1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 final LocalProxyVarsGen localProxyVarsGen; 128 129 public static Attr instance(Context context) { 130 Attr instance = context.get(attrKey); 131 if (instance == null) 132 instance = new Attr(context); 133 return instance; 134 } 135 136 @SuppressWarnings("this-escape") 137 protected Attr(Context context) { 138 context.put(attrKey, this); 139 140 names = Names.instance(context); 141 log = Log.instance(context); 142 syms = Symtab.instance(context); 143 rs = Resolve.instance(context); 144 operators = Operators.instance(context); 145 chk = Check.instance(context); 146 flow = Flow.instance(context); 147 memberEnter = MemberEnter.instance(context); 148 typeEnter = TypeEnter.instance(context); 149 make = TreeMaker.instance(context); 150 enter = Enter.instance(context); 151 infer = Infer.instance(context); 152 analyzer = Analyzer.instance(context); 153 deferredAttr = DeferredAttr.instance(context); 154 cfolder = ConstFold.instance(context); 155 target = Target.instance(context); 156 types = Types.instance(context); 157 preview = Preview.instance(context); 158 diags = JCDiagnostic.Factory.instance(context); 159 annotate = Annotate.instance(context); 160 typeAnnotations = TypeAnnotations.instance(context); 161 deferredLintHandler = DeferredLintHandler.instance(context); 162 typeEnvs = TypeEnvs.instance(context); 163 dependencies = Dependencies.instance(context); 164 argumentAttr = ArgumentAttr.instance(context); 165 matchBindingsComputer = MatchBindingsComputer.instance(context); 166 attrRecover = AttrRecover.instance(context); 167 localProxyVarsGen = LocalProxyVarsGen.instance(context); 168 169 Options options = Options.instance(context); 170 171 Source source = Source.instance(context); 172 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 173 allowRecords = Feature.RECORDS.allowedInSource(source); 174 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 175 Feature.PATTERN_SWITCH.allowedInSource(source); 176 allowUnconditionalPatternsInstanceOf = 177 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 178 sourceName = source.name; 179 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 180 181 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 182 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 183 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 184 methodAttrInfo = new MethodAttrInfo(); 185 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 186 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 187 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 188 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 189 allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) && 190 Feature.VALUE_CLASSES.allowedInSource(source); 191 } 192 193 /** Switch: reifiable types in instanceof enabled? 194 */ 195 boolean allowReifiableTypesInInstanceof; 196 197 /** Are records allowed 198 */ 199 private final boolean allowRecords; 200 201 /** Are patterns in switch allowed 202 */ 203 private final boolean allowPatternSwitch; 204 205 /** Are unconditional patterns in instanceof allowed 206 */ 207 private final boolean allowUnconditionalPatternsInstanceOf; 208 209 /** Are value classes allowed 210 */ 211 private final boolean allowValueClasses; 212 213 /** 214 * Switch: warn about use of variable before declaration? 215 * RFE: 6425594 216 */ 217 boolean useBeforeDeclarationWarning; 218 219 /** 220 * Switch: name of source level; used for error reporting. 221 */ 222 String sourceName; 223 224 /** Check kind and type of given tree against protokind and prototype. 225 * If check succeeds, store type in tree and return it. 226 * If check fails, store errType in tree and return it. 227 * No checks are performed if the prototype is a method type. 228 * It is not necessary in this case since we know that kind and type 229 * are correct. 230 * 231 * @param tree The tree whose kind and type is checked 232 * @param found The computed type of the tree 233 * @param ownkind The computed kind of the tree 234 * @param resultInfo The expected result of the tree 235 */ 236 Type check(final JCTree tree, 237 final Type found, 238 final KindSelector ownkind, 239 final ResultInfo resultInfo) { 240 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 241 Type owntype; 242 boolean shouldCheck = !found.hasTag(ERROR) && 243 !resultInfo.pt.hasTag(METHOD) && 244 !resultInfo.pt.hasTag(FORALL); 245 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 246 log.error(tree.pos(), 247 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 248 ownkind.kindNames())); 249 owntype = types.createErrorType(found); 250 } else if (inferenceContext.free(found)) { 251 //delay the check if there are inference variables in the found type 252 //this means we are dealing with a partially inferred poly expression 253 owntype = shouldCheck ? resultInfo.pt : found; 254 if (resultInfo.checkMode.installPostInferenceHook()) { 255 inferenceContext.addFreeTypeListener(List.of(found), 256 instantiatedContext -> { 257 ResultInfo pendingResult = 258 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 259 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 260 }); 261 } 262 } else { 263 owntype = shouldCheck ? 264 resultInfo.check(tree, found) : 265 found; 266 } 267 if (resultInfo.checkMode.updateTreeType()) { 268 tree.type = owntype; 269 } 270 return owntype; 271 } 272 273 /** Is given blank final variable assignable, i.e. in a scope where it 274 * may be assigned to even though it is final? 275 * @param v The blank final variable. 276 * @param env The current environment. 277 */ 278 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 279 Symbol owner = env.info.scope.owner; 280 // owner refers to the innermost variable, method or 281 // initializer block declaration at this point. 282 boolean isAssignable = 283 v.owner == owner 284 || 285 ((owner.name == names.init || // i.e. we are in a constructor 286 owner.kind == VAR || // i.e. we are in a variable initializer 287 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 288 && 289 v.owner == owner.owner 290 && 291 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 292 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 293 return isAssignable & !insideCompactConstructor; 294 } 295 296 /** Check that variable can be assigned to. 297 * @param pos The current source code position. 298 * @param v The assigned variable 299 * @param base If the variable is referred to in a Select, the part 300 * to the left of the `.', null otherwise. 301 * @param env The current environment. 302 */ 303 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 304 if (v.name == names._this) { 305 log.error(pos, Errors.CantAssignValToThis); 306 } else if ((v.flags() & FINAL) != 0 && 307 ((v.flags() & HASINIT) != 0 308 || 309 !((base == null || 310 TreeInfo.isThisQualifier(base)) && 311 isAssignableAsBlankFinal(v, env)))) { 312 if (v.isResourceVariable()) { //TWR resource 313 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 314 } else { 315 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 316 } 317 } 318 } 319 320 /** Does tree represent a static reference to an identifier? 321 * It is assumed that tree is either a SELECT or an IDENT. 322 * We have to weed out selects from non-type names here. 323 * @param tree The candidate tree. 324 */ 325 boolean isStaticReference(JCTree tree) { 326 if (tree.hasTag(SELECT)) { 327 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 328 if (lsym == null || lsym.kind != TYP) { 329 return false; 330 } 331 } 332 return true; 333 } 334 335 /** Is this symbol a type? 336 */ 337 static boolean isType(Symbol sym) { 338 return sym != null && sym.kind == TYP; 339 } 340 341 /** Attribute a parsed identifier. 342 * @param tree Parsed identifier name 343 * @param topLevel The toplevel to use 344 */ 345 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 346 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 347 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 348 syms.errSymbol.name, 349 null, null, null, null); 350 localEnv.enclClass.sym = syms.errSymbol; 351 return attribIdent(tree, localEnv); 352 } 353 354 /** Attribute a parsed identifier. 355 * @param tree Parsed identifier name 356 * @param env The env to use 357 */ 358 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 359 return tree.accept(identAttributer, env); 360 } 361 // where 362 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 363 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 364 @Override @DefinedBy(Api.COMPILER_TREE) 365 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 366 Symbol site = visit(node.getExpression(), env); 367 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 368 return site; 369 Name name = (Name)node.getIdentifier(); 370 if (site.kind == PCK) { 371 env.toplevel.packge = (PackageSymbol)site; 372 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 373 KindSelector.TYP_PCK); 374 } else { 375 env.enclClass.sym = (ClassSymbol)site; 376 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 377 } 378 } 379 380 @Override @DefinedBy(Api.COMPILER_TREE) 381 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 382 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 383 } 384 } 385 386 public Type coerce(Type etype, Type ttype) { 387 return cfolder.coerce(etype, ttype); 388 } 389 390 public Type attribType(JCTree node, TypeSymbol sym) { 391 Env<AttrContext> env = typeEnvs.get(sym); 392 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 393 return attribTree(node, localEnv, unknownTypeInfo); 394 } 395 396 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 397 // Attribute qualifying package or class. 398 JCFieldAccess s = tree.qualid; 399 return attribTree(s.selected, env, 400 new ResultInfo(tree.staticImport ? 401 KindSelector.TYP : KindSelector.TYP_PCK, 402 Type.noType)); 403 } 404 405 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 406 return attribToTree(expr, env, tree, unknownExprInfo); 407 } 408 409 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 410 return attribToTree(stmt, env, tree, statInfo); 411 } 412 413 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 414 breakTree = tree; 415 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 416 try { 417 deferredAttr.attribSpeculative(root, env, resultInfo, 418 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 419 argumentAttr.withLocalCacheContext()); 420 attrRecover.doRecovery(); 421 } catch (BreakAttr b) { 422 return b.env; 423 } catch (AssertionError ae) { 424 if (ae.getCause() instanceof BreakAttr breakAttr) { 425 return breakAttr.env; 426 } else { 427 throw ae; 428 } 429 } finally { 430 breakTree = null; 431 log.useSource(prev); 432 } 433 return env; 434 } 435 436 private JCTree breakTree = null; 437 438 private static class BreakAttr extends RuntimeException { 439 static final long serialVersionUID = -6924771130405446405L; 440 private transient Env<AttrContext> env; 441 private BreakAttr(Env<AttrContext> env) { 442 this.env = env; 443 } 444 } 445 446 /** 447 * Mode controlling behavior of Attr.Check 448 */ 449 enum CheckMode { 450 451 NORMAL, 452 453 /** 454 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 455 * that the captured var cache in {@code InferenceContext} will be used in read-only 456 * mode when performing inference checks. 457 */ 458 NO_TREE_UPDATE { 459 @Override 460 public boolean updateTreeType() { 461 return false; 462 } 463 }, 464 /** 465 * Mode signalling that caller will manage free types in tree decorations. 466 */ 467 NO_INFERENCE_HOOK { 468 @Override 469 public boolean installPostInferenceHook() { 470 return false; 471 } 472 }; 473 474 public boolean updateTreeType() { 475 return true; 476 } 477 public boolean installPostInferenceHook() { 478 return true; 479 } 480 } 481 482 483 class ResultInfo { 484 final KindSelector pkind; 485 final Type pt; 486 final CheckContext checkContext; 487 final CheckMode checkMode; 488 489 ResultInfo(KindSelector pkind, Type pt) { 490 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 491 } 492 493 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 494 this(pkind, pt, chk.basicHandler, checkMode); 495 } 496 497 protected ResultInfo(KindSelector pkind, 498 Type pt, CheckContext checkContext) { 499 this(pkind, pt, checkContext, CheckMode.NORMAL); 500 } 501 502 protected ResultInfo(KindSelector pkind, 503 Type pt, CheckContext checkContext, CheckMode checkMode) { 504 this.pkind = pkind; 505 this.pt = pt; 506 this.checkContext = checkContext; 507 this.checkMode = checkMode; 508 } 509 510 /** 511 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 512 * @param tree The tree to be type-checked. 513 * @return true if {@code ArgumentAttr} should be used. 514 */ 515 protected boolean needsArgumentAttr(JCTree tree) { return false; } 516 517 protected Type check(final DiagnosticPosition pos, final Type found) { 518 return chk.checkType(pos, found, pt, checkContext); 519 } 520 521 protected ResultInfo dup(Type newPt) { 522 return new ResultInfo(pkind, newPt, checkContext, checkMode); 523 } 524 525 protected ResultInfo dup(CheckContext newContext) { 526 return new ResultInfo(pkind, pt, newContext, checkMode); 527 } 528 529 protected ResultInfo dup(Type newPt, CheckContext newContext) { 530 return new ResultInfo(pkind, newPt, newContext, checkMode); 531 } 532 533 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 534 return new ResultInfo(pkind, newPt, newContext, newMode); 535 } 536 537 protected ResultInfo dup(CheckMode newMode) { 538 return new ResultInfo(pkind, pt, checkContext, newMode); 539 } 540 541 @Override 542 public String toString() { 543 if (pt != null) { 544 return pt.toString(); 545 } else { 546 return ""; 547 } 548 } 549 } 550 551 class MethodAttrInfo extends ResultInfo { 552 public MethodAttrInfo() { 553 this(chk.basicHandler); 554 } 555 556 public MethodAttrInfo(CheckContext checkContext) { 557 super(KindSelector.VAL, Infer.anyPoly, checkContext); 558 } 559 560 @Override 561 protected boolean needsArgumentAttr(JCTree tree) { 562 return true; 563 } 564 565 protected ResultInfo dup(Type newPt) { 566 throw new IllegalStateException(); 567 } 568 569 protected ResultInfo dup(CheckContext newContext) { 570 return new MethodAttrInfo(newContext); 571 } 572 573 protected ResultInfo dup(Type newPt, CheckContext newContext) { 574 throw new IllegalStateException(); 575 } 576 577 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 578 throw new IllegalStateException(); 579 } 580 581 protected ResultInfo dup(CheckMode newMode) { 582 throw new IllegalStateException(); 583 } 584 } 585 586 class RecoveryInfo extends ResultInfo { 587 588 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 589 this(deferredAttrContext, Type.recoveryType); 590 } 591 592 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 593 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 594 @Override 595 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 596 return deferredAttrContext; 597 } 598 @Override 599 public boolean compatible(Type found, Type req, Warner warn) { 600 return true; 601 } 602 @Override 603 public void report(DiagnosticPosition pos, JCDiagnostic details) { 604 boolean needsReport = pt == Type.recoveryType || 605 (details.getDiagnosticPosition() != null && 606 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 607 if (needsReport) { 608 chk.basicHandler.report(pos, details); 609 } 610 } 611 }); 612 } 613 } 614 615 final ResultInfo statInfo; 616 final ResultInfo varAssignmentInfo; 617 final ResultInfo methodAttrInfo; 618 final ResultInfo unknownExprInfo; 619 final ResultInfo unknownTypeInfo; 620 final ResultInfo unknownTypeExprInfo; 621 final ResultInfo recoveryInfo; 622 final MethodType initBlockType; 623 624 Type pt() { 625 return resultInfo.pt; 626 } 627 628 KindSelector pkind() { 629 return resultInfo.pkind; 630 } 631 632 /* ************************************************************************ 633 * Visitor methods 634 *************************************************************************/ 635 636 /** Visitor argument: the current environment. 637 */ 638 Env<AttrContext> env; 639 640 /** Visitor argument: the currently expected attribution result. 641 */ 642 ResultInfo resultInfo; 643 644 /** Visitor result: the computed type. 645 */ 646 Type result; 647 648 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 649 650 /** Visitor method: attribute a tree, catching any completion failure 651 * exceptions. Return the tree's type. 652 * 653 * @param tree The tree to be visited. 654 * @param env The environment visitor argument. 655 * @param resultInfo The result info visitor argument. 656 */ 657 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 658 Env<AttrContext> prevEnv = this.env; 659 ResultInfo prevResult = this.resultInfo; 660 try { 661 this.env = env; 662 this.resultInfo = resultInfo; 663 if (resultInfo.needsArgumentAttr(tree)) { 664 result = argumentAttr.attribArg(tree, env); 665 } else { 666 tree.accept(this); 667 } 668 matchBindings = matchBindingsComputer.finishBindings(tree, 669 matchBindings); 670 if (tree == breakTree && 671 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 672 breakTreeFound(copyEnv(env)); 673 } 674 return result; 675 } catch (CompletionFailure ex) { 676 tree.type = syms.errType; 677 return chk.completionError(tree.pos(), ex); 678 } finally { 679 this.env = prevEnv; 680 this.resultInfo = prevResult; 681 } 682 } 683 684 protected void breakTreeFound(Env<AttrContext> env) { 685 throw new BreakAttr(env); 686 } 687 688 Env<AttrContext> copyEnv(Env<AttrContext> env) { 689 Env<AttrContext> newEnv = 690 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 691 if (newEnv.outer != null) { 692 newEnv.outer = copyEnv(newEnv.outer); 693 } 694 return newEnv; 695 } 696 697 WriteableScope copyScope(WriteableScope sc) { 698 WriteableScope newScope = WriteableScope.create(sc.owner); 699 List<Symbol> elemsList = List.nil(); 700 for (Symbol sym : sc.getSymbols()) { 701 elemsList = elemsList.prepend(sym); 702 } 703 for (Symbol s : elemsList) { 704 newScope.enter(s); 705 } 706 return newScope; 707 } 708 709 /** Derived visitor method: attribute an expression tree. 710 */ 711 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 712 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 713 } 714 715 /** Derived visitor method: attribute an expression tree with 716 * no constraints on the computed type. 717 */ 718 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 719 return attribTree(tree, env, unknownExprInfo); 720 } 721 722 /** Derived visitor method: attribute a type tree. 723 */ 724 public Type attribType(JCTree tree, Env<AttrContext> env) { 725 Type result = attribType(tree, env, Type.noType); 726 return result; 727 } 728 729 /** Derived visitor method: attribute a type tree. 730 */ 731 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 732 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 733 return result; 734 } 735 736 /** Derived visitor method: attribute a statement or definition tree. 737 */ 738 public Type attribStat(JCTree tree, Env<AttrContext> env) { 739 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 740 Type result = attribTree(tree, env, statInfo); 741 analyzer.analyzeIfNeeded(tree, analyzeEnv); 742 attrRecover.doRecovery(); 743 return result; 744 } 745 746 /** Attribute a list of expressions, returning a list of types. 747 */ 748 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 749 ListBuffer<Type> ts = new ListBuffer<>(); 750 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 751 ts.append(attribExpr(l.head, env, pt)); 752 return ts.toList(); 753 } 754 755 /** Attribute a list of statements, returning nothing. 756 */ 757 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 758 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 759 attribStat(l.head, env); 760 } 761 762 /** Attribute the arguments in a method call, returning the method kind. 763 */ 764 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 765 KindSelector kind = initialKind; 766 for (JCExpression arg : trees) { 767 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 768 if (argtype.hasTag(DEFERRED)) { 769 kind = KindSelector.of(KindSelector.POLY, kind); 770 } 771 argtypes.append(argtype); 772 } 773 return kind; 774 } 775 776 /** Attribute a type argument list, returning a list of types. 777 * Caller is responsible for calling checkRefTypes. 778 */ 779 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 780 ListBuffer<Type> argtypes = new ListBuffer<>(); 781 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 782 argtypes.append(attribType(l.head, env)); 783 return argtypes.toList(); 784 } 785 786 /** Attribute a type argument list, returning a list of types. 787 * Check that all the types are references. 788 */ 789 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 790 List<Type> types = attribAnyTypes(trees, env); 791 return chk.checkRefTypes(trees, types); 792 } 793 794 /** 795 * Attribute type variables (of generic classes or methods). 796 * Compound types are attributed later in attribBounds. 797 * @param typarams the type variables to enter 798 * @param env the current environment 799 */ 800 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 801 for (JCTypeParameter tvar : typarams) { 802 TypeVar a = (TypeVar)tvar.type; 803 a.tsym.flags_field |= UNATTRIBUTED; 804 a.setUpperBound(Type.noType); 805 if (!tvar.bounds.isEmpty()) { 806 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 807 for (JCExpression bound : tvar.bounds.tail) 808 bounds = bounds.prepend(attribType(bound, env)); 809 types.setBounds(a, bounds.reverse()); 810 } else { 811 // if no bounds are given, assume a single bound of 812 // java.lang.Object. 813 types.setBounds(a, List.of(syms.objectType)); 814 } 815 a.tsym.flags_field &= ~UNATTRIBUTED; 816 } 817 if (checkCyclic) { 818 for (JCTypeParameter tvar : typarams) { 819 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 820 } 821 } 822 } 823 824 /** 825 * Attribute the type references in a list of annotations. 826 */ 827 void attribAnnotationTypes(List<JCAnnotation> annotations, 828 Env<AttrContext> env) { 829 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 830 JCAnnotation a = al.head; 831 attribType(a.annotationType, env); 832 } 833 } 834 835 /** 836 * Attribute a "lazy constant value". 837 * @param env The env for the const value 838 * @param variable The initializer for the const value 839 * @param type The expected type, or null 840 * @see VarSymbol#setLazyConstValue 841 */ 842 public Object attribLazyConstantValue(Env<AttrContext> env, 843 Env<AttrContext> enclosingEnv, 844 JCVariableDecl variable, 845 Type type) { 846 deferredLintHandler.push(variable); 847 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 848 try { 849 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 850 Type itype = attribExpr(variable.init, env, type); 851 if (variable.isImplicitlyTyped()) { 852 //fixup local variable type 853 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 854 } 855 if (itype.constValue() != null) { 856 return coerce(itype, type).constValue(); 857 } else { 858 return null; 859 } 860 } finally { 861 log.useSource(prevSource); 862 deferredLintHandler.pop(); 863 } 864 } 865 866 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 867 * Supertypes of anonymous inner classes are usually already attributed. 868 * 869 * @param tree The tree making up the type reference. 870 * @param env The environment current at the reference. 871 * @param classExpected true if only a class is expected here. 872 * @param interfaceExpected true if only an interface is expected here. 873 */ 874 Type attribBase(JCTree tree, 875 Env<AttrContext> env, 876 boolean classExpected, 877 boolean interfaceExpected, 878 boolean checkExtensible) { 879 Type t = tree.type != null ? 880 tree.type : 881 attribType(tree, env); 882 try { 883 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 884 } catch (CompletionFailure ex) { 885 chk.completionError(tree.pos(), ex); 886 return t; 887 } 888 } 889 Type checkBase(Type t, 890 JCTree tree, 891 Env<AttrContext> env, 892 boolean classExpected, 893 boolean interfaceExpected, 894 boolean checkExtensible) { 895 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 896 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 897 if (t.tsym.isAnonymous()) { 898 log.error(pos, Errors.CantInheritFromAnon); 899 return types.createErrorType(t); 900 } 901 if (t.isErroneous()) 902 return t; 903 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 904 // check that type variable is already visible 905 if (t.getUpperBound() == null) { 906 log.error(pos, Errors.IllegalForwardRef); 907 return types.createErrorType(t); 908 } 909 } else { 910 t = chk.checkClassType(pos, t, checkExtensible); 911 } 912 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 913 log.error(pos, Errors.IntfExpectedHere); 914 // return errType is necessary since otherwise there might 915 // be undetected cycles which cause attribution to loop 916 return types.createErrorType(t); 917 } else if (checkExtensible && 918 classExpected && 919 (t.tsym.flags() & INTERFACE) != 0) { 920 log.error(pos, Errors.NoIntfExpectedHere); 921 return types.createErrorType(t); 922 } 923 if (checkExtensible && 924 ((t.tsym.flags() & FINAL) != 0)) { 925 log.error(pos, 926 Errors.CantInheritFromFinal(t.tsym)); 927 } 928 chk.checkNonCyclic(pos, t); 929 return t; 930 } 931 932 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 933 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 934 id.type = env.info.scope.owner.enclClass().type; 935 id.sym = env.info.scope.owner.enclClass(); 936 return id.type; 937 } 938 939 public void visitClassDef(JCClassDecl tree) { 940 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 941 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 942 argumentAttr.withLocalCacheContext() : null); 943 boolean ctorProloguePrev = env.info.ctorPrologue; 944 try { 945 // Local and anonymous classes have not been entered yet, so we need to 946 // do it now. 947 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 948 enter.classEnter(tree, env); 949 } else { 950 // If this class declaration is part of a class level annotation, 951 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 952 // order to simplify later steps and allow for sensible error 953 // messages. 954 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 955 enter.classEnter(tree, env); 956 } 957 958 ClassSymbol c = tree.sym; 959 if (c == null) { 960 // exit in case something drastic went wrong during enter. 961 result = null; 962 } else { 963 // make sure class has been completed: 964 c.complete(); 965 966 // If a class declaration appears in a constructor prologue, 967 // that means it's either a local class or an anonymous class. 968 // Either way, there is no immediately enclosing instance. 