1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package com.sun.tools.javac.comp;
27
28 import java.util.*;
29 import java.util.function.BiConsumer;
30 import java.util.function.Consumer;
31 import java.util.stream.Stream;
32
33 import javax.lang.model.element.ElementKind;
34 import javax.tools.JavaFileObject;
35
36 import com.sun.source.tree.CaseTree;
37 import com.sun.source.tree.IdentifierTree;
38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
39 import com.sun.source.tree.MemberSelectTree;
40 import com.sun.source.tree.TreeVisitor;
41 import com.sun.source.util.SimpleTreeVisitor;
42 import com.sun.tools.javac.code.*;
43 import com.sun.tools.javac.code.Lint.LintCategory;
44 import com.sun.tools.javac.code.LintMapper;
45 import com.sun.tools.javac.code.Scope.WriteableScope;
46 import com.sun.tools.javac.code.Source.Feature;
47 import com.sun.tools.javac.code.Symbol.*;
48 import com.sun.tools.javac.code.Type.*;
49 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
50 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
51 import com.sun.tools.javac.comp.Check.CheckContext;
52 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
53 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
54 import com.sun.tools.javac.jvm.*;
55
56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
59
60 import com.sun.tools.javac.resources.CompilerProperties.Errors;
61 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
62 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
63 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
64 import com.sun.tools.javac.tree.*;
65 import com.sun.tools.javac.tree.JCTree.*;
66 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
67 import com.sun.tools.javac.util.*;
68 import com.sun.tools.javac.util.DefinedBy.Api;
69 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
70 import com.sun.tools.javac.util.JCDiagnostic.Error;
71 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
72 import com.sun.tools.javac.util.JCDiagnostic.Warning;
73 import com.sun.tools.javac.util.List;
74
75 import static com.sun.tools.javac.code.Flags.*;
76 import static com.sun.tools.javac.code.Flags.ANNOTATION;
77 import static com.sun.tools.javac.code.Flags.BLOCK;
78 import static com.sun.tools.javac.code.Kinds.*;
79 import static com.sun.tools.javac.code.Kinds.Kind.*;
80 import static com.sun.tools.javac.code.TypeTag.*;
81 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
82 import static com.sun.tools.javac.tree.JCTree.Tag.*;
83
84 /** This is the main context-dependent analysis phase in GJC. It
85 * encompasses name resolution, type checking and constant folding as
86 * subtasks. Some subtasks involve auxiliary classes.
87 * @see Check
88 * @see Resolve
89 * @see ConstFold
90 * @see Infer
91 *
92 * <p><b>This is NOT part of any supported API.
93 * If you write code that depends on this, you do so at your own risk.
94 * This code and its internal interfaces are subject to change or
95 * deletion without notice.</b>
96 */
97 public class Attr extends JCTree.Visitor {
98 protected static final Context.Key<Attr> attrKey = new Context.Key<>();
99
100 final Names names;
101 final Log log;
102 final LintMapper lintMapper;
103 final Symtab syms;
104 final Resolve rs;
105 final Operators operators;
106 final Infer infer;
107 final Analyzer analyzer;
108 final DeferredAttr deferredAttr;
109 final Check chk;
110 final Flow flow;
111 final MemberEnter memberEnter;
112 final TypeEnter typeEnter;
113 final TreeMaker make;
114 final ConstFold cfolder;
115 final Enter enter;
116 final Target target;
117 final Types types;
118 final Preview preview;
119 final JCDiagnostic.Factory diags;
120 final TypeAnnotations typeAnnotations;
121 final TypeEnvs typeEnvs;
122 final Dependencies dependencies;
123 final Annotate annotate;
124 final ArgumentAttr argumentAttr;
125 final MatchBindingsComputer matchBindingsComputer;
126 final AttrRecover attrRecover;
127 final LocalProxyVarsGen localProxyVarsGen;
128
129 public static Attr instance(Context context) {
130 Attr instance = context.get(attrKey);
131 if (instance == null)
132 instance = new Attr(context);
133 return instance;
134 }
135
136 @SuppressWarnings("this-escape")
137 protected Attr(Context context) {
138 context.put(attrKey, this);
139
140 names = Names.instance(context);
141 log = Log.instance(context);
142 lintMapper = LintMapper.instance(context);
143 syms = Symtab.instance(context);
144 rs = Resolve.instance(context);
145 operators = Operators.instance(context);
146 chk = Check.instance(context);
147 flow = Flow.instance(context);
148 memberEnter = MemberEnter.instance(context);
149 typeEnter = TypeEnter.instance(context);
150 make = TreeMaker.instance(context);
151 enter = Enter.instance(context);
152 infer = Infer.instance(context);
153 analyzer = Analyzer.instance(context);
154 deferredAttr = DeferredAttr.instance(context);
155 cfolder = ConstFold.instance(context);
156 target = Target.instance(context);
157 types = Types.instance(context);
158 preview = Preview.instance(context);
159 diags = JCDiagnostic.Factory.instance(context);
160 annotate = Annotate.instance(context);
161 typeAnnotations = TypeAnnotations.instance(context);
162 typeEnvs = TypeEnvs.instance(context);
163 dependencies = Dependencies.instance(context);
164 argumentAttr = ArgumentAttr.instance(context);
165 matchBindingsComputer = MatchBindingsComputer.instance(context);
166 attrRecover = AttrRecover.instance(context);
167 localProxyVarsGen = LocalProxyVarsGen.instance(context);
168
169 Options options = Options.instance(context);
170
171 Source source = Source.instance(context);
172 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
173 allowRecords = Feature.RECORDS.allowedInSource(source);
174 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
175 Feature.PATTERN_SWITCH.allowedInSource(source);
176 allowUnconditionalPatternsInstanceOf =
177 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
178 sourceName = source.name;
179 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
180
181 statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
182 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
183 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
184 methodAttrInfo = new MethodAttrInfo();
185 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
186 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
187 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
188 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass);
189 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
190 Feature.VALUE_CLASSES.allowedInSource(source);
191 }
192
193 /** Switch: reifiable types in instanceof enabled?
194 */
195 boolean allowReifiableTypesInInstanceof;
196
197 /** Are records allowed
198 */
199 private final boolean allowRecords;
200
201 /** Are patterns in switch allowed
202 */
203 private final boolean allowPatternSwitch;
204
205 /** Are unconditional patterns in instanceof allowed
206 */
207 private final boolean allowUnconditionalPatternsInstanceOf;
208
209 /** Are value classes allowed
210 */
211 private final boolean allowValueClasses;
212
213 /**
214 * Switch: warn about use of variable before declaration?
215 * RFE: 6425594
216 */
217 boolean useBeforeDeclarationWarning;
218
219 /**
220 * Switch: name of source level; used for error reporting.
221 */
222 String sourceName;
223
224 /** Check kind and type of given tree against protokind and prototype.
225 * If check succeeds, store type in tree and return it.
226 * If check fails, store errType in tree and return it.
227 * No checks are performed if the prototype is a method type.
228 * It is not necessary in this case since we know that kind and type
229 * are correct.
230 *
231 * @param tree The tree whose kind and type is checked
232 * @param found The computed type of the tree
233 * @param ownkind The computed kind of the tree
234 * @param resultInfo The expected result of the tree
235 */
236 Type check(final JCTree tree,
237 final Type found,
238 final KindSelector ownkind,
239 final ResultInfo resultInfo) {
240 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
241 Type owntype;
242 boolean shouldCheck = !found.hasTag(ERROR) &&
243 !resultInfo.pt.hasTag(METHOD) &&
244 !resultInfo.pt.hasTag(FORALL);
245 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
246 log.error(tree.pos(),
247 Errors.UnexpectedType(resultInfo.pkind.kindNames(),
248 ownkind.kindNames()));
249 owntype = types.createErrorType(found);
250 } else if (inferenceContext.free(found)) {
251 //delay the check if there are inference variables in the found type
252 //this means we are dealing with a partially inferred poly expression
253 owntype = shouldCheck ? resultInfo.pt : found;
254 if (resultInfo.checkMode.installPostInferenceHook()) {
255 inferenceContext.addFreeTypeListener(List.of(found),
256 instantiatedContext -> {
257 ResultInfo pendingResult =
258 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
259 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
260 });
261 }
262 } else {
263 owntype = shouldCheck ?
264 resultInfo.check(tree, found) :
265 found;
266 }
267 if (resultInfo.checkMode.updateTreeType()) {
268 tree.type = owntype;
269 }
270 return owntype;
271 }
272
273 /** Is given blank final variable assignable, i.e. in a scope where it
274 * may be assigned to even though it is final?
275 * @param v The blank final variable.
276 * @param env The current environment.
277 */
278 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
279 Symbol owner = env.info.scope.owner;
280 // owner refers to the innermost variable, method or
281 // initializer block declaration at this point.
282 boolean isAssignable =
283 v.owner == owner
284 ||
285 ((owner.name == names.init || // i.e. we are in a constructor
286 owner.kind == VAR || // i.e. we are in a variable initializer
287 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
288 &&
289 v.owner == owner.owner
290 &&
291 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
292 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
293 return isAssignable & !insideCompactConstructor;
294 }
295
296 /** Check that variable can be assigned to.
297 * @param pos The current source code position.
298 * @param v The assigned variable
299 * @param base If the variable is referred to in a Select, the part
300 * to the left of the `.', null otherwise.
301 * @param env The current environment.
302 */
303 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
304 if (v.name == names._this) {
305 log.error(pos, Errors.CantAssignValToThis);
306 } else if ((v.flags() & FINAL) != 0 &&
307 ((v.flags() & HASINIT) != 0
308 ||
309 !((base == null ||
310 TreeInfo.isThisQualifier(base)) &&
311 isAssignableAsBlankFinal(v, env)))) {
312 if (v.isResourceVariable()) { //TWR resource
313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
314 } else {
315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v));
316 }
317 }
318 }
319
320 /** Does tree represent a static reference to an identifier?
321 * It is assumed that tree is either a SELECT or an IDENT.
322 * We have to weed out selects from non-type names here.
323 * @param tree The candidate tree.
324 */
325 boolean isStaticReference(JCTree tree) {
326 if (tree.hasTag(SELECT)) {
327 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
328 if (lsym == null || lsym.kind != TYP) {
329 return false;
330 }
331 }
332 return true;
333 }
334
335 /** Is this symbol a type?
336 */
337 static boolean isType(Symbol sym) {
338 return sym != null && sym.kind == TYP;
339 }
340
341 /** Attribute a parsed identifier.
342 * @param tree Parsed identifier name
343 * @param topLevel The toplevel to use
344 */
345 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
346 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
347 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
348 syms.errSymbol.name,
349 null, null, null, null);
350 localEnv.enclClass.sym = syms.errSymbol;
351 return attribIdent(tree, localEnv);
352 }
353
354 /** Attribute a parsed identifier.
355 * @param tree Parsed identifier name
356 * @param env The env to use
357 */
358 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
359 return tree.accept(identAttributer, env);
360 }
361 // where
362 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
363 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
364 @Override @DefinedBy(Api.COMPILER_TREE)
365 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
366 Symbol site = visit(node.getExpression(), env);
367 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
368 return site;
369 Name name = (Name)node.getIdentifier();
370 if (site.kind == PCK) {
371 env.toplevel.packge = (PackageSymbol)site;
372 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
373 KindSelector.TYP_PCK);
374 } else {
375 env.enclClass.sym = (ClassSymbol)site;
376 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
377 }
378 }
379
380 @Override @DefinedBy(Api.COMPILER_TREE)
381 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
382 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
383 }
384 }
385
386 public Type coerce(Type etype, Type ttype) {
387 return cfolder.coerce(etype, ttype);
388 }
389
390 public Type attribType(JCTree node, TypeSymbol sym) {
391 Env<AttrContext> env = typeEnvs.get(sym);
392 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
393 return attribTree(node, localEnv, unknownTypeInfo);
394 }
395
396 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
397 // Attribute qualifying package or class.
398 JCFieldAccess s = tree.qualid;
399 return attribTree(s.selected, env,
400 new ResultInfo(tree.staticImport ?
401 KindSelector.TYP : KindSelector.TYP_PCK,
402 Type.noType));
403 }
404
405 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
406 return attribToTree(expr, env, tree, unknownExprInfo);
407 }
408
409 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
410 return attribToTree(stmt, env, tree, statInfo);
411 }
412
413 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
414 breakTree = tree;
415 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
416 try {
417 deferredAttr.attribSpeculative(root, env, resultInfo,
418 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE,
419 argumentAttr.withLocalCacheContext());
420 attrRecover.doRecovery();
421 } catch (BreakAttr b) {
422 return b.env;
423 } catch (AssertionError ae) {
424 if (ae.getCause() instanceof BreakAttr breakAttr) {
425 return breakAttr.env;
426 } else {
427 throw ae;
428 }
429 } finally {
430 breakTree = null;
431 log.useSource(prev);
432 }
433 return env;
434 }
435
436 private JCTree breakTree = null;
437
438 private static class BreakAttr extends RuntimeException {
439 static final long serialVersionUID = -6924771130405446405L;
440 private transient Env<AttrContext> env;
441 private BreakAttr(Env<AttrContext> env) {
442 this.env = env;
443 }
444 }
445
446 /**
447 * Mode controlling behavior of Attr.Check
448 */
449 enum CheckMode {
450
451 NORMAL,
452
453 /**
454 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
455 * that the captured var cache in {@code InferenceContext} will be used in read-only
456 * mode when performing inference checks.
457 */
458 NO_TREE_UPDATE {
459 @Override
460 public boolean updateTreeType() {
461 return false;
462 }
463 },
464 /**
465 * Mode signalling that caller will manage free types in tree decorations.
466 */
467 NO_INFERENCE_HOOK {
468 @Override
469 public boolean installPostInferenceHook() {
470 return false;
471 }
472 };
473
474 public boolean updateTreeType() {
475 return true;
476 }
477 public boolean installPostInferenceHook() {
478 return true;
479 }
480 }
481
482
483 class ResultInfo {
484 final KindSelector pkind;
485 final Type pt;
486 final CheckContext checkContext;
487 final CheckMode checkMode;
488
489 ResultInfo(KindSelector pkind, Type pt) {
490 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
491 }
492
493 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
494 this(pkind, pt, chk.basicHandler, checkMode);
495 }
496
497 protected ResultInfo(KindSelector pkind,
498 Type pt, CheckContext checkContext) {
499 this(pkind, pt, checkContext, CheckMode.NORMAL);
500 }
501
502 protected ResultInfo(KindSelector pkind,
503 Type pt, CheckContext checkContext, CheckMode checkMode) {
504 this.pkind = pkind;
505 this.pt = pt;
506 this.checkContext = checkContext;
507 this.checkMode = checkMode;
508 }
509
510 /**
511 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one?
512 * @param tree The tree to be type-checked.
513 * @return true if {@code ArgumentAttr} should be used.
514 */
515 protected boolean needsArgumentAttr(JCTree tree) { return false; }
516
517 protected Type check(final DiagnosticPosition pos, final Type found) {
518 return chk.checkType(pos, found, pt, checkContext);
519 }
520
521 protected ResultInfo dup(Type newPt) {
522 return new ResultInfo(pkind, newPt, checkContext, checkMode);
523 }
524
525 protected ResultInfo dup(CheckContext newContext) {
526 return new ResultInfo(pkind, pt, newContext, checkMode);
527 }
528
529 protected ResultInfo dup(Type newPt, CheckContext newContext) {
530 return new ResultInfo(pkind, newPt, newContext, checkMode);
531 }
532
533 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
534 return new ResultInfo(pkind, newPt, newContext, newMode);
535 }
536
537 protected ResultInfo dup(CheckMode newMode) {
538 return new ResultInfo(pkind, pt, checkContext, newMode);
539 }
540
541 @Override
542 public String toString() {
543 if (pt != null) {
544 return pt.toString();
545 } else {
546 return "";
547 }
548 }
549 }
550
551 class MethodAttrInfo extends ResultInfo {
552 public MethodAttrInfo() {
553 this(chk.basicHandler);
554 }
555
556 public MethodAttrInfo(CheckContext checkContext) {
557 super(KindSelector.VAL, Infer.anyPoly, checkContext);
558 }
559
560 @Override
561 protected boolean needsArgumentAttr(JCTree tree) {
562 return true;
563 }
564
565 protected ResultInfo dup(Type newPt) {
566 throw new IllegalStateException();
567 }
568
569 protected ResultInfo dup(CheckContext newContext) {
570 return new MethodAttrInfo(newContext);
571 }
572
573 protected ResultInfo dup(Type newPt, CheckContext newContext) {
574 throw new IllegalStateException();
575 }
576
577 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
578 throw new IllegalStateException();
579 }
580
581 protected ResultInfo dup(CheckMode newMode) {
582 throw new IllegalStateException();
583 }
584 }
585
586 class RecoveryInfo extends ResultInfo {
587
588 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
589 this(deferredAttrContext, Type.recoveryType);
590 }
591
592 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
593 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
594 @Override
595 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
596 return deferredAttrContext;
597 }
598 @Override
599 public boolean compatible(Type found, Type req, Warner warn) {
600 return true;
601 }
602 @Override
603 public void report(DiagnosticPosition pos, JCDiagnostic details) {
604 boolean needsReport = pt == Type.recoveryType ||
605 (details.getDiagnosticPosition() != null &&
606 details.getDiagnosticPosition().getTree().hasTag(LAMBDA));
607 if (needsReport) {
608 chk.basicHandler.report(pos, details);
609 }
610 }
611 });
612 }
613 }
614
615 final ResultInfo statInfo;
616 final ResultInfo varAssignmentInfo;
617 final ResultInfo methodAttrInfo;
618 final ResultInfo unknownExprInfo;
619 final ResultInfo unknownTypeInfo;
620 final ResultInfo unknownTypeExprInfo;
621 final ResultInfo recoveryInfo;
622 final MethodType initBlockType;
623
624 Type pt() {
625 return resultInfo.pt;
626 }
627
628 KindSelector pkind() {
629 return resultInfo.pkind;
630 }
631
632 /* ************************************************************************
633 * Visitor methods
634 *************************************************************************/
635
636 /** Visitor argument: the current environment.
637 */
638 Env<AttrContext> env;
639
640 /** Visitor argument: the currently expected attribution result.
641 */
642 ResultInfo resultInfo;
643
644 /** Visitor result: the computed type.
645 */
646 Type result;
647
648 MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
649
650 /** Visitor method: attribute a tree, catching any completion failure
651 * exceptions. Return the tree's type.
652 *
653 * @param tree The tree to be visited.
654 * @param env The environment visitor argument.
655 * @param resultInfo The result info visitor argument.
656 */
657 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
658 Env<AttrContext> prevEnv = this.env;
659 ResultInfo prevResult = this.resultInfo;
660 try {
661 this.env = env;
662 this.resultInfo = resultInfo;
663 if (resultInfo.needsArgumentAttr(tree)) {
664 result = argumentAttr.attribArg(tree, env);
665 } else {
666 tree.accept(this);
667 }
668 matchBindings = matchBindingsComputer.finishBindings(tree,
669 matchBindings);
670 if (tree == breakTree &&
671 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
672 breakTreeFound(copyEnv(env));
673 }
674 return result;
675 } catch (CompletionFailure ex) {
676 tree.type = syms.errType;
677 return chk.completionError(tree.pos(), ex);
678 } finally {
679 this.env = prevEnv;
680 this.resultInfo = prevResult;
681 }
682 }
683
684 protected void breakTreeFound(Env<AttrContext> env) {
685 throw new BreakAttr(env);
686 }
687
688 Env<AttrContext> copyEnv(Env<AttrContext> env) {
689 Env<AttrContext> newEnv =
690 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
691 if (newEnv.outer != null) {
692 newEnv.outer = copyEnv(newEnv.outer);
693 }
694 return newEnv;
695 }
696
697 WriteableScope copyScope(WriteableScope sc) {
698 WriteableScope newScope = WriteableScope.create(sc.owner);
699 List<Symbol> elemsList = List.nil();
700 for (Symbol sym : sc.getSymbols()) {
701 elemsList = elemsList.prepend(sym);
702 }
703 for (Symbol s : elemsList) {
704 newScope.enter(s);
705 }
706 return newScope;
707 }
708
709 /** Derived visitor method: attribute an expression tree.
710 */
711 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
712 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
713 }
714
715 /** Derived visitor method: attribute an expression tree with
716 * no constraints on the computed type.
717 */
718 public Type attribExpr(JCTree tree, Env<AttrContext> env) {
719 return attribTree(tree, env, unknownExprInfo);
720 }
721
722 /** Derived visitor method: attribute a type tree.
723 */
724 public Type attribType(JCTree tree, Env<AttrContext> env) {
725 Type result = attribType(tree, env, Type.noType);
726 return result;
727 }
728
729 /** Derived visitor method: attribute a type tree.
730 */
731 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
732 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
733 return result;
734 }
735
736 /** Derived visitor method: attribute a statement or definition tree.
737 */
738 public Type attribStat(JCTree tree, Env<AttrContext> env) {
739 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
740 Type result = attribTree(tree, env, statInfo);
741 analyzer.analyzeIfNeeded(tree, analyzeEnv);
742 attrRecover.doRecovery();
743 return result;
744 }
745
746 /** Attribute a list of expressions, returning a list of types.
747 */
748 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
749 ListBuffer<Type> ts = new ListBuffer<>();
750 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
751 ts.append(attribExpr(l.head, env, pt));
752 return ts.toList();
753 }
754
755 /** Attribute a list of statements, returning nothing.
756 */
757 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
758 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
759 attribStat(l.head, env);
760 }
761
762 /** Attribute the arguments in a method call, returning the method kind.
763 */
764 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
765 KindSelector kind = initialKind;
766 for (JCExpression arg : trees) {
767 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo));
768 if (argtype.hasTag(DEFERRED)) {
769 kind = KindSelector.of(KindSelector.POLY, kind);
770 }
771 argtypes.append(argtype);
772 }
773 return kind;
774 }
775
776 /** Attribute a type argument list, returning a list of types.
777 * Caller is responsible for calling checkRefTypes.
778 */
779 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
780 ListBuffer<Type> argtypes = new ListBuffer<>();
781 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
782 argtypes.append(attribType(l.head, env));
783 return argtypes.toList();
784 }
785
786 /** Attribute a type argument list, returning a list of types.
787 * Check that all the types are references.
788 */
789 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
790 List<Type> types = attribAnyTypes(trees, env);
791 return chk.checkRefTypes(trees, types);
792 }
793
794 /**
795 * Attribute type variables (of generic classes or methods).
796 * Compound types are attributed later in attribBounds.
797 * @param typarams the type variables to enter
798 * @param env the current environment
799 */
800 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
801 for (JCTypeParameter tvar : typarams) {
802 TypeVar a = (TypeVar)tvar.type;
803 a.tsym.flags_field |= UNATTRIBUTED;
804 a.setUpperBound(Type.noType);
805 if (!tvar.bounds.isEmpty()) {
806 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
807 for (JCExpression bound : tvar.bounds.tail)
808 bounds = bounds.prepend(attribType(bound, env));
809 types.setBounds(a, bounds.reverse());
810 } else {
811 // if no bounds are given, assume a single bound of
812 // java.lang.Object.
813 types.setBounds(a, List.of(syms.objectType));
814 }
815 a.tsym.flags_field &= ~UNATTRIBUTED;
816 }
817 if (checkCyclic) {
818 for (JCTypeParameter tvar : typarams) {
819 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
820 }
821 }
822 }
823
824 /**
825 * Attribute the type references in a list of annotations.
826 */
827 void attribAnnotationTypes(List<JCAnnotation> annotations,
828 Env<AttrContext> env) {
829 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
830 JCAnnotation a = al.head;
831 attribType(a.annotationType, env);
832 }
833 }
834
835 /**
836 * Attribute a "lazy constant value".
837 * @param env The env for the const value
838 * @param variable The initializer for the const value
839 * @param type The expected type, or null
840 * @see VarSymbol#setLazyConstValue
841 */
842 public Object attribLazyConstantValue(Env<AttrContext> env,
843 Env<AttrContext> enclosingEnv,
844 JCVariableDecl variable,
845 Type type) {
846 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
847 try {
848 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv);
849 Type itype = attribExpr(variable.init, env, type);
850 if (variable.isImplicitlyTyped()) {
851 //fixup local variable type
852 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name);
853 }
854 if (itype.constValue() != null) {
855 return coerce(itype, type).constValue();
856 } else {
857 return null;
858 }
859 } finally {
860 log.useSource(prevSource);
861 }
862 }
863
864 /** Attribute type reference in an `extends', `implements', or 'permits' clause.
865 * Supertypes of anonymous inner classes are usually already attributed.
866 *
867 * @param tree The tree making up the type reference.
868 * @param env The environment current at the reference.
869 * @param classExpected true if only a class is expected here.
870 * @param interfaceExpected true if only an interface is expected here.
871 */
872 Type attribBase(JCTree tree,
873 Env<AttrContext> env,
874 boolean classExpected,
875 boolean interfaceExpected,
876 boolean checkExtensible) {
877 Type t = tree.type != null ?
878 tree.type :
879 attribType(tree, env);
880 try {
881 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
882 } catch (CompletionFailure ex) {
883 chk.completionError(tree.pos(), ex);
884 return t;
885 }
886 }
887 Type checkBase(Type t,
888 JCTree tree,
889 Env<AttrContext> env,
890 boolean classExpected,
891 boolean interfaceExpected,
892 boolean checkExtensible) {
893 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
894 (((JCTypeApply) tree).clazz).pos() : tree.pos();
895 if (t.tsym.isAnonymous()) {
896 log.error(pos, Errors.CantInheritFromAnon);
897 return types.createErrorType(t);
898 }
899 if (t.isErroneous())
900 return t;
901 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
902 // check that type variable is already visible
903 if (t.getUpperBound() == null) {
904 log.error(pos, Errors.IllegalForwardRef);
905 return types.createErrorType(t);
906 }
907 } else {
908 t = chk.checkClassType(pos, t, checkExtensible);
909 }
910 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
911 log.error(pos, Errors.IntfExpectedHere);
912 // return errType is necessary since otherwise there might
913 // be undetected cycles which cause attribution to loop
914 return types.createErrorType(t);
915 } else if (checkExtensible &&
916 classExpected &&
917 (t.tsym.flags() & INTERFACE) != 0) {
918 log.error(pos, Errors.NoIntfExpectedHere);
919 return types.createErrorType(t);
920 }
921 if (checkExtensible &&
922 ((t.tsym.flags() & FINAL) != 0)) {
923 log.error(pos,
924 Errors.CantInheritFromFinal(t.tsym));
925 }
926 chk.checkNonCyclic(pos, t);
927 return t;
928 }
929
930 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
931 Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
932 id.type = env.info.scope.owner.enclClass().type;
933 id.sym = env.info.scope.owner.enclClass();
934 return id.type;
935 }
936
937 public void visitClassDef(JCClassDecl tree) {
938 Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
939 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
940 argumentAttr.withLocalCacheContext() : null);
941 boolean ctorProloguePrev = env.info.ctorPrologue;
942 try {
943 // Local and anonymous classes have not been entered yet, so we need to
944 // do it now.
