reported.
5342      *  @param c   The class symbol whose definition will be attributed.
5343      */
5344     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5345         try {
5346             annotate.flush();
5347             attribClass(c);
5348         } catch (CompletionFailure ex) {
5349             chk.completionError(pos, ex);
5350         }
5351     }
5352 
5353     /** Attribute class definition associated with given class symbol.
5354      *  @param c   The class symbol whose definition will be attributed.
5355      */
5356     void attribClass(ClassSymbol c) throws CompletionFailure {
5357         if (c.type.hasTag(ERROR)) return;
5358 
5359         // Check for cycles in the inheritance graph, which can arise from
5360         // ill-formed class files.
5361         chk.checkNonCyclic(null, c.type);
5362 
5363         Type st = types.supertype(c.type);
5364         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5365             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5366             // First, attribute superclass.
5367             if (st.hasTag(CLASS))
5368                 attribClass((ClassSymbol)st.tsym);
5369 
5370             // Next attribute owner, if it is a class.
5371             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5372                 attribClass((ClassSymbol)c.owner);
5373 
5374             c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5375         }
5376 
5377         // The previous operations might have attributed the current class
5378         // if there was a cycle. So we test first whether the class is still
5379         // UNATTRIBUTED.
5380         if ((c.flags_field & UNATTRIBUTED) != 0) {
5381             c.flags_field &= ~UNATTRIBUTED;
5382 
5383             // Get environment current at the point of class definition.
5384             Env<AttrContext> env = typeEnvs.get(c);
5385 
5386             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5387             // because the annotations were not available at the time the env was created. Therefore,
5388             // we look up the environment chain for the first enclosing environment for which the
5389             // lint value is set. Typically, this is the parent env, but might be further if there
5390             // are any envs created as a result of TypeParameter nodes.
5391             Env<AttrContext> lintEnv = env;
5392             while (lintEnv.info.lint == null)
5393                 lintEnv = lintEnv.next;
5394 
5395             // Having found the enclosing lint value, we can initialize the lint value for this class
5396             env.info.lint = lintEnv.info.lint.augment(c);
5397 
5398             Lint prevLint = chk.setLint(env.info.lint);
5399             JavaFileObject prev = log.useSource(c.sourcefile);
5400             ResultInfo prevReturnRes = env.info.returnResult;
5401 
5402             try {
5403                 if (c.isSealed() &&
5404                         !c.isEnum() &&
5405                         !c.isPermittedExplicit &&
5406                         c.getPermittedSubclasses().isEmpty()) {
5407                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5408                 }
5409 
5410                 if (c.isSealed()) {
5411                     Set<Symbol> permittedTypes = new HashSet<>();
5412                     boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5413                     for (Type subType : c.getPermittedSubclasses()) {
5414                         boolean isTypeVar = false;
5415                         if (subType.getTag() == TYPEVAR) {
5416                             isTypeVar = true; //error recovery
5417                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5418                                     Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5419                         }
5420                         if (subType.tsym.isAnonymous() && !c.isEnum()) {
5421                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),  Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5422                         }
5423                         if (permittedTypes.contains(subType.tsym)) {
5424                             DiagnosticPosition pos =
5425                                     env.enclClass.permitting.stream()
5426                                             .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5427                                             .limit(2).collect(List.collector()).get(1);
5428                             log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5429                         } else {
5430                             permittedTypes.add(subType.tsym);
5431                         }
5432                         if (sealedInUnnamed) {
5433                             if (subType.tsym.packge() != c.packge()) {
5434                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5435                                         Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5436                                 );
5437                             }
5438                         } else if (subType.tsym.packge().modle != c.packge().modle) {
5439                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5440                                     Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5441                             );
5442                         }
5443                         if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5444                             log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5445                                     Errors.InvalidPermitsClause(
5446                                             subType.tsym == c.type.tsym ?