969 if (ctorProloguePrev) { 970 c.flags_field |= NOOUTERTHIS; 971 } 972 attribClass(tree.pos(), c); 973 result = tree.type = c.type; 974 } 975 } finally { 976 localCacheContext.ifPresent(LocalCacheContext::leave); 977 env.info.ctorPrologue = ctorProloguePrev; 978 } 979 } 980 981 public void visitMethodDef(JCMethodDecl tree) { 982 MethodSymbol m = tree.sym; 983 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 984 985 Lint lint = env.info.lint.augment(m); 986 Lint prevLint = chk.setLint(lint); 987 boolean ctorProloguePrev = env.info.ctorPrologue; 988 Assert.check(!env.info.ctorPrologue); 989 MethodSymbol prevMethod = chk.setMethod(m); 990 try { 991 deferredLintHandler.flush(tree, lint); 992 chk.checkDeprecatedAnnotation(tree.pos(), m); 993 994 995 // Create a new environment with local scope 996 // for attributing the method. 997 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 998 localEnv.info.lint = lint; 999 1000 attribStats(tree.typarams, localEnv); 1001 1002 // If we override any other methods, check that we do so properly. 1003 // JLS ??? 1004 if (m.isStatic()) { 1005 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1006 } else { 1007 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1008 } 1009 chk.checkOverride(env, tree, m); 1010 1011 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1012 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1013 } 1014 1015 // Enter all type parameters into the local method scope. 1016 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1017 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1018 1019 ClassSymbol owner = env.enclClass.sym; 1020 if ((owner.flags() & ANNOTATION) != 0 && 1021 (tree.params.nonEmpty() || 1022 tree.recvparam != null)) 1023 log.error(tree.params.nonEmpty() ? 1024 tree.params.head.pos() : 1025 tree.recvparam.pos(), 1026 Errors.IntfAnnotationMembersCantHaveParams); 1027 1028 // Attribute all value parameters. 1029 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1030 attribStat(l.head, localEnv); 1031 } 1032 1033 chk.checkVarargsMethodDecl(localEnv, tree); 1034 1035 // Check that type parameters are well-formed. 1036 chk.validate(tree.typarams, localEnv); 1037 1038 // Check that result type is well-formed. 1039 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) { 1040 chk.validate(tree.restype, localEnv); 1041 } 1042 chk.checkRequiresIdentity(tree, env.info.lint); 1043 1044 // Check that receiver type is well-formed. 1045 if (tree.recvparam != null) { 1046 // Use a new environment to check the receiver parameter. 1047 // Otherwise I get "might not have been initialized" errors. 1048 // Is there a better way? 1049 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1050 attribType(tree.recvparam, newEnv); 1051 chk.validate(tree.recvparam, newEnv); 1052 } 1053 1054 // Is this method a constructor? 1055 boolean isConstructor = TreeInfo.isConstructor(tree); 1056 1057 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1058 // lets find if this method is an accessor 1059 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1060 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1061 if (recordComponent.isPresent()) { 1062 // the method is a user defined accessor lets check that everything is fine 1063 if (!tree.sym.isPublic()) { 1064 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1065 } 1066 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1067 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1068 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1069 } 1070 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1071 log.error(tree, 1072 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1073 } 1074 if (!tree.typarams.isEmpty()) { 1075 log.error(tree, 1076 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1077 } 1078 if (tree.sym.isStatic()) { 1079 log.error(tree, 1080 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1081 } 1082 } 1083 1084 if (isConstructor) { 1085 // if this a constructor other than the canonical one 1086 if ((tree.sym.flags_field & RECORD) == 0) { 1087 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1088 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1089 } 1090 } else { 1091 // but if it is the canonical: 1092 1093 /* if user generated, then it shouldn't: 1094 * - have an accessibility stricter than that of the record type 1095 * - explicitly invoke any other constructor 1096 */ 1097 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1098 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1099 log.error(tree, 1100 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1101 Errors.InvalidCanonicalConstructorInRecord( 1102 Fragments.Canonical, 1103 env.enclClass.sym.name, 1104 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1105 ) : 1106 Errors.InvalidCanonicalConstructorInRecord( 1107 Fragments.Canonical, 1108 env.enclClass.sym.name, 1109 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1110 ) 1111 ); 1112 } 1113 1114 if (!allowValueClasses && TreeInfo.hasAnyConstructorCall(tree)) { 1115 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1116 Fragments.Canonical, env.enclClass.sym.name, 1117 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1118 } 1119 } 1120 1121 // also we want to check that no type variables have been defined 1122 if (!tree.typarams.isEmpty()) { 1123 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1124 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1125 } 1126 1127 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1128 * record components 1129 */ 1130 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1131 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1132 for (JCVariableDecl param: tree.params) { 1133 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1134 if (!types.isSameType(param.type, recordFieldTypes.head) || 1135 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1136 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1137 Fragments.Canonical, env.enclClass.sym.name, 1138 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1139 } 1140 recordComponents = recordComponents.tail; 1141 recordFieldTypes = recordFieldTypes.tail; 1142 } 1143 } 1144 } 1145 } 1146 1147 // annotation method checks 1148 if ((owner.flags() & ANNOTATION) != 0) { 1149 // annotation method cannot have throws clause 1150 if (tree.thrown.nonEmpty()) { 1151 log.error(tree.thrown.head.pos(), 1152 Errors.ThrowsNotAllowedInIntfAnnotation); 1153 } 1154 // annotation method cannot declare type-parameters 1155 if (tree.typarams.nonEmpty()) { 1156 log.error(tree.typarams.head.pos(), 1157 Errors.IntfAnnotationMembersCantHaveTypeParams); 1158 } 1159 // validate annotation method's return type (could be an annotation type) 1160 chk.validateAnnotationType(tree.restype); 1161 // ensure that annotation method does not clash with members of Object/Annotation 1162 chk.validateAnnotationMethod(tree.pos(), m); 1163 } 1164 1165 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1166 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1167 1168 if (tree.body == null) { 1169 // Empty bodies are only allowed for 1170 // abstract, native, or interface methods, or for methods 1171 // in a retrofit signature class. 1172 if (tree.defaultValue != null) { 1173 if ((owner.flags() & ANNOTATION) == 0) 1174 log.error(tree.pos(), 1175 Errors.DefaultAllowedInIntfAnnotationMember); 1176 } 1177 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1178 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1179 } else { 1180 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1181 if ((owner.flags() & INTERFACE) != 0) { 1182 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1183 } else { 1184 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1185 } 1186 } else if ((tree.mods.flags & NATIVE) != 0) { 1187 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1188 } 1189 // Add an implicit super() call unless an explicit call to 1190 // super(...) or this(...) is given 1191 // or we are compiling class java.lang.Object. 1192 if (isConstructor && owner.type != syms.objectType) { 1193 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1194 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1195 make.Ident(names._super), make.Idents(List.nil()))); 1196 if (allowValueClasses && (owner.isValueClass() || owner.hasStrict() || ((owner.flags_field & RECORD) != 0))) { 1197 tree.body.stats = tree.body.stats.append(supCall); 1198 } else { 1199 tree.body.stats = tree.body.stats.prepend(supCall); 1200 } 1201 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1202 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1203 TreeInfo.hasConstructorCall(tree, names._super)) { 1204 // enum constructors are not allowed to call super 1205 // directly, so make sure there aren't any super calls 1206 // in enum constructors, except in the compiler 1207 // generated one. 1208 log.error(tree.body.stats.head.pos(), 1209 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1210 } 1211 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1212 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1213 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1214 if (!initParamNames.equals(recordComponentNames)) { 1215 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1216 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1217 } 1218 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1219 log.error(tree, 1220 Errors.InvalidCanonicalConstructorInRecord( 1221 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1222 env.enclClass.sym.name, 1223 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1224 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1225 } 1226 } 1227 } 1228 1229 // Attribute all type annotations in the body 1230 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1231 annotate.flush(); 1232 1233 // Start of constructor prologue 1234 localEnv.info.ctorPrologue = isConstructor; 1235 1236 // Attribute method body. 1237 attribStat(tree.body, localEnv); 1238 if (isConstructor) { 1239 ListBuffer<JCTree> prologueCode = new ListBuffer<>(); 1240 for (JCTree stat : tree.body.stats) { 1241 prologueCode.add(stat); 1242 /* gather all the stats in the body until a `super` or `this` constructor invocation is found, 1243 * including the constructor invocation, that way we don't need to worry in the visitor below if 1244 * if we are dealing or not with prologue code 1245 */ 1246 if (stat instanceof JCExpressionStatement expStmt && 1247 expStmt.expr instanceof JCMethodInvocation mi && 1248 TreeInfo.isConstructorCall(mi)) { 1249 break; 1250 } 1251 } 1252 if (!prologueCode.isEmpty()) { 1253 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(localEnv); 1254 ctorPrologueVisitor.scan(prologueCode.toList()); 1255 } 1256 } 1257 } 1258 1259 localEnv.info.scope.leave(); 1260 result = tree.type = m.type; 1261 } finally { 1262 chk.setLint(prevLint); 1263 chk.setMethod(prevMethod); 1264 env.info.ctorPrologue = ctorProloguePrev; 1265 } 1266 } 1267 1268 class CtorPrologueVisitor extends TreeScanner { 1269 Env<AttrContext> localEnv; 1270 CtorPrologueVisitor(Env<AttrContext> localEnv) { 1271 this.localEnv = localEnv; 1272 currentClassSym = localEnv.enclClass.sym; 1273 } 1274 1275 boolean insideLambdaOrClassDef = false; 1276 1277 @Override 1278 public void visitLambda(JCLambda lambda) { 1279 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1280 try { 1281 insideLambdaOrClassDef = true; 1282 super.visitLambda(lambda); 1283 } finally { 1284 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1285 } 1286 } 1287 1288 ClassSymbol currentClassSym; 1289 1290 @Override 1291 public void visitClassDef(JCClassDecl classDecl) { 1292 boolean previousInsideLambdaOrClassDef = insideLambdaOrClassDef; 1293 ClassSymbol previousClassSym = currentClassSym; 1294 try { 1295 insideLambdaOrClassDef = true; 1296 currentClassSym = classDecl.sym; 1297 super.visitClassDef(classDecl); 1298 } finally { 1299 insideLambdaOrClassDef = previousInsideLambdaOrClassDef; 1300 currentClassSym = previousClassSym; 1301 } 1302 } 1303 1304 private void reportPrologueError(JCTree tree, Symbol sym) { 1305 preview.checkSourceLevel(tree, Feature.FLEXIBLE_CONSTRUCTORS); 1306 log.error(tree, Errors.CantRefBeforeCtorCalled(sym)); 1307 } 1308 1309 @Override 1310 public void visitApply(JCMethodInvocation tree) { 1311 super.visitApply(tree); 1312 Name name = TreeInfo.name(tree.meth); 1313 boolean isConstructorCall = name == names._this || name == names._super; 1314 Symbol msym = TreeInfo.symbolFor(tree.meth); 1315 // is this an instance method call or an illegal constructor invocation like: `this.super()`? 1316 if (msym != null && // for erroneous invocations msym can be null, ignore those 1317 (!isConstructorCall || 1318 isConstructorCall && tree.meth.hasTag(SELECT))) { 1319 if (isEarlyReference(localEnv, tree.meth, msym)) 1320 reportPrologueError(tree.meth, msym); 1321 } 1322 } 1323 1324 @Override 1325 public void visitIdent(JCIdent tree) { 1326 analyzeSymbol(tree); 1327 } 1328 1329 @Override 1330 public void visitSelect(JCFieldAccess tree) { 1331 SelectScanner ss = new SelectScanner(); 1332 ss.scan(tree); 1333 if (ss.scanLater == null) { 1334 analyzeSymbol(tree); 1335 } else { 1336 boolean prevLhs = isInLHS; 1337 try { 1338 isInLHS = false; 1339 scan(ss.scanLater); 1340 } finally { 1341 isInLHS = prevLhs; 1342 } 1343 } 1344 } 1345 1346 @Override 1347 public void visitNewClass(JCNewClass tree) { 1348 super.visitNewClass(tree); 1349 checkNewClassAndMethRefs(tree, tree.type); 1350 } 1351 1352 @Override 1353 public void visitReference(JCMemberReference tree) { 1354 super.visitReference(tree); 1355 if (tree.getMode() == JCMemberReference.ReferenceMode.NEW) { 1356 checkNewClassAndMethRefs(tree, tree.expr.type); 1357 } 1358 } 1359 1360 void checkNewClassAndMethRefs(JCTree tree, Type t) { 1361 if (t.tsym.isEnclosedBy(localEnv.enclClass.sym) && 1362 !t.tsym.isStatic() && 1363 !t.tsym.isDirectlyOrIndirectlyLocal()) { 1364 reportPrologueError(tree, t.getEnclosingType().tsym); 1365 } 1366 } 1367 1368 /* if a symbol is in the LHS of an assignment expression we won't consider it as a candidate 1369 * for a proxy local variable later on 1370 */ 1371 boolean isInLHS = false; 1372 1373 @Override 1374 public void visitAssign(JCAssign tree) { 1375 boolean previousIsInLHS = isInLHS; 1376 try { 1377 isInLHS = true; 1378 scan(tree.lhs); 1379 } finally { 1380 isInLHS = previousIsInLHS; 1381 } 1382 scan(tree.rhs); 1383 } 1384 1385 @Override 1386 public void visitMethodDef(JCMethodDecl tree) { 1387 // ignore any declarative part, mainly to avoid scanning receiver parameters 1388 scan(tree.body); 1389 } 1390 1391 void analyzeSymbol(JCTree tree) { 1392 Symbol sym = TreeInfo.symbolFor(tree); 1393 // make sure that there is a symbol and it is not static 1394 if (sym == null || sym.isStatic()) { 1395 return; 1396 } 1397 if (isInLHS && !insideLambdaOrClassDef) { 1398 // Check instance field assignments that appear in constructor prologues 1399 if (isEarlyReference(localEnv, tree, sym)) { 1400 // Field may not be inherited from a superclass 1401 if (sym.owner != localEnv.enclClass.sym) { 1402 log.error(tree, Errors.CantRefBeforeCtorCalled(sym)); 1403 return; 1404 } 1405 // Field may not have an initializer 1406 if ((sym.flags() & HASINIT) != 0) { 1407 log.error(tree, Errors.CantAssignInitializedBeforeCtorCalled(sym)); 1408 return; 1409 } 1410 } 1411 return; 1412 } 1413 tree = TreeInfo.skipParens(tree); 1414 if (sym.kind == VAR && sym.owner.kind == TYP) { 1415 if (sym.name == names._this || sym.name == names._super) { 1416 // are we seeing something like `this` or `CurrentClass.this` or `SuperClass.super::foo`? 1417 if (TreeInfo.isExplicitThisReference( 1418 types, 1419 (ClassType)localEnv.enclClass.sym.type, 1420 tree)) { 1421 reportPrologueError(tree, sym); 1422 } 1423 } else if (sym.kind == VAR && sym.owner.kind == TYP) { // now fields only 1424 if (sym.owner != localEnv.enclClass.sym) { 1425 if (localEnv.enclClass.sym.isSubClass(sym.owner, types) && 1426 sym.isInheritedIn(localEnv.enclClass.sym, types)) { 1427 /* if we are dealing with a field that doesn't belong to the current class, but the 1428 * field is inherited, this is an error. Unless, the super class is also an outer 1429 * class and the field's qualifier refers to the outer class 1430 */ 1431 if (tree.hasTag(IDENT) || 1432 TreeInfo.isExplicitThisReference( 1433 types, 1434 (ClassType)localEnv.enclClass.sym.type, 1435 ((JCFieldAccess)tree).selected)) { 1436 reportPrologueError(tree, sym); 1437 } 1438 } 1439 } else if (isEarlyReference(localEnv, tree, sym)) { 1440 /* now this is a `proper` instance field of the current class 1441 * references to fields of identity classes which happen to have initializers are 1442 * not allowed in the prologue 1443 */ 1444 if (insideLambdaOrClassDef || 1445 (!localEnv.enclClass.sym.isValueClass() && (sym.flags_field & HASINIT) != 0)) 1446 reportPrologueError(tree, sym); 1447 // we will need to generate a proxy for this field later on 1448 if (!isInLHS) { 1449 if (allowValueClasses) { 1450 localProxyVarsGen.addFieldReadInPrologue(localEnv.enclMethod, sym); 1451 } else { 1452 reportPrologueError(tree, sym); 1453 } 1454 } 1455 } 1456 } 1457 } 1458 } 1459 1460 /** 1461 * Determine if the symbol appearance constitutes an early reference to the current class. 1462 * 1463 * <p> 1464 * This means the symbol is an instance field, or method, of the current class and it appears 1465 * in an early initialization context of it (i.e., one of its constructor prologues). 1466 * 1467 * @param env The current environment 1468 * @param tree the AST referencing the variable 1469 * @param sym The symbol 1470 */ 1471 private boolean isEarlyReference(Env<AttrContext> env, JCTree tree, Symbol sym) { 1472 if ((sym.flags() & STATIC) == 0 && 1473 (sym.kind == VAR || sym.kind == MTH) && 1474 sym.isMemberOf(env.enclClass.sym, types)) { 1475 // Allow "Foo.this.x" when "Foo" is (also) an outer class, as this refers to the outer instance 1476 if (tree instanceof JCFieldAccess fa) { 1477 return TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, fa.selected); 1478 } else if (currentClassSym != env.enclClass.sym) { 1479 /* so we are inside a class, CI, in the prologue of an outer class, CO, and the symbol being 1480 * analyzed has no qualifier. So if the symbol is a member of CI the reference is allowed, 1481 * otherwise it is not. 1482 * It could be that the reference to CI's member happens inside CI's own prologue, but that 1483 * will be checked separately, when CI's prologue is analyzed. 1484 */ 1485 return !sym.isMemberOf(currentClassSym, types); 1486 } 1487 return true; 1488 } 1489 return false; 1490 } 1491 1492 /* scanner for a select expression, anything that is not a select or identifier 1493 * will be stored for further analysis 1494 */ 1495 class SelectScanner extends DeferredAttr.FilterScanner { 1496 JCTree scanLater; 1497 1498 SelectScanner() { 1499 super(Set.of(IDENT, SELECT, PARENS)); 1500 } 1501 1502 @Override 1503 void skip(JCTree tree) { 1504 scanLater = tree; 1505 } 1506 } 1507 } 1508 1509 public void visitVarDef(JCVariableDecl tree) { 1510 // Local variables have not been entered yet, so we need to do it now: 1511 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1512 if (tree.sym != null) { 1513 // parameters have already been entered 1514 env.info.scope.enter(tree.sym); 1515 } else { 1516 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1517 if (tree.init == null) { 1518 //cannot use 'var' without initializer 1519 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1520 tree.vartype = make.Erroneous(); 1521 } else { 1522 Fragment msg = canInferLocalVarType(tree); 1523 if (msg != null) { 1524 //cannot use 'var' with initializer which require an explicit target 1525 //(e.g. lambda, method reference, array initializer). 1526 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1527 tree.vartype = make.Erroneous(); 1528 } 1529 } 1530 } 1531 try { 1532 annotate.blockAnnotations(); 1533 memberEnter.memberEnter(tree, env); 1534 } finally { 1535 annotate.unblockAnnotations(); 1536 } 1537 } 1538 } else { 1539 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1540 } 1541 1542 VarSymbol v = tree.sym; 1543 Lint lint = env.info.lint.augment(v); 1544 Lint prevLint = chk.setLint(lint); 1545 1546 // Check that the variable's declared type is well-formed. 1547 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1548 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1549 (tree.sym.flags() & PARAMETER) != 0; 1550 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1551 1552 try { 1553 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1554 deferredLintHandler.flush(tree, lint); 1555 chk.checkDeprecatedAnnotation(tree.pos(), v); 1556 1557 if (tree.init != null) { 1558 if ((v.flags_field & FINAL) == 0 || 1559 !memberEnter.needsLazyConstValue(tree.init)) { 1560 // Not a compile-time constant 1561 // Attribute initializer in a new environment 1562 // with the declared variable as owner. 1563 // Check that initializer conforms to variable's declared type. 1564 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1565 initEnv.info.lint = lint; 1566 // In order to catch self-references, we set the variable's 1567 // declaration position to maximal possible value, effectively 1568 // marking the variable as undefined. 1569 initEnv.info.enclVar = v; 1570 boolean previousCtorPrologue = initEnv.info.ctorPrologue; 1571 try { 1572 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1573 // strict instance initializer in a value class 1574 initEnv.info.ctorPrologue = true; 1575 } 1576 attribExpr(tree.init, initEnv, v.type); 1577 if (tree.isImplicitlyTyped()) { 1578 //fixup local variable type 1579 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1580 } 1581 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1582 // strict field initializers are inlined in constructor's prologues 1583 CtorPrologueVisitor ctorPrologueVisitor = new CtorPrologueVisitor(initEnv); 1584 ctorPrologueVisitor.scan(tree.init); 1585 } 1586 } finally { 1587 initEnv.info.ctorPrologue = previousCtorPrologue; 1588 } 1589 } 1590 if (tree.isImplicitlyTyped()) { 1591 setSyntheticVariableType(tree, v.type); 1592 } 1593 } 1594 result = tree.type = v.type; 1595 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1596 if (isNonArgsMethodInObject(v.name)) { 1597 log.error(tree, Errors.IllegalRecordComponentName(v)); 1598 } 1599 } 1600 chk.checkRequiresIdentity(tree, env.info.lint); 1601 } 1602 finally { 1603 chk.setLint(prevLint); 1604 } 1605 } 1606 1607 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1608 if (tree.init != null && 1609 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1610 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1611 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1612 // Field initializer expression need to be entered. 1613 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1614 annotate.flush(); 1615 } 1616 } 1617 1618 private boolean isNonArgsMethodInObject(Name name) { 1619 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1620 if (s.type.getParameterTypes().isEmpty()) { 1621 return true; 1622 } 1623 } 1624 return false; 1625 } 1626 1627 Fragment canInferLocalVarType(JCVariableDecl tree) { 1628 LocalInitScanner lis = new LocalInitScanner(); 1629 lis.scan(tree.init); 1630 return lis.badInferenceMsg; 1631 } 1632 1633 static class LocalInitScanner extends TreeScanner { 1634 Fragment badInferenceMsg = null; 1635 boolean needsTarget = true; 1636 1637 @Override 1638 public void visitNewArray(JCNewArray tree) { 1639 if (tree.elemtype == null && needsTarget) { 1640 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1641 } 1642 } 1643 1644 @Override 1645 public void visitLambda(JCLambda tree) { 1646 if (needsTarget) { 1647 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1648 } 1649 } 1650 1651 @Override 1652 public void visitTypeCast(JCTypeCast tree) { 1653 boolean prevNeedsTarget = needsTarget; 1654 try { 1655 needsTarget = false; 1656 super.visitTypeCast(tree); 1657 } finally { 1658 needsTarget = prevNeedsTarget; 1659 } 1660 } 1661 1662 @Override 1663 public void visitReference(JCMemberReference tree) { 1664 if (needsTarget) { 1665 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1666 } 1667 } 1668 1669 @Override 1670 public void visitNewClass(JCNewClass tree) { 1671 boolean prevNeedsTarget = needsTarget; 1672 try { 1673 needsTarget = false; 1674 super.visitNewClass(tree); 1675 } finally { 1676 needsTarget = prevNeedsTarget; 1677 } 1678 } 1679 1680 @Override 1681 public void visitApply(JCMethodInvocation tree) { 1682 boolean prevNeedsTarget = needsTarget; 1683 try { 1684 needsTarget = false; 1685 super.visitApply(tree); 1686 } finally { 1687 needsTarget = prevNeedsTarget; 1688 } 1689 } 1690 } 1691 1692 public void visitSkip(JCSkip tree) { 1693 result = null; 1694 } 1695 1696 public void visitBlock(JCBlock tree) { 1697 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1698 // Block is a static or instance initializer; 1699 // let the owner of the environment be a freshly 1700 // created BLOCK-method. 1701 Symbol fakeOwner = 1702 new MethodSymbol(tree.flags | BLOCK | 1703 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1704 env.info.scope.owner); 1705 final Env<AttrContext> localEnv = 1706 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1707 1708 if ((tree.flags & STATIC) != 0) { 1709 localEnv.info.staticLevel++; 1710 } else { 1711 localEnv.info.instanceInitializerBlock = true; 1712 } 1713 // Attribute all type annotations in the block 1714 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1715 annotate.flush(); 1716 attribStats(tree.stats, localEnv); 1717 1718 { 1719 // Store init and clinit type annotations with the ClassSymbol 1720 // to allow output in Gen.normalizeDefs. 1721 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1722 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1723 if ((tree.flags & STATIC) != 0) { 1724 cs.appendClassInitTypeAttributes(tas); 1725 } else { 1726 cs.appendInitTypeAttributes(tas); 1727 } 1728 } 1729 } else { 1730 // Create a new local environment with a local scope. 