945 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
946 enter.classEnter(tree, env);
947 } else {
948 // If this class declaration is part of a class level annotation,
949 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
950 // order to simplify later steps and allow for sensible error
951 // messages.
952 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
953 enter.classEnter(tree, env);
954 }
955
956 ClassSymbol c = tree.sym;
957 if (c == null) {
958 // exit in case something drastic went wrong during enter.
959 result = null;
960 } else {
961 // make sure class has been completed:
962 c.complete();
963
964 // If a class declaration appears in a constructor prologue,
965 // that means it's either a local class or an anonymous class.
966 // Either way, there is no immediately enclosing instance.
967 if (ctorProloguePrev) {
968 c.flags_field |= NOOUTERTHIS;
969 }
970 attribClass(tree.pos(), c);
971 result = tree.type = c.type;
972 }
973 } finally {
974 localCacheContext.ifPresent(LocalCacheContext::leave);
975 env.info.ctorPrologue = ctorProloguePrev;
976 }
977 }
978
979 public void visitMethodDef(JCMethodDecl tree) {
980 MethodSymbol m = tree.sym;
981 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
982
983 Lint lint = env.info.lint.augment(m);
984 Lint prevLint = chk.setLint(lint);
985 boolean ctorProloguePrev = env.info.ctorPrologue;
986 Assert.check(!env.info.ctorPrologue);
987 MethodSymbol prevMethod = chk.setMethod(m);
988 try {
989 chk.checkDeprecatedAnnotation(tree.pos(), m);
990
991
992 // Create a new environment with local scope
993 // for attributing the method.
994 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
995 localEnv.info.lint = lint;
996
997 attribStats(tree.typarams, localEnv);
998
999 // If we override any other methods, check that we do so properly.
1000 // JLS ???
1001 if (m.isStatic()) {
1002 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
1003 } else {
1004 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1005 }
1006 chk.checkOverride(env, tree, m);
1007
1008 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1009 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1010 }
1011
1012 // Enter all type parameters into the local method scope.
1013 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1014 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1015
1016 ClassSymbol owner = env.enclClass.sym;
1017 if ((owner.flags() & ANNOTATION) != 0 &&
1018 (tree.params.nonEmpty() ||
1019 tree.recvparam != null))
1020 log.error(tree.params.nonEmpty() ?
1021 tree.params.head.pos() :
1022 tree.recvparam.pos(),
1023 Errors.IntfAnnotationMembersCantHaveParams);
1024
1025 // Attribute all value parameters.
1026 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1027 attribStat(l.head, localEnv);
1028 }
1029
1030 chk.checkVarargsMethodDecl(localEnv, tree);
1031
1032 // Check that type parameters are well-formed.
1033 chk.validate(tree.typarams, localEnv);
1034
1035 // Check that result type is well-formed.
1036 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) {
1037 chk.validate(tree.restype, localEnv);
1038 }
1039 chk.checkRequiresIdentity(tree, env.info.lint);
1040
1041 // Check that receiver type is well-formed.
1042 if (tree.recvparam != null) {
1043 // Use a new environment to check the receiver parameter.
1044 // Otherwise I get "might not have been initialized" errors.
1045 // Is there a better way?
1046 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1047 attribType(tree.recvparam, newEnv);
1048 chk.validate(tree.recvparam, newEnv);
1049 }
1050
1051 // Is this method a constructor?
1052 boolean isConstructor = TreeInfo.isConstructor(tree);
1053
1054 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1055 // lets find if this method is an accessor
1056 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1057 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1058 if (recordComponent.isPresent()) {
1059 // the method is a user defined accessor lets check that everything is fine
1060 if (!tree.sym.isPublic()) {
1061 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1062 }
1063 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1064 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1065 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1066 }
1067 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1068 log.error(tree,
1069 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1070 }
1071 if (!tree.typarams.isEmpty()) {
1072 log.error(tree,
1073 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1074 }
1075 if (tree.sym.isStatic()) {
1076 log.error(tree,
1077 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1078 }
1079 }
1080
1081 if (isConstructor) {
1082 // if this a constructor other than the canonical one
1083 if ((tree.sym.flags_field & RECORD) == 0) {
1084 if (!TreeInfo.hasConstructorCall(tree, names._this)) {
1085 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym));
1086 }
1087 } else {
1088 // but if it is the canonical:
1089
1090 /* if user generated, then it shouldn't:
1091 * - have an accessibility stricter than that of the record type
1092 * - explicitly invoke any other constructor
1093 */
1094 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1095 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1096 log.error(tree,
1097 (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1098 Errors.InvalidCanonicalConstructorInRecord(
1099 Fragments.Canonical,
1100 env.enclClass.sym.name,
1101 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1102 ) :
1103 Errors.InvalidCanonicalConstructorInRecord(
1104 Fragments.Canonical,
1105 env.enclClass.sym.name,
1106 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1107 )
1108 );
1109 }
1110
1111 if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) {
1112 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1113 Fragments.Canonical, env.enclClass.sym.name,
1114 Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1115 }
1116 }
1117
1118 // also we want to check that no type variables have been defined
1119 if (!tree.typarams.isEmpty()) {
1120 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1121 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1122 }
1123
1124 /* and now we need to check that the constructor's arguments are exactly the same as those of the
1125 * record components
1126 */
1127 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1128 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1129 for (JCVariableDecl param: tree.params) {
1130 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1131 if (!types.isSameType(param.type, recordFieldTypes.head) ||
1132 (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1133 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1134 Fragments.Canonical, env.enclClass.sym.name,
1135 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1136 }
1137 recordComponents = recordComponents.tail;
1138 recordFieldTypes = recordFieldTypes.tail;
1139 }
1140 }
1141 }
1142 }
1143
1144 // annotation method checks
1145 if ((owner.flags() & ANNOTATION) != 0) {
1146 // annotation method cannot have throws clause
1147 if (tree.thrown.nonEmpty()) {
1148 log.error(tree.thrown.head.pos(),
1149 Errors.ThrowsNotAllowedInIntfAnnotation);
1150 }
1151 // annotation method cannot declare type-parameters
1152 if (tree.typarams.nonEmpty()) {
1153 log.error(tree.typarams.head.pos(),
1154 Errors.IntfAnnotationMembersCantHaveTypeParams);
1155 }
1156 // validate annotation method's return type (could be an annotation type)
1157 chk.validateAnnotationType(tree.restype);
1158 // ensure that annotation method does not clash with members of Object/Annotation
1159 chk.validateAnnotationMethod(tree.pos(), m);
1160 }
1161
1162 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1163 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1164
1165 if (tree.body == null) {
1166 // Empty bodies are only allowed for
1167 // abstract, native, or interface methods, or for methods
1168 // in a retrofit signature class.
1169 if (tree.defaultValue != null) {
1170 if ((owner.flags() & ANNOTATION) == 0)
1171 log.error(tree.pos(),
1172 Errors.DefaultAllowedInIntfAnnotationMember);
1173 }
1174 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1175 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract(tree.sym, owner));
1176 } else {
1177 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1178 if ((owner.flags() & INTERFACE) != 0) {
1179 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1180 } else {
1181 log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1182 }
1183 } else if ((tree.mods.flags & NATIVE) != 0) {
1184 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1185 }
1186 // Add an implicit super() call unless an explicit call to
1187 // super(...) or this(...) is given
1188 // or we are compiling class java.lang.Object.
1189 boolean addedSuperInIdentityClass = false;
1190 if (isConstructor && owner.type != syms.objectType) {
1191 if (!TreeInfo.hasAnyConstructorCall(tree)) {
1192 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(),
1193 make.Ident(names._super), make.Idents(List.nil())));
1194 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) {
1195 tree.body.stats = tree.body.stats.append(supCall);
1196 } else {
1197 tree.body.stats = tree.body.stats.prepend(supCall);
1198 addedSuperInIdentityClass = true;
1199 }
1200 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1201 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1202 TreeInfo.hasConstructorCall(tree, names._super)) {
1203 // enum constructors are not allowed to call super
1204 // directly, so make sure there aren't any super calls
1205 // in enum constructors, except in the compiler
1206 // generated one.
1207 log.error(tree.body.stats.head.pos(),
1208 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1209 }
1210 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1211 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1212 List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1213 if (!initParamNames.equals(recordComponentNames)) {
1214 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1215 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1216 }
1217 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1218 log.error(tree,
1219 Errors.InvalidCanonicalConstructorInRecord(
1220 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1221 env.enclClass.sym.name,
1222 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1223 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1224 }
1225 }
1226 }
1227
1228 // Attribute all type annotations in the body
1229 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m);
1230 annotate.flush();
1231
1232 // Start of constructor prologue (if not in java.lang.Object constructor)
1233 localEnv.info.ctorPrologue = isConstructor && owner.type != syms.objectType;
1234
1235 // Attribute method body.
1236 attribStat(tree.body, localEnv);
1237 if (localEnv.info.ctorPrologue) {
1238 boolean thisInvocation = false;
1239 ListBuffer<JCTree> prologueCode = new ListBuffer<>();
1240 for (JCTree stat : tree.body.stats) {
1241 prologueCode.add(stat);
1242 /* gather all the stats in the body until a `super` or `this` constructor invocation is found,
1243 * including the constructor invocation, that way we don't need to worry in the visitor below if
1244 * if we are dealing or not with prologue code
1245 */
1246 if (stat instanceof JCExpressionStatement expStmt &&
1247 expStmt.expr instanceof JCMethodInvocation mi &&
1248 TreeInfo.isConstructorCall(mi)) {
1249 thisInvocation = TreeInfo.name(mi.meth) == names._this;
1250 if (!addedSuperInIdentityClass || !allowValueClasses) {
1251 break;
1252 }
1253 }
1254 }
1255 if (!prologueCode.isEmpty()) {
1256 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv,
1257 addedSuperInIdentityClass && allowValueClasses ?
1258 PrologueVisitorMode.WARNINGS_ONLY :
1259 thisInvocation ?
1260 PrologueVisitorMode.THIS_CONSTRUCTOR :
1261 PrologueVisitorMode.SUPER_CONSTRUCTOR,
1262 false);
1263 ctorPrologueVisitor.scan(prologueCode.toList());
1264 }
1265 }
1266 }
1267
1268 localEnv.info.scope.leave();
1269 result = tree.type = m.type;
1270 } finally {
1271 chk.setLint(prevLint);
1272 chk.setMethod(prevMethod);
1273 env.info.ctorPrologue = ctorProloguePrev;
1274 }
1275 }
1276
1277 enum PrologueVisitorMode {
1278 WARNINGS_ONLY,
1279 SUPER_CONSTRUCTOR,
1280 THIS_CONSTRUCTOR
1281 }
1282
1283 class CtorPrologueVisitor extends TreeScanner {
1284 Env<AttrContext> localEnv;
1285 PrologueVisitorMode mode;
1286 boolean isInitializer;
1287
1288 CtorPrologueVisitor(Env<AttrContext> localEnv, PrologueVisitorMode mode, boolean isInitializer) {
1289 this.localEnv = localEnv;
1290 currentClassSym = localEnv.enclClass.sym;
1291 this.mode = mode;
1292 this.isInitializer = isInitializer;
1293 }
1294
1295 boolean insideLambdaOrClassDef = false;
1296
1297 @Override
1298 public void visitLambda(JCLambda lambda) {
1299 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1300 try {
1301 insideLambdaOrClassDef = true;
1302 super.visitLambda(lambda);
1303 } finally {
1304 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1305 }
1306 }
1307
1308 ClassSymbol currentClassSym;
1309
1310 @Override
1311 public void visitClassDef(JCClassDecl classDecl) {
1312 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef;
1313 ClassSymbol previousClassSym = currentClassSym;
1314 try {
1315 insideLambdaOrClassDef = true;
1316 currentClassSym = classDecl.sym;
1317 super.visitClassDef(classDecl);
1318 } finally {
1319 insideLambdaOrClassDef = previousInsideLambdaOrClassDef;
1320 currentClassSym = previousClassSym;
1321 }
1322 }
1323
1324 private void reportPrologueError(JCTree tree, Symbol sym) {
1325 reportPrologueError(tree, sym, false);
1326 }
1327
1328 private void reportPrologueError(JCTree tree, Symbol sym, boolean hasInit) {
1329 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS);
1330 if (mode != PrologueVisitorMode.WARNINGS_ONLY) {
1331 if (hasInit) {
1332 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym));
1333 } else {
1334 log.error(tree, Errors.CantRefBeforeCtorCalled(sym));
1335 }
1336 } else if (allowValueClasses) {
1337 // issue lint warning
1338 log.warning(tree, LintWarnings.WouldNotBeAllowedInPrologue(sym));
1339 }
1340 }
1341
1342 @Override
1343 public void visitApply(JCMethodInvocation tree) {
1344 super.visitApply(tree);
1345 Name name = TreeInfo.name(tree.meth);
1346 boolean isConstructorCall = name == names._this || name == names._super;
1347 Symbol msym = TreeInfo.symbolFor(tree.meth);
1348 // is this an instance method call or an illegal constructor invocation like: `this.super()`?
1349 if (msym != null && // for erroneous invocations msym can be null, ignore those
1350 (!isConstructorCall ||
1351 isConstructorCall && tree.meth.hasTag(SELECT))) {
1352 if (isEarlyReference(localEnv, tree.meth, msym))
1353 reportPrologueError(tree.meth, msym);
1354 }
1355 }
1356
1357 @Override
1358 public void visitIdent(JCIdent tree) {
1359 analyzeSymbol(tree);
1360 }
1361
1362 boolean isIndexed = false;
1363
1364 @Override
1365 public void visitIndexed(JCArrayAccess tree) {
1366 boolean previousIsIndexed = isIndexed;
1367 try {
1368 isIndexed = true;
1369 scan(tree.indexed);
1370 } finally {
1371 isIndexed = previousIsIndexed;
1372 }
1373 scan(tree.index);
1374 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR && isInstanceField(tree.indexed)) {
1375 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(tree.indexed));
1376 }
1377 }
1378
1379 @Override
1380 public void visitSelect(JCFieldAccess tree) {
1381 SelectScanner ss = new SelectScanner();
1382 ss.scan(tree);
1383 if (ss.scanLater == null) {
1384 analyzeSymbol(tree);
1385 } else {
1386 boolean prevLhs = isInLHS;
1387 try {
1388 isInLHS = false;
1389 scan(ss.scanLater);
1390 } finally {
1391 isInLHS = prevLhs;
1392 }
1393 }
1394 if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1395 for (JCTree subtree : ss.selectorTrees) {
1396 if (isInstanceField(subtree)) {
1397 // we need to add a proxy for this one
1398 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, TreeInfo.symbolFor(subtree));
1399 }
1400 }
1401 }
1402 }
1403
1404 boolean isInstanceField(JCTree tree) {
1405 Symbol sym = TreeInfo.symbolFor(tree);
1406 return (sym != null &&
1407 !sym.isStatic() &&
1408 sym.kind == VAR &&
1409 sym.owner.kind == TYP &&
1410 sym.name != names._this &&
1411 sym.name != names._super &&
1412 isEarlyReference(localEnv, tree, sym));
1413 }
1414
1415 @Override
1416 public void visitNewClass(JCNewClass tree) {
1417 super.visitNewClass(tree);
1418 checkNewClassAndMethRefs(tree, tree.type);
1419 }
1420
1421 @Override
1422 public void visitReference(JCMemberReference tree) {
1423 super.visitReference(tree);
1424 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) {
1425 checkNewClassAndMethRefs(tree, tree.expr.type);
1426 }
1427 }
1428
1429 void checkNewClassAndMethRefs(JCTree tree, Type t) {
1430 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) &&
1431 !t.tsym.isStatic() &&
1432 !t.tsym.isDirectlyOrIndirectlyLocal()) {
1433 reportPrologueError(tree, t.getEnclosingType().tsym);
1434 }
1435 }
1436
1437 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate
1438 * for a proxy local variable later on
1439 */
1440 boolean isInLHS = false;
1441
1442 @Override
1443 public void visitAssign(JCAssign tree) {
1444 boolean previousIsInLHS = isInLHS;
1445 try {
1446 isInLHS = true;
1447 scan(tree.lhs);
1448 } finally {
1449 isInLHS = previousIsInLHS;
1450 }
1451 scan(tree.rhs);
1452 }
1453
1454 @Override
1455 public void visitMethodDef(JCMethodDecl tree) {
1456 // ignore any declarative part, mainly to avoid scanning receiver parameters
1457 scan(tree.body);
1458 }
1459
1460 void analyzeSymbol(JCTree tree) {
1461 Symbol sym = TreeInfo.symbolFor(tree);
1462 // make sure that there is a symbol and it is not static
1463 if (sym == null || sym.isStatic()) {
1464 return;
1465 }
1466 if (isInLHS && !insideLambdaOrClassDef) {
1467 // Check instance field assignments that appear in constructor prologues
1468 if (isEarlyReference(localEnv, tree, sym)) {
1469 // Field may not be inherited from a superclass
1470 if (sym.owner != localEnv.enclClass.sym) {
1471 reportPrologueError(tree, sym);
1472 return;
1473 }
1474 // Field may not have an initializer
1475 if ((sym.flags() & HASINIT) != 0) {
1476 if (!localEnv.enclClass.sym.isValueClass() || !sym.type.hasTag(ARRAY) || !isIndexed) {
1477 reportPrologueError(tree, sym, true);
1478 }
1479 return;
1480 }
1481 // cant reference an instance field before a this constructor
1482 if (allowValueClasses && mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1483 reportPrologueError(tree, sym);
1484 return;
1485 }
1486 }
1487 return;
1488 }
1489 tree = TreeInfo.skipParens(tree);
1490 if (sym.kind == VAR && sym.owner.kind == TYP) {
1491 if (sym.name == names._this || sym.name == names._super) {
1492 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`?
1493 if (TreeInfo.isExplicitThisReference(
1494 types,
1495 (ClassType)localEnv.enclClass.sym.type,
1496 tree)) {
1497 reportPrologueError(tree, sym);
1498 }
1499 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only
1500 if (sym.owner != localEnv.enclClass.sym) {
1501 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) &&
1502 sym.isInheritedIn(localEnv.enclClass.sym, types)) {
1503 /* if we are dealing with a field that doesn't belong to the current class, but the
1504 * field is inherited, this is an error. Unless, the super class is also an outer
1505 * class and the field's qualifier refers to the outer class
1506 */
1507 if (tree.hasTag(IDENT) ||
1508 TreeInfo.isExplicitThisReference(
1509 types,
1510 (ClassType)localEnv.enclClass.sym.type,
1511 ((JCFieldAccess)tree).selected)) {
1512 reportPrologueError(tree, sym);
1513 }
1514 }
1515 } else if (isEarlyReference(localEnv, tree, sym)) {
1516 /* now this is a `proper` instance field of the current class
1517 * references to fields of identity classes which happen to have initializers are
1518 * not allowed in the prologue.
1519 * But it is OK for a field with initializer to refer to another field with initializer,
1520 * so no warning or error if we are analyzing a field initializer.
1521 */
1522 if (insideLambdaOrClassDef ||
1523 (!localEnv.enclClass.sym.isValueClass() &&
1524 (sym.flags_field & HASINIT) != 0 &&
1525 !isInitializer))
1526 reportPrologueError(tree, sym);
1527 // we will need to generate a proxy for this field later on
1528 if (!isInLHS) {
1529 if (!allowValueClasses) {
1530 reportPrologueError(tree, sym);
1531 } else {
1532 if (mode == PrologueVisitorMode.THIS_CONSTRUCTOR) {
1533 reportPrologueError(tree, sym);
1534 } else if (mode == PrologueVisitorMode.SUPER_CONSTRUCTOR) {
1535 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym);
1536 }
1537 /* we do nothing in warnings only mode, as in that mode we are simulating what
1538 * the compiler would do in case the constructor code would be in the prologue
1539 * phase
1540 */
1541 }
1542 }
1543 }
1544 }
1545 }
1546 }
1547
1548 /**
1549 * Determine if the symbol appearance constitutes an early reference to the current class.
1550 *
1551 * <p>
1552 * This means the symbol is an instance field, or method, of the current class and it appears
1553 * in an early initialization context of it (i.e., one of its constructor prologues).
1554 *
1555 * @param env The current environment
1556 * @param tree the AST referencing the variable
1557 * @param sym The symbol
1558 */
1559 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) {
1560 if ((sym.flags() & STATIC) == 0 &&
1561 (sym.kind == VAR || sym.kind == MTH) &&
1562 sym.isMemberOf(env.enclClass.sym, types)) {
1563 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance
1564 if (tree instanceof JCFieldAccess fa) {
1565 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected);
1566 } else if (currentClassSym != env.enclClass.sym) {
1567 /* so we are inside a class, CI, in the prologue of an outer class, CO, and the symbol being
1568 * analyzed has no qualifier. So if the symbol is a member of CI the reference is allowed,
1569 * otherwise it is not.
1570 * It could be that the reference to CI's member happens inside CI's own prologue, but that
1571 * will be checked separately, when CI's prologue is analyzed.
1572 */
1573 return !sym.isMemberOf(currentClassSym, types);
1574 }
1575 return true;
1576 }
1577 return false;
1578 }
1579
1580 /* scanner for a select expression, anything that is not a select or identifier
1581 * will be stored for further analysis
1582 */
1583 class SelectScanner extends DeferredAttr.FilterScanner {
1584 JCTree scanLater;
1585 java.util.List<JCTree> selectorTrees = new ArrayList<>();
1586
1587 SelectScanner() {
1588 super(Set.of(IDENT, SELECT, PARENS));
1589 }
1590
1591 @Override
1592 public void visitSelect(JCFieldAccess tree) {
1593 super.visitSelect(tree);
1594 selectorTrees.add(tree.selected);
1595 }
1596
1597 @Override
1598 void skip(JCTree tree) {
1599 scanLater = tree;
1600 }
1601 }
1602 }
1603
1604 public void visitVarDef(JCVariableDecl tree) {
1605 // Local variables have not been entered yet, so we need to do it now:
1606 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1607 if (tree.sym != null) {
1608 // parameters have already been entered
1609 env.info.scope.enter(tree.sym);
1610 } else {
1611 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1612 if (tree.init == null) {
1613 //cannot use 'var' without initializer
1614 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1615 tree.vartype = make.at(tree.pos()).Erroneous();
1616 } else {
1617 Fragment msg = canInferLocalVarType(tree);
1618 if (msg != null) {
1619 //cannot use 'var' with initializer which require an explicit target
1620 //(e.g. lambda, method reference, array initializer).
1621 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1622 tree.vartype = make.at(tree.pos()).Erroneous();
1623 }
1624 }
1625 }
1626 try {
1627 annotate.blockAnnotations();
1628 memberEnter.memberEnter(tree, env);
1629 } finally {
1630 annotate.unblockAnnotations();
1631 }
1632 }
1633 } else {
1634 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env);
1635 }
1636
1637 VarSymbol v = tree.sym;
1638 Lint lint = env.info.lint.augment(v);
1639 Lint prevLint = chk.setLint(lint);
1640
1641 // Check that the variable's declared type is well-formed.
1642 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1643 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1644 (tree.sym.flags() & PARAMETER) != 0;
1645 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1646
1647 try {
1648 v.getConstValue(); // ensure compile-time constant initializer is evaluated
1649 chk.checkDeprecatedAnnotation(tree.pos(), v);
1650
1651 if (tree.init != null) {
1652 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1653 if ((v.flags_field & FINAL) == 0 ||
1654 !memberEnter.needsLazyConstValue(tree.init)) {
1655 // Not a compile-time constant
1656 // Attribute initializer in a new environment
1657 // with the declared variable as owner.
1658 // Check that initializer conforms to variable's declared type.
1659 initEnv.info.lint = lint;
1660 // In order to catch self-references, we set the variable's
1661 // declaration position to maximal possible value, effectively
1662 // marking the variable as undefined.
1663 initEnv.info.enclVar = v;
1664 boolean previousCtorPrologue = initEnv.info.ctorPrologue;
1665 try {
1666 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) {
1667 // strict instance initializer in a value class
1668 initEnv.info.ctorPrologue = true;
1669 }
1670 attribExpr(tree.init, initEnv, v.type);
1671 if (tree.isImplicitlyTyped()) {
1672 //fixup local variable type
1673 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1674 }
1675 } finally {
1676 initEnv.info.ctorPrologue = previousCtorPrologue;
1677 }
1678 }
1679 if (allowValueClasses && v.owner.kind == TYP && !v.isStatic()) {
1680 // strict field initializers are inlined in constructor's prologues
1681 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv,
1682 !v.isStrict() ? PrologueVisitorMode.WARNINGS_ONLY : PrologueVisitorMode.SUPER_CONSTRUCTOR,
1683 true);
1684 ctorPrologueVisitor.scan(tree.init);
1685 }
1686 if (tree.isImplicitlyTyped()) {
1687 setSyntheticVariableType(tree, v.type);
1688 }
1689 }
1690 result = tree.type = v.type;
1691 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1692 if (isNonArgsMethodInObject(v.name)) {
1693 log.error(tree, Errors.IllegalRecordComponentName(v));
1694 }
1695 }
1696 chk.checkRequiresIdentity(tree, env.info.lint);
1697 }
1698 finally {
1699 chk.setLint(prevLint);
1700 }
1701 }
1702
1703 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) {
1704 if (tree.init != null &&
1705 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 &&
1706 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) {
1707 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED;
1708 // Field initializer expression need to be entered.