5447                                                     Fragments.MustNotBeSameClass :
5448                                                     Fragments.MustNotBeSupertype(subType)
5449                                     )
5450                             );
5451                         } else if (!isTypeVar) {
5452                             boolean thisIsASuper = types.directSupertypes(subType)
5453                                                         .stream()
5454                                                         .anyMatch(d -> d.tsym == c);
5455                             if (!thisIsASuper) {
5456                                 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5457                                         Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5458                             }
5459                         }
5460                     }
5461                 }
5462 
5463                 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5464                                                       .stream()
5465                                                       .filter(s -> s.tsym.isSealed())
5466                                                       .map(s -> (ClassSymbol) s.tsym)
5467                                                       .collect(List.collector());
5468 
5469                 if (sealedSupers.isEmpty()) {
5470                     if ((c.flags_field & Flags.NON_SEALED) != 0) {
5471                         boolean hasErrorSuper = false;
5472 
5473                         hasErrorSuper |= types.directSupertypes(c.type)
5474                                               .stream()
5475                                               .anyMatch(s -> s.tsym.kind == Kind.ERR);
5476 
5477                         ClassType ct = (ClassType) c.type;
5478 
5479                         hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5480 
5481                         if (!hasErrorSuper) {
5482                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5483                         }
5484                     }
5485                 } else {
5486                     if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5487                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5488                     }
5489 
5490                     if (!c.type.isCompound()) {
5491                         for (ClassSymbol supertypeSym : sealedSupers) {
5492                             if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5493                                 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5494                             }
5495                         }
5496                         if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5497                             log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5498                                     c.isInterface() ?
5499                                             Errors.NonSealedOrSealedExpected :
5500                                             Errors.NonSealedSealedOrFinalExpected);
5501                         }
5502                     }
5503                 }
5504 
5505                 deferredLintHandler.flush(env.tree);
5506                 env.info.returnResult = null;
5507                 // java.lang.Enum may not be subclassed by a non-enum
5508                 if (st.tsym == syms.enumSym &&
5509                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5510                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5511 
5512                 // Enums may not be extended by source-level classes
5513                 if (st.tsym != null &&
5514                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5515                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5516                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5517                 }
5518 
5519                 if (rs.isSerializable(c.type)) {
5520                     env.info.isSerializable = true;
5521                 }
5522 





5523                 attribClassBody(env, c);
5524 
5525                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5526                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5527                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5528                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5529 
5530                 if (c.isImplicit()) {
5531                     chk.checkHasMain(env.tree.pos(), c);
5532                 }
5533             } finally {
5534                 env.info.returnResult = prevReturnRes;
5535                 log.useSource(prev);
5536                 chk.setLint(prevLint);
5537             }
5538 
5539         }
5540     }
5541 
5542     public void visitImport(JCImport tree) {
5543         // nothing to do
5544     }
5545 
5546     public void visitModuleDef(JCModuleDecl tree) {
5547         tree.sym.completeUsesProvides();
5548         ModuleSymbol msym = tree.sym;
5549         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5550         Lint prevLint = chk.setLint(lint);
5551         chk.checkModuleName(tree);
5552         chk.checkDeprecatedAnnotation(tree, msym);
5553 
5554         try {
5555             deferredLintHandler.flush(tree.pos());
5556         } finally {
5557             chk.setLint(prevLint);
5558         }
5559     }
5560 
5561     /** Finish the attribution of a class. */
5562     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5563         JCClassDecl tree = (JCClassDecl)env.tree;
5564         Assert.check(c == tree.sym);
5565 
5566         // Validate type parameters, supertype and interfaces.
5567         attribStats(tree.typarams, env);
5568         if (!c.isAnonymous()) {
5569             //already checked if anonymous
5570             chk.validate(tree.typarams, env);
5571             chk.validate(tree.extending, env);
5572             chk.validate(tree.implementing, env);
5573         }
5574 
5575         c.markAbstractIfNeeded(types);
5576 
5577         // If this is a non-abstract class, check that it has no abstract
5578         // methods or unimplemented methods of an implemented interface.
