< prev index next >

src/jdk.compiler/share/classes/com/sun/tools/javac/comp/Attr.java

Print this page

  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.EnhancedForLoopTree;
  38 import com.sun.source.tree.IdentifierTree;
  39 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  40 import com.sun.source.tree.MemberSelectTree;
  41 import com.sun.source.tree.TreeVisitor;
  42 import com.sun.source.util.SimpleTreeVisitor;
  43 import com.sun.tools.javac.code.*;
  44 import com.sun.tools.javac.code.Lint.LintCategory;
  45 import com.sun.tools.javac.code.Scope.WriteableScope;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.code.Symbol.*;
  48 import com.sun.tools.javac.code.Type.*;

  49 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  50 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  51 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  52 import com.sun.tools.javac.comp.Check.CheckContext;
  53 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  54 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  55 import com.sun.tools.javac.jvm.*;
  56 
  57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  59 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  60 
  61 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  62 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  63 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  64 import com.sun.tools.javac.tree.*;
  65 import com.sun.tools.javac.tree.JCTree.*;
  66 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  67 import com.sun.tools.javac.util.*;
  68 import com.sun.tools.javac.util.DefinedBy.Api;

 150         infer = Infer.instance(context);
 151         analyzer = Analyzer.instance(context);
 152         deferredAttr = DeferredAttr.instance(context);
 153         cfolder = ConstFold.instance(context);
 154         target = Target.instance(context);
 155         types = Types.instance(context);
 156         preview = Preview.instance(context);
 157         diags = JCDiagnostic.Factory.instance(context);
 158         annotate = Annotate.instance(context);
 159         typeAnnotations = TypeAnnotations.instance(context);
 160         deferredLintHandler = DeferredLintHandler.instance(context);
 161         typeEnvs = TypeEnvs.instance(context);
 162         dependencies = Dependencies.instance(context);
 163         argumentAttr = ArgumentAttr.instance(context);
 164         matchBindingsComputer = MatchBindingsComputer.instance(context);
 165         attrRecover = AttrRecover.instance(context);
 166 
 167         Options options = Options.instance(context);
 168 
 169         Source source = Source.instance(context);

 170         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 171         allowRecords = Feature.RECORDS.allowedInSource(source);
 172         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 173                              Feature.PATTERN_SWITCH.allowedInSource(source);
 174         allowUnconditionalPatternsInstanceOf = (preview.isEnabled() || !preview.isPreview(Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF)) &&
 175                                      Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 176         sourceName = source.name;
 177         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 178 
 179         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 180         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 181         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 182         methodAttrInfo = new MethodAttrInfo();
 183         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 184         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 185         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 186     }
 187 




 188     /** Switch: reifiable types in instanceof enabled?
 189      */
 190     boolean allowReifiableTypesInInstanceof;
 191 
 192     /** Are records allowed
 193      */
 194     private final boolean allowRecords;
 195 
 196     /** Are patterns in switch allowed
 197      */
 198     private final boolean allowPatternSwitch;
 199 
 200     /** Are unconditional patterns in instanceof allowed
 201      */
 202     private final boolean allowUnconditionalPatternsInstanceOf;
 203 
 204     /**
 205      * Switch: warn about use of variable before declaration?
 206      * RFE: 6425594
 207      */

 256             found;
 257         }
 258         if (resultInfo.checkMode.updateTreeType()) {
 259             tree.type = owntype;
 260         }
 261         return owntype;
 262     }
 263 
 264     /** Is given blank final variable assignable, i.e. in a scope where it
 265      *  may be assigned to even though it is final?
 266      *  @param v      The blank final variable.
 267      *  @param env    The current environment.
 268      */
 269     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 270         Symbol owner = env.info.scope.owner;
 271            // owner refers to the innermost variable, method or
 272            // initializer block declaration at this point.
 273         boolean isAssignable =
 274             v.owner == owner
 275             ||
 276             ((owner.name == names.init ||    // i.e. we are in a constructor
 277               owner.kind == VAR ||           // i.e. we are in a variable initializer
 278               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 279              &&
 280              v.owner == owner.owner
 281              &&
 282              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 283         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 284         return isAssignable & !insideCompactConstructor;
 285     }
 286 
 287     /** Check that variable can be assigned to.
 288      *  @param pos    The current source code position.
 289      *  @param v      The assigned variable
 290      *  @param base   If the variable is referred to in a Select, the part
 291      *                to the left of the `.', null otherwise.
 292      *  @param env    The current environment.
 293      */
 294     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 295         if (v.name == names._this) {
 296             log.error(pos, Errors.CantAssignValToThis);

 783     /** Attribute a type argument list, returning a list of types.
 784      *  Check that all the types are references.
 785      */
 786     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 787         List<Type> types = attribAnyTypes(trees, env);
 788         return chk.checkRefTypes(trees, types);
 789     }
 790 
 791     /**
 792      * Attribute type variables (of generic classes or methods).
 793      * Compound types are attributed later in attribBounds.
 794      * @param typarams the type variables to enter
 795      * @param env      the current environment
 796      */
 797     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 798         for (JCTypeParameter tvar : typarams) {
 799             TypeVar a = (TypeVar)tvar.type;
 800             a.tsym.flags_field |= UNATTRIBUTED;
 801             a.setUpperBound(Type.noType);
 802             if (!tvar.bounds.isEmpty()) {
 803                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 804                 for (JCExpression bound : tvar.bounds.tail)
 805                     bounds = bounds.prepend(attribType(bound, env));
 806                 types.setBounds(a, bounds.reverse());
 807             } else {
 808                 // if no bounds are given, assume a single bound of
 809                 // java.lang.Object.
 810                 types.setBounds(a, List.of(syms.objectType));
 811             }
 812             a.tsym.flags_field &= ~UNATTRIBUTED;
 813         }
 814         if (checkCyclic) {
 815             for (JCTypeParameter tvar : typarams) {
 816                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 817             }
 818         }
 819     }
 820 
 821     /**
 822      * Attribute the type references in a list of annotations.
 823      */
 824     void attribAnnotationTypes(List<JCAnnotation> annotations,
 825                                Env<AttrContext> env) {

1055                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1056                     }
1057                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1058                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1059                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1060                     }
1061                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1062                         log.error(tree,
1063                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1064                     }
1065                     if (!tree.typarams.isEmpty()) {
1066                         log.error(tree,
1067                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1068                     }
1069                     if (tree.sym.isStatic()) {
1070                         log.error(tree,
1071                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1072                     }
1073                 }
1074 
1075                 if (tree.name == names.init) {
1076                     // if this a constructor other than the canonical one
1077                     if ((tree.sym.flags_field & RECORD) == 0) {
1078                         JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1079                         if (app == null ||
1080                                 TreeInfo.name(app.meth) != names._this ||
1081                                 !checkFirstConstructorStat(app, tree, false)) {
1082                             log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor(env.enclClass.sym));
1083                         }
1084                     } else {
1085                         // but if it is the canonical:
1086 
1087                         /* if user generated, then it shouldn't:
1088                          *     - have an accessibility stricter than that of the record type
1089                          *     - explicitly invoke any other constructor
1090                          */
1091                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1092                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1093                                 log.error(tree,
1094                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1095                                             Errors.InvalidCanonicalConstructorInRecord(

1170                 if (tree.defaultValue != null) {
1171                     if ((owner.flags() & ANNOTATION) == 0)
1172                         log.error(tree.pos(),
1173                                   Errors.DefaultAllowedInIntfAnnotationMember);
1174                 }
1175                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1176                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1177             } else {
1178                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1179                     if ((owner.flags() & INTERFACE) != 0) {
1180                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1181                     } else {
1182                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1183                     }
1184                 } else if ((tree.mods.flags & NATIVE) != 0) {
1185                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1186                 }
1187                 // Add an implicit super() call unless an explicit call to
1188                 // super(...) or this(...) is given
1189                 // or we are compiling class java.lang.Object.
1190                 if (tree.name == names.init && owner.type != syms.objectType) {
1191                     JCBlock body = tree.body;
1192                     if (body.stats.isEmpty() ||
1193                             TreeInfo.getConstructorInvocationName(body.stats, names) == names.empty) {
1194                         JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(),
1195                                 make.Ident(names._super), make.Idents(List.nil())));
1196                         body.stats = body.stats.prepend(supCall);
1197                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1198                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1199                             TreeInfo.isSuperCall(body.stats.head)) {
1200                         // enum constructors are not allowed to call super
1201                         // directly, so make sure there aren't any super calls
1202                         // in enum constructors, except in the compiler
1203                         // generated one.
1204                         log.error(tree.body.stats.head.pos(),
1205                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));






1206                     }
1207                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1208                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1209                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1210                         if (!initParamNames.equals(recordComponentNames)) {
1211                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1212                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1213                         }
1214                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1215                             log.error(tree,
1216                                     Errors.InvalidCanonicalConstructorInRecord(
1217                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1218                                             env.enclClass.sym.name,
1219                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1220                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1221                         }
1222                     }
1223                 }
1224 
1225                 // Attribute all type annotations in the body

1273                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1274                 annotate.flush();
1275             }
1276         }
1277 
1278         VarSymbol v = tree.sym;
1279         Lint lint = env.info.lint.augment(v);
1280         Lint prevLint = chk.setLint(lint);
1281 
1282         // Check that the variable's declared type is well-formed.
1283         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1284                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1285                 (tree.sym.flags() & PARAMETER) != 0;
1286         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1287 
1288         try {
1289             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1290             deferredLintHandler.flush(tree.pos());
1291             chk.checkDeprecatedAnnotation(tree.pos(), v);
1292 



1293             if (tree.init != null) {
1294                 if ((v.flags_field & FINAL) == 0 ||
1295                     !memberEnter.needsLazyConstValue(tree.init)) {
1296                     // Not a compile-time constant
1297                     // Attribute initializer in a new environment
1298                     // with the declared variable as owner.
1299                     // Check that initializer conforms to variable's declared type.
1300                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1301                     initEnv.info.lint = lint;
1302                     // In order to catch self-references, we set the variable's
1303                     // declaration position to maximal possible value, effectively
1304                     // marking the variable as undefined.
1305                     initEnv.info.enclVar = v;
1306                     attribExpr(tree.init, initEnv, v.type);
1307                     if (tree.isImplicitlyTyped()) {
1308                         //fixup local variable type
1309                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1310                     }
1311                 }
1312                 if (tree.isImplicitlyTyped()) {
1313                     setSyntheticVariableType(tree, v.type);
1314                 }
1315             }
1316             result = tree.type = v.type;
1317             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1318                 if (isNonArgsMethodInObject(v.name)) {
1319                     log.error(tree, Errors.IllegalRecordComponentName(v));
1320                 }
1321             }
1322         }
1323         finally {
1324             chk.setLint(prevLint);
1325         }
1326     }
1327 
1328     private boolean isNonArgsMethodInObject(Name name) {
1329         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1330             if (s.type.getParameterTypes().isEmpty()) {
1331                 return true;
1332             }
1333         }
1334         return false;

1335     }
1336 
1337     Fragment canInferLocalVarType(JCVariableDecl tree) {
1338         LocalInitScanner lis = new LocalInitScanner();
1339         lis.scan(tree.init);
1340         return lis.badInferenceMsg;
1341     }
1342 
1343     static class LocalInitScanner extends TreeScanner {
1344         Fragment badInferenceMsg = null;
1345         boolean needsTarget = true;
1346 
1347         @Override
1348         public void visitNewArray(JCNewArray tree) {
1349             if (tree.elemtype == null && needsTarget) {
1350                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1351             }
1352         }
1353 
1354         @Override