1709 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym);
1710 annotate.flush();
1711 }
1712 }
1713
1714 private boolean isNonArgsMethodInObject(Name name) {
1715 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1716 if (s.type.getParameterTypes().isEmpty()) {
1717 return true;
1718 }
1719 }
1720 return false;
1721 }
1722
1723 Fragment canInferLocalVarType(JCVariableDecl tree) {
1724 LocalInitScanner lis = new LocalInitScanner();
1725 lis.scan(tree.init);
1726 return lis.badInferenceMsg;
1727 }
1728
1729 static class LocalInitScanner extends TreeScanner {
1730 Fragment badInferenceMsg = null;
1731 boolean needsTarget = true;
1732
1733 @Override
1734 public void visitNewArray(JCNewArray tree) {
1735 if (tree.elemtype == null && needsTarget) {
1736 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1737 }
1738 }
1739
1740 @Override
1741 public void visitLambda(JCLambda tree) {
1742 if (needsTarget) {
1743 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1744 }
1745 }
1746
1747 @Override
1748 public void visitTypeCast(JCTypeCast tree) {
1749 boolean prevNeedsTarget = needsTarget;
1750 try {
1751 needsTarget = false;
1752 super.visitTypeCast(tree);
1753 } finally {
1754 needsTarget = prevNeedsTarget;
1755 }
1756 }
1757
1758 @Override
1759 public void visitReference(JCMemberReference tree) {
1760 if (needsTarget) {
1761 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1762 }
1763 }
1764
1765 @Override
1766 public void visitNewClass(JCNewClass tree) {
1767 boolean prevNeedsTarget = needsTarget;
1768 try {
1769 needsTarget = false;
1770 super.visitNewClass(tree);
1771 } finally {
1772 needsTarget = prevNeedsTarget;
1773 }
1774 }
1775
1776 @Override
1777 public void visitApply(JCMethodInvocation tree) {
1778 boolean prevNeedsTarget = needsTarget;
1779 try {
1780 needsTarget = false;
1781 super.visitApply(tree);
1782 } finally {
1783 needsTarget = prevNeedsTarget;
1784 }
1785 }
1786 }
1787
1788 public void visitSkip(JCSkip tree) {
1789 result = null;
1790 }
1791
1792 public void visitBlock(JCBlock tree) {
1793 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1794 // Block is a static or instance initializer;
1795 // let the owner of the environment be a freshly
1796 // created BLOCK-method.
1797 Symbol fakeOwner =
1798 new MethodSymbol(tree.flags | BLOCK |
1799 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType,
1800 env.info.scope.owner);
1801 final Env<AttrContext> localEnv =
1802 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1803
1804 if ((tree.flags & STATIC) != 0) {
1805 localEnv.info.staticLevel++;
1806 } else {
1807 localEnv.info.instanceInitializerBlock = true;
1808 }
1809 // Attribute all type annotations in the block
1810 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner);
1811 annotate.flush();
1812 attribStats(tree.stats, localEnv);
1813
1814 {
1815 // Store init and clinit type annotations with the ClassSymbol
1816 // to allow output in Gen.normalizeDefs.
1817 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1818 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1819 if ((tree.flags & STATIC) != 0) {
1820 cs.appendClassInitTypeAttributes(tas);
1821 } else {
1822 cs.appendInitTypeAttributes(tas);
1823 }
1824 }
1825 } else {
1826 // Create a new local environment with a local scope.
1827 Env<AttrContext> localEnv =
1828 env.dup(tree, env.info.dup(env.info.scope.dup()));
1829 try {
1830 attribStats(tree.stats, localEnv);
1831 } finally {
1832 localEnv.info.scope.leave();
1833 }
1834 }
1835 result = null;
1836 }
1837
1838 public void visitDoLoop(JCDoWhileLoop tree) {
1839 attribStat(tree.body, env.dup(tree));
1840 attribExpr(tree.cond, env, syms.booleanType);
1841 handleLoopConditionBindings(matchBindings, tree, tree.body);
1842 result = null;
1843 }
1844
1845 public void visitWhileLoop(JCWhileLoop tree) {
1846 attribExpr(tree.cond, env, syms.booleanType);
1847 MatchBindings condBindings = matchBindings;
1848 // include condition's bindings when true in the body:
1849 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1850 try {
1851 attribStat(tree.body, whileEnv.dup(tree));
1852 } finally {
1853 whileEnv.info.scope.leave();
1854 }
1855 handleLoopConditionBindings(condBindings, tree, tree.body);
1856 result = null;
1857 }
1858
1859 public void visitForLoop(JCForLoop tree) {
1860 Env<AttrContext> loopEnv =
1861 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1862 MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1863 try {
1864 attribStats(tree.init, loopEnv);
1865 if (tree.cond != null) {
1866 attribExpr(tree.cond, loopEnv, syms.booleanType);
1867 // include condition's bindings when true in the body and step:
1868 condBindings = matchBindings;
1869 }
1870 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1871 try {
1872 bodyEnv.tree = tree; // before, we were not in loop!
1873 attribStats(tree.step, bodyEnv);
1874 attribStat(tree.body, bodyEnv);
1875 } finally {
1876 bodyEnv.info.scope.leave();
1877 }
1878 result = null;
1879 }
1880 finally {
1881 loopEnv.info.scope.leave();
1882 }
1883 handleLoopConditionBindings(condBindings, tree, tree.body);
1884 }
1885
1886 /**
1887 * Include condition's bindings when false after the loop, if cannot get out of the loop
1888 */
1889 private void handleLoopConditionBindings(MatchBindings condBindings,
1890 JCStatement loop,
1891 JCStatement loopBody) {
1892 if (condBindings.bindingsWhenFalse.nonEmpty() &&
1893 !breaksTo(env, loop, loopBody)) {
1894 addBindings2Scope(loop, condBindings.bindingsWhenFalse);
1895 }
1896 }
1897
1898 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) {
1899 preFlow(body);
1900 return flow.breaksToTree(env, loop, body, make);
1901 }
1902
1903 /**
1904 * Add given bindings to the current scope, unless there's a break to
1905 * an immediately enclosing labeled statement.
1906 */
1907 private void addBindings2Scope(JCStatement introducingStatement,
1908 List<BindingSymbol> bindings) {
1909 if (bindings.isEmpty()) {
1910 return ;
1911 }
1912
1913 var searchEnv = env;
1914 while (searchEnv.tree instanceof JCLabeledStatement labeled &&
1915 labeled.body == introducingStatement) {
1916 if (breaksTo(env, labeled, labeled.body)) {
1917 //breaking to an immediately enclosing labeled statement
1918 return ;
1919 }
1920 searchEnv = searchEnv.next;
1921 introducingStatement = labeled;
1922 }
1923
1924 //include condition's body when false after the while, if cannot get out of the loop
1925 bindings.forEach(env.info.scope::enter);
1926 bindings.forEach(BindingSymbol::preserveBinding);
1927 }
1928
1929 public void visitForeachLoop(JCEnhancedForLoop tree) {
1930 Env<AttrContext> loopEnv =
1931 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1932 try {
1933 //the Formal Parameter of a for-each loop is not in the scope when
1934 //attributing the for-each expression; we mimic this by attributing
1935 //the for-each expression first (against original scope).
1936 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1937 chk.checkNonVoid(tree.pos(), exprType);
1938 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1939 if (elemtype == null) {
1940 // or perhaps expr implements Iterable<T>?
1941 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1942 if (base == null) {
1943 log.error(tree.expr.pos(),
1944 Errors.ForeachNotApplicableToType(exprType,
1945 Fragments.TypeReqArrayOrIterable));
1946 elemtype = types.createErrorType(exprType);
1947 } else {
1948 List<Type> iterableParams = base.allparams();
1949 elemtype = iterableParams.isEmpty()
1950 ? syms.objectType
1951 : types.wildUpperBound(iterableParams.head);
1952
1953 // Check the return type of the method iterator().
1954 // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1955 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1956 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1957 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1958 log.error(tree.pos(),
1959 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1960 }
1961 }
1962 }
1963 if (tree.var.isImplicitlyTyped()) {
1964 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1965 setSyntheticVariableType(tree.var, inferredType);
1966 }
1967 attribStat(tree.var, loopEnv);
1968 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1969 loopEnv.tree = tree; // before, we were not in loop!
1970 attribStat(tree.body, loopEnv);
1971 result = null;
1972 }
1973 finally {
1974 loopEnv.info.scope.leave();
1975 }
1976 }
1977
1978 public void visitLabelled(JCLabeledStatement tree) {
1979 // Check that label is not used in an enclosing statement
1980 Env<AttrContext> env1 = env;
1981 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1982 if (env1.tree.hasTag(LABELLED) &&
1983 ((JCLabeledStatement) env1.tree).label == tree.label) {
1984 log.error(tree.pos(),
1985 Errors.LabelAlreadyInUse(tree.label));
1986 break;
1987 }
1988 env1 = env1.next;
1989 }
1990
1991 attribStat(tree.body, env.dup(tree));
1992 result = null;
1993 }
1994
1995 public void visitSwitch(JCSwitch tree) {
1996 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1997 attribStats(c.stats, caseEnv);
1998 });
1999 result = null;
2000 }
2001
2002 public void visitSwitchExpression(JCSwitchExpression tree) {
2003 boolean wrongContext = false;
2004
2005 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
2006 PolyKind.STANDALONE : PolyKind.POLY;
2007
2008 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2009 //this means we are returning a poly conditional from void-compatible lambda expression
2010 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
2011 resultInfo = recoveryInfo;
2012 wrongContext = true;
2013 }
2014
2015 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2016 unknownExprInfo :
2017 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
2018
2019 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
2020 ListBuffer<Type> caseTypes = new ListBuffer<>();
2021
2022 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
2023 caseEnv.info.yieldResult = condInfo;
2024 attribStats(c.stats, caseEnv);
2025 new TreeScanner() {
2026 @Override
2027 public void visitYield(JCYield brk) {
2028 if (brk.target == tree) {
2029 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
2030 caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
2031 }
2032 super.visitYield(brk);
2033 }
2034
2035 @Override public void visitClassDef(JCClassDecl tree) {}
2036 @Override public void visitLambda(JCLambda tree) {}
2037 }.scan(c.stats);
2038 });
2039
2040 if (tree.cases.isEmpty()) {
2041 log.error(tree.pos(),
2042 Errors.SwitchExpressionEmpty);
2043 } else if (caseTypes.isEmpty()) {
2044 log.error(tree.pos(),
2045 Errors.SwitchExpressionNoResultExpressions);
2046 }
2047
2048 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
2049
2050 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo);
2051 }
2052 //where:
2053 CheckContext switchExpressionContext(CheckContext checkContext) {
2054 return new Check.NestedCheckContext(checkContext) {
2055 //this will use enclosing check context to check compatibility of
2056 //subexpression against target type; if we are in a method check context,
2057 //depending on whether boxing is allowed, we could have incompatibilities
2058 @Override
2059 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2060 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
2061 }
2062 };
2063 }
2064
2065 private void handleSwitch(JCTree switchTree,
2066 JCExpression selector,
2067 List<JCCase> cases,
2068 BiConsumer<JCCase, Env<AttrContext>> attribCase) {
2069 Type seltype = attribExpr(selector, env);
2070 Type seltypeUnboxed = types.unboxedTypeOrType(seltype);
2071
2072 Env<AttrContext> switchEnv =
2073 env.dup(switchTree, env.info.dup(env.info.scope.dup()));
2074
2075 try {
2076 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
2077 boolean stringSwitch = types.isSameType(seltype, syms.stringType);
2078 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType);
2079 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases);
2080 boolean intSwitch = types.isAssignable(seltype, syms.intType);
2081 boolean patternSwitch;
2082 if (seltype.isPrimitive() && !intSwitch) {
2083 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS);
2084 patternSwitch = true;
2085 }
2086 if (!enumSwitch && !stringSwitch && !errorEnumSwitch &&
2087 !intSwitch) {
2088 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH);
2089 patternSwitch = true;
2090 } else {
2091 patternSwitch = cases.stream()
2092 .flatMap(c -> c.labels.stream())
2093 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) ||
2094 TreeInfo.isNullCaseLabel(l));
2095 }
2096
2097 // Attribute all cases and
2098 // check that there are no duplicate case labels or default clauses.
2099 Set<Object> constants = new HashSet<>(); // The set of case constants.
2100 boolean hasDefault = false; // Is there a default label?
2101 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern?
2102 boolean lastPatternErroneous = false; // Has the last pattern erroneous type?
2103 boolean hasNullPattern = false; // Is there a null pattern?
2104 CaseTree.CaseKind caseKind = null;
2105 boolean wasError = false;
2106 JCCaseLabel unconditionalCaseLabel = null;
2107 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
2108 JCCase c = l.head;
2109 if (caseKind == null) {
2110 caseKind = c.caseKind;
2111 } else if (caseKind != c.caseKind && !wasError) {
2112 log.error(c.pos(),
2113 Errors.SwitchMixingCaseTypes);
2114 wasError = true;
2115 }
2116 MatchBindings currentBindings = null;
2117 MatchBindings guardBindings = null;
2118 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) {
2119 JCCaseLabel label = labels.head;
2120 if (label instanceof JCConstantCaseLabel constLabel) {
2121 JCExpression expr = constLabel.expr;
2122 if (TreeInfo.isNull(expr)) {
2123 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL);
2124 if (hasNullPattern) {
2125 log.error(label.pos(), Errors.DuplicateCaseLabel);
2126 }
2127 hasNullPattern = true;
2128 attribExpr(expr, switchEnv, seltype);
2129 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true);
2130 } else if (enumSwitch) {
2131 Symbol sym = enumConstant(expr, seltype);
2132 if (sym == null) {
2133 if (allowPatternSwitch) {
2134 attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2135 Symbol enumSym = TreeInfo.symbol(expr);
2136 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) {
2137 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant);
2138 } else if (!constants.add(enumSym)) {
2139 log.error(label.pos(), Errors.DuplicateCaseLabel);
2140 }
2141 } else {
2142 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
2143 }
2144 } else if (!constants.add(sym)) {
2145 log.error(label.pos(), Errors.DuplicateCaseLabel);
2146 }
2147 } else if (errorEnumSwitch) {
2148 //error recovery: the selector is erroneous, and all the case labels
2149 //are identifiers. This could be an enum switch - don't report resolve
2150 //error for the case label:
2151 var prevResolveHelper = rs.basicLogResolveHelper;
2152 try {
2153 rs.basicLogResolveHelper = rs.silentLogResolveHelper;
2154 attribExpr(expr, switchEnv, seltype);
2155 } finally {
2156 rs.basicLogResolveHelper = prevResolveHelper;
2157 }
2158 } else {
2159 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype));
2160 if (!pattype.hasTag(ERROR)) {
2161 if (pattype.constValue() == null) {
2162 Symbol s = TreeInfo.symbol(expr);
2163 if (s != null && s.kind == TYP) {
2164 log.error(expr.pos(),
2165 Errors.PatternExpected);
2166 } else if (s == null || !s.isEnum()) {
2167 log.error(expr.pos(),
2168 (stringSwitch ? Errors.StringConstReq
2169 : intSwitch ? Errors.ConstExprReq
2170 : Errors.PatternOrEnumReq));
2171 } else if (!constants.add(s)) {
2172 log.error(label.pos(), Errors.DuplicateCaseLabel);
2173 }
2174 }
2175 else {
2176 boolean isLongFloatDoubleOrBooleanConstant =
2177 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN);
2178 if (isLongFloatDoubleOrBooleanConstant) {
2179 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS);
2180 }
2181 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) {
2182 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype));
2183 } else if (!constants.add(pattype.constValue())) {
2184 log.error(c.pos(), Errors.DuplicateCaseLabel);
2185 }
2186 }
2187 }
2188 }
2189 } else if (label instanceof JCDefaultCaseLabel def) {
2190 if (hasDefault) {
2191 log.error(label.pos(), Errors.DuplicateDefaultLabel);
2192 } else if (hasUnconditionalPattern) {
2193 log.error(label.pos(), Errors.UnconditionalPatternAndDefault);
2194 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2195 log.error(label.pos(), Errors.DefaultAndBothBooleanValues);
2196 }
2197 hasDefault = true;
2198 matchBindings = MatchBindingsComputer.EMPTY;
2199 } else if (label instanceof JCPatternCaseLabel patternlabel) {
2200 //pattern
2201 JCPattern pat = patternlabel.pat;
2202 attribExpr(pat, switchEnv, seltype);
2203 Type primaryType = TreeInfo.primaryPatternType(pat);
2204
2205 if (primaryType.isPrimitive()) {
2206 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS);
2207 } else if (!primaryType.hasTag(TYPEVAR)) {
2208 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType);
2209 }
2210 checkCastablePattern(pat.pos(), seltype, primaryType);
2211 Type patternType = types.erasure(primaryType);
2212 JCExpression guard = c.guard;
2213 if (guardBindings == null && guard != null) {
2214 MatchBindings afterPattern = matchBindings;
2215 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue);
2216 try {
2217 attribExpr(guard, bodyEnv, syms.booleanType);
2218 } finally {
2219 bodyEnv.info.scope.leave();
2220 }
2221
2222 guardBindings = matchBindings;
2223 matchBindings = afterPattern;
2224
2225 if (TreeInfo.isBooleanWithValue(guard, 0)) {
2226 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse);
2227 }
2228 }
2229 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN);
2230 boolean unconditional =
2231 unguarded &&
2232 !patternType.isErroneous() &&
2233 types.isUnconditionallyExact(seltype, patternType);
2234 if (unconditional) {
2235 if (hasUnconditionalPattern) {
2236 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern);
2237 } else if (hasDefault) {
2238 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault);
2239 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) {
2240 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues);
2241 }
2242 hasUnconditionalPattern = true;
2243 unconditionalCaseLabel = label;
2244 }
2245 lastPatternErroneous = patternType.isErroneous();
2246 } else {
2247 Assert.error();
2248 }
2249 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings);
2250 }
2251
2252 if (guardBindings != null) {
2253 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings);
2254 }
2255
2256 Env<AttrContext> caseEnv =
2257 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue);
2258 try {
2259 attribCase.accept(c, caseEnv);
2260 } finally {
2261 caseEnv.info.scope.leave();
2262 }
2263 addVars(c.stats, switchEnv.info.scope);
2264
2265 preFlow(c);
2266 c.completesNormally = flow.aliveAfter(caseEnv, c, make);
2267 }
2268 if (patternSwitch) {
2269 chk.checkSwitchCaseStructure(cases);
2270 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases);
2271 }
2272 if (switchTree.hasTag(SWITCH)) {
2273 ((JCSwitch) switchTree).hasUnconditionalPattern =
2274 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2275 ((JCSwitch) switchTree).patternSwitch = patternSwitch;
2276 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) {
2277 ((JCSwitchExpression) switchTree).hasUnconditionalPattern =
2278 hasDefault || hasUnconditionalPattern || lastPatternErroneous;
2279 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch;
2280 } else {
2281 Assert.error(switchTree.getTag().name());
2282 }
2283 } finally {
2284 switchEnv.info.scope.leave();
2285 }
2286 }
2287 // where
2288 private ResultInfo caseLabelResultInfo(Type seltype) {
2289 return new ResultInfo(KindSelector.VAL_TYP,
2290 !seltype.hasTag(ERROR) ? seltype
2291 : Type.noType);
2292 }
2293 /** Add any variables defined in stats to the switch scope. */
2294 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
2295 for (;stats.nonEmpty(); stats = stats.tail) {
2296 JCTree stat = stats.head;
2297 if (stat.hasTag(VARDEF))
2298 switchScope.enter(((JCVariableDecl) stat).sym);
2299 }
2300 }
2301 // where
2302 /** Return the selected enumeration constant symbol, or null. */
2303 private Symbol enumConstant(JCTree tree, Type enumType) {
2304 if (tree.hasTag(IDENT)) {
2305 JCIdent ident = (JCIdent)tree;
2306 Name name = ident.name;
2307 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
2308 if (sym.kind == VAR) {
2309 Symbol s = ident.sym = sym;
2310 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
2311 ident.type = s.type;
2312 return ((s.flags_field & Flags.ENUM) == 0)
2313 ? null : s;
2314 }
2315 }
2316 }
2317 return null;
2318 }
2319
2320 public void visitSynchronized(JCSynchronized tree) {
2321 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
2322 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) {
2323 log.warning(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
2324 }
2325 attribStat(tree.body, env);
2326 result = null;
2327 }
2328
2329 public void visitTry(JCTry tree) {
2330 // Create a new local environment with a local
2331 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
2332 try {
2333 boolean isTryWithResource = tree.resources.nonEmpty();
2334 // Create a nested environment for attributing the try block if needed
2335 Env<AttrContext> tryEnv = isTryWithResource ?
2336 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
2337 localEnv;
2338 try {
2339 // Attribute resource declarations
2340 for (JCTree resource : tree.resources) {
2341 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
2342 @Override
2343 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2344 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
2345 }
2346 };
2347 ResultInfo twrResult =
2348 new ResultInfo(KindSelector.VAR,
2349 syms.autoCloseableType,
2350 twrContext);
2351 if (resource.hasTag(VARDEF)) {
2352 attribStat(resource, tryEnv);
2353 twrResult.check(resource, resource.type);
2354
2355 //check that resource type cannot throw InterruptedException
2356 checkAutoCloseable(resource.pos(), localEnv, resource.type);
2357
2358 VarSymbol var = ((JCVariableDecl) resource).sym;
2359
2360 var.flags_field |= Flags.FINAL;
2361 var.setData(ElementKind.RESOURCE_VARIABLE);
2362 } else {
2363 attribTree(resource, tryEnv, twrResult);
2364 }
2365 }
2366 // Attribute body
2367 attribStat(tree.body, tryEnv);
2368 } finally {
2369 if (isTryWithResource)
2370 tryEnv.info.scope.leave();
2371 }
2372
2373 // Attribute catch clauses
2374 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
2375 JCCatch c = l.head;
2376 Env<AttrContext> catchEnv =
2377 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
2378 try {
2379 Type ctype = attribStat(c.param, catchEnv);
2380 if (TreeInfo.isMultiCatch(c)) {
2381 //multi-catch parameter is implicitly marked as final
2382 c.param.sym.flags_field |= FINAL | UNION;
2383 }
2384 if (c.param.sym.kind == VAR) {
2385 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
2386 }
2387 chk.checkType(c.param.vartype.pos(),
2388 chk.checkClassType(c.param.vartype.pos(), ctype),
2389 syms.throwableType);
2390 attribStat(c.body, catchEnv);
2391 } finally {
2392 catchEnv.info.scope.leave();
2393 }
2394 }
2395
2396 // Attribute finalizer
2397 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
2398 result = null;
2399 }
2400 finally {
2401 localEnv.info.scope.leave();
2402 }
2403 }
2404
2405 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
2406 if (!resource.isErroneous() &&
2407 types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
2408 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
2409 Symbol close = syms.noSymbol;
2410 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
2411 try {
2412 close = rs.resolveQualifiedMethod(pos,
2413 env,
2414 types.skipTypeVars(resource, false),
2415 names.close,
2416 List.nil(),
2417 List.nil());
2418 }
2419 finally {
2420 log.popDiagnosticHandler(discardHandler);
2421 }
2422 if (close.kind == MTH &&
2423 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2424 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) {
2425 log.warning(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource));
2426 }
2427 }
2428 }
2429
2430 public void visitConditional(JCConditional tree) {
2431 Type condtype = attribExpr(tree.cond, env, syms.booleanType);
2432 MatchBindings condBindings = matchBindings;
2433
2434 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
2435 isBooleanOrNumeric(env, tree)) ?
2436 PolyKind.STANDALONE : PolyKind.POLY;
2437
2438 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
2439 //this means we are returning a poly conditional from void-compatible lambda expression
2440 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
2441 result = tree.type = types.createErrorType(resultInfo.pt);
2442 return;
2443 }
2444
2445 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
2446 unknownExprInfo :
2447 resultInfo.dup(conditionalContext(resultInfo.checkContext));
2448
2449
2450 // x ? y : z
2451 // include x's bindings when true in y
2452 // include x's bindings when false in z
2453
2454 Type truetype;
2455 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2456 try {
2457 truetype = attribTree(tree.truepart, trueEnv, condInfo);
2458 } finally {
2459 trueEnv.info.scope.leave();
2460 }
2461
2462 MatchBindings trueBindings = matchBindings;
2463
2464 Type falsetype;
2465 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2466 try {
2467 falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
2468 } finally {
2469 falseEnv.info.scope.leave();
2470 }
2471
2472 MatchBindings falseBindings = matchBindings;
2473
2474 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
2475 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
2476 List.of(truetype, falsetype)) : pt();
2477 if (condtype.constValue() != null &&
2478 truetype.constValue() != null &&
2479 falsetype.constValue() != null &&
2480 !owntype.hasTag(NONE)) {
2481 //constant folding
2482 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
2483 }
2484 result = check(tree, owntype, KindSelector.VAL, resultInfo);
2485 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
2486 }
2487 //where
2488 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
2489 switch (tree.getTag()) {
2490 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
2491 ((JCLiteral)tree).typetag == BOOLEAN ||
2492 ((JCLiteral)tree).typetag == BOT;
2493 case LAMBDA: case REFERENCE: return false;
2494 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
2495 case CONDEXPR:
2496 JCConditional condTree = (JCConditional)tree;
2497 return isBooleanOrNumeric(env, condTree.truepart) &&
2498 isBooleanOrNumeric(env, condTree.falsepart);
2499 case APPLY:
2500 JCMethodInvocation speculativeMethodTree =
2501 (JCMethodInvocation)deferredAttr.attribSpeculative(
2502 tree, env, unknownExprInfo,
2503 argumentAttr.withLocalCacheContext());
2504 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
2505 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
2506 env.enclClass.type :
2507 ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
2508 Type owntype = types.memberType(receiverType, msym).getReturnType();
2509 return primitiveOrBoxed(owntype);
2510 case NEWCLASS:
2511 JCExpression className =
2512 removeClassParams.translate(((JCNewClass)tree).clazz);
2513 JCExpression speculativeNewClassTree =
2514 (JCExpression)deferredAttr.attribSpeculative(
2515 className, env, unknownTypeInfo,
2516 argumentAttr.withLocalCacheContext());
2517 return primitiveOrBoxed(speculativeNewClassTree.type);
2518 default:
2519 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
2520 argumentAttr.withLocalCacheContext()).type;
2521 return primitiveOrBoxed(speculativeType);
2522 }
2523 }
2524 //where
2525 boolean primitiveOrBoxed(Type t) {
2526 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive());
2527 }
2528
2529 TreeTranslator removeClassParams = new TreeTranslator() {
2530 @Override
2531 public void visitTypeApply(JCTypeApply tree) {
2532 result = translate(tree.clazz);
2533 }
2534 };
2535
2536 CheckContext conditionalContext(CheckContext checkContext) {
2537 return new Check.NestedCheckContext(checkContext) {
2538 //this will use enclosing check context to check compatibility of
2539 //subexpression against target type; if we are in a method check context,
2540 //depending on whether boxing is allowed, we could have incompatibilities
2541 @Override
2542 public void report(DiagnosticPosition pos, JCDiagnostic details) {
2543 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
2544 }
2545 };
2546 }
2547
2548 /** Compute the type of a conditional expression, after
2549 * checking that it exists. See JLS 15.25. Does not take into
2550 * account the special case where condition and both arms
2551 * are constants.