5579         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5580             chk.checkAllDefined(tree.pos(), c);
5581         }
5582 
5583         if ((c.flags() & ANNOTATION) != 0) {
5584             if (tree.implementing.nonEmpty())
5585                 log.error(tree.implementing.head.pos(),
5586                           Errors.CantExtendIntfAnnotation);
5587             if (tree.typarams.nonEmpty()) {
5588                 log.error(tree.typarams.head.pos(),
5589                           Errors.IntfAnnotationCantHaveTypeParams(c));
5590             }
5591 
5592             // If this annotation type has a @Repeatable, validate
5593             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5594             // If this annotation type has a @Repeatable, validate
5595             if (repeatable != null) {
5596                 // get diagnostic position for error reporting
5597                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5598                 Assert.checkNonNull(cbPos);
5599 
5600                 chk.validateRepeatable(c, repeatable, cbPos);
5601             }
5602         } else {
5603             // Check that all extended classes and interfaces
5604             // are compatible (i.e. no two define methods with same arguments
5605             // yet different return types).  (JLS 8.4.8.3)
5606             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5607             chk.checkDefaultMethodClashes(tree.pos(), c.type);
5608             chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
5609         }
5610 
5611         // Check that class does not import the same parameterized interface
5612         // with two different argument lists.
5613         chk.checkClassBounds(tree.pos(), c.type);
5614 
5615         tree.type = c.type;
5616 
5617         for (List<JCTypeParameter> l = tree.typarams;
5618              l.nonEmpty(); l = l.tail) {
5619              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5620         }
5621 
5622         // Check that a generic class doesn't extend Throwable
5623         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5624             log.error(tree.extending.pos(), Errors.GenericThrowable);
5625 
5626         // Check that all methods which implement some
5627         // method conform to the method they implement.
5628         chk.checkImplementations(tree);
5629 
5630         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5631         checkAutoCloseable(tree.pos(), env, c.type);
5632 
5633         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5634             // Attribute declaration
5635             attribStat(l.head, env);
5636             // Check that declarations in inner classes are not static (JLS 8.1.2)
5637             // Make an exception for static constants.
5638             if (!allowRecords &&
5639                     c.owner.kind != PCK &&
5640                     ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5641                     (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5642                 VarSymbol sym = null;
5643                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5644                 if (sym == null ||
5645                         sym.kind != VAR ||
5646                         sym.getConstValue() == null)
5647                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5648             }
5649         }
5650 
5651         // Check for proper placement of super()/this() calls.
5652         chk.checkSuperInitCalls(tree);
5653 
5654         // Check for cycles among non-initial constructors.
5655         chk.checkCyclicConstructors(tree);
5656 
5657         // Check for cycles among annotation elements.
5658         chk.checkNonCyclicElements(tree);
5659 
5660         // Check for proper use of serialVersionUID and other
5661         // serialization-related fields and methods
5662         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5663                 && rs.isSerializable(c.type)
5664                 && !c.isAnonymous()) {
5665             chk.checkSerialStructure(tree, c);
5666         }
5667         // Correctly organize the positions of the type annotations
5668         typeAnnotations.organizeTypeAnnotationsBodies(tree);
5669 
5670         // Check type annotations applicability rules
5671         validateTypeAnnotations(tree, false);
5672     }
5673         // where
5674         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5675         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5676             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5677                 if (types.isSameType(al.head.annotationType.type, t))
5678                     return al.head.pos();
5679             }
5680 
5681             return null;
5682         }
5683 
5684     private Type capture(Type type) {
5685         return types.capture(type);
5686     }
5687 
5688     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5689         if (type.isErroneous()) {
5690             tree.vartype = make.at(Position.NOPOS).Erroneous();
5691         } else {
5692             tree.vartype = make.at(Position.NOPOS).Type(type);
5693         }
5694     }
5695 
5696     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5697         tree.accept(new TypeAnnotationsValidator(sigOnly));
5698     }
5699     //where
5700     private final class TypeAnnotationsValidator extends TreeScanner {
5701 
5702         private final boolean sigOnly;
5703         public TypeAnnotationsValidator(boolean sigOnly) {
5704             this.sigOnly = sigOnly;
5705         }
5706 
5707         public void visitAnnotation(JCAnnotation tree) {
5708             chk.validateTypeAnnotation(tree, null, false);
5709             super.visitAnnotation(tree);
5710         }
5711         public void visitAnnotatedType(JCAnnotatedType tree) {
5712             if (!tree.underlyingType.type.isErroneous()) {
5713                 super.visitAnnotatedType(tree);
5714             }
5715         }
5716         public void visitTypeParameter(JCTypeParameter tree) {
5717             chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
5718             scan(tree.bounds);
5719             // Don't call super.