1731 Env<AttrContext> localEnv = 1732 env.dup(tree, env.info.dup(env.info.scope.dup())); 1733 try { 1734 attribStats(tree.stats, localEnv); 1735 } finally { 1736 localEnv.info.scope.leave(); 1737 } 1738 } 1739 result = null; 1740 } 1741 1742 public void visitDoLoop(JCDoWhileLoop tree) { 1743 attribStat(tree.body, env.dup(tree)); 1744 attribExpr(tree.cond, env, syms.booleanType); 1745 handleLoopConditionBindings(matchBindings, tree, tree.body); 1746 result = null; 1747 } 1748 1749 public void visitWhileLoop(JCWhileLoop tree) { 1750 attribExpr(tree.cond, env, syms.booleanType); 1751 MatchBindings condBindings = matchBindings; 1752 // include condition's bindings when true in the body: 1753 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1754 try { 1755 attribStat(tree.body, whileEnv.dup(tree)); 1756 } finally { 1757 whileEnv.info.scope.leave(); 1758 } 1759 handleLoopConditionBindings(condBindings, tree, tree.body); 1760 result = null; 1761 } 1762 1763 public void visitForLoop(JCForLoop tree) { 1764 Env<AttrContext> loopEnv = 1765 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1766 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1767 try { 1768 attribStats(tree.init, loopEnv); 1769 if (tree.cond != null) { 1770 attribExpr(tree.cond, loopEnv, syms.booleanType); 1771 // include condition's bindings when true in the body and step: 1772 condBindings = matchBindings; 1773 } 1774 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1775 try { 1776 bodyEnv.tree = tree; // before, we were not in loop! 1777 attribStats(tree.step, bodyEnv); 1778 attribStat(tree.body, bodyEnv); 1779 } finally { 1780 bodyEnv.info.scope.leave(); 1781 } 1782 result = null; 1783 } 1784 finally { 1785 loopEnv.info.scope.leave(); 1786 } 1787 handleLoopConditionBindings(condBindings, tree, tree.body); 1788 } 1789 1790 /** 1791 * Include condition's bindings when false after the loop, if cannot get out of the loop 1792 */ 1793 private void handleLoopConditionBindings(MatchBindings condBindings, 1794 JCStatement loop, 1795 JCStatement loopBody) { 1796 if (condBindings.bindingsWhenFalse.nonEmpty() && 1797 !breaksTo(env, loop, loopBody)) { 1798 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1799 } 1800 } 1801 1802 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1803 preFlow(body); 1804 return flow.breaksToTree(env, loop, body, make); 1805 } 1806 1807 /** 1808 * Add given bindings to the current scope, unless there's a break to 1809 * an immediately enclosing labeled statement. 1810 */ 1811 private void addBindings2Scope(JCStatement introducingStatement, 1812 List<BindingSymbol> bindings) { 1813 if (bindings.isEmpty()) { 1814 return ; 1815 } 1816 1817 var searchEnv = env; 1818 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1819 labeled.body == introducingStatement) { 1820 if (breaksTo(env, labeled, labeled.body)) { 1821 //breaking to an immediately enclosing labeled statement 1822 return ; 1823 } 1824 searchEnv = searchEnv.next; 1825 introducingStatement = labeled; 1826 } 1827 1828 //include condition's body when false after the while, if cannot get out of the loop 1829 bindings.forEach(env.info.scope::enter); 1830 bindings.forEach(BindingSymbol::preserveBinding); 1831 } 1832 1833 public void visitForeachLoop(JCEnhancedForLoop tree) { 1834 Env<AttrContext> loopEnv = 1835 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1836 try { 1837 //the Formal Parameter of a for-each loop is not in the scope when 1838 //attributing the for-each expression; we mimic this by attributing 1839 //the for-each expression first (against original scope). 1840 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1841 chk.checkNonVoid(tree.pos(), exprType); 1842 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1843 if (elemtype == null) { 1844 // or perhaps expr implements Iterable<T>? 1845 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1846 if (base == null) { 1847 log.error(tree.expr.pos(), 1848 Errors.ForeachNotApplicableToType(exprType, 1849 Fragments.TypeReqArrayOrIterable)); 1850 elemtype = types.createErrorType(exprType); 1851 } else { 1852 List<Type> iterableParams = base.allparams(); 1853 elemtype = iterableParams.isEmpty() 1854 ? syms.objectType 1855 : types.wildUpperBound(iterableParams.head); 1856 1857 // Check the return type of the method iterator(). 1858 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1859 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1860 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1861 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1862 log.error(tree.pos(), 1863 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1864 } 1865 } 1866 } 1867 if (tree.var.isImplicitlyTyped()) { 1868 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1869 setSyntheticVariableType(tree.var, inferredType); 1870 } 1871 attribStat(tree.var, loopEnv); 1872 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1873 loopEnv.tree = tree; // before, we were not in loop! 1874 attribStat(tree.body, loopEnv); 1875 result = null; 1876 } 1877 finally { 1878 loopEnv.info.scope.leave(); 1879 } 1880 } 1881 1882 public void visitLabelled(JCLabeledStatement tree) { 1883 // Check that label is not used in an enclosing statement 1884 Env<AttrContext> env1 = env; 1885 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1886 if (env1.tree.hasTag(LABELLED) && 1887 ((JCLabeledStatement) env1.tree).label == tree.label) { 1888 log.error(tree.pos(), 1889 Errors.LabelAlreadyInUse(tree.label)); 1890 break; 1891 } 1892 env1 = env1.next; 1893 } 1894 1895 attribStat(tree.body, env.dup(tree)); 1896 result = null; 1897 } 1898 1899 public void visitSwitch(JCSwitch tree) { 1900 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1901 attribStats(c.stats, caseEnv); 1902 }); 1903 result = null; 1904 } 1905 1906 public void visitSwitchExpression(JCSwitchExpression tree) { 1907 boolean wrongContext = false; 1908 1909 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1910 PolyKind.STANDALONE : PolyKind.POLY; 1911 1912 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1913 //this means we are returning a poly conditional from void-compatible lambda expression 1914 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1915 resultInfo = recoveryInfo; 1916 wrongContext = true; 1917 } 1918 1919 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1920 unknownExprInfo : 1921 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1922 1923 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1924 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1925 1926 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1927 caseEnv.info.yieldResult = condInfo; 1928 attribStats(c.stats, caseEnv); 1929 new TreeScanner() { 1930 @Override 1931 public void visitYield(JCYield brk) { 1932 if (brk.target == tree) { 1933 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1934 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1935 } 1936 super.visitYield(brk); 1937 } 1938 1939 @Override public void visitClassDef(JCClassDecl tree) {} 1940 @Override public void visitLambda(JCLambda tree) {} 1941 }.scan(c.stats); 1942 }); 1943 1944 if (tree.cases.isEmpty()) { 1945 log.error(tree.pos(), 1946 Errors.SwitchExpressionEmpty); 1947 } else if (caseTypes.isEmpty()) { 1948 log.error(tree.pos(), 1949 Errors.SwitchExpressionNoResultExpressions); 1950 } 1951 1952 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1953 1954 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1955 } 1956 //where: 1957 CheckContext switchExpressionContext(CheckContext checkContext) { 1958 return new Check.NestedCheckContext(checkContext) { 1959 //this will use enclosing check context to check compatibility of 1960 //subexpression against target type; if we are in a method check context, 1961 //depending on whether boxing is allowed, we could have incompatibilities 1962 @Override 1963 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1964 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1965 } 1966 }; 1967 } 1968 1969 private void handleSwitch(JCTree switchTree, 1970 JCExpression selector, 1971 List<JCCase> cases, 1972 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1973 Type seltype = attribExpr(selector, env); 1974 Type seltypeUnboxed = types.unboxedTypeOrType(seltype); 1975 1976 Env<AttrContext> switchEnv = 1977 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1978 1979 try { 1980 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1981 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1982 boolean booleanSwitch = types.isSameType(seltypeUnboxed, syms.booleanType); 1983 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1984 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1985 boolean patternSwitch; 1986 if (seltype.isPrimitive() && !intSwitch) { 1987 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1988 patternSwitch = true; 1989 } 1990 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1991 !intSwitch) { 1992 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1993 patternSwitch = true; 1994 } else { 1995 patternSwitch = cases.stream() 1996 .flatMap(c -> c.labels.stream()) 1997 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1998 TreeInfo.isNullCaseLabel(l)); 1999 } 2000 2001 // Attribute all cases and 2002 // check that there are no duplicate case labels or default clauses. 2003 Set<Object> constants = new HashSet<>(); // The set of case constants. 2004 boolean hasDefault = false; // Is there a default label? 2005 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 2006 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 2007 boolean hasNullPattern = false; // Is there a null pattern? 2008 CaseTree.CaseKind caseKind = null; 2009 boolean wasError = false; 2010 JCCaseLabel unconditionalCaseLabel = null; 2011 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 2012 JCCase c = l.head; 2013 if (caseKind == null) { 2014 caseKind = c.caseKind; 2015 } else if (caseKind != c.caseKind && !wasError) { 2016 log.error(c.pos(), 2017 Errors.SwitchMixingCaseTypes); 2018 wasError = true; 2019 } 2020 MatchBindings currentBindings = null; 2021 MatchBindings guardBindings = null; 2022 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 2023 JCCaseLabel label = labels.head; 2024 if (label instanceof JCConstantCaseLabel constLabel) { 2025 JCExpression expr = constLabel.expr; 2026 if (TreeInfo.isNull(expr)) { 2027 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 2028 if (hasNullPattern) { 2029 log.error(label.pos(), Errors.DuplicateCaseLabel); 2030 } 2031 hasNullPattern = true; 2032 attribExpr(expr, switchEnv, seltype); 2033 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 2034 } else if (enumSwitch) { 2035 Symbol sym = enumConstant(expr, seltype); 2036 if (sym == null) { 2037 if (allowPatternSwitch) { 2038 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2039 Symbol enumSym = TreeInfo.symbol(expr); 2040 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 2041 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 2042 } else if (!constants.add(enumSym)) { 2043 log.error(label.pos(), Errors.DuplicateCaseLabel); 2044 } 2045 } else { 2046 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 2047 } 2048 } else if (!constants.add(sym)) { 2049 log.error(label.pos(), Errors.DuplicateCaseLabel); 2050 } 2051 } else if (errorEnumSwitch) { 2052 //error recovery: the selector is erroneous, and all the case labels 2053 //are identifiers. This could be an enum switch - don't report resolve 2054 //error for the case label: 2055 var prevResolveHelper = rs.basicLogResolveHelper; 2056 try { 2057 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 2058 attribExpr(expr, switchEnv, seltype); 2059 } finally { 2060 rs.basicLogResolveHelper = prevResolveHelper; 2061 } 2062 } else { 2063 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 2064 if (!pattype.hasTag(ERROR)) { 2065 if (pattype.constValue() == null) { 2066 Symbol s = TreeInfo.symbol(expr); 2067 if (s != null && s.kind == TYP) { 2068 log.error(expr.pos(), 2069 Errors.PatternExpected); 2070 } else if (s == null || !s.isEnum()) { 2071 log.error(expr.pos(), 2072 (stringSwitch ? Errors.StringConstReq 2073 : intSwitch ? Errors.ConstExprReq 2074 : Errors.PatternOrEnumReq)); 2075 } else if (!constants.add(s)) { 2076 log.error(label.pos(), Errors.DuplicateCaseLabel); 2077 } 2078 } 2079 else { 2080 boolean isLongFloatDoubleOrBooleanConstant = 2081 pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN); 2082 if (isLongFloatDoubleOrBooleanConstant) { 2083 preview.checkSourceLevel(label.pos(), Feature.PRIMITIVE_PATTERNS); 2084 } 2085 if (!stringSwitch && !intSwitch && !(isLongFloatDoubleOrBooleanConstant && types.isSameType(seltypeUnboxed, pattype))) { 2086 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 2087 } else if (!constants.add(pattype.constValue())) { 2088 log.error(c.pos(), Errors.DuplicateCaseLabel); 2089 } 2090 } 2091 } 2092 } 2093 } else if (label instanceof JCDefaultCaseLabel def) { 2094 if (hasDefault) { 2095 log.error(label.pos(), Errors.DuplicateDefaultLabel); 2096 } else if (hasUnconditionalPattern) { 2097 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 2098 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2099 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 2100 } 2101 hasDefault = true; 2102 matchBindings = MatchBindingsComputer.EMPTY; 2103 } else if (label instanceof JCPatternCaseLabel patternlabel) { 2104 //pattern 2105 JCPattern pat = patternlabel.pat; 2106 attribExpr(pat, switchEnv, seltype); 2107 Type primaryType = TreeInfo.primaryPatternType(pat); 2108 2109 if (primaryType.isPrimitive()) { 2110 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 2111 } else if (!primaryType.hasTag(TYPEVAR)) { 2112 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 2113 } 2114 checkCastablePattern(pat.pos(), seltype, primaryType); 2115 Type patternType = types.erasure(primaryType); 2116 JCExpression guard = c.guard; 2117 if (guardBindings == null && guard != null) { 2118 MatchBindings afterPattern = matchBindings; 2119 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 2120 try { 2121 attribExpr(guard, bodyEnv, syms.booleanType); 2122 } finally { 2123 bodyEnv.info.scope.leave(); 2124 } 2125 2126 guardBindings = matchBindings; 2127 matchBindings = afterPattern; 2128 2129 if (TreeInfo.isBooleanWithValue(guard, 0)) { 2130 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 2131 } 2132 } 2133 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 2134 boolean unconditional = 2135 unguarded && 2136 !patternType.isErroneous() && 2137 types.isUnconditionallyExact(seltype, patternType); 2138 if (unconditional) { 2139 if (hasUnconditionalPattern) { 2140 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 2141 } else if (hasDefault) { 2142 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 2143 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 2144 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 2145 } 2146 hasUnconditionalPattern = true; 2147 unconditionalCaseLabel = label; 2148 } 2149 lastPatternErroneous = patternType.isErroneous(); 2150 } else { 2151 Assert.error(); 2152 } 2153 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 2154 } 2155 2156 if (guardBindings != null) { 2157 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 2158 } 2159 2160 Env<AttrContext> caseEnv = 2161 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 2162 try { 2163 attribCase.accept(c, caseEnv); 2164 } finally { 2165 caseEnv.info.scope.leave(); 2166 } 2167 addVars(c.stats, switchEnv.info.scope); 2168 2169 preFlow(c); 2170 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 2171 } 2172 if (patternSwitch) { 2173 chk.checkSwitchCaseStructure(cases); 2174 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 2175 } 2176 if (switchTree.hasTag(SWITCH)) { 2177 ((JCSwitch) switchTree).hasUnconditionalPattern = 2178 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2179 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 2180 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 2181 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 2182 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 2183 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 2184 } else { 2185 Assert.error(switchTree.getTag().name()); 2186 } 2187 } finally { 2188 switchEnv.info.scope.leave(); 2189 } 2190 } 2191 // where 2192 private ResultInfo caseLabelResultInfo(Type seltype) { 2193 return new ResultInfo(KindSelector.VAL_TYP, 2194 !seltype.hasTag(ERROR) ? seltype 2195 : Type.noType); 2196 } 2197 /** Add any variables defined in stats to the switch scope. */ 2198 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 2199 for (;stats.nonEmpty(); stats = stats.tail) { 2200 JCTree stat = stats.head; 2201 if (stat.hasTag(VARDEF)) 2202 switchScope.enter(((JCVariableDecl) stat).sym); 2203 } 2204 } 2205 // where 2206 /** Return the selected enumeration constant symbol, or null. */ 2207 private Symbol enumConstant(JCTree tree, Type enumType) { 2208 if (tree.hasTag(IDENT)) { 2209 JCIdent ident = (JCIdent)tree; 2210 Name name = ident.name; 2211 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 2212 if (sym.kind == VAR) { 2213 Symbol s = ident.sym = sym; 2214 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 2215 ident.type = s.type; 2216 return ((s.flags_field & Flags.ENUM) == 0) 2217 ? null : s; 2218 } 2219 } 2220 } 2221 return null; 2222 } 2223 2224 public void visitSynchronized(JCSynchronized tree) { 2225 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 2226 if (identityType && tree.lock.type != null && tree.lock.type.isValueBased()) { 2227 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 2228 } 2229 attribStat(tree.body, env); 2230 result = null; 2231 } 2232 2233 public void visitTry(JCTry tree) { 2234 // Create a new local environment with a local 2235 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 2236 try { 2237 boolean isTryWithResource = tree.resources.nonEmpty(); 2238 // Create a nested environment for attributing the try block if needed 2239 Env<AttrContext> tryEnv = isTryWithResource ? 2240 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 2241 localEnv; 2242 try { 2243 // Attribute resource declarations 2244 for (JCTree resource : tree.resources) { 2245 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 2246 @Override 2247 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2248 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 2249 } 2250 }; 2251 ResultInfo twrResult = 2252 new ResultInfo(KindSelector.VAR, 2253 syms.autoCloseableType, 2254 twrContext); 2255 if (resource.hasTag(VARDEF)) { 2256 attribStat(resource, tryEnv); 2257 twrResult.check(resource, resource.type); 2258 2259 //check that resource type cannot throw InterruptedException 2260 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2261 2262 VarSymbol var = ((JCVariableDecl) resource).sym; 2263 2264 var.flags_field |= Flags.FINAL; 2265 var.setData(ElementKind.RESOURCE_VARIABLE); 2266 } else { 2267 attribTree(resource, tryEnv, twrResult); 2268 } 2269 } 2270 // Attribute body 2271 attribStat(tree.body, tryEnv); 2272 } finally { 2273 if (isTryWithResource) 2274 tryEnv.info.scope.leave(); 2275 } 2276 2277 // Attribute catch clauses 2278 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2279 JCCatch c = l.head; 2280 Env<AttrContext> catchEnv = 2281 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2282 try { 2283 Type ctype = attribStat(c.param, catchEnv); 2284 if (TreeInfo.isMultiCatch(c)) { 2285 //multi-catch parameter is implicitly marked as final 2286 c.param.sym.flags_field |= FINAL | UNION; 2287 } 2288 if (c.param.sym.kind == VAR) { 2289 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2290 } 2291 chk.checkType(c.param.vartype.pos(), 2292 chk.checkClassType(c.param.vartype.pos(), ctype), 2293 syms.throwableType); 2294 attribStat(c.body, catchEnv); 2295 } finally { 2296 catchEnv.info.scope.leave(); 2297 } 2298 } 2299 2300 // Attribute finalizer 2301 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2302 result = null; 2303 } 2304 finally { 2305 localEnv.info.scope.leave(); 2306 } 2307 } 2308 2309 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2310 if (!resource.isErroneous() && 2311 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2312 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2313 Symbol close = syms.noSymbol; 2314 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler(); 2315 try { 2316 close = rs.resolveQualifiedMethod(pos, 2317 env, 2318 types.skipTypeVars(resource, false), 2319 names.close, 2320 List.nil(), 2321 List.nil()); 2322 } 2323 finally { 2324 log.popDiagnosticHandler(discardHandler); 2325 } 2326 if (close.kind == MTH && 2327 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2328 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2329 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2330 } 2331 } 2332 } 2333 2334 public void visitConditional(JCConditional tree) { 2335 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2336 MatchBindings condBindings = matchBindings; 2337 2338 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2339 isBooleanOrNumeric(env, tree)) ? 2340 PolyKind.STANDALONE : PolyKind.POLY; 2341 2342 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2343 //this means we are returning a poly conditional from void-compatible lambda expression 2344 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2345 result = tree.type = types.createErrorType(resultInfo.pt); 2346 return; 2347 } 2348 2349 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2350 unknownExprInfo : 2351 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2352 2353 2354 // x ? y : z 2355 // include x's bindings when true in y 2356 // include x's bindings when false in z 2357 2358 Type truetype; 2359 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2360 try { 2361 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2362 } finally { 2363 trueEnv.info.scope.leave(); 2364 } 2365 2366 MatchBindings trueBindings = matchBindings; 2367 2368 Type falsetype; 2369 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2370 try { 2371 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2372 } finally { 2373 falseEnv.info.scope.leave(); 2374 } 2375 2376 MatchBindings falseBindings = matchBindings; 2377 2378 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2379 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2380 List.of(truetype, falsetype)) : pt(); 2381 if (condtype.constValue() != null && 2382 truetype.constValue() != null && 2383 falsetype.constValue() != null && 2384 !owntype.hasTag(NONE)) { 2385 //constant folding 2386 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2387 } 2388 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2389 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2390 } 2391 //where 2392 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2393 switch (tree.getTag()) { 2394 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2395 ((JCLiteral)tree).typetag == BOOLEAN || 2396 ((JCLiteral)tree).typetag == BOT; 2397 case LAMBDA: case REFERENCE: return false; 2398 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2399 case CONDEXPR: 2400 JCConditional condTree = (JCConditional)tree; 2401 return isBooleanOrNumeric(env, condTree.truepart) && 2402 isBooleanOrNumeric(env, condTree.falsepart); 2403 case APPLY: 2404 JCMethodInvocation speculativeMethodTree = 2405 (JCMethodInvocation)deferredAttr.attribSpeculative( 2406 tree, env, unknownExprInfo, 2407 argumentAttr.withLocalCacheContext()); 2408 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2409 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2410 env.enclClass.type : 2411 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2412 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2413 return primitiveOrBoxed(owntype); 2414 case NEWCLASS: 2415 JCExpression className = 2416 removeClassParams.translate(((JCNewClass)tree).clazz); 2417 JCExpression speculativeNewClassTree = 2418 (JCExpression)deferredAttr.attribSpeculative( 2419 className, env, unknownTypeInfo, 2420 argumentAttr.withLocalCacheContext()); 2421 return primitiveOrBoxed(speculativeNewClassTree.type); 2422 default: 2423 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2424 argumentAttr.withLocalCacheContext()).type; 2425 return primitiveOrBoxed(speculativeType); 2426 } 2427 } 2428 //where 2429 boolean primitiveOrBoxed(Type t) { 2430 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2431 } 2432 2433 TreeTranslator removeClassParams = new TreeTranslator() { 2434 @Override 2435 public void visitTypeApply(JCTypeApply tree) { 2436 result = translate(tree.clazz); 2437 } 2438 }; 2439 2440 CheckContext conditionalContext(CheckContext checkContext) { 2441 return new Check.NestedCheckContext(checkContext) { 2442 //this will use enclosing check context to check compatibility of 2443 //subexpression against target type; if we are in a method check context, 2444 //depending on whether boxing is allowed, we could have incompatibilities 2445 @Override 2446 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2447 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2448 } 2449 }; 2450 } 2451 2452 /** Compute the type of a conditional expression, after 2453 * checking that it exists. See JLS 15.25. Does not take into 2454 * account the special case where condition and both arms 2455 * are constants. 2456 * 2457 * @param pos The source position to be used for error 2458 * diagnostics. 2459 * @param thentype The type of the expression's then-part. 2460 * @param elsetype The type of the expression's else-part. 2461 */ 2462 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2463 if (condTypes.isEmpty()) { 2464 return syms.objectType; //TODO: how to handle? 2465 } 2466 Type first = condTypes.head; 2467 // If same type, that is the result 2468 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2469 return first.baseType(); 2470 2471 List<Type> unboxedTypes = condTypes.stream() 2472 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2473 .collect(List.collector()); 2474 2475 // Otherwise, if both arms can be converted to a numeric 2476 // type, return the least numeric type that fits both arms 2477 // (i.e. return larger of the two, or return int if one 2478 // arm is short, the other is char). 2479 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2480 // If one arm has an integer subrange type (i.e., byte, 2481 // short, or char), and the other is an integer constant 2482 // that fits into the subrange, return the subrange type. 2483 for (Type type : unboxedTypes) { 2484 if (!type.getTag().isStrictSubRangeOf(INT)) { 2485 continue; 2486 } 2487 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2488 return type.baseType(); 2489 } 2490 2491 for (TypeTag tag : primitiveTags) { 2492 Type candidate = syms.typeOfTag[tag.ordinal()]; 2493 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2494 return candidate; 2495 } 2496 } 2497 } 2498 2499 // Those were all the cases that could result in a primitive 2500 condTypes = condTypes.stream() 2501 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2502 .collect(List.collector()); 2503 2504 for (Type type : condTypes) { 2505 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2506 return type.baseType(); 2507 } 2508 2509 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2510 2511 condTypes = condTypes.stream() 2512 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2513 .collect(List.collector()); 2514 2515 // both are known to be reference types. The result is 2516 // lub(thentype,elsetype). This cannot fail, as it will 2517 // always be possible to infer "Object" if nothing better. 