1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Predicate;
  32 import java.util.function.Supplier;
  33 import java.util.function.ToIntBiFunction;
  34 import java.util.stream.Collectors;
  35 import java.util.stream.StreamSupport;
  36 
  37 import javax.lang.model.element.ElementKind;
  38 import javax.lang.model.element.NestingKind;
  39 import javax.tools.JavaFileManager;
  40 
  41 import com.sun.source.tree.CaseTree;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Attribute.Compound;
  44 import com.sun.tools.javac.code.Directive.ExportsDirective;
  45 import com.sun.tools.javac.code.Directive.RequiresDirective;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.resources.CompilerProperties;
  50 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  51 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  52 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  53 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  54 import com.sun.tools.javac.tree.*;
  55 import com.sun.tools.javac.util.*;
  56 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  57 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  58 import com.sun.tools.javac.util.JCDiagnostic.Error;
  59 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  60 import com.sun.tools.javac.util.JCDiagnostic.LintWarning;
  61 import com.sun.tools.javac.util.List;
  62 
  63 import com.sun.tools.javac.code.Lint;
  64 import com.sun.tools.javac.code.Lint.LintCategory;
  65 import com.sun.tools.javac.code.Scope.WriteableScope;
  66 import com.sun.tools.javac.code.Type.*;
  67 import com.sun.tools.javac.code.Symbol.*;
  68 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  69 import com.sun.tools.javac.tree.JCTree.*;
  70 
  71 import static com.sun.tools.javac.code.Flags.*;
  72 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  73 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  74 import static com.sun.tools.javac.code.Kinds.*;
  75 import static com.sun.tools.javac.code.Kinds.Kind.*;
  76 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  77 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  78 import static com.sun.tools.javac.code.TypeTag.*;
  79 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  80 
  81 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  82 import javax.lang.model.element.Element;
  83 import javax.lang.model.element.TypeElement;
  84 import javax.lang.model.type.DeclaredType;
  85 import javax.lang.model.util.ElementKindVisitor14;
  86 
  87 /** Type checking helper class for the attribution phase.
  88  *
  89  *  <p><b>This is NOT part of any supported API.
  90  *  If you write code that depends on this, you do so at your own risk.
  91  *  This code and its internal interfaces are subject to change or
  92  *  deletion without notice.</b>
  93  */
  94 public class Check {
  95     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  96 
  97     // Flag bits indicating which item(s) chosen from a pair of items
  98     private static final int FIRST = 0x01;
  99     private static final int SECOND = 0x02;
 100 
 101     private final Names names;
 102     private final Log log;
 103     private final Resolve rs;
 104     private final Symtab syms;
 105     private final Enter enter;
 106     private final DeferredAttr deferredAttr;
 107     private final Infer infer;
 108     private final Types types;
 109     private final TypeAnnotations typeAnnotations;
 110     private final JCDiagnostic.Factory diags;
 111     private final JavaFileManager fileManager;
 112     private final Source source;
 113     private final Target target;
 114     private final Profile profile;
 115     private final Preview preview;
 116     private final boolean warnOnAnyAccessToMembers;
 117 
 118     public boolean disablePreviewCheck;
 119 
 120     // The set of lint options currently in effect. It is initialized
 121     // from the context, and then is set/reset as needed by Attr as it
 122     // visits all the various parts of the trees during attribution.
 123     private Lint lint;
 124 
 125     // The method being analyzed in Attr - it is set/reset as needed by
 126     // Attr as it visits new method declarations.
 127     private MethodSymbol method;
 128 
 129     public static Check instance(Context context) {
 130         Check instance = context.get(checkKey);
 131         if (instance == null)
 132             instance = new Check(context);
 133         return instance;
 134     }
 135 
 136     @SuppressWarnings("this-escape")
 137     protected Check(Context context) {
 138         context.put(checkKey, this);
 139 
 140         names = Names.instance(context);
 141         log = Log.instance(context);
 142         rs = Resolve.instance(context);
 143         syms = Symtab.instance(context);
 144         enter = Enter.instance(context);
 145         deferredAttr = DeferredAttr.instance(context);
 146         infer = Infer.instance(context);
 147         types = Types.instance(context);
 148         typeAnnotations = TypeAnnotations.instance(context);
 149         diags = JCDiagnostic.Factory.instance(context);
 150         Options options = Options.instance(context);
 151         lint = Lint.instance(context);
 152         fileManager = context.get(JavaFileManager.class);
 153 
 154         source = Source.instance(context);
 155         target = Target.instance(context);
 156         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 157 
 158         disablePreviewCheck = false;
 159 
 160         Target target = Target.instance(context);
 161         syntheticNameChar = target.syntheticNameChar();
 162 
 163         profile = Profile.instance(context);
 164         preview = Preview.instance(context);
 165 
 166         allowModules = Feature.MODULES.allowedInSource(source);
 167         allowRecords = Feature.RECORDS.allowedInSource(source);
 168         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 169         allowPrimitivePatterns = preview.isEnabled() && Feature.PRIMITIVE_PATTERNS.allowedInSource(source);
 170     }
 171 
 172     /** Character for synthetic names
 173      */
 174     char syntheticNameChar;
 175 
 176     /** A table mapping flat names of all compiled classes for each module in this run
 177      *  to their symbols; maintained from outside.
 178      */
 179     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 180 
 181     /** Are modules allowed
 182      */
 183     private final boolean allowModules;
 184 
 185     /** Are records allowed
 186      */
 187     private final boolean allowRecords;
 188 
 189     /** Are sealed classes allowed
 190      */
 191     private final boolean allowSealed;
 192 
 193     /** Are primitive patterns allowed
 194      */
 195     private final boolean allowPrimitivePatterns;
 196 
 197     /** Whether to force suppression of deprecation and preview warnings.
 198      *  This happens when attributing import statements for JDK 9+.
 199      *  @see Feature#DEPRECATION_ON_IMPORT
 200      */
 201     private boolean importSuppression;
 202 
 203 /* *************************************************************************
 204  * Errors and Warnings
 205  **************************************************************************/
 206 
 207     Lint setLint(Lint newLint) {
 208         Lint prev = lint;
 209         lint = newLint;
 210         return prev;
 211     }
 212 
 213     boolean setImportSuppression(boolean newImportSuppression) {
 214         boolean prev = importSuppression;
 215         importSuppression = newImportSuppression;
 216         return prev;
 217     }
 218 
 219     MethodSymbol setMethod(MethodSymbol newMethod) {
 220         MethodSymbol prev = method;
 221         method = newMethod;
 222         return prev;
 223     }
 224 
 225     /** Warn about deprecated symbol.
 226      *  @param pos        Position to be used for error reporting.
 227      *  @param sym        The deprecated symbol.
 228      */
 229     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 230         Assert.check(!importSuppression);
 231         LintWarning warningKey = sym.isDeprecatedForRemoval() ?
 232             (sym.kind == MDL ?
 233                 LintWarnings.HasBeenDeprecatedForRemovalModule(sym) :
 234                 LintWarnings.HasBeenDeprecatedForRemoval(sym, sym.location())) :
 235             (sym.kind == MDL ?
 236                 LintWarnings.HasBeenDeprecatedModule(sym) :
 237                 LintWarnings.HasBeenDeprecated(sym, sym.location()));
 238         log.warning(pos, warningKey);
 239     }
 240 
 241     /** Log a preview warning.
 242      *  @param pos        Position to be used for error reporting.
 243      *  @param msg        A Warning describing the problem.
 244      */
 245     public void warnPreviewAPI(DiagnosticPosition pos, LintWarning warnKey) {
 246         if (!importSuppression)
 247             log.warning(pos, warnKey);
 248     }
 249 
 250     /** Warn about unchecked operation.
 251      *  @param pos        Position to be used for error reporting.
 252      *  @param msg        A string describing the problem.
 253      */
 254     public void warnUnchecked(DiagnosticPosition pos, LintWarning warnKey) {
 255         log.warning(pos, warnKey);
 256     }
 257 
 258     /** Report a failure to complete a class.
 259      *  @param pos        Position to be used for error reporting.
 260      *  @param ex         The failure to report.
 261      */
 262     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 263         log.error(DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 264         return syms.errType;
 265     }
 266 
 267     /** Report an error that wrong type tag was found.
 268      *  @param pos        Position to be used for error reporting.
 269      *  @param required   An internationalized string describing the type tag
 270      *                    required.
 271      *  @param found      The type that was found.
 272      */
 273     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 274         // this error used to be raised by the parser,
 275         // but has been delayed to this point:
 276         if (found instanceof Type type && type.hasTag(VOID)) {
 277             log.error(pos, Errors.IllegalStartOfType);
 278             return syms.errType;
 279         }
 280         log.error(pos, Errors.TypeFoundReq(found, required));
 281         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 282     }
 283 
 284     /** Report duplicate declaration error.
 285      */
 286     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 287         if (!sym.type.isErroneous()) {
 288             Symbol location = sym.location();
 289             if (location.kind == MTH &&
 290                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 291                 log.error(pos,
 292                           Errors.AlreadyDefinedInClinit(kindName(sym),
 293                                                         sym,
 294                                                         kindName(sym.location()),
 295                                                         kindName(sym.location().enclClass()),
 296                                                         sym.location().enclClass()));
 297             } else {
 298                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 299                  * as we should have issued an error for the duplicated fields
 300                  */
 301                 if (location.kind != MTH ||
 302                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 303                         ((sym.owner.flags_field & RECORD) == 0)) {
 304                     log.error(pos,
 305                             Errors.AlreadyDefined(kindName(sym),
 306                                     sym,
 307                                     kindName(sym.location()),
 308                                     sym.location()));
 309                 }
 310             }
 311         }
 312     }
 313 
 314     /** Report array/varargs duplicate declaration
 315      */
 316     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 317         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 318             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 319         }
 320     }
 321 
 322 /* ************************************************************************
 323  * duplicate declaration checking
 324  *************************************************************************/
 325 
 326     /** Check that variable does not hide variable with same name in
 327      *  immediately enclosing local scope.
 328      *  @param pos           Position for error reporting.
 329      *  @param v             The symbol.
 330      *  @param s             The scope.
 331      */
 332     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 333         for (Symbol sym : s.getSymbolsByName(v.name)) {
 334             if (sym.owner != v.owner) break;
 335             if (sym.kind == VAR &&
 336                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 337                 v.name != names.error) {
 338                 duplicateError(pos, sym);
 339                 return;
 340             }
 341         }
 342     }
 343 
 344     /** Check that a class or interface does not hide a class or
 345      *  interface with same name in immediately enclosing local scope.
 346      *  @param pos           Position for error reporting.
 347      *  @param c             The symbol.
 348      *  @param s             The scope.
 349      */
 350     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 351         for (Symbol sym : s.getSymbolsByName(c.name)) {
 352             if (sym.owner != c.owner) break;
 353             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 354                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 355                 c.name != names.error) {
 356                 duplicateError(pos, sym);
 357                 return;
 358             }
 359         }
 360     }
 361 
 362     /** Check that class does not have the same name as one of
 363      *  its enclosing classes, or as a class defined in its enclosing scope.
 364      *  return true if class is unique in its enclosing scope.
 365      *  @param pos           Position for error reporting.
 366      *  @param name          The class name.
 367      *  @param s             The enclosing scope.
 368      */
 369     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 370         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 371             if (sym.kind == TYP && sym.name != names.error) {
 372                 duplicateError(pos, sym);
 373                 return false;
 374             }
 375         }
 376         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 377             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 378                     !sym.isImplicit()) {
 379                 duplicateError(pos, sym);
 380                 return true;
 381             }
 382         }
 383         return true;
 384     }
 385 
 386 /* *************************************************************************
 387  * Class name generation
 388  **************************************************************************/
 389 
 390 
 391     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 392 
 393     /** Return name of local class.
 394      *  This is of the form   {@code <enclClass> $ n <classname> }
 395      *  where
 396      *    enclClass is the flat name of the enclosing class,
 397      *    classname is the simple name of the local class
 398      */
 399     public Name localClassName(ClassSymbol c) {
 400         Name enclFlatname = c.owner.enclClass().flatname;
 401         String enclFlatnameStr = enclFlatname.toString();
 402         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 403         Integer index = localClassNameIndexes.get(key);
 404         for (int i = (index == null) ? 1 : index; ; i++) {
 405             Name flatname = names.fromString(enclFlatnameStr
 406                     + syntheticNameChar + i + c.name);
 407             if (getCompiled(c.packge().modle, flatname) == null) {
 408                 localClassNameIndexes.put(key, i + 1);
 409                 return flatname;
 410             }
 411         }
 412     }
 413 
 414     public void clearLocalClassNameIndexes(ClassSymbol c) {
 415         if (c.owner != null && c.owner.kind != NIL) {
 416             localClassNameIndexes.remove(new Pair<>(
 417                     c.owner.enclClass().flatname, c.name));
 418         }
 419     }
 420 
 421     public void newRound() {
 422         compiled.clear();
 423         localClassNameIndexes.clear();
 424     }
 425 
 426     public void putCompiled(ClassSymbol csym) {
 427         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 428     }
 429 
 430     public ClassSymbol getCompiled(ClassSymbol csym) {
 431         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 432     }
 433 
 434     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 435         return compiled.get(Pair.of(msym, flatname));
 436     }
 437 
 438     public void removeCompiled(ClassSymbol csym) {
 439         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 440     }
 441 
 442 /* *************************************************************************
 443  * Type Checking
 444  **************************************************************************/
 445 
 446     /**
 447      * A check context is an object that can be used to perform compatibility
 448      * checks - depending on the check context, meaning of 'compatibility' might
 449      * vary significantly.