5720             // This is needed because above we call validateTypeAnnotation with
5721             // false, which would forbid annotations on type parameters.
5722             // super.visitTypeParameter(tree);
5723         }
5724         public void visitMethodDef(JCMethodDecl tree) {
5725             if (tree.recvparam != null &&
5726                     !tree.recvparam.vartype.type.isErroneous()) {
5727                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
5728             }
5729             if (tree.restype != null && tree.restype.type != null) {
5730                 validateAnnotatedType(tree.restype, tree.restype.type);
5731             }
5732             if (sigOnly) {
5733                 scan(tree.mods);
5734                 scan(tree.restype);
5735                 scan(tree.typarams);
5736                 scan(tree.recvparam);
5737                 scan(tree.params);
5738                 scan(tree.thrown);
5739             } else {
5740                 scan(tree.defaultValue);
5741                 scan(tree.body);
5742             }
5743         }
5744         public void visitVarDef(final JCVariableDecl tree) {
5745             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5746             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5747                 validateAnnotatedType(tree.vartype, tree.sym.type);
5748             scan(tree.mods);
5749             scan(tree.vartype);
5750             if (!sigOnly) {
5751                 scan(tree.init);
5752             }
5753         }
5754         public void visitTypeCast(JCTypeCast tree) {
5755             if (tree.clazz != null && tree.clazz.type != null)
5756                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5757             super.visitTypeCast(tree);
5758         }
5759         public void visitTypeTest(JCInstanceOf tree) {
5760             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5761                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5762             super.visitTypeTest(tree);
5763         }
5764         public void visitNewClass(JCNewClass tree) {
5765             if (tree.clazz != null && tree.clazz.type != null) {
5766                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5767                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5768                             tree.clazz.type.tsym);
5769                 }
5770                 if (tree.def != null) {
5771                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5772                 }
5773 
5774                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5775             }
5776             super.visitNewClass(tree);
5777         }
5778         public void visitNewArray(JCNewArray tree) {
5779             if (tree.elemtype != null && tree.elemtype.type != null) {
5780                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5781                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5782                             tree.elemtype.type.tsym);
5783                 }
5784                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5785             }
5786             super.visitNewArray(tree);
5787         }
5788         public void visitClassDef(JCClassDecl tree) {
5789             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5790             if (sigOnly) {
5791                 scan(tree.mods);
5792                 scan(tree.typarams);
5793                 scan(tree.extending);
5794                 scan(tree.implementing);
5795             }
5796             for (JCTree member : tree.defs) {
5797                 if (member.hasTag(Tag.CLASSDEF)) {
5798                     continue;
5799                 }
5800                 scan(member);
5801             }
5802         }
5803         public void visitBlock(JCBlock tree) {
5804             if (!sigOnly) {
5805                 scan(tree.stats);
5806             }
5807         }
5808 
5809         /* I would want to model this after
5810          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5811          * and override visitSelect and visitTypeApply.
5812          * However, we only set the annotated type in the top-level type
5813          * of the symbol.
5814          * Therefore, we need to override each individual location where a type
5815          * can occur.
5816          */
5817         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5818             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5819 
5820             if (type.isPrimitiveOrVoid()) {
5821                 return;
5822             }
5823 
5824             JCTree enclTr = errtree;
5825             Type enclTy = type;
5826 
5827             boolean repeat = true;
5828             while (repeat) {
5829                 if (enclTr.hasTag(TYPEAPPLY)) {
5830                     List<Type> tyargs = enclTy.getTypeArguments();
5831                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5832                     if (trargs.length() > 0) {
5833                         // Nothing to do for diamonds
5834                         if (tyargs.length() == trargs.length()) {
5835                             for (int i = 0; i < tyargs.length(); ++i) {
5836                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5837                             }
5838                         }
5839                         // If the lengths don't match, it's either a diamond
5840                         // or some nested type that redundantly provides
5841                         // type arguments in the tree.