2518 return types.lub(condTypes.stream() 2519 .map(t -> t.baseType()) 2520 .filter(t -> !t.hasTag(BOT)) 2521 .collect(List.collector())); 2522 } 2523 2524 static final TypeTag[] primitiveTags = new TypeTag[]{ 2525 BYTE, 2526 CHAR, 2527 SHORT, 2528 INT, 2529 LONG, 2530 FLOAT, 2531 DOUBLE, 2532 BOOLEAN, 2533 }; 2534 2535 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2536 return bindingEnv(env, env.tree, bindings); 2537 } 2538 2539 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2540 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2541 bindings.forEach(env1.info.scope::enter); 2542 return env1; 2543 } 2544 2545 public void visitIf(JCIf tree) { 2546 attribExpr(tree.cond, env, syms.booleanType); 2547 2548 // if (x) { y } [ else z ] 2549 // include x's bindings when true in y 2550 // include x's bindings when false in z 2551 2552 MatchBindings condBindings = matchBindings; 2553 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2554 2555 try { 2556 attribStat(tree.thenpart, thenEnv); 2557 } finally { 2558 thenEnv.info.scope.leave(); 2559 } 2560 2561 preFlow(tree.thenpart); 2562 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2563 boolean aliveAfterElse; 2564 2565 if (tree.elsepart != null) { 2566 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2567 try { 2568 attribStat(tree.elsepart, elseEnv); 2569 } finally { 2570 elseEnv.info.scope.leave(); 2571 } 2572 preFlow(tree.elsepart); 2573 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2574 } else { 2575 aliveAfterElse = true; 2576 } 2577 2578 chk.checkEmptyIf(tree); 2579 2580 List<BindingSymbol> afterIfBindings = List.nil(); 2581 2582 if (aliveAfterThen && !aliveAfterElse) { 2583 afterIfBindings = condBindings.bindingsWhenTrue; 2584 } else if (aliveAfterElse && !aliveAfterThen) { 2585 afterIfBindings = condBindings.bindingsWhenFalse; 2586 } 2587 2588 addBindings2Scope(tree, afterIfBindings); 2589 2590 result = null; 2591 } 2592 2593 void preFlow(JCTree tree) { 2594 attrRecover.doRecovery(); 2595 new PostAttrAnalyzer() { 2596 @Override 2597 public void scan(JCTree tree) { 2598 if (tree == null || 2599 (tree.type != null && 2600 tree.type == Type.stuckType)) { 2601 //don't touch stuck expressions! 2602 return; 2603 } 2604 super.scan(tree); 2605 } 2606 2607 @Override 2608 public void visitClassDef(JCClassDecl that) { 2609 if (that.sym != null) { 2610 // Method preFlow shouldn't visit class definitions 2611 // that have not been entered and attributed. 2612 // See JDK-8254557 and JDK-8203277 for more details. 2613 super.visitClassDef(that); 2614 } 2615 } 2616 2617 @Override 2618 public void visitLambda(JCLambda that) { 2619 if (that.type != null) { 2620 // Method preFlow shouldn't visit lambda expressions 2621 // that have not been entered and attributed. 2622 // See JDK-8254557 and JDK-8203277 for more details. 2623 super.visitLambda(that); 2624 } 2625 } 2626 }.scan(tree); 2627 } 2628 2629 public void visitExec(JCExpressionStatement tree) { 2630 //a fresh environment is required for 292 inference to work properly --- 2631 //see Infer.instantiatePolymorphicSignatureInstance() 2632 Env<AttrContext> localEnv = env.dup(tree); 2633 attribExpr(tree.expr, localEnv); 2634 result = null; 2635 } 2636 2637 public void visitBreak(JCBreak tree) { 2638 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2639 result = null; 2640 } 2641 2642 public void visitYield(JCYield tree) { 2643 if (env.info.yieldResult != null) { 2644 attribTree(tree.value, env, env.info.yieldResult); 2645 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2646 } else { 2647 log.error(tree.pos(), tree.value.hasTag(PARENS) 2648 ? Errors.NoSwitchExpressionQualify 2649 : Errors.NoSwitchExpression); 2650 attribTree(tree.value, env, unknownExprInfo); 2651 } 2652 result = null; 2653 } 2654 2655 public void visitContinue(JCContinue tree) { 2656 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2657 result = null; 2658 } 2659 //where 2660 /** Return the target of a break, continue or yield statement, 2661 * if it exists, report an error if not. 2662 * Note: The target of a labelled break or continue is the 2663 * (non-labelled) statement tree referred to by the label, 2664 * not the tree representing the labelled statement itself. 2665 * 2666 * @param pos The position to be used for error diagnostics 2667 * @param tag The tag of the jump statement. This is either 2668 * Tree.BREAK or Tree.CONTINUE. 2669 * @param label The label of the jump statement, or null if no 2670 * label is given. 2671 * @param env The environment current at the jump statement. 2672 */ 2673 private JCTree findJumpTarget(DiagnosticPosition pos, 2674 JCTree.Tag tag, 2675 Name label, 2676 Env<AttrContext> env) { 2677 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2678 2679 if (jumpTarget.snd != null) { 2680 log.error(pos, jumpTarget.snd); 2681 } 2682 2683 return jumpTarget.fst; 2684 } 2685 /** Return the target of a break or continue statement, if it exists, 2686 * report an error if not. 2687 * Note: The target of a labelled break or continue is the 2688 * (non-labelled) statement tree referred to by the label, 2689 * not the tree representing the labelled statement itself. 2690 * 2691 * @param tag The tag of the jump statement. This is either 2692 * Tree.BREAK or Tree.CONTINUE. 2693 * @param label The label of the jump statement, or null if no 2694 * label is given. 2695 * @param env The environment current at the jump statement. 2696 */ 2697 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2698 Name label, 2699 Env<AttrContext> env) { 2700 // Search environments outwards from the point of jump. 2701 Env<AttrContext> env1 = env; 2702 JCDiagnostic.Error pendingError = null; 2703 LOOP: 2704 while (env1 != null) { 2705 switch (env1.tree.getTag()) { 2706 case LABELLED: 2707 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2708 if (label == labelled.label) { 2709 // If jump is a continue, check that target is a loop. 2710 if (tag == CONTINUE) { 2711 if (!labelled.body.hasTag(DOLOOP) && 2712 !labelled.body.hasTag(WHILELOOP) && 2713 !labelled.body.hasTag(FORLOOP) && 2714 !labelled.body.hasTag(FOREACHLOOP)) { 2715 pendingError = Errors.NotLoopLabel(label); 2716 } 2717 // Found labelled statement target, now go inwards 2718 // to next non-labelled tree. 2719 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2720 } else { 2721 return Pair.of(labelled, pendingError); 2722 } 2723 } 2724 break; 2725 case DOLOOP: 2726 case WHILELOOP: 2727 case FORLOOP: 2728 case FOREACHLOOP: 2729 if (label == null) return Pair.of(env1.tree, pendingError); 2730 break; 2731 case SWITCH: 2732 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2733 break; 2734 case SWITCH_EXPRESSION: 2735 if (tag == YIELD) { 2736 return Pair.of(env1.tree, null); 2737 } else if (tag == BREAK) { 2738 pendingError = Errors.BreakOutsideSwitchExpression; 2739 } else { 2740 pendingError = Errors.ContinueOutsideSwitchExpression; 2741 } 2742 break; 2743 case LAMBDA: 2744 case METHODDEF: 2745 case CLASSDEF: 2746 break LOOP; 2747 default: 2748 } 2749 env1 = env1.next; 2750 } 2751 if (label != null) 2752 return Pair.of(null, Errors.UndefLabel(label)); 2753 else if (pendingError != null) 2754 return Pair.of(null, pendingError); 2755 else if (tag == CONTINUE) 2756 return Pair.of(null, Errors.ContOutsideLoop); 2757 else 2758 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2759 } 2760 2761 public void visitReturn(JCReturn tree) { 2762 // Check that there is an enclosing method which is 2763 // nested within than the enclosing class. 2764 if (env.info.returnResult == null) { 2765 log.error(tree.pos(), Errors.RetOutsideMeth); 2766 } else if (env.info.yieldResult != null) { 2767 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2768 if (tree.expr != null) { 2769 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2770 } 2771 } else if (!env.info.isLambda && 2772 env.enclMethod != null && 2773 TreeInfo.isCompactConstructor(env.enclMethod)) { 2774 log.error(env.enclMethod, 2775 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2776 } else { 2777 // Attribute return expression, if it exists, and check that 2778 // it conforms to result type of enclosing method. 2779 if (tree.expr != null) { 2780 if (env.info.returnResult.pt.hasTag(VOID)) { 2781 env.info.returnResult.checkContext.report(tree.expr.pos(), 2782 diags.fragment(Fragments.UnexpectedRetVal)); 2783 } 2784 attribTree(tree.expr, env, env.info.returnResult); 2785 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2786 !env.info.returnResult.pt.hasTag(NONE)) { 2787 env.info.returnResult.checkContext.report(tree.pos(), 2788 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2789 } 2790 } 2791 result = null; 2792 } 2793 2794 public void visitThrow(JCThrow tree) { 2795 Type owntype = attribExpr(tree.expr, env, Type.noType); 2796 chk.checkType(tree, owntype, syms.throwableType); 2797 result = null; 2798 } 2799 2800 public void visitAssert(JCAssert tree) { 2801 attribExpr(tree.cond, env, syms.booleanType); 2802 if (tree.detail != null) { 2803 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2804 } 2805 result = null; 2806 } 2807 2808 /** Visitor method for method invocations. 2809 * NOTE: The method part of an application will have in its type field 2810 * the return type of the method, not the method's type itself! 2811 */ 2812 public void visitApply(JCMethodInvocation tree) { 2813 // The local environment of a method application is 2814 // a new environment nested in the current one. 2815 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2816 2817 // The types of the actual method arguments. 2818 List<Type> argtypes; 2819 2820 // The types of the actual method type arguments. 2821 List<Type> typeargtypes = null; 2822 2823 Name methName = TreeInfo.name(tree.meth); 2824 2825 boolean isConstructorCall = 2826 methName == names._this || methName == names._super; 2827 2828 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2829 if (isConstructorCall) { 2830 2831 // Attribute arguments, yielding list of argument types. 2832 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2833 argtypes = argtypesBuf.toList(); 2834 typeargtypes = attribTypes(tree.typeargs, localEnv); 2835 2836 // Done with this()/super() parameters. End of constructor prologue. 2837 env.info.ctorPrologue = false; 2838 2839 // Variable `site' points to the class in which the called 2840 // constructor is defined. 2841 Type site = env.enclClass.sym.type; 2842 if (methName == names._super) { 2843 if (site == syms.objectType) { 2844 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2845 site = types.createErrorType(syms.objectType); 2846 } else { 2847 site = types.supertype(site); 2848 } 2849 } 2850 2851 if (site.hasTag(CLASS)) { 2852 Type encl = site.getEnclosingType(); 2853 while (encl != null && encl.hasTag(TYPEVAR)) 2854 encl = encl.getUpperBound(); 2855 if (encl.hasTag(CLASS)) { 2856 // we are calling a nested class 2857 2858 if (tree.meth.hasTag(SELECT)) { 2859 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2860 2861 // We are seeing a prefixed call, of the form 2862 // <expr>.super(...). 2863 // Check that the prefix expression conforms 2864 // to the outer instance type of the class. 2865 chk.checkRefType(qualifier.pos(), 2866 attribExpr(qualifier, localEnv, 2867 encl)); 2868 } 2869 } else if (tree.meth.hasTag(SELECT)) { 2870 log.error(tree.meth.pos(), 2871 Errors.IllegalQualNotIcls(site.tsym)); 2872 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2873 } 2874 2875 if (tree.meth.hasTag(IDENT)) { 2876 // non-qualified super(...) call; check whether explicit constructor 2877 // invocation is well-formed. If the super class is an inner class, 2878 // make sure that an appropriate implicit qualifier exists. If the super 2879 // class is a local class, make sure that the current class is defined 2880 // in the same context as the local class. 2881 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2882 } 2883 2884 // if we're calling a java.lang.Enum constructor, 2885 // prefix the implicit String and int parameters 2886 if (site.tsym == syms.enumSym) 2887 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2888 2889 // Resolve the called constructor under the assumption 2890 // that we are referring to a superclass instance of the 2891 // current instance (JLS ???). 2892 boolean selectSuperPrev = localEnv.info.selectSuper; 2893 localEnv.info.selectSuper = true; 2894 localEnv.info.pendingResolutionPhase = null; 2895 Symbol sym = rs.resolveConstructor( 2896 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2897 localEnv.info.selectSuper = selectSuperPrev; 2898 2899 // Set method symbol to resolved constructor... 2900 TreeInfo.setSymbol(tree.meth, sym); 2901 2902 // ...and check that it is legal in the current context. 2903 // (this will also set the tree's type) 2904 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2905 checkId(tree.meth, site, sym, localEnv, 2906 new ResultInfo(kind, mpt)); 2907 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2908 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2909 } 2910 // Otherwise, `site' is an error type and we do nothing 2911 result = tree.type = syms.voidType; 2912 } else { 2913 // Otherwise, we are seeing a regular method call. 2914 // Attribute the arguments, yielding list of argument types, ... 2915 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2916 argtypes = argtypesBuf.toList(); 2917 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2918 2919 // ... and attribute the method using as a prototype a methodtype 2920 // whose formal argument types is exactly the list of actual 2921 // arguments (this will also set the method symbol). 2922 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2923 localEnv.info.pendingResolutionPhase = null; 2924 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2925 2926 // Compute the result type. 2927 Type restype = mtype.getReturnType(); 2928 if (restype.hasTag(WILDCARD)) 2929 throw new AssertionError(mtype); 2930 2931 Type qualifier = (tree.meth.hasTag(SELECT)) 2932 ? ((JCFieldAccess) tree.meth).selected.type 2933 : env.enclClass.sym.type; 2934 Symbol msym = TreeInfo.symbol(tree.meth); 2935 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2936 2937 chk.checkRefTypes(tree.typeargs, typeargtypes); 2938 2939 // Check that value of resulting type is admissible in the 2940 // current context. Also, capture the return type 2941 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2942 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2943 } 2944 chk.checkRequiresIdentity(tree, env.info.lint); 2945 chk.validate(tree.typeargs, localEnv); 2946 } 2947 //where 2948 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2949 if (msym != null && 2950 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2951 methodName == names.getClass && 2952 argtypes.isEmpty()) { 2953 // as a special case, x.getClass() has type Class<? extends |X|> 2954 return new ClassType(restype.getEnclosingType(), 2955 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2956 BoundKind.EXTENDS, 2957 syms.boundClass)), 2958 restype.tsym, 2959 restype.getMetadata()); 2960 } else if (msym != null && 2961 msym.owner == syms.arrayClass && 2962 methodName == names.clone && 2963 types.isArray(qualifierType)) { 2964 // as a special case, array.clone() has a result that is 2965 // the same as static type of the array being cloned 2966 return qualifierType; 2967 } else { 2968 return restype; 2969 } 2970 } 2971 2972 /** Obtain a method type with given argument types. 2973 */ 2974 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2975 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2976 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2977 } 2978 2979 public void visitNewClass(final JCNewClass tree) { 2980 Type owntype = types.createErrorType(tree.type); 2981 2982 // The local environment of a class creation is 2983 // a new environment nested in the current one. 2984 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2985 2986 // The anonymous inner class definition of the new expression, 2987 // if one is defined by it. 2988 JCClassDecl cdef = tree.def; 2989 2990 // If enclosing class is given, attribute it, and 2991 // complete class name to be fully qualified 2992 JCExpression clazz = tree.clazz; // Class field following new 2993 JCExpression clazzid; // Identifier in class field 2994 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2995 annoclazzid = null; 2996 2997 if (clazz.hasTag(TYPEAPPLY)) { 2998 clazzid = ((JCTypeApply) clazz).clazz; 2999 if (clazzid.hasTag(ANNOTATED_TYPE)) { 3000 annoclazzid = (JCAnnotatedType) clazzid; 3001 clazzid = annoclazzid.underlyingType; 3002 } 3003 } else { 3004 if (clazz.hasTag(ANNOTATED_TYPE)) { 3005 annoclazzid = (JCAnnotatedType) clazz; 3006 clazzid = annoclazzid.underlyingType; 3007 } else { 3008 clazzid = clazz; 3009 } 3010 } 3011 3012 JCExpression clazzid1 = clazzid; // The same in fully qualified form 3013 3014 if (tree.encl != null) { 3015 // We are seeing a qualified new, of the form 3016 // <expr>.new C <...> (...) ... 3017 // In this case, we let clazz stand for the name of the 3018 // allocated class C prefixed with the type of the qualifier 3019 // expression, so that we can 3020 // resolve it with standard techniques later. I.e., if 3021 // <expr> has type T, then <expr>.new C <...> (...) 3022 // yields a clazz T.C. 3023 Type encltype = chk.checkRefType(tree.encl.pos(), 3024 attribExpr(tree.encl, env)); 3025 // TODO 308: in <expr>.new C, do we also want to add the type annotations 3026 // from expr to the combined type, or not? Yes, do this. 3027 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 3028 ((JCIdent) clazzid).name); 3029 3030 EndPosTable endPosTable = this.env.toplevel.endPositions; 3031 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 3032 if (clazz.hasTag(ANNOTATED_TYPE)) { 3033 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 3034 List<JCAnnotation> annos = annoType.annotations; 3035 3036 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 3037 clazzid1 = make.at(tree.pos). 3038 TypeApply(clazzid1, 3039 ((JCTypeApply) clazz).arguments); 3040 } 3041 3042 clazzid1 = make.at(tree.pos). 3043 AnnotatedType(annos, clazzid1); 3044 } else if (clazz.hasTag(TYPEAPPLY)) { 3045 clazzid1 = make.at(tree.pos). 3046 TypeApply(clazzid1, 3047 ((JCTypeApply) clazz).arguments); 3048 } 3049 3050 clazz = clazzid1; 3051 } 3052 3053 // Attribute clazz expression and store 3054 // symbol + type back into the attributed tree. 3055 Type clazztype; 3056 3057 try { 3058 env.info.isAnonymousNewClass = tree.def != null; 3059 clazztype = TreeInfo.isEnumInit(env.tree) ? 3060 attribIdentAsEnumType(env, (JCIdent)clazz) : 3061 attribType(clazz, env); 3062 } finally { 3063 env.info.isAnonymousNewClass = false; 3064 } 3065 3066 clazztype = chk.checkDiamond(tree, clazztype); 3067 chk.validate(clazz, localEnv); 3068 if (tree.encl != null) { 3069 // We have to work in this case to store 3070 // symbol + type back into the attributed tree. 3071 tree.clazz.type = clazztype; 3072 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 3073 clazzid.type = ((JCIdent) clazzid).sym.type; 3074 if (annoclazzid != null) { 3075 annoclazzid.type = clazzid.type; 3076 } 3077 if (!clazztype.isErroneous()) { 3078 if (cdef != null && clazztype.tsym.isInterface()) { 3079 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 3080 } else if (clazztype.tsym.isStatic()) { 3081 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 3082 } 3083 } 3084 } else { 3085 // Check for the existence of an apropos outer instance 3086 checkNewInnerClass(tree.pos(), env, clazztype, false); 3087 } 3088 3089 // Attribute constructor arguments. 3090 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 3091 final KindSelector pkind = 3092 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 3093 List<Type> argtypes = argtypesBuf.toList(); 3094 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 3095 3096 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 3097 // Enums may not be instantiated except implicitly 3098 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 3099 (!env.tree.hasTag(VARDEF) || 3100 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 3101 ((JCVariableDecl) env.tree).init != tree)) 3102 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 3103 3104 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 3105 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3106 boolean skipNonDiamondPath = false; 3107 // Check that class is not abstract 3108 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 3109 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 3110 log.error(tree.pos(), 3111 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 3112 skipNonDiamondPath = true; 3113 } else if (cdef != null && clazztype.tsym.isInterface()) { 3114 // Check that no constructor arguments are given to 3115 // anonymous classes implementing an interface 3116 if (!argtypes.isEmpty()) 3117 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 3118 3119 if (!typeargtypes.isEmpty()) 3120 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 3121 3122 // Error recovery: pretend no arguments were supplied. 3123 argtypes = List.nil(); 3124 typeargtypes = List.nil(); 3125 skipNonDiamondPath = true; 3126 } 3127 if (TreeInfo.isDiamond(tree)) { 3128 ClassType site = new ClassType(clazztype.getEnclosingType(), 3129 clazztype.tsym.type.getTypeArguments(), 3130 clazztype.tsym, 3131 clazztype.getMetadata()); 3132 3133 Env<AttrContext> diamondEnv = localEnv.dup(tree); 3134 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 3135 diamondEnv.info.pendingResolutionPhase = null; 3136 3137 //if the type of the instance creation expression is a class type 3138 //apply method resolution inference (JLS 15.12.2.7). The return type 3139 //of the resolved constructor will be a partially instantiated type 3140 Symbol constructor = rs.resolveDiamond(tree.pos(), 3141 diamondEnv, 3142 site, 3143 argtypes, 3144 typeargtypes); 3145 tree.constructor = constructor.baseSymbol(); 3146 3147 final TypeSymbol csym = clazztype.tsym; 3148 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 3149 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3150 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 3151 constructorType = checkId(tree, site, 3152 constructor, 3153 diamondEnv, 3154 diamondResult); 3155 3156 tree.clazz.type = types.createErrorType(clazztype); 3157 if (!constructorType.isErroneous()) { 3158 tree.clazz.type = clazz.type = constructorType.getReturnType(); 3159 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 3160 } 3161 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 3162 } 3163 3164 // Resolve the called constructor under the assumption 3165 // that we are referring to a superclass instance of the 3166 // current instance (JLS ???). 3167 else if (!skipNonDiamondPath) { 3168 //the following code alters some of the fields in the current 3169 //AttrContext - hence, the current context must be dup'ed in 3170 //order to avoid downstream failures 3171 Env<AttrContext> rsEnv = localEnv.dup(tree); 3172 rsEnv.info.selectSuper = cdef != null; 3173 rsEnv.info.pendingResolutionPhase = null; 3174 tree.constructor = rs.resolveConstructor( 3175 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 3176 if (cdef == null) { //do not check twice! 3177 tree.constructorType = checkId(tree, 3178 clazztype, 3179 tree.constructor, 3180 rsEnv, 3181 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3182 if (rsEnv.info.lastResolveVarargs()) 3183 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 3184 } 3185 } 3186 3187 chk.checkRequiresIdentity(tree, env.info.lint); 3188 3189 if (cdef != null) { 3190 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 3191 return; 3192 } 3193 3194 if (tree.constructor != null && tree.constructor.kind == MTH) 3195 owntype = clazztype; 3196 } 3197 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3198 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3199 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 3200 //we need to wait for inference to finish and then replace inference vars in the constructor type 3201 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 3202 instantiatedContext -> { 3203 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3204 }); 3205 } 3206 chk.validate(tree.typeargs, localEnv); 3207 } 3208 3209 // where 3210 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 3211 JCClassDecl cdef, Env<AttrContext> localEnv, 3212 List<Type> argtypes, List<Type> typeargtypes, 3213 KindSelector pkind) { 3214 // We are seeing an anonymous class instance creation. 3215 // In this case, the class instance creation 3216 // expression 3217 // 3218 // E.new <typeargs1>C<typargs2>(args) { ... } 3219 // 3220 // is represented internally as 3221 // 3222 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 3223 // 3224 // This expression is then *transformed* as follows: 3225 // 3226 // (1) add an extends or implements clause 3227 // (2) add a constructor. 3228 // 3229 // For instance, if C is a class, and ET is the type of E, 3230 // the expression 3231 // 3232 // E.new <typeargs1>C<typargs2>(args) { ... } 3233 // 3234 // is translated to (where X is a fresh name and typarams is the 3235 // parameter list of the super constructor): 3236 // 3237 // new <typeargs1>X(<*nullchk*>E, args) where 3238 // X extends C<typargs2> { 3239 // <typarams> X(ET e, args) { 3240 // e.<typeargs1>super(args) 3241 // } 3242 // ... 3243 // } 3244 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 3245 Type enclType = clazztype.getEnclosingType(); 3246 if (enclType != null && 3247 enclType.hasTag(CLASS) && 3248 !chk.checkDenotable((ClassType)enclType)) { 3249 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 3250 } 3251 final boolean isDiamond = TreeInfo.isDiamond(tree); 3252 if (isDiamond 3253 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 3254 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 3255 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 3256 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 3257 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 3258 instantiatedContext -> { 3259 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3260 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3261 ResultInfo prevResult = this.resultInfo; 3262 try { 3263 this.resultInfo = resultInfoForClassDefinition; 3264 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3265 dupLocalEnv, argtypes, typeargtypes, pkind); 3266 } finally { 3267 this.resultInfo = prevResult; 3268 } 3269 }); 3270 } else { 3271 if (isDiamond && clazztype.hasTag(CLASS)) { 3272 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3273 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3274 // One or more types inferred in the previous steps is non-denotable. 3275 Fragment fragment = Diamond(clazztype.tsym); 3276 log.error(tree.clazz.pos(), 3277 Errors.CantApplyDiamond1( 3278 fragment, 3279 invalidDiamondArgs.size() > 1 ? 3280 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3281 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3282 } 3283 // For <>(){}, inferred types must also be accessible. 