 450      */
 451     public interface CheckContext {
 452         /**
 453          * Is type 'found' compatible with type 'req' in given context
 454          */
 455         boolean compatible(Type found, Type req, Warner warn);
 456         /**
 457          * Report a check error
 458          */
 459         void report(DiagnosticPosition pos, JCDiagnostic details);
 460         /**
 461          * Obtain a warner for this check context
 462          */
 463         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 464 
 465         public InferenceContext inferenceContext();
 466 
 467         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 468     }
 469 
 470     /**
 471      * This class represent a check context that is nested within another check
 472      * context - useful to check sub-expressions. The default behavior simply
 473      * redirects all method calls to the enclosing check context leveraging
 474      * the forwarding pattern.
 475      */
 476     static class NestedCheckContext implements CheckContext {
 477         CheckContext enclosingContext;
 478 
 479         NestedCheckContext(CheckContext enclosingContext) {
 480             this.enclosingContext = enclosingContext;
 481         }
 482 
 483         public boolean compatible(Type found, Type req, Warner warn) {
 484             return enclosingContext.compatible(found, req, warn);
 485         }
 486 
 487         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 488             enclosingContext.report(pos, details);
 489         }
 490 
 491         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 492             return enclosingContext.checkWarner(pos, found, req);
 493         }
 494 
 495         public InferenceContext inferenceContext() {
 496             return enclosingContext.inferenceContext();
 497         }
 498 
 499         public DeferredAttrContext deferredAttrContext() {
 500             return enclosingContext.deferredAttrContext();
 501         }
 502     }
 503 
 504     /**
 505      * Check context to be used when evaluating assignment/return statements
 506      */
 507     CheckContext basicHandler = new CheckContext() {
 508         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 509             log.error(pos, Errors.ProbFoundReq(details));
 510         }
 511         public boolean compatible(Type found, Type req, Warner warn) {
 512             return types.isAssignable(found, req, warn);
 513         }
 514 
 515         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 516             return convertWarner(pos, found, req);
 517         }
 518 
 519         public InferenceContext inferenceContext() {
 520             return infer.emptyContext;
 521         }
 522 
 523         public DeferredAttrContext deferredAttrContext() {
 524             return deferredAttr.emptyDeferredAttrContext;
 525         }
 526 
 527         @Override
 528         public String toString() {
 529             return "CheckContext: basicHandler";
 530         }
 531     };
 532 
 533     /** Check that a given type is assignable to a given proto-type.
 534      *  If it is, return the type, otherwise return errType.
 535      *  @param pos        Position to be used for error reporting.
 536      *  @param found      The type that was found.
 537      *  @param req        The type that was required.
 538      */
 539     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 540         return checkType(pos, found, req, basicHandler);
 541     }
 542 
 543     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 544         final InferenceContext inferenceContext = checkContext.inferenceContext();
 545         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 546             inferenceContext.addFreeTypeListener(List.of(req, found),
 547                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 548         }
 549         if (req.hasTag(ERROR))
 550             return req;
 551         if (req.hasTag(NONE))
 552             return found;
 553         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 554             return found;
 555         } else {
 556             if (found.isNumeric() && req.isNumeric()) {
 557                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 558                 return types.createErrorType(found);
 559             }
 560             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 561             return types.createErrorType(found);
 562         }
 563     }
 564 
 565     /** Check that a given type can be cast to a given target type.
 566      *  Return the result of the cast.
 567      *  @param pos        Position to be used for error reporting.
 568      *  @param found      The type that is being cast.
 569      *  @param req        The target type of the cast.
 570      */
 571     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 572         return checkCastable(pos, found, req, basicHandler);
 573     }
 574     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 575         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 576             return req;
 577         } else {
 578             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 579             return types.createErrorType(found);
 580         }
 581     }
 582 
 583     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 584      * The problem should only be reported for non-292 cast
 585      */
 586     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 587         if (!tree.type.isErroneous()
 588                 && types.isSameType(tree.expr.type, tree.clazz.type)
 589                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 590                 && !is292targetTypeCast(tree)) {
 591             log.warning(tree.pos(), LintWarnings.RedundantCast(tree.clazz.type));
 592         }
 593     }
 594     //where
 595         private boolean is292targetTypeCast(JCTypeCast tree) {
 596             boolean is292targetTypeCast = false;
 597             JCExpression expr = TreeInfo.skipParens(tree.expr);
 598             if (expr.hasTag(APPLY)) {
 599                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 600                 Symbol sym = TreeInfo.symbol(apply.meth);
 601                 is292targetTypeCast = sym != null &&
 602                     sym.kind == MTH &&
 603                     (sym.flags() & HYPOTHETICAL) != 0;
 604             }
 605             return is292targetTypeCast;
 606         }
 607 
 608         private static final boolean ignoreAnnotatedCasts = true;
 609 
 610     /** Check that a type is within some bounds.
 611      *
 612      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 613      *  type argument.
 614      *  @param a             The type that should be bounded by bs.
 615      *  @param bound         The bound.
 616      */
 617     private boolean checkExtends(Type a, Type bound) {
 618          if (a.isUnbound()) {
 619              return true;
 620          } else if (!a.hasTag(WILDCARD)) {
 621              a = types.cvarUpperBound(a);
 622              return types.isSubtype(a, bound);
 623          } else if (a.isExtendsBound()) {
 624              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 625          } else if (a.isSuperBound()) {
 626              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 627          }
 628          return true;
 629      }
 630 
 631     /** Check that type is different from 'void'.
 632      *  @param pos           Position to be used for error reporting.
 633      *  @param t             The type to be checked.
 634      */
 635     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 636         if (t.hasTag(VOID)) {
 637             log.error(pos, Errors.VoidNotAllowedHere);
 638             return types.createErrorType(t);
 639         } else {
 640             return t;
 641         }
 642     }
 643 
 644     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 645         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 646             return typeTagError(pos,
 647                                 diags.fragment(Fragments.TypeReqClassArray),
 648                                 asTypeParam(t));
 649         } else {
 650             return t;
 651         }
 652     }
 653 
 654     /** Check that type is a class or interface type.
 655      *  @param pos           Position to be used for error reporting.
 656      *  @param t             The type to be checked.
 657      */
 658     Type checkClassType(DiagnosticPosition pos, Type t) {
 659         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 660             return typeTagError(pos,
 661                                 diags.fragment(Fragments.TypeReqClass),
 662                                 asTypeParam(t));
 663         } else {
 664             return t;
 665         }
 666     }
 667     //where
 668         private Object asTypeParam(Type t) {
 669             return (t.hasTag(TYPEVAR))
 670                                     ? diags.fragment(Fragments.TypeParameter(t))
 671                                     : t;
 672         }
 673 
 674     /** Check that type is a valid qualifier for a constructor reference expression
 675      */
 676     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 677         t = checkClassOrArrayType(pos, t);
 678         if (t.hasTag(CLASS)) {
 679             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 680                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 681                 t = types.createErrorType(t);
 682             } else if ((t.tsym.flags() & ENUM) != 0) {
 683                 log.error(pos, Errors.EnumCantBeInstantiated);
 684                 t = types.createErrorType(t);
 685             } else {
 686                 t = checkClassType(pos, t, true);
 687             }
 688         } else if (t.hasTag(ARRAY)) {
 689             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 690                 log.error(pos, Errors.GenericArrayCreation);
 691                 t = types.createErrorType(t);
 692             }
 693         }
 694         return t;
 695     }
 696 
 697     /** Check that type is a class or interface type.
 698      *  @param pos           Position to be used for error reporting.
 699      *  @param t             The type to be checked.
 700      *  @param noBounds    True if type bounds are illegal here.
 701      */
 702     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 703         t = checkClassType(pos, t);
 704         if (noBounds && t.isParameterized()) {
 705             List<Type> args = t.getTypeArguments();
 706             while (args.nonEmpty()) {
 707                 if (args.head.hasTag(WILDCARD))
 708                     return typeTagError(pos,
 709                                         diags.fragment(Fragments.TypeReqExact),
 710                                         args.head);
 711                 args = args.tail;
 712             }
 713         }
 714         return t;
 715     }
 716 
 717     /** Check that type is a reference type, i.e. a class, interface or array type
 718      *  or a type variable.
 719      *  @param pos           Position to be used for error reporting.
 720      *  @param t             The type to be checked.
 721      */
 722     Type checkRefType(DiagnosticPosition pos, Type t) {
 723         if (t.isReference())
 724             return t;
 725         else
 726             return typeTagError(pos,
 727                                 diags.fragment(Fragments.TypeReqRef),
 728                                 t);
 729     }
 730 
 731     /** Check that each type is a reference type, i.e. a class, interface or array type
 732      *  or a type variable.
 733      *  @param trees         Original trees, used for error reporting.
 734      *  @param types         The types to be checked.
 735      */
 736     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 737         List<JCExpression> tl = trees;
 738         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 739             l.head = checkRefType(tl.head.pos(), l.head);
 740             tl = tl.tail;
 741         }
 742         return types;
 743     }
 744 
 745     /** Check that type is a null or reference type.
 746      *  @param pos           Position to be used for error reporting.
 747      *  @param t             The type to be checked.
 748      */
 749     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 750         if (t.isReference() || t.hasTag(BOT))
 751             return t;
 752         else
 753             return typeTagError(pos,
 754                                 diags.fragment(Fragments.TypeReqRef),
 755                                 t);
 756     }
 757 
 758     /** Check that flag set does not contain elements of two conflicting sets. s
 759      *  Return true if it doesn't.
 760      *  @param pos           Position to be used for error reporting.
 761      *  @param flags         The set of flags to be checked.
 762      *  @param set1          Conflicting flags set #1.
 763      *  @param set2          Conflicting flags set #2.
 764      */
 765     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 766         if ((flags & set1) != 0 && (flags & set2) != 0) {
 767             log.error(pos,
 768                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 769                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 770             return false;
 771         } else
 772             return true;
 773     }
 774 
 775     /** Check that usage of diamond operator is correct (i.e. diamond should not
 776      * be used with non-generic classes or in anonymous class creation expressions)
 777      */
 778     Type checkDiamond(JCNewClass tree, Type t) {
 779         if (!TreeInfo.isDiamond(tree) ||
 780                 t.isErroneous()) {
 781             return checkClassType(tree.clazz.pos(), t, true);
 782         } else {
 783             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 784                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 785                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 786             }
 787             if (t.tsym.type.getTypeArguments().isEmpty()) {
 788                 log.error(tree.clazz.pos(),
 789                           Errors.CantApplyDiamond1(t,
 790                                                    Fragments.DiamondNonGeneric(t)));
 791                 return types.createErrorType(t);
 792             } else if (tree.typeargs != null &&
 793                     tree.typeargs.nonEmpty()) {
 794                 log.error(tree.clazz.pos(),
 795                           Errors.CantApplyDiamond1(t,
 796                                                    Fragments.DiamondAndExplicitParams(t)));
 797                 return types.createErrorType(t);
 798             } else {
 799                 return t;
 800             }
 801         }
 802     }
 803 
 804     /** Check that the type inferred using the diamond operator does not contain
 805      *  non-denotable types such as captured types or intersection types.
 806      *  @param t the type inferred using the diamond operator
 807      *  @return  the (possibly empty) list of non-denotable types.
 808      */
 809     List<Type> checkDiamondDenotable(ClassType t) {
 810         ListBuffer<Type> buf = new ListBuffer<>();
 811         for (Type arg : t.allparams()) {
 812             if (!checkDenotable(arg)) {
 813                 buf.append(arg);
 814             }
 815         }
 816         return buf.toList();
 817     }
 818 
 819     public boolean checkDenotable(Type t) {
 820         return denotableChecker.visit(t, null);
 821     }
 822         // where
 823 
 824         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 825          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 826          *  otherwise.