5842                     }
5843 
5844                     // Look at the clazz part of a generic type
5845                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5846                 }
5847 
5848                 if (enclTr.hasTag(SELECT)) {
5849                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5850                     if (enclTy != null &&
5851                             !enclTy.hasTag(NONE)) {
5852                         enclTy = enclTy.getEnclosingType();
5853                     }
5854                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5855                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5856                     if (enclTy == null || enclTy.hasTag(NONE)) {
5857                         if (at.getAnnotations().size() == 1) {
5858                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
5859                         } else {
5860                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
5861                             for (JCAnnotation an : at.getAnnotations()) {
5862                                 comps.add(an.attribute);
5863                             }
5864                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
5865                         }
5866                         repeat = false;
5867                     }
5868                     enclTr = at.underlyingType;
5869                     // enclTy doesn't need to be changed
5870                 } else if (enclTr.hasTag(IDENT)) {
5871                     repeat = false;
5872                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5873                     JCWildcard wc = (JCWildcard) enclTr;
5874                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5875                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5876                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5877                     } else {
5878                         // Nothing to do for UNBOUND
5879                     }
5880                     repeat = false;
5881                 } else if (enclTr.hasTag(TYPEARRAY)) {
5882                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5883                     validateAnnotatedType(art.getType(), art.elemtype.type);
5884                     repeat = false;
5885                 } else if (enclTr.hasTag(TYPEUNION)) {
5886                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5887                     for (JCTree t : ut.getTypeAlternatives()) {
5888                         validateAnnotatedType(t, t.type);
5889                     }
5890                     repeat = false;
5891                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5892                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5893                     for (JCTree t : it.getBounds()) {
5894                         validateAnnotatedType(t, t.type);
5895                     }
5896                     repeat = false;
5897                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5898                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5899                     repeat = false;
5900                 } else {
5901                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5902                             " within: "+ errtree + " with kind: " + errtree.getKind());
5903                 }
5904             }
5905         }
5906 
5907         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5908                 Symbol sym) {
5909             // Ensure that no declaration annotations are present.
5910             // Note that a tree type might be an AnnotatedType with
5911             // empty annotations, if only declaration annotations were given.
5912             // This method will raise an error for such a type.
5913             for (JCAnnotation ai : annotations) {
5914                 if (!ai.type.isErroneous() &&
5915                         typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5916                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5917                 }
5918             }
5919         }
5920     }
5921 
5922     // <editor-fold desc="post-attribution visitor">
5923 
5924     /**
5925      * Handle missing types/symbols in an AST. This routine is useful when
5926      * the compiler has encountered some errors (which might have ended up
5927      * terminating attribution abruptly); if the compiler is used in fail-over
5928      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5929      * prevents NPE to be propagated during subsequent compilation steps.
5930      */
5931     public void postAttr(JCTree tree) {
5932         new PostAttrAnalyzer().scan(tree);
5933     }
5934 
5935     class PostAttrAnalyzer extends TreeScanner {
5936 
5937         private void initTypeIfNeeded(JCTree that) {
5938             if (that.type == null) {
5939                 if (that.hasTag(METHODDEF)) {
5940                     that.type = dummyMethodType((JCMethodDecl)that);
5941                 } else {
5942                     that.type = syms.unknownType;
5943                 }
5944             }
5945         }
5946 
5947         /* Construct a dummy method type. If we have a method declaration,
5948          * and the declared return type is void, then use that return type
5949          * instead of UNKNOWN to avoid spurious error messages in lambda
5950          * bodies (see:JDK-8041704).
5951          */
5952         private Type dummyMethodType(JCMethodDecl md) {
5953             Type restype = syms.unknownType;
5954             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5955                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5956                 if (prim.typetag == VOID)
5957                     restype = syms.voidType;
5958             }
5959             return new MethodType(List.nil(), restype,
5960                                   List.nil(), syms.methodClass);
5961         }
5962         private Type dummyMethodType() {
5963             return dummyMethodType(null);
5964         }
5965 
5966         @Override
5967         public void scan(JCTree tree) {
5968             if (tree == null) return;
5969             if (tree instanceof JCExpression) {
5970                 initTypeIfNeeded(tree);
5971             }
5972             super.scan(tree);
5973         }
5974 
5975         @Override
5976         public void visitIdent(JCIdent that) {
5977             if (that.sym == null) {
5978                 that.sym = syms.unknownSymbol;
5979             }
5980         }
5981 
5982         @Override
5983         public void visitSelect(JCFieldAccess that) {
5984             if (that.sym == null) {
5985                 that.sym = syms.unknownSymbol;
5986             }
5987             super.visitSelect(that);
5988         }
5989 
5990         @Override
5991         public void visitClassDef(JCClassDecl that) {
5992             initTypeIfNeeded(that);
5993             if (that.sym == null) {
5994                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5995             }
5996             super.visitClassDef(that);
5997         }
5998 
5999         @Override
6000         public void visitMethodDef(JCMethodDecl that) {
6001             initTypeIfNeeded(that);
6002             if (that.sym == null) {
6003                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6004             }
6005             super.visitMethodDef(that);
6006         }
6007 
6008         @Override
6009         public void visitVarDef(JCVariableDecl that) {
6010             initTypeIfNeeded(that);
6011             if (that.sym == null) {
6012                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6013                 that.sym.adr = 0;
6014             }
6015             if (that.vartype == null) {
6016                 that.vartype = make.at(Position.NOPOS).Erroneous();
6017             }
6018             super.visitVarDef(that);
6019         }
6020 
6021         @Override
6022         public void visitBindingPattern(JCBindingPattern that) {
6023             initTypeIfNeeded(that);
6024             initTypeIfNeeded(that.var);
6025             if (that.var.sym == null) {
6026                 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6027                 that.var.sym.adr = 0;
6028             }
6029             super.visitBindingPattern(that);
6030         }
6031 
6032         @Override
6033         public void visitNewClass(JCNewClass that) {
6034             if (that.constructor == null) {
6035                 that.constructor = new MethodSymbol(0, names.init,
6036                         dummyMethodType(), syms.noSymbol);
6037             }
6038             if (that.constructorType == null) {
6039                 that.constructorType = syms.unknownType;
6040             }
6041             super.visitNewClass(that);
6042         }
6043 
6044         @Override
6045         public void visitAssignop(JCAssignOp that) {
6046             if (that.operator == null) {
6047                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6048                         -1, syms.noSymbol);
6049             }
6050             super.visitAssignop(that);
6051         }
6052 
6053         @Override
6054         public void visitBinary(JCBinary that) {
6055             if (that.operator == null) {
6056                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6057                         -1, syms.noSymbol);
6058             }
6059             super.visitBinary(that);
6060         }
6061 
6062         @Override
6063         public void visitUnary(JCUnary that) {
6064             if (that.operator == null) {
6065                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6066                         -1, syms.noSymbol);
6067             }
6068             super.visitUnary(that);
6069         }
6070 
6071         @Override
6072         public void visitReference(JCMemberReference that) {
6073             super.visitReference(that);
6074             if (that.sym == null) {
6075                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6076                         syms.noSymbol);
6077             }
6078         }
6079     }
6080     // </editor-fold>
6081 
6082     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6083         new TreeScanner() {
6084             Symbol packge = pkg;
6085             @Override
6086             public void visitIdent(JCIdent that) {
6087                 that.sym = packge;
6088             }
6089 
6090             @Override
6091             public void visitSelect(JCFieldAccess that) {
6092                 that.sym = packge;
6093                 packge = packge.owner;
6094                 super.visitSelect(that);
6095             }
6096         }.scan(pid);
6097     }
6098 
6099 }
--- EOF ---