1507         if (!breaksOutOf(tree, tree.body)) {
1508             //include condition's body when false after the while, if cannot get out of the loop
1509             condBindings.bindingsWhenFalse.forEach(env.info.scope::enter);
1510             condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding);
1511         }
1512     }
1513 
1514     public void visitForeachLoop(JCEnhancedForLoop tree) {
1515         Env<AttrContext> loopEnv =
1516             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1517 
1518         try {
1519             //the Formal Parameter of a for-each loop is not in the scope when
1520             //attributing the for-each expression; we mimic this by attributing
1521             //the for-each expression first (against original scope).
1522             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1523             chk.checkNonVoid(tree.pos(), exprType);
1524             tree.elementType = types.elemtype(exprType); // perhaps expr is an array?
1525             if (tree.elementType == null) {
1526                 // or perhaps expr implements Iterable<T>?
1527                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1528                 if (base == null) {
1529                     log.error(tree.expr.pos(),
1530                               Errors.ForeachNotApplicableToType(exprType,
1531                                                                 Fragments.TypeReqArrayOrIterable));
1532                     tree.elementType = types.createErrorType(exprType);
1533                 } else {
1534                     List<Type> iterableParams = base.allparams();
1535                     tree.elementType = iterableParams.isEmpty()
1536                         ? syms.objectType
1537                         : types.wildUpperBound(iterableParams.head);
1538 
1539                     // Check the return type of the method iterator().
1540                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1541                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1542                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1543                     if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) {
1544                         log.error(tree.pos(),
1545                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1546                     }
1547                 }
1548             }
1549             if (tree.varOrRecordPattern instanceof JCVariableDecl jcVariableDecl) {
1550                 if (jcVariableDecl.isImplicitlyTyped()) {
1551                     Type inferredType = chk.checkLocalVarType(jcVariableDecl, tree.elementType, jcVariableDecl.name);
1552                     setSyntheticVariableType(jcVariableDecl, inferredType);
1553                 }
1554                 attribStat(jcVariableDecl, loopEnv);
1555                 chk.checkType(tree.expr.pos(), tree.elementType, jcVariableDecl.sym.type);
1556 
1557                 loopEnv.tree = tree; // before, we were not in loop!
1558                 attribStat(tree.body, loopEnv);
1559             } else {
1560                 Assert.check(tree.getDeclarationKind() == EnhancedForLoopTree.DeclarationKind.PATTERN);
1561                 JCRecordPattern jcRecordPattern = (JCRecordPattern) tree.varOrRecordPattern;
1562 
1563                 attribExpr(jcRecordPattern, loopEnv, tree.elementType);

1865     // where
1866     /** Return the selected enumeration constant symbol, or null. */
1867     private Symbol enumConstant(JCTree tree, Type enumType) {
1868         if (tree.hasTag(IDENT)) {
1869             JCIdent ident = (JCIdent)tree;
1870             Name name = ident.name;
1871             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1872                 if (sym.kind == VAR) {
1873                     Symbol s = ident.sym = sym;
1874                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1875                     ident.type = s.type;
1876                     return ((s.flags_field & Flags.ENUM) == 0)
1877                         ? null : s;
1878                 }
1879             }
1880         }
1881         return null;
1882     }
1883 
1884     public void visitSynchronized(JCSynchronized tree) {
1885         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1886         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {
1887             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1888         }
1889         attribStat(tree.body, env);
1890         result = null;
1891     }
1892         // where
1893         private boolean isValueBased(Type t) {
1894             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1895         }
1896 
1897 
1898     public void visitTry(JCTry tree) {
1899         // Create a new local environment with a local
1900         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1901         try {
1902             boolean isTryWithResource = tree.resources.nonEmpty();
1903             // Create a nested environment for attributing the try block if needed
1904             Env<AttrContext> tryEnv = isTryWithResource ?
1905                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :

1956                     chk.checkType(c.param.vartype.pos(),
1957                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1958                                   syms.throwableType);
1959                     attribStat(c.body, catchEnv);
1960                 } finally {
1961                     catchEnv.info.scope.leave();
1962                 }
1963             }
1964 
1965             // Attribute finalizer
1966             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1967             result = null;
1968         }
1969         finally {
1970             localEnv.info.scope.leave();
1971         }
1972     }
1973 
1974     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1975         if (!resource.isErroneous() &&
1976             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1977             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1978             Symbol close = syms.noSymbol;
1979             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1980             try {
1981                 close = rs.resolveQualifiedMethod(pos,
1982                         env,
1983                         types.skipTypeVars(resource, false),
1984                         names.close,
1985                         List.nil(),
1986                         List.nil());
1987             }
1988             finally {
1989                 log.popDiagnosticHandler(discardHandler);
1990             }
1991             if (close.kind == MTH &&
1992                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1993                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1994                     env.info.lint.isEnabled(LintCategory.TRY)) {
1995                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1996             }

2145             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2146                 // If one arm has an integer subrange type (i.e., byte,
2147                 // short, or char), and the other is an integer constant
2148                 // that fits into the subrange, return the subrange type.
2149                 for (Type type : unboxedTypes) {
2150                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2151                         continue;
2152                     }
2153                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2154                         return type.baseType();
2155                 }
2156 
2157                 for (TypeTag tag : primitiveTags) {
2158                     Type candidate = syms.typeOfTag[tag.ordinal()];
2159                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2160                         return candidate;
2161                     }
2162                 }
2163             }
2164 
2165             // Those were all the cases that could result in a primitive

2166             condTypes = condTypes.stream()
2167                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)

2168                                  .collect(List.collector());
2169 
2170             for (Type type : condTypes) {
2171                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2172                     return type.baseType();
2173             }
2174 
2175             Iterator<DiagnosticPosition> posIt = positions.iterator();
2176 
2177             condTypes = condTypes.stream()
2178                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2179                                  .collect(List.collector());
2180 
2181             // both are known to be reference types.  The result is
2182             // lub(thentype,elsetype). This cannot fail, as it will
2183             // always be possible to infer "Object" if nothing better.
2184             return types.lub(condTypes.stream()
2185                         .map(t -> t.baseType())
2186                         .filter(t -> !t.hasTag(BOT))
2187                         .collect(List.collector()));
2188         }
2189 
2190     static final TypeTag[] primitiveTags = new TypeTag[]{
2191         BYTE,
2192         CHAR,
2193         SHORT,
2194         INT,
2195         LONG,
2196         FLOAT,
2197         DOUBLE,
2198         BOOLEAN,
2199     };
2200 
2201     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {

2600                     : env.enclClass.sym.type;
2601             Symbol msym = TreeInfo.symbol(tree.meth);
2602             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2603 
2604             chk.checkRefTypes(tree.typeargs, typeargtypes);
2605 
2606             // Check that value of resulting type is admissible in the
2607             // current context.  Also, capture the return type
2608             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2609             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2610         }
2611         chk.validate(tree.typeargs, localEnv);
2612     }
2613     //where
2614         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2615             if (msym != null &&
2616                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2617                     methodName == names.getClass &&
2618                     argtypes.isEmpty()) {
2619                 // as a special case, x.getClass() has type Class<? extends |X|>




2620                 return new ClassType(restype.getEnclosingType(),
2621                         List.of(new WildcardType(types.erasure(qualifierType.baseType()),
2622                                 BoundKind.EXTENDS,
2623                                 syms.boundClass)),
2624                         restype.tsym,
2625                         restype.getMetadata());

2626             } else if (msym != null &&
2627                     msym.owner == syms.arrayClass &&
2628                     methodName == names.clone &&
2629                     types.isArray(qualifierType)) {
2630                 // as a special case, array.clone() has a result that is
2631                 // the same as static type of the array being cloned
2632                 return qualifierType;
2633             } else {
2634                 return restype;
2635             }
2636         }
2637 
2638         /** Check that given application node appears as first statement
2639          *  in a constructor call.
2640          *  @param tree          The application node
2641          *  @param enclMethod    The enclosing method of the application.
2642          *  @param error         Should an error be issued?
2643          */
2644         boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) {
2645             if (enclMethod != null && enclMethod.name == names.init) {
2646                 JCBlock body = enclMethod.body;
2647                 if (body.stats.head.hasTag(EXEC) &&
2648                     ((JCExpressionStatement) body.stats.head).expr == tree)
2649                     return true;
2650             }
2651             if (error) {
2652                 log.error(tree.pos(),
2653                         Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2654             }
2655             return false;
2656         }
2657 
2658         /** Obtain a method type with given argument types.
2659          */
2660         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2661             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2662             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2663         }
2664 
2665     public void visitNewClass(final JCNewClass tree) {

2774         }
2775 
2776         // Attribute constructor arguments.
2777         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2778         final KindSelector pkind =
2779             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2780         List<Type> argtypes = argtypesBuf.toList();
2781         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2782 
2783         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2784             // Enums may not be instantiated except implicitly
2785             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2786                 (!env.tree.hasTag(VARDEF) ||
2787                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2788                  ((JCVariableDecl) env.tree).init != tree))
2789                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2790 
2791             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2792                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2793             boolean skipNonDiamondPath = false;










2794             // Check that class is not abstract
2795             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2796                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2797                 log.error(tree.pos(),
2798                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2799                 skipNonDiamondPath = true;
2800             } else if (cdef != null && clazztype.tsym.isInterface()) {
2801                 // Check that no constructor arguments are given to
2802                 // anonymous classes implementing an interface
2803                 if (!argtypes.isEmpty())
2804                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2805 
2806                 if (!typeargtypes.isEmpty())
2807                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2808 
2809                 // Error recovery: pretend no arguments were supplied.
2810                 argtypes = List.nil();
2811                 typeargtypes = List.nil();
2812                 skipNonDiamondPath = true;
2813             }
2814             if (TreeInfo.isDiamond(tree)) {
2815                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2816                             clazztype.tsym.type.getTypeArguments(),
2817                                                clazztype.tsym,
2818                                                clazztype.getMetadata());

2819 
2820                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2821                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2822                 diamondEnv.info.pendingResolutionPhase = null;
2823 
2824                 //if the type of the instance creation expression is a class type
2825                 //apply method resolution inference (JLS 15.12.2.7). The return type
2826                 //of the resolved constructor will be a partially instantiated type
2827                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2828                             diamondEnv,
2829                             site,
2830                             argtypes,
2831                             typeargtypes);
2832                 tree.constructor = constructor.baseSymbol();
2833 
2834                 final TypeSymbol csym = clazztype.tsym;
2835                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2836                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2837                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2838                 constructorType = checkId(tree, site,

2952                                 this.resultInfo = prevResult;
2953                             }
2954                         });
2955             } else {
2956                 if (isDiamond && clazztype.hasTag(CLASS)) {
2957                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2958                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2959                         // One or more types inferred in the previous steps is non-denotable.
2960                         Fragment fragment = Diamond(clazztype.tsym);
2961                         log.error(tree.clazz.pos(),
2962                                 Errors.CantApplyDiamond1(
2963                                         fragment,
2964                                         invalidDiamondArgs.size() > 1 ?
2965                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2966                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2967                     }
2968                     // For <>(){}, inferred types must also be accessible.
2969                     for (Type t : clazztype.getTypeArguments()) {
2970                         rs.checkAccessibleType(env, t);
2971                     }



2972                 }
2973 
2974                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2975                 // false for isInterface call even when the original type is an interface.
2976                 boolean implementing = clazztype.tsym.isInterface() ||
2977                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2978                         clazztype.getOriginalType().tsym.isInterface();
2979 
2980                 if (implementing) {
2981                     cdef.implementing = List.of(clazz);
2982                 } else {
2983                     cdef.extending = clazz;
2984                 }
2985 
2986                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2987                     rs.isSerializable(clazztype)) {
2988                     localEnv.info.isSerializable = true;
2989                 }
2990 
2991                 attribStat(cdef, localEnv);

3024             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3025             chk.validate(tree.typeargs, localEnv);
3026         }
3027 
3028         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3029             return new Check.NestedCheckContext(checkContext) {
3030                 @Override
3031                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3032                     enclosingContext.report(clazz.clazz,
3033                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3034                 }
3035             };
3036         }
3037 
3038     /** Make an attributed null check tree.
3039      */
3040     public JCExpression makeNullCheck(JCExpression arg) {
3041         // optimization: new Outer() can never be null; skip null check
3042         if (arg.getTag() == NEWCLASS)
3043             return arg;



3044         // optimization: X.this is never null; skip null check
3045         Name name = TreeInfo.name(arg);
3046         if (name == names._this || name == names._super) return arg;
3047 
3048         JCTree.Tag optag = NULLCHK;
3049         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3050         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3051         tree.type = arg.type;
3052         return tree;
3053     }
3054 
3055     public void visitNewArray(JCNewArray tree) {
3056         Type owntype = types.createErrorType(tree.type);
3057         Env<AttrContext> localEnv = env.dup(tree);
3058         Type elemtype;
3059         if (tree.elemtype != null) {
3060             elemtype = attribType(tree.elemtype, localEnv);
3061             chk.validate(tree.elemtype, localEnv);
3062             owntype = elemtype;
3063             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {

3513          *
3514          * The owner of this environment is a method symbol. If the current owner
3515          * is not a method, for example if the lambda is used to initialize
3516          * a field, then if the field is:
3517          *
3518          * - an instance field, we use the first constructor.
3519          * - a static field, we create a fake clinit method.
3520          */
3521         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3522             Env<AttrContext> lambdaEnv;
3523             Symbol owner = env.info.scope.owner;
3524             if (owner.kind == VAR && owner.owner.kind == TYP) {
3525                 //field initializer
3526                 ClassSymbol enclClass = owner.enclClass();
3527                 Symbol newScopeOwner = env.info.scope.owner;
3528                 /* if the field isn't static, then we can get the first constructor
3529                  * and use it as the owner of the environment. This is what
3530                  * LTM code is doing to look for type annotations so we are fine.
3531                  */
3532                 if ((owner.flags() & STATIC) == 0) {
3533                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {

3534                         newScopeOwner = s;
3535                         break;
3536                     }
3537                 } else {
3538                     /* if the field is static then we need to create a fake clinit
3539                      * method, this method can later be reused by LTM.
3540                      */
3541                     MethodSymbol clinit = clinits.get(enclClass);
3542                     if (clinit == null) {
3543                         Type clinitType = new MethodType(List.nil(),
3544                                 syms.voidType, List.nil(), syms.methodClass);
3545                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3546                                 names.clinit, clinitType, enclClass);
3547                         clinit.params = List.nil();
3548                         clinits.put(enclClass, clinit);
3549                     }
3550                     newScopeOwner = clinit;
3551                 }
3552                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3553             } else {

3576 
3577             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3578                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3579                 if (!exprType.isErroneous() &&
3580                     exprType.isRaw() &&
3581                     that.typeargs != null) {
3582                     log.error(that.expr.pos(),
3583                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3584                                                  Fragments.MrefInferAndExplicitParams));
3585                     exprType = types.createErrorType(exprType);
3586                 }
3587             }
3588 
3589             if (exprType.isErroneous()) {
3590                 //if the qualifier expression contains problems,
3591                 //give up attribution of method reference
3592                 result = that.type = exprType;
3593                 return;
3594             }
3595 

3596             if (TreeInfo.isStaticSelector(that.expr, names)) {




3597                 //if the qualifier is a type, validate it; raw warning check is
3598                 //omitted as we don't know at this stage as to whether this is a
3599                 //raw selector (because of inference)
3600                 chk.validate(that.expr, env, false);
3601             } else {
3602                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3603                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3604             }
3605             //attrib type-arguments
3606             List<Type> typeargtypes = List.nil();
3607             if (that.typeargs != null) {
3608                 typeargtypes = attribTypes(that.typeargs, localEnv);
3609             }
3610 
3611             boolean isTargetSerializable =
3612                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3613                     rs.isSerializable(pt());
3614             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3615             Type currentTarget = targetInfo.target;
3616             Type desc = targetInfo.descriptor;
3617 
3618             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3619             List<Type> argtypes = desc.getParameterTypes();
3620             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3621 
3622             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {

3666                         targetError ?
3667                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3668                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3669 
3670                 if (targetError && currentTarget == Type.recoveryType) {
3671                     //a target error doesn't make sense during recovery stage
3672                     //as we don't know what actual parameter types are
3673                     result = that.type = currentTarget;
3674                     return;
3675                 } else {
3676                     if (targetError) {
3677                         resultInfo.checkContext.report(that, diag);
3678                     } else {
3679                         log.report(diag);
3680                     }
3681                     result = that.type = types.createErrorType(currentTarget);
3682                     return;
3683                 }
3684             }
3685 
3686             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3687             that.kind = lookupHelper.referenceKind(that.sym);
3688             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3689 
3690             if (desc.getReturnType() == Type.recoveryType) {
3691                 // stop here
3692                 result = that.type = currentTarget;
3693                 return;
3694             }
3695 
3696             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3697                 Type enclosingType = exprType.getEnclosingType();
3698                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3699                     // Check for the existence of an appropriate outer instance
3700                     rs.resolveImplicitThis(that.pos(), env, exprType);
3701                 }
3702             }
3703 
3704             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3705 
3706                 if (that.getMode() == ReferenceMode.INVOKE &&

4344     }
4345 
4346     public void visitSelect(JCFieldAccess tree) {
4347         // Determine the expected kind of the qualifier expression.
4348         KindSelector skind = KindSelector.NIL;
4349         if (tree.name == names._this || tree.name == names._super ||
4350                 tree.name == names._class)
4351         {
4352             skind = KindSelector.TYP;
4353         } else {
4354             if (pkind().contains(KindSelector.PCK))
4355                 skind = KindSelector.of(skind, KindSelector.PCK);
4356             if (pkind().contains(KindSelector.TYP))
4357                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4358             if (pkind().contains(KindSelector.VAL_MTH))
4359                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4360         }
4361 
4362         // Attribute the qualifier expression, and determine its symbol (if any).
4363         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));










4364         if (!pkind().contains(KindSelector.TYP_PCK))
4365             site = capture(site); // Capture field access
4366 
4367         // don't allow T.class T[].class, etc
4368         if (skind == KindSelector.TYP) {
4369             Type elt = site;
4370             while (elt.hasTag(ARRAY))
4371                 elt = ((ArrayType)elt).elemtype;
4372             if (elt.hasTag(TYPEVAR)) {
4373                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4374                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4375                 tree.sym = tree.type.tsym;
4376                 return ;
4377             }
4378         }
4379 
4380         // If qualifier symbol is a type or `super', assert `selectSuper'
4381         // for the selection. This is relevant for determining whether
4382         // protected symbols are accessible.
4383         Symbol sitesym = TreeInfo.symbol(tree.selected);
4384         boolean selectSuperPrev = env.info.selectSuper;
4385         env.info.selectSuper =
4386             sitesym != null &&
4387             sitesym.name == names._super;
4388 
4389         // Determine the symbol represented by the selection.
4390         env.info.pendingResolutionPhase = null;
4391         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4392         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4393             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4394             sym = syms.errSymbol;
4395         }
4396         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {

4460         } else if (sym.kind != ERR &&
4461                    (sym.flags() & STATIC) != 0 &&
4462                    sym.name != names._class) {
4463             // If the qualified item is not a type and the selected item is static, report
4464             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4465             if (!sym.owner.isAnonymous()) {
4466                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4467             } else {
4468                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4469             }
4470         }
4471 
4472         // If we are selecting an instance member via a `super', ...
4473         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4474 
4475             // Check that super-qualified symbols are not abstract (JLS)
4476             rs.checkNonAbstract(tree.pos(), sym);
4477 
4478             if (site.isRaw()) {
4479                 // Determine argument types for site.
4480                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4481                 if (site1 != null) site = site1;
4482             }
4483         }
4484 
4485         if (env.info.isSerializable) {
4486             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4487         }
4488 
4489         env.info.selectSuper = selectSuperPrev;
4490         result = checkId(tree, site, sym, env, resultInfo);
4491     }
4492     //where
4493         /** Determine symbol referenced by a Select expression,
4494          *
4495          *  @param tree   The select tree.
4496          *  @param site   The type of the selected expression,
4497          *  @param env    The current environment.
4498          *  @param resultInfo The current result.
4499          */
4500         private Symbol selectSym(JCFieldAccess tree,

4503                                  Env<AttrContext> env,
4504                                  ResultInfo resultInfo) {
4505             DiagnosticPosition pos = tree.pos();
4506             Name name = tree.name;
4507             switch (site.getTag()) {
4508             case PACKAGE:
4509                 return rs.accessBase(
4510                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4511                     pos, location, site, name, true);
4512             case ARRAY:
4513             case CLASS:
4514                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4515                     return rs.resolveQualifiedMethod(
4516                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4517                 } else if (name == names._this || name == names._super) {
4518                     return rs.resolveSelf(pos, env, site.tsym, name);
4519                 } else if (name == names._class) {
4520                     // In this case, we have already made sure in
4521                     // visitSelect that qualifier expression is a type.
4522                     return syms.getClassField(site, types);


4523                 } else {
4524                     // We are seeing a plain identifier as selector.
4525                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4526                         sym = rs.accessBase(sym, pos, location, site, name, true);
4527                     return sym;
4528                 }
4529             case WILDCARD:
4530                 throw new AssertionError(tree);
4531             case TYPEVAR:
4532                 // Normally, site.getUpperBound() shouldn't be null.
4533                 // It should only happen during memberEnter/attribBase
4534                 // when determining the supertype which *must* be
4535                 // done before attributing the type variables.  In
4536                 // other words, we are seeing this illegal program:
4537                 // class B<T> extends A<T.foo> {}
4538                 Symbol sym = (site.getUpperBound() != null)
4539                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4540                     : null;
4541                 if (sym == null) {
4542                     log.error(pos, Errors.TypeVarCantBeDeref);

4606             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4607                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4608             } else {
4609                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4610             }
4611         }
4612 
4613         Type checkIdInternal(JCTree tree,
4614                      Type site,
4615                      Symbol sym,
4616                      Type pt,
4617                      Env<AttrContext> env,
4618                      ResultInfo resultInfo) {
4619             if (pt.isErroneous()) {
4620                 return types.createErrorType(site);
4621             }
4622             Type owntype; // The computed type of this identifier occurrence.
4623             switch (sym.kind) {
4624             case TYP:
4625                 // For types, the computed type equals the symbol's type,
4626                 // except for two situations:
4627                 owntype = sym.type;
4628                 if (owntype.hasTag(CLASS)) {



4629                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4630                     Type ownOuter = owntype.getEnclosingType();
4631 
4632                     // (a) If the symbol's type is parameterized, erase it







4633                     // because no type parameters were given.
4634                     // We recover generic outer type later in visitTypeApply.
4635                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4636                         owntype = types.erasure(owntype);
4637                     }
4638 
4639                     // (b) If the symbol's type is an inner class, then
4640                     // we have to interpret its outer type as a superclass
4641                     // of the site type. Example:
4642                     //
4643                     // class Tree<A> { class Visitor { ... } }
4644                     // class PointTree extends Tree<Point> { ... }
4645                     // ...PointTree.Visitor...
4646                     //
4647                     // Then the type of the last expression above is
4648                     // Tree<Point>.Visitor.
4649                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4650                         Type normOuter = site;
4651                         if (normOuter.hasTag(CLASS)) {
4652                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4653                         }
4654                         if (normOuter == null) // perhaps from an import
4655                             normOuter = types.erasure(ownOuter);
4656                         if (normOuter != ownOuter)
4657                             owntype = new ClassType(
4658                                 normOuter, List.nil(), owntype.tsym,
4659                                 owntype.getMetadata());
4660                     }
4661                 }
4662                 break;
4663             case VAR:
4664                 VarSymbol v = (VarSymbol)sym;
4665 
4666                 if (env.info.enclVar != null
4667                         && v.type.hasTag(NONE)) {
4668                     //self reference to implicitly typed variable declaration
4669                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4670                     return tree.type = v.type = types.createErrorType(v.type);
4671                 }
4672 
4673                 // Test (4): if symbol is an instance field of a raw type,
4674                 // which is being assigned to, issue an unchecked warning if
4675                 // its type changes under erasure.
4676                 if (KindSelector.ASG.subset(pkind()) &&
4677                     v.owner.kind == TYP &&
4678                     (v.flags() & STATIC) == 0 &&
4679                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {

4702                 break;
4703             case MTH: {
4704                 owntype = checkMethod(site, sym,
4705                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4706                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4707                         resultInfo.pt.getTypeArguments());
4708                 break;
4709             }
4710             case PCK: case ERR:
4711                 owntype = sym.type;
4712                 break;
4713             default:
4714                 throw new AssertionError("unexpected kind: " + sym.kind +
4715                                          " in tree " + tree);
4716             }
4717 
4718             // Emit a `deprecation' warning if symbol is deprecated.
4719             // (for constructors (but not for constructor references), the error
4720             // was given when the constructor was resolved)
4721 
4722             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4723                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4724                 chk.checkSunAPI(tree.pos(), sym);
4725                 chk.checkProfile(tree.pos(), sym);
4726                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4727             }
4728 
4729             // If symbol is a variable, check that its type and
4730             // kind are compatible with the prototype and protokind.
4731             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4732         }
4733 
4734         /** Check that variable is initialized and evaluate the variable's
4735          *  initializer, if not yet done. Also check that variable is not
4736          *  referenced before it is defined.
4737          *  @param tree    The tree making up the variable reference.
4738          *  @param env     The current environment.
4739          *  @param v       The variable's symbol.
4740          */
4741         private void checkInit(JCTree tree,
4742                                Env<AttrContext> env,

4956             //depending on the current check context
4957             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4958             return types.createErrorType(site);
4959         } catch (Resolve.InapplicableMethodException ex) {
4960             final JCDiagnostic diag = ex.getDiagnostic();
4961             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4962                 @Override
4963                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4964                     return new Pair<>(sym, diag);
4965                 }
4966             };
4967             List<Type> argtypes2 = argtypes.map(
4968                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4969             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4970                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4971             log.report(errDiag);
4972             return types.createErrorType(site);
4973         }
4974     }
4975 































4976     public void visitLiteral(JCLiteral tree) {
4977         result = check(tree, litType(tree.typetag).constType(tree.value),
4978                 KindSelector.VAL, resultInfo);
4979     }
4980     //where
4981     /** Return the type of a literal with given type tag.
4982      */
4983     Type litType(TypeTag tag) {
4984         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4985     }
4986 
4987     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4988         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4989     }
4990 
4991     public void visitTypeArray(JCArrayTypeTree tree) {
4992         Type etype = attribType(tree.elemtype, env);
4993         Type type = new ArrayType(etype, syms.arrayClass);
4994         result = check(tree, type, KindSelector.TYP, resultInfo);
4995     }

5022                 }
5023                 // Compute the proper generic outer
5024                 Type clazzOuter = clazztype.getEnclosingType();
5025                 if (clazzOuter.hasTag(CLASS)) {
5026                     Type site;
5027                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5028                     if (clazz.hasTag(IDENT)) {
5029                         site = env.enclClass.sym.type;
5030                     } else if (clazz.hasTag(SELECT)) {
5031                         site = ((JCFieldAccess) clazz).selected.type;
5032                     } else throw new AssertionError(""+tree);
5033                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5034                         if (site.hasTag(CLASS))
5035                             site = types.asOuterSuper(site, clazzOuter.tsym);
5036                         if (site == null)
5037                             site = types.erasure(clazzOuter);
5038                         clazzOuter = site;
5039                     }
5040                 }
5041                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5042                                         clazztype.getMetadata());
5043             } else {
5044                 if (formals.length() != 0) {
5045                     log.error(tree.pos(),
5046                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5047                 } else {
5048                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5049                 }
5050                 owntype = types.createErrorType(tree.type);
5051             }
5052         }
5053         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5054     }
5055 
5056     public void visitTypeUnion(JCTypeUnion tree) {
5057         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5058         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5059         for (JCExpression typeTree : tree.alternatives) {
5060             Type ctype = attribType(typeTree, env);
5061             ctype = chk.checkType(typeTree.pos(),
5062                           chk.checkClassType(typeTree.pos(), ctype),

5149         if (bounds.length() == 0) {
5150             return syms.objectType;
5151         } else if (bounds.length() == 1) {
5152             return bounds.head.type;
5153         } else {
5154             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5155             // ... the variable's bound is a class type flagged COMPOUND
5156             // (see comment for TypeVar.bound).
5157             // In this case, generate a class tree that represents the
5158             // bound class, ...
5159             JCExpression extending;
5160             List<JCExpression> implementing;
5161             if (!bounds.head.type.isInterface()) {
5162                 extending = bounds.head;
5163                 implementing = bounds.tail;
5164             } else {
5165                 extending = null;
5166                 implementing = bounds;
5167             }
5168             JCClassDecl cd = make.at(tree).ClassDef(
5169                 make.Modifiers(PUBLIC | ABSTRACT),
5170                 names.empty, List.nil(),
5171                 extending, implementing, List.nil());
5172 
5173             ClassSymbol c = (ClassSymbol)owntype.tsym;
5174             Assert.check((c.flags() & COMPOUND) != 0);
5175             cd.sym = c;
5176             c.sourcefile = env.toplevel.sourcefile;
5177 
5178             // ... and attribute the bound class
5179             c.flags_field |= UNATTRIBUTED;
5180             Env<AttrContext> cenv = enter.classEnv(cd, env);
5181             typeEnvs.put(c, cenv);
5182             attribClass(c);
5183             return owntype;
5184         }
5185     }
5186 
5187     public void visitWildcard(JCWildcard tree) {
5188         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5189         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5190             ? syms.objectType
5191             : attribType(tree.inner, env);
5192         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
5193                                               tree.kind.kind,
5194                                               syms.boundClass),
5195                 KindSelector.TYP, resultInfo);
5196     }
5197 
5198     public void visitAnnotation(JCAnnotation tree) {
5199         Assert.error("should be handled in annotate");
5200     }
5201 
5202     @Override
5203     public void visitModifiers(JCModifiers tree) {
5204         //error recovery only:
5205         Assert.check(resultInfo.pkind == KindSelector.ERR);
5206 
5207         attribAnnotationTypes(tree.annotations, env);
5208     }
5209 
5210     public void visitAnnotatedType(JCAnnotatedType tree) {
5211         attribAnnotationTypes(tree.annotations, env);
5212         Type underlyingType = attribType(tree.underlyingType, env);

5290 
5291         try {
5292             deferredLintHandler.flush(env.tree.pos());
5293             attrib.accept(env);
5294         } finally {
5295             log.useSource(prev);
5296             chk.setLint(prevLint);
5297         }
5298     }
5299 
5300     /** Main method: attribute class definition associated with given class symbol.
5301      *  reporting completion failures at the given position.
5302      *  @param pos The source position at which completion errors are to be
5303      *             reported.
5304      *  @param c   The class symbol whose definition will be attributed.
5305      */
5306     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5307         try {
5308             annotate.flush();
5309             attribClass(c);





5310         } catch (CompletionFailure ex) {
5311             chk.completionError(pos, ex);
5312         }
5313     }
5314 
5315     /** Attribute class definition associated with given class symbol.
5316      *  @param c   The class symbol whose definition will be attributed.
5317      */
5318     void attribClass(ClassSymbol c) throws CompletionFailure {
5319         if (c.type.hasTag(ERROR)) return;
5320 
5321         // Check for cycles in the inheritance graph, which can arise from
5322         // ill-formed class files.
5323         chk.checkNonCyclic(null, c.type);
5324 
5325         Type st = types.supertype(c.type);
5326         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5327             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5328             // First, attribute superclass.
5329             if (st.hasTag(CLASS))

5410                                                   .filter(s -> s.tsym.isSealed())
5411                                                   .map(s -> (ClassSymbol) s.tsym)
5412                                                   .collect(List.collector());
5413 
5414             if (sealedSupers.isEmpty()) {
5415                 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5416                     boolean hasErrorSuper = false;
5417 
5418                     hasErrorSuper |= types.directSupertypes(c.type)
5419                                           .stream()
5420                                           .anyMatch(s -> s.tsym.kind == Kind.ERR);
5421 
5422                     ClassType ct = (ClassType) c.type;
5423 
5424                     hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5425 
5426                     if (!hasErrorSuper) {
5427                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5428                     }
5429                 }
5430             } else {
5431                 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5432                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5433                 }
5434 
5435                 if (!c.type.isCompound()) {
5436                     for (ClassSymbol supertypeSym : sealedSupers) {
5437                         if (!supertypeSym.permitted.contains(c.type.tsym)) {
5438                             log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5439                         }
5440                     }
5441                     if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5442                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5443                                 c.isInterface() ?
5444                                         Errors.NonSealedOrSealedExpected :
5445                                         Errors.NonSealedSealedOrFinalExpected);
5446                     }
5447                 }
5448             }
5449 
5450             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,

5465 
5466             try {
5467                 deferredLintHandler.flush(env.tree);
5468                 env.info.returnResult = null;
5469                 // java.lang.Enum may not be subclassed by a non-enum
5470                 if (st.tsym == syms.enumSym &&
5471                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5472                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5473 
5474                 // Enums may not be extended by source-level classes
5475                 if (st.tsym != null &&
5476                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5477                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5478                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5479                 }
5480 
5481                 if (rs.isSerializable(c.type)) {
5482                     env.info.isSerializable = true;
5483                 }
5484 





5485                 attribClassBody(env, c);
5486 
5487                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5488                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5489                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5490                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5491             } finally {
5492                 env.info.returnResult = prevReturnRes;
5493                 log.useSource(prev);
5494                 chk.setLint(prevLint);
5495             }
5496 
5497         }
5498     }
5499 
5500     public void visitImport(JCImport tree) {
5501         // nothing to do
5502     }
5503 
5504     public void visitModuleDef(JCModuleDecl tree) {

  29 import java.util.function.BiConsumer;
  30 import java.util.function.Consumer;
  31 import java.util.stream.Stream;
  32 
  33 import javax.lang.model.element.ElementKind;
  34 import javax.tools.JavaFileObject;
  35 
  36 import com.sun.source.tree.CaseTree;
  37 import com.sun.source.tree.EnhancedForLoopTree;
  38 import com.sun.source.tree.IdentifierTree;
  39 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  40 import com.sun.source.tree.MemberSelectTree;
  41 import com.sun.source.tree.TreeVisitor;
  42 import com.sun.source.util.SimpleTreeVisitor;
  43 import com.sun.tools.javac.code.*;
  44 import com.sun.tools.javac.code.Lint.LintCategory;
  45 import com.sun.tools.javac.code.Scope.WriteableScope;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.code.Symbol.*;
  48 import com.sun.tools.javac.code.Type.*;
  49 import com.sun.tools.javac.code.Type.ClassType.Flavor;
  50 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  51 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  52 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  53 import com.sun.tools.javac.comp.Check.CheckContext;
  54 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  55 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
  56 import com.sun.tools.javac.jvm.*;
  57 
  58 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  59 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  60 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  61 
  62 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  63 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  64 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  65 import com.sun.tools.javac.tree.*;
  66 import com.sun.tools.javac.tree.JCTree.*;
  67 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  68 import com.sun.tools.javac.util.*;
  69 import com.sun.tools.javac.util.DefinedBy.Api;

 151         infer = Infer.instance(context);
 152         analyzer = Analyzer.instance(context);
 153         deferredAttr = DeferredAttr.instance(context);
 154         cfolder = ConstFold.instance(context);
 155         target = Target.instance(context);
 156         types = Types.instance(context);
 157         preview = Preview.instance(context);
 158         diags = JCDiagnostic.Factory.instance(context);
 159         annotate = Annotate.instance(context);
 160         typeAnnotations = TypeAnnotations.instance(context);
 161         deferredLintHandler = DeferredLintHandler.instance(context);
 162         typeEnvs = TypeEnvs.instance(context);
 163         dependencies = Dependencies.instance(context);
 164         argumentAttr = ArgumentAttr.instance(context);
 165         matchBindingsComputer = MatchBindingsComputer.instance(context);
 166         attrRecover = AttrRecover.instance(context);
 167 
 168         Options options = Options.instance(context);
 169 
 170         Source source = Source.instance(context);
 171         allowPrimitiveClasses = Feature.PRIMITIVE_CLASSES.allowedInSource(source) && options.isSet("enablePrimitiveClasses");
 172         allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source);
 173         allowRecords = Feature.RECORDS.allowedInSource(source);
 174         allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) &&
 175                              Feature.PATTERN_SWITCH.allowedInSource(source);
 176         allowUnconditionalPatternsInstanceOf = (preview.isEnabled() || !preview.isPreview(Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF)) &&
 177                                      Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source);
 178         sourceName = source.name;
 179         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 180 
 181         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 182         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 183         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 184         methodAttrInfo = new MethodAttrInfo();
 185         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 186         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 187         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 188     }
 189 
 190     /** Switch: allow primitive classes ?
 191      */
 192     boolean allowPrimitiveClasses;
 193 
 194     /** Switch: reifiable types in instanceof enabled?
 195      */
 196     boolean allowReifiableTypesInInstanceof;
 197 
 198     /** Are records allowed
 199      */
 200     private final boolean allowRecords;
 201 
 202     /** Are patterns in switch allowed
 203      */
 204     private final boolean allowPatternSwitch;
 205 
 206     /** Are unconditional patterns in instanceof allowed
 207      */
 208     private final boolean allowUnconditionalPatternsInstanceOf;
 209 
 210     /**
 211      * Switch: warn about use of variable before declaration?
 212      * RFE: 6425594
 213      */

 262             found;
 263         }
 264         if (resultInfo.checkMode.updateTreeType()) {
 265             tree.type = owntype;
 266         }
 267         return owntype;
 268     }
 269 
 270     /** Is given blank final variable assignable, i.e. in a scope where it
 271      *  may be assigned to even though it is final?
 272      *  @param v      The blank final variable.
 273      *  @param env    The current environment.
 274      */
 275     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 276         Symbol owner = env.info.scope.owner;
 277            // owner refers to the innermost variable, method or
 278            // initializer block declaration at this point.
 279         boolean isAssignable =
 280             v.owner == owner
 281             ||
 282             ((names.isInitOrVNew(owner.name) ||    // i.e. we are in a constructor
 283               owner.kind == VAR ||           // i.e. we are in a variable initializer
 284               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 285              &&
 286              v.owner == owner.owner
 287              &&
 288              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 289         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
 290         return isAssignable & !insideCompactConstructor;
 291     }
 292 
 293     /** Check that variable can be assigned to.
 294      *  @param pos    The current source code position.
 295      *  @param v      The assigned variable
 296      *  @param base   If the variable is referred to in a Select, the part
 297      *                to the left of the `.', null otherwise.
 298      *  @param env    The current environment.
 299      */
 300     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 301         if (v.name == names._this) {
 302             log.error(pos, Errors.CantAssignValToThis);

 789     /** Attribute a type argument list, returning a list of types.
 790      *  Check that all the types are references.
 791      */
 792     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 793         List<Type> types = attribAnyTypes(trees, env);
 794         return chk.checkRefTypes(trees, types);
 795     }
 796 
 797     /**
 798      * Attribute type variables (of generic classes or methods).
 799      * Compound types are attributed later in attribBounds.
 800      * @param typarams the type variables to enter
 801      * @param env      the current environment
 802      */
 803     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 804         for (JCTypeParameter tvar : typarams) {
 805             TypeVar a = (TypeVar)tvar.type;
 806             a.tsym.flags_field |= UNATTRIBUTED;
 807             a.setUpperBound(Type.noType);
 808             if (!tvar.bounds.isEmpty()) {
 809                 List<Type> bounds = List.of(chk.checkRefType(tvar.bounds.head, attribType(tvar.bounds.head, env), false));
 810                 for (JCExpression bound : tvar.bounds.tail)
 811                     bounds = bounds.prepend(chk.checkRefType(bound, attribType(bound, env), false));
 812                 types.setBounds(a, bounds.reverse());
 813             } else {
 814                 // if no bounds are given, assume a single bound of
 815                 // java.lang.Object.
 816                 types.setBounds(a, List.of(syms.objectType));
 817             }
 818             a.tsym.flags_field &= ~UNATTRIBUTED;
 819         }
 820         if (checkCyclic) {
 821             for (JCTypeParameter tvar : typarams) {
 822                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 823             }
 824         }
 825     }
 826 
 827     /**
 828      * Attribute the type references in a list of annotations.
 829      */
 830     void attribAnnotationTypes(List<JCAnnotation> annotations,
 831                                Env<AttrContext> env) {

1061                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1062                     }
1063                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1064                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1065                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1066                     }
1067                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1068                         log.error(tree,
1069                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1070                     }
1071                     if (!tree.typarams.isEmpty()) {
1072                         log.error(tree,
1073                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1074                     }
1075                     if (tree.sym.isStatic()) {
1076                         log.error(tree,
1077                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1078                     }
1079                 }
1080 
1081                 if (names.isInitOrVNew(tree.name)) {
1082                     // if this a constructor other than the canonical one
1083                     if ((tree.sym.flags_field & RECORD) == 0) {
1084                         JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1085                         if (app == null ||
1086                                 TreeInfo.name(app.meth) != names._this ||
1087                                 !checkFirstConstructorStat(app, tree, false)) {
1088                             log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor(env.enclClass.sym));
1089                         }
1090                     } else {
1091                         // but if it is the canonical:
1092 
1093                         /* if user generated, then it shouldn't:
1094                          *     - have an accessibility stricter than that of the record type
1095                          *     - explicitly invoke any other constructor
1096                          */
1097                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1098                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1099                                 log.error(tree,
1100                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1101                                             Errors.InvalidCanonicalConstructorInRecord(

1176                 if (tree.defaultValue != null) {
1177                     if ((owner.flags() & ANNOTATION) == 0)
1178                         log.error(tree.pos(),
1179                                   Errors.DefaultAllowedInIntfAnnotationMember);
1180                 }
1181                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1182                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1183             } else {
1184                 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1185                     if ((owner.flags() & INTERFACE) != 0) {
1186                         log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1187                     } else {
1188                         log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1189                     }
1190                 } else if ((tree.mods.flags & NATIVE) != 0) {
1191                     log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1192                 }
1193                 // Add an implicit super() call unless an explicit call to
1194                 // super(...) or this(...) is given
1195                 // or we are compiling class java.lang.Object.
1196                 if (names.isInitOrVNew(tree.name) && owner.type != syms.objectType) {
1197                     JCBlock body = tree.body;
1198                     if (body.stats.isEmpty() ||
1199                             TreeInfo.getConstructorInvocationName(body.stats, names, true) == names.empty) {
1200                         JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(),
1201                                 make.Ident(names._super), make.Idents(List.nil())));
1202                         body.stats = body.stats.prepend(supCall);
1203                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1204                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1205                             TreeInfo.isSuperCall(body.stats.head)) {
1206                         // enum constructors are not allowed to call super
1207                         // directly, so make sure there aren't any super calls
1208                         // in enum constructors, except in the compiler
1209                         // generated one.
1210                         log.error(tree.body.stats.head.pos(),
1211                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1212                     } else if ((env.enclClass.sym.flags() & VALUE_CLASS) != 0 &&
1213                         (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1214                         TreeInfo.isSuperCall(body.stats.head)) {
1215                         // value constructors are not allowed to call super directly,
1216                         // but tolerate compiler generated ones, these are ignored during code generation
1217                         log.error(tree.body.stats.head.pos(), Errors.CallToSuperNotAllowedInValueCtor);
1218                     }
1219                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1220                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1221                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1222                         if (!initParamNames.equals(recordComponentNames)) {
1223                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1224                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1225                         }
1226                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1227                             log.error(tree,
1228                                     Errors.InvalidCanonicalConstructorInRecord(
1229                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1230                                             env.enclClass.sym.name,
1231                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1232                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1233                         }
1234                     }
1235                 }
1236 
1237                 // Attribute all type annotations in the body

1285                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1286                 annotate.flush();
1287             }
1288         }
1289 
1290         VarSymbol v = tree.sym;
1291         Lint lint = env.info.lint.augment(v);
1292         Lint prevLint = chk.setLint(lint);
1293 
1294         // Check that the variable's declared type is well-formed.
1295         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1296                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1297                 (tree.sym.flags() & PARAMETER) != 0;
1298         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1299 
1300         try {
1301             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1302             deferredLintHandler.flush(tree.pos());
1303             chk.checkDeprecatedAnnotation(tree.pos(), v);
1304 
1305             /* Don't want constant propagation/folding for instance fields of primitive classes,
1306                as these can undergo updates via copy on write.
1307             */
1308             if (tree.init != null) {
1309                 if ((v.flags_field & FINAL) == 0 || ((v.flags_field & STATIC) == 0 && v.owner.isValueClass()) ||
1310                     !memberEnter.needsLazyConstValue(tree.init)) {
1311                     // Not a compile-time constant
1312                     // Attribute initializer in a new environment
1313                     // with the declared variable as owner.
1314                     // Check that initializer conforms to variable's declared type.
1315                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1316                     initEnv.info.lint = lint;
1317                     // In order to catch self-references, we set the variable's
1318                     // declaration position to maximal possible value, effectively
1319                     // marking the variable as undefined.
1320                     initEnv.info.enclVar = v;
1321                     attribExpr(tree.init, initEnv, v.type);
1322                     if (tree.isImplicitlyTyped()) {
1323                         //fixup local variable type
1324                         v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name);
1325                     }
1326                 }
1327                 if (tree.isImplicitlyTyped()) {
1328                     setSyntheticVariableType(tree, v.type);
1329                 }
1330             }
1331             result = tree.type = v.type;
1332             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1333                 if (isNonArgsMethodInObject(v.name)) {
1334                     log.error(tree, Errors.IllegalRecordComponentName(v));
1335                 }
1336             }
1337         }
1338         finally {
1339             chk.setLint(prevLint);
1340         }
1341     }
1342 
1343     private boolean isNonArgsMethodInObject(Name name) {
1344         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1345             if (s.type.getParameterTypes().isEmpty()) {
1346                 return true;
1347             }
1348         }
1349         // isValueObject is not included in Object yet so we need a work around
1350         return name == names.isValueObject;
1351     }
1352 
1353     Fragment canInferLocalVarType(JCVariableDecl tree) {
1354         LocalInitScanner lis = new LocalInitScanner();
1355         lis.scan(tree.init);
1356         return lis.badInferenceMsg;
1357     }
1358 
1359     static class LocalInitScanner extends TreeScanner {
1360         Fragment badInferenceMsg = null;
1361         boolean needsTarget = true;
1362 
1363         @Override
1364         public void visitNewArray(JCNewArray tree) {
1365             if (tree.elemtype == null && needsTarget) {
1366                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1367             }
1368         }
1369 
1370         @Override

1523         if (!breaksOutOf(tree, tree.body)) {
1524             //include condition's body when false after the while, if cannot get out of the loop
1525             condBindings.bindingsWhenFalse.forEach(env.info.scope::enter);
1526             condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding);
1527         }
1528     }
1529 
1530     public void visitForeachLoop(JCEnhancedForLoop tree) {
1531         Env<AttrContext> loopEnv =
1532             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1533 
1534         try {
1535             //the Formal Parameter of a for-each loop is not in the scope when
1536             //attributing the for-each expression; we mimic this by attributing
1537             //the for-each expression first (against original scope).
1538             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1539             chk.checkNonVoid(tree.pos(), exprType);
1540             tree.elementType = types.elemtype(exprType); // perhaps expr is an array?
1541             if (tree.elementType == null) {
1542                 // or perhaps expr implements Iterable<T>?
1543                 Type base = types.asSuper(exprType.referenceProjectionOrSelf(), syms.iterableType.tsym);
1544                 if (base == null) {
1545                     log.error(tree.expr.pos(),
1546                               Errors.ForeachNotApplicableToType(exprType,
1547                                                                 Fragments.TypeReqArrayOrIterable));
1548                     tree.elementType = types.createErrorType(exprType);
1549                 } else {
1550                     List<Type> iterableParams = base.allparams();
1551                     tree.elementType = iterableParams.isEmpty()
1552                         ? syms.objectType
1553                         : types.wildUpperBound(iterableParams.head);
1554 
1555                     // Check the return type of the method iterator().
1556                     // This is the bare minimum we need to verify to make sure code generation doesn't crash.
1557                     Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(),
1558                             loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil());
1559                     if (types.asSuper(iterSymbol.type.getReturnType().referenceProjectionOrSelf(), syms.iteratorType.tsym) == null) {
1560                         log.error(tree.pos(),
1561                                 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable));
1562                     }
1563                 }
1564             }
1565             if (tree.varOrRecordPattern instanceof JCVariableDecl jcVariableDecl) {
1566                 if (jcVariableDecl.isImplicitlyTyped()) {
1567                     Type inferredType = chk.checkLocalVarType(jcVariableDecl, tree.elementType, jcVariableDecl.name);
1568                     setSyntheticVariableType(jcVariableDecl, inferredType);
1569                 }
1570                 attribStat(jcVariableDecl, loopEnv);
1571                 chk.checkType(tree.expr.pos(), tree.elementType, jcVariableDecl.sym.type);
1572 
1573                 loopEnv.tree = tree; // before, we were not in loop!
1574                 attribStat(tree.body, loopEnv);
1575             } else {
1576                 Assert.check(tree.getDeclarationKind() == EnhancedForLoopTree.DeclarationKind.PATTERN);
1577                 JCRecordPattern jcRecordPattern = (JCRecordPattern) tree.varOrRecordPattern;
1578 
1579                 attribExpr(jcRecordPattern, loopEnv, tree.elementType);

1881     // where
1882     /** Return the selected enumeration constant symbol, or null. */
1883     private Symbol enumConstant(JCTree tree, Type enumType) {
1884         if (tree.hasTag(IDENT)) {
1885             JCIdent ident = (JCIdent)tree;
1886             Name name = ident.name;
1887             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1888                 if (sym.kind == VAR) {
1889                     Symbol s = ident.sym = sym;
1890                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1891                     ident.type = s.type;
1892                     return ((s.flags_field & Flags.ENUM) == 0)
1893                         ? null : s;
1894                 }
1895             }
1896         }
1897         return null;
1898     }
1899 
1900     public void visitSynchronized(JCSynchronized tree) {
1901         chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env));
1902         if (env.info.lint.isEnabled(LintCategory.SYNCHRONIZATION) && isValueBased(tree.lock.type)) {
1903             log.warning(LintCategory.SYNCHRONIZATION, tree.pos(), Warnings.AttemptToSynchronizeOnInstanceOfValueBasedClass);
1904         }
1905         attribStat(tree.body, env);
1906         result = null;
1907     }
1908         // where
1909         private boolean isValueBased(Type t) {
1910             return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0;
1911         }
1912 
1913 
1914     public void visitTry(JCTry tree) {
1915         // Create a new local environment with a local
1916         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1917         try {
1918             boolean isTryWithResource = tree.resources.nonEmpty();
1919             // Create a nested environment for attributing the try block if needed
1920             Env<AttrContext> tryEnv = isTryWithResource ?
1921                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :

1972                     chk.checkType(c.param.vartype.pos(),
1973                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1974                                   syms.throwableType);
1975                     attribStat(c.body, catchEnv);
1976                 } finally {
1977                     catchEnv.info.scope.leave();
1978                 }
1979             }
1980 
1981             // Attribute finalizer
1982             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1983             result = null;
1984         }
1985         finally {
1986             localEnv.info.scope.leave();
1987         }
1988     }
1989 
1990     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1991         if (!resource.isErroneous() &&
1992             types.asSuper(resource.referenceProjectionOrSelf(), syms.autoCloseableType.tsym) != null &&
1993             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1994             Symbol close = syms.noSymbol;
1995             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1996             try {
1997                 close = rs.resolveQualifiedMethod(pos,
1998                         env,
1999                         types.skipTypeVars(resource, false),
2000                         names.close,
2001                         List.nil(),
2002                         List.nil());
2003             }
2004             finally {
2005                 log.popDiagnosticHandler(discardHandler);
2006             }
2007             if (close.kind == MTH &&
2008                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
2009                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
2010                     env.info.lint.isEnabled(LintCategory.TRY)) {
2011                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
2012             }

2161             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
2162                 // If one arm has an integer subrange type (i.e., byte,
2163                 // short, or char), and the other is an integer constant
2164                 // that fits into the subrange, return the subrange type.
2165                 for (Type type : unboxedTypes) {
2166                     if (!type.getTag().isStrictSubRangeOf(INT)) {
2167                         continue;
2168                     }
2169                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
2170                         return type.baseType();
2171                 }
2172 
2173                 for (TypeTag tag : primitiveTags) {
2174                     Type candidate = syms.typeOfTag[tag.ordinal()];
2175                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2176                         return candidate;
2177                     }
2178                 }
2179             }
2180 
2181             // Those were all the cases that could result in a primitive. See if primitive boxing and primitive
2182             // value conversions bring about a convergence.
2183             condTypes = condTypes.stream()
2184                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type
2185                                          : t.isReferenceProjection() ? t.valueProjection() : t)
2186                                  .collect(List.collector());
2187 
2188             for (Type type : condTypes) {
2189                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2190                     return type.baseType();
2191             }
2192 
2193             Iterator<DiagnosticPosition> posIt = positions.iterator();
2194 
2195             condTypes = condTypes.stream()
2196                                  .map(t -> chk.checkNonVoid(posIt.next(), allowPrimitiveClasses && t.isPrimitiveClass() ? t.referenceProjection() : t))
2197                                  .collect(List.collector());
2198 
2199             // both are known to be reference types (or projections).  The result is
2200             // lub(thentype,elsetype). This cannot fail, as it will
2201             // always be possible to infer "Object" if nothing better.
2202             return types.lub(condTypes.stream()
2203                         .map(t -> t.baseType())
2204                         .filter(t -> !t.hasTag(BOT))
2205                         .collect(List.collector()));
2206         }
2207 
2208     static final TypeTag[] primitiveTags = new TypeTag[]{
2209         BYTE,
2210         CHAR,
2211         SHORT,
2212         INT,
2213         LONG,
2214         FLOAT,
2215         DOUBLE,
2216         BOOLEAN,
2217     };
2218 
2219     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {

2618                     : env.enclClass.sym.type;
2619             Symbol msym = TreeInfo.symbol(tree.meth);
2620             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2621 
2622             chk.checkRefTypes(tree.typeargs, typeargtypes);
2623 
2624             // Check that value of resulting type is admissible in the
2625             // current context.  Also, capture the return type
2626             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2627             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2628         }
2629         chk.validate(tree.typeargs, localEnv);
2630     }
2631     //where
2632         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2633             if (msym != null &&
2634                     (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) &&
2635                     methodName == names.getClass &&
2636                     argtypes.isEmpty()) {
2637                 // as a special case, x.getClass() has type Class<? extends |X|>
2638                 // Special treatment for primitive classes: Given an expression v of type V where
2639                 // V is a primitive class, v.getClass() is typed to be Class<? extends |V.ref|>
2640                 Type wcb = types.erasure(allowPrimitiveClasses && qualifierType.isPrimitiveClass() ?
2641                                          qualifierType.referenceProjection() : qualifierType.baseType());
2642                 return new ClassType(restype.getEnclosingType(),
2643                         List.of(new WildcardType(wcb,
2644                                 BoundKind.EXTENDS,
2645                                 syms.boundClass)),
2646                         restype.tsym,
2647                         restype.getMetadata(),
2648                         restype.getFlavor());
2649             } else if (msym != null &&
2650                     msym.owner == syms.arrayClass &&
2651                     methodName == names.clone &&
2652                     types.isArray(qualifierType)) {
2653                 // as a special case, array.clone() has a result that is
2654                 // the same as static type of the array being cloned
2655                 return qualifierType;
2656             } else {
2657                 return restype;
2658             }
2659         }
2660 
2661         /** Check that given application node appears as first statement
2662          *  in a constructor call.
2663          *  @param tree          The application node
2664          *  @param enclMethod    The enclosing method of the application.
2665          *  @param error         Should an error be issued?
2666          */
2667         boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) {
2668             if (enclMethod != null && names.isInitOrVNew(enclMethod.name)) {
2669                 JCBlock body = enclMethod.body;
2670                 if (body.stats.head.hasTag(EXEC) &&
2671                     ((JCExpressionStatement) body.stats.head).expr == tree)
2672                     return true;
2673             }
2674             if (error) {
2675                 log.error(tree.pos(),
2676                         Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2677             }
2678             return false;
2679         }
2680 
2681         /** Obtain a method type with given argument types.
2682          */
2683         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2684             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2685             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2686         }
2687 
2688     public void visitNewClass(final JCNewClass tree) {

2797         }
2798 
2799         // Attribute constructor arguments.
2800         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2801         final KindSelector pkind =
2802             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2803         List<Type> argtypes = argtypesBuf.toList();
2804         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2805 
2806         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2807             // Enums may not be instantiated except implicitly
2808             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2809                 (!env.tree.hasTag(VARDEF) ||
2810                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2811                  ((JCVariableDecl) env.tree).init != tree))
2812                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2813 
2814             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2815                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2816             boolean skipNonDiamondPath = false;
2817             // Check that it is an instantiation of a class and not a projection type
2818             if (allowPrimitiveClasses) {
2819                 if (clazz.hasTag(SELECT)) {
2820                     JCFieldAccess fieldAccess = (JCFieldAccess) clazz;
2821                     if (fieldAccess.selected.type.isPrimitiveClass() &&
2822                             (fieldAccess.name == names.ref || fieldAccess.name == names.val)) {
2823                         log.error(tree.pos(), Errors.ProjectionCantBeInstantiated);
2824                     }
2825                 }
2826             }
2827             // Check that class is not abstract
2828             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2829                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2830                 log.error(tree.pos(),
2831                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2832                 skipNonDiamondPath = true;
2833             } else if (cdef != null && clazztype.tsym.isInterface()) {
2834                 // Check that no constructor arguments are given to
2835                 // anonymous classes implementing an interface
2836                 if (!argtypes.isEmpty())
2837                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2838 
2839                 if (!typeargtypes.isEmpty())
2840                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2841 
2842                 // Error recovery: pretend no arguments were supplied.
2843                 argtypes = List.nil();
2844                 typeargtypes = List.nil();
2845                 skipNonDiamondPath = true;
2846             }
2847             if (TreeInfo.isDiamond(tree)) {
2848                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2849                             clazztype.tsym.type.getTypeArguments(),
2850                                                clazztype.tsym,
2851                                                clazztype.getMetadata(),
2852                                                clazztype.getFlavor());
2853 
2854                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2855                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2856                 diamondEnv.info.pendingResolutionPhase = null;
2857 
2858                 //if the type of the instance creation expression is a class type
2859                 //apply method resolution inference (JLS 15.12.2.7). The return type
2860                 //of the resolved constructor will be a partially instantiated type
2861                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2862                             diamondEnv,
2863                             site,
2864                             argtypes,
2865                             typeargtypes);
2866                 tree.constructor = constructor.baseSymbol();
2867 
2868                 final TypeSymbol csym = clazztype.tsym;
2869                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2870                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2871                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2872                 constructorType = checkId(tree, site,

2986                                 this.resultInfo = prevResult;
2987                             }
2988                         });
2989             } else {
2990                 if (isDiamond && clazztype.hasTag(CLASS)) {
2991                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2992                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2993                         // One or more types inferred in the previous steps is non-denotable.
2994                         Fragment fragment = Diamond(clazztype.tsym);
2995                         log.error(tree.clazz.pos(),
2996                                 Errors.CantApplyDiamond1(
2997                                         fragment,
2998                                         invalidDiamondArgs.size() > 1 ?
2999                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
3000                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
3001                     }
3002                     // For <>(){}, inferred types must also be accessible.
3003                     for (Type t : clazztype.getTypeArguments()) {
3004                         rs.checkAccessibleType(env, t);
3005                     }
3006                     if (allowPrimitiveClasses) {
3007                         chk.checkParameterizationByPrimitiveClass(tree, clazztype);
3008                     }
3009                 }
3010 
3011                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
3012                 // false for isInterface call even when the original type is an interface.
3013                 boolean implementing = clazztype.tsym.isInterface() ||
3014                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
3015                         clazztype.getOriginalType().tsym.isInterface();
3016 
3017                 if (implementing) {
3018                     cdef.implementing = List.of(clazz);
3019                 } else {
3020                     cdef.extending = clazz;
3021                 }
3022 
3023                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3024                     rs.isSerializable(clazztype)) {
3025                     localEnv.info.isSerializable = true;
3026                 }
3027 
3028                 attribStat(cdef, localEnv);

3061             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
3062             chk.validate(tree.typeargs, localEnv);
3063         }
3064 
3065         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
3066             return new Check.NestedCheckContext(checkContext) {
3067                 @Override
3068                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
3069                     enclosingContext.report(clazz.clazz,
3070                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
3071                 }
3072             };
3073         }
3074 
3075     /** Make an attributed null check tree.
3076      */
3077     public JCExpression makeNullCheck(JCExpression arg) {
3078         // optimization: new Outer() can never be null; skip null check
3079         if (arg.getTag() == NEWCLASS)
3080             return arg;
3081         // Likewise arg can't be null if it is a primitive class instance.
3082         if (allowPrimitiveClasses && arg.type.isPrimitiveClass())
3083             return arg;
3084         // optimization: X.this is never null; skip null check
3085         Name name = TreeInfo.name(arg);
3086         if (name == names._this || name == names._super) return arg;
3087 
3088         JCTree.Tag optag = NULLCHK;
3089         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
3090         tree.operator = operators.resolveUnary(arg, optag, arg.type);
3091         tree.type = arg.type;
3092         return tree;
3093     }
3094 
3095     public void visitNewArray(JCNewArray tree) {
3096         Type owntype = types.createErrorType(tree.type);
3097         Env<AttrContext> localEnv = env.dup(tree);
3098         Type elemtype;
3099         if (tree.elemtype != null) {
3100             elemtype = attribType(tree.elemtype, localEnv);
3101             chk.validate(tree.elemtype, localEnv);
3102             owntype = elemtype;
3103             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {

3553          *
3554          * The owner of this environment is a method symbol. If the current owner
3555          * is not a method, for example if the lambda is used to initialize
3556          * a field, then if the field is:
3557          *
3558          * - an instance field, we use the first constructor.
3559          * - a static field, we create a fake clinit method.
3560          */
3561         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3562             Env<AttrContext> lambdaEnv;
3563             Symbol owner = env.info.scope.owner;
3564             if (owner.kind == VAR && owner.owner.kind == TYP) {
3565                 //field initializer
3566                 ClassSymbol enclClass = owner.enclClass();
3567                 Symbol newScopeOwner = env.info.scope.owner;
3568                 /* if the field isn't static, then we can get the first constructor
3569                  * and use it as the owner of the environment. This is what
3570                  * LTM code is doing to look for type annotations so we are fine.
3571                  */
3572                 if ((owner.flags() & STATIC) == 0) {
3573                     Name constructorName = owner.isConcreteValueClass() ? names.vnew : names.init;
3574                     for (Symbol s : enclClass.members_field.getSymbolsByName(constructorName)) {
3575                         newScopeOwner = s;
3576                         break;
3577                     }
3578                 } else {
3579                     /* if the field is static then we need to create a fake clinit
3580                      * method, this method can later be reused by LTM.
3581                      */
3582                     MethodSymbol clinit = clinits.get(enclClass);
3583                     if (clinit == null) {
3584                         Type clinitType = new MethodType(List.nil(),
3585                                 syms.voidType, List.nil(), syms.methodClass);
3586                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3587                                 names.clinit, clinitType, enclClass);
3588                         clinit.params = List.nil();
3589                         clinits.put(enclClass, clinit);
3590                     }
3591                     newScopeOwner = clinit;
3592                 }
3593                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3594             } else {

3617 
3618             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3619                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3620                 if (!exprType.isErroneous() &&
3621                     exprType.isRaw() &&
3622                     that.typeargs != null) {
3623                     log.error(that.expr.pos(),
3624                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3625                                                  Fragments.MrefInferAndExplicitParams));
3626                     exprType = types.createErrorType(exprType);
3627                 }
3628             }
3629 
3630             if (exprType.isErroneous()) {
3631                 //if the qualifier expression contains problems,
3632                 //give up attribution of method reference
3633                 result = that.type = exprType;
3634                 return;
3635             }
3636 
3637             Symbol lhsSym = TreeInfo.symbol(that.expr);
3638             if (TreeInfo.isStaticSelector(that.expr, names)) {
3639                 // TODO - a bit hacky but...
3640                 if (lhsSym != null && lhsSym.isConcreteValueClass() && that.name == names.init) {
3641                     that.name = names.vnew;
3642                 }
3643                 //if the qualifier is a type, validate it; raw warning check is
3644                 //omitted as we don't know at this stage as to whether this is a
3645                 //raw selector (because of inference)
3646                 chk.validate(that.expr, env, false);
3647             } else {

3648                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3649             }
3650             //attrib type-arguments
3651             List<Type> typeargtypes = List.nil();
3652             if (that.typeargs != null) {
3653                 typeargtypes = attribTypes(that.typeargs, localEnv);
3654             }
3655 
3656             boolean isTargetSerializable =
3657                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3658                     rs.isSerializable(pt());
3659             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3660             Type currentTarget = targetInfo.target;
3661             Type desc = targetInfo.descriptor;
3662 
3663             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3664             List<Type> argtypes = desc.getParameterTypes();
3665             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3666 
3667             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {

3711                         targetError ?
3712                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3713                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3714 
3715                 if (targetError && currentTarget == Type.recoveryType) {
3716                     //a target error doesn't make sense during recovery stage
3717                     //as we don't know what actual parameter types are
3718                     result = that.type = currentTarget;
3719                     return;
3720                 } else {
3721                     if (targetError) {
3722                         resultInfo.checkContext.report(that, diag);
3723                     } else {
3724                         log.report(diag);
3725                     }
3726                     result = that.type = types.createErrorType(currentTarget);
3727                     return;
3728                 }
3729             }
3730 
3731             that.sym = refSym.isInitOrVNew() ? refSym.baseSymbol() : refSym;
3732             that.kind = lookupHelper.referenceKind(that.sym);
3733             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3734 
3735             if (desc.getReturnType() == Type.recoveryType) {
3736                 // stop here
3737                 result = that.type = currentTarget;
3738                 return;
3739             }
3740 
3741             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3742                 Type enclosingType = exprType.getEnclosingType();
3743                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3744                     // Check for the existence of an appropriate outer instance
3745                     rs.resolveImplicitThis(that.pos(), env, exprType);
3746                 }
3747             }
3748 
3749             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3750 
3751                 if (that.getMode() == ReferenceMode.INVOKE &&

4389     }
4390 
4391     public void visitSelect(JCFieldAccess tree) {
4392         // Determine the expected kind of the qualifier expression.
4393         KindSelector skind = KindSelector.NIL;
4394         if (tree.name == names._this || tree.name == names._super ||
4395                 tree.name == names._class)
4396         {
4397             skind = KindSelector.TYP;
4398         } else {
4399             if (pkind().contains(KindSelector.PCK))
4400                 skind = KindSelector.of(skind, KindSelector.PCK);
4401             if (pkind().contains(KindSelector.TYP))
4402                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4403             if (pkind().contains(KindSelector.VAL_MTH))
4404                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4405         }
4406 
4407         // Attribute the qualifier expression, and determine its symbol (if any).
4408         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4409         Assert.check(site == tree.selected.type);
4410         if (allowPrimitiveClasses && tree.name == names._class && site.isPrimitiveClass()) {
4411             /* JDK-8269956: Where a reflective (class) literal is needed, the unqualified Point.class is
4412              * always the "primary" mirror - representing the primitive reference runtime type - thereby
4413              * always matching the behavior of Object::getClass
4414              */
4415              if (!tree.selected.hasTag(SELECT) || ((JCFieldAccess) tree.selected).name != names.val) {
4416                  tree.selected.setType(site = site.referenceProjection());
4417              }
4418         }
4419         if (!pkind().contains(KindSelector.TYP_PCK))
4420             site = capture(site); // Capture field access
4421 
4422         // don't allow T.class T[].class, etc
4423         if (skind == KindSelector.TYP) {
4424             Type elt = site;
4425             while (elt.hasTag(ARRAY))
4426                 elt = ((ArrayType)elt).elemtype;
4427             if (elt.hasTag(TYPEVAR)) {
4428                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4429                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4430                 tree.sym = tree.type.tsym;
4431                 return;
4432             }
4433         }
4434 
4435         // If qualifier symbol is a type or `super', assert `selectSuper'
4436         // for the selection. This is relevant for determining whether
4437         // protected symbols are accessible.
4438         Symbol sitesym = TreeInfo.symbol(tree.selected);
4439         boolean selectSuperPrev = env.info.selectSuper;
4440         env.info.selectSuper =
4441             sitesym != null &&
4442             sitesym.name == names._super;
4443 
4444         // Determine the symbol represented by the selection.
4445         env.info.pendingResolutionPhase = null;
4446         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4447         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4448             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4449             sym = syms.errSymbol;
4450         }
4451         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {

4515         } else if (sym.kind != ERR &&
4516                    (sym.flags() & STATIC) != 0 &&
4517                    sym.name != names._class) {
4518             // If the qualified item is not a type and the selected item is static, report
4519             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4520             if (!sym.owner.isAnonymous()) {
4521                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4522             } else {
4523                 chk.warnStatic(tree, Warnings.StaticNotQualifiedByType2(sym.kind.kindName()));
4524             }
4525         }
4526 
4527         // If we are selecting an instance member via a `super', ...
4528         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4529 
4530             // Check that super-qualified symbols are not abstract (JLS)
4531             rs.checkNonAbstract(tree.pos(), sym);
4532 
4533             if (site.isRaw()) {
4534                 // Determine argument types for site.
4535                 Type site1 = types.asSuper(env.enclClass.sym.type.referenceProjectionOrSelf(), site.tsym);
4536                 if (site1 != null) site = site1;
4537             }
4538         }
4539 
4540         if (env.info.isSerializable) {
4541             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4542         }
4543 
4544         env.info.selectSuper = selectSuperPrev;
4545         result = checkId(tree, site, sym, env, resultInfo);
4546     }
4547     //where
4548         /** Determine symbol referenced by a Select expression,
4549          *
4550          *  @param tree   The select tree.
4551          *  @param site   The type of the selected expression,
4552          *  @param env    The current environment.
4553          *  @param resultInfo The current result.
4554          */
4555         private Symbol selectSym(JCFieldAccess tree,

4558                                  Env<AttrContext> env,
4559                                  ResultInfo resultInfo) {
4560             DiagnosticPosition pos = tree.pos();
4561             Name name = tree.name;
4562             switch (site.getTag()) {
4563             case PACKAGE:
4564                 return rs.accessBase(
4565                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4566                     pos, location, site, name, true);
4567             case ARRAY:
4568             case CLASS:
4569                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4570                     return rs.resolveQualifiedMethod(
4571                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4572                 } else if (name == names._this || name == names._super) {
4573                     return rs.resolveSelf(pos, env, site.tsym, name);
4574                 } else if (name == names._class) {
4575                     // In this case, we have already made sure in
4576                     // visitSelect that qualifier expression is a type.
4577                     return syms.getClassField(site, types);
4578                 } else if (allowPrimitiveClasses && site.isPrimitiveClass() && isType(location) && resultInfo.pkind.contains(KindSelector.TYP) && (name == names.ref || name == names.val)) {
4579                     return site.tsym;
4580                 } else {
4581                     // We are seeing a plain identifier as selector.
4582                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4583                         sym = rs.accessBase(sym, pos, location, site, name, true);
4584                     return sym;
4585                 }
4586             case WILDCARD:
4587                 throw new AssertionError(tree);
4588             case TYPEVAR:
4589                 // Normally, site.getUpperBound() shouldn't be null.
4590                 // It should only happen during memberEnter/attribBase
4591                 // when determining the supertype which *must* be
4592                 // done before attributing the type variables.  In
4593                 // other words, we are seeing this illegal program:
4594                 // class B<T> extends A<T.foo> {}
4595                 Symbol sym = (site.getUpperBound() != null)
4596                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4597                     : null;
4598                 if (sym == null) {
4599                     log.error(pos, Errors.TypeVarCantBeDeref);

4663             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4664                 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo);
4665             } else {
4666                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4667             }
4668         }
4669 
4670         Type checkIdInternal(JCTree tree,
4671                      Type site,
4672                      Symbol sym,
4673                      Type pt,
4674                      Env<AttrContext> env,
4675                      ResultInfo resultInfo) {
4676             if (pt.isErroneous()) {
4677                 return types.createErrorType(site);
4678             }
4679             Type owntype; // The computed type of this identifier occurrence.
4680             switch (sym.kind) {
4681             case TYP:
4682                 // For types, the computed type equals the symbol's type,
4683                 // except for three situations:
4684                 owntype = sym.type;
4685                 if (owntype.hasTag(CLASS)) {
4686                     if (allowPrimitiveClasses) {
4687                         Assert.check(owntype.getFlavor() != Flavor.X_Typeof_X);
4688                     }
4689                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4690                     Type ownOuter = owntype.getEnclosingType();
4691 
4692                     // (a) If symbol is a primitive class and its reference projection
4693                     // is requested via the .ref notation, then adjust the computed type to
4694                     // reflect this.
4695                     if (allowPrimitiveClasses && owntype.isPrimitiveClass() && tree.hasTag(SELECT) && ((JCFieldAccess) tree).name == names.ref) {
4696                         owntype = new ClassType(owntype.getEnclosingType(), owntype.getTypeArguments(), (TypeSymbol)sym, owntype.getMetadata(), Flavor.L_TypeOf_Q);
4697                     }
4698 
4699                     // (b) If the symbol's type is parameterized, erase it
4700                     // because no type parameters were given.
4701                     // We recover generic outer type later in visitTypeApply.
4702                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4703                         owntype = types.erasure(owntype);
4704                     }
4705 
4706                     // (c) If the symbol's type is an inner class, then
4707                     // we have to interpret its outer type as a superclass
4708                     // of the site type. Example:
4709                     //
4710                     // class Tree<A> { class Visitor { ... } }
4711                     // class PointTree extends Tree<Point> { ... }
4712                     // ...PointTree.Visitor...
4713                     //
4714                     // Then the type of the last expression above is
4715                     // Tree<Point>.Visitor.
4716                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4717                         Type normOuter = site;
4718                         if (normOuter.hasTag(CLASS)) {
4719                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4720                         }
4721                         if (normOuter == null) // perhaps from an import
4722                             normOuter = types.erasure(ownOuter);
4723                         if (normOuter != ownOuter)
4724                             owntype = new ClassType(
4725                                 normOuter, List.nil(), owntype.tsym,
4726                                 owntype.getMetadata(), owntype.getFlavor());
4727                     }
4728                 }
4729                 break;
4730             case VAR:
4731                 VarSymbol v = (VarSymbol)sym;
4732 
4733                 if (env.info.enclVar != null
4734                         && v.type.hasTag(NONE)) {
4735                     //self reference to implicitly typed variable declaration
4736                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4737                     return tree.type = v.type = types.createErrorType(v.type);
4738                 }
4739 
4740                 // Test (4): if symbol is an instance field of a raw type,
4741                 // which is being assigned to, issue an unchecked warning if
4742                 // its type changes under erasure.
4743                 if (KindSelector.ASG.subset(pkind()) &&
4744                     v.owner.kind == TYP &&
4745                     (v.flags() & STATIC) == 0 &&
4746                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {

4769                 break;
4770             case MTH: {
4771                 owntype = checkMethod(site, sym,
4772                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4773                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4774                         resultInfo.pt.getTypeArguments());
4775                 break;
4776             }
4777             case PCK: case ERR:
4778                 owntype = sym.type;
4779                 break;
4780             default:
4781                 throw new AssertionError("unexpected kind: " + sym.kind +
4782                                          " in tree " + tree);
4783             }
4784 
4785             // Emit a `deprecation' warning if symbol is deprecated.
4786             // (for constructors (but not for constructor references), the error
4787             // was given when the constructor was resolved)
4788 
4789             if (!names.isInitOrVNew(sym.name) || tree.hasTag(REFERENCE)) {
4790                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4791                 chk.checkSunAPI(tree.pos(), sym);
4792                 chk.checkProfile(tree.pos(), sym);
4793                 chk.checkPreview(tree.pos(), env.info.scope.owner, sym);
4794             }
4795 
4796             // If symbol is a variable, check that its type and
4797             // kind are compatible with the prototype and protokind.
4798             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4799         }
4800 
4801         /** Check that variable is initialized and evaluate the variable's
4802          *  initializer, if not yet done. Also check that variable is not
4803          *  referenced before it is defined.
4804          *  @param tree    The tree making up the variable reference.
4805          *  @param env     The current environment.
4806          *  @param v       The variable's symbol.
4807          */
4808         private void checkInit(JCTree tree,
4809                                Env<AttrContext> env,

5023             //depending on the current check context
5024             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
5025             return types.createErrorType(site);
5026         } catch (Resolve.InapplicableMethodException ex) {
5027             final JCDiagnostic diag = ex.getDiagnostic();
5028             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
5029                 @Override
5030                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
5031                     return new Pair<>(sym, diag);
5032                 }
5033             };
5034             List<Type> argtypes2 = argtypes.map(
5035                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
5036             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
5037                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
5038             log.report(errDiag);
5039             return types.createErrorType(site);
5040         }
5041     }
5042 
5043     public void visitDefaultValue(JCDefaultValue tree) {
5044         if (!allowPrimitiveClasses) {
5045             log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(),
5046                     Feature.PRIMITIVE_CLASSES.error(sourceName));
5047         }
5048 
5049         // Attribute the qualifier expression, and determine its symbol (if any).
5050         Type site = attribTree(tree.clazz, env, new ResultInfo(KindSelector.TYP_PCK, Type.noType));
5051         if (!pkind().contains(KindSelector.TYP_PCK))
5052             site = capture(site); // Capture field access
5053         if (!allowPrimitiveClasses) {
5054             result = types.createErrorType(names._default, site.tsym, site);
5055         } else {
5056             Symbol sym = switch (site.getTag()) {
5057                 case WILDCARD -> throw new AssertionError(tree);
5058                 case PACKAGE -> {
5059                     log.error(tree.pos, Errors.CantResolveLocation(Kinds.KindName.CLASS, site.tsym.getQualifiedName(), null, null,
5060                             Fragments.Location(Kinds.typeKindName(env.enclClass.type), env.enclClass.type, null)));
5061                     yield syms.errSymbol;
5062                 }
5063                 case ERROR -> types.createErrorType(names._default, site.tsym, site).tsym;
5064                 default -> new VarSymbol(STATIC, names._default, site, site.tsym);
5065             };
5066 
5067             if (site.hasTag(TYPEVAR) && sym.kind != ERR) {
5068                 site = types.skipTypeVars(site, true);
5069             }
5070             result = checkId(tree, site, sym, env, resultInfo);
5071         }
5072     }
5073 
5074     public void visitLiteral(JCLiteral tree) {
5075         result = check(tree, litType(tree.typetag).constType(tree.value),
5076                 KindSelector.VAL, resultInfo);
5077     }
5078     //where
5079     /** Return the type of a literal with given type tag.
5080      */
5081     Type litType(TypeTag tag) {
5082         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
5083     }
5084 
5085     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
5086         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
5087     }
5088 
5089     public void visitTypeArray(JCArrayTypeTree tree) {
5090         Type etype = attribType(tree.elemtype, env);
5091         Type type = new ArrayType(etype, syms.arrayClass);
5092         result = check(tree, type, KindSelector.TYP, resultInfo);
5093     }

5120                 }
5121                 // Compute the proper generic outer
5122                 Type clazzOuter = clazztype.getEnclosingType();
5123                 if (clazzOuter.hasTag(CLASS)) {
5124                     Type site;
5125                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
5126                     if (clazz.hasTag(IDENT)) {
5127                         site = env.enclClass.sym.type;
5128                     } else if (clazz.hasTag(SELECT)) {
5129                         site = ((JCFieldAccess) clazz).selected.type;
5130                     } else throw new AssertionError(""+tree);
5131                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
5132                         if (site.hasTag(CLASS))
5133                             site = types.asOuterSuper(site, clazzOuter.tsym);
5134                         if (site == null)
5135                             site = types.erasure(clazzOuter);
5136                         clazzOuter = site;
5137                     }
5138                 }
5139                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
5140                                         clazztype.getMetadata(), clazztype.getFlavor());
5141             } else {
5142                 if (formals.length() != 0) {
5143                     log.error(tree.pos(),
5144                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
5145                 } else {
5146                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
5147                 }
5148                 owntype = types.createErrorType(tree.type);
5149             }
5150         }
5151         result = check(tree, owntype, KindSelector.TYP, resultInfo);
5152     }
5153 
5154     public void visitTypeUnion(JCTypeUnion tree) {
5155         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
5156         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
5157         for (JCExpression typeTree : tree.alternatives) {
5158             Type ctype = attribType(typeTree, env);
5159             ctype = chk.checkType(typeTree.pos(),
5160                           chk.checkClassType(typeTree.pos(), ctype),

5247         if (bounds.length() == 0) {
5248             return syms.objectType;
5249         } else if (bounds.length() == 1) {
5250             return bounds.head.type;
5251         } else {
5252             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
5253             // ... the variable's bound is a class type flagged COMPOUND
5254             // (see comment for TypeVar.bound).
5255             // In this case, generate a class tree that represents the
5256             // bound class, ...
5257             JCExpression extending;
5258             List<JCExpression> implementing;
5259             if (!bounds.head.type.isInterface()) {
5260                 extending = bounds.head;
5261                 implementing = bounds.tail;
5262             } else {
5263                 extending = null;
5264                 implementing = bounds;
5265             }
5266             JCClassDecl cd = make.at(tree).ClassDef(
5267                 make.Modifiers(PUBLIC | ABSTRACT | (extending != null && TreeInfo.symbol(extending).isPrimitiveClass() ? PRIMITIVE_CLASS : 0)),
5268                 names.empty, List.nil(),
5269                 extending, implementing, List.nil());
5270 
5271             ClassSymbol c = (ClassSymbol)owntype.tsym;
5272             Assert.check((c.flags() & COMPOUND) != 0);
5273             cd.sym = c;
5274             c.sourcefile = env.toplevel.sourcefile;
5275 
5276             // ... and attribute the bound class
5277             c.flags_field |= UNATTRIBUTED;
5278             Env<AttrContext> cenv = enter.classEnv(cd, env);
5279             typeEnvs.put(c, cenv);
5280             attribClass(c);
5281             return owntype;
5282         }
5283     }
5284 
5285     public void visitWildcard(JCWildcard tree) {
5286         //- System.err.println("visitWildcard("+tree+");");//DEBUG
5287         Type type = (tree.kind.kind == BoundKind.UNBOUND)
5288             ? syms.objectType
5289             : attribType(tree.inner, env);
5290         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type, false),
5291                                               tree.kind.kind,
5292                                               syms.boundClass),
5293                 KindSelector.TYP, resultInfo);
5294     }
5295 
5296     public void visitAnnotation(JCAnnotation tree) {
5297         Assert.error("should be handled in annotate");
5298     }
5299 
5300     @Override
5301     public void visitModifiers(JCModifiers tree) {
5302         //error recovery only:
5303         Assert.check(resultInfo.pkind == KindSelector.ERR);
5304 
5305         attribAnnotationTypes(tree.annotations, env);
5306     }
5307 
5308     public void visitAnnotatedType(JCAnnotatedType tree) {
5309         attribAnnotationTypes(tree.annotations, env);
5310         Type underlyingType = attribType(tree.underlyingType, env);

5388 
5389         try {
5390             deferredLintHandler.flush(env.tree.pos());
5391             attrib.accept(env);
5392         } finally {
5393             log.useSource(prev);
5394             chk.setLint(prevLint);
5395         }
5396     }
5397 
5398     /** Main method: attribute class definition associated with given class symbol.
5399      *  reporting completion failures at the given position.
5400      *  @param pos The source position at which completion errors are to be
5401      *             reported.
5402      *  @param c   The class symbol whose definition will be attributed.
5403      */
5404     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
5405         try {
5406             annotate.flush();
5407             attribClass(c);
5408             if (allowPrimitiveClasses && c.type.isPrimitiveClass()) {
5409                 final Env<AttrContext> env = typeEnvs.get(c);
5410                 if (env != null && env.tree != null && env.tree.hasTag(CLASSDEF))
5411                     chk.checkNonCyclicMembership((JCClassDecl)env.tree);
5412             }
5413         } catch (CompletionFailure ex) {
5414             chk.completionError(pos, ex);
5415         }
5416     }
5417 
5418     /** Attribute class definition associated with given class symbol.
5419      *  @param c   The class symbol whose definition will be attributed.
5420      */
5421     void attribClass(ClassSymbol c) throws CompletionFailure {
5422         if (c.type.hasTag(ERROR)) return;
5423 
5424         // Check for cycles in the inheritance graph, which can arise from
5425         // ill-formed class files.
5426         chk.checkNonCyclic(null, c.type);
5427 
5428         Type st = types.supertype(c.type);
5429         if ((c.flags_field & Flags.COMPOUND) == 0 &&
5430             (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) {
5431             // First, attribute superclass.
5432             if (st.hasTag(CLASS))

5513                                                   .filter(s -> s.tsym.isSealed())
5514                                                   .map(s -> (ClassSymbol) s.tsym)
5515                                                   .collect(List.collector());
5516 
5517             if (sealedSupers.isEmpty()) {
5518                 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5519                     boolean hasErrorSuper = false;
5520 
5521                     hasErrorSuper |= types.directSupertypes(c.type)
5522                                           .stream()
5523                                           .anyMatch(s -> s.tsym.kind == Kind.ERR);
5524 
5525                     ClassType ct = (ClassType) c.type;
5526 
5527                     hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field;
5528 
5529                     if (!hasErrorSuper) {
5530                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5531                     }
5532                 }
5533             } else if ((c.flags_field & Flags.COMPOUND) == 0) {
5534                 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) {
5535                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local));
5536                 }
5537 
5538                 if (!c.type.isCompound()) {
5539                     for (ClassSymbol supertypeSym : sealedSupers) {
5540                         if (!supertypeSym.permitted.contains(c.type.tsym)) {
5541                             log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5542                         }
5543                     }
5544                     if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5545                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5546                                 c.isInterface() ?
5547                                         Errors.NonSealedOrSealedExpected :
5548                                         Errors.NonSealedSealedOrFinalExpected);
5549                     }
5550                 }
5551             }
5552 
5553             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,

5568 
5569             try {
5570                 deferredLintHandler.flush(env.tree);
5571                 env.info.returnResult = null;
5572                 // java.lang.Enum may not be subclassed by a non-enum
5573                 if (st.tsym == syms.enumSym &&
5574                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5575                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5576 
5577                 // Enums may not be extended by source-level classes
5578                 if (st.tsym != null &&
5579                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5580                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5581                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5582                 }
5583 
5584                 if (rs.isSerializable(c.type)) {
5585                     env.info.isSerializable = true;
5586                 }
5587 
5588                 if (c.isValueClass()) {
5589                     Assert.check(env.tree.hasTag(CLASSDEF));
5590                     chk.checkConstraintsOfValueClass(env.tree.pos(), c);
5591                 }
5592 
5593                 attribClassBody(env, c);
5594 
5595                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5596                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5597                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5598                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5599             } finally {
5600                 env.info.returnResult = prevReturnRes;
5601                 log.useSource(prev);
5602                 chk.setLint(prevLint);
5603             }
5604 
5605         }
5606     }
5607 
5608     public void visitImport(JCImport tree) {
5609         // nothing to do
5610     }
5611 
5612     public void visitModuleDef(JCModuleDecl tree) {
< prev index next >