 827          */
 828         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 829             @Override
 830             public Boolean visitType(Type t, Void s) {
 831                 return true;
 832             }
 833             @Override
 834             public Boolean visitClassType(ClassType t, Void s) {
 835                 if (t.isUnion() || t.isIntersection()) {
 836                     return false;
 837                 }
 838                 for (Type targ : t.allparams()) {
 839                     if (!visit(targ, s)) {
 840                         return false;
 841                     }
 842                 }
 843                 return true;
 844             }
 845 
 846             @Override
 847             public Boolean visitTypeVar(TypeVar t, Void s) {
 848                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 849                   (i.e cannot have been produced by inference (18.4))
 850                 */
 851                 return (t.tsym.flags() & SYNTHETIC) == 0;
 852             }
 853 
 854             @Override
 855             public Boolean visitCapturedType(CapturedType t, Void s) {
 856                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 857                   (i.e cannot have been produced by capture conversion (5.1.10))
 858                 */
 859                 return false;
 860             }
 861 
 862             @Override
 863             public Boolean visitArrayType(ArrayType t, Void s) {
 864                 return visit(t.elemtype, s);
 865             }
 866 
 867             @Override
 868             public Boolean visitWildcardType(WildcardType t, Void s) {
 869                 return visit(t.type, s);
 870             }
 871         };
 872 
 873     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 874         MethodSymbol m = tree.sym;
 875         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 876         Type varargElemType = null;
 877         if (m.isVarArgs()) {
 878             varargElemType = types.elemtype(tree.params.last().type);
 879         }
 880         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 881             if (varargElemType != null) {
 882                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
 883                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
 884                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
 885                 log.error(tree,
 886                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 887                                                            msg));
 888             } else {
 889                 log.error(tree,
 890                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 891                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
 892             }
 893         } else if (hasTrustMeAnno && varargElemType != null &&
 894                             types.isReifiable(varargElemType)) {
 895             log.warning(tree.pos(), LintWarnings.VarargsRedundantTrustmeAnno(
 896                                 syms.trustMeType.tsym,
 897                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
 898         }
 899         else if (!hasTrustMeAnno && varargElemType != null &&
 900                 !types.isReifiable(varargElemType)) {
 901             warnUnchecked(tree.params.head.pos(), LintWarnings.UncheckedVarargsNonReifiableType(varargElemType));
 902         }
 903     }
 904     //where
 905         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 906             return (s.flags() & VARARGS) != 0 &&
 907                 (s.isConstructor() ||
 908                     (s.flags() & (STATIC | FINAL |
 909                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
 910         }
 911 
 912     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
 913         //check that resulting type is not the null type
 914         if (t.hasTag(BOT)) {
 915             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
 916             return types.createErrorType(t);
 917         } else if (t.hasTag(VOID)) {
 918             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
 919             return types.createErrorType(t);
 920         }
 921 
 922         //upward project the initializer type
 923         return types.upward(t, types.captures(t)).baseType();
 924     }
 925 
 926     Type checkMethod(final Type mtype,
 927             final Symbol sym,
 928             final Env<AttrContext> env,
 929             final List<JCExpression> argtrees,
 930             final List<Type> argtypes,
 931             final boolean useVarargs,
 932             InferenceContext inferenceContext) {
 933         // System.out.println("call   : " + env.tree);
 934         // System.out.println("method : " + owntype);
 935         // System.out.println("actuals: " + argtypes);
 936         if (inferenceContext.free(mtype)) {
 937             inferenceContext.addFreeTypeListener(List.of(mtype),
 938                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
 939             return mtype;
 940         }
 941         Type owntype = mtype;
 942         List<Type> formals = owntype.getParameterTypes();
 943         List<Type> nonInferred = sym.type.getParameterTypes();
 944         if (nonInferred.length() != formals.length()) nonInferred = formals;
 945         Type last = useVarargs ? formals.last() : null;
 946         if (sym.name == names.init && sym.owner == syms.enumSym) {
 947             formals = formals.tail.tail;
 948             nonInferred = nonInferred.tail.tail;
 949         }
 950         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
 951             formals = formals.tail;
 952             nonInferred = nonInferred.tail;
 953         }
 954         List<JCExpression> args = argtrees;
 955         if (args != null) {
 956             //this is null when type-checking a method reference
 957             while (formals.head != last) {
 958                 JCTree arg = args.head;
 959                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 960                 assertConvertible(arg, arg.type, formals.head, warn);
 961                 args = args.tail;
 962                 formals = formals.tail;
 963                 nonInferred = nonInferred.tail;
 964             }
 965             if (useVarargs) {
 966                 Type varArg = types.elemtype(last);
 967                 while (args.tail != null) {
 968                     JCTree arg = args.head;
 969                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 970                     assertConvertible(arg, arg.type, varArg, warn);
 971                     args = args.tail;
 972                 }
 973             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
 974                 // non-varargs call to varargs method
 975                 Type varParam = owntype.getParameterTypes().last();
 976                 Type lastArg = argtypes.last();
 977                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 978                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 979                     log.warning(argtrees.last().pos(),
 980                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
 981             }
 982         }
 983         if (useVarargs) {
 984             Type argtype = owntype.getParameterTypes().last();
 985             if (!types.isReifiable(argtype) &&
 986                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
 987                  !isTrustMeAllowedOnMethod(sym))) {
 988                 warnUnchecked(env.tree.pos(), LintWarnings.UncheckedGenericArrayCreation(argtype));
 989             }
 990             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 991          }
 992          return owntype;
 993     }
 994     //where
 995     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 996         if (types.isConvertible(actual, formal, warn))
 997             return;
 998 
 999         if (formal.isCompound()
1000             && types.isSubtype(actual, types.supertype(formal))
1001             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1002             return;
1003     }
1004 
1005     /**
1006      * Check that type 't' is a valid instantiation of a generic class
1007      * (see JLS 4.5)
1008      *
1009      * @param t class type to be checked
1010      * @return true if 't' is well-formed
1011      */
1012     public boolean checkValidGenericType(Type t) {
1013         return firstIncompatibleTypeArg(t) == null;
1014     }
1015     //WHERE
1016         private Type firstIncompatibleTypeArg(Type type) {
1017             List<Type> formals = type.tsym.type.allparams();
1018             List<Type> actuals = type.allparams();
1019             List<Type> args = type.getTypeArguments();
1020             List<Type> forms = type.tsym.type.getTypeArguments();
1021             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1022 
1023             // For matching pairs of actual argument types `a' and
1024             // formal type parameters with declared bound `b' ...
1025             while (args.nonEmpty() && forms.nonEmpty()) {
1026                 // exact type arguments needs to know their
1027                 // bounds (for upper and lower bound
1028                 // calculations).  So we create new bounds where
1029                 // type-parameters are replaced with actuals argument types.
1030                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1031                 args = args.tail;
1032                 forms = forms.tail;
1033             }
1034 
1035             args = type.getTypeArguments();
1036             List<Type> tvars_cap = types.substBounds(formals,
1037                                       formals,
1038                                       types.capture(type).allparams());
1039             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1040                 // Let the actual arguments know their bound
1041                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1042                 args = args.tail;
1043                 tvars_cap = tvars_cap.tail;
1044             }
1045 
1046             args = type.getTypeArguments();
1047             List<Type> bounds = bounds_buf.toList();
1048 
1049             while (args.nonEmpty() && bounds.nonEmpty()) {
1050                 Type actual = args.head;
1051                 if (!isTypeArgErroneous(actual) &&
1052                         !bounds.head.isErroneous() &&
1053                         !checkExtends(actual, bounds.head)) {
1054                     return args.head;
1055                 }
1056                 args = args.tail;
1057                 bounds = bounds.tail;
1058             }
1059 
1060             args = type.getTypeArguments();
1061             bounds = bounds_buf.toList();
1062 
1063             for (Type arg : types.capture(type).getTypeArguments()) {
1064                 if (arg.hasTag(TYPEVAR) &&
1065                         arg.getUpperBound().isErroneous() &&
1066                         !bounds.head.isErroneous() &&
1067                         !isTypeArgErroneous(args.head)) {
1068                     return args.head;
1069                 }
1070                 bounds = bounds.tail;
1071                 args = args.tail;
1072             }
1073 
1074             return null;
1075         }
1076         //where
1077         boolean isTypeArgErroneous(Type t) {
1078             return isTypeArgErroneous.visit(t);
1079         }
1080 
1081         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1082             public Boolean visitType(Type t, Void s) {
1083                 return t.isErroneous();
1084             }
1085             @Override
1086             public Boolean visitTypeVar(TypeVar t, Void s) {
1087                 return visit(t.getUpperBound());
1088             }
1089             @Override
1090             public Boolean visitCapturedType(CapturedType t, Void s) {
1091                 return visit(t.getUpperBound()) ||
1092                         visit(t.getLowerBound());
1093             }
1094             @Override
1095             public Boolean visitWildcardType(WildcardType t, Void s) {
1096                 return visit(t.type);
1097             }
1098         };
1099 
1100     /** Check that given modifiers are legal for given symbol and
1101      *  return modifiers together with any implicit modifiers for that symbol.
1102      *  Warning: we can't use flags() here since this method
1103      *  is called during class enter, when flags() would cause a premature
1104      *  completion.
1105      *  @param flags         The set of modifiers given in a definition.
1106      *  @param sym           The defined symbol.
1107      *  @param tree          The declaration
1108      */
1109     long checkFlags(long flags, Symbol sym, JCTree tree) {
1110         final DiagnosticPosition pos = tree.pos();
1111         long mask;
1112         long implicit = 0;
1113 
1114         switch (sym.kind) {
1115         case VAR:
1116             if (TreeInfo.isReceiverParam(tree))
1117                 mask = ReceiverParamFlags;
1118             else if (sym.owner.kind != TYP)
1119                 mask = LocalVarFlags;
1120             else if ((sym.owner.flags_field & INTERFACE) != 0)
1121                 mask = implicit = InterfaceVarFlags;
1122             else
1123                 mask = VarFlags;
1124             break;
1125         case MTH:
1126             if (sym.name == names.init) {
1127                 if ((sym.owner.flags_field & ENUM) != 0) {
1128                     // enum constructors cannot be declared public or
1129                     // protected and must be implicitly or explicitly
1130                     // private
1131                     implicit = PRIVATE;
1132                     mask = PRIVATE;
1133                 } else
1134                     mask = ConstructorFlags;
1135             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1136                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1137                     mask = AnnotationTypeElementMask;
1138                     implicit = PUBLIC | ABSTRACT;
1139                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1140                     mask = InterfaceMethodMask;
1141                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1142                     if ((flags & DEFAULT) != 0) {
1143                         implicit |= ABSTRACT;
1144                     }
1145                 } else {
1146                     mask = implicit = InterfaceMethodFlags;
1147                 }
1148             } else if ((sym.owner.flags_field & RECORD) != 0) {
1149                 mask = RecordMethodFlags;
1150             } else {
1151                 mask = MethodFlags;
1152             }
1153             if ((flags & STRICTFP) != 0) {
1154                 log.warning(tree.pos(), LintWarnings.Strictfp);
1155             }
1156             // Imply STRICTFP if owner has STRICTFP set.
1157             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1158                 ((flags) & Flags.DEFAULT) != 0)
1159                 implicit |= sym.owner.flags_field & STRICTFP;
1160             break;
1161         case TYP:
1162             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1163                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1164                 boolean implicitlyStatic = !sym.isAnonymous() &&
1165                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1166                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1167                 // local statics are allowed only if records are allowed too
1168                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? StaticLocalFlags : LocalClassFlags;
1169                 implicit = implicitlyStatic ? STATIC : implicit;
1170             } else if (sym.owner.kind == TYP) {
1171                 // statics in inner classes are allowed only if records are allowed too
1172                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1173                 if (sym.owner.owner.kind == PCK ||
1174                     (sym.owner.flags_field & STATIC) != 0) {
1175                     mask |= STATIC;
1176                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1177                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1178                 }
1179                 // Nested interfaces and enums are always STATIC (Spec ???)
1180                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1181             } else {
1182                 mask = ExtendedClassFlags;
1183             }
1184             // Interfaces are always ABSTRACT
1185             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1186 
1187             if ((flags & ENUM) != 0) {
1188                 // enums can't be declared abstract, final, sealed or non-sealed
1189                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED);
1190                 implicit |= implicitEnumFinalFlag(tree);
1191             }
1192             if ((flags & RECORD) != 0) {
1193                 // records can't be declared abstract
1194                 mask &= ~ABSTRACT;
1195                 implicit |= FINAL;
1196             }
1197             if ((flags & STRICTFP) != 0) {
1198                 log.warning(tree.pos(), LintWarnings.Strictfp);
1199             }
1200             // Imply STRICTFP if owner has STRICTFP set.
1201             implicit |= sym.owner.flags_field & STRICTFP;
1202             break;
1203         default:
1204             throw new AssertionError();
1205         }
1206         long illegal = flags & ExtendedStandardFlags & ~mask;
1207         if (illegal != 0) {
1208             if ((illegal & INTERFACE) != 0) {
1209                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1210                 mask |= INTERFACE;
1211             }
1212             else {
1213                 log.error(pos,
1214                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1215             }
1216         }
1217         else if ((sym.kind == TYP ||
1218                   // ISSUE: Disallowing abstract&private is no longer appropriate
1219                   // in the presence of inner classes. Should it be deleted here?
1220                   checkDisjoint(pos, flags,
1221                                 ABSTRACT,
1222                                 PRIVATE | STATIC | DEFAULT))
1223                  &&
1224                  checkDisjoint(pos, flags,
1225                                 STATIC | PRIVATE,
1226                                 DEFAULT)
1227                  &&
1228                  checkDisjoint(pos, flags,
1229                                ABSTRACT | INTERFACE,
1230                                FINAL | NATIVE | SYNCHRONIZED)
1231                  &&
1232                  checkDisjoint(pos, flags,
1233                                PUBLIC,
1234                                PRIVATE | PROTECTED)
1235                  &&
1236                  checkDisjoint(pos, flags,
1237                                PRIVATE,
1238                                PUBLIC | PROTECTED)
1239                  &&
1240                  checkDisjoint(pos, flags,
1241                                FINAL,
1242                                VOLATILE)
1243                  &&
1244                  (sym.kind == TYP ||
1245                   checkDisjoint(pos, flags,
1246                                 ABSTRACT | NATIVE,
1247                                 STRICTFP))
1248                  && checkDisjoint(pos, flags,
1249                                 FINAL,
1250                            SEALED | NON_SEALED)
1251                  && checkDisjoint(pos, flags,
1252                                 SEALED,
1253                            FINAL | NON_SEALED)
1254                  && checkDisjoint(pos, flags,
1255                                 SEALED,
1256                                 ANNOTATION)) {
1257             // skip
1258         }
1259         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1260     }
1261 
1262     /** Determine if this enum should be implicitly final.
1263      *
1264      *  If the enum has no specialized enum constants, it is final.
1265      *
1266      *  If the enum does have specialized enum constants, it is
1267      *  <i>not</i> final.