3284 for (Type t : clazztype.getTypeArguments()) { 3285 rs.checkAccessibleType(env, t); 3286 } 3287 } 3288 3289 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3290 // false for isInterface call even when the original type is an interface. 3291 boolean implementing = clazztype.tsym.isInterface() || 3292 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3293 clazztype.getOriginalType().tsym.isInterface(); 3294 3295 if (implementing) { 3296 cdef.implementing = List.of(clazz); 3297 } else { 3298 cdef.extending = clazz; 3299 } 3300 3301 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3302 rs.isSerializable(clazztype)) { 3303 localEnv.info.isSerializable = true; 3304 } 3305 3306 attribStat(cdef, localEnv); 3307 3308 List<Type> finalargtypes; 3309 // If an outer instance is given, 3310 // prefix it to the constructor arguments 3311 // and delete it from the new expression 3312 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3313 finalargtypes = argtypes.prepend(tree.encl.type); 3314 } else { 3315 finalargtypes = argtypes; 3316 } 3317 3318 // Reassign clazztype and recompute constructor. As this necessarily involves 3319 // another attribution pass for deferred types in the case of <>, replicate 3320 // them. Original arguments have right decorations already. 3321 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3322 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3323 } 3324 3325 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3326 : cdef.sym.type; 3327 Symbol sym = tree.constructor = rs.resolveConstructor( 3328 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3329 Assert.check(!sym.kind.isResolutionError()); 3330 tree.constructor = sym; 3331 tree.constructorType = checkId(tree, 3332 clazztype, 3333 tree.constructor, 3334 localEnv, 3335 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3336 } 3337 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3338 clazztype : types.createErrorType(tree.type); 3339 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3340 chk.validate(tree.typeargs, localEnv); 3341 } 3342 3343 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3344 return new Check.NestedCheckContext(checkContext) { 3345 @Override 3346 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3347 enclosingContext.report(clazz.clazz, 3348 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3349 } 3350 }; 3351 } 3352 3353 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3354 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3355 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3356 (!isLocal && !type.tsym.isInner()) || 3357 (isSuper && env.enclClass.sym.isAnonymous())) { 3358 // nothing to check 3359 return; 3360 } 3361 Symbol res = isLocal ? 3362 rs.findLocalClassOwner(env, type.tsym) : 3363 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3364 if (res.exists()) { 3365 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3366 } else { 3367 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3368 } 3369 } 3370 3371 /** Make an attributed null check tree. 3372 */ 3373 public JCExpression makeNullCheck(JCExpression arg) { 3374 // optimization: new Outer() can never be null; skip null check 3375 if (arg.getTag() == NEWCLASS) 3376 return arg; 3377 // optimization: X.this is never null; skip null check 3378 Name name = TreeInfo.name(arg); 3379 if (name == names._this || name == names._super) return arg; 3380 3381 JCTree.Tag optag = NULLCHK; 3382 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3383 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3384 tree.type = arg.type; 3385 return tree; 3386 } 3387 3388 public void visitNewArray(JCNewArray tree) { 3389 Type owntype = types.createErrorType(tree.type); 3390 Env<AttrContext> localEnv = env.dup(tree); 3391 Type elemtype; 3392 if (tree.elemtype != null) { 3393 elemtype = attribType(tree.elemtype, localEnv); 3394 chk.validate(tree.elemtype, localEnv); 3395 owntype = elemtype; 3396 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3397 attribExpr(l.head, localEnv, syms.intType); 3398 owntype = new ArrayType(owntype, syms.arrayClass); 3399 } 3400 } else { 3401 // we are seeing an untyped aggregate { ... } 3402 // this is allowed only if the prototype is an array 3403 if (pt().hasTag(ARRAY)) { 3404 elemtype = types.elemtype(pt()); 3405 } else { 3406 if (!pt().hasTag(ERROR) && 3407 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3408 log.error(tree.pos(), 3409 Errors.IllegalInitializerForType(pt())); 3410 } 3411 elemtype = types.createErrorType(pt()); 3412 } 3413 } 3414 if (tree.elems != null) { 3415 attribExprs(tree.elems, localEnv, elemtype); 3416 owntype = new ArrayType(elemtype, syms.arrayClass); 3417 } 3418 if (!types.isReifiable(elemtype)) 3419 log.error(tree.pos(), Errors.GenericArrayCreation); 3420 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3421 } 3422 3423 /* 3424 * A lambda expression can only be attributed when a target-type is available. 3425 * In addition, if the target-type is that of a functional interface whose 3426 * descriptor contains inference variables in argument position the lambda expression 3427 * is 'stuck' (see DeferredAttr). 3428 */ 3429 @Override 3430 public void visitLambda(final JCLambda that) { 3431 boolean wrongContext = false; 3432 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3433 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3434 //lambda only allowed in assignment or method invocation/cast context 3435 log.error(that.pos(), Errors.UnexpectedLambda); 3436 } 3437 resultInfo = recoveryInfo; 3438 wrongContext = true; 3439 } 3440 //create an environment for attribution of the lambda expression 3441 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3442 boolean needsRecovery = 3443 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3444 try { 3445 if (needsRecovery && rs.isSerializable(pt())) { 3446 localEnv.info.isSerializable = true; 3447 localEnv.info.isSerializableLambda = true; 3448 } 3449 List<Type> explicitParamTypes = null; 3450 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3451 //attribute lambda parameters 3452 attribStats(that.params, localEnv); 3453 explicitParamTypes = TreeInfo.types(that.params); 3454 } 3455 3456 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3457 Type currentTarget = targetInfo.target; 3458 Type lambdaType = targetInfo.descriptor; 3459 3460 if (currentTarget.isErroneous()) { 3461 result = that.type = currentTarget; 3462 return; 3463 } 3464 3465 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3466 3467 if (lambdaType.hasTag(FORALL)) { 3468 //lambda expression target desc cannot be a generic method 3469 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3470 kindName(currentTarget.tsym), 3471 currentTarget.tsym); 3472 resultInfo.checkContext.report(that, diags.fragment(msg)); 3473 result = that.type = types.createErrorType(pt()); 3474 return; 3475 } 3476 3477 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3478 //add param type info in the AST 3479 List<Type> actuals = lambdaType.getParameterTypes(); 3480 List<JCVariableDecl> params = that.params; 3481 3482 boolean arityMismatch = false; 3483 3484 while (params.nonEmpty()) { 3485 if (actuals.isEmpty()) { 3486 //not enough actuals to perform lambda parameter inference 3487 arityMismatch = true; 3488 } 3489 //reset previously set info 3490 Type argType = arityMismatch ? 3491 syms.errType : 3492 actuals.head; 3493 if (params.head.isImplicitlyTyped()) { 3494 setSyntheticVariableType(params.head, argType); 3495 } 3496 params.head.sym = null; 3497 actuals = actuals.isEmpty() ? 3498 actuals : 3499 actuals.tail; 3500 params = params.tail; 3501 } 3502 3503 //attribute lambda parameters 3504 attribStats(that.params, localEnv); 3505 3506 if (arityMismatch) { 3507 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3508 result = that.type = types.createErrorType(currentTarget); 3509 return; 3510 } 3511 } 3512 3513 //from this point on, no recovery is needed; if we are in assignment context 3514 //we will be able to attribute the whole lambda body, regardless of errors; 3515 //if we are in a 'check' method context, and the lambda is not compatible 3516 //with the target-type, it will be recovered anyway in Attr.checkId 3517 needsRecovery = false; 3518 3519 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3520 lambdaBodyResult(that, lambdaType, resultInfo); 3521 3522 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3523 attribTree(that.getBody(), localEnv, bodyResultInfo); 3524 } else { 3525 JCBlock body = (JCBlock)that.body; 3526 if (body == breakTree && 3527 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3528 breakTreeFound(copyEnv(localEnv)); 3529 } 3530 attribStats(body.stats, localEnv); 3531 } 3532 3533 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3534 3535 boolean isSpeculativeRound = 3536 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3537 3538 preFlow(that); 3539 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3540 3541 that.type = currentTarget; //avoids recovery at this stage 3542 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3543 3544 if (!isSpeculativeRound) { 3545 //add thrown types as bounds to the thrown types free variables if needed: 3546 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3547 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3548 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3549 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3550 } 3551 } 3552 3553 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3554 } 3555 result = wrongContext ? that.type = types.createErrorType(pt()) 3556 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3557 } catch (Types.FunctionDescriptorLookupError ex) { 3558 JCDiagnostic cause = ex.getDiagnostic(); 3559 resultInfo.checkContext.report(that, cause); 3560 result = that.type = types.createErrorType(pt()); 3561 return; 3562 } catch (CompletionFailure cf) { 3563 chk.completionError(that.pos(), cf); 3564 } catch (Throwable t) { 3565 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3566 //as that would likely cause the same exception again. 3567 needsRecovery = false; 3568 throw t; 3569 } finally { 3570 localEnv.info.scope.leave(); 3571 if (needsRecovery) { 3572 Type prevResult = result; 3573 try { 3574 attribTree(that, env, recoveryInfo); 3575 } finally { 3576 if (result == Type.recoveryType) { 3577 result = prevResult; 3578 } 3579 } 3580 } 3581 } 3582 } 3583 //where 3584 class TargetInfo { 3585 Type target; 3586 Type descriptor; 3587 3588 public TargetInfo(Type target, Type descriptor) { 3589 this.target = target; 3590 this.descriptor = descriptor; 3591 } 3592 } 3593 3594 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3595 Type lambdaType; 3596 Type currentTarget = resultInfo.pt; 3597 if (resultInfo.pt != Type.recoveryType) { 3598 /* We need to adjust the target. If the target is an 3599 * intersection type, for example: SAM & I1 & I2 ... 3600 * the target will be updated to SAM 3601 */ 3602 currentTarget = targetChecker.visit(currentTarget, that); 3603 if (!currentTarget.isIntersection()) { 3604 if (explicitParamTypes != null) { 3605 currentTarget = infer.instantiateFunctionalInterface(that, 3606 currentTarget, explicitParamTypes, resultInfo.checkContext); 3607 } 3608 currentTarget = types.removeWildcards(currentTarget); 3609 lambdaType = types.findDescriptorType(currentTarget); 3610 } else { 3611 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3612 ListBuffer<Type> components = new ListBuffer<>(); 3613 for (Type bound : ict.getExplicitComponents()) { 3614 if (explicitParamTypes != null) { 3615 try { 3616 bound = infer.instantiateFunctionalInterface(that, 3617 bound, explicitParamTypes, resultInfo.checkContext); 3618 } catch (FunctionDescriptorLookupError t) { 3619 // do nothing 3620 } 3621 } 3622 if (bound.tsym != syms.objectType.tsym && (!bound.isInterface() || (bound.tsym.flags() & ANNOTATION) != 0)) { 3623 // bound must be j.l.Object or an interface, but not an annotation 3624 reportIntersectionError(that, "not.an.intf.component", bound); 3625 } 3626 bound = types.removeWildcards(bound); 3627 components.add(bound); 3628 } 3629 currentTarget = types.makeIntersectionType(components.toList()); 3630 currentTarget.tsym.flags_field |= INTERFACE; 3631 lambdaType = types.findDescriptorType(currentTarget); 3632 } 3633 3634 } else { 3635 currentTarget = Type.recoveryType; 3636 lambdaType = fallbackDescriptorType(that); 3637 } 3638 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3639 //lambda expression target desc cannot be a generic method 3640 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3641 kindName(currentTarget.tsym), 3642 currentTarget.tsym); 3643 resultInfo.checkContext.report(that, diags.fragment(msg)); 3644 currentTarget = types.createErrorType(pt()); 3645 } 3646 return new TargetInfo(currentTarget, lambdaType); 3647 } 3648 3649 private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) { 3650 resultInfo.checkContext.report(pos, 3651 diags.fragment(Fragments.BadIntersectionTargetForFunctionalExpr(diags.fragment(key, args)))); 3652 } 3653 3654 void preFlow(JCLambda tree) { 3655 attrRecover.doRecovery(); 3656 new PostAttrAnalyzer() { 3657 @Override 3658 public void scan(JCTree tree) { 3659 if (tree == null || 3660 (tree.type != null && 3661 tree.type == Type.stuckType)) { 3662 //don't touch stuck expressions! 3663 return; 3664 } 3665 super.scan(tree); 3666 } 3667 3668 @Override 3669 public void visitClassDef(JCClassDecl that) { 3670 // or class declaration trees! 3671 } 3672 3673 public void visitLambda(JCLambda that) { 3674 // or lambda expressions! 3675 } 3676 }.scan(tree.body); 3677 } 3678 3679 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3680 3681 @Override 3682 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3683 return t.isIntersection() ? 3684 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3685 } 3686 3687 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3688 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3689 return ict; 3690 } 3691 3692 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3693 ListBuffer<Type> targs = new ListBuffer<>(); 3694 ListBuffer<Type> supertypes = new ListBuffer<>(); 3695 for (Type i : ict.interfaces_field) { 3696 if (i.isParameterized()) { 3697 targs.appendList(i.tsym.type.allparams()); 3698 } 3699 supertypes.append(i.tsym.type); 3700 } 3701 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3702 notionalIntf.allparams_field = targs.toList(); 3703 notionalIntf.tsym.flags_field |= INTERFACE; 3704 return notionalIntf.tsym; 3705 } 3706 }; 3707 3708 private Type fallbackDescriptorType(JCExpression tree) { 3709 switch (tree.getTag()) { 3710 case LAMBDA: 3711 JCLambda lambda = (JCLambda)tree; 3712 List<Type> argtypes = List.nil(); 3713 for (JCVariableDecl param : lambda.params) { 3714 argtypes = param.vartype != null && param.vartype.type != null ? 3715 argtypes.append(param.vartype.type) : 3716 argtypes.append(syms.errType); 3717 } 3718 return new MethodType(argtypes, Type.recoveryType, 3719 List.of(syms.throwableType), syms.methodClass); 3720 case REFERENCE: 3721 return new MethodType(List.nil(), Type.recoveryType, 3722 List.of(syms.throwableType), syms.methodClass); 3723 default: 3724 Assert.error("Cannot get here!"); 3725 } 3726 return null; 3727 } 3728 3729 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3730 final InferenceContext inferenceContext, final Type... ts) { 3731 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3732 } 3733 3734 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3735 final InferenceContext inferenceContext, final List<Type> ts) { 3736 if (inferenceContext.free(ts)) { 3737 inferenceContext.addFreeTypeListener(ts, 3738 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3739 } else { 3740 for (Type t : ts) { 3741 rs.checkAccessibleType(env, t); 3742 } 3743 } 3744 } 3745 3746 /** 3747 * Lambda/method reference have a special check context that ensures 3748 * that i.e. a lambda return type is compatible with the expected 3749 * type according to both the inherited context and the assignment 3750 * context. 3751 */ 3752 class FunctionalReturnContext extends Check.NestedCheckContext { 3753 3754 FunctionalReturnContext(CheckContext enclosingContext) { 3755 super(enclosingContext); 3756 } 3757 3758 @Override 3759 public boolean compatible(Type found, Type req, Warner warn) { 3760 //return type must be compatible in both current context and assignment context 3761 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3762 } 3763 3764 @Override 3765 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3766 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3767 } 3768 } 3769 3770 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3771 3772 JCExpression expr; 3773 boolean expStmtExpected; 3774 3775 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3776 super(enclosingContext); 3777 this.expr = expr; 3778 } 3779 3780 @Override 3781 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3782 if (expStmtExpected) { 3783 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3784 } else { 3785 super.report(pos, details); 3786 } 3787 } 3788 3789 @Override 3790 public boolean compatible(Type found, Type req, Warner warn) { 3791 //a void return is compatible with an expression statement lambda 3792 if (req.hasTag(VOID)) { 3793 expStmtExpected = true; 3794 return TreeInfo.isExpressionStatement(expr); 3795 } else { 3796 return super.compatible(found, req, warn); 3797 } 3798 } 3799 } 3800 3801 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3802 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3803 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3804 new FunctionalReturnContext(resultInfo.checkContext); 3805 3806 return descriptor.getReturnType() == Type.recoveryType ? 3807 recoveryInfo : 3808 new ResultInfo(KindSelector.VAL, 3809 descriptor.getReturnType(), funcContext); 3810 } 3811 3812 /** 3813 * Lambda compatibility. Check that given return types, thrown types, parameter types 3814 * are compatible with the expected functional interface descriptor. This means that: 3815 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3816 * types must be compatible with the return type of the expected descriptor. 3817 */ 3818 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3819 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3820 3821 //return values have already been checked - but if lambda has no return 3822 //values, we must ensure that void/value compatibility is correct; 3823 //this amounts at checking that, if a lambda body can complete normally, 3824 //the descriptor's return type must be void 3825 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3826 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3827 Fragment msg = 3828 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3829 checkContext.report(tree, 3830 diags.fragment(msg)); 3831 } 3832 3833 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3834 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3835 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3836 } 3837 } 3838 3839 /* This method returns an environment to be used to attribute a lambda 3840 * expression. 3841 * 3842 * The owner of this environment is a method symbol. If the current owner 3843 * is not a method (e.g. if the lambda occurs in a field initializer), then 3844 * a synthetic method symbol owner is created. 3845 */ 3846 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3847 Env<AttrContext> lambdaEnv; 3848 Symbol owner = env.info.scope.owner; 3849 if (owner.kind == VAR && owner.owner.kind == TYP) { 3850 // If the lambda is nested in a field initializer, we need to create a fake init method. 3851 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3852 // init symbol's owner). 3853 ClassSymbol enclClass = owner.enclClass(); 3854 Name initName = owner.isStatic() ? names.clinit : names.init; 3855 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3856 initName, initBlockType, enclClass); 3857 initSym.params = List.nil(); 3858 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3859 } else { 3860 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3861 } 3862 lambdaEnv.info.yieldResult = null; 3863 lambdaEnv.info.isLambda = true; 3864 return lambdaEnv; 3865 } 3866 3867 @Override 3868 public void visitReference(final JCMemberReference that) { 3869 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3870 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3871 //method reference only allowed in assignment or method invocation/cast context 3872 log.error(that.pos(), Errors.UnexpectedMref); 3873 } 3874 result = that.type = types.createErrorType(pt()); 3875 return; 3876 } 3877 final Env<AttrContext> localEnv = env.dup(that); 3878 try { 3879 //attribute member reference qualifier - if this is a constructor 3880 //reference, the expected kind must be a type 3881 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3882 3883 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3884 exprType = chk.checkConstructorRefType(that.expr, exprType); 3885 if (!exprType.isErroneous() && 3886 exprType.isRaw() && 3887 that.typeargs != null) { 3888 log.error(that.expr.pos(), 3889 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3890 Fragments.MrefInferAndExplicitParams)); 3891 exprType = types.createErrorType(exprType); 3892 } 3893 } 3894 3895 if (exprType.isErroneous()) { 3896 //if the qualifier expression contains problems, 3897 //give up attribution of method reference 3898 result = that.type = exprType; 3899 return; 3900 } 3901 3902 if (TreeInfo.isStaticSelector(that.expr, names)) { 3903 //if the qualifier is a type, validate it; raw warning check is 3904 //omitted as we don't know at this stage as to whether this is a 3905 //raw selector (because of inference) 3906 chk.validate(that.expr, env, false); 3907 } else { 3908 Symbol lhsSym = TreeInfo.symbol(that.expr); 3909 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3910 } 3911 //attrib type-arguments 3912 List<Type> typeargtypes = List.nil(); 3913 if (that.typeargs != null) { 3914 typeargtypes = attribTypes(that.typeargs, localEnv); 3915 } 3916 3917 boolean isTargetSerializable = 3918 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3919 rs.isSerializable(pt()); 3920 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3921 Type currentTarget = targetInfo.target; 3922 Type desc = targetInfo.descriptor; 3923 3924 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3925 List<Type> argtypes = desc.getParameterTypes(); 3926 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3927 3928 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3929 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3930 } 3931 3932 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3933 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3934 try { 3935 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3936 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3937 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3938 } finally { 3939 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3940 } 3941 3942 Symbol refSym = refResult.fst; 3943 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3944 3945 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3946 * JDK-8075541 3947 */ 3948 if (refSym.kind != MTH) { 3949 boolean targetError; 3950 switch (refSym.kind) { 3951 case ABSENT_MTH: 3952 targetError = false; 3953 break; 3954 case WRONG_MTH: 3955 case WRONG_MTHS: 3956 case AMBIGUOUS: 3957 case HIDDEN: 3958 case STATICERR: 3959 targetError = true; 3960 break; 3961 default: 3962 Assert.error("unexpected result kind " + refSym.kind); 3963 targetError = false; 3964 } 3965 3966 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3967 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3968 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3969 3970 JCDiagnostic diag = diags.create(log.currentSource(), that, 3971 targetError ? 