2552 *
2553 * @param pos The source position to be used for error
2554 * diagnostics.
2555 * @param thentype The type of the expression's then-part.
2556 * @param elsetype The type of the expression's else-part.
2557 */
2558 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
2559 if (condTypes.isEmpty()) {
2560 return syms.objectType; //TODO: how to handle?
2561 }
2562 Type first = condTypes.head;
2563 // If same type, that is the result
2564 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
2565 return first.baseType();
2566
2567 List<Type> unboxedTypes = condTypes.stream()
2568 .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
2569 .collect(List.collector());
2570
2571 // Otherwise, if both arms can be converted to a numeric
2572 // type, return the least numeric type that fits both arms
2573 // (i.e. return larger of the two, or return int if one
2574 // arm is short, the other is char).
2575 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2576 // If one arm has an integer subrange type (i.e., byte,
2577 // short, or char), and the other is an integer constant
2578 // that fits into the subrange, return the subrange type.
2579 for (Type type : unboxedTypes) {
2580 if (!type.getTag().isStrictSubRangeOf(INT)) {
2581 continue;
2582 }
2583 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2584 return type.baseType();
2585 }
2586
2587 for (TypeTag tag : primitiveTags) {
2588 Type candidate = syms.typeOfTag[tag.ordinal()];
2589 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2590 return candidate;
2591 }
2592 }
2593 }
2594
2595 // Those were all the cases that could result in a primitive
2596 condTypes = condTypes.stream()
2597 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2598 .collect(List.collector());
2599
2600 for (Type type : condTypes) {
2601 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2602 return type.baseType();
2603 }
2604
2605 Iterator<DiagnosticPosition> posIt = positions.iterator();
2606
2607 condTypes = condTypes.stream()
2608 .map(t -> chk.checkNonVoid(posIt.next(), t))
2609 .collect(List.collector());
2610
2611 // both are known to be reference types. The result is
2612 // lub(thentype,elsetype). This cannot fail, as it will
2613 // always be possible to infer "Object" if nothing better.
2614 return types.lub(condTypes.stream()
2615 .map(t -> t.baseType())
2616 .filter(t -> !t.hasTag(BOT))
2617 .collect(List.collector()));
2618 }
2619
2620 static final TypeTag[] primitiveTags = new TypeTag[]{
2621 BYTE,
2622 CHAR,
2623 SHORT,
2624 INT,
2625 LONG,
2626 FLOAT,
2627 DOUBLE,
2628 BOOLEAN,
2629 };
2630
2631 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2632 return bindingEnv(env, env.tree, bindings);
2633 }
2634
2635 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) {
2636 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup()));
2637 bindings.forEach(env1.info.scope::enter);
2638 return env1;
2639 }
2640
2641 public void visitIf(JCIf tree) {
2642 attribExpr(tree.cond, env, syms.booleanType);
2643
2644 // if (x) { y } [ else z ]
2645 // include x's bindings when true in y
2646 // include x's bindings when false in z
2647
2648 MatchBindings condBindings = matchBindings;
2649 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2650
2651 try {
2652 attribStat(tree.thenpart, thenEnv);
2653 } finally {
2654 thenEnv.info.scope.leave();
2655 }
2656
2657 preFlow(tree.thenpart);
2658 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2659 boolean aliveAfterElse;
2660
2661 if (tree.elsepart != null) {
2662 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2663 try {
2664 attribStat(tree.elsepart, elseEnv);
2665 } finally {
2666 elseEnv.info.scope.leave();
2667 }
2668 preFlow(tree.elsepart);
2669 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2670 } else {
2671 aliveAfterElse = true;
2672 }
2673
2674 chk.checkEmptyIf(tree);
2675
2676 List<BindingSymbol> afterIfBindings = List.nil();
2677
2678 if (aliveAfterThen && !aliveAfterElse) {
2679 afterIfBindings = condBindings.bindingsWhenTrue;
2680 } else if (aliveAfterElse && !aliveAfterThen) {
2681 afterIfBindings = condBindings.bindingsWhenFalse;
2682 }
2683
2684 addBindings2Scope(tree, afterIfBindings);
2685
2686 result = null;
2687 }
2688
2689 void preFlow(JCTree tree) {
2690 attrRecover.doRecovery();
2691 new PostAttrAnalyzer() {
2692 @Override
2693 public void scan(JCTree tree) {
2694 if (tree == null ||
2695 (tree.type != null &&
2696 tree.type == Type.stuckType)) {
2697 //don't touch stuck expressions!
2698 return;
2699 }
2700 super.scan(tree);
2701 }
2702
2703 @Override
2704 public void visitClassDef(JCClassDecl that) {
2705 if (that.sym != null) {
2706 // Method preFlow shouldn't visit class definitions
2707 // that have not been entered and attributed.
2708 // See JDK-8254557 and JDK-8203277 for more details.
2709 super.visitClassDef(that);
2710 }
2711 }
2712
2713 @Override
2714 public void visitLambda(JCLambda that) {
2715 if (that.type != null) {
2716 // Method preFlow shouldn't visit lambda expressions
2717 // that have not been entered and attributed.
2718 // See JDK-8254557 and JDK-8203277 for more details.
2719 super.visitLambda(that);
2720 }
2721 }
2722 }.scan(tree);
2723 }
2724
2725 public void visitExec(JCExpressionStatement tree) {
2726 //a fresh environment is required for 292 inference to work properly ---
2727 //see Infer.instantiatePolymorphicSignatureInstance()
2728 Env<AttrContext> localEnv = env.dup(tree);
2729 attribExpr(tree.expr, localEnv);
2730 result = null;
2731 }
2732
2733 public void visitBreak(JCBreak tree) {
2734 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2735 result = null;
2736 }
2737
2738 public void visitYield(JCYield tree) {
2739 if (env.info.yieldResult != null) {
2740 attribTree(tree.value, env, env.info.yieldResult);
2741 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2742 } else {
2743 log.error(tree.pos(), tree.value.hasTag(PARENS)
2744 ? Errors.NoSwitchExpressionQualify
2745 : Errors.NoSwitchExpression);
2746 attribTree(tree.value, env, unknownExprInfo);
2747 }
2748 result = null;
2749 }
2750
2751 public void visitContinue(JCContinue tree) {
2752 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2753 result = null;
2754 }
2755 //where
2756 /** Return the target of a break, continue or yield statement,
2757 * if it exists, report an error if not.
2758 * Note: The target of a labelled break or continue is the
2759 * (non-labelled) statement tree referred to by the label,
2760 * not the tree representing the labelled statement itself.
2761 *
2762 * @param pos The position to be used for error diagnostics
2763 * @param tag The tag of the jump statement. This is either
2764 * Tree.BREAK or Tree.CONTINUE.
2765 * @param label The label of the jump statement, or null if no
2766 * label is given.
2767 * @param env The environment current at the jump statement.
2768 */
2769 private JCTree findJumpTarget(DiagnosticPosition pos,
2770 JCTree.Tag tag,
2771 Name label,
2772 Env<AttrContext> env) {
2773 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2774
2775 if (jumpTarget.snd != null) {
2776 log.error(pos, jumpTarget.snd);
2777 }
2778
2779 return jumpTarget.fst;
2780 }
2781 /** Return the target of a break or continue statement, if it exists,
2782 * report an error if not.
2783 * Note: The target of a labelled break or continue is the
2784 * (non-labelled) statement tree referred to by the label,
2785 * not the tree representing the labelled statement itself.
2786 *
2787 * @param tag The tag of the jump statement. This is either
2788 * Tree.BREAK or Tree.CONTINUE.
2789 * @param label The label of the jump statement, or null if no
2790 * label is given.
2791 * @param env The environment current at the jump statement.
2792 */
2793 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2794 Name label,
2795 Env<AttrContext> env) {
2796 // Search environments outwards from the point of jump.
2797 Env<AttrContext> env1 = env;
2798 JCDiagnostic.Error pendingError = null;
2799 LOOP:
2800 while (env1 != null) {
2801 switch (env1.tree.getTag()) {
2802 case LABELLED:
2803 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2804 if (label == labelled.label) {
2805 // If jump is a continue, check that target is a loop.
2806 if (tag == CONTINUE) {
2807 if (!labelled.body.hasTag(DOLOOP) &&
2808 !labelled.body.hasTag(WHILELOOP) &&
2809 !labelled.body.hasTag(FORLOOP) &&
2810 !labelled.body.hasTag(FOREACHLOOP)) {
2811 pendingError = Errors.NotLoopLabel(label);
2812 }
2813 // Found labelled statement target, now go inwards
2814 // to next non-labelled tree.
2815 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2816 } else {
2817 return Pair.of(labelled, pendingError);
2818 }
2819 }
2820 break;
2821 case DOLOOP:
2822 case WHILELOOP:
2823 case FORLOOP:
2824 case FOREACHLOOP:
2825 if (label == null) return Pair.of(env1.tree, pendingError);
2826 break;
2827 case SWITCH:
2828 if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2829 break;
2830 case SWITCH_EXPRESSION:
2831 if (tag == YIELD) {
2832 return Pair.of(env1.tree, null);
2833 } else if (tag == BREAK) {
2834 pendingError = Errors.BreakOutsideSwitchExpression;
2835 } else {
2836 pendingError = Errors.ContinueOutsideSwitchExpression;
2837 }
2838 break;
2839 case LAMBDA:
2840 case METHODDEF:
2841 case CLASSDEF:
2842 break LOOP;
2843 default:
2844 }
2845 env1 = env1.next;
2846 }
2847 if (label != null)
2848 return Pair.of(null, Errors.UndefLabel(label));
2849 else if (pendingError != null)
2850 return Pair.of(null, pendingError);
2851 else if (tag == CONTINUE)
2852 return Pair.of(null, Errors.ContOutsideLoop);
2853 else
2854 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2855 }
2856
2857 public void visitReturn(JCReturn tree) {
2858 // Check that there is an enclosing method which is
2859 // nested within than the enclosing class.
2860 if (env.info.returnResult == null) {
2861 log.error(tree.pos(), Errors.RetOutsideMeth);
2862 } else if (env.info.yieldResult != null) {
2863 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2864 if (tree.expr != null) {
2865 attribExpr(tree.expr, env, env.info.yieldResult.pt);
2866 }
2867 } else if (!env.info.isLambda &&
2868 env.enclMethod != null &&
2869 TreeInfo.isCompactConstructor(env.enclMethod)) {
2870 log.error(env.enclMethod,
2871 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2872 } else {
2873 // Attribute return expression, if it exists, and check that
2874 // it conforms to result type of enclosing method.
2875 if (tree.expr != null) {
2876 if (env.info.returnResult.pt.hasTag(VOID)) {
2877 env.info.returnResult.checkContext.report(tree.expr.pos(),
2878 diags.fragment(Fragments.UnexpectedRetVal));
2879 }
2880 attribTree(tree.expr, env, env.info.returnResult);
2881 } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2882 !env.info.returnResult.pt.hasTag(NONE)) {
2883 env.info.returnResult.checkContext.report(tree.pos(),
2884 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2885 }
2886 }
2887 result = null;
2888 }
2889
2890 public void visitThrow(JCThrow tree) {
2891 Type owntype = attribExpr(tree.expr, env, Type.noType);
2892 chk.checkType(tree, owntype, syms.throwableType);
2893 result = null;
2894 }
2895
2896 public void visitAssert(JCAssert tree) {
2897 attribExpr(tree.cond, env, syms.booleanType);
2898 if (tree.detail != null) {
2899 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2900 }
2901 result = null;
2902 }
2903
2904 /** Visitor method for method invocations.
2905 * NOTE: The method part of an application will have in its type field
2906 * the return type of the method, not the method's type itself!
2907 */
2908 public void visitApply(JCMethodInvocation tree) {
2909 // The local environment of a method application is
2910 // a new environment nested in the current one.
2911 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2912
2913 // The types of the actual method arguments.
2914 List<Type> argtypes;
2915
2916 // The types of the actual method type arguments.
2917 List<Type> typeargtypes = null;
2918
2919 Name methName = TreeInfo.name(tree.meth);
2920
2921 boolean isConstructorCall =
2922 methName == names._this || methName == names._super;
2923
2924 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2925 if (isConstructorCall) {
2926
2927 // Attribute arguments, yielding list of argument types.
2928 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2929 argtypes = argtypesBuf.toList();
2930 typeargtypes = attribTypes(tree.typeargs, localEnv);
2931
2932 // Done with this()/super() parameters. End of constructor prologue.
2933 env.info.ctorPrologue = false;
2934
2935 // Variable `site' points to the class in which the called
2936 // constructor is defined.
2937 Type site = env.enclClass.sym.type;
2938 if (methName == names._super) {
2939 if (site == syms.objectType) {
2940 log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2941 site = types.createErrorType(syms.objectType);
2942 } else {
2943 site = types.supertype(site);
2944 }
2945 }
2946
2947 if (site.hasTag(CLASS)) {
2948 Type encl = site.getEnclosingType();
2949 while (encl != null && encl.hasTag(TYPEVAR))
2950 encl = encl.getUpperBound();
2951 if (encl.hasTag(CLASS)) {
2952 // we are calling a nested class
2953
2954 if (tree.meth.hasTag(SELECT)) {
2955 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2956
2957 // We are seeing a prefixed call, of the form
2958 // <expr>.super(...).
2959 // Check that the prefix expression conforms
2960 // to the outer instance type of the class.
2961 chk.checkRefType(qualifier.pos(),
2962 attribExpr(qualifier, localEnv,
2963 encl));
2964 }
2965 } else if (tree.meth.hasTag(SELECT)) {
2966 log.error(tree.meth.pos(),
2967 Errors.IllegalQualNotIcls(site.tsym));
2968 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
2969 }
2970
2971 if (tree.meth.hasTag(IDENT)) {
2972 // non-qualified super(...) call; check whether explicit constructor
2973 // invocation is well-formed. If the super class is an inner class,
2974 // make sure that an appropriate implicit qualifier exists. If the super
2975 // class is a local class, make sure that the current class is defined
2976 // in the same context as the local class.
2977 checkNewInnerClass(tree.meth.pos(), localEnv, site, true);
2978 }
2979
2980 // if we're calling a java.lang.Enum constructor,
2981 // prefix the implicit String and int parameters
2982 if (site.tsym == syms.enumSym)
2983 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2984
2985 // Resolve the called constructor under the assumption
2986 // that we are referring to a superclass instance of the
2987 // current instance (JLS ???).
2988 boolean selectSuperPrev = localEnv.info.selectSuper;
2989 localEnv.info.selectSuper = true;
2990 localEnv.info.pendingResolutionPhase = null;
2991 Symbol sym = rs.resolveConstructor(
2992 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2993 localEnv.info.selectSuper = selectSuperPrev;
2994
2995 // Set method symbol to resolved constructor...
2996 TreeInfo.setSymbol(tree.meth, sym);
2997
2998 // ...and check that it is legal in the current context.
2999 // (this will also set the tree's type)
3000 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
3001 checkId(tree.meth, site, sym, localEnv,
3002 new ResultInfo(kind, mpt));
3003 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) {
3004 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site);
3005 }
3006 // Otherwise, `site' is an error type and we do nothing
3007 result = tree.type = syms.voidType;
3008 } else {
3009 // Otherwise, we are seeing a regular method call.
3010 // Attribute the arguments, yielding list of argument types, ...
3011 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3012 argtypes = argtypesBuf.toList();
3013 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
3014
3015 // ... and attribute the method using as a prototype a methodtype
3016 // whose formal argument types is exactly the list of actual
3017 // arguments (this will also set the method symbol).
3018 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
3019 localEnv.info.pendingResolutionPhase = null;
3020 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
3021
3022 // Compute the result type.
3023 Type restype = mtype.getReturnType();
3024 if (restype.hasTag(WILDCARD))
3025 throw new AssertionError(mtype);
3026
3027 Type qualifier = (tree.meth.hasTag(SELECT))
3028 ? ((JCFieldAccess) tree.meth).selected.type
3029 : env.enclClass.sym.type;
3030 Symbol msym = TreeInfo.symbol(tree.meth);
3031 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
3032
3033 chk.checkRefTypes(tree.typeargs, typeargtypes);
3034
3035 // Check that value of resulting type is admissible in the
3036 // current context. Also, capture the return type
3037 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
3038 result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
3039 }
3040 chk.checkRequiresIdentity(tree, env.info.lint);
3041 chk.validate(tree.typeargs, localEnv);
3042 }
3043 //where
3044 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
3045 if (msym != null &&
3046 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
3047 methodName == names.getClass &&
3048 argtypes.isEmpty()) {
3049 // as a special case, x.getClass() has type Class<? extends |X|>
3050 return new ClassType(restype.getEnclosingType(),
3051 List.of(new WildcardType(types.erasure(qualifierType.baseType()),
3052 BoundKind.EXTENDS,
3053 syms.boundClass)),
3054 restype.tsym,
3055 restype.getMetadata());
3056 } else if (msym != null &&
3057 msym.owner == syms.arrayClass &&
3058 methodName == names.clone &&
3059 types.isArray(qualifierType)) {
3060 // as a special case, array.clone() has a result that is
3061 // the same as static type of the array being cloned
3062 return qualifierType;
3063 } else {
3064 return restype;
3065 }
3066 }
3067
3068 /** Obtain a method type with given argument types.
3069 */
3070 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
3071 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
3072 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
3073 }
3074
3075 public void visitNewClass(final JCNewClass tree) {
3076 Type owntype = types.createErrorType(tree.type);
3077
3078 // The local environment of a class creation is
3079 // a new environment nested in the current one.
3080 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
3081
3082 // The anonymous inner class definition of the new expression,
3083 // if one is defined by it.
3084 JCClassDecl cdef = tree.def;
3085
3086 // If enclosing class is given, attribute it, and
3087 // complete class name to be fully qualified
3088 JCExpression clazz = tree.clazz; // Class field following new
3089 JCExpression clazzid; // Identifier in class field
3090 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid
3091 annoclazzid = null;
3092
3093 if (clazz.hasTag(TYPEAPPLY)) {
3094 clazzid = ((JCTypeApply) clazz).clazz;
3095 if (clazzid.hasTag(ANNOTATED_TYPE)) {
3096 annoclazzid = (JCAnnotatedType) clazzid;
3097 clazzid = annoclazzid.underlyingType;
3098 }
3099 } else {
3100 if (clazz.hasTag(ANNOTATED_TYPE)) {
3101 annoclazzid = (JCAnnotatedType) clazz;
3102 clazzid = annoclazzid.underlyingType;
3103 } else {
3104 clazzid = clazz;
3105 }
3106 }
3107
3108 JCExpression clazzid1 = clazzid; // The same in fully qualified form
3109
3110 if (tree.encl != null) {
3111 // We are seeing a qualified new, of the form
3112 // <expr>.new C <...> (...) ...
3113 // In this case, we let clazz stand for the name of the
3114 // allocated class C prefixed with the type of the qualifier
3115 // expression, so that we can
3116 // resolve it with standard techniques later. I.e., if
3117 // <expr> has type T, then <expr>.new C <...> (...)
3118 // yields a clazz T.C.
3119 Type encltype = chk.checkRefType(tree.encl.pos(),
3120 attribExpr(tree.encl, env));
3121 // TODO 308: in <expr>.new C, do we also want to add the type annotations
3122 // from expr to the combined type, or not? Yes, do this.
3123 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
3124 ((JCIdent) clazzid).name);
3125
3126 EndPosTable endPosTable = this.env.toplevel.endPositions;
3127 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable));
3128 if (clazz.hasTag(ANNOTATED_TYPE)) {
3129 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
3130 List<JCAnnotation> annos = annoType.annotations;
3131
3132 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
3133 clazzid1 = make.at(tree.pos).
3134 TypeApply(clazzid1,
3135 ((JCTypeApply) clazz).arguments);
3136 }
3137
3138 clazzid1 = make.at(tree.pos).
3139 AnnotatedType(annos, clazzid1);
3140 } else if (clazz.hasTag(TYPEAPPLY)) {
3141 clazzid1 = make.at(tree.pos).
3142 TypeApply(clazzid1,
3143 ((JCTypeApply) clazz).arguments);
3144 }
3145
3146 clazz = clazzid1;
3147 }
3148
3149 // Attribute clazz expression and store
3150 // symbol + type back into the attributed tree.
3151 Type clazztype = TreeInfo.isEnumInit(env.tree) ?
3152 attribIdentAsEnumType(env, (JCIdent)clazz) :
3153 attribType(clazz, env);
3154
3155 clazztype = chk.checkDiamond(tree, clazztype);
3156 chk.validate(clazz, localEnv);
3157 if (tree.encl != null) {
3158 // We have to work in this case to store
3159 // symbol + type back into the attributed tree.
3160 tree.clazz.type = clazztype;
3161 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
3162 clazzid.type = ((JCIdent) clazzid).sym.type;
3163 if (annoclazzid != null) {
3164 annoclazzid.type = clazzid.type;
3165 }
3166 if (!clazztype.isErroneous()) {
3167 if (cdef != null && clazztype.tsym.isInterface()) {
3168 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
3169 } else if (clazztype.tsym.isStatic()) {
3170 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
3171 }
3172 }
3173 } else {
3174 // Check for the existence of an apropos outer instance
3175 checkNewInnerClass(tree.pos(), env, clazztype, false);
3176 }
3177
3178 // Attribute constructor arguments.
3179 ListBuffer<Type> argtypesBuf = new ListBuffer<>();
3180 final KindSelector pkind =
3181 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
3182 List<Type> argtypes = argtypesBuf.toList();
3183 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
3184
3185 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
3186 // Enums may not be instantiated except implicitly
3187 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
3188 (!env.tree.hasTag(VARDEF) ||
3189 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
3190 ((JCVariableDecl) env.tree).init != tree))
3191 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
3192
3193 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
3194 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3195 boolean skipNonDiamondPath = false;
3196 // Check that class is not abstract
3197 if (cdef == null && !tree.classDeclRemoved() && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
3198 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
3199 log.error(tree.pos(),
3200 Errors.AbstractCantBeInstantiated(clazztype.tsym));
3201 skipNonDiamondPath = true;
3202 } else if (cdef != null && clazztype.tsym.isInterface()) {
3203 // Check that no constructor arguments are given to
3204 // anonymous classes implementing an interface
3205 if (!argtypes.isEmpty())
3206 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
3207
3208 if (!typeargtypes.isEmpty())
3209 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
3210
3211 // Error recovery: pretend no arguments were supplied.
3212 argtypes = List.nil();
3213 typeargtypes = List.nil();
3214 skipNonDiamondPath = true;
3215 }
3216 if (TreeInfo.isDiamond(tree)) {
3217 ClassType site = new ClassType(clazztype.getEnclosingType(),
3218 clazztype.tsym.type.getTypeArguments(),
3219 clazztype.tsym,
3220 clazztype.getMetadata());
3221
3222 Env<AttrContext> diamondEnv = localEnv.dup(tree);
3223 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
3224 diamondEnv.info.pendingResolutionPhase = null;
3225
3226 //if the type of the instance creation expression is a class type
3227 //apply method resolution inference (JLS 15.12.2.7). The return type
3228 //of the resolved constructor will be a partially instantiated type
3229 Symbol constructor = rs.resolveDiamond(tree.pos(),
3230 diamondEnv,
3231 site,
3232 argtypes,
3233 typeargtypes);
3234 tree.constructor = constructor.baseSymbol();
3235
3236 final TypeSymbol csym = clazztype.tsym;
3237 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
3238 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3239 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
3240 constructorType = checkId(tree, site,
3241 constructor,
3242 diamondEnv,
3243 diamondResult);
3244
3245 tree.clazz.type = types.createErrorType(clazztype);
3246 if (!constructorType.isErroneous()) {
3247 tree.clazz.type = clazz.type = constructorType.getReturnType();
3248 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
3249 }
3250 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
3251 }
3252
3253 // Resolve the called constructor under the assumption
3254 // that we are referring to a superclass instance of the
3255 // current instance (JLS ???).
3256 else if (!skipNonDiamondPath) {
3257 //the following code alters some of the fields in the current
3258 //AttrContext - hence, the current context must be dup'ed in
3259 //order to avoid downstream failures
3260 Env<AttrContext> rsEnv = localEnv.dup(tree);
3261 rsEnv.info.selectSuper = cdef != null;
3262 rsEnv.info.pendingResolutionPhase = null;
3263 tree.constructor = rs.resolveConstructor(
3264 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
3265 if (cdef == null) { //do not check twice!
3266 tree.constructorType = checkId(tree,
3267 clazztype,
3268 tree.constructor,
3269 rsEnv,
3270 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3271 if (rsEnv.info.lastResolveVarargs())
3272 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
3273 }
3274 }
3275
3276 chk.checkRequiresIdentity(tree, env.info.lint);
3277
3278 if (cdef != null) {
3279 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
3280 return;
3281 }
3282
3283 if (tree.constructor != null && tree.constructor.kind == MTH)
3284 owntype = clazztype;
3285 }
3286 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3287 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3288 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
3289 //we need to wait for inference to finish and then replace inference vars in the constructor type
3290 inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
3291 instantiatedContext -> {
3292 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3293 });
3294 }
3295 chk.validate(tree.typeargs, localEnv);
3296 }
3297
3298 // where
3299 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
3300 JCClassDecl cdef, Env<AttrContext> localEnv,
3301 List<Type> argtypes, List<Type> typeargtypes,
3302 KindSelector pkind) {
3303 // We are seeing an anonymous class instance creation.