1268      */
1269     private long implicitEnumFinalFlag(JCTree tree) {
1270         if (!tree.hasTag(CLASSDEF)) return 0;
1271         class SpecialTreeVisitor extends JCTree.Visitor {
1272             boolean specialized;
1273             SpecialTreeVisitor() {
1274                 this.specialized = false;
1275             }
1276 
1277             @Override
1278             public void visitTree(JCTree tree) { /* no-op */ }
1279 
1280             @Override
1281             public void visitVarDef(JCVariableDecl tree) {
1282                 if ((tree.mods.flags & ENUM) != 0) {
1283                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1284                         specialized = true;
1285                     }
1286                 }
1287             }
1288         }
1289 
1290         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1291         JCClassDecl cdef = (JCClassDecl) tree;
1292         for (JCTree defs: cdef.defs) {
1293             defs.accept(sts);
1294             if (sts.specialized) return allowSealed ? SEALED : 0;
1295         }
1296         return FINAL;
1297     }
1298 
1299 /* *************************************************************************
1300  * Type Validation
1301  **************************************************************************/
1302 
1303     /** Validate a type expression. That is,
1304      *  check that all type arguments of a parametric type are within
1305      *  their bounds. This must be done in a second phase after type attribution
1306      *  since a class might have a subclass as type parameter bound. E.g:
1307      *
1308      *  <pre>{@code
1309      *  class B<A extends C> { ... }
1310      *  class C extends B<C> { ... }
1311      *  }</pre>
1312      *
1313      *  and we can't make sure that the bound is already attributed because
1314      *  of possible cycles.
1315      *
1316      * Visitor method: Validate a type expression, if it is not null, catching
1317      *  and reporting any completion failures.
1318      */
1319     void validate(JCTree tree, Env<AttrContext> env) {
1320         validate(tree, env, true);
1321     }
1322     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1323         new Validator(env).validateTree(tree, checkRaw, true);
1324     }
1325 
1326     /** Visitor method: Validate a list of type expressions.
1327      */
1328     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1329         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1330             validate(l.head, env);
1331     }
1332 
1333     /** A visitor class for type validation.
1334      */
1335     class Validator extends JCTree.Visitor {
1336 
1337         boolean checkRaw;
1338         boolean isOuter;
1339         Env<AttrContext> env;
1340 
1341         Validator(Env<AttrContext> env) {
1342             this.env = env;
1343         }
1344 
1345         @Override
1346         public void visitTypeArray(JCArrayTypeTree tree) {
1347             validateTree(tree.elemtype, checkRaw, isOuter);
1348         }
1349 
1350         @Override
1351         public void visitTypeApply(JCTypeApply tree) {
1352             if (tree.type.hasTag(CLASS)) {
1353                 List<JCExpression> args = tree.arguments;
1354                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1355 
1356                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1357                 if (incompatibleArg != null) {
1358                     for (JCTree arg : tree.arguments) {
1359                         if (arg.type == incompatibleArg) {
1360                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1361                         }
1362                         forms = forms.tail;
1363                      }
1364                  }
1365 
1366                 forms = tree.type.tsym.type.getTypeArguments();
1367 
1368                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1369 
1370                 // For matching pairs of actual argument types `a' and
1371                 // formal type parameters with declared bound `b' ...
1372                 while (args.nonEmpty() && forms.nonEmpty()) {
1373                     validateTree(args.head,
1374                             !(isOuter && is_java_lang_Class),
1375                             false);
1376                     args = args.tail;
1377                     forms = forms.tail;
1378                 }
1379 
1380                 // Check that this type is either fully parameterized, or
1381                 // not parameterized at all.
1382                 if (tree.type.getEnclosingType().isRaw())
1383                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1384                 if (tree.clazz.hasTag(SELECT))
1385                     visitSelectInternal((JCFieldAccess)tree.clazz);
1386             }
1387         }
1388 
1389         @Override
1390         public void visitTypeParameter(JCTypeParameter tree) {
1391             validateTrees(tree.bounds, true, isOuter);
1392             checkClassBounds(tree.pos(), tree.type);
1393         }
1394 
1395         @Override
1396         public void visitWildcard(JCWildcard tree) {
1397             if (tree.inner != null)
1398                 validateTree(tree.inner, true, isOuter);
1399         }
1400 
1401         @Override
1402         public void visitSelect(JCFieldAccess tree) {
1403             if (tree.type.hasTag(CLASS)) {
1404                 visitSelectInternal(tree);
1405 
1406                 // Check that this type is either fully parameterized, or
1407                 // not parameterized at all.
1408                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1409                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1410             }
1411         }
1412 
1413         public void visitSelectInternal(JCFieldAccess tree) {
1414             if (tree.type.tsym.isStatic() &&
1415                 tree.selected.type.isParameterized()) {
1416                 // The enclosing type is not a class, so we are
1417                 // looking at a static member type.  However, the
1418                 // qualifying expression is parameterized.
1419                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1420             } else {
1421                 // otherwise validate the rest of the expression
1422                 tree.selected.accept(this);
1423             }
1424         }
1425 
1426         @Override
1427         public void visitAnnotatedType(JCAnnotatedType tree) {
1428             tree.underlyingType.accept(this);
1429         }
1430 
1431         @Override
1432         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1433             if (that.type.hasTag(TypeTag.VOID)) {
1434                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1435             }
1436             super.visitTypeIdent(that);
1437         }
1438 
1439         /** Default visitor method: do nothing.
1440          */
1441         @Override
1442         public void visitTree(JCTree tree) {
1443         }
1444 
1445         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1446             if (tree != null) {
1447                 boolean prevCheckRaw = this.checkRaw;
1448                 this.checkRaw = checkRaw;
1449                 this.isOuter = isOuter;
1450 
1451                 try {
1452                     tree.accept(this);
1453                     if (checkRaw)
1454                         checkRaw(tree, env);
1455                 } catch (CompletionFailure ex) {
1456                     completionError(tree.pos(), ex);
1457                 } finally {
1458                     this.checkRaw = prevCheckRaw;
1459                 }
1460             }
1461         }
1462 
1463         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1464             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1465                 validateTree(l.head, checkRaw, isOuter);
1466         }
1467     }
1468 
1469     void checkRaw(JCTree tree, Env<AttrContext> env) {
1470         if (tree.type.hasTag(CLASS) &&
1471             !TreeInfo.isDiamond(tree) &&
1472             !withinAnonConstr(env) &&
1473             tree.type.isRaw()) {
1474             log.warning(tree.pos(), LintWarnings.RawClassUse(tree.type, tree.type.tsym.type));
1475         }
1476     }
1477     //where
1478         private boolean withinAnonConstr(Env<AttrContext> env) {
1479             return env.enclClass.name.isEmpty() &&
1480                     env.enclMethod != null && env.enclMethod.name == names.init;
1481         }
1482 
1483 /* *************************************************************************
1484  * Exception checking
1485  **************************************************************************/
1486 
1487     /* The following methods treat classes as sets that contain
1488      * the class itself and all their subclasses
1489      */
1490 
1491     /** Is given type a subtype of some of the types in given list?
1492      */
1493     boolean subset(Type t, List<Type> ts) {
1494         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1495             if (types.isSubtype(t, l.head)) return true;
1496         return false;
1497     }
1498 
1499     /** Is given type a subtype or supertype of
1500      *  some of the types in given list?
1501      */
1502     boolean intersects(Type t, List<Type> ts) {
1503         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1504             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1505         return false;
1506     }
1507 
1508     /** Add type set to given type list, unless it is a subclass of some class
1509      *  in the list.
1510      */
1511     List<Type> incl(Type t, List<Type> ts) {
1512         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1513     }
1514 
1515     /** Remove type set from type set list.
1516      */
1517     List<Type> excl(Type t, List<Type> ts) {
1518         if (ts.isEmpty()) {
1519             return ts;
1520         } else {
1521             List<Type> ts1 = excl(t, ts.tail);
1522             if (types.isSubtype(ts.head, t)) return ts1;
1523             else if (ts1 == ts.tail) return ts;
1524             else return ts1.prepend(ts.head);
1525         }
1526     }
1527 
1528     /** Form the union of two type set lists.
1529      */
1530     List<Type> union(List<Type> ts1, List<Type> ts2) {
1531         List<Type> ts = ts1;
1532         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1533             ts = incl(l.head, ts);
1534         return ts;
1535     }
1536 
1537     /** Form the difference of two type lists.
1538      */
1539     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1540         List<Type> ts = ts1;
1541         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1542             ts = excl(l.head, ts);
1543         return ts;
1544     }
1545 
1546     /** Form the intersection of two type lists.
1547      */
1548     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1549         List<Type> ts = List.nil();
1550         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1551             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1552         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1553             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1554         return ts;
1555     }
1556 
1557     /** Is exc an exception symbol that need not be declared?
1558      */
1559     boolean isUnchecked(ClassSymbol exc) {
1560         return
1561             exc.kind == ERR ||
1562             exc.isSubClass(syms.errorType.tsym, types) ||
1563             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1564     }
1565 
1566     /** Is exc an exception type that need not be declared?
1567      */
1568     boolean isUnchecked(Type exc) {
1569         return
1570             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1571             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1572             exc.hasTag(BOT);
1573     }
1574 
1575     boolean isChecked(Type exc) {
1576         return !isUnchecked(exc);
1577     }
1578 
1579     /** Same, but handling completion failures.
1580      */
1581     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1582         try {
1583             return isUnchecked(exc);
1584         } catch (CompletionFailure ex) {
1585             completionError(pos, ex);
1586             return true;
1587         }
1588     }
1589 
1590     /** Is exc handled by given exception list?
1591      */
1592     boolean isHandled(Type exc, List<Type> handled) {
1593         return isUnchecked(exc) || subset(exc, handled);
1594     }
1595 
1596     /** Return all exceptions in thrown list that are not in handled list.
1597      *  @param thrown     The list of thrown exceptions.
1598      *  @param handled    The list of handled exceptions.
1599      */
1600     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1601         List<Type> unhandled = List.nil();
1602         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1603             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1604         return unhandled;
1605     }
1606 
1607 /* *************************************************************************
1608  * Overriding/Implementation checking
1609  **************************************************************************/
1610 
1611     /** The level of access protection given by a flag set,
1612      *  where PRIVATE is highest and PUBLIC is lowest.
1613      */
1614     static int protection(long flags) {
1615         switch ((short)(flags & AccessFlags)) {
1616         case PRIVATE: return 3;
1617         case PROTECTED: return 1;
1618         default:
1619         case PUBLIC: return 0;
1620         case 0: return 2;
1621         }
1622     }
1623 
1624     /** A customized "cannot override" error message.
1625      *  @param m      The overriding method.
1626      *  @param other  The overridden method.
1627      *  @return       An internationalized string.
1628      */
1629     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1630         Symbol mloc = m.location();
1631         Symbol oloc = other.location();
1632 
1633         if ((other.owner.flags() & INTERFACE) == 0)
1634             return Fragments.CantOverride(m, mloc, other, oloc);
1635         else if ((m.owner.flags() & INTERFACE) == 0)
1636             return Fragments.CantImplement(m, mloc, other, oloc);
1637         else
1638             return Fragments.ClashesWith(m, mloc, other, oloc);
1639     }
1640 
1641     /** A customized "override" warning message.
1642      *  @param m      The overriding method.
1643      *  @param other  The overridden method.
1644      *  @return       An internationalized string.
1645      */
1646     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1647         Symbol mloc = m.location();
1648         Symbol oloc = other.location();
1649 
1650         if ((other.owner.flags() & INTERFACE) == 0)
1651             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1652         else if ((m.owner.flags() & INTERFACE) == 0)
1653             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1654         else
1655             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1656     }
1657 
1658     /** A customized "override" warning message.
1659      *  @param m      The overriding method.
1660      *  @param other  The overridden method.
1661      *  @return       An internationalized string.
1662      */
1663     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1664         Symbol mloc = m.location();
1665         Symbol oloc = other.location();
1666 
1667         if ((other.owner.flags() & INTERFACE) == 0)
1668             return Fragments.VarargsOverride(m, mloc, other, oloc);
1669         else  if ((m.owner.flags() & INTERFACE) == 0)
1670             return Fragments.VarargsImplement(m, mloc, other, oloc);
1671         else
1672             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1673     }
1674 
1675     /** Check that this method conforms with overridden method 'other'.
1676      *  where `origin' is the class where checking started.
1677      *  Complications:
1678      *  (1) Do not check overriding of synthetic methods
1679      *      (reason: they might be final).
1680      *      todo: check whether this is still necessary.
1681      *  (2) Admit the case where an interface proxy throws fewer exceptions
1682      *      than the method it implements. Augment the proxy methods with the
1683      *      undeclared exceptions in this case.
1684      *  (3) When generics are enabled, admit the case where an interface proxy
1685      *      has a result type
1686      *      extended by the result type of the method it implements.
1687      *      Change the proxies result type to the smaller type in this case.
1688      *
1689      *  @param tree         The tree from which positions
1690      *                      are extracted for errors.
1691      *  @param m            The overriding method.
1692      *  @param other        The overridden method.
1693      *  @param origin       The class of which the overriding method
1694      *                      is a member.
1695      */
1696     void checkOverride(JCTree tree,
1697                        MethodSymbol m,
1698                        MethodSymbol other,
1699                        ClassSymbol origin) {
1700         // Don't check overriding of synthetic methods or by bridge methods.
1701         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1702             return;
1703         }
1704 
1705         // Error if static method overrides instance method (JLS 8.4.8.2).
1706         if ((m.flags() & STATIC) != 0 &&
1707                    (other.flags() & STATIC) == 0) {
1708             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1709                       Errors.OverrideStatic(cannotOverride(m, other)));
1710             m.flags_field |= BAD_OVERRIDE;
1711             return;
1712         }
1713 
1714         // Error if instance method overrides static or final
1715         // method (JLS 8.4.8.1).