3972 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3973 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3974 3975 if (targetError && currentTarget == Type.recoveryType) { 3976 //a target error doesn't make sense during recovery stage 3977 //as we don't know what actual parameter types are 3978 result = that.type = currentTarget; 3979 return; 3980 } else { 3981 if (targetError) { 3982 resultInfo.checkContext.report(that, diag); 3983 } else { 3984 log.report(diag); 3985 } 3986 result = that.type = types.createErrorType(currentTarget); 3987 return; 3988 } 3989 } 3990 3991 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3992 that.kind = lookupHelper.referenceKind(that.sym); 3993 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3994 3995 if (desc.getReturnType() == Type.recoveryType) { 3996 // stop here 3997 result = that.type = currentTarget; 3998 return; 3999 } 4000 4001 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 4002 checkNewInnerClass(that.pos(), env, exprType, false); 4003 } 4004 4005 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 4006 4007 if (that.getMode() == ReferenceMode.INVOKE && 4008 TreeInfo.isStaticSelector(that.expr, names) && 4009 that.kind.isUnbound() && 4010 lookupHelper.site.isRaw()) { 4011 chk.checkRaw(that.expr, localEnv); 4012 } 4013 4014 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 4015 exprType.getTypeArguments().nonEmpty()) { 4016 //static ref with class type-args 4017 log.error(that.expr.pos(), 4018 Errors.InvalidMref(Kinds.kindName(that.getMode()), 4019 Fragments.StaticMrefWithTargs)); 4020 result = that.type = types.createErrorType(currentTarget); 4021 return; 4022 } 4023 4024 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 4025 // Check that super-qualified symbols are not abstract (JLS) 4026 rs.checkNonAbstract(that.pos(), that.sym); 4027 } 4028 4029 if (isTargetSerializable) { 4030 chk.checkAccessFromSerializableElement(that, true); 4031 } 4032 } 4033 4034 ResultInfo checkInfo = 4035 resultInfo.dup(newMethodTemplate( 4036 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 4037 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 4038 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 4039 4040 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 4041 4042 if (that.kind.isUnbound() && 4043 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 4044 //re-generate inference constraints for unbound receiver 4045 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 4046 //cannot happen as this has already been checked - we just need 4047 //to regenerate the inference constraints, as that has been lost 4048 //as a result of the call to inferenceContext.save() 4049 Assert.error("Can't get here"); 4050 } 4051 } 4052 4053 if (!refType.isErroneous()) { 4054 refType = types.createMethodTypeWithReturn(refType, 4055 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 4056 } 4057 4058 //go ahead with standard method reference compatibility check - note that param check 4059 //is a no-op (as this has been taken care during method applicability) 4060 boolean isSpeculativeRound = 4061 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 4062 4063 that.type = currentTarget; //avoids recovery at this stage 4064 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 4065 if (!isSpeculativeRound) { 4066 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 4067 } 4068 chk.checkRequiresIdentity(that, localEnv.info.lint); 4069 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 4070 } catch (Types.FunctionDescriptorLookupError ex) { 4071 JCDiagnostic cause = ex.getDiagnostic(); 4072 resultInfo.checkContext.report(that, cause); 4073 result = that.type = types.createErrorType(pt()); 4074 return; 4075 } 4076 } 4077 //where 4078 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 4079 //if this is a constructor reference, the expected kind must be a type 4080 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 4081 KindSelector.VAL_TYP : KindSelector.TYP, 4082 Type.noType); 4083 } 4084 4085 4086 @SuppressWarnings("fallthrough") 4087 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 4088 InferenceContext inferenceContext = checkContext.inferenceContext(); 4089 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 4090 4091 Type resType; 4092 switch (tree.getMode()) { 4093 case NEW: 4094 if (!tree.expr.type.isRaw()) { 4095 resType = tree.expr.type; 4096 break; 4097 } 4098 default: 4099 resType = refType.getReturnType(); 4100 } 4101 4102 Type incompatibleReturnType = resType; 4103 4104 if (returnType.hasTag(VOID)) { 4105 incompatibleReturnType = null; 4106 } 4107 4108 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 4109 if (resType.isErroneous() || 4110 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 4111 checkContext.checkWarner(tree, resType, returnType))) { 4112 incompatibleReturnType = null; 4113 } 4114 } 4115 4116 if (incompatibleReturnType != null) { 4117 Fragment msg = 4118 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 4119 checkContext.report(tree, diags.fragment(msg)); 4120 } else { 4121 if (inferenceContext.free(refType)) { 4122 // we need to wait for inference to finish and then replace inference vars in the referent type 4123 inferenceContext.addFreeTypeListener(List.of(refType), 4124 instantiatedContext -> { 4125 tree.referentType = instantiatedContext.asInstType(refType); 4126 }); 4127 } else { 4128 tree.referentType = refType; 4129 } 4130 } 4131 4132 if (!speculativeAttr) { 4133 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 4134 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 4135 } 4136 } 4137 } 4138 4139 boolean checkExConstraints( 4140 List<Type> thrownByFuncExpr, 4141 List<Type> thrownAtFuncType, 4142 InferenceContext inferenceContext) { 4143 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 4144 * are not proper types 4145 */ 4146 List<Type> nonProperList = thrownAtFuncType.stream() 4147 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 4148 List<Type> properList = thrownAtFuncType.diff(nonProperList); 4149 4150 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 4151 * in the throws clause of the invocation type of the method reference's compile-time 4152 * declaration 4153 */ 4154 List<Type> checkedList = thrownByFuncExpr.stream() 4155 .filter(e -> chk.isChecked(e)).collect(List.collector()); 4156 4157 /** If n = 0 (the function type's throws clause consists only of proper types), then 4158 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 4159 * in the throws clause, the constraint reduces to false; otherwise, the constraint 4160 * reduces to true 4161 */ 4162 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 4163 for (Type checked : checkedList) { 4164 boolean isSubtype = false; 4165 for (Type proper : properList) { 4166 if (types.isSubtype(checked, proper)) { 4167 isSubtype = true; 4168 break; 4169 } 4170 } 4171 if (!isSubtype) { 4172 uncaughtByProperTypes.add(checked); 4173 } 4174 } 4175 4176 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 4177 return false; 4178 } 4179 4180 /** If n > 0, the constraint reduces to a set of subtyping constraints: 4181 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 4182 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 4183 */ 4184 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 4185 uncaughtByProperTypes.forEach(checkedEx -> { 4186 nonProperAsUndet.forEach(nonProper -> { 4187 types.isSubtype(checkedEx, nonProper); 4188 }); 4189 }); 4190 4191 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 4192 */ 4193 nonProperAsUndet.stream() 4194 .filter(t -> t.hasTag(UNDETVAR)) 4195 .forEach(t -> ((UndetVar)t).setThrow()); 4196 return true; 4197 } 4198 4199 /** 4200 * Set functional type info on the underlying AST. Note: as the target descriptor 4201 * might contain inference variables, we might need to register an hook in the 4202 * current inference context. 4203 */ 4204 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 4205 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 4206 if (checkContext.inferenceContext().free(descriptorType)) { 4207 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 4208 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 4209 inferenceContext.asInstType(primaryTarget), checkContext)); 4210 } else { 4211 fExpr.owner = env.info.scope.owner; 4212 if (pt.hasTag(CLASS)) { 4213 fExpr.target = primaryTarget; 4214 } 4215 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 4216 pt != Type.recoveryType) { 4217 //check that functional interface class is well-formed 4218 try { 4219 /* Types.makeFunctionalInterfaceClass() may throw an exception 4220 * when it's executed post-inference. See the listener code 4221 * above. 4222 */ 4223 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 4224 names.empty, fExpr.target, ABSTRACT); 4225 if (csym != null) { 4226 chk.checkImplementations(env.tree, csym, csym); 4227 try { 4228 //perform an additional functional interface check on the synthetic class, 4229 //as there may be spurious errors for raw targets - because of existing issues 4230 //with membership and inheritance (see JDK-8074570). 4231 csym.flags_field |= INTERFACE; 4232 types.findDescriptorType(csym.type); 4233 } catch (FunctionDescriptorLookupError err) { 4234 resultInfo.checkContext.report(fExpr, 4235 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 4236 } 4237 } 4238 } catch (Types.FunctionDescriptorLookupError ex) { 4239 JCDiagnostic cause = ex.getDiagnostic(); 4240 resultInfo.checkContext.report(env.tree, cause); 4241 } 4242 } 4243 } 4244 } 4245 4246 public void visitParens(JCParens tree) { 4247 Type owntype = attribTree(tree.expr, env, resultInfo); 4248 result = check(tree, owntype, pkind(), resultInfo); 4249 Symbol sym = TreeInfo.symbol(tree); 4250 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 4251 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 4252 } 4253 4254 public void visitAssign(JCAssign tree) { 4255 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 4256 Type capturedType = capture(owntype); 4257 attribExpr(tree.rhs, env, owntype); 4258 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 4259 } 4260 4261 public void visitAssignop(JCAssignOp tree) { 4262 // Attribute arguments. 4263 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 4264 Type operand = attribExpr(tree.rhs, env); 4265 // Find operator. 4266 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 4267 if (operator != operators.noOpSymbol && 4268 !owntype.isErroneous() && 4269 !operand.isErroneous()) { 4270 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4271 chk.checkCastable(tree.rhs.pos(), 4272 operator.type.getReturnType(), 4273 owntype); 4274 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4275 } 4276 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4277 } 4278 4279 public void visitUnary(JCUnary tree) { 4280 // Attribute arguments. 4281 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4282 ? attribTree(tree.arg, env, varAssignmentInfo) 4283 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4284 4285 // Find operator. 4286 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4287 Type owntype = types.createErrorType(tree.type); 4288 if (operator != operators.noOpSymbol && 4289 !argtype.isErroneous()) { 4290 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4291 ? tree.arg.type 4292 : operator.type.getReturnType(); 4293 int opc = operator.opcode; 4294 4295 // If the argument is constant, fold it. 4296 if (argtype.constValue() != null) { 4297 Type ctype = cfolder.fold1(opc, argtype); 4298 if (ctype != null) { 4299 owntype = cfolder.coerce(ctype, owntype); 4300 } 4301 } 4302 } 4303 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4304 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4305 } 4306 4307 public void visitBinary(JCBinary tree) { 4308 // Attribute arguments. 4309 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4310 // x && y 4311 // include x's bindings when true in y 4312 4313 // x || y 4314 // include x's bindings when false in y 4315 4316 MatchBindings lhsBindings = matchBindings; 4317 List<BindingSymbol> propagatedBindings; 4318 switch (tree.getTag()) { 4319 case AND: 4320 propagatedBindings = lhsBindings.bindingsWhenTrue; 4321 break; 4322 case OR: 4323 propagatedBindings = lhsBindings.bindingsWhenFalse; 4324 break; 4325 default: 4326 propagatedBindings = List.nil(); 4327 break; 4328 } 4329 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4330 Type right; 4331 try { 4332 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4333 } finally { 4334 rhsEnv.info.scope.leave(); 4335 } 4336 4337 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4338 4339 // Find operator. 4340 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4341 Type owntype = types.createErrorType(tree.type); 4342 if (operator != operators.noOpSymbol && 4343 !left.isErroneous() && 4344 !right.isErroneous()) { 4345 owntype = operator.type.getReturnType(); 4346 int opc = operator.opcode; 4347 // If both arguments are constants, fold them. 4348 if (left.constValue() != null && right.constValue() != null) { 4349 Type ctype = cfolder.fold2(opc, left, right); 4350 if (ctype != null) { 4351 owntype = cfolder.coerce(ctype, owntype); 4352 } 4353 } 4354 4355 // Check that argument types of a reference ==, != are 4356 // castable to each other, (JLS 15.21). Note: unboxing 4357 // comparisons will not have an acmp* opc at this point. 4358 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4359 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4360 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4361 } 4362 } 4363 4364 chk.checkDivZero(tree.rhs.pos(), operator, right); 4365 } 4366 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4367 } 4368 4369 public void visitTypeCast(final JCTypeCast tree) { 4370 Type clazztype = attribType(tree.clazz, env); 4371 chk.validate(tree.clazz, env, false); 4372 chk.checkRequiresIdentity(tree, env.info.lint); 4373 //a fresh environment is required for 292 inference to work properly --- 4374 //see Infer.instantiatePolymorphicSignatureInstance() 4375 Env<AttrContext> localEnv = env.dup(tree); 4376 //should we propagate the target type? 4377 final ResultInfo castInfo; 4378 JCExpression expr = TreeInfo.skipParens(tree.expr); 4379 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4380 if (isPoly) { 4381 //expression is a poly - we need to propagate target type info 4382 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4383 new Check.NestedCheckContext(resultInfo.checkContext) { 4384 @Override 4385 public boolean compatible(Type found, Type req, Warner warn) { 4386 return types.isCastable(found, req, warn); 4387 } 4388 }); 4389 } else { 4390 //standalone cast - target-type info is not propagated 4391 castInfo = unknownExprInfo; 4392 } 4393 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4394 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4395 if (exprtype.constValue() != null) 4396 owntype = cfolder.coerce(exprtype, owntype); 4397 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4398 if (!isPoly) 4399 chk.checkRedundantCast(localEnv, tree); 4400 } 4401 4402 public void visitTypeTest(JCInstanceOf tree) { 4403 Type exprtype = attribExpr(tree.expr, env); 4404 if (exprtype.isPrimitive()) { 4405 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4406 } else { 4407 exprtype = chk.checkNullOrRefType( 4408 tree.expr.pos(), exprtype); 4409 } 4410 Type clazztype; 4411 JCTree typeTree; 4412 if (tree.pattern.getTag() == BINDINGPATTERN || 4413 tree.pattern.getTag() == RECORDPATTERN) { 4414 attribExpr(tree.pattern, env, exprtype); 4415 clazztype = tree.pattern.type; 4416 if (types.isSubtype(exprtype, clazztype) && 4417 !exprtype.isErroneous() && !clazztype.isErroneous() && 4418 tree.pattern.getTag() != RECORDPATTERN) { 4419 if (!allowUnconditionalPatternsInstanceOf) { 4420 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4421 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4422 } 4423 } 4424 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4425 } else { 4426 clazztype = attribType(tree.pattern, env); 4427 typeTree = tree.pattern; 4428 chk.validate(typeTree, env, false); 4429 } 4430 if (clazztype.isPrimitive()) { 4431 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4432 } else { 4433 if (!clazztype.hasTag(TYPEVAR)) { 4434 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4435 } 4436 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4437 boolean valid = false; 4438 if (allowReifiableTypesInInstanceof) { 4439 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4440 } else { 4441 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4442 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4443 allowReifiableTypesInInstanceof = true; 4444 } 4445 if (!valid) { 4446 clazztype = types.createErrorType(clazztype); 4447 } 4448 } 4449 } 4450 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4451 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4452 } 4453 4454 private boolean checkCastablePattern(DiagnosticPosition pos, 4455 Type exprType, 4456 Type pattType) { 4457 Warner warner = new Warner(); 4458 // if any type is erroneous, the problem is reported elsewhere 4459 if (exprType.isErroneous() || pattType.isErroneous()) { 4460 return false; 4461 } 4462 if (!types.isCastable(exprType, pattType, warner)) { 4463 chk.basicHandler.report(pos, 4464 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4465 return false; 4466 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4467 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4468 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4469 return true; 4470 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4471 log.error(pos, 4472 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4473 return false; 4474 } else { 4475 return true; 4476 } 4477 } 4478 4479 @Override 4480 public void visitAnyPattern(JCAnyPattern tree) { 4481 result = tree.type = resultInfo.pt; 4482 } 4483 4484 public void visitBindingPattern(JCBindingPattern tree) { 4485 Type type; 4486 if (tree.var.vartype != null) { 4487 type = attribType(tree.var.vartype, env); 4488 } else { 4489 type = resultInfo.pt; 4490 } 4491 tree.type = tree.var.type = type; 4492 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4493 v.pos = tree.pos; 4494 tree.var.sym = v; 4495 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4496 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4497 } 4498 chk.validate(tree.var.vartype, env, true); 4499 if (tree.var.isImplicitlyTyped()) { 4500 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4501 : type); 4502 } 4503 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4504 if (!tree.var.isImplicitlyTyped()) { 4505 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4506 } 4507 annotate.flush(); 4508 result = tree.type; 4509 if (v.isUnnamedVariable()) { 4510 matchBindings = MatchBindingsComputer.EMPTY; 4511 } else { 4512 matchBindings = new MatchBindings(List.of(v), List.nil()); 4513 } 4514 chk.checkRequiresIdentity(tree, env.info.lint); 4515 } 4516 4517 @Override 4518 public void visitRecordPattern(JCRecordPattern tree) { 4519 Type site; 4520 4521 if (tree.deconstructor == null) { 4522 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4523 tree.record = syms.errSymbol; 4524 site = tree.type = types.createErrorType(tree.record.type); 4525 } else { 4526 Type type = attribType(tree.deconstructor, env); 4527 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4528 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4529 if (inferred == null) { 4530 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4531 } else { 4532 type = inferred; 4533 } 4534 } 4535 tree.type = tree.deconstructor.type = type; 4536 site = types.capture(tree.type); 4537 } 4538 4539 List<Type> expectedRecordTypes; 4540 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4541 ClassSymbol record = (ClassSymbol) site.tsym; 4542 expectedRecordTypes = record.getRecordComponents() 4543 .stream() 4544 .map(rc -> types.memberType(site, rc)) 4545 .map(t -> types.upward(t, types.captures(t)).baseType()) 4546 .collect(List.collector()); 4547 tree.record = record; 4548 } else { 4549 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4550 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4551 .limit(tree.nested.size()) 4552 .collect(List.collector()); 4553 tree.record = syms.errSymbol; 4554 } 4555 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4556 List<Type> recordTypes = expectedRecordTypes; 4557 List<JCPattern> nestedPatterns = tree.nested; 4558 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4559 try { 4560 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4561 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4562 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4563 outBindings.addAll(matchBindings.bindingsWhenTrue); 4564 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4565 nestedPatterns = nestedPatterns.tail; 4566 recordTypes = recordTypes.tail; 4567 } 4568 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4569 while (nestedPatterns.nonEmpty()) { 4570 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4571 nestedPatterns = nestedPatterns.tail; 4572 } 4573 List<Type> nestedTypes = 4574 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4575 log.error(tree.pos(), 4576 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4577 nestedTypes)); 4578 } 4579 } finally { 4580 localEnv.info.scope.leave(); 4581 } 4582 chk.validate(tree.deconstructor, env, true); 4583 result = tree.type; 4584 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4585 } 4586 4587 public void visitIndexed(JCArrayAccess tree) { 4588 Type owntype = types.createErrorType(tree.type); 4589 Type atype = attribExpr(tree.indexed, env); 4590 attribExpr(tree.index, env, syms.intType); 4591 if (types.isArray(atype)) 4592 owntype = types.elemtype(atype); 4593 else if (!atype.hasTag(ERROR)) 4594 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4595 if (!pkind().contains(KindSelector.VAL)) 4596 owntype = capture(owntype); 4597 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4598 } 4599 4600 public void visitIdent(JCIdent tree) { 4601 Symbol sym; 4602 4603 // Find symbol 4604 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4605 // If we are looking for a method, the prototype `pt' will be a 4606 // method type with the type of the call's arguments as parameters. 4607 env.info.pendingResolutionPhase = null; 4608 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4609 } else if (tree.sym != null && tree.sym.kind != VAR) { 4610 sym = tree.sym; 4611 } else { 4612 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4613 } 4614 tree.sym = sym; 4615 4616 // Also find the environment current for the class where 4617 // sym is defined (`symEnv'). 4618 Env<AttrContext> symEnv = env; 4619 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4620 sym.kind.matches(KindSelector.VAL_MTH) && 4621 sym.owner.kind == TYP && 4622 tree.name != names._this && tree.name != names._super) { 4623 4624 // Find environment in which identifier is defined. 4625 while (symEnv.outer != null && 4626 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4627 symEnv = symEnv.outer; 4628 } 4629 } 4630 4631 // If symbol is a variable, ... 4632 if (sym.kind == VAR) { 4633 VarSymbol v = (VarSymbol)sym; 4634 4635 // ..., evaluate its initializer, if it has one, and check for 4636 // illegal forward reference. 4637 checkInit(tree, env, v, false); 4638 4639 // If we are expecting a variable (as opposed to a value), check 4640 // that the variable is assignable in the current environment. 4641 if (KindSelector.ASG.subset(pkind())) 4642 checkAssignable(tree.pos(), v, null, env); 4643 } 4644 4645 Env<AttrContext> env1 = env; 4646 if (sym.kind != ERR && sym.kind != TYP && 4647 sym.owner != null && sym.owner != env1.enclClass.sym) { 4648 // If the found symbol is inaccessible, then it is 4649 // accessed through an enclosing instance. Locate this 4650 // enclosing instance: 4651 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4652 env1 = env1.outer; 4653 } 4654 4655 if (env.info.isSerializable) { 4656 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4657 } 4658 4659 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4660 } 4661 4662 public void visitSelect(JCFieldAccess tree) { 4663 // Determine the expected kind of the qualifier expression. 4664 KindSelector skind = KindSelector.NIL; 4665 if (tree.name == names._this || tree.name == names._super || 4666 tree.name == names._class) 4667 { 4668 skind = KindSelector.TYP; 4669 } else { 4670 if (pkind().contains(KindSelector.PCK)) 4671 skind = KindSelector.of(skind, KindSelector.PCK); 4672 if (pkind().contains(KindSelector.TYP)) 4673 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4674 if (pkind().contains(KindSelector.VAL_MTH)) 4675 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4676 } 4677 4678 // Attribute the qualifier expression, and determine its symbol (if any). 4679 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4680 Assert.check(site == tree.selected.type); 4681 if (!pkind().contains(KindSelector.TYP_PCK)) 4682 site = capture(site); // Capture field access 4683 4684 // don't allow T.class T[].class, etc 4685 if (skind == KindSelector.TYP) { 4686 Type elt = site; 4687 while (elt.hasTag(ARRAY)) 4688 elt = ((ArrayType)elt).elemtype; 4689 if (elt.hasTag(TYPEVAR)) { 4690 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4691 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4692 tree.sym = tree.type.tsym; 4693 return ; 4694 } 4695 } 4696 4697 // If qualifier symbol is a type or `super', assert `selectSuper' 4698 // for the selection. This is relevant for determining whether 4699 // protected symbols are accessible. 4700 Symbol sitesym = TreeInfo.symbol(tree.selected); 4701 boolean selectSuperPrev = env.info.selectSuper; 4702 env.info.selectSuper = 4703 sitesym != null && 4704 sitesym.name == names._super; 4705 4706 // Determine the symbol represented by the selection. 4707 env.info.pendingResolutionPhase = null; 4708 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4709 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4710 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4711 sym = syms.errSymbol; 4712 } 4713 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4714 site = capture(site); 4715 sym = selectSym(tree, sitesym, site, env, resultInfo); 4716 } 4717 boolean varArgs = env.info.lastResolveVarargs(); 4718 tree.sym = sym; 4719 4720 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4721 site = types.skipTypeVars(site, true); 4722 } 4723 4724 // If that symbol is a variable, ... 4725 if (sym.kind == VAR) { 4726 VarSymbol v = (VarSymbol)sym; 4727 4728 // ..., evaluate its initializer, if it has one, and check for 4729 // illegal forward reference. 4730 checkInit(tree, env, v, true); 4731 4732 // If we are expecting a variable (as opposed to a value), check 4733 // that the variable is assignable in the current environment. 4734 if (KindSelector.ASG.subset(pkind())) 4735 checkAssignable(tree.pos(), v, tree.selected, env); 4736 } 4737 4738 if (sitesym != null && 4739 sitesym.kind == VAR && 4740 ((VarSymbol)sitesym).isResourceVariable() && 4741 sym.kind == MTH && 4742 sym.name.equals(names.close) && 4743 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4744 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4745 } 4746 4747 // Disallow selecting a type from an expression 4748 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4749 tree.type = check(tree.selected, pt(), 4750 sitesym == null ? 4751 KindSelector.VAL : sitesym.kind.toSelector(), 4752 new ResultInfo(KindSelector.TYP_PCK, pt())); 4753 } 4754 4755 if (isType(sitesym)) { 4756 if (sym.name != names._this && sym.name != names._super) { 4757 // Check if type-qualified fields or methods are static (JLS) 4758 if ((sym.flags() & STATIC) == 0 && 4759 sym.name != names._super && 4760 (sym.kind == VAR || sym.kind == MTH)) { 4761 rs.accessBase(rs.new StaticError(sym), 4762 tree.pos(), site, sym.name, true); 4763 } 4764 } 4765 } else if (sym.kind != ERR && 4766 (sym.flags() & STATIC) != 0 && 4767 sym.name != names._class) { 4768 // If the qualified item is not a type and the selected item is static, report 4769 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4770 if (!sym.owner.isAnonymous()) { 4771 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4772 } else { 4773 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4774 } 4775 } 4776 4777 // If we are selecting an instance member via a `super', ... 4778 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4779 4780 // Check that super-qualified symbols are not abstract (JLS) 4781 rs.checkNonAbstract(tree.pos(), sym); 4782 4783 if (site.isRaw()) { 4784 // Determine argument types for site. 4785 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4786 if (site1 != null) site = site1; 4787 } 4788 } 4789 4790 if (env.info.isSerializable) { 4791 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4792 } 4793 4794 env.info.selectSuper = selectSuperPrev; 4795 result = checkId(tree, site, sym, env, resultInfo); 4796 } 4797 //where 4798 /** Determine symbol referenced by a Select expression, 4799 * 4800 * @param tree The select tree. 4801 * @param site The type of the selected expression, 4802 * @param env The current environment. 4803 * @param resultInfo The current result. 4804 */ 4805 private Symbol selectSym(JCFieldAccess tree, 4806 Symbol location, 4807 Type site, 4808 Env<AttrContext> env, 4809 ResultInfo resultInfo) { 4810 DiagnosticPosition pos = tree.pos(); 4811 Name name = tree.name; 4812 switch (site.getTag()) { 4813 case PACKAGE: 4814 return rs.accessBase( 4815 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4816 pos, location, site, name, true); 4817 case ARRAY: 4818 case CLASS: 4819 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4820 return rs.resolveQualifiedMethod( 4821 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4822 } else if (name == names._this || name == names._super) { 4823 return rs.resolveSelf(pos, env, site.tsym, tree); 4824 } else if (name == names._class) { 4825 // In this case, we have already made sure in 4826 // visitSelect that qualifier expression is a type. 4827 return syms.getClassField(site, types); 4828 } else { 4829 // We are seeing a plain identifier as selector. 