3304 // In this case, the class instance creation
3305 // expression
3306 //
3307 // E.new <typeargs1>C<typargs2>(args) { ... }
3308 //
3309 // is represented internally as
3310 //
3311 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
3312 //
3313 // This expression is then *transformed* as follows:
3314 //
3315 // (1) add an extends or implements clause
3316 // (2) add a constructor.
3317 //
3318 // For instance, if C is a class, and ET is the type of E,
3319 // the expression
3320 //
3321 // E.new <typeargs1>C<typargs2>(args) { ... }
3322 //
3323 // is translated to (where X is a fresh name and typarams is the
3324 // parameter list of the super constructor):
3325 //
3326 // new <typeargs1>X(<*nullchk*>E, args) where
3327 // X extends C<typargs2> {
3328 // <typarams> X(ET e, args) {
3329 // e.<typeargs1>super(args)
3330 // }
3331 // ...
3332 // }
3333 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
3334 Type enclType = clazztype.getEnclosingType();
3335 if (enclType != null &&
3336 enclType.hasTag(CLASS) &&
3337 !chk.checkDenotable((ClassType)enclType)) {
3338 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType));
3339 }
3340 final boolean isDiamond = TreeInfo.isDiamond(tree);
3341 if (isDiamond
3342 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
3343 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
3344 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
3345 Env<AttrContext> dupLocalEnv = copyEnv(localEnv);
3346 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
3347 instantiatedContext -> {
3348 tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
3349 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
3350 ResultInfo prevResult = this.resultInfo;
3351 try {
3352 this.resultInfo = resultInfoForClassDefinition;
3353 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
3354 dupLocalEnv, argtypes, typeargtypes, pkind);
3355 } finally {
3356 this.resultInfo = prevResult;
3357 }
3358 });
3359 } else {
3360 if (isDiamond && clazztype.hasTag(CLASS)) {
3361 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
3362 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
3363 // One or more types inferred in the previous steps is non-denotable.
3364 Fragment fragment = Diamond(clazztype.tsym);
3365 log.error(tree.clazz.pos(),
3366 Errors.CantApplyDiamond1(
3367 fragment,
3368 invalidDiamondArgs.size() > 1 ?
3369 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3370 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3371 }
3372 // For <>(){}, inferred types must also be accessible.
3373 for (Type t : clazztype.getTypeArguments()) {
3374 rs.checkAccessibleType(env, t);
3375 }
3376 }
3377
3378 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3379 // false for isInterface call even when the original type is an interface.
3380 boolean implementing = clazztype.tsym.isInterface() ||
3381 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3382 clazztype.getOriginalType().tsym.isInterface();
3383
3384 if (implementing) {
3385 cdef.implementing = List.of(clazz);
3386 } else {
3387 cdef.extending = clazz;
3388 }
3389
3390 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3391 rs.isSerializable(clazztype)) {
3392 localEnv.info.isSerializable = true;
3393 }
3394
3395 attribStat(cdef, localEnv);
3396
3397 List<Type> finalargtypes;
3398 // If an outer instance is given,
3399 // prefix it to the constructor arguments
3400 // and delete it from the new expression
3401 if (tree.encl != null && !clazztype.tsym.isInterface()) {
3402 finalargtypes = argtypes.prepend(tree.encl.type);
3403 } else {
3404 finalargtypes = argtypes;
3405 }
3406
3407 // Reassign clazztype and recompute constructor. As this necessarily involves
3408 // another attribution pass for deferred types in the case of <>, replicate
3409 // them. Original arguments have right decorations already.
3410 if (isDiamond && pkind.contains(KindSelector.POLY)) {
3411 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
3412 }
3413
3414 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
3415 : cdef.sym.type;
3416 Symbol sym = tree.constructor = rs.resolveConstructor(
3417 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
3418 Assert.check(!sym.kind.isResolutionError());
3419 tree.constructor = sym;
3420 tree.constructorType = checkId(tree,
3421 clazztype,
3422 tree.constructor,
3423 localEnv,
3424 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
3425 }
3426 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
3427 clazztype : types.createErrorType(tree.type);
3428 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3429 chk.validate(tree.typeargs, localEnv);
3430 }
3431
3432 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3433 return new Check.NestedCheckContext(checkContext) {
3434 @Override
3435 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3436 enclosingContext.report(clazz.clazz,
3437 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3438 }
3439 };
3440 }
3441
3442 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) {
3443 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH;
3444 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 ||
3445 (!isLocal && !type.tsym.isInner()) ||
3446 (isSuper && env.enclClass.sym.isAnonymous())) {
3447 // nothing to check
3448 return;
3449 }
3450 Symbol res = isLocal ?
3451 rs.findLocalClassOwner(env, type.tsym) :
3452 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper);
3453 if (res.exists()) {
3454 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true);
3455 } else {
3456 log.error(pos, Errors.EnclClassRequired(type.tsym));
3457 }
3458 }
3459
3460 /** Make an attributed null check tree.
3461 */
3462 public JCExpression makeNullCheck(JCExpression arg) {
3463 // optimization: new Outer() can never be null; skip null check
3464 if (arg.getTag() == NEWCLASS)
3465 return arg;
3466 // optimization: X.this is never null; skip null check
3467 Name name = TreeInfo.name(arg);
3468 if (name == names._this || name == names._super) return arg;
3469
3470 JCTree.Tag optag = NULLCHK;
3471 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3472 tree.operator = operators.resolveUnary(arg, optag, arg.type);
3473 tree.type = arg.type;
3474 return tree;
3475 }
3476
3477 public void visitNewArray(JCNewArray tree) {
3478 Type owntype = types.createErrorType(tree.type);
3479 Env<AttrContext> localEnv = env.dup(tree);
3480 Type elemtype;
3481 if (tree.elemtype != null) {
3482 elemtype = attribType(tree.elemtype, localEnv);
3483 chk.validate(tree.elemtype, localEnv);
3484 owntype = elemtype;
3485 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
3486 attribExpr(l.head, localEnv, syms.intType);
3487 owntype = new ArrayType(owntype, syms.arrayClass);
3488 }
3489 } else {
3490 // we are seeing an untyped aggregate { ... }
3491 // this is allowed only if the prototype is an array
3492 if (pt().hasTag(ARRAY)) {
3493 elemtype = types.elemtype(pt());
3494 } else {
3495 if (!pt().hasTag(ERROR) &&
3496 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3497 log.error(tree.pos(),
3498 Errors.IllegalInitializerForType(pt()));
3499 }
3500 elemtype = types.createErrorType(pt());
3501 }
3502 }
3503 if (tree.elems != null) {
3504 attribExprs(tree.elems, localEnv, elemtype);
3505 owntype = new ArrayType(elemtype, syms.arrayClass);
3506 }
3507 if (!types.isReifiable(elemtype))
3508 log.error(tree.pos(), Errors.GenericArrayCreation);
3509 result = check(tree, owntype, KindSelector.VAL, resultInfo);
3510 }
3511
3512 /*
3513 * A lambda expression can only be attributed when a target-type is available.
3514 * In addition, if the target-type is that of a functional interface whose
3515 * descriptor contains inference variables in argument position the lambda expression
3516 * is 'stuck' (see DeferredAttr).
3517 */
3518 @Override
3519 public void visitLambda(final JCLambda that) {
3520 boolean wrongContext = false;
3521 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3522 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3523 //lambda only allowed in assignment or method invocation/cast context
3524 log.error(that.pos(), Errors.UnexpectedLambda);
3525 }
3526 resultInfo = recoveryInfo;
3527 wrongContext = true;
3528 }
3529 //create an environment for attribution of the lambda expression
3530 final Env<AttrContext> localEnv = lambdaEnv(that, env);
3531 boolean needsRecovery =
3532 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
3533 try {
3534 if (needsRecovery && rs.isSerializable(pt())) {
3535 localEnv.info.isSerializable = true;
3536 localEnv.info.isSerializableLambda = true;
3537 }
3538 List<Type> explicitParamTypes = null;
3539 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
3540 //attribute lambda parameters
3541 attribStats(that.params, localEnv);
3542 explicitParamTypes = TreeInfo.types(that.params);
3543 }
3544
3545 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
3546 Type currentTarget = targetInfo.target;
3547 Type lambdaType = targetInfo.descriptor;
3548
3549 if (currentTarget.isErroneous()) {
3550 result = that.type = currentTarget;
3551 return;
3552 }
3553
3554 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
3555
3556 if (lambdaType.hasTag(FORALL)) {
3557 //lambda expression target desc cannot be a generic method
3558 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3559 kindName(currentTarget.tsym),
3560 currentTarget.tsym);
3561 resultInfo.checkContext.report(that, diags.fragment(msg));
3562 result = that.type = types.createErrorType(pt());
3563 return;
3564 }
3565
3566 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
3567 //add param type info in the AST
3568 List<Type> actuals = lambdaType.getParameterTypes();
3569 List<JCVariableDecl> params = that.params;
3570
3571 boolean arityMismatch = false;
3572
3573 while (params.nonEmpty()) {
3574 if (actuals.isEmpty()) {
3575 //not enough actuals to perform lambda parameter inference
3576 arityMismatch = true;
3577 }
3578 //reset previously set info
3579 Type argType = arityMismatch ?
3580 syms.errType :
3581 actuals.head;
3582 if (params.head.isImplicitlyTyped()) {
3583 setSyntheticVariableType(params.head, argType);
3584 }
3585 params.head.sym = null;
3586 actuals = actuals.isEmpty() ?
3587 actuals :
3588 actuals.tail;
3589 params = params.tail;
3590 }
3591
3592 //attribute lambda parameters
3593 attribStats(that.params, localEnv);
3594
3595 if (arityMismatch) {
3596 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3597 result = that.type = types.createErrorType(currentTarget);
3598 return;
3599 }
3600 }
3601
3602 //from this point on, no recovery is needed; if we are in assignment context
3603 //we will be able to attribute the whole lambda body, regardless of errors;
3604 //if we are in a 'check' method context, and the lambda is not compatible
3605 //with the target-type, it will be recovered anyway in Attr.checkId
3606 needsRecovery = false;
3607
3608 ResultInfo bodyResultInfo = localEnv.info.returnResult =
3609 lambdaBodyResult(that, lambdaType, resultInfo);
3610
3611 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
3612 attribTree(that.getBody(), localEnv, bodyResultInfo);
3613 } else {
3614 JCBlock body = (JCBlock)that.body;
3615 if (body == breakTree &&
3616 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3617 breakTreeFound(copyEnv(localEnv));
3618 }
3619 attribStats(body.stats, localEnv);
3620 }
3621
3622 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3623
3624 boolean isSpeculativeRound =
3625 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3626
3627 preFlow(that);
3628 flow.analyzeLambda(env, that, make, isSpeculativeRound);
3629
3630 that.type = currentTarget; //avoids recovery at this stage
3631 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3632
3633 if (!isSpeculativeRound) {
3634 //add thrown types as bounds to the thrown types free variables if needed:
3635 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3636 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3637 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3638 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3639 }
3640 }
3641
3642 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3643 }
3644 result = wrongContext ? that.type = types.createErrorType(pt())
3645 : check(that, currentTarget, KindSelector.VAL, resultInfo);
3646 } catch (Types.FunctionDescriptorLookupError ex) {
3647 JCDiagnostic cause = ex.getDiagnostic();
3648 resultInfo.checkContext.report(that, cause);
3649 result = that.type = types.createErrorType(pt());
3650 return;
3651 } catch (CompletionFailure cf) {
3652 chk.completionError(that.pos(), cf);
3653 } catch (Throwable t) {
3654 //when an unexpected exception happens, avoid attempts to attribute the same tree again
3655 //as that would likely cause the same exception again.
3656 needsRecovery = false;
3657 throw t;
3658 } finally {
3659 localEnv.info.scope.leave();
3660 if (needsRecovery) {
3661 Type prevResult = result;
3662 try {
3663 attribTree(that, env, recoveryInfo);
3664 } finally {
3665 if (result == Type.recoveryType) {
3666 result = prevResult;
3667 }
3668 }
3669 }
3670 }
3671 }
3672 //where
3673 class TargetInfo {
3674 Type target;
3675 Type descriptor;
3676
3677 public TargetInfo(Type target, Type descriptor) {
3678 this.target = target;
3679 this.descriptor = descriptor;
3680 }
3681 }
3682
3683 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3684 Type lambdaType;
3685 Type currentTarget = resultInfo.pt;
3686 if (resultInfo.pt != Type.recoveryType) {
3687 /* We need to adjust the target. If the target is an
3688 * intersection type, for example: SAM & I1 & I2 ...
3689 * the target will be updated to SAM
3690 */
3691 currentTarget = targetChecker.visit(currentTarget, that);
3692 if (!currentTarget.isIntersection()) {
3693 if (explicitParamTypes != null) {
3694 currentTarget = infer.instantiateFunctionalInterface(that,
3695 currentTarget, explicitParamTypes, resultInfo.checkContext);
3696 }
3697 currentTarget = types.removeWildcards(currentTarget);
3698 lambdaType = types.findDescriptorType(currentTarget);
3699 } else {
3700 IntersectionClassType ict = (IntersectionClassType)currentTarget;
3701 ListBuffer<Type> components = new ListBuffer<>();
3702 for (Type bound : ict.getExplicitComponents()) {
3703 if (explicitParamTypes != null) {
3704 try {
3705 bound = infer.instantiateFunctionalInterface(that,
3706 bound, explicitParamTypes, resultInfo.checkContext);
3707 } catch (FunctionDescriptorLookupError t) {
3708 // do nothing
3709 }
3710 }
3711 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) {
3712 // bound must be j.l.Object or an interface, but not an annotation
3713 reportIntersectionError(that, "not.an.intf.component", bound);
3714 }
3715 bound = types.removeWildcards(bound);
3716 components.add(bound);
3717 }
3718 currentTarget = types.makeIntersectionType(components.toList());
3719 currentTarget.tsym.flags_field |= INTERFACE;
3720 lambdaType = types.findDescriptorType(currentTarget);
3721 }
3722
3723 } else {
3724 currentTarget = Type.recoveryType;
3725 lambdaType = fallbackDescriptorType(that);
3726 }
3727 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3728 //lambda expression target desc cannot be a generic method
3729 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3730 kindName(currentTarget.tsym),
3731 currentTarget.tsym);
3732 resultInfo.checkContext.report(that, diags.fragment(msg));
3733 currentTarget = types.createErrorType(pt());
3734 }
3735 return new TargetInfo(currentTarget, lambdaType);
3736 }
3737
3738 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
3739 resultInfo.checkContext.report(pos,
3740 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args))));
3741 }
3742
3743 void preFlow(JCLambda tree) {
3744 attrRecover.doRecovery();
3745 new PostAttrAnalyzer() {
3746 @Override
3747 public void scan(JCTree tree) {
3748 if (tree == null ||
3749 (tree.type != null &&
3750 tree.type == Type.stuckType)) {
3751 //don't touch stuck expressions!
3752 return;
3753 }
3754 super.scan(tree);
3755 }
3756
3757 @Override
3758 public void visitClassDef(JCClassDecl that) {
3759 // or class declaration trees!
3760 }
3761
3762 public void visitLambda(JCLambda that) {
3763 // or lambda expressions!
3764 }
3765 }.scan(tree.body);
3766 }
3767
3768 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3769
3770 @Override
3771 public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3772 return t.isIntersection() ?
3773 visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3774 }
3775
3776 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3777 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3778 return ict;
3779 }
3780
3781 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3782 ListBuffer<Type> targs = new ListBuffer<>();
3783 ListBuffer<Type> supertypes = new ListBuffer<>();
3784 for (Type i : ict.interfaces_field) {
3785 if (i.isParameterized()) {
3786 targs.appendList(i.tsym.type.allparams());
3787 }
3788 supertypes.append(i.tsym.type);
3789 }
3790 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3791 notionalIntf.allparams_field = targs.toList();
3792 notionalIntf.tsym.flags_field |= INTERFACE;
3793 return notionalIntf.tsym;
3794 }
3795 };
3796
3797 private Type fallbackDescriptorType(JCExpression tree) {
3798 switch (tree.getTag()) {
3799 case LAMBDA:
3800 JCLambda lambda = (JCLambda)tree;
3801 List<Type> argtypes = List.nil();
3802 for (JCVariableDecl param : lambda.params) {
3803 argtypes = param.vartype != null && param.vartype.type != null ?
3804 argtypes.append(param.vartype.type) :
3805 argtypes.append(syms.errType);
3806 }
3807 return new MethodType(argtypes, Type.recoveryType,
3808 List.of(syms.throwableType), syms.methodClass);
3809 case REFERENCE:
3810 return new MethodType(List.nil(), Type.recoveryType,
3811 List.of(syms.throwableType), syms.methodClass);
3812 default:
3813 Assert.error("Cannot get here!");
3814 }
3815 return null;
3816 }
3817
3818 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3819 final InferenceContext inferenceContext, final Type... ts) {
3820 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3821 }
3822
3823 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3824 final InferenceContext inferenceContext, final List<Type> ts) {
3825 if (inferenceContext.free(ts)) {
3826 inferenceContext.addFreeTypeListener(ts,
3827 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3828 } else {
3829 for (Type t : ts) {
3830 rs.checkAccessibleType(env, t);
3831 }
3832 }
3833 }
3834
3835 /**
3836 * Lambda/method reference have a special check context that ensures
3837 * that i.e. a lambda return type is compatible with the expected
3838 * type according to both the inherited context and the assignment
3839 * context.
3840 */
3841 class FunctionalReturnContext extends Check.NestedCheckContext {
3842
3843 FunctionalReturnContext(CheckContext enclosingContext) {
3844 super(enclosingContext);
3845 }
3846
3847 @Override
3848 public boolean compatible(Type found, Type req, Warner warn) {
3849 //return type must be compatible in both current context and assignment context
3850 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3851 }
3852
3853 @Override
3854 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3855 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3856 }
3857 }
3858
3859 class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3860
3861 JCExpression expr;
3862 boolean expStmtExpected;
3863
3864 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3865 super(enclosingContext);
3866 this.expr = expr;
3867 }
3868
3869 @Override
3870 public void report(DiagnosticPosition pos, JCDiagnostic details) {
3871 if (expStmtExpected) {
3872 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3873 } else {
3874 super.report(pos, details);
3875 }
3876 }
3877
3878 @Override
3879 public boolean compatible(Type found, Type req, Warner warn) {
3880 //a void return is compatible with an expression statement lambda
3881 if (req.hasTag(VOID)) {
3882 expStmtExpected = true;
3883 return TreeInfo.isExpressionStatement(expr);
3884 } else {
3885 return super.compatible(found, req, warn);
3886 }
3887 }
3888 }
3889
3890 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3891 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3892 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3893 new FunctionalReturnContext(resultInfo.checkContext);
3894
3895 return descriptor.getReturnType() == Type.recoveryType ?
3896 recoveryInfo :
3897 new ResultInfo(KindSelector.VAL,
3898 descriptor.getReturnType(), funcContext);
3899 }
3900
3901 /**
3902 * Lambda compatibility. Check that given return types, thrown types, parameter types
3903 * are compatible with the expected functional interface descriptor. This means that:
3904 * (i) parameter types must be identical to those of the target descriptor; (ii) return
3905 * types must be compatible with the return type of the expected descriptor.
3906 */
3907 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3908 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3909
3910 //return values have already been checked - but if lambda has no return
3911 //values, we must ensure that void/value compatibility is correct;
3912 //this amounts at checking that, if a lambda body can complete normally,
3913 //the descriptor's return type must be void
3914 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3915 !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3916 Fragment msg =
3917 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3918 checkContext.report(tree,
3919 diags.fragment(msg));
3920 }
3921
3922 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3923 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3924 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3925 }
3926 }
3927
3928 /* This method returns an environment to be used to attribute a lambda
3929 * expression.
3930 *
3931 * The owner of this environment is a method symbol. If the current owner
3932 * is not a method (e.g. if the lambda occurs in a field initializer), then
3933 * a synthetic method symbol owner is created.
3934 */
3935 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3936 Env<AttrContext> lambdaEnv;
3937 Symbol owner = env.info.scope.owner;
3938 if (owner.kind == VAR && owner.owner.kind == TYP) {
3939 // If the lambda is nested in a field initializer, we need to create a fake init method.
3940 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the
3941 // init symbol's owner).
3942 ClassSymbol enclClass = owner.enclClass();
3943 Name initName = owner.isStatic() ? names.clinit : names.init;
3944 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE,
3945 initName, initBlockType, enclClass);
3946 initSym.params = List.nil();
3947 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym)));
3948 } else {
3949 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3950 }
3951 lambdaEnv.info.yieldResult = null;
3952 lambdaEnv.info.isLambda = true;
3953 return lambdaEnv;
3954 }
3955
3956 @Override
3957 public void visitReference(final JCMemberReference that) {
3958 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3959 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3960 //method reference only allowed in assignment or method invocation/cast context
3961 log.error(that.pos(), Errors.UnexpectedMref);
3962 }
3963 result = that.type = types.createErrorType(pt());
3964 return;
3965 }
3966 final Env<AttrContext> localEnv = env.dup(that);
3967 try {
3968 //attribute member reference qualifier - if this is a constructor
3969 //reference, the expected kind must be a type
3970 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3971
3972 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3973 exprType = chk.checkConstructorRefType(that.expr, exprType);
3974 if (!exprType.isErroneous() &&
3975 exprType.isRaw() &&
3976 that.typeargs != null) {
3977 log.error(that.expr.pos(),
3978 Errors.InvalidMref(Kinds.kindName(that.getMode()),
3979 Fragments.MrefInferAndExplicitParams));
3980 exprType = types.createErrorType(exprType);
3981 }
3982 }
3983
3984 if (exprType.isErroneous()) {
3985 //if the qualifier expression contains problems,
3986 //give up attribution of method reference
3987 result = that.type = exprType;
3988 return;
3989 }
3990
3991 if (TreeInfo.isStaticSelector(that.expr, names)) {
3992 //if the qualifier is a type, validate it; raw warning check is
3993 //omitted as we don't know at this stage as to whether this is a
3994 //raw selector (because of inference)
3995 chk.validate(that.expr, env, false);
3996 } else {
3997 Symbol lhsSym = TreeInfo.symbol(that.expr);
3998 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3999 }
4000 //attrib type-arguments
4001 List<Type> typeargtypes = List.nil();
4002 if (that.typeargs != null) {
4003 typeargtypes = attribTypes(that.typeargs, localEnv);
4004 }
4005
4006 boolean isTargetSerializable =
4007 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4008 rs.isSerializable(pt());
4009 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
4010 Type currentTarget = targetInfo.target;
4011 Type desc = targetInfo.descriptor;
4012
4013 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
4014 List<Type> argtypes = desc.getParameterTypes();
4015 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
4016
4017 if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
4018 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
4019 }
4020
4021 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
4022 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
4023 try {
4024 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
4025 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
4026 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
4027 } finally {
4028 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
4029 }
4030
4031 Symbol refSym = refResult.fst;
4032 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
4033
4034 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
4035 * JDK-8075541
4036 */
4037 if (refSym.kind != MTH) {
4038 boolean targetError;
4039 switch (refSym.kind) {
4040 case ABSENT_MTH:
4041 targetError = false;
4042 break;
4043 case WRONG_MTH:
4044 case WRONG_MTHS:
4045 case AMBIGUOUS:
4046 case HIDDEN:
4047 case STATICERR:
4048 targetError = true;
4049 break;
4050 default:
4051 Assert.error("unexpected result kind " + refSym.kind);
4052 targetError = false;
4053 }
4054
4055 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
4056 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
4057 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
4058
4059 JCDiagnostic diag = diags.create(log.currentSource(), that,
4060 targetError ?