1716         if ((other.flags() & FINAL) != 0 ||
1717                  (m.flags() & STATIC) == 0 &&
1718                  (other.flags() & STATIC) != 0) {
1719             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1720                       Errors.OverrideMeth(cannotOverride(m, other),
1721                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1722             m.flags_field |= BAD_OVERRIDE;
1723             return;
1724         }
1725 
1726         if ((m.owner.flags() & ANNOTATION) != 0) {
1727             // handled in validateAnnotationMethod
1728             return;
1729         }
1730 
1731         // Error if overriding method has weaker access (JLS 8.4.8.3).
1732         if (protection(m.flags()) > protection(other.flags())) {
1733             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1734                       (other.flags() & AccessFlags) == 0 ?
1735                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1736                                                           "package") :
1737                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1738                                                           asFlagSet(other.flags() & AccessFlags)));
1739             m.flags_field |= BAD_OVERRIDE;
1740             return;
1741         }
1742 
1743         if (shouldCheckPreview(m, other, origin)) {
1744             checkPreview(TreeInfo.diagnosticPositionFor(m, tree),
1745                          m, origin.type, other);
1746         }
1747 
1748         Type mt = types.memberType(origin.type, m);
1749         Type ot = types.memberType(origin.type, other);
1750         // Error if overriding result type is different
1751         // (or, in the case of generics mode, not a subtype) of
1752         // overridden result type. We have to rename any type parameters
1753         // before comparing types.
1754         List<Type> mtvars = mt.getTypeArguments();
1755         List<Type> otvars = ot.getTypeArguments();
1756         Type mtres = mt.getReturnType();
1757         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1758 
1759         overrideWarner.clear();
1760         boolean resultTypesOK =
1761             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1762         if (!resultTypesOK) {
1763             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1764                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1765                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1766                                         other.location()), mtres, otres));
1767                 m.flags_field |= BAD_OVERRIDE;
1768             } else {
1769                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1770                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1771                 m.flags_field |= BAD_OVERRIDE;
1772             }
1773             return;
1774         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1775             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1776                     LintWarnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1777         }
1778 
1779         // Error if overriding method throws an exception not reported
1780         // by overridden method.
1781         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1782         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1783         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1784         if (unhandledErased.nonEmpty()) {
1785             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1786                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1787             m.flags_field |= BAD_OVERRIDE;
1788             return;
1789         }
1790         else if (unhandledUnerased.nonEmpty()) {
1791             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1792                           LintWarnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1793             return;
1794         }
1795 
1796         // Optional warning if varargs don't agree
1797         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)) {
1798             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1799                         ((m.flags() & Flags.VARARGS) != 0)
1800                         ? LintWarnings.OverrideVarargsMissing(varargsOverrides(m, other))
1801                         : LintWarnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1802         }
1803 
1804         // Warn if instance method overrides bridge method (compiler spec ??)
1805         if ((other.flags() & BRIDGE) != 0) {
1806             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1807                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1808         }
1809 
1810         // Warn if a deprecated method overridden by a non-deprecated one.
1811         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1812             checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1813         }
1814     }
1815     // where
1816         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
1817             if (m.owner != origin ||
1818                 //performance - only do the expensive checks when the overridden method is a Preview API:
1819                 ((other.flags() & PREVIEW_API) == 0 &&
1820                  (other.owner.flags() & PREVIEW_API) == 0)) {
1821                 return false;
1822             }
1823 
1824             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
1825                 if (m != s && m.overrides(s, origin, types, false)) {
1826                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
1827                     //without intermediate overriding methods:
1828                     return s == other;
1829                 }
1830             }
1831 
1832             return false;
1833         }
1834         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1835             // If the method, m, is defined in an interface, then ignore the issue if the method
1836             // is only inherited via a supertype and also implemented in the supertype,
1837             // because in that case, we will rediscover the issue when examining the method
1838             // in the supertype.
1839             // If the method, m, is not defined in an interface, then the only time we need to
1840             // address the issue is when the method is the supertype implementation: any other
1841             // case, we will have dealt with when examining the supertype classes
1842             ClassSymbol mc = m.enclClass();
1843             Type st = types.supertype(origin.type);
1844             if (!st.hasTag(CLASS))
1845                 return true;
1846             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1847 
1848             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1849                 List<Type> intfs = types.interfaces(origin.type);
1850                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1851             }
1852             else
1853                 return (stimpl != m);
1854         }
1855 
1856 
1857     // used to check if there were any unchecked conversions
1858     Warner overrideWarner = new Warner();
1859 
1860     /** Check that a class does not inherit two concrete methods
1861      *  with the same signature.
1862      *  @param pos          Position to be used for error reporting.
1863      *  @param site         The class type to be checked.
1864      */
1865     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1866         Type sup = types.supertype(site);
1867         if (!sup.hasTag(CLASS)) return;
1868 
1869         for (Type t1 = sup;
1870              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1871              t1 = types.supertype(t1)) {
1872             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1873                 if (s1.kind != MTH ||
1874                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1875                     !s1.isInheritedIn(site.tsym, types) ||
1876                     ((MethodSymbol)s1).implementation(site.tsym,
1877                                                       types,
1878                                                       true) != s1)
1879                     continue;
1880                 Type st1 = types.memberType(t1, s1);
1881                 int s1ArgsLength = st1.getParameterTypes().length();
1882                 if (st1 == s1.type) continue;
1883 
1884                 for (Type t2 = sup;
1885                      t2.hasTag(CLASS);
1886                      t2 = types.supertype(t2)) {
1887                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1888                         if (s2 == s1 ||
1889                             s2.kind != MTH ||
1890                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1891                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1892                             !s2.isInheritedIn(site.tsym, types) ||
1893                             ((MethodSymbol)s2).implementation(site.tsym,
1894                                                               types,
1895                                                               true) != s2)
1896                             continue;
1897                         Type st2 = types.memberType(t2, s2);
1898                         if (types.overrideEquivalent(st1, st2))
1899                             log.error(pos,
1900                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
1901                     }
1902                 }
1903             }
1904         }
1905     }
1906 
1907     /** Check that classes (or interfaces) do not each define an abstract
1908      *  method with same name and arguments but incompatible return types.
1909      *  @param pos          Position to be used for error reporting.
1910      *  @param t1           The first argument type.
1911      *  @param t2           The second argument type.
1912      */
1913     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1914                                             Type t1,
1915                                             Type t2,
1916                                             Type site) {
1917         if ((site.tsym.flags() & COMPOUND) != 0) {
1918             // special case for intersections: need to eliminate wildcards in supertypes
1919             t1 = types.capture(t1);
1920             t2 = types.capture(t2);
1921         }
1922         return firstIncompatibility(pos, t1, t2, site) == null;
1923     }
1924 
1925     /** Return the first method which is defined with same args
1926      *  but different return types in two given interfaces, or null if none
1927      *  exists.
1928      *  @param t1     The first type.
1929      *  @param t2     The second type.
1930      *  @param site   The most derived type.
1931      *  @return symbol from t2 that conflicts with one in t1.
1932      */
1933     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1934         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1935         closure(t1, interfaces1);
1936         Map<TypeSymbol,Type> interfaces2;
1937         if (t1 == t2)
1938             interfaces2 = interfaces1;
1939         else
1940             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1941 
1942         for (Type t3 : interfaces1.values()) {
1943             for (Type t4 : interfaces2.values()) {
1944                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1945                 if (s != null) return s;
1946             }
1947         }
1948         return null;
1949     }
1950 
1951     /** Compute all the supertypes of t, indexed by type symbol. */
1952     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1953         if (!t.hasTag(CLASS)) return;
1954         if (typeMap.put(t.tsym, t) == null) {
1955             closure(types.supertype(t), typeMap);
1956             for (Type i : types.interfaces(t))
1957                 closure(i, typeMap);
1958         }
1959     }
1960 
1961     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
1962     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1963         if (!t.hasTag(CLASS)) return;
1964         if (typesSkip.get(t.tsym) != null) return;
1965         if (typeMap.put(t.tsym, t) == null) {
1966             closure(types.supertype(t), typesSkip, typeMap);
1967             for (Type i : types.interfaces(t))
1968                 closure(i, typesSkip, typeMap);
1969         }
1970     }
1971 
1972     /** Return the first method in t2 that conflicts with a method from t1. */
1973     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1974         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1975             Type st1 = null;
1976             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1977                     (s1.flags() & SYNTHETIC) != 0) continue;
1978             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1979             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1980             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1981                 if (s1 == s2) continue;
1982                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1983                         (s2.flags() & SYNTHETIC) != 0) continue;
1984                 if (st1 == null) st1 = types.memberType(t1, s1);
1985                 Type st2 = types.memberType(t2, s2);
1986                 if (types.overrideEquivalent(st1, st2)) {
1987                     List<Type> tvars1 = st1.getTypeArguments();
1988                     List<Type> tvars2 = st2.getTypeArguments();
1989                     Type rt1 = st1.getReturnType();
1990                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1991                     boolean compat =
1992                         types.isSameType(rt1, rt2) ||
1993                         !rt1.isPrimitiveOrVoid() &&
1994                         !rt2.isPrimitiveOrVoid() &&
1995                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1996                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1997                          checkCommonOverriderIn(s1,s2,site);
1998                     if (!compat) {
1999                         if (types.isSameType(t1, t2)) {
2000                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2001                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2002                         } else {
2003                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2004                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2005                         }
2006                         return s2;
2007                     }
2008                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2009                         !checkCommonOverriderIn(s1, s2, site)) {
2010                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2011                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2012                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2013                     return s2;
2014                 }
2015             }
2016         }
2017         return null;
2018     }
2019     //WHERE
2020     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2021         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2022         Type st1 = types.memberType(site, s1);
2023         Type st2 = types.memberType(site, s2);
2024         closure(site, supertypes);
2025         for (Type t : supertypes.values()) {
2026             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2027                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2028                 Type st3 = types.memberType(site,s3);
2029                 if (types.overrideEquivalent(st3, st1) &&
2030                         types.overrideEquivalent(st3, st2) &&
2031                         types.returnTypeSubstitutable(st3, st1) &&
2032                         types.returnTypeSubstitutable(st3, st2)) {
2033                     return true;
2034                 }
2035             }
2036         }
2037         return false;
2038     }
2039 
2040     /** Check that a given method conforms with any method it overrides.
2041      *  @param tree         The tree from which positions are extracted
2042      *                      for errors.
2043      *  @param m            The overriding method.
2044      */
2045     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2046         ClassSymbol origin = (ClassSymbol)m.owner;
2047         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2048             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2049                 log.error(tree.pos(), Errors.EnumNoFinalize);
2050                 return;
2051             }
2052         }
2053         if (allowRecords && origin.isRecord()) {
2054             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2055             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2056                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2057             if (recordComponent.isPresent()) {
2058                 return;
2059             }
2060         }
2061 
2062         for (Type t = origin.type; t.hasTag(CLASS);
2063              t = types.supertype(t)) {
2064             if (t != origin.type) {
2065                 checkOverride(tree, t, origin, m);
2066             }
2067             for (Type t2 : types.interfaces(t)) {
2068                 checkOverride(tree, t2, origin, m);
2069             }
2070         }
2071 
2072         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2073         // Check if this method must override a super method due to being annotated with @Override
2074         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2075         // be treated "as if as they were annotated" with @Override.
2076         boolean mustOverride = explicitOverride ||
2077                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2078         if (mustOverride && !isOverrider(m)) {
2079             DiagnosticPosition pos = tree.pos();
2080             for (JCAnnotation a : tree.getModifiers().annotations) {
2081                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2082                     pos = a.pos();
2083                     break;
2084                 }
2085             }
2086             log.error(pos,
2087                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride(m, m.enclClass()) : Errors.MethodDoesNotOverrideSuperclass(m, m.enclClass())) :
2088                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2089         }
2090     }
2091 
2092     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2093         TypeSymbol c = site.tsym;
2094         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2095             if (m.overrides(sym, origin, types, false)) {
2096                 if ((sym.flags() & ABSTRACT) == 0) {
2097                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2098                 }
2099             }
2100         }
2101     }
2102 
2103     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2104             (s.flags() & BAD_OVERRIDE) == 0;
2105 
2106     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2107             ClassSymbol someClass) {
2108         /* At present, annotations cannot possibly have a method that is override
2109          * equivalent with Object.equals(Object) but in any case the condition is
2110          * fine for completeness.