4830 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4831 sym = rs.accessBase(sym, pos, location, site, name, true); 4832 return sym; 4833 } 4834 case WILDCARD: 4835 throw new AssertionError(tree); 4836 case TYPEVAR: 4837 // Normally, site.getUpperBound() shouldn't be null. 4838 // It should only happen during memberEnter/attribBase 4839 // when determining the supertype which *must* be 4840 // done before attributing the type variables. In 4841 // other words, we are seeing this illegal program: 4842 // class B<T> extends A<T.foo> {} 4843 Symbol sym = (site.getUpperBound() != null) 4844 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4845 : null; 4846 if (sym == null) { 4847 log.error(pos, Errors.TypeVarCantBeDeref); 4848 return syms.errSymbol; 4849 } else { 4850 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4851 rs.new AccessError(env, site, sym) : 4852 sym; 4853 rs.accessBase(sym2, pos, location, site, name, true); 4854 return sym; 4855 } 4856 case ERROR: 4857 // preserve identifier names through errors 4858 return types.createErrorType(name, site.tsym, site).tsym; 4859 default: 4860 // The qualifier expression is of a primitive type -- only 4861 // .class is allowed for these. 4862 if (name == names._class) { 4863 // In this case, we have already made sure in Select that 4864 // qualifier expression is a type. 4865 return syms.getClassField(site, types); 4866 } else { 4867 log.error(pos, Errors.CantDeref(site)); 4868 return syms.errSymbol; 4869 } 4870 } 4871 } 4872 4873 /** Determine type of identifier or select expression and check that 4874 * (1) the referenced symbol is not deprecated 4875 * (2) the symbol's type is safe (@see checkSafe) 4876 * (3) if symbol is a variable, check that its type and kind are 4877 * compatible with the prototype and protokind. 4878 * (4) if symbol is an instance field of a raw type, 4879 * which is being assigned to, issue an unchecked warning if its 4880 * type changes under erasure. 4881 * (5) if symbol is an instance method of a raw type, issue an 4882 * unchecked warning if its argument types change under erasure. 4883 * If checks succeed: 4884 * If symbol is a constant, return its constant type 4885 * else if symbol is a method, return its result type 4886 * otherwise return its type. 4887 * Otherwise return errType. 4888 * 4889 * @param tree The syntax tree representing the identifier 4890 * @param site If this is a select, the type of the selected 4891 * expression, otherwise the type of the current class. 4892 * @param sym The symbol representing the identifier. 4893 * @param env The current environment. 4894 * @param resultInfo The expected result 4895 */ 4896 Type checkId(JCTree tree, 4897 Type site, 4898 Symbol sym, 4899 Env<AttrContext> env, 4900 ResultInfo resultInfo) { 4901 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4902 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4903 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4904 } 4905 4906 Type checkMethodIdInternal(JCTree tree, 4907 Type site, 4908 Symbol sym, 4909 Env<AttrContext> env, 4910 ResultInfo resultInfo) { 4911 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4912 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4913 } else { 4914 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4915 } 4916 } 4917 4918 Type checkIdInternal(JCTree tree, 4919 Type site, 4920 Symbol sym, 4921 Type pt, 4922 Env<AttrContext> env, 4923 ResultInfo resultInfo) { 4924 Type owntype; // The computed type of this identifier occurrence. 4925 switch (sym.kind) { 4926 case TYP: 4927 // For types, the computed type equals the symbol's type, 4928 // except for two situations: 4929 owntype = sym.type; 4930 if (owntype.hasTag(CLASS)) { 4931 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4932 Type ownOuter = owntype.getEnclosingType(); 4933 4934 // (a) If the symbol's type is parameterized, erase it 4935 // because no type parameters were given. 4936 // We recover generic outer type later in visitTypeApply. 4937 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4938 owntype = types.erasure(owntype); 4939 } 4940 4941 // (b) If the symbol's type is an inner class, then 4942 // we have to interpret its outer type as a superclass 4943 // of the site type. Example: 4944 // 4945 // class Tree<A> { class Visitor { ... } } 4946 // class PointTree extends Tree<Point> { ... } 4947 // ...PointTree.Visitor... 4948 // 4949 // Then the type of the last expression above is 4950 // Tree<Point>.Visitor. 4951 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4952 Type normOuter = site; 4953 if (normOuter.hasTag(CLASS)) { 4954 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4955 } 4956 if (normOuter == null) // perhaps from an import 4957 normOuter = types.erasure(ownOuter); 4958 if (normOuter != ownOuter) 4959 owntype = new ClassType( 4960 normOuter, List.nil(), owntype.tsym, 4961 owntype.getMetadata()); 4962 } 4963 } 4964 break; 4965 case VAR: 4966 VarSymbol v = (VarSymbol)sym; 4967 4968 if (env.info.enclVar != null 4969 && v.type.hasTag(NONE)) { 4970 //self reference to implicitly typed variable declaration 4971 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4972 return tree.type = v.type = types.createErrorType(v.type); 4973 } 4974 4975 // Test (4): if symbol is an instance field of a raw type, 4976 // which is being assigned to, issue an unchecked warning if 4977 // its type changes under erasure. 4978 if (KindSelector.ASG.subset(pkind()) && 4979 v.owner.kind == TYP && 4980 (v.flags() & STATIC) == 0 && 4981 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4982 Type s = types.asOuterSuper(site, v.owner); 4983 if (s != null && 4984 s.isRaw() && 4985 !types.isSameType(v.type, v.erasure(types))) { 4986 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4987 } 4988 } 4989 // The computed type of a variable is the type of the 4990 // variable symbol, taken as a member of the site type. 4991 owntype = (sym.owner.kind == TYP && 4992 sym.name != names._this && sym.name != names._super) 4993 ? types.memberType(site, sym) 4994 : sym.type; 4995 4996 // If the variable is a constant, record constant value in 4997 // computed type. 4998 if (v.getConstValue() != null && isStaticReference(tree)) 4999 owntype = owntype.constType(v.getConstValue()); 5000 5001 if (resultInfo.pkind == KindSelector.VAL) { 5002 owntype = capture(owntype); // capture "names as expressions" 5003 } 5004 break; 5005 case MTH: { 5006 owntype = checkMethod(site, sym, 5007 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 5008 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 5009 resultInfo.pt.getTypeArguments()); 5010 chk.checkRestricted(tree.pos(), sym); 5011 break; 5012 } 5013 case PCK: case ERR: 5014 owntype = sym.type; 5015 break; 5016 default: 5017 throw new AssertionError("unexpected kind: " + sym.kind + 5018 " in tree " + tree); 5019 } 5020 5021 // Emit a `deprecation' warning if symbol is deprecated. 5022 // (for constructors (but not for constructor references), the error 5023 // was given when the constructor was resolved) 5024 5025 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 5026 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 5027 chk.checkSunAPI(tree.pos(), sym); 5028 chk.checkProfile(tree.pos(), sym); 5029 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 5030 } 5031 5032 if (pt.isErroneous()) { 5033 owntype = types.createErrorType(owntype); 5034 } 5035 5036 // If symbol is a variable, check that its type and 5037 // kind are compatible with the prototype and protokind. 5038 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 5039 } 5040 5041 /** Check that variable is initialized and evaluate the variable's 5042 * initializer, if not yet done. Also check that variable is not 5043 * referenced before it is defined. 5044 * @param tree The tree making up the variable reference. 5045 * @param env The current environment. 5046 * @param v The variable's symbol. 5047 */ 5048 private void checkInit(JCTree tree, 5049 Env<AttrContext> env, 5050 VarSymbol v, 5051 boolean onlyWarning) { 5052 // A forward reference is diagnosed if the declaration position 5053 // of the variable is greater than the current tree position 5054 // and the tree and variable definition occur in the same class 5055 // definition. Note that writes don't count as references. 5056 // This check applies only to class and instance 5057 // variables. Local variables follow different scope rules, 5058 // and are subject to definite assignment checking. 5059 Env<AttrContext> initEnv = enclosingInitEnv(env); 5060 if (initEnv != null && 5061 (initEnv.info.enclVar == v || v.pos > tree.pos) && 5062 v.owner.kind == TYP && 5063 v.owner == env.info.scope.owner.enclClass() && 5064 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 5065 (!env.tree.hasTag(ASSIGN) || 5066 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 5067 if (!onlyWarning || isStaticEnumField(v)) { 5068 Error errkey = (initEnv.info.enclVar == v) ? 5069 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 5070 log.error(tree.pos(), errkey); 5071 } else if (useBeforeDeclarationWarning) { 5072 Warning warnkey = (initEnv.info.enclVar == v) ? 5073 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 5074 log.warning(tree.pos(), warnkey); 5075 } 5076 } 5077 5078 v.getConstValue(); // ensure initializer is evaluated 5079 5080 checkEnumInitializer(tree, env, v); 5081 } 5082 5083 /** 5084 * Returns the enclosing init environment associated with this env (if any). An init env 5085 * can be either a field declaration env or a static/instance initializer env. 5086 */ 5087 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 5088 while (true) { 5089 switch (env.tree.getTag()) { 5090 case VARDEF: 5091 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 5092 if (vdecl.sym.owner.kind == TYP) { 5093 //field 5094 return env; 5095 } 5096 break; 5097 case BLOCK: 5098 if (env.next.tree.hasTag(CLASSDEF)) { 5099 //instance/static initializer 5100 return env; 5101 } 5102 break; 5103 case METHODDEF: 5104 case CLASSDEF: 5105 case TOPLEVEL: 5106 return null; 5107 } 5108 Assert.checkNonNull(env.next); 5109 env = env.next; 5110 } 5111 } 5112 5113 /** 5114 * Check for illegal references to static members of enum. In 5115 * an enum type, constructors and initializers may not 5116 * reference its static members unless they are constant. 5117 * 5118 * @param tree The tree making up the variable reference. 5119 * @param env The current environment. 5120 * @param v The variable's symbol. 5121 * @jls 8.9 Enum Types 5122 */ 5123 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 5124 // JLS: 5125 // 5126 // "It is a compile-time error to reference a static field 5127 // of an enum type that is not a compile-time constant 5128 // (15.28) from constructors, instance initializer blocks, 5129 // or instance variable initializer expressions of that 5130 // type. It is a compile-time error for the constructors, 5131 // instance initializer blocks, or instance variable 5132 // initializer expressions of an enum constant e to refer 5133 // to itself or to an enum constant of the same type that 5134 // is declared to the right of e." 5135 if (isStaticEnumField(v)) { 5136 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 5137 5138 if (enclClass == null || enclClass.owner == null) 5139 return; 5140 5141 // See if the enclosing class is the enum (or a 5142 // subclass thereof) declaring v. If not, this 5143 // reference is OK. 5144 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 5145 return; 5146 5147 // If the reference isn't from an initializer, then 5148 // the reference is OK. 5149 if (!Resolve.isInitializer(env)) 5150 return; 5151 5152 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 5153 } 5154 } 5155 5156 /** Is the given symbol a static, non-constant field of an Enum? 5157 * Note: enum literals should not be regarded as such 5158 */ 5159 private boolean isStaticEnumField(VarSymbol v) { 5160 return Flags.isEnum(v.owner) && 5161 Flags.isStatic(v) && 5162 !Flags.isConstant(v) && 5163 v.name != names._class; 5164 } 5165 5166 /** 5167 * Check that method arguments conform to its instantiation. 5168 **/ 5169 public Type checkMethod(Type site, 5170 final Symbol sym, 5171 ResultInfo resultInfo, 5172 Env<AttrContext> env, 5173 final List<JCExpression> argtrees, 5174 List<Type> argtypes, 5175 List<Type> typeargtypes) { 5176 // Test (5): if symbol is an instance method of a raw type, issue 5177 // an unchecked warning if its argument types change under erasure. 5178 if ((sym.flags() & STATIC) == 0 && 5179 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 5180 Type s = types.asOuterSuper(site, sym.owner); 5181 if (s != null && s.isRaw() && 5182 !types.isSameTypes(sym.type.getParameterTypes(), 5183 sym.erasure(types).getParameterTypes())) { 5184 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 5185 } 5186 } 5187 5188 if (env.info.defaultSuperCallSite != null) { 5189 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 5190 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 5191 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 5192 List<MethodSymbol> icand_sup = 5193 types.interfaceCandidates(sup, (MethodSymbol)sym); 5194 if (icand_sup.nonEmpty() && 5195 icand_sup.head != sym && 5196 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 5197 log.error(env.tree.pos(), 5198 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 5199 break; 5200 } 5201 } 5202 env.info.defaultSuperCallSite = null; 5203 } 5204 5205 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 5206 JCMethodInvocation app = (JCMethodInvocation)env.tree; 5207 if (app.meth.hasTag(SELECT) && 5208 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 5209 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 5210 } 5211 } 5212 5213 // Compute the identifier's instantiated type. 5214 // For methods, we need to compute the instance type by 5215 // Resolve.instantiate from the symbol's type as well as 5216 // any type arguments and value arguments. 5217 Warner noteWarner = new Warner(); 5218 try { 5219 Type owntype = rs.checkMethod( 5220 env, 5221 site, 5222 sym, 5223 resultInfo, 5224 argtypes, 5225 typeargtypes, 5226 noteWarner); 5227 5228 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 5229 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 5230 5231 argtypes = argtypes.map(checkDeferredMap); 5232 5233 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 5234 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 5235 sym.name, 5236 rs.methodArguments(sym.type.getParameterTypes()), 5237 rs.methodArguments(argtypes.map(checkDeferredMap)), 5238 kindName(sym.location()), 5239 sym.location())); 5240 if (resultInfo.pt != Infer.anyPoly || 5241 !owntype.hasTag(METHOD) || 5242 !owntype.isPartial()) { 5243 //if this is not a partially inferred method type, erase return type. Otherwise, 5244 //erasure is carried out in PartiallyInferredMethodType.check(). 5245 owntype = new MethodType(owntype.getParameterTypes(), 5246 types.erasure(owntype.getReturnType()), 5247 types.erasure(owntype.getThrownTypes()), 5248 syms.methodClass); 5249 } 5250 } 5251 5252 PolyKind pkind = (sym.type.hasTag(FORALL) && 5253 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 5254 PolyKind.POLY : PolyKind.STANDALONE; 5255 TreeInfo.setPolyKind(env.tree, pkind); 5256 5257 return (resultInfo.pt == Infer.anyPoly) ? 5258 owntype : 5259 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 5260 resultInfo.checkContext.inferenceContext()); 5261 } catch (Infer.InferenceException ex) { 5262 //invalid target type - propagate exception outwards or report error 5263 //depending on the current check context 5264 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 5265 return types.createErrorType(site); 5266 } catch (Resolve.InapplicableMethodException ex) { 5267 final JCDiagnostic diag = ex.getDiagnostic(); 5268 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 5269 @Override 5270 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5271 return new Pair<>(sym, diag); 5272 } 5273 }; 5274 List<Type> argtypes2 = argtypes.map( 5275 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5276 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5277 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5278 log.report(errDiag); 5279 return types.createErrorType(site); 5280 } 5281 } 5282 5283 public void visitLiteral(JCLiteral tree) { 5284 result = check(tree, litType(tree.typetag).constType(tree.value), 5285 KindSelector.VAL, resultInfo); 5286 } 5287 //where 5288 /** Return the type of a literal with given type tag. 5289 */ 5290 Type litType(TypeTag tag) { 5291 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5292 } 5293 5294 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5295 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5296 } 5297 5298 public void visitTypeArray(JCArrayTypeTree tree) { 5299 Type etype = attribType(tree.elemtype, env); 5300 Type type = new ArrayType(etype, syms.arrayClass); 5301 result = check(tree, type, KindSelector.TYP, resultInfo); 5302 } 5303 5304 /** Visitor method for parameterized types. 5305 * Bound checking is left until later, since types are attributed 5306 * before supertype structure is completely known 5307 */ 5308 public void visitTypeApply(JCTypeApply tree) { 5309 Type owntype = types.createErrorType(tree.type); 5310 5311 // Attribute functor part of application and make sure it's a class. 5312 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5313 5314 // Attribute type parameters 5315 List<Type> actuals = attribTypes(tree.arguments, env); 5316 5317 if (clazztype.hasTag(CLASS)) { 5318 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5319 if (actuals.isEmpty()) //diamond 5320 actuals = formals; 5321 5322 if (actuals.length() == formals.length()) { 5323 List<Type> a = actuals; 5324 List<Type> f = formals; 5325 while (a.nonEmpty()) { 5326 a.head = a.head.withTypeVar(f.head); 5327 a = a.tail; 5328 f = f.tail; 5329 } 5330 // Compute the proper generic outer 5331 Type clazzOuter = clazztype.getEnclosingType(); 5332 if (clazzOuter.hasTag(CLASS)) { 5333 Type site; 5334 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5335 if (clazz.hasTag(IDENT)) { 5336 site = env.enclClass.sym.type; 5337 } else if (clazz.hasTag(SELECT)) { 5338 site = ((JCFieldAccess) clazz).selected.type; 5339 } else throw new AssertionError(""+tree); 5340 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5341 if (site.hasTag(CLASS)) 5342 site = types.asOuterSuper(site, clazzOuter.tsym); 5343 if (site == null) 5344 site = types.erasure(clazzOuter); 5345 clazzOuter = site; 5346 } 5347 } 5348 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5349 clazztype.getMetadata()); 5350 } else { 5351 if (formals.length() != 0) { 5352 log.error(tree.pos(), 5353 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5354 } else { 5355 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5356 } 5357 owntype = types.createErrorType(tree.type); 5358 } 5359 } else if (clazztype.hasTag(ERROR)) { 5360 ErrorType parameterizedErroneous = 5361 new ErrorType(clazztype.getOriginalType(), 5362 clazztype.tsym, 5363 clazztype.getMetadata()); 5364 5365 parameterizedErroneous.typarams_field = actuals; 5366 owntype = parameterizedErroneous; 5367 } 5368 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5369 } 5370 5371 public void visitTypeUnion(JCTypeUnion tree) { 5372 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5373 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5374 for (JCExpression typeTree : tree.alternatives) { 5375 Type ctype = attribType(typeTree, env); 5376 ctype = chk.checkType(typeTree.pos(), 5377 chk.checkClassType(typeTree.pos(), ctype), 5378 syms.throwableType); 5379 if (!ctype.isErroneous()) { 5380 //check that alternatives of a union type are pairwise 5381 //unrelated w.r.t. subtyping 5382 if (chk.intersects(ctype, multicatchTypes.toList())) { 5383 for (Type t : multicatchTypes) { 5384 boolean sub = types.isSubtype(ctype, t); 5385 boolean sup = types.isSubtype(t, ctype); 5386 if (sub || sup) { 5387 //assume 'a' <: 'b' 5388 Type a = sub ? ctype : t; 5389 Type b = sub ? t : ctype; 5390 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5391 } 5392 } 5393 } 5394 multicatchTypes.append(ctype); 5395 if (all_multicatchTypes != null) 5396 all_multicatchTypes.append(ctype); 5397 } else { 5398 if (all_multicatchTypes == null) { 5399 all_multicatchTypes = new ListBuffer<>(); 5400 all_multicatchTypes.appendList(multicatchTypes); 5401 } 5402 all_multicatchTypes.append(ctype); 5403 } 5404 } 5405 Type t = check(tree, types.lub(multicatchTypes.toList()), 5406 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5407 if (t.hasTag(CLASS)) { 5408 List<Type> alternatives = 5409 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5410 t = new UnionClassType((ClassType) t, alternatives); 5411 } 5412 tree.type = result = t; 5413 } 5414 5415 public void visitTypeIntersection(JCTypeIntersection tree) { 5416 attribTypes(tree.bounds, env); 5417 tree.type = result = checkIntersection(tree, tree.bounds); 5418 } 5419 5420 public void visitTypeParameter(JCTypeParameter tree) { 5421 TypeVar typeVar = (TypeVar) tree.type; 5422 5423 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5424 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5425 } 5426 5427 if (!typeVar.getUpperBound().isErroneous()) { 5428 //fixup type-parameter bound computed in 'attribTypeVariables' 5429 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5430 } 5431 } 5432 5433 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5434 Set<Symbol> boundSet = new HashSet<>(); 5435 if (bounds.nonEmpty()) { 5436 // accept class or interface or typevar as first bound. 5437 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5438 boundSet.add(types.erasure(bounds.head.type).tsym); 5439 if (bounds.head.type.isErroneous()) { 5440 return bounds.head.type; 5441 } 5442 else if (bounds.head.type.hasTag(TYPEVAR)) { 5443 // if first bound was a typevar, do not accept further bounds. 5444 if (bounds.tail.nonEmpty()) { 5445 log.error(bounds.tail.head.pos(), 5446 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5447 return bounds.head.type; 5448 } 5449 } else { 5450 // if first bound was a class or interface, accept only interfaces 5451 // as further bounds. 5452 for (JCExpression bound : bounds.tail) { 5453 bound.type = checkBase(bound.type, bound, env, false, true, false); 5454 if (bound.type.isErroneous()) { 5455 bounds = List.of(bound); 5456 } 5457 else if (bound.type.hasTag(CLASS)) { 5458 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5459 } 5460 } 5461 } 5462 } 5463 5464 if (bounds.length() == 0) { 5465 return syms.objectType; 5466 } else if (bounds.length() == 1) { 5467 return bounds.head.type; 5468 } else { 5469 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5470 // ... the variable's bound is a class type flagged COMPOUND 5471 // (see comment for TypeVar.bound). 5472 // In this case, generate a class tree that represents the 5473 // bound class, ... 5474 JCExpression extending; 5475 List<JCExpression> implementing; 5476 if (!bounds.head.type.isInterface()) { 5477 extending = bounds.head; 5478 implementing = bounds.tail; 5479 } else { 5480 extending = null; 5481 implementing = bounds; 5482 } 5483 JCClassDecl cd = make.at(tree).ClassDef( 5484 make.Modifiers(PUBLIC | ABSTRACT), 5485 names.empty, List.nil(), 5486 extending, implementing, List.nil()); 5487 5488 ClassSymbol c = (ClassSymbol)owntype.tsym; 5489 Assert.check((c.flags() & COMPOUND) != 0); 5490 cd.sym = c; 5491 c.sourcefile = env.toplevel.sourcefile; 5492 5493 // ... and attribute the bound class 5494 c.flags_field |= UNATTRIBUTED; 5495 Env<AttrContext> cenv = enter.classEnv(cd, env); 5496 typeEnvs.put(c, cenv); 5497 attribClass(c); 5498 return owntype; 5499 } 5500 } 5501 5502 public void visitWildcard(JCWildcard tree) { 5503 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5504 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5505 ? syms.objectType 5506 : attribType(tree.inner, env); 5507 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5508 tree.kind.kind, 5509 syms.boundClass), 5510 KindSelector.TYP, resultInfo); 5511 } 5512 5513 public void visitAnnotation(JCAnnotation tree) { 5514 Assert.error("should be handled in annotate"); 5515 } 5516 5517 @Override 5518 public void visitModifiers(JCModifiers tree) { 5519 //error recovery only: 5520 Assert.check(resultInfo.pkind == KindSelector.ERR); 5521 5522 attribAnnotationTypes(tree.annotations, env); 5523 } 5524 5525 public void visitAnnotatedType(JCAnnotatedType tree) { 5526 attribAnnotationTypes(tree.annotations, env); 5527 Type underlyingType = attribType(tree.underlyingType, env); 5528 Type annotatedType = underlyingType.preannotatedType(); 5529 5530 if (!env.info.isAnonymousNewClass) 5531 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5532 result = tree.type = annotatedType; 5533 } 5534 5535 public void visitErroneous(JCErroneous tree) { 5536 if (tree.errs != null) { 5537 WriteableScope newScope = env.info.scope; 5538 5539 if (env.tree instanceof JCClassDecl) { 5540 Symbol fakeOwner = 5541 new MethodSymbol(BLOCK, names.empty, null, 5542 env.info.scope.owner); 5543 newScope = newScope.dupUnshared(fakeOwner); 5544 } 5545 5546 Env<AttrContext> errEnv = 5547 env.dup(env.tree, 5548 env.info.dup(newScope)); 5549 errEnv.info.returnResult = unknownExprInfo; 5550 for (JCTree err : tree.errs) 5551 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5552 } 5553 result = tree.type = syms.errType; 5554 } 5555 5556 /** Default visitor method for all other trees. 5557 */ 5558 public void visitTree(JCTree tree) { 5559 throw new AssertionError(); 5560 } 5561 5562 /** 5563 * Attribute an env for either a top level tree or class or module declaration. 5564 */ 5565 public void attrib(Env<AttrContext> env) { 5566 switch (env.tree.getTag()) { 5567 case MODULEDEF: 5568 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5569 break; 5570 case PACKAGEDEF: 5571 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5572 break; 5573 default: 5574 attribClass(env.tree.pos(), env.enclClass.sym); 5575 } 5576 5577 annotate.flush(); 5578 } 5579 5580 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5581 try { 5582 annotate.flush(); 5583 attribPackage(p); 5584 } catch (CompletionFailure ex) { 5585 chk.completionError(pos, ex); 5586 } 5587 } 5588 5589 void attribPackage(PackageSymbol p) { 5590 attribWithLint(p, 5591 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5592 } 5593 5594 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5595 try { 5596 annotate.flush(); 5597 attribModule(m); 5598 } catch (CompletionFailure ex) { 5599 chk.completionError(pos, ex); 5600 } 5601 } 5602 5603 void attribModule(ModuleSymbol m) { 5604 attribWithLint(m, env -> attribStat(env.tree, env)); 5605 } 5606 5607 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5608 Env<AttrContext> env = typeEnvs.get(sym); 5609 5610 Env<AttrContext> lintEnv = env; 5611 while (lintEnv.info.lint == null) 5612 lintEnv = lintEnv.next; 5613 5614 Lint lint = lintEnv.info.lint.augment(sym); 5615 5616 Lint prevLint = chk.setLint(lint); 5617 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5618 5619 try { 5620 deferredLintHandler.flush(env.tree, lint); 5621 attrib.accept(env); 5622 } finally { 5623 log.useSource(prev); 5624 chk.setLint(prevLint); 5625 } 5626 } 5627 5628 /** Main method: attribute class definition associated with given class symbol. 5629 * reporting completion failures at the given position. 5630 * @param pos The source position at which completion errors are to be 5631 * reported. 5632 * @param c The class symbol whose definition will be attributed. 5633 */ 5634 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5635 try { 5636 annotate.flush(); 5637 attribClass(c); 5638 } catch (CompletionFailure ex) { 5639 chk.completionError(pos, ex); 5640 } 5641 } 5642 5643 /** Attribute class definition associated with given class symbol. 5644 * @param c The class symbol whose definition will be attributed. 5645 */ 5646 void attribClass(ClassSymbol c) throws CompletionFailure { 5647 if (c.type.hasTag(ERROR)) return; 5648 5649 // Check for cycles in the inheritance graph, which can arise from 5650 // ill-formed class files. 5651 chk.checkNonCyclic(null, c.type); 5652 5653 Type st = types.supertype(c.type); 5654 if ((c.flags_field & Flags.COMPOUND) == 0 && 5655 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5656 // First, attribute superclass. 5657 if (st.hasTag(CLASS)) 5658 attribClass((ClassSymbol)st.tsym); 5659 5660 // Next attribute owner, if it is a class. 5661 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5662 attribClass((ClassSymbol)c.owner); 5663 5664 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5665 } 5666 5667 // The previous operations might have attributed the current class 5668 // if there was a cycle. So we test first whether the class is still 5669 // UNATTRIBUTED. 5670 if ((c.flags_field & UNATTRIBUTED) != 0) { 5671 c.flags_field &= ~UNATTRIBUTED; 5672 5673 // Get environment current at the point of class definition. 5674 Env<AttrContext> env = typeEnvs.get(c); 5675 5676 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5677 // because the annotations were not available at the time the env was created. Therefore, 5678 // we look up the environment chain for the first enclosing environment for which the 5679 // lint value is set. Typically, this is the parent env, but might be further if there 5680 // are any envs created as a result of TypeParameter nodes. 5681 Env<AttrContext> lintEnv = env; 5682 while (lintEnv.info.lint == null) 5683 lintEnv = lintEnv.next; 5684 5685 // Having found the enclosing lint value, we can initialize the lint value for this class 5686 env.info.lint = lintEnv.info.lint.augment(c); 5687 5688 Lint prevLint = chk.setLint(env.info.lint); 5689 JavaFileObject prev = log.useSource(c.sourcefile); 5690 ResultInfo prevReturnRes = env.info.returnResult; 5691 5692 try { 5693 if (c.isSealed() && 5694 !c.isEnum() && 5695 !c.isPermittedExplicit && 5696 c.getPermittedSubclasses().isEmpty()) { 5697 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5698 } 5699 5700 if (c.isSealed()) { 5701 Set<Symbol> permittedTypes = new HashSet<>(); 5702 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5703 for (Type subType : c.getPermittedSubclasses()) { 5704 if (subType.isErroneous()) { 5705 // the type already caused errors, don't produce more potentially misleading errors 5706 continue; 5707 } 5708 boolean isTypeVar = false; 5709 if (subType.getTag() == TYPEVAR) { 5710 isTypeVar = true; //error recovery 5711 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5712 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5713 } 5714 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5715 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5716 } 5717 if (permittedTypes.contains(subType.tsym)) { 5718 DiagnosticPosition pos = 5719 env.enclClass.permitting.stream() 5720 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5721 .limit(2).collect(List.collector()).get(1); 5722 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5723 } else { 5724 permittedTypes.add(subType.tsym); 5725 } 5726 if (sealedInUnnamed) { 5727 if (subType.tsym.packge() != c.packge()) { 5728 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5729 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5730 ); 5731 } 5732 } else if (subType.tsym.packge().modle != c.packge().modle) { 5733 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5734 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5735 ); 5736 } 5737 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5738 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5739 Errors.InvalidPermitsClause( 5740 subType.tsym == c.type.tsym ? 5741 Fragments.MustNotBeSameClass : 5742 Fragments.MustNotBeSupertype(subType) 5743 ) 5744 ); 5745 } else if (!isTypeVar) { 5746 boolean thisIsASuper = types.directSupertypes(subType) 5747 .stream() 5748 .anyMatch(d -> d.tsym == c); 5749 if (!thisIsASuper) { 5750 if(c.isInterface()) { 5751 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5752 Errors.InvalidPermitsClause(Fragments.DoesntImplementSealed(kindName(subType.tsym), subType))); 5753 } else { 5754 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5755 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5756 } 5757 } 5758 } 5759 } 5760 } 5761 5762 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5763 .stream() 5764 .filter(s -> s.tsym.isSealed()) 5765 .map(s -> (ClassSymbol) s.tsym) 5766 .collect(List.collector()); 5767 5768 if (sealedSupers.isEmpty()) { 5769 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5770 boolean hasErrorSuper = false; 5771 5772 hasErrorSuper |= types.directSupertypes(c.type) 5773 .stream() 5774 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5775 5776 ClassType ct = (ClassType) c.type; 5777 5778 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5779 5780 if (!hasErrorSuper) { 5781 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5782 } 5783 } 5784 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5785 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5786 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5787 } 5788 5789 if (!c.type.isCompound()) { 5790 for (ClassSymbol supertypeSym : sealedSupers) { 5791 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5792 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5793 } 5794 } 5795 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5796 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5797 c.isInterface() ? 5798 Errors.NonSealedOrSealedExpected : 5799 Errors.NonSealedSealedOrFinalExpected); 5800 } 5801 } 5802 } 5803 5804 deferredLintHandler.flush(env.tree, env.info.lint); 5805 env.info.returnResult = null; 5806 // java.lang.Enum may not be subclassed by a non-enum 5807 if (st.tsym == syms.enumSym && 5808 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5809 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5810 5811 // Enums may not be extended by source-level classes 5812 if (st.tsym != null && 5813 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5814 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5815 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5816 } 5817 5818 if (rs.isSerializable(c.type)) { 5819 env.info.isSerializable = true; 5820 } 5821 5822 if (c.isValueClass()) { 5823 Assert.check(env.tree.hasTag(CLASSDEF)); 5824 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c); 5825 } 5826 5827 attribClassBody(env, c); 5828 5829 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5830 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5831 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5832 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5833 5834 if (c.isImplicit()) { 5835 chk.checkHasMain(env.tree.pos(), c); 5836 } 5837 } finally { 5838 env.info.returnResult = prevReturnRes; 5839 log.useSource(prev); 5840 chk.setLint(prevLint); 5841 } 5842 5843 } 5844 } 5845 5846 public void visitImport(JCImport tree) { 5847 // nothing to do 5848 } 5849 5850 public void visitModuleDef(JCModuleDecl tree) { 5851 tree.sym.completeUsesProvides(); 5852 ModuleSymbol msym = tree.sym; 5853 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5854 Lint prevLint = chk.setLint(lint); 5855 chk.checkModuleName(tree); 5856 chk.checkDeprecatedAnnotation(tree, msym); 5857 5858 try { 5859 deferredLintHandler.flush(tree, lint); 5860 } finally { 5861 chk.setLint(prevLint); 5862 } 5863 } 5864 5865 /** Finish the attribution of a class. */ 5866 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5867 JCClassDecl tree = (JCClassDecl)env.tree; 5868 Assert.check(c == tree.sym); 5869 5870 // Validate type parameters, supertype and interfaces. 5871 attribStats(tree.typarams, env); 5872 if (!c.isAnonymous()) { 5873 //already checked if anonymous 5874 chk.validate(tree.typarams, env); 5875 chk.validate(tree.extending, env); 5876 chk.validate(tree.implementing, env); 5877 } 5878 5879 chk.checkRequiresIdentity(tree, env.info.lint); 5880 5881 c.markAbstractIfNeeded(types); 5882 5883 // If this is a non-abstract class, check that it has no abstract 5884 // methods or unimplemented methods of an implemented interface. 5885 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5886 chk.checkAllDefined(tree.pos(), c); 5887 } 5888 5889 if ((c.flags() & ANNOTATION) != 0) { 5890 if (tree.implementing.nonEmpty()) 5891 log.error(tree.implementing.head.pos(), 5892 Errors.CantExtendIntfAnnotation); 5893 if (tree.typarams.nonEmpty()) { 5894 log.error(tree.typarams.head.pos(), 5895 Errors.IntfAnnotationCantHaveTypeParams(c)); 5896 } 5897 5898 // If this annotation type has a @Repeatable, validate 5899 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5900 // If this annotation type has a @Repeatable, validate 5901 if (repeatable != null) { 5902 // get diagnostic position for error reporting 5903 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5904 Assert.checkNonNull(cbPos); 5905 5906 chk.validateRepeatable(c, repeatable, cbPos); 5907 } 5908 } else { 5909 // Check that all extended classes and interfaces 5910 // are compatible (i.e. no two define methods with same arguments 5911 // yet different return types). (JLS 8.4.8.3) 5912 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5913 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5914 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5915 } 5916 5917 // Check that class does not import the same parameterized interface 5918 // with two different argument lists. 5919 chk.checkClassBounds(tree.pos(), c.type); 5920 5921 tree.type = c.type; 5922 5923 for (List<JCTypeParameter> l = tree.typarams; 5924 l.nonEmpty(); l = l.tail) { 5925 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5926 } 5927 5928 // Check that a generic class doesn't extend Throwable 5929 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5930 log.error(tree.extending.pos(), Errors.GenericThrowable); 5931 5932 // Check that all methods which implement some 5933 // method conform to the method they implement. 5934 chk.checkImplementations(tree); 5935 5936 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5937 checkAutoCloseable(tree.pos(), env, c.type); 5938 5939 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5940 // Attribute declaration 5941 attribStat(l.head, env); 5942 // Check that declarations in inner classes are not static (JLS 8.1.2) 5943 // Make an exception for static constants. 5944 if (!allowRecords && 5945 c.owner.kind != PCK && 5946 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5947 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5948 VarSymbol sym = null; 5949 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5950 if (sym == null || 5951 sym.kind != VAR || 5952 sym.getConstValue() == null) 5953 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5954 } 5955 } 5956 5957 // Check for proper placement of super()/this() calls. 5958 chk.checkSuperInitCalls(tree); 5959 5960 // Check for cycles among non-initial constructors. 5961 chk.checkCyclicConstructors(tree); 5962 5963 // Check for cycles among annotation elements. 5964 chk.checkNonCyclicElements(tree); 5965 5966 // Check for proper use of serialVersionUID and other 5967 // serialization-related fields and methods 5968 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5969 && rs.isSerializable(c.type) 5970 && !c.isAnonymous()) { 5971 chk.checkSerialStructure(env, tree, c); 5972 } 5973 // Correctly organize the positions of the type annotations 5974 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5975 5976 // Check type annotations applicability rules 5977 validateTypeAnnotations(tree, false); 5978 } 5979 // where 5980 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5981 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5982 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5983 if (types.isSameType(al.head.annotationType.type, t)) 5984 return al.head.pos(); 5985 } 5986 5987 return null; 5988 } 5989 5990 private Type capture(Type type) { 5991 return types.capture(type); 5992 } 5993 5994 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5995 if (type.isErroneous()) { 5996 tree.vartype = make.at(tree.pos()).Erroneous(); 5997 } else { 5998 tree.vartype = make.at(tree.pos()).Type(type); 5999 } 6000 } 6001 6002 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 6003 tree.accept(new TypeAnnotationsValidator(sigOnly)); 6004 } 6005 //where 6006 private final class TypeAnnotationsValidator extends TreeScanner { 6007 6008 private final boolean sigOnly; 6009 public TypeAnnotationsValidator(boolean sigOnly) { 6010 this.sigOnly = sigOnly; 6011 } 6012 6013 public void visitAnnotation(JCAnnotation tree) { 6014 chk.validateTypeAnnotation(tree, null, false); 6015 super.visitAnnotation(tree); 6016 } 6017 public void visitAnnotatedType(JCAnnotatedType tree) { 6018 if (!tree.underlyingType.type.isErroneous()) { 6019 super.visitAnnotatedType(tree); 6020 } 6021 } 6022 public void visitTypeParameter(JCTypeParameter tree) { 6023 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 6024 scan(tree.bounds); 6025 // Don't call super. 6026 // This is needed because above we call validateTypeAnnotation with 6027 // false, which would forbid annotations on type parameters. 6028 // super.visitTypeParameter(tree); 6029 } 6030 public void visitMethodDef(JCMethodDecl tree) { 6031 if (tree.recvparam != null && 6032 !tree.recvparam.vartype.type.isErroneous()) { 6033 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 6034 } 6035 if (tree.restype != null && tree.restype.type != null) { 6036 validateAnnotatedType(tree.restype, tree.restype.type); 6037 } 6038 if (sigOnly) { 6039 scan(tree.mods); 6040 scan(tree.restype); 6041 scan(tree.typarams); 6042 scan(tree.recvparam); 6043 scan(tree.params); 6044 scan(tree.thrown); 6045 } else { 6046 scan(tree.defaultValue); 6047 scan(tree.body); 6048 } 6049 } 6050 public void visitVarDef(final JCVariableDecl tree) { 6051 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 6052 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 6053 validateAnnotatedType(tree.vartype, tree.sym.type); 6054 scan(tree.mods); 6055 scan(tree.vartype); 6056 if (!sigOnly) { 6057 scan(tree.init); 6058 } 6059 } 6060 public void visitTypeCast(JCTypeCast tree) { 6061 if (tree.clazz != null && tree.clazz.type != null) 6062 validateAnnotatedType(tree.clazz, tree.clazz.type); 6063 super.visitTypeCast(tree); 6064 } 6065 public void visitTypeTest(JCInstanceOf tree) { 6066 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 6067 validateAnnotatedType(tree.pattern, tree.pattern.type); 6068 super.visitTypeTest(tree); 6069 } 6070 public void visitNewClass(JCNewClass tree) { 6071 if (tree.clazz != null && tree.clazz.type != null) { 6072 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 6073 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 6074 tree.clazz.type.tsym); 6075 } 6076 if (tree.def != null) { 6077 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 6078 } 6079 6080 validateAnnotatedType(tree.clazz, tree.clazz.type); 6081 } 6082 super.visitNewClass(tree); 6083 } 6084 public void visitNewArray(JCNewArray tree) { 6085 if (tree.elemtype != null && tree.elemtype.type != null) { 6086 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 6087 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 6088 tree.elemtype.type.tsym); 6089 } 6090 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 6091 } 6092 super.visitNewArray(tree); 6093 } 6094 public void visitClassDef(JCClassDecl tree) { 6095 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 6096 if (sigOnly) { 6097 scan(tree.mods); 6098 scan(tree.typarams); 6099 scan(tree.extending); 6100 scan(tree.implementing); 6101 } 6102 for (JCTree member : tree.defs) { 6103 if (member.hasTag(Tag.CLASSDEF)) { 6104 continue; 6105 } 6106 scan(member); 6107 } 6108 } 6109 public void visitBlock(JCBlock tree) { 6110 if (!sigOnly) { 6111 scan(tree.stats); 6112 } 6113 } 6114 6115 /* I would want to model this after 6116 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 6117 * and override visitSelect and visitTypeApply. 6118 * However, we only set the annotated type in the top-level type 6119 * of the symbol. 6120 * Therefore, we need to override each individual location where a type 6121 * can occur. 6122 */ 6123 private void validateAnnotatedType(final JCTree errtree, final Type type) { 6124 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 6125 6126 if (type.isPrimitiveOrVoid()) { 6127 return; 6128 } 6129 6130 JCTree enclTr = errtree; 6131 Type enclTy = type; 6132 6133 boolean repeat = true; 6134 while (repeat) { 6135 if (enclTr.hasTag(TYPEAPPLY)) { 6136 List<Type> tyargs = enclTy.getTypeArguments(); 6137 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 6138 if (trargs.length() > 0) { 6139 // Nothing to do for diamonds 6140 if (tyargs.length() == trargs.length()) { 6141 for (int i = 0; i < tyargs.length(); ++i) { 6142 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 6143 } 6144 } 6145 // If the lengths don't match, it's either a diamond 6146 // or some nested type that redundantly provides 6147 // type arguments in the tree. 6148 } 6149 6150 // Look at the clazz part of a generic type 6151 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 6152 } 6153 6154 if (enclTr.hasTag(SELECT)) { 6155 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 6156 if (enclTy != null && 6157 !enclTy.hasTag(NONE)) { 6158 enclTy = enclTy.getEnclosingType(); 6159 } 6160 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 6161 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 6162 if (enclTy == null || enclTy.hasTag(NONE)) { 6163 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 6164 for (JCAnnotation an : at.getAnnotations()) { 6165 if (chk.isTypeAnnotation(an, false)) { 6166 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 6167 } 6168 } 6169 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 6170 if (!onlyTypeAnnotations.isEmpty()) { 6171 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 6172 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 6173 Fragments.TypeAnnotation(onlyTypeAnnotations); 6174 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 6175 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 6176 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 6177 type.tsym.owner, annotatedType)); 6178 } 6179 repeat = false; 6180 } 6181 enclTr = at.underlyingType; 6182 // enclTy doesn't need to be changed 6183 } else if (enclTr.hasTag(IDENT)) { 6184 repeat = false; 6185 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 6186 JCWildcard wc = (JCWildcard) enclTr; 6187 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 6188 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 6189 validateAnnotatedType(wc.getBound(), wc.getBound().type); 6190 } else { 6191 // Nothing to do for UNBOUND 6192 } 6193 repeat = false; 6194 } else if (enclTr.hasTag(TYPEARRAY)) { 6195 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 6196 validateAnnotatedType(art.getType(), art.elemtype.type); 6197 repeat = false; 6198 } else if (enclTr.hasTag(TYPEUNION)) { 6199 JCTypeUnion ut = (JCTypeUnion) enclTr; 6200 for (JCTree t : ut.getTypeAlternatives()) { 6201 validateAnnotatedType(t, t.type); 6202 } 6203 repeat = false; 6204 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 6205 JCTypeIntersection it = (JCTypeIntersection) enclTr; 6206 for (JCTree t : it.getBounds()) { 6207 validateAnnotatedType(t, t.type); 6208 } 6209 repeat = false; 6210 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 6211 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 6212 repeat = false; 6213 } else { 6214 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 6215 " within: "+ errtree + " with kind: " + errtree.getKind()); 6216 } 6217 } 6218 } 6219 6220 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 6221 Symbol sym) { 6222 // Ensure that no declaration annotations are present. 6223 // Note that a tree type might be an AnnotatedType with 6224 // empty annotations, if only declaration annotations were given. 6225 // This method will raise an error for such a type. 6226 for (JCAnnotation ai : annotations) { 6227 if (!ai.type.isErroneous() && 6228 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 6229 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 6230 } 6231 } 6232 } 6233 } 6234 6235 // <editor-fold desc="post-attribution visitor"> 6236 6237 /** 6238 * Handle missing types/symbols in an AST. This routine is useful when 6239 * the compiler has encountered some errors (which might have ended up 6240 * terminating attribution abruptly); if the compiler is used in fail-over 6241 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 6242 * prevents NPE to be propagated during subsequent compilation steps. 6243 */ 6244 public void postAttr(JCTree tree) { 6245 new PostAttrAnalyzer().scan(tree); 6246 } 6247 6248 class PostAttrAnalyzer extends TreeScanner { 6249 6250 private void initTypeIfNeeded(JCTree that) { 6251 if (that.type == null) { 6252 if (that.hasTag(METHODDEF)) { 6253 that.type = dummyMethodType((JCMethodDecl)that); 6254 } else { 6255 that.type = syms.unknownType; 6256 } 6257 } 6258 } 6259 6260 /* Construct a dummy method type. If we have a method declaration, 6261 * and the declared return type is void, then use that return type 6262 * instead of UNKNOWN to avoid spurious error messages in lambda 6263 * bodies (see:JDK-8041704). 6264 */ 6265 private Type dummyMethodType(JCMethodDecl md) { 6266 Type restype = syms.unknownType; 6267 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 6268 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 6269 if (prim.typetag == VOID) 6270 restype = syms.voidType; 6271 } 6272 return new MethodType(List.nil(), restype, 6273 List.nil(), syms.methodClass); 6274 } 6275 private Type dummyMethodType() { 6276 return dummyMethodType(null); 6277 } 6278 6279 @Override 6280 public void scan(JCTree tree) { 6281 if (tree == null) return; 6282 if (tree instanceof JCExpression) { 6283 initTypeIfNeeded(tree); 6284 } 6285 super.scan(tree); 6286 } 6287 6288 @Override 6289 public void visitIdent(JCIdent that) { 6290 if (that.sym == null) { 6291 that.sym = syms.unknownSymbol; 6292 } 6293 } 6294 6295 @Override 6296 public void visitSelect(JCFieldAccess that) { 6297 if (that.sym == null) { 6298 that.sym = syms.unknownSymbol; 6299 } 6300 super.visitSelect(that); 6301 } 6302 6303 @Override 6304 public void visitClassDef(JCClassDecl that) { 6305 initTypeIfNeeded(that); 6306 if (that.sym == null) { 6307 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6308 } 6309 super.visitClassDef(that); 6310 } 6311 6312 @Override 6313 public void visitMethodDef(JCMethodDecl that) { 6314 initTypeIfNeeded(that); 6315 if (that.sym == null) { 6316 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6317 } 6318 super.visitMethodDef(that); 6319 } 6320 6321 @Override 6322 public void visitVarDef(JCVariableDecl that) { 6323 initTypeIfNeeded(that); 6324 if (that.sym == null) { 6325 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6326 that.sym.adr = 0; 6327 } 6328 if (that.vartype == null) { 6329 that.vartype = make.at(Position.NOPOS).Erroneous(); 6330 } 6331 super.visitVarDef(that); 6332 } 6333 6334 @Override 6335 public void visitBindingPattern(JCBindingPattern that) { 6336 initTypeIfNeeded(that); 6337 initTypeIfNeeded(that.var); 6338 if (that.var.sym == null) { 6339 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6340 that.var.sym.adr = 0; 6341 } 6342 super.visitBindingPattern(that); 6343 } 6344 6345 @Override 6346 public void visitRecordPattern(JCRecordPattern that) { 6347 initTypeIfNeeded(that); 6348 if (that.record == null) { 6349 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6350 that.type, syms.noSymbol); 6351 } 6352 if (that.fullComponentTypes == null) { 6353 that.fullComponentTypes = List.nil(); 6354 } 6355 super.visitRecordPattern(that); 6356 } 6357 6358 @Override 6359 public void visitNewClass(JCNewClass that) { 6360 if (that.constructor == null) { 6361 that.constructor = new MethodSymbol(0, names.init, 6362 dummyMethodType(), syms.noSymbol); 6363 } 6364 if (that.constructorType == null) { 6365 that.constructorType = syms.unknownType; 6366 } 6367 super.visitNewClass(that); 6368 } 6369 6370 @Override 6371 public void visitAssignop(JCAssignOp that) { 6372 if (that.operator == null) { 6373 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6374 -1, syms.noSymbol); 6375 } 6376 super.visitAssignop(that); 6377 } 6378 6379 @Override 6380 public void visitBinary(JCBinary that) { 6381 if (that.operator == null) { 6382 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6383 -1, syms.noSymbol); 6384 } 6385 super.visitBinary(that); 6386 } 6387 6388 @Override 6389 public void visitUnary(JCUnary that) { 6390 if (that.operator == null) { 6391 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6392 -1, syms.noSymbol); 6393 } 6394 super.visitUnary(that); 6395 } 6396 6397 @Override 6398 public void visitReference(JCMemberReference that) { 6399 super.visitReference(that); 6400 if (that.sym == null) { 6401 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6402 syms.noSymbol); 6403 } 6404 } 6405 } 6406 // </editor-fold> 6407 6408 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6409 new TreeScanner() { 6410 Symbol packge = pkg; 6411 @Override 6412 public void visitIdent(JCIdent that) { 6413 that.sym = packge; 6414 } 6415 6416 @Override 6417 public void visitSelect(JCFieldAccess that) { 6418 that.sym = packge; 6419 packge = packge.owner; 6420 super.visitSelect(that); 6421 } 6422 }.scan(pid); 6423 } 6424 6425 } --- EOF ---