4061 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
4062 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
4063
4064 if (targetError && currentTarget == Type.recoveryType) {
4065 //a target error doesn't make sense during recovery stage
4066 //as we don't know what actual parameter types are
4067 result = that.type = currentTarget;
4068 return;
4069 } else {
4070 if (targetError) {
4071 resultInfo.checkContext.report(that, diag);
4072 } else {
4073 log.report(diag);
4074 }
4075 result = that.type = types.createErrorType(currentTarget);
4076 return;
4077 }
4078 }
4079
4080 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
4081 that.kind = lookupHelper.referenceKind(that.sym);
4082 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
4083
4084 if (desc.getReturnType() == Type.recoveryType) {
4085 // stop here
4086 result = that.type = currentTarget;
4087 return;
4088 }
4089
4090 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
4091 checkNewInnerClass(that.pos(), env, exprType, false);
4092 }
4093
4094 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
4095
4096 if (that.getMode() == ReferenceMode.INVOKE &&
4097 TreeInfo.isStaticSelector(that.expr, names) &&
4098 that.kind.isUnbound() &&
4099 lookupHelper.site.isRaw()) {
4100 chk.checkRaw(that.expr, localEnv);
4101 }
4102
4103 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
4104 exprType.getTypeArguments().nonEmpty()) {
4105 //static ref with class type-args
4106 log.error(that.expr.pos(),
4107 Errors.InvalidMref(Kinds.kindName(that.getMode()),
4108 Fragments.StaticMrefWithTargs));
4109 result = that.type = types.createErrorType(currentTarget);
4110 return;
4111 }
4112
4113 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
4114 // Check that super-qualified symbols are not abstract (JLS)
4115 rs.checkNonAbstract(that.pos(), that.sym);
4116 }
4117
4118 if (isTargetSerializable) {
4119 chk.checkAccessFromSerializableElement(that, true);
4120 }
4121 }
4122
4123 ResultInfo checkInfo =
4124 resultInfo.dup(newMethodTemplate(
4125 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
4126 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
4127 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
4128
4129 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
4130
4131 if (that.kind.isUnbound() &&
4132 resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
4133 //re-generate inference constraints for unbound receiver
4134 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
4135 //cannot happen as this has already been checked - we just need
4136 //to regenerate the inference constraints, as that has been lost
4137 //as a result of the call to inferenceContext.save()
4138 Assert.error("Can't get here");
4139 }
4140 }
4141
4142 if (!refType.isErroneous()) {
4143 refType = types.createMethodTypeWithReturn(refType,
4144 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
4145 }
4146
4147 //go ahead with standard method reference compatibility check - note that param check
4148 //is a no-op (as this has been taken care during method applicability)
4149 boolean isSpeculativeRound =
4150 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
4151
4152 that.type = currentTarget; //avoids recovery at this stage
4153 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
4154 if (!isSpeculativeRound) {
4155 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
4156 }
4157 chk.checkRequiresIdentity(that, localEnv.info.lint);
4158 result = check(that, currentTarget, KindSelector.VAL, resultInfo);
4159 } catch (Types.FunctionDescriptorLookupError ex) {
4160 JCDiagnostic cause = ex.getDiagnostic();
4161 resultInfo.checkContext.report(that, cause);
4162 result = that.type = types.createErrorType(pt());
4163 return;
4164 }
4165 }
4166 //where
4167 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
4168 //if this is a constructor reference, the expected kind must be a type
4169 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
4170 KindSelector.VAL_TYP : KindSelector.TYP,
4171 Type.noType);
4172 }
4173
4174
4175 @SuppressWarnings("fallthrough")
4176 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
4177 InferenceContext inferenceContext = checkContext.inferenceContext();
4178 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
4179
4180 Type resType;
4181 switch (tree.getMode()) {
4182 case NEW:
4183 if (!tree.expr.type.isRaw()) {
4184 resType = tree.expr.type;
4185 break;
4186 }
4187 default:
4188 resType = refType.getReturnType();
4189 }
4190
4191 Type incompatibleReturnType = resType;
4192
4193 if (returnType.hasTag(VOID)) {
4194 incompatibleReturnType = null;
4195 }
4196
4197 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
4198 if (resType.isErroneous() ||
4199 new FunctionalReturnContext(checkContext).compatible(resType, returnType,
4200 checkContext.checkWarner(tree, resType, returnType))) {
4201 incompatibleReturnType = null;
4202 }
4203 }
4204
4205 if (incompatibleReturnType != null) {
4206 Fragment msg =
4207 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
4208 checkContext.report(tree, diags.fragment(msg));
4209 } else {
4210 if (inferenceContext.free(refType)) {
4211 // we need to wait for inference to finish and then replace inference vars in the referent type
4212 inferenceContext.addFreeTypeListener(List.of(refType),
4213 instantiatedContext -> {
4214 tree.referentType = instantiatedContext.asInstType(refType);
4215 });
4216 } else {
4217 tree.referentType = refType;
4218 }
4219 }
4220
4221 if (!speculativeAttr) {
4222 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
4223 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
4224 }
4225 }
4226 }
4227
4228 boolean checkExConstraints(
4229 List<Type> thrownByFuncExpr,
4230 List<Type> thrownAtFuncType,
4231 InferenceContext inferenceContext) {
4232 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
4233 * are not proper types
4234 */
4235 List<Type> nonProperList = thrownAtFuncType.stream()
4236 .filter(e -> inferenceContext.free(e)).collect(List.collector());
4237 List<Type> properList = thrownAtFuncType.diff(nonProperList);
4238
4239 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
4240 * in the throws clause of the invocation type of the method reference's compile-time
4241 * declaration
4242 */
4243 List<Type> checkedList = thrownByFuncExpr.stream()
4244 .filter(e -> chk.isChecked(e)).collect(List.collector());
4245
4246 /** If n = 0 (the function type's throws clause consists only of proper types), then
4247 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
4248 * in the throws clause, the constraint reduces to false; otherwise, the constraint
4249 * reduces to true
4250 */
4251 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
4252 for (Type checked : checkedList) {
4253 boolean isSubtype = false;
4254 for (Type proper : properList) {
4255 if (types.isSubtype(checked, proper)) {
4256 isSubtype = true;
4257 break;
4258 }
4259 }
4260 if (!isSubtype) {
4261 uncaughtByProperTypes.add(checked);
4262 }
4263 }
4264
4265 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
4266 return false;
4267 }
4268
4269 /** If n > 0, the constraint reduces to a set of subtyping constraints:
4270 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
4271 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
4272 */
4273 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
4274 uncaughtByProperTypes.forEach(checkedEx -> {
4275 nonProperAsUndet.forEach(nonProper -> {
4276 types.isSubtype(checkedEx, nonProper);
4277 });
4278 });
4279
4280 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
4281 */
4282 nonProperAsUndet.stream()
4283 .filter(t -> t.hasTag(UNDETVAR))
4284 .forEach(t -> ((UndetVar)t).setThrow());
4285 return true;
4286 }
4287
4288 /**
4289 * Set functional type info on the underlying AST. Note: as the target descriptor
4290 * might contain inference variables, we might need to register an hook in the
4291 * current inference context.
4292 */
4293 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
4294 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
4295 if (checkContext.inferenceContext().free(descriptorType)) {
4296 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
4297 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
4298 inferenceContext.asInstType(primaryTarget), checkContext));
4299 } else {
4300 fExpr.owner = env.info.scope.owner;
4301 if (pt.hasTag(CLASS)) {
4302 fExpr.target = primaryTarget;
4303 }
4304 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
4305 pt != Type.recoveryType) {
4306 //check that functional interface class is well-formed
4307 try {
4308 /* Types.makeFunctionalInterfaceClass() may throw an exception
4309 * when it's executed post-inference. See the listener code
4310 * above.
4311 */
4312 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
4313 names.empty, fExpr.target, ABSTRACT);
4314 if (csym != null) {
4315 chk.checkImplementations(env.tree, csym, csym);
4316 try {
4317 //perform an additional functional interface check on the synthetic class,
4318 //as there may be spurious errors for raw targets - because of existing issues
4319 //with membership and inheritance (see JDK-8074570).
4320 csym.flags_field |= INTERFACE;
4321 types.findDescriptorType(csym.type);
4322 } catch (FunctionDescriptorLookupError err) {
4323 resultInfo.checkContext.report(fExpr,
4324 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
4325 }
4326 }
4327 } catch (Types.FunctionDescriptorLookupError ex) {
4328 JCDiagnostic cause = ex.getDiagnostic();
4329 resultInfo.checkContext.report(env.tree, cause);
4330 }
4331 }
4332 }
4333 }
4334
4335 public void visitParens(JCParens tree) {
4336 Type owntype = attribTree(tree.expr, env, resultInfo);
4337 result = check(tree, owntype, pkind(), resultInfo);
4338 Symbol sym = TreeInfo.symbol(tree);
4339 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR)
4340 log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
4341 }
4342
4343 public void visitAssign(JCAssign tree) {
4344 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
4345 Type capturedType = capture(owntype);
4346 attribExpr(tree.rhs, env, owntype);
4347 result = check(tree, capturedType, KindSelector.VAL, resultInfo);
4348 }
4349
4350 public void visitAssignop(JCAssignOp tree) {
4351 // Attribute arguments.
4352 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
4353 Type operand = attribExpr(tree.rhs, env);
4354 // Find operator.
4355 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
4356 if (operator != operators.noOpSymbol &&
4357 !owntype.isErroneous() &&
4358 !operand.isErroneous()) {
4359 chk.checkDivZero(tree.rhs.pos(), operator, operand);
4360 chk.checkCastable(tree.rhs.pos(),
4361 operator.type.getReturnType(),
4362 owntype);
4363 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype);
4364 }
4365 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4366 }
4367
4368 public void visitUnary(JCUnary tree) {
4369 // Attribute arguments.
4370 Type argtype = (tree.getTag().isIncOrDecUnaryOp())
4371 ? attribTree(tree.arg, env, varAssignmentInfo)
4372 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
4373
4374 // Find operator.
4375 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
4376 Type owntype = types.createErrorType(tree.type);
4377 if (operator != operators.noOpSymbol &&
4378 !argtype.isErroneous()) {
4379 owntype = (tree.getTag().isIncOrDecUnaryOp())
4380 ? tree.arg.type
4381 : operator.type.getReturnType();
4382 int opc = operator.opcode;
4383
4384 // If the argument is constant, fold it.
4385 if (argtype.constValue() != null) {
4386 Type ctype = cfolder.fold1(opc, argtype);
4387 if (ctype != null) {
4388 owntype = cfolder.coerce(ctype, owntype);
4389 }
4390 }
4391 }
4392 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4393 matchBindings = matchBindingsComputer.unary(tree, matchBindings);
4394 }
4395
4396 public void visitBinary(JCBinary tree) {
4397 // Attribute arguments.
4398 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
4399 // x && y
4400 // include x's bindings when true in y
4401
4402 // x || y
4403 // include x's bindings when false in y
4404
4405 MatchBindings lhsBindings = matchBindings;
4406 List<BindingSymbol> propagatedBindings;
4407 switch (tree.getTag()) {
4408 case AND:
4409 propagatedBindings = lhsBindings.bindingsWhenTrue;
4410 break;
4411 case OR:
4412 propagatedBindings = lhsBindings.bindingsWhenFalse;
4413 break;
4414 default:
4415 propagatedBindings = List.nil();
4416 break;
4417 }
4418 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
4419 Type right;
4420 try {
4421 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
4422 } finally {
4423 rhsEnv.info.scope.leave();
4424 }
4425
4426 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
4427
4428 // Find operator.
4429 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
4430 Type owntype = types.createErrorType(tree.type);
4431 if (operator != operators.noOpSymbol &&
4432 !left.isErroneous() &&
4433 !right.isErroneous()) {
4434 owntype = operator.type.getReturnType();
4435 int opc = operator.opcode;
4436 // If both arguments are constants, fold them.
4437 if (left.constValue() != null && right.constValue() != null) {
4438 Type ctype = cfolder.fold2(opc, left, right);
4439 if (ctype != null) {
4440 owntype = cfolder.coerce(ctype, owntype);
4441 }
4442 }
4443
4444 // Check that argument types of a reference ==, != are
4445 // castable to each other, (JLS 15.21). Note: unboxing
4446 // comparisons will not have an acmp* opc at this point.
4447 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
4448 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
4449 log.error(tree.pos(), Errors.IncomparableTypes(left, right));
4450 }
4451 }
4452
4453 chk.checkDivZero(tree.rhs.pos(), operator, right);
4454 }
4455 result = check(tree, owntype, KindSelector.VAL, resultInfo);
4456 }
4457
4458 public void visitTypeCast(final JCTypeCast tree) {
4459 Type clazztype = attribType(tree.clazz, env);
4460 chk.validate(tree.clazz, env, false);
4461 chk.checkRequiresIdentity(tree, env.info.lint);
4462 //a fresh environment is required for 292 inference to work properly ---
4463 //see Infer.instantiatePolymorphicSignatureInstance()
4464 Env<AttrContext> localEnv = env.dup(tree);
4465 //should we propagate the target type?
4466 final ResultInfo castInfo;
4467 JCExpression expr = TreeInfo.skipParens(tree.expr);
4468 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
4469 if (isPoly) {
4470 //expression is a poly - we need to propagate target type info
4471 castInfo = new ResultInfo(KindSelector.VAL, clazztype,
4472 new Check.NestedCheckContext(resultInfo.checkContext) {
4473 @Override
4474 public boolean compatible(Type found, Type req, Warner warn) {
4475 return types.isCastable(found, req, warn);
4476 }
4477 });
4478 } else {
4479 //standalone cast - target-type info is not propagated
4480 castInfo = unknownExprInfo;
4481 }
4482 Type exprtype = attribTree(tree.expr, localEnv, castInfo);
4483 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4484 if (exprtype.constValue() != null)
4485 owntype = cfolder.coerce(exprtype, owntype);
4486 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
4487 if (!isPoly)
4488 chk.checkRedundantCast(localEnv, tree);
4489 }
4490
4491 public void visitTypeTest(JCInstanceOf tree) {
4492 Type exprtype = attribExpr(tree.expr, env);
4493 if (exprtype.isPrimitive()) {
4494 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS);
4495 } else {
4496 exprtype = chk.checkNullOrRefType(
4497 tree.expr.pos(), exprtype);
4498 }
4499 Type clazztype;
4500 JCTree typeTree;
4501 if (tree.pattern.getTag() == BINDINGPATTERN ||
4502 tree.pattern.getTag() == RECORDPATTERN) {
4503 attribExpr(tree.pattern, env, exprtype);
4504 clazztype = tree.pattern.type;
4505 if (types.isSubtype(exprtype, clazztype) &&
4506 !exprtype.isErroneous() && !clazztype.isErroneous() &&
4507 tree.pattern.getTag() != RECORDPATTERN) {
4508 if (!allowUnconditionalPatternsInstanceOf) {
4509 log.error(tree.pos(), Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName));
4510 }
4511 }
4512 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern);
4513 } else {
4514 clazztype = attribType(tree.pattern, env);
4515 typeTree = tree.pattern;
4516 chk.validate(typeTree, env, false);
4517 }
4518 if (clazztype.isPrimitive()) {
4519 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS);
4520 } else {
4521 if (!clazztype.hasTag(TYPEVAR)) {
4522 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
4523 }
4524 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
4525 boolean valid = false;
4526 if (allowReifiableTypesInInstanceof) {
4527 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype);
4528 } else {
4529 log.error(tree.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName));
4530 allowReifiableTypesInInstanceof = true;
4531 }
4532 if (!valid) {
4533 clazztype = types.createErrorType(clazztype);
4534 }
4535 }
4536 }
4537 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
4538 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
4539 }
4540
4541 private boolean checkCastablePattern(DiagnosticPosition pos,
4542 Type exprType,
4543 Type pattType) {
4544 Warner warner = new Warner();
4545 // if any type is erroneous, the problem is reported elsewhere
4546 if (exprType.isErroneous() || pattType.isErroneous()) {
4547 return false;
4548 }
4549 if (!types.isCastable(exprType, pattType, warner)) {
4550 chk.basicHandler.report(pos,
4551 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType)));
4552 return false;
4553 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) &&
4554 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) {
4555 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS);
4556 return true;
4557 } else if (warner.hasLint(LintCategory.UNCHECKED)) {
4558 log.error(pos,
4559 Errors.InstanceofReifiableNotSafe(exprType, pattType));
4560 return false;
4561 } else {
4562 return true;
4563 }
4564 }
4565
4566 @Override
4567 public void visitAnyPattern(JCAnyPattern tree) {
4568 result = tree.type = resultInfo.pt;
4569 }
4570
4571 public void visitBindingPattern(JCBindingPattern tree) {
4572 Type type;
4573 if (tree.var.vartype != null) {
4574 type = attribType(tree.var.vartype, env);
4575 } else {
4576 type = resultInfo.pt;
4577 }
4578 tree.type = tree.var.type = type;
4579 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner);
4580 v.pos = tree.pos;
4581 tree.var.sym = v;
4582 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) {
4583 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope);
4584 }
4585 chk.validate(tree.var.vartype, env, true);
4586 if (tree.var.isImplicitlyTyped()) {
4587 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType
4588 : type);
4589 }
4590 annotate.annotateLater(tree.var.mods.annotations, env, v);
4591 if (!tree.var.isImplicitlyTyped()) {
4592 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v);
4593 }
4594 annotate.flush();
4595 result = tree.type;
4596 if (v.isUnnamedVariable()) {
4597 matchBindings = MatchBindingsComputer.EMPTY;
4598 } else {
4599 matchBindings = new MatchBindings(List.of(v), List.nil());
4600 }
4601 chk.checkRequiresIdentity(tree, env.info.lint);
4602 }
4603
4604 @Override
4605 public void visitRecordPattern(JCRecordPattern tree) {
4606 Type site;
4607
4608 if (tree.deconstructor == null) {
4609 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed);
4610 tree.record = syms.errSymbol;
4611 site = tree.type = types.createErrorType(tree.record.type);
4612 } else {
4613 Type type = attribType(tree.deconstructor, env);
4614 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) {
4615 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym);
4616 if (inferred == null) {
4617 log.error(tree.pos(), Errors.PatternTypeCannotInfer);
4618 } else {
4619 type = inferred;
4620 }
4621 }
4622 tree.type = tree.deconstructor.type = type;
4623 site = types.capture(tree.type);
4624 }
4625
4626 List<Type> expectedRecordTypes;
4627 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) {
4628 ClassSymbol record = (ClassSymbol) site.tsym;
4629 expectedRecordTypes = record.getRecordComponents()
4630 .stream()
4631 .map(rc -> types.memberType(site, rc))
4632 .map(t -> types.upward(t, types.captures(t)).baseType())
4633 .collect(List.collector());
4634 tree.record = record;
4635 } else {
4636 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym));
4637 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type))
4638 .limit(tree.nested.size())
4639 .collect(List.collector());
4640 tree.record = syms.errSymbol;
4641 }
4642 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>();
4643 List<Type> recordTypes = expectedRecordTypes;
4644 List<JCPattern> nestedPatterns = tree.nested;
4645 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
4646 try {
4647 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) {
4648 attribExpr(nestedPatterns.head, localEnv, recordTypes.head);
4649 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type);
4650 outBindings.addAll(matchBindings.bindingsWhenTrue);
4651 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter);
4652 nestedPatterns = nestedPatterns.tail;
4653 recordTypes = recordTypes.tail;
4654 }
4655 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) {
4656 while (nestedPatterns.nonEmpty()) {
4657 attribExpr(nestedPatterns.head, localEnv, Type.noType);
4658 nestedPatterns = nestedPatterns.tail;
4659 }
4660 List<Type> nestedTypes =
4661 tree.nested.stream().map(p -> p.type).collect(List.collector());
4662 log.error(tree.pos(),
4663 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes,
4664 nestedTypes));
4665 }
4666 } finally {
4667 localEnv.info.scope.leave();
4668 }
4669 chk.validate(tree.deconstructor, env, true);
4670 result = tree.type;
4671 matchBindings = new MatchBindings(outBindings.toList(), List.nil());
4672 }
4673
4674 public void visitIndexed(JCArrayAccess tree) {
4675 Type owntype = types.createErrorType(tree.type);
4676 Type atype = attribExpr(tree.indexed, env);
4677 attribExpr(tree.index, env, syms.intType);
4678 if (types.isArray(atype))
4679 owntype = types.elemtype(atype);
4680 else if (!atype.hasTag(ERROR))
4681 log.error(tree.pos(), Errors.ArrayReqButFound(atype));
4682 if (!pkind().contains(KindSelector.VAL))
4683 owntype = capture(owntype);
4684 result = check(tree, owntype, KindSelector.VAR, resultInfo);
4685 }
4686
4687 public void visitIdent(JCIdent tree) {
4688 Symbol sym;
4689
4690 // Find symbol
4691 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
4692 // If we are looking for a method, the prototype `pt' will be a
4693 // method type with the type of the call's arguments as parameters.
4694 env.info.pendingResolutionPhase = null;
4695 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
4696 } else if (tree.sym != null && tree.sym.kind != VAR) {
4697 sym = tree.sym;
4698 } else {
4699 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
4700 }
4701 tree.sym = sym;
4702
4703 // Also find the environment current for the class where
4704 // sym is defined (`symEnv').
4705 Env<AttrContext> symEnv = env;
4706 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
4707 sym.kind.matches(KindSelector.VAL_MTH) &&
4708 sym.owner.kind == TYP &&
4709 tree.name != names._this && tree.name != names._super) {
4710
4711 // Find environment in which identifier is defined.
4712 while (symEnv.outer != null &&
4713 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4714 symEnv = symEnv.outer;
4715 }
4716 }
4717
4718 // If symbol is a variable, ...
4719 if (sym.kind == VAR) {
4720 VarSymbol v = (VarSymbol)sym;
4721
4722 // ..., evaluate its initializer, if it has one, and check for
4723 // illegal forward reference.
4724 checkInit(tree, env, v, false);
4725
4726 // If we are expecting a variable (as opposed to a value), check
4727 // that the variable is assignable in the current environment.
4728 if (KindSelector.ASG.subset(pkind()))
4729 checkAssignable(tree.pos(), v, null, env);
4730 }
4731
4732 Env<AttrContext> env1 = env;
4733 if (sym.kind != ERR && sym.kind != TYP &&
4734 sym.owner != null && sym.owner != env1.enclClass.sym) {
4735 // If the found symbol is inaccessible, then it is
4736 // accessed through an enclosing instance. Locate this
4737 // enclosing instance:
4738 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4739 env1 = env1.outer;
4740 }
4741
4742 if (env.info.isSerializable) {
4743 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4744 }
4745
4746 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4747 }
4748
4749 public void visitSelect(JCFieldAccess tree) {
4750 // Determine the expected kind of the qualifier expression.
4751 KindSelector skind = KindSelector.NIL;
4752 if (tree.name == names._this || tree.name == names._super ||
4753 tree.name == names._class)
4754 {
4755 skind = KindSelector.TYP;
4756 } else {
4757 if (pkind().contains(KindSelector.PCK))
4758 skind = KindSelector.of(skind, KindSelector.PCK);
4759 if (pkind().contains(KindSelector.TYP))
4760 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4761 if (pkind().contains(KindSelector.VAL_MTH))
4762 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4763 }
4764
4765 // Attribute the qualifier expression, and determine its symbol (if any).
4766 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4767 Assert.check(site == tree.selected.type);
4768 if (!pkind().contains(KindSelector.TYP_PCK))
4769 site = capture(site); // Capture field access
4770
4771 // don't allow T.class T[].class, etc
4772 if (skind == KindSelector.TYP) {
4773 Type elt = site;
4774 while (elt.hasTag(ARRAY))
4775 elt = ((ArrayType)elt).elemtype;
4776 if (elt.hasTag(TYPEVAR)) {
4777 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4778 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4779 tree.sym = tree.type.tsym;
4780 return ;
4781 }
4782 }
4783
4784 // If qualifier symbol is a type or `super', assert `selectSuper'
4785 // for the selection. This is relevant for determining whether
4786 // protected symbols are accessible.
4787 Symbol sitesym = TreeInfo.symbol(tree.selected);
4788 boolean selectSuperPrev = env.info.selectSuper;
4789 env.info.selectSuper =
4790 sitesym != null &&
4791 sitesym.name == names._super;
4792
4793 // Determine the symbol represented by the selection.
4794 env.info.pendingResolutionPhase = null;
4795 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4796 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4797 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4798 sym = syms.errSymbol;
4799 }
4800 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4801 site = capture(site);
4802 sym = selectSym(tree, sitesym, site, env, resultInfo);
4803 }
4804 boolean varArgs = env.info.lastResolveVarargs();
4805 tree.sym = sym;
4806
4807 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4808 site = types.skipTypeVars(site, true);
4809 }
4810
4811 // If that symbol is a variable, ...
4812 if (sym.kind == VAR) {
4813 VarSymbol v = (VarSymbol)sym;
4814
4815 // ..., evaluate its initializer, if it has one, and check for
4816 // illegal forward reference.
4817 checkInit(tree, env, v, true);
4818
4819 // If we are expecting a variable (as opposed to a value), check
4820 // that the variable is assignable in the current environment.
4821 if (KindSelector.ASG.subset(pkind()))
4822 checkAssignable(tree.pos(), v, tree.selected, env);
4823 }
4824
4825 if (sitesym != null &&
4826 sitesym.kind == VAR &&
4827 ((VarSymbol)sitesym).isResourceVariable() &&
4828 sym.kind == MTH &&
4829 sym.name.equals(names.close) &&
4830 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) {
4831 log.warning(tree, LintWarnings.TryExplicitCloseCall);
4832 }
4833
4834 // Disallow selecting a type from an expression
4835 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4836 tree.type = check(tree.selected, pt(),
4837 sitesym == null ?
4838 KindSelector.VAL : sitesym.kind.toSelector(),
4839 new ResultInfo(KindSelector.TYP_PCK, pt()));
4840 }
4841
4842 if (isType(sitesym)) {
4843 if (sym.name != names._this && sym.name != names._super) {
4844 // Check if type-qualified fields or methods are static (JLS)
4845 if ((sym.flags() & STATIC) == 0 &&
4846 sym.name != names._super &&
4847 (sym.kind == VAR || sym.kind == MTH)) {
4848 rs.accessBase(rs.new StaticError(sym),
4849 tree.pos(), site, sym.name, true);
4850 }
4851 }
4852 } else if (sym.kind != ERR &&
4853 (sym.flags() & STATIC) != 0 &&
4854 sym.name != names._class) {
4855 // If the qualified item is not a type and the selected item is static, report
4856 // a warning. Make allowance for the class of an array type e.g. Object[].class)
4857 if (!sym.owner.isAnonymous()) {
4858 log.warning(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4859 } else {
4860 log.warning(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4861 }
4862 }
4863
4864 // If we are selecting an instance member via a `super', ...
4865 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4866
4867 // Check that super-qualified symbols are not abstract (JLS)
4868 rs.checkNonAbstract(tree.pos(), sym);
4869
4870 if (site.isRaw()) {
4871 // Determine argument types for site.
4872 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4873 if (site1 != null) site = site1;
4874 }
4875 }
4876
4877 if (env.info.isSerializable) {
4878 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4879 }
4880
4881 env.info.selectSuper = selectSuperPrev;
4882 result = checkId(tree, site, sym, env, resultInfo);
4883 }
4884 //where
4885 /** Determine symbol referenced by a Select expression,
4886 *
4887 * @param tree The select tree.
4888 * @param site The type of the selected expression,
4889 * @param env The current environment.
4890 * @param resultInfo The current result.
4891 */
4892 private Symbol selectSym(JCFieldAccess tree,
4893 Symbol location,
4894 Type site,
4895 Env<AttrContext> env,
4896 ResultInfo resultInfo) {
4897 DiagnosticPosition pos = tree.pos();
4898 Name name = tree.name;
4899 switch (site.getTag()) {
4900 case PACKAGE:
4901 return rs.accessBase(
4902 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4903 pos, location, site, name, true);
4904 case ARRAY:
4905 case CLASS:
4906 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4907 return rs.resolveQualifiedMethod(
4908 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4909 } else if (name == names._this || name == names._super) {
4910 return rs.resolveSelf(pos, env, site.tsym, tree);
4911 } else if (name == names._class) {
4912 // In this case, we have already made sure in
4913 // visitSelect that qualifier expression is a type.
4914 return syms.getClassField(site, types);
4915 } else {
4916 // We are seeing a plain identifier as selector.
4917 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4918 sym = rs.accessBase(sym, pos, location, site, name, true);
4919 return sym;
4920 }
4921 case WILDCARD:
4922 throw new AssertionError(tree);
4923 case TYPEVAR:
4924 // Normally, site.getUpperBound() shouldn't be null.
4925 // It should only happen during memberEnter/attribBase
4926 // when determining the supertype which *must* be
4927 // done before attributing the type variables. In
4928 // other words, we are seeing this illegal program:
4929 // class B<T> extends A<T.foo> {}
4930 Symbol sym = (site.getUpperBound() != null)
4931 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4932 : null;
4933 if (sym == null) {
4934 log.error(pos, Errors.TypeVarCantBeDeref);
4935 return syms.errSymbol;
4936 } else {
4937 // JLS 4.9 specifies the members are derived by inheritance.
4938 // We skip inducing a whole class by filtering members that
4939 // can never be inherited:
4940 Symbol sym2;
4941 if (sym.isPrivate()) {
4942 // Private members
4943 sym2 = rs.new AccessError(env, site, sym);
4944 } else if (sym.owner.isInterface() && sym.kind == MTH && (sym.flags() & STATIC) != 0) {
4945 // Interface static methods
4946 sym2 = rs.new SymbolNotFoundError(ABSENT_MTH);
4947 } else {
4948 sym2 = sym;
4949 }
4950 rs.accessBase(sym2, pos, location, site, name, true);
4951 return sym;
4952 }
4953 case ERROR:
4954 // preserve identifier names through errors
4955 return types.createErrorType(name, site.tsym, site).tsym;
4956 default:
4957 // The qualifier expression is of a primitive type -- only
4958 // .class is allowed for these.
4959 if (name == names._class) {
4960 // In this case, we have already made sure in Select that
4961 // qualifier expression is a type.
4962 return syms.getClassField(site, types);
4963 } else {
4964 log.error(pos, Errors.CantDeref(site));
4965 return syms.errSymbol;
4966 }
4967 }
4968 }
4969
4970 /** Determine type of identifier or select expression and check that
4971 * (1) the referenced symbol is not deprecated
4972 * (2) the symbol's type is safe (@see checkSafe)
4973 * (3) if symbol is a variable, check that its type and kind are
4974 * compatible with the prototype and protokind.
4975 * (4) if symbol is an instance field of a raw type,
4976 * which is being assigned to, issue an unchecked warning if its
4977 * type changes under erasure.
4978 * (5) if symbol is an instance method of a raw type, issue an
4979 * unchecked warning if its argument types change under erasure.
4980 * If checks succeed:
4981 * If symbol is a constant, return its constant type
4982 * else if symbol is a method, return its result type
4983 * otherwise return its type.
4984 * Otherwise return errType.
4985 *
4986 * @param tree The syntax tree representing the identifier
4987 * @param site If this is a select, the type of the selected
4988 * expression, otherwise the type of the current class.
4989 * @param sym The symbol representing the identifier.
4990 * @param env The current environment.
4991 * @param resultInfo The expected result
4992 */
4993 Type checkId(JCTree tree,
4994 Type site,
4995 Symbol sym,
4996 Env<AttrContext> env,
4997 ResultInfo resultInfo) {
4998 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4999 checkMethodIdInternal(tree, site, sym, env, resultInfo) :
5000 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5001 }
5002
5003 Type checkMethodIdInternal(JCTree tree,
5004 Type site,
5005 Symbol sym,
5006 Env<AttrContext> env,
5007 ResultInfo resultInfo) {
5008 if (resultInfo.pkind.contains(KindSelector.POLY)) {
5009 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
5010 } else {
5011 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
5012 }
5013 }
5014
5015 Type checkIdInternal(JCTree tree,
5016 Type site,
5017 Symbol sym,
5018 Type pt,
5019 Env<AttrContext> env,
5020 ResultInfo resultInfo) {
5021 Type owntype; // The computed type of this identifier occurrence.
5022 switch (sym.kind) {
5023 case TYP:
5024 // For types, the computed type equals the symbol's type,
5025 // except for two situations:
5026 owntype = sym.type;
5027 if (owntype.hasTag(CLASS)) {
5028 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
5029 Type ownOuter = owntype.getEnclosingType();
5030
5031 // (a) If the symbol's type is parameterized, erase it
5032 // because no type parameters were given.
5033 // We recover generic outer type later in visitTypeApply.
5034 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
5035 owntype = types.erasure(owntype);
5036 }
5037
5038 // (b) If the symbol's type is an inner class, then
5039 // we have to interpret its outer type as a superclass
5040 // of the site type. Example:
5041 //
5042 // class Tree<A> { class Visitor { ... } }
5043 // class PointTree extends Tree<Point> { ... }
5044 // ...PointTree.Visitor...
5045 //
5046 // Then the type of the last expression above is
5047 // Tree<Point>.Visitor.
5048 else if ((ownOuter.hasTag(CLASS) || ownOuter.hasTag(TYPEVAR)) && site != ownOuter) {
5049 Type normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
5050 if (normOuter == null) // perhaps from an import
5051 normOuter = types.erasure(ownOuter);
5052 if (normOuter != ownOuter)
5053 owntype = new ClassType(
5054 normOuter, List.nil(), owntype.tsym,
5055 owntype.getMetadata());
5056 }
5057 }
5058 break;
5059 case VAR:
5060 VarSymbol v = (VarSymbol)sym;
5061
5062 if (env.info.enclVar != null
5063 && v.type.hasTag(NONE)) {
5064 //self reference to implicitly typed variable declaration
5065 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
5066 return tree.type = v.type = types.createErrorType(v.type);
5067 }
5068
5069 // Test (4): if symbol is an instance field of a raw type,
5070 // which is being assigned to, issue an unchecked warning if
5071 // its type changes under erasure.
5072 if (KindSelector.ASG.subset(pkind()) &&
5073 v.owner.kind == TYP &&
5074 (v.flags() & STATIC) == 0 &&
5075 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5076 Type s = types.asOuterSuper(site, v.owner);
5077 if (s != null &&
5078 s.isRaw() &&
5079 !types.isSameType(v.type, v.erasure(types))) {
5080 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s));
5081 }
5082 }
5083 // The computed type of a variable is the type of the
5084 // variable symbol, taken as a member of the site type.
5085 owntype = (sym.owner.kind == TYP &&
5086 sym.name != names._this && sym.name != names._super)
5087 ? types.memberType(site, sym)
5088 : sym.type;
5089
5090 // If the variable is a constant, record constant value in
5091 // computed type.
5092 if (v.getConstValue() != null && isStaticReference(tree))
5093 owntype = owntype.constType(v.getConstValue());
5094
5095 if (resultInfo.pkind == KindSelector.VAL) {
5096 owntype = capture(owntype); // capture "names as expressions"
5097 }
5098 break;
5099 case MTH: {
5100 owntype = checkMethod(site, sym,
5101 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
5102 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
5103 resultInfo.pt.getTypeArguments());
5104 chk.checkRestricted(tree.pos(), sym);
5105 break;
5106 }
5107 case PCK: case ERR:
5108 owntype = sym.type;
5109 break;
5110 default:
5111 throw new AssertionError("unexpected kind: " + sym.kind +
5112 " in tree " + tree);
5113 }
5114
5115 // Emit a `deprecation' warning if symbol is deprecated.
5116 // (for constructors (but not for constructor references), the error
5117 // was given when the constructor was resolved)
5118
5119 if (sym.name != names.init || tree.hasTag(REFERENCE)) {
5120 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
5121 chk.checkSunAPI(tree.pos(), sym);
5122 chk.checkProfile(tree.pos(), sym);
5123 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym);
5124 }
5125
5126 if (pt.isErroneous()) {
5127 owntype = types.createErrorType(owntype);
5128 }
5129
5130 // If symbol is a variable, check that its type and
5131 // kind are compatible with the prototype and protokind.
5132 return check(tree, owntype, sym.kind.toSelector(), resultInfo);
5133 }
5134
5135 /** Check that variable is initialized and evaluate the variable's
5136 * initializer, if not yet done. Also check that variable is not
5137 * referenced before it is defined.
5138 * @param tree The tree making up the variable reference.
5139 * @param env The current environment.
5140 * @param v The variable's symbol.
5141 */
5142 private void checkInit(JCTree tree,
5143 Env<AttrContext> env,
5144 VarSymbol v,
5145 boolean onlyWarning) {
5146 // A forward reference is diagnosed if the declaration position
5147 // of the variable is greater than the current tree position
5148 // and the tree and variable definition occur in the same class
5149 // definition. Note that writes don't count as references.
5150 // This check applies only to class and instance
5151 // variables. Local variables follow different scope rules,
5152 // and are subject to definite assignment checking.
5153 Env<AttrContext> initEnv = enclosingInitEnv(env);
5154 if (initEnv != null &&
5155 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
5156 v.owner.kind == TYP &&
5157 v.owner == env.info.scope.owner.enclClass() &&
5158 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
5159 (!env.tree.hasTag(ASSIGN) ||
5160 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
5161 if (!onlyWarning || isStaticEnumField(v)) {
5162 Error errkey = (initEnv.info.enclVar == v) ?
5163 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
5164 log.error(tree.pos(), errkey);
5165 } else if (useBeforeDeclarationWarning) {
5166 Warning warnkey = (initEnv.info.enclVar == v) ?
5167 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
5168 log.warning(tree.pos(), warnkey);
5169 }
5170 }
5171
5172 v.getConstValue(); // ensure initializer is evaluated
5173
5174 checkEnumInitializer(tree, env, v);
5175 }
5176
5177 /**
5178 * Returns the enclosing init environment associated with this env (if any). An init env
5179 * can be either a field declaration env or a static/instance initializer env.
5180 */
5181 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
5182 while (true) {
5183 switch (env.tree.getTag()) {
5184 case VARDEF:
5185 JCVariableDecl vdecl = (JCVariableDecl)env.tree;
5186 if (vdecl.sym.owner.kind == TYP) {
5187 //field
5188 return env;
5189 }
5190 break;
5191 case BLOCK:
5192 if (env.next.tree.hasTag(CLASSDEF)) {
5193 //instance/static initializer
5194 return env;
5195 }
5196 break;
5197 case METHODDEF:
5198 case CLASSDEF:
5199 case TOPLEVEL:
5200 return null;
5201 }
5202 Assert.checkNonNull(env.next);
5203 env = env.next;
5204 }
5205 }
5206
5207 /**
5208 * Check for illegal references to static members of enum. In
5209 * an enum type, constructors and initializers may not
5210 * reference its static members unless they are constant.
5211 *
5212 * @param tree The tree making up the variable reference.
5213 * @param env The current environment.
5214 * @param v The variable's symbol.
5215 * @jls 8.9 Enum Types
5216 */
5217 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
5218 // JLS:
5219 //
5220 // "It is a compile-time error to reference a static field
5221 // of an enum type that is not a compile-time constant
5222 // (15.28) from constructors, instance initializer blocks,
5223 // or instance variable initializer expressions of that
5224 // type. It is a compile-time error for the constructors,
5225 // instance initializer blocks, or instance variable
5226 // initializer expressions of an enum constant e to refer
5227 // to itself or to an enum constant of the same type that
5228 // is declared to the right of e."
5229 if (isStaticEnumField(v)) {
5230 ClassSymbol enclClass = env.info.scope.owner.enclClass();
5231
5232 if (enclClass == null || enclClass.owner == null)
5233 return;
5234
5235 // See if the enclosing class is the enum (or a
5236 // subclass thereof) declaring v. If not, this
5237 // reference is OK.
5238 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
5239 return;
5240
5241 // If the reference isn't from an initializer, then
5242 // the reference is OK.
5243 if (!Resolve.isInitializer(env))
5244 return;
5245
5246 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
5247 }
5248 }
5249
5250 /** Is the given symbol a static, non-constant field of an Enum?
5251 * Note: enum literals should not be regarded as such
5252 */
5253 private boolean isStaticEnumField(VarSymbol v) {
5254 return Flags.isEnum(v.owner) &&
5255 Flags.isStatic(v) &&
5256 !Flags.isConstant(v) &&
5257 v.name != names._class;
5258 }
5259
5260 /**
5261 * Check that method arguments conform to its instantiation.
5262 **/
5263 public Type checkMethod(Type site,
5264 final Symbol sym,
5265 ResultInfo resultInfo,
5266 Env<AttrContext> env,
5267 final List<JCExpression> argtrees,
5268 List<Type> argtypes,
5269 List<Type> typeargtypes) {
5270 // Test (5): if symbol is an instance method of a raw type, issue
5271 // an unchecked warning if its argument types change under erasure.
5272 if ((sym.flags() & STATIC) == 0 &&
5273 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
5274 Type s = types.asOuterSuper(site, sym.owner);
5275 if (s != null && s.isRaw() &&
5276 !types.isSameTypes(sym.type.getParameterTypes(),
5277 sym.erasure(types).getParameterTypes())) {
5278 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s));
5279 }
5280 }
5281
5282 if (env.info.defaultSuperCallSite != null) {
5283 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
5284 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
5285 types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
5286 List<MethodSymbol> icand_sup =
5287 types.interfaceCandidates(sup, (MethodSymbol)sym);
5288 if (icand_sup.nonEmpty() &&
5289 icand_sup.head != sym &&
5290 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
5291 log.error(env.tree.pos(),
5292 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
5293 break;
5294 }
5295 }
5296 env.info.defaultSuperCallSite = null;
5297 }
5298
5299 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
5300 JCMethodInvocation app = (JCMethodInvocation)env.tree;
5301 if (app.meth.hasTag(SELECT) &&
5302 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
5303 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
5304 }
5305 }
5306
5307 // Compute the identifier's instantiated type.
5308 // For methods, we need to compute the instance type by
5309 // Resolve.instantiate from the symbol's type as well as
5310 // any type arguments and value arguments.
5311 Warner noteWarner = new Warner();
5312 try {
5313 Type owntype = rs.checkMethod(
5314 env,
5315 site,
5316 sym,
5317 resultInfo,
5318 argtypes,
5319 typeargtypes,
5320 noteWarner);
5321
5322 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
5323 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
5324
5325 argtypes = argtypes.map(checkDeferredMap);
5326
5327 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
5328 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym),
5329 sym.name,
5330 rs.methodArguments(sym.type.getParameterTypes()),
5331 rs.methodArguments(argtypes.map(checkDeferredMap)),
5332 kindName(sym.location()),
5333 sym.location()));
5334 if (resultInfo.pt != Infer.anyPoly ||
5335 !owntype.hasTag(METHOD) ||
5336 !owntype.isPartial()) {
5337 //if this is not a partially inferred method type, erase return type. Otherwise,
5338 //erasure is carried out in PartiallyInferredMethodType.check().
5339 owntype = new MethodType(owntype.getParameterTypes(),
5340 types.erasure(owntype.getReturnType()),
5341 types.erasure(owntype.getThrownTypes()),
5342 syms.methodClass);
5343 }
5344 }
5345
5346 PolyKind pkind = (sym.type.hasTag(FORALL) &&
5347 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
5348 PolyKind.POLY : PolyKind.STANDALONE;
5349 TreeInfo.setPolyKind(env.tree, pkind);
5350
5351 return (resultInfo.pt == Infer.anyPoly) ?
5352 owntype :
5353 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
5354 resultInfo.checkContext.inferenceContext());
5355 } catch (Infer.InferenceException ex) {
5356 //invalid target type - propagate exception outwards or report error
5357 //depending on the current check context
5358 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5359 return types.createErrorType(site);
5360 } catch (Resolve.InapplicableMethodException ex) {
5361 final JCDiagnostic diag = ex.getDiagnostic();
5362 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5363 @Override
5364 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5365 return new Pair<>(sym, diag);
5366 }
5367 };
5368 List<Type> argtypes2 = argtypes.map(
5369 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5370 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5371 env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5372 log.report(errDiag);
5373 return types.createErrorType(site);
5374 }
5375 }
5376
5377 public void visitLiteral(JCLiteral tree) {
5378 result = check(tree, litType(tree.typetag).constType(tree.value),
5379 KindSelector.VAL, resultInfo);
5380 }
5381 //where
5382 /** Return the type of a literal with given type tag.
5383 */
5384 Type litType(TypeTag tag) {
5385 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5386 }
5387
5388 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5389 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5390 }
5391
5392 public void visitTypeArray(JCArrayTypeTree tree) {
5393 Type etype = attribType(tree.elemtype, env);
5394 Type type = new ArrayType(etype, syms.arrayClass);
5395 result = check(tree, type, KindSelector.TYP, resultInfo);
5396 }
5397
5398 /** Visitor method for parameterized types.
5399 * Bound checking is left until later, since types are attributed
5400 * before supertype structure is completely known
5401 */
5402 public void visitTypeApply(JCTypeApply tree) {
5403 Type owntype = types.createErrorType(tree.type);
5404
5405 // Attribute functor part of application and make sure it's a class.
5406 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
5407
5408 // Attribute type parameters
5409 List<Type> actuals = attribTypes(tree.arguments, env);
5410
5411 if (clazztype.hasTag(CLASS)) {
5412 List<Type> formals = clazztype.tsym.type.getTypeArguments();
5413 if (actuals.isEmpty()) //diamond
5414 actuals = formals;
5415
5416 if (actuals.length() == formals.length()) {
5417 List<Type> a = actuals;
5418 List<Type> f = formals;
5419 while (a.nonEmpty()) {
5420 a.head = a.head.withTypeVar(f.head);
5421 a = a.tail;
5422 f = f.tail;
5423 }
5424 // Compute the proper generic outer
5425 Type clazzOuter = clazztype.getEnclosingType();
5426 if (clazzOuter.hasTag(CLASS)) {
5427 Type site;
5428 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5429 if (clazz.hasTag(IDENT)) {
5430 site = env.enclClass.sym.type;
5431 } else if (clazz.hasTag(SELECT)) {
5432 site = ((JCFieldAccess) clazz).selected.type;
5433 } else throw new AssertionError(""+tree);
5434 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5435 if (site.hasTag(CLASS) || site.hasTag(TYPEVAR))
5436 site = types.asEnclosingSuper(site, clazzOuter.tsym);
5437 if (site == null)
5438 site = types.erasure(clazzOuter);
5439 clazzOuter = site;
5440 }
5441 }
5442 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5443 clazztype.getMetadata());
5444 } else {
5445 if (formals.length() != 0) {
5446 log.error(tree.pos(),
5447 Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5448 } else {
5449 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5450 }
5451 owntype = types.createErrorType(tree.type);
5452 }
5453 } else if (clazztype.hasTag(ERROR)) {
5454 ErrorType parameterizedErroneous =
5455 new ErrorType(clazztype.getOriginalType(),
5456 clazztype.tsym,
5457 clazztype.getMetadata());
5458
5459 parameterizedErroneous.typarams_field = actuals;
5460 owntype = parameterizedErroneous;
5461 }
5462 result = check(tree, owntype, KindSelector.TYP, resultInfo);
5463 }
5464
5465 public void visitTypeUnion(JCTypeUnion tree) {
5466 ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5467 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5468 for (JCExpression typeTree : tree.alternatives) {
5469 Type ctype = attribType(typeTree, env);
5470 ctype = chk.checkType(typeTree.pos(),
5471 chk.checkClassType(typeTree.pos(), ctype),
5472 syms.throwableType);
5473 if (!ctype.isErroneous()) {
5474 //check that alternatives of a union type are pairwise
5475 //unrelated w.r.t. subtyping
5476 if (chk.intersects(ctype, multicatchTypes.toList())) {
5477 for (Type t : multicatchTypes) {
5478 boolean sub = types.isSubtype(ctype, t);
5479 boolean sup = types.isSubtype(t, ctype);
5480 if (sub || sup) {
5481 //assume 'a' <: 'b'
5482 Type a = sub ? ctype : t;
5483 Type b = sub ? t : ctype;
5484 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
5485 }
5486 }
5487 }
5488 multicatchTypes.append(ctype);
5489 if (all_multicatchTypes != null)
5490 all_multicatchTypes.append(ctype);
5491 } else {
5492 if (all_multicatchTypes == null) {
5493 all_multicatchTypes = new ListBuffer<>();
5494 all_multicatchTypes.appendList(multicatchTypes);
5495 }
5496 all_multicatchTypes.append(ctype);
5497 }
5498 }
5499 Type t = check(tree, types.lub(multicatchTypes.toList()),
5500 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
5501 if (t.hasTag(CLASS)) {
5502 List<Type> alternatives =
5503 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
5504 t = new UnionClassType((ClassType) t, alternatives);
5505 }
5506 tree.type = result = t;
5507 }
5508
5509 public void visitTypeIntersection(JCTypeIntersection tree) {
5510 attribTypes(tree.bounds, env);
5511 tree.type = result = checkIntersection(tree, tree.bounds);
5512 }
5513
5514 public void visitTypeParameter(JCTypeParameter tree) {
5515 TypeVar typeVar = (TypeVar) tree.type;
5516
5517 if (tree.annotations != null && tree.annotations.nonEmpty()) {
5518 annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
5519 }
5520
5521 if (!typeVar.getUpperBound().isErroneous()) {
5522 //fixup type-parameter bound computed in 'attribTypeVariables'
5523 typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
5524 }
5525 }
5526
5527 Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
5528 Set<Symbol> boundSet = new HashSet<>();
5529 if (bounds.nonEmpty()) {
5530 // accept class or interface or typevar as first bound.
5531 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
5532 boundSet.add(types.erasure(bounds.head.type).tsym);
5533 if (bounds.head.type.isErroneous()) {
5534 return bounds.head.type;
5535 }
5536 else if (bounds.head.type.hasTag(TYPEVAR)) {
5537 // if first bound was a typevar, do not accept further bounds.
5538 if (bounds.tail.nonEmpty()) {
5539 log.error(bounds.tail.head.pos(),
5540 Errors.TypeVarMayNotBeFollowedByOtherBounds);
5541 return bounds.head.type;
5542 }
5543 } else {
5544 // if first bound was a class or interface, accept only interfaces
5545 // as further bounds.
5546 for (JCExpression bound : bounds.tail) {
5547 bound.type = checkBase(bound.type, bound, env, false, true, false);
5548 if (bound.type.isErroneous()) {
5549 bounds = List.of(bound);
5550 }
5551 else if (bound.type.hasTag(CLASS)) {
5552 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
5553 }
5554 }
5555 }
5556 }
5557
5558 if (bounds.length() == 0) {
5559 return syms.objectType;
5560 } else if (bounds.length() == 1) {
5561 return bounds.head.type;
5562 } else {
5563 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5564 // ... the variable's bound is a class type flagged COMPOUND
5565 // (see comment for TypeVar.bound).
5566 // In this case, generate a class tree that represents the
5567 // bound class, ...
5568 JCExpression extending;
5569 List<JCExpression> implementing;
5570 if (!bounds.head.type.isInterface()) {
5571 extending = bounds.head;
5572 implementing = bounds.tail;
5573 } else {
5574 extending = null;
5575 implementing = bounds;
5576 }
5577 JCClassDecl cd = make.at(tree).ClassDef(
5578 make.Modifiers(PUBLIC | ABSTRACT),
5579 names.empty, List.nil(),
5580 extending, implementing, List.nil());
5581
5582 ClassSymbol c = (ClassSymbol)owntype.tsym;
5583 Assert.check((c.flags() & COMPOUND) != 0);
5584 cd.sym = c;
5585 c.sourcefile = env.toplevel.sourcefile;
5586
5587 // ... and attribute the bound class
5588 c.flags_field |= UNATTRIBUTED;
5589 Env<AttrContext> cenv = enter.classEnv(cd, env);
5590 typeEnvs.put(c, cenv);
5591 attribClass(c);
5592 return owntype;
5593 }
5594 }
5595
5596 public void visitWildcard(JCWildcard tree) {
5597 //- System.err.println("visitWildcard("+tree+");");//DEBUG
5598 Type type = (tree.kind.kind == BoundKind.UNBOUND)
5599 ? syms.objectType
5600 : attribType(tree.inner, env);
5601 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5602 tree.kind.kind,
5603 syms.boundClass),
5604 KindSelector.TYP, resultInfo);
5605 }
5606
5607 public void visitAnnotation(JCAnnotation tree) {
5608 Assert.error("should be handled in annotate");
5609 }
5610
5611 @Override
5612 public void visitModifiers(JCModifiers tree) {
5613 //error recovery only:
5614 Assert.check(resultInfo.pkind == KindSelector.ERR);
5615
5616 attribAnnotationTypes(tree.annotations, env);
5617 }
5618
5619 public void visitAnnotatedType(JCAnnotatedType tree) {
5620 attribAnnotationTypes(tree.annotations, env);
5621 Type underlyingType = attribType(tree.underlyingType, env);
5622 Type annotatedType = underlyingType.preannotatedType();
5623
5624 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
5625 result = tree.type = annotatedType;
5626 }
5627
5628 public void visitErroneous(JCErroneous tree) {
5629 if (tree.errs != null) {
5630 WriteableScope newScope = env.info.scope;
5631
5632 if (env.tree instanceof JCClassDecl) {
5633 Symbol fakeOwner =
5634 new MethodSymbol(BLOCK, names.empty, null,
5635 env.info.scope.owner);
5636 newScope = newScope.dupUnshared(fakeOwner);
5637 }
5638
5639 Env<AttrContext> errEnv =
5640 env.dup(env.tree,
5641 env.info.dup(newScope));
5642 errEnv.info.returnResult = unknownExprInfo;
5643 for (JCTree err : tree.errs)
5644 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt()));
5645 }
5646 result = tree.type = syms.errType;
5647 }
5648
5649 /** Default visitor method for all other trees.
5650 */
5651 public void visitTree(JCTree tree) {
5652 throw new AssertionError();
5653 }
5654
5655 /**
5656 * Attribute an env for either a top level tree or class or module declaration.
5657 */
5658 public void attrib(Env<AttrContext> env) {
5659 switch (env.tree.getTag()) {
5660 case MODULEDEF:
5661 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
5662 break;
5663 case PACKAGEDEF:
5664 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
5665 break;
5666 default:
5667 attribClass(env.tree.pos(), env.enclClass.sym);
5668 }
5669
5670 annotate.flush();
5671
5672 // Now that this tree is attributed, we can calculate the Lint configuration everywhere within it
5673 lintMapper.calculateLints(env.toplevel.sourcefile, env.tree, env.toplevel.endPositions);
5674 }
5675
5676 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
5677 try {
5678 annotate.flush();
5679 attribPackage(p);
5680 } catch (CompletionFailure ex) {
5681 chk.completionError(pos, ex);
5682 }
5683 }
5684
5685 void attribPackage(PackageSymbol p) {
5686 attribWithLint(p,
5687 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p));
5688 }
5689
5690 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
5691 try {
5692 annotate.flush();
5693 attribModule(m);
5694 } catch (CompletionFailure ex) {
5695 chk.completionError(pos, ex);
5696 }
5697 }
5698
5699 void attribModule(ModuleSymbol m) {
5700 attribWithLint(m, env -> attribStat(env.tree, env));
5701 }
5702
5703 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) {
5704 Env<AttrContext> env = typeEnvs.get(sym);
5705
5706 Env<AttrContext> lintEnv = env;
5707 while (lintEnv.info.lint == null)
5708 lintEnv = lintEnv.next;
5709
5710 Lint lint = lintEnv.info.lint.augment(sym);
5711
5712 Lint prevLint = chk.setLint(lint);
5713 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
5714
5715 try {
5716 attrib.accept(env);
5717 } finally {
5718 log.useSource(prev);
5719 chk.setLint(prevLint);
5720 }
5721 }
5722
5723 /** Main method: attribute class definition associated with given class symbol.
5724 * reporting completion failures at the given position.
5725 * @param pos The source position at which completion errors are to be
5726 * reported.
5727 * @param c The class symbol whose definition will be attributed.
5728 */
5729 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5730 try {
5731 annotate.flush();
5732 attribClass(c);
5733 } catch (CompletionFailure ex) {
5734 chk.completionError(pos, ex);
5735 }
5736 }
5737
5738 /** Attribute class definition associated with given class symbol.
5739 * @param c The class symbol whose definition will be attributed.
5740 */
5741 void attribClass(ClassSymbol c) throws CompletionFailure {
5742 if (c.type.hasTag(ERROR)) return;
5743
5744 // Check for cycles in the inheritance graph, which can arise from
5745 // ill-formed class files.
5746 chk.checkNonCyclic(null, c.type);
5747
5748 Type st = types.supertype(c.type);
5749 if ((c.flags_field & Flags.COMPOUND) == 0 &&
5750 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5751 // First, attribute superclass.
5752 if (st.hasTag(CLASS))
5753 attribClass((ClassSymbol)st.tsym);
5754
5755 // Next attribute owner, if it is a class.
5756 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5757 attribClass((ClassSymbol)c.owner);
5758
5759 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED;
5760 }
5761
5762 // The previous operations might have attributed the current class
5763 // if there was a cycle. So we test first whether the class is still
5764 // UNATTRIBUTED.
5765 if ((c.flags_field & UNATTRIBUTED) != 0) {
5766 c.flags_field &= ~UNATTRIBUTED;
5767
5768 // Get environment current at the point of class definition.
5769 Env<AttrContext> env = typeEnvs.get(c);
5770
5771 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5772 // because the annotations were not available at the time the env was created. Therefore,
5773 // we look up the environment chain for the first enclosing environment for which the
5774 // lint value is set. Typically, this is the parent env, but might be further if there
5775 // are any envs created as a result of TypeParameter nodes.
5776 Env<AttrContext> lintEnv = env;
5777 while (lintEnv.info.lint == null)
5778 lintEnv = lintEnv.next;
5779
5780 // Having found the enclosing lint value, we can initialize the lint value for this class
5781 env.info.lint = lintEnv.info.lint.augment(c);
5782
5783 Lint prevLint = chk.setLint(env.info.lint);
5784 JavaFileObject prev = log.useSource(c.sourcefile);
5785 ResultInfo prevReturnRes = env.info.returnResult;
5786
5787 try {
5788 if (c.isSealed() &&
5789 !c.isEnum() &&
5790 !c.isPermittedExplicit &&
5791 c.getPermittedSubclasses().isEmpty()) {
5792 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5793 }
5794
5795 if (c.isSealed()) {
5796 Set<Symbol> permittedTypes = new HashSet<>();
5797 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5798 for (Type subType : c.getPermittedSubclasses()) {
5799 if (subType.isErroneous()) {
5800 // the type already caused errors, don't produce more potentially misleading errors
5801 continue;
5802 }
5803 boolean isTypeVar = false;
5804 if (subType.getTag() == TYPEVAR) {
5805 isTypeVar = true; //error recovery
5806 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5807 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType)));
5808 }
5809 if (subType.tsym.isAnonymous() && !c.isEnum()) {
5810 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous));
5811 }
5812 if (permittedTypes.contains(subType.tsym)) {
5813 DiagnosticPosition pos =
5814 env.enclClass.permitting.stream()
5815 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null)
5816 .limit(2).collect(List.collector()).get(1);
5817 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType)));
5818 } else {
5819 permittedTypes.add(subType.tsym);
5820 }
5821 if (sealedInUnnamed) {
5822 if (subType.tsym.packge() != c.packge()) {
5823 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5824 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c)
5825 );
5826 }
5827 } else if (subType.tsym.packge().modle != c.packge().modle) {
5828 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5829 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle)
5830 );
5831 }
5832 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) {
5833 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting),
5834 Errors.InvalidPermitsClause(
5835 subType.tsym == c.type.tsym ?
5836 Fragments.MustNotBeSameClass :
5837 Fragments.MustNotBeSupertype(subType)
5838 )
5839 );
5840 } else if (!isTypeVar) {
5841 boolean thisIsASuper = types.directSupertypes(subType)
5842 .stream()
5843 .anyMatch(d -> d.tsym == c);
5844 if (!thisIsASuper) {
5845 if(c.isInterface()) {
5846 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5847 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType)));
5848 } else {
5849 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree),
5850 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType)));
5851 }
5852 }
5853 }
5854 }
5855 }
5856
5857 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5858 .stream()
5859 .filter(s -> s.tsym.isSealed())
5860 .map(s -> (ClassSymbol) s.tsym)
5861 .collect(List.collector());
5862
5863 if (sealedSupers.isEmpty()) {
5864 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5865 boolean hasErrorSuper = false;
5866
5867 hasErrorSuper |= types.directSupertypes(c.type)
5868 .stream()
5869 .anyMatch(s -> s.tsym.kind == Kind.ERR);
5870
5871 ClassType ct = (ClassType) c.type;
5872
5873 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5874
5875 if (!hasErrorSuper) {
5876 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5877 }
5878 }
5879 } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5880 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5881 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5882 }
5883
5884 if (!c.type.isCompound()) {
5885 for (ClassSymbol supertypeSym : sealedSupers) {
5886 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) {
5887 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5888 }
5889 }
5890 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5891 log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5892 c.isInterface() ?
5893 Errors.NonSealedOrSealedExpected :
5894 Errors.NonSealedSealedOrFinalExpected);
5895 }
5896 }
5897 }
5898
5899 env.info.returnResult = null;
5900 // java.lang.Enum may not be subclassed by a non-enum
5901 if (st.tsym == syms.enumSym &&
5902 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5903 log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5904
5905 // Enums may not be extended by source-level classes
5906 if (st.tsym != null &&
5907 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5908 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5909 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5910 }
5911
5912 if (rs.isSerializable(c.type)) {
5913 env.info.isSerializable = true;
5914 }
5915
5916 if (c.isValueClass()) {
5917 Assert.check(env.tree.hasTag(CLASSDEF));
5918 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c);
5919 }
5920
5921 attribClassBody(env, c);
5922
5923 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5924 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5925 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5926 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5927
5928 if (c.isImplicit()) {
5929 chk.checkHasMain(env.tree.pos(), c);
5930 }
5931 } finally {
5932 env.info.returnResult = prevReturnRes;
5933 log.useSource(prev);
5934 chk.setLint(prevLint);
5935 }
5936
5937 }
5938 }
5939
5940 public void visitImport(JCImport tree) {
5941 // nothing to do
5942 }
5943
5944 public void visitModuleDef(JCModuleDecl tree) {
5945 tree.sym.completeUsesProvides();
5946 ModuleSymbol msym = tree.sym;
5947 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5948 Lint prevLint = chk.setLint(lint);
5949 try {
5950 chk.checkModuleName(tree);
5951 chk.checkDeprecatedAnnotation(tree, msym);
5952 } finally {
5953 chk.setLint(prevLint);
5954 }
5955 }
5956
5957 /** Finish the attribution of a class. */
5958 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5959 JCClassDecl tree = (JCClassDecl)env.tree;
5960 Assert.check(c == tree.sym);
5961
5962 // Validate type parameters, supertype and interfaces.
5963 attribStats(tree.typarams, env);
5964 if (!c.isAnonymous()) {
5965 //already checked if anonymous
5966 chk.validate(tree.typarams, env);
5967 chk.validate(tree.extending, env);
5968 chk.validate(tree.implementing, env);
5969 }
5970
5971 chk.checkRequiresIdentity(tree, env.info.lint);
5972
5973 c.markAbstractIfNeeded(types);
5974
5975 // If this is a non-abstract class, check that it has no abstract
5976 // methods or unimplemented methods of an implemented interface.
5977 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5978 chk.checkAllDefined(tree.pos(), c);
5979 }
5980
5981 if ((c.flags() & ANNOTATION) != 0) {
5982 if (tree.implementing.nonEmpty())
5983 log.error(tree.implementing.head.pos(),
5984 Errors.CantExtendIntfAnnotation);
5985 if (tree.typarams.nonEmpty()) {
5986 log.error(tree.typarams.head.pos(),
5987 Errors.IntfAnnotationCantHaveTypeParams(c));
5988 }
5989
5990 // If this annotation type has a @Repeatable, validate
5991 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5992 // If this annotation type has a @Repeatable, validate
5993 if (repeatable != null) {
5994 // get diagnostic position for error reporting
5995 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5996 Assert.checkNonNull(cbPos);
5997
5998 chk.validateRepeatable(c, repeatable, cbPos);
5999 }
6000 } else {
6001 // Check that all extended classes and interfaces
6002 // are compatible (i.e. no two define methods with same arguments
6003 // yet different return types). (JLS 8.4.8.3)
6004 chk.checkCompatibleSupertypes(tree.pos(), c.type);
6005 chk.checkDefaultMethodClashes(tree.pos(), c.type);
6006 chk.checkPotentiallyAmbiguousOverloads(tree, c.type);
6007 }
6008
6009 // Check that class does not import the same parameterized interface
6010 // with two different argument lists.
6011 chk.checkClassBounds(tree.pos(), c.type);
6012
6013 tree.type = c.type;
6014
6015 for (List<JCTypeParameter> l = tree.typarams;
6016 l.nonEmpty(); l = l.tail) {
6017 Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
6018 }
6019
6020 // Check that a generic class doesn't extend Throwable
6021 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
6022 log.error(tree.extending.pos(), Errors.GenericThrowable);
6023
6024 // Check that all methods which implement some
6025 // method conform to the method they implement.
6026 chk.checkImplementations(tree);
6027
6028 //check that a resource implementing AutoCloseable cannot throw InterruptedException
6029 checkAutoCloseable(tree.pos(), env, c.type);
6030
6031 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
6032 // Attribute declaration
6033 attribStat(l.head, env);
6034 // Check that declarations in inner classes are not static (JLS 8.1.2)
6035 // Make an exception for static constants.
6036 if (!allowRecords &&
6037 c.owner.kind != PCK &&
6038 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
6039 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
6040 VarSymbol sym = null;
6041 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
6042 if (sym == null ||
6043 sym.kind != VAR ||
6044 sym.getConstValue() == null)
6045 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
6046 }
6047 }
6048
6049 // Check for proper placement of super()/this() calls.
6050 chk.checkSuperInitCalls(tree);
6051
6052 // Check for cycles among non-initial constructors.
6053 chk.checkCyclicConstructors(tree);
6054
6055 // Check for cycles among annotation elements.
6056 chk.checkNonCyclicElements(tree);
6057
6058 // Check for proper use of serialVersionUID and other
6059 // serialization-related fields and methods
6060 if (env.info.lint.isEnabled(LintCategory.SERIAL)
6061 && rs.isSerializable(c.type)
6062 && !c.isAnonymous()) {
6063 chk.checkSerialStructure(env, tree, c);
6064 }
6065 // Correctly organize the positions of the type annotations
6066 typeAnnotations.organizeTypeAnnotationsBodies(tree);
6067
6068 // Check type annotations applicability rules
6069 validateTypeAnnotations(tree, false);
6070 }
6071 // where
6072 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
6073 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
6074 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
6075 if (types.isSameType(al.head.annotationType.type, t))
6076 return al.head.pos();
6077 }
6078
6079 return null;
6080 }
6081
6082 private Type capture(Type type) {
6083 return types.capture(type);
6084 }
6085
6086 private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
6087 if (type.isErroneous()) {
6088 tree.vartype = make.at(tree.pos()).Erroneous();
6089 } else if (tree.declaredUsingVar()) {
6090 Assert.check(tree.typePos != Position.NOPOS);
6091 tree.vartype = make.at(tree.typePos).Type(type);
6092 } else {
6093 tree.vartype = make.at(tree.pos()).Type(type);
6094 }
6095 }
6096
6097 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
6098 tree.accept(new TypeAnnotationsValidator(sigOnly));
6099 }
6100 //where
6101 private final class TypeAnnotationsValidator extends TreeScanner {
6102
6103 private final boolean sigOnly;
6104 public TypeAnnotationsValidator(boolean sigOnly) {
6105 this.sigOnly = sigOnly;
6106 }
6107
6108 public void visitAnnotation(JCAnnotation tree) {
6109 chk.validateTypeAnnotation(tree, null, false);
6110 super.visitAnnotation(tree);
6111 }
6112 public void visitAnnotatedType(JCAnnotatedType tree) {
6113 if (!tree.underlyingType.type.isErroneous()) {
6114 super.visitAnnotatedType(tree);
6115 }
6116 }
6117 public void visitTypeParameter(JCTypeParameter tree) {
6118 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true);
6119 scan(tree.bounds);
6120 // Don't call super.
6121 // This is needed because above we call validateTypeAnnotation with
6122 // false, which would forbid annotations on type parameters.
6123 // super.visitTypeParameter(tree);
6124 }
6125 public void visitMethodDef(JCMethodDecl tree) {
6126 if (tree.recvparam != null &&
6127 !tree.recvparam.vartype.type.isErroneous()) {
6128 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym);
6129 }
6130 if (tree.restype != null && tree.restype.type != null) {
6131 validateAnnotatedType(tree.restype, tree.restype.type);
6132 }
6133 if (sigOnly) {
6134 scan(tree.mods);
6135 scan(tree.restype);
6136 scan(tree.typarams);
6137 scan(tree.recvparam);
6138 scan(tree.params);
6139 scan(tree.thrown);
6140 } else {
6141 scan(tree.defaultValue);
6142 scan(tree.body);
6143 }
6144 }
6145 public void visitVarDef(final JCVariableDecl tree) {
6146 //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
6147 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
6148 validateAnnotatedType(tree.vartype, tree.sym.type);
6149 scan(tree.mods);
6150 scan(tree.vartype);
6151 if (!sigOnly) {
6152 scan(tree.init);
6153 }
6154 }
6155 public void visitTypeCast(JCTypeCast tree) {
6156 if (tree.clazz != null && tree.clazz.type != null)
6157 validateAnnotatedType(tree.clazz, tree.clazz.type);
6158 super.visitTypeCast(tree);
6159 }
6160 public void visitTypeTest(JCInstanceOf tree) {
6161 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
6162 validateAnnotatedType(tree.pattern, tree.pattern.type);
6163 super.visitTypeTest(tree);
6164 }
6165 public void visitNewClass(JCNewClass tree) {
6166 if (tree.clazz != null && tree.clazz.type != null) {
6167 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
6168 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
6169 tree.clazz.type.tsym);
6170 }
6171 if (tree.def != null) {
6172 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
6173 }
6174
6175 validateAnnotatedType(tree.clazz, tree.clazz.type);
6176 }
6177 super.visitNewClass(tree);
6178 }
6179 public void visitNewArray(JCNewArray tree) {
6180 if (tree.elemtype != null && tree.elemtype.type != null) {
6181 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
6182 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
6183 tree.elemtype.type.tsym);
6184 }
6185 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
6186 }
6187 super.visitNewArray(tree);
6188 }
6189 public void visitClassDef(JCClassDecl tree) {
6190 //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
6191 if (sigOnly) {
6192 scan(tree.mods);
6193 scan(tree.typarams);
6194 scan(tree.extending);
6195 scan(tree.implementing);
6196 }
6197 for (JCTree member : tree.defs) {
6198 if (member.hasTag(Tag.CLASSDEF)) {
6199 continue;
6200 }
6201 scan(member);
6202 }
6203 }
6204 public void visitBlock(JCBlock tree) {
6205 if (!sigOnly) {
6206 scan(tree.stats);
6207 }
6208 }
6209
6210 /* I would want to model this after
6211 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
6212 * and override visitSelect and visitTypeApply.
6213 * However, we only set the annotated type in the top-level type
6214 * of the symbol.
6215 * Therefore, we need to override each individual location where a type
6216 * can occur.
6217 */
6218 private void validateAnnotatedType(final JCTree errtree, final Type type) {
6219 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
6220
6221 if (type.isPrimitiveOrVoid()) {
6222 return;
6223 }
6224
6225 JCTree enclTr = errtree;
6226 Type enclTy = type;
6227
6228 boolean repeat = true;
6229 while (repeat) {
6230 if (enclTr.hasTag(TYPEAPPLY)) {
6231 List<Type> tyargs = enclTy.getTypeArguments();
6232 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
6233 if (trargs.length() > 0) {
6234 // Nothing to do for diamonds
6235 if (tyargs.length() == trargs.length()) {
6236 for (int i = 0; i < tyargs.length(); ++i) {
6237 validateAnnotatedType(trargs.get(i), tyargs.get(i));
6238 }
6239 }
6240 // If the lengths don't match, it's either a diamond
6241 // or some nested type that redundantly provides
6242 // type arguments in the tree.
6243 }
6244
6245 // Look at the clazz part of a generic type
6246 enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
6247 }
6248
6249 if (enclTr.hasTag(SELECT)) {
6250 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
6251 if (enclTy != null &&
6252 !enclTy.hasTag(NONE)) {
6253 enclTy = enclTy.getEnclosingType();
6254 }
6255 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
6256 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
6257 if (enclTy == null || enclTy.hasTag(NONE)) {
6258 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>();
6259 for (JCAnnotation an : at.getAnnotations()) {
6260 if (chk.isTypeAnnotation(an, false)) {
6261 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute);
6262 }
6263 }
6264 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList();
6265 if (!onlyTypeAnnotations.isEmpty()) {
6266 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ?
6267 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) :
6268 Fragments.TypeAnnotation(onlyTypeAnnotations);
6269 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType(
6270 type.stripMetadata().annotatedType(onlyTypeAnnotations));
6271 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment,
6272 type.tsym.owner, annotatedType));
6273 }
6274 repeat = false;
6275 }
6276 enclTr = at.underlyingType;
6277 // enclTy doesn't need to be changed
6278 } else if (enclTr.hasTag(IDENT)) {
6279 repeat = false;
6280 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
6281 JCWildcard wc = (JCWildcard) enclTr;
6282 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
6283 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
6284 validateAnnotatedType(wc.getBound(), wc.getBound().type);
6285 } else {
6286 // Nothing to do for UNBOUND
6287 }
6288 repeat = false;
6289 } else if (enclTr.hasTag(TYPEARRAY)) {
6290 JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
6291 validateAnnotatedType(art.getType(), art.elemtype.type);
6292 repeat = false;
6293 } else if (enclTr.hasTag(TYPEUNION)) {
6294 JCTypeUnion ut = (JCTypeUnion) enclTr;
6295 for (JCTree t : ut.getTypeAlternatives()) {
6296 validateAnnotatedType(t, t.type);
6297 }
6298 repeat = false;
6299 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
6300 JCTypeIntersection it = (JCTypeIntersection) enclTr;
6301 for (JCTree t : it.getBounds()) {
6302 validateAnnotatedType(t, t.type);
6303 }
6304 repeat = false;
6305 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
6306 enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
6307 repeat = false;
6308 } else {
6309 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
6310 " within: "+ errtree + " with kind: " + errtree.getKind());
6311 }
6312 }
6313 }
6314
6315 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
6316 Symbol sym) {
6317 // Ensure that no declaration annotations are present.
6318 // Note that a tree type might be an AnnotatedType with
6319 // empty annotations, if only declaration annotations were given.
6320 // This method will raise an error for such a type.
6321 for (JCAnnotation ai : annotations) {
6322 if (!ai.type.isErroneous() &&
6323 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
6324 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
6325 }
6326 }
6327 }
6328 }
6329
6330 // <editor-fold desc="post-attribution visitor">
6331
6332 /**
6333 * Handle missing types/symbols in an AST. This routine is useful when
6334 * the compiler has encountered some errors (which might have ended up
6335 * terminating attribution abruptly); if the compiler is used in fail-over
6336 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
6337 * prevents NPE to be propagated during subsequent compilation steps.
6338 */
6339 public void postAttr(JCTree tree) {
6340 new PostAttrAnalyzer().scan(tree);
6341 }
6342
6343 class PostAttrAnalyzer extends TreeScanner {
6344
6345 private void initTypeIfNeeded(JCTree that) {
6346 if (that.type == null) {
6347 if (that.hasTag(METHODDEF)) {
6348 that.type = dummyMethodType((JCMethodDecl)that);
6349 } else {
6350 that.type = syms.unknownType;
6351 }
6352 }
6353 }
6354
6355 /* Construct a dummy method type. If we have a method declaration,
6356 * and the declared return type is void, then use that return type
6357 * instead of UNKNOWN to avoid spurious error messages in lambda
6358 * bodies (see:JDK-8041704).
6359 */
6360 private Type dummyMethodType(JCMethodDecl md) {
6361 Type restype = syms.unknownType;
6362 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
6363 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
6364 if (prim.typetag == VOID)
6365 restype = syms.voidType;
6366 }
6367 return new MethodType(List.nil(), restype,
6368 List.nil(), syms.methodClass);
6369 }
6370 private Type dummyMethodType() {
6371 return dummyMethodType(null);
6372 }
6373
6374 @Override
6375 public void scan(JCTree tree) {
6376 if (tree == null) return;
6377 if (tree instanceof JCExpression) {
6378 initTypeIfNeeded(tree);
6379 }
6380 super.scan(tree);
6381 }
6382
6383 @Override
6384 public void visitIdent(JCIdent that) {
6385 if (that.sym == null) {
6386 that.sym = syms.unknownSymbol;
6387 }
6388 }
6389
6390 @Override
6391 public void visitSelect(JCFieldAccess that) {
6392 if (that.sym == null) {
6393 that.sym = syms.unknownSymbol;
6394 }
6395 super.visitSelect(that);
6396 }
6397
6398 @Override
6399 public void visitClassDef(JCClassDecl that) {
6400 initTypeIfNeeded(that);
6401 if (that.sym == null) {
6402 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
6403 }
6404 super.visitClassDef(that);
6405 }
6406
6407 @Override
6408 public void visitMethodDef(JCMethodDecl that) {
6409 initTypeIfNeeded(that);
6410 if (that.sym == null) {
6411 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
6412 }
6413 super.visitMethodDef(that);
6414 }
6415
6416 @Override
6417 public void visitVarDef(JCVariableDecl that) {
6418 initTypeIfNeeded(that);
6419 if (that.sym == null) {
6420 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
6421 that.sym.adr = 0;
6422 }
6423 if (that.vartype == null) {
6424 that.vartype = make.at(Position.NOPOS).Erroneous();
6425 }
6426 super.visitVarDef(that);
6427 }
6428
6429 @Override
6430 public void visitBindingPattern(JCBindingPattern that) {
6431 initTypeIfNeeded(that);
6432 initTypeIfNeeded(that.var);
6433 if (that.var.sym == null) {
6434 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol);
6435 that.var.sym.adr = 0;
6436 }
6437 super.visitBindingPattern(that);
6438 }
6439
6440 @Override
6441 public void visitRecordPattern(JCRecordPattern that) {
6442 initTypeIfNeeded(that);
6443 if (that.record == null) {
6444 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor),
6445 that.type, syms.noSymbol);
6446 }
6447 if (that.fullComponentTypes == null) {
6448 that.fullComponentTypes = List.nil();
6449 }
6450 super.visitRecordPattern(that);
6451 }
6452
6453 @Override
6454 public void visitNewClass(JCNewClass that) {
6455 if (that.constructor == null) {
6456 that.constructor = new MethodSymbol(0, names.init,
6457 dummyMethodType(), syms.noSymbol);
6458 }
6459 if (that.constructorType == null) {
6460 that.constructorType = syms.unknownType;
6461 }
6462 super.visitNewClass(that);
6463 }
6464
6465 @Override
6466 public void visitAssignop(JCAssignOp that) {
6467 if (that.operator == null) {
6468 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6469 -1, syms.noSymbol);
6470 }
6471 super.visitAssignop(that);
6472 }
6473
6474 @Override
6475 public void visitBinary(JCBinary that) {
6476 if (that.operator == null) {
6477 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6478 -1, syms.noSymbol);
6479 }
6480 super.visitBinary(that);
6481 }
6482
6483 @Override
6484 public void visitUnary(JCUnary that) {
6485 if (that.operator == null) {
6486 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
6487 -1, syms.noSymbol);
6488 }
6489 super.visitUnary(that);
6490 }
6491
6492 @Override
6493 public void visitReference(JCMemberReference that) {
6494 super.visitReference(that);
6495 if (that.sym == null) {
6496 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
6497 syms.noSymbol);
6498 }
6499 }
6500 }
6501 // </editor-fold>
6502
6503 public void setPackageSymbols(JCExpression pid, Symbol pkg) {
6504 new TreeScanner() {
6505 Symbol packge = pkg;
6506 @Override
6507 public void visitIdent(JCIdent that) {
6508 that.sym = packge;
6509 }
6510
6511 @Override
6512 public void visitSelect(JCFieldAccess that) {
6513 that.sym = packge;
6514 packge = packge.owner;
6515 super.visitSelect(that);
6516 }
6517 }.scan(pid);
6518 }
6519
6520 }
--- EOF ---