2111          */
2112         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2113             someClass.isInterface() || someClass.isEnum() ||
2114             (someClass.flags() & ANNOTATION) != 0 ||
2115             (someClass.flags() & ABSTRACT) != 0) return;
2116         //anonymous inner classes implementing interfaces need especial treatment
2117         if (someClass.isAnonymous()) {
2118             List<Type> interfaces =  types.interfaces(someClass.type);
2119             if (interfaces != null && !interfaces.isEmpty() &&
2120                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2121         }
2122         checkClassOverrideEqualsAndHash(pos, someClass);
2123     }
2124 
2125     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2126             ClassSymbol someClass) {
2127         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2128             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2129                     .tsym.members().findFirst(names.equals);
2130             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2131                     .tsym.members().findFirst(names.hashCode);
2132             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2133                     someClass, false, equalsHasCodeFilter);
2134             boolean overridesEquals = equalsImpl != null &&
2135                                       equalsImpl.owner == someClass;
2136             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2137                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2138 
2139             if (overridesEquals && !overridesHashCode) {
2140                 log.warning(pos,
2141                             LintWarnings.OverrideEqualsButNotHashcode(someClass));
2142             }
2143         }
2144     }
2145 
2146     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2147         boolean found = false;
2148 
2149         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2150             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2151                 MethodSymbol meth = (MethodSymbol)sym;
2152                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2153                     continue;
2154                 }
2155                 if (meth.params.isEmpty()) {
2156                     found = true;
2157                     break;
2158                 }
2159                 if (meth.params.size() != 1) {
2160                     continue;
2161                 }
2162                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2163                     continue;
2164                 }
2165 
2166                 found = true;
2167                 break;
2168             }
2169         }
2170 
2171         if (!found) {
2172             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2173         }
2174     }
2175 
2176     public void checkModuleName (JCModuleDecl tree) {
2177         Name moduleName = tree.sym.name;
2178         Assert.checkNonNull(moduleName);
2179         if (lint.isEnabled(LintCategory.MODULE)) {
2180             JCExpression qualId = tree.qualId;
2181             while (qualId != null) {
2182                 Name componentName;
2183                 DiagnosticPosition pos;
2184                 switch (qualId.getTag()) {
2185                     case SELECT:
2186                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2187                         componentName = selectNode.name;
2188                         pos = selectNode.pos();
2189                         qualId = selectNode.selected;
2190                         break;
2191                     case IDENT:
2192                         componentName = ((JCIdent) qualId).name;
2193                         pos = qualId.pos();
2194                         qualId = null;
2195                         break;
2196                     default:
2197                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2198                 }
2199                 if (componentName != null) {
2200                     String moduleNameComponentString = componentName.toString();
2201                     int nameLength = moduleNameComponentString.length();
2202                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2203                         log.warning(pos, LintWarnings.PoorChoiceForModuleName(componentName));
2204                     }
2205                 }
2206             }
2207         }
2208     }
2209 
2210     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2211         ClashFilter cf = new ClashFilter(origin.type);
2212         return (cf.test(s1) &&
2213                 cf.test(s2) &&
2214                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2215     }
2216 
2217 
2218     /** Check that all abstract members of given class have definitions.
2219      *  @param pos          Position to be used for error reporting.
2220      *  @param c            The class.
2221      */
2222     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2223         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2224         if (undef != null) {
2225             MethodSymbol undef1 =
2226                 new MethodSymbol(undef.flags(), undef.name,
2227                                  types.memberType(c.type, undef), undef.owner);
2228             log.error(pos,
2229                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2230         }
2231     }
2232 
2233     void checkNonCyclicDecl(JCClassDecl tree) {
2234         CycleChecker cc = new CycleChecker();
2235         cc.scan(tree);
2236         if (!cc.errorFound && !cc.partialCheck) {
2237             tree.sym.flags_field |= ACYCLIC;
2238         }
2239     }
2240 
2241     class CycleChecker extends TreeScanner {
2242 
2243         Set<Symbol> seenClasses = new HashSet<>();
2244         boolean errorFound = false;
2245         boolean partialCheck = false;
2246 
2247         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2248             if (sym != null && sym.kind == TYP) {
2249                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2250                 if (classEnv != null) {
2251                     DiagnosticSource prevSource = log.currentSource();
2252                     try {
2253                         log.useSource(classEnv.toplevel.sourcefile);
2254                         scan(classEnv.tree);
2255                     }
2256                     finally {
2257                         log.useSource(prevSource.getFile());
2258                     }
2259                 } else if (sym.kind == TYP) {
2260                     checkClass(pos, sym, List.nil());
2261                 }
2262             } else if (sym == null || sym.kind != PCK) {
2263                 //not completed yet
2264                 partialCheck = true;
2265             }
2266         }
2267 
2268         @Override
2269         public void visitSelect(JCFieldAccess tree) {
2270             super.visitSelect(tree);
2271             checkSymbol(tree.pos(), tree.sym);
2272         }
2273 
2274         @Override
2275         public void visitIdent(JCIdent tree) {
2276             checkSymbol(tree.pos(), tree.sym);
2277         }
2278 
2279         @Override
2280         public void visitTypeApply(JCTypeApply tree) {
2281             scan(tree.clazz);
2282         }
2283 
2284         @Override
2285         public void visitTypeArray(JCArrayTypeTree tree) {
2286             scan(tree.elemtype);
2287         }
2288 
2289         @Override
2290         public void visitClassDef(JCClassDecl tree) {
2291             List<JCTree> supertypes = List.nil();
2292             if (tree.getExtendsClause() != null) {
2293                 supertypes = supertypes.prepend(tree.getExtendsClause());
2294             }
2295             if (tree.getImplementsClause() != null) {
2296                 for (JCTree intf : tree.getImplementsClause()) {
2297                     supertypes = supertypes.prepend(intf);
2298                 }
2299             }
2300             checkClass(tree.pos(), tree.sym, supertypes);
2301         }
2302 
2303         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2304             if ((c.flags_field & ACYCLIC) != 0)
2305                 return;
2306             if (seenClasses.contains(c)) {
2307                 errorFound = true;
2308                 log.error(pos, Errors.CyclicInheritance(c));
2309                 seenClasses.stream()
2310                   .filter(s -> !s.type.isErroneous())
2311                   .filter(ClassSymbol.class::isInstance)
2312                   .map(ClassSymbol.class::cast)
2313                   .forEach(Check.this::handleCyclic);
2314             } else if (!c.type.isErroneous()) {
2315                 try {
2316                     seenClasses.add(c);
2317                     if (c.type.hasTag(CLASS)) {
2318                         if (supertypes.nonEmpty()) {
2319                             scan(supertypes);
2320                         }
2321                         else {
2322                             ClassType ct = (ClassType)c.type;
2323                             if (ct.supertype_field == null ||
2324                                     ct.interfaces_field == null) {
2325                                 //not completed yet
2326                                 partialCheck = true;
2327                                 return;
2328                             }
2329                             checkSymbol(pos, ct.supertype_field.tsym);
2330                             for (Type intf : ct.interfaces_field) {
2331                                 checkSymbol(pos, intf.tsym);
2332                             }
2333                         }
2334                         if (c.owner.kind == TYP) {
2335                             checkSymbol(pos, c.owner);
2336                         }
2337                     }
2338                 } finally {
2339                     seenClasses.remove(c);
2340                 }
2341             }
2342         }
2343     }
2344 
2345     /** Check for cyclic references. Issue an error if the
2346      *  symbol of the type referred to has a LOCKED flag set.
2347      *
2348      *  @param pos      Position to be used for error reporting.
2349      *  @param t        The type referred to.
2350      */
2351     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2352         checkNonCyclicInternal(pos, t);
2353     }
2354 
2355 
2356     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2357         checkNonCyclic1(pos, t, List.nil());
2358     }
2359 
2360     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2361         final TypeVar tv;
2362         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2363             return;
2364         if (seen.contains(t)) {
2365             tv = (TypeVar)t;
2366             tv.setUpperBound(types.createErrorType(t));
2367             log.error(pos, Errors.CyclicInheritance(t));
2368         } else if (t.hasTag(TYPEVAR)) {
2369             tv = (TypeVar)t;
2370             seen = seen.prepend(tv);
2371             for (Type b : types.getBounds(tv))
2372                 checkNonCyclic1(pos, b, seen);
2373         }
2374     }
2375 
2376     /** Check for cyclic references. Issue an error if the
2377      *  symbol of the type referred to has a LOCKED flag set.
2378      *
2379      *  @param pos      Position to be used for error reporting.
2380      *  @param t        The type referred to.
2381      *  @return        True if the check completed on all attributed classes
2382      */
2383     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2384         boolean complete = true; // was the check complete?
2385         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2386         Symbol c = t.tsym;
2387         if ((c.flags_field & ACYCLIC) != 0) return true;
2388 
2389         if ((c.flags_field & LOCKED) != 0) {
2390             log.error(pos, Errors.CyclicInheritance(c));
2391             handleCyclic((ClassSymbol)c);
2392         } else if (!c.type.isErroneous()) {
2393             try {
2394                 c.flags_field |= LOCKED;
2395                 if (c.type.hasTag(CLASS)) {
2396                     ClassType clazz = (ClassType)c.type;
2397                     if (clazz.interfaces_field != null)
2398                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2399                             complete &= checkNonCyclicInternal(pos, l.head);
2400                     if (clazz.supertype_field != null) {
2401                         Type st = clazz.supertype_field;
2402                         if (st != null && st.hasTag(CLASS))
2403                             complete &= checkNonCyclicInternal(pos, st);
2404                     }
2405                     if (c.owner.kind == TYP)
2406                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2407                 }
2408             } finally {
2409                 c.flags_field &= ~LOCKED;
2410             }
2411         }
2412         if (complete)
2413             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2414         if (complete) c.flags_field |= ACYCLIC;
2415         return complete;
2416     }
2417 
2418     /** Handle finding an inheritance cycle on a class by setting
2419      *  the class' and its supertypes' types to the error type.
2420      **/
2421     private void handleCyclic(ClassSymbol c) {
2422         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2423             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2424         Type st = types.supertype(c.type);
2425         if (st.hasTag(CLASS))
2426             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2427         c.type = types.createErrorType(c, c.type);
2428         c.flags_field |= ACYCLIC;
2429     }
2430 
2431     /** Check that all methods which implement some
2432      *  method conform to the method they implement.
2433      *  @param tree         The class definition whose members are checked.
2434      */
2435     void checkImplementations(JCClassDecl tree) {
2436         checkImplementations(tree, tree.sym, tree.sym);
2437     }
2438     //where
2439         /** Check that all methods which implement some
2440          *  method in `ic' conform to the method they implement.
2441          */
2442         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2443             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2444                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2445                 if ((lc.flags() & ABSTRACT) != 0) {
2446                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2447                         if (sym.kind == MTH &&
2448                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2449                             MethodSymbol absmeth = (MethodSymbol)sym;
2450                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2451                             if (implmeth != null && implmeth != absmeth &&
2452                                 (implmeth.owner.flags() & INTERFACE) ==
2453                                 (origin.flags() & INTERFACE)) {
2454                                 // don't check if implmeth is in a class, yet
2455                                 // origin is an interface. This case arises only
2456                                 // if implmeth is declared in Object. The reason is
2457                                 // that interfaces really don't inherit from
2458                                 // Object it's just that the compiler represents
2459                                 // things that way.
2460                                 checkOverride(tree, implmeth, absmeth, origin);
2461                             }
2462                         }
2463                     }
2464                 }
2465             }
2466         }
2467 
2468     /** Check that all abstract methods implemented by a class are
2469      *  mutually compatible.
2470      *  @param pos          Position to be used for error reporting.
2471      *  @param c            The class whose interfaces are checked.
2472      */
2473     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2474         List<Type> supertypes = types.interfaces(c);
2475         Type supertype = types.supertype(c);
2476         if (supertype.hasTag(CLASS) &&
2477             (supertype.tsym.flags() & ABSTRACT) != 0)
2478             supertypes = supertypes.prepend(supertype);
2479         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2480             if (!l.head.getTypeArguments().isEmpty() &&
2481                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2482                 return;
2483             for (List<Type> m = supertypes; m != l; m = m.tail)
2484                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2485                     return;
2486         }
2487         checkCompatibleConcretes(pos, c);
2488     }
2489 
2490     /** Check that all non-override equivalent methods accessible from 'site'
2491      *  are mutually compatible (JLS 8.4.8/9.4.1).
2492      *
2493      *  @param pos  Position to be used for error reporting.
2494      *  @param site The class whose methods are checked.
2495      *  @param sym  The method symbol to be checked.
2496      */
2497     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2498          ClashFilter cf = new ClashFilter(site);
2499         //for each method m1 that is overridden (directly or indirectly)
2500         //by method 'sym' in 'site'...
2501 
2502         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2503         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2504         for (Symbol m1 : symbolsByName) {
2505             if (!sym.overrides(m1, site.tsym, types, false)) {
2506                 continue;
2507             }
2508 
2509             //...check each method m2 that is a member of 'site'
2510             for (Symbol m2 : symbolsByName) {
2511                 if (m2 == m1) continue;
2512                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2513                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2514                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2515                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2516                     sym.flags_field |= CLASH;
2517                     if (m1 == sym) {
2518                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2519                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2520                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2521                     } else {
2522                         ClassType ct = (ClassType)site;
2523                         String kind = ct.isInterface() ? "interface" : "class";
2524                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2525                             kind,
2526                             ct.tsym.name,
2527                             m1.name,
2528                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2529                             m1.location(),
2530                             m2.name,
2531                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2532                             m2.location()));
2533                     }
2534                     return;
2535                 }
2536             }
2537         }
2538     }
2539 
2540     /** Check that all static methods accessible from 'site' are
2541      *  mutually compatible (JLS 8.4.8).
2542      *
2543      *  @param pos  Position to be used for error reporting.
2544      *  @param site The class whose methods are checked.
2545      *  @param sym  The method symbol to be checked.
2546      */
2547     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2548         ClashFilter cf = new ClashFilter(site);
2549         //for each method m1 that is a member of 'site'...
2550         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2551             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2552             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2553             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2554                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2555                     log.error(pos,
2556                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2557                     return;
2558                 }
2559             }
2560          }
2561      }
2562 
2563      //where
2564      private class ClashFilter implements Predicate<Symbol> {
2565 
2566          Type site;
2567 
2568          ClashFilter(Type site) {
2569              this.site = site;
2570          }
2571 
2572          boolean shouldSkip(Symbol s) {
2573              return (s.flags() & CLASH) != 0 &&
2574                 s.owner == site.tsym;
2575          }
2576 
2577          @Override
2578          public boolean test(Symbol s) {
2579              return s.kind == MTH &&
2580                      (s.flags() & SYNTHETIC) == 0 &&
2581                      !shouldSkip(s) &&
2582                      s.isInheritedIn(site.tsym, types) &&
2583                      !s.isConstructor();
2584          }
2585      }
2586 
2587     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2588         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2589         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2590             Assert.check(m.kind == MTH);
2591             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2592             if (prov.size() > 1) {
2593                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2594                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2595                 for (MethodSymbol provSym : prov) {
2596                     if ((provSym.flags() & DEFAULT) != 0) {
2597                         defaults = defaults.append(provSym);
2598                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2599                         abstracts = abstracts.append(provSym);
2600                     }
2601                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2602                         //strong semantics - issue an error if two sibling interfaces
2603                         //have two override-equivalent defaults - or if one is abstract
2604                         //and the other is default
2605                         Fragment diagKey;
2606                         Symbol s1 = defaults.first();
2607                         Symbol s2;
2608                         if (defaults.size() > 1) {
2609                             s2 = defaults.toList().tail.head;
2610                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2611                                     m.name, types.memberType(site, m).getParameterTypes(),
2612                                     s1.location(), s2.location());
2613 
2614                         } else {
2615                             s2 = abstracts.first();
2616                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2617                                     m.name, types.memberType(site, m).getParameterTypes(),
2618                                     s1.location(), s2.location());
2619                         }
2620                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2621                         break;
2622                     }
2623                 }
2624             }
2625         }
2626     }
2627 
2628     //where
2629      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2630 
2631          Type site;
2632 
2633          DefaultMethodClashFilter(Type site) {
2634              this.site = site;
2635          }
2636 
2637          @Override
2638          public boolean test(Symbol s) {
2639              return s.kind == MTH &&
2640                      (s.flags() & DEFAULT) != 0 &&
2641                      s.isInheritedIn(site.tsym, types) &&
2642                      !s.isConstructor();
2643          }
2644      }
2645 
2646     /** Report warnings for potentially ambiguous method declarations in the given site. */
2647     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2648 
2649         // Skip if warning not enabled
2650         if (!lint.isEnabled(LintCategory.OVERLOADS))
2651             return;
2652 
2653         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2654         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2655             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2656 
2657         // Build the predicate that determines if site is responsible for an ambiguity
2658         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2659 
2660         // Now remove overridden methods from each group, leaving only site's actual members
2661         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2662 
2663         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2664         methodGroups.forEach(list -> list.removeIf(
2665             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2666 
2667         // Warn about ambiguous overload method pairs for which site is responsible
2668         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2669 
2670             // See if this is an ambiguous overload for which "site" is responsible
2671             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2672                 return 0;
2673 
2674             // Locate the warning at one of the methods, if possible
2675             DiagnosticPosition pos =
2676                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2677                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2678                 tree.pos();
2679 
2680             // Log the warning
2681             log.warning(pos,
2682                 LintWarnings.PotentiallyAmbiguousOverload(
2683                     m1.asMemberOf(site, types), m1.location(),
2684                     m2.asMemberOf(site, types), m2.location()));
2685 
2686             // Don't warn again for either of these two methods
2687             return FIRST | SECOND;
2688         }));
2689     }
2690 
2691     /** Build a predicate that determines, given two methods that are members of the given class,
2692      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2693      *
2694      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2695      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2696      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2697      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2698      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2699      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2700      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2701      *  As an optimization, we first check if either method is declared in C and does not override
2702      *  any other methods; in this case the class is definitely responsible.
2703      */
2704     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2705         List<? extends Collection<MethodSymbol>> methodGroups) {
2706 
2707         // Define the "overrides" predicate
2708         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2709 
2710         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2711         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2712         methodGroups.forEach(list -> {
2713             for (MethodSymbol m : list) {
2714 
2715                 // Skip methods not declared in site
2716                 if (m.owner != site.tsym)
2717                     continue;
2718 
2719                 // Gather all supertype methods overridden by m, directly or indirectly
2720                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2721                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2722                   .collect(Collectors.toCollection(ArrayList::new));
2723 
2724                 // Eliminate non-direct overrides
2725                 removePreempted(overriddenMethods, overrides);
2726 
2727                 // Add to map
2728                 overriddenMethodsMap.put(m, overriddenMethods);
2729             }
2730         });
2731 
2732         // Build the predicate
2733         return (m1, m2) -> {
2734 
2735             // Get corresponding supertype methods (if declared in site)
2736             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2737             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2738 
2739             // Quick check for the case where a method was added by site itself
2740             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2741                 return true;
2742             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2743                 return true;
2744 
2745             // Get each method's corresponding method(s) from supertypes of site
2746             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2747               overriddenMethods1 : Collections.singletonList(m1);
2748             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2749               overriddenMethods2 : Collections.singletonList(m2);
2750 
2751             // See if we can blame some direct supertype instead
2752             return types.directSupertypes(site).stream()
2753               .filter(stype -> stype != syms.objectType)
2754               .map(stype -> stype.tsym.type)                // view supertype in its original form
2755               .noneMatch(stype -> {
2756                 for (MethodSymbol sm1 : supertypeMethods1) {
2757                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2758                         continue;
2759                     for (MethodSymbol sm2 : supertypeMethods2) {
2760                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2761                             continue;
2762                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2763                             return true;
2764                     }
2765                 }
2766                 return false;
2767             });
2768         };
2769     }
2770 
2771     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2772      *  after applying the given filter.
2773      */
2774     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2775             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2776         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2777         return StreamSupport.stream(symbols.spliterator(), false)
2778           .map(MethodSymbol.class::cast)
2779           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2780           .entrySet()
2781           .stream()
2782           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2783           .map(Map.Entry::getValue)
2784           .collect(List.collector());
2785     }
2786 
2787     /** Compare elements in a list pair-wise in order to remove some of them.
2788      *  @param list mutable list of items
2789      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2790      */
2791     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2792         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2793             T item1 = list.get(index1);
2794             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2795                 T item2 = list.get(index2);
2796                 int flags = comparer.applyAsInt(item1, item2);
2797                 if ((flags & SECOND) != 0)
2798                     list.remove(index2--);          // remove item2
2799                 if ((flags & FIRST) != 0) {
2800                     list.remove(index1--);          // remove item1
2801                     break;
2802                 }
2803             }
2804         }
2805     }
2806 
2807     /** Remove elements in a list that are preempted by some other element in the list.
2808      *  @param list mutable list of items
2809      *  @param preempts decides if one item preempts another, causing the second one to be removed
2810      */
2811     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
2812         compareAndRemove(list, (item1, item2) -> {
2813             int flags = 0;
2814             if (preempts.test(item1, item2))
2815                 flags |= SECOND;
2816             if (preempts.test(item2, item1))
2817                 flags |= FIRST;
2818             return flags;
2819         });
2820     }
2821 
2822     /** Filters method candidates for the "potentially ambiguous method" check */
2823     class PotentiallyAmbiguousFilter extends ClashFilter {
2824 
2825         PotentiallyAmbiguousFilter(Type site) {
2826             super(site);
2827         }
2828 
2829         @Override
2830         boolean shouldSkip(Symbol s) {
2831             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
2832         }
2833     }
2834 
2835     /**
2836       * Report warnings for potentially ambiguous method declarations. Two declarations
2837       * are potentially ambiguous if they feature two unrelated functional interface
2838       * in same argument position (in which case, a call site passing an implicit
2839       * lambda would be ambiguous). This assumes they already have the same name.
2840       */
2841     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
2842         Assert.check(msym1.name == msym2.name);
2843         if (msym1 == msym2)
2844             return false;
2845         Type mt1 = types.memberType(site, msym1);
2846         Type mt2 = types.memberType(site, msym2);
2847         //if both generic methods, adjust type variables
2848         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2849                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2850             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2851         }
2852         //expand varargs methods if needed
2853         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2854         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2855         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2856         //if arities don't match, exit
2857         if (args1.length() != args2.length())
2858             return false;
2859         boolean potentiallyAmbiguous = false;
2860         while (args1.nonEmpty() && args2.nonEmpty()) {
2861             Type s = args1.head;
2862             Type t = args2.head;
2863             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2864                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2865                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2866                         types.findDescriptorType(s).getParameterTypes().length() ==
2867                         types.findDescriptorType(t).getParameterTypes().length()) {
2868                     potentiallyAmbiguous = true;
2869                 } else {
2870                     return false;
2871                 }
2872             }
2873             args1 = args1.tail;
2874             args2 = args2.tail;
2875         }
2876         return potentiallyAmbiguous;
2877     }
2878 
2879     // Apply special flag "-XDwarnOnAccessToMembers" which turns on just this particular warning for all types of access
2880     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2881         if (warnOnAnyAccessToMembers || isLambda)
2882             checkAccessFromSerializableElementInner(tree, isLambda);
2883     }
2884 
2885     private void checkAccessFromSerializableElementInner(final JCTree tree, boolean isLambda) {
2886         Symbol sym = TreeInfo.symbol(tree);
2887         if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2888             return;
2889         }
2890 
2891         if (sym.kind == VAR) {
2892             if ((sym.flags() & PARAMETER) != 0 ||
2893                 sym.isDirectlyOrIndirectlyLocal() ||
2894                 sym.name == names._this ||
2895                 sym.name == names._super) {
2896                 return;
2897             }
2898         }
2899 
2900         if (!types.isSubtype(sym.owner.type, syms.serializableType) && isEffectivelyNonPublic(sym)) {
2901             DiagnosticFlag flag = warnOnAnyAccessToMembers ? DiagnosticFlag.DEFAULT_ENABLED : null;
2902             if (isLambda) {
2903                 if (belongsToRestrictedPackage(sym)) {
2904                     log.warning(flag, tree.pos(), LintWarnings.AccessToMemberFromSerializableLambda(sym));
2905                 }
2906             } else {
2907                 log.warning(flag, tree.pos(), LintWarnings.AccessToMemberFromSerializableElement(sym));
2908             }
2909         }
2910     }
2911 
2912     private boolean isEffectivelyNonPublic(Symbol sym) {
2913         if (sym.packge() == syms.rootPackage) {
2914             return false;
2915         }
2916 
2917         while (sym.kind != PCK) {
2918             if ((sym.flags() & PUBLIC) == 0) {
2919                 return true;
2920             }
2921             sym = sym.owner;
2922         }
2923         return false;
2924     }
2925 
2926     private boolean belongsToRestrictedPackage(Symbol sym) {
2927         String fullName = sym.packge().fullname.toString();
2928         return fullName.startsWith("java.") ||
2929                 fullName.startsWith("javax.") ||
2930                 fullName.startsWith("sun.") ||
2931                 fullName.contains(".internal.");
2932     }
2933 
2934     /** Check that class c does not implement directly or indirectly
2935      *  the same parameterized interface with two different argument lists.
2936      *  @param pos          Position to be used for error reporting.
2937      *  @param type         The type whose interfaces are checked.
2938      */
2939     void checkClassBounds(DiagnosticPosition pos, Type type) {
2940         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2941     }
2942 //where
2943         /** Enter all interfaces of type `type' into the hash table `seensofar'
2944          *  with their class symbol as key and their type as value. Make
2945          *  sure no class is entered with two different types.
2946          */
2947         void checkClassBounds(DiagnosticPosition pos,
2948                               Map<TypeSymbol,Type> seensofar,
2949                               Type type) {
2950             if (type.isErroneous()) return;
2951             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2952                 Type it = l.head;
2953                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
2954 
2955                 Type oldit = seensofar.put(it.tsym, it);
2956                 if (oldit != null) {
2957                     List<Type> oldparams = oldit.allparams();
2958                     List<Type> newparams = it.allparams();
2959                     if (!types.containsTypeEquivalent(oldparams, newparams))
2960                         log.error(pos,
2961                                   Errors.CantInheritDiffArg(it.tsym,
2962                                                             Type.toString(oldparams),
2963                                                             Type.toString(newparams)));
2964                 }
2965                 checkClassBounds(pos, seensofar, it);
2966             }
2967             Type st = types.supertype(type);
2968             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
2969             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2970         }
2971 
2972     /** Enter interface into into set.
2973      *  If it existed already, issue a "repeated interface" error.
2974      */
2975     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
2976         if (its.contains(it.tsym))
2977             log.error(pos, Errors.RepeatedInterface);
2978         else {
2979             its.add(it.tsym);
2980         }
2981     }
2982 
2983 /* *************************************************************************
2984  * Check annotations
2985  **************************************************************************/
2986 
2987     /**
2988      * Recursively validate annotations values
2989      */
2990     void validateAnnotationTree(JCTree tree) {
2991         class AnnotationValidator extends TreeScanner {
2992             @Override
2993             public void visitAnnotation(JCAnnotation tree) {
2994                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
2995                     super.visitAnnotation(tree);
2996                     validateAnnotation(tree);
2997                 }
2998             }
2999         }
3000         tree.accept(new AnnotationValidator());
3001     }
3002 
3003     /**
3004      *  {@literal
3005      *  Annotation types are restricted to primitives, String, an
3006      *  enum, an annotation, Class, Class<?>, Class<? extends
3007      *  Anything>, arrays of the preceding.
3008      *  }
3009      */
3010     void validateAnnotationType(JCTree restype) {
3011         // restype may be null if an error occurred, so don't bother validating it
3012         if (restype != null) {
3013             validateAnnotationType(restype.pos(), restype.type);
3014         }
3015     }
3016 
3017     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3018         if (type.isPrimitive()) return;
3019         if (types.isSameType(type, syms.stringType)) return;
3020         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3021         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3022         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3023         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3024             validateAnnotationType(pos, types.elemtype(type));
3025             return;
3026         }
3027         log.error(pos, Errors.InvalidAnnotationMemberType);
3028     }
3029 
3030     /**
3031      * "It is also a compile-time error if any method declared in an
3032      * annotation type has a signature that is override-equivalent to
3033      * that of any public or protected method declared in class Object
3034      * or in the interface annotation.Annotation."
3035      *
3036      * @jls 9.6 Annotation Types
3037      */
3038     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3039         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3040             Scope s = sup.tsym.members();
3041             for (Symbol sym : s.getSymbolsByName(m.name)) {
3042                 if (sym.kind == MTH &&
3043                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3044                     types.overrideEquivalent(m.type, sym.type))
3045                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3046             }
3047         }
3048     }
3049 
3050     /** Check the annotations of a symbol.
3051      */
3052     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3053         for (JCAnnotation a : annotations)
3054             validateAnnotation(a, declarationTree, s);
3055     }
3056 
3057     /** Check the type annotations.
3058      */
3059     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3060         for (JCAnnotation a : annotations)
3061             validateTypeAnnotation(a, s, isTypeParameter);
3062     }
3063 
3064     /** Check an annotation of a symbol.
3065      */
3066     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3067         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3068          *  this can impact in particular records for which annotations are forcibly propagated.
3069          */
3070         validateAnnotationTree(a);
3071         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3072 
3073         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3074                 declarationTree.hasTag(VARDEF) &&
3075                 s.owner.kind == TYP;
3076 
3077         if (isRecordField) {
3078             // first we need to check if the annotation is applicable to records
3079             Name[] targets = getTargetNames(a);
3080             boolean appliesToRecords = false;
3081             for (Name target : targets) {
3082                 appliesToRecords =
3083                                 target == names.FIELD ||
3084                                 target == names.PARAMETER ||
3085                                 target == names.METHOD ||
3086                                 target == names.TYPE_USE ||
3087                                 target == names.RECORD_COMPONENT;
3088                 if (appliesToRecords) {
3089                     break;
3090                 }
3091             }
3092             if (!appliesToRecords) {
3093                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3094             } else {
3095                 /* lets now find the annotations in the field that are targeted to record components and append them to
3096                  * the corresponding record component
3097                  */
3098                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3099                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3100                 SymbolMetadata metadata = rc.getMetadata();
3101                 if (metadata == null || metadata.isEmpty()) {
3102                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3103                      * to the record component declaration
3104                      */
3105                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3106                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3107                     ).collect(List.collector()));
3108 
3109                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3110                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3111                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3112                             if (rcAnnot.pos == fieldAnnot.pos) {
3113                                 rcAnnot.setType(fieldAnnot.type);
3114                                 break;
3115                             }
3116                         }
3117                     }
3118 
3119                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3120                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3121                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3122                      * annotations in the SE5 annotation location.
3123                      *
3124                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3125                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3126                      */
3127                 }
3128             }
3129         }
3130 
3131         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3132          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3133          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3134          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3135          * to all the possible locations.
3136          *
3137          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3138          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3139          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3140          * was both a field and a record component.
3141          *
3142          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3143          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3144          * be see by annotation processors.
3145          *
3146          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3147          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3148          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3149          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3150          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3151          *
3152          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3153          * further inspection by annotation processors.
3154          *
3155          * For example:
3156          *
3157          *     import java.lang.annotation.*;
3158          *
3159          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3160          *     @Retention(RetentionPolicy.RUNTIME)
3161          *     @interface Anno { }
3162          *
3163          *     record R(@Anno String s) {}
3164          *
3165          * at this point we will have for the case of the generated field:
3166          *   - @Anno in the modifier
3167          *   - @Anno as a type annotation
3168          *   - @Anno as a declaration annotation
3169          *
3170          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3171          * declaration annotation because the field was being treated both as a field and as a record component
3172          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3173          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3174          * is applicable as a type annotation to the type of the field.
3175          */
3176 
3177         if (a.type.tsym.isAnnotationType()) {
3178             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3179             if (!applicableTargetsOp.isEmpty()) {
3180                 Set<Name> applicableTargets = applicableTargetsOp.get();
3181                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3182                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3183                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3184                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3185 
3186                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3187                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3188                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3189                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3190                              * that are not applicable to the given record member
3191                              */
3192                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3193                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3194                              * it could be a type annotation
3195                              */
3196                         if (modifiers != null && applicableTargets.isEmpty()) {
3197                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3198                             for (JCAnnotation anno : modifiers.annotations) {
3199                                 if (anno != a) {
3200                                     newAnnotations.add(anno);
3201                                 }
3202                             }
3203                             modifiers.annotations = newAnnotations.toList();
3204                         }
3205                         // now lets remove it from the symbol
3206                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3207                     } else {
3208                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3209                     }
3210                 }
3211                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3212                  * then this is an error as we know that no compiler generated accessor will be a varargs
3213                  * method, better to fail asap
3214                  */
3215                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3216                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3217                 }
3218             }
3219         }
3220 
3221         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3222             if (s.kind != TYP) {
3223                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3224             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3225                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3226             }
3227         }
3228     }
3229 
3230     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3231         Assert.checkNonNull(a.type);
3232         // we just want to validate that the anotation doesn't have any wrong target
3233         if (s != null) getApplicableTargets(a, s);
3234         validateAnnotationTree(a);
3235 
3236         if (a.hasTag(TYPE_ANNOTATION) &&
3237                 !a.annotationType.type.isErroneous() &&
3238                 !isTypeAnnotation(a, isTypeParameter)) {
3239             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3240         }
3241     }
3242 
3243     /**
3244      * Validate the proposed container 'repeatable' on the
3245      * annotation type symbol 's'. Report errors at position
3246      * 'pos'.
3247      *
3248      * @param s The (annotation)type declaration annotated with a @Repeatable
3249      * @param repeatable the @Repeatable on 's'
3250      * @param pos where to report errors
3251      */
3252     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3253         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3254 
3255         Type t = null;
3256         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3257         if (!l.isEmpty()) {
3258             Assert.check(l.head.fst.name == names.value);
3259             if (l.head.snd instanceof Attribute.Class) {
3260                 t = ((Attribute.Class)l.head.snd).getValue();
3261             }
3262         }
3263 
3264         if (t == null) {
3265             // errors should already have been reported during Annotate
3266             return;
3267         }
3268 
3269         validateValue(t.tsym, s, pos);
3270         validateRetention(t.tsym, s, pos);
3271         validateDocumented(t.tsym, s, pos);
3272         validateInherited(t.tsym, s, pos);
3273         validateTarget(t.tsym, s, pos);
3274         validateDefault(t.tsym, pos);
3275     }
3276 
3277     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3278         Symbol sym = container.members().findFirst(names.value);
3279         if (sym != null && sym.kind == MTH) {
3280             MethodSymbol m = (MethodSymbol) sym;
3281             Type ret = m.getReturnType();
3282             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3283                 log.error(pos,
3284                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3285                                                                         ret,
3286                                                                         types.makeArrayType(contained.type)));
3287             }
3288         } else {
3289             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3290         }
3291     }
3292 
3293     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3294         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3295         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3296 
3297         boolean error = false;
3298         switch (containedRetention) {
3299         case RUNTIME:
3300             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3301                 error = true;
3302             }
3303             break;
3304         case CLASS:
3305             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3306                 error = true;
3307             }
3308         }
3309         if (error ) {
3310             log.error(pos,
3311                       Errors.InvalidRepeatableAnnotationRetention(container,
3312                                                                   containerRetention.name(),
3313                                                                   contained,
3314                                                                   containedRetention.name()));
3315         }
3316     }
3317 
3318     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3319         if (contained.attribute(syms.documentedType.tsym) != null) {
3320             if (container.attribute(syms.documentedType.tsym) == null) {
3321                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3322             }
3323         }
3324     }
3325 
3326     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3327         if (contained.attribute(syms.inheritedType.tsym) != null) {
3328             if (container.attribute(syms.inheritedType.tsym) == null) {
3329                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3330             }
3331         }
3332     }
3333 
3334     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3335         // The set of targets the container is applicable to must be a subset
3336         // (with respect to annotation target semantics) of the set of targets
3337         // the contained is applicable to. The target sets may be implicit or
3338         // explicit.
3339 
3340         Set<Name> containerTargets;
3341         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3342         if (containerTarget == null) {
3343             containerTargets = getDefaultTargetSet();
3344         } else {
3345             containerTargets = new HashSet<>();
3346             for (Attribute app : containerTarget.values) {
3347                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3348                     continue; // recovery
3349                 }
3350                 containerTargets.add(attributeEnum.value.name);
3351             }
3352         }
3353 
3354         Set<Name> containedTargets;
3355         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3356         if (containedTarget == null) {
3357             containedTargets = getDefaultTargetSet();
3358         } else {
3359             containedTargets = new HashSet<>();
3360             for (Attribute app : containedTarget.values) {
3361                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3362                     continue; // recovery
3363                 }
3364                 containedTargets.add(attributeEnum.value.name);
3365             }
3366         }
3367 
3368         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3369             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3370         }
3371     }
3372 
3373     /* get a set of names for the default target */
3374     private Set<Name> getDefaultTargetSet() {
3375         if (defaultTargets == null) {
3376             defaultTargets = Set.of(defaultTargetMetaInfo());
3377         }
3378 
3379         return defaultTargets;
3380     }
3381     private Set<Name> defaultTargets;
3382 
3383 
3384     /** Checks that s is a subset of t, with respect to ElementType
3385      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3386      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3387      * TYPE_PARAMETER}.
3388      */
3389     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3390         // Check that all elements in s are present in t
3391         for (Name n2 : s) {
3392             boolean currentElementOk = false;
3393             for (Name n1 : t) {
3394                 if (n1 == n2) {
3395                     currentElementOk = true;
3396                     break;
3397                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3398                     currentElementOk = true;
3399                     break;
3400                 } else if (n1 == names.TYPE_USE &&
3401                         (n2 == names.TYPE ||
3402                          n2 == names.ANNOTATION_TYPE ||
3403                          n2 == names.TYPE_PARAMETER)) {
3404                     currentElementOk = true;
3405                     break;
3406                 }
3407             }
3408             if (!currentElementOk)
3409                 return false;
3410         }
3411         return true;
3412     }
3413 
3414     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3415         // validate that all other elements of containing type has defaults
3416         Scope scope = container.members();
3417         for(Symbol elm : scope.getSymbols()) {
3418             if (elm.name != names.value &&
3419                 elm.kind == MTH &&
3420                 ((MethodSymbol)elm).defaultValue == null) {
3421                 log.error(pos,
3422                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3423             }
3424         }
3425     }
3426 
3427     /** Is s a method symbol that overrides a method in a superclass? */
3428     boolean isOverrider(Symbol s) {
3429         if (s.kind != MTH || s.isStatic())
3430             return false;
3431         MethodSymbol m = (MethodSymbol)s;
3432         TypeSymbol owner = (TypeSymbol)m.owner;
3433         for (Type sup : types.closure(owner.type)) {
3434             if (sup == owner.type)
3435                 continue; // skip "this"
3436             Scope scope = sup.tsym.members();
3437             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3438                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3439                     return true;
3440             }
3441         }
3442         return false;
3443     }
3444 
3445     /** Is the annotation applicable to types? */
3446     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3447         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3448         return (targets == null) ?
3449                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3450                 targets.stream()
3451                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3452     }
3453     //where
3454         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3455             Attribute.Enum e = (Attribute.Enum)a;
3456             return (e.value.name == names.TYPE_USE ||
3457                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3458         }
3459 
3460     /** Is the annotation applicable to the symbol? */
3461     Name[] getTargetNames(JCAnnotation a) {
3462         return getTargetNames(a.annotationType.type.tsym);
3463     }
3464 
3465     public Name[] getTargetNames(TypeSymbol annoSym) {
3466         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3467         Name[] targets;
3468         if (arr == null) {
3469             targets = defaultTargetMetaInfo();
3470         } else {
3471             // TODO: can we optimize this?
3472             targets = new Name[arr.values.length];
3473             for (int i=0; i<arr.values.length; ++i) {
3474                 Attribute app = arr.values[i];
3475                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3476                     return new Name[0];
3477                 }
3478                 targets[i] = attributeEnum.value.name;
3479             }
3480         }
3481         return targets;
3482     }
3483 
3484     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3485         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3486         /* the optional could be empty if the annotation is unknown in that case
3487          * we return that it is applicable and if it is erroneous that should imply
3488          * an error at the declaration site
3489          */
3490         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3491     }
3492 
3493     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3494         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3495         Name[] targets;
3496         Set<Name> applicableTargets = new HashSet<>();
3497 
3498         if (arr == null) {
3499             targets = defaultTargetMetaInfo();
3500         } else {
3501             // TODO: can we optimize this?
3502             targets = new Name[arr.values.length];
3503             for (int i=0; i<arr.values.length; ++i) {
3504                 Attribute app = arr.values[i];
3505                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3506                     // recovery
3507                     return Optional.empty();
3508                 }
3509                 targets[i] = attributeEnum.value.name;
3510             }
3511         }
3512         for (Name target : targets) {
3513             if (target == names.TYPE) {
3514                 if (s.kind == TYP)
3515                     applicableTargets.add(names.TYPE);
3516             } else if (target == names.FIELD) {
3517                 if (s.kind == VAR && s.owner.kind != MTH)
3518                     applicableTargets.add(names.FIELD);
3519             } else if (target == names.RECORD_COMPONENT) {
3520                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3521                     applicableTargets.add(names.RECORD_COMPONENT);
3522                 }
3523             } else if (target == names.METHOD) {
3524                 if (s.kind == MTH && !s.isConstructor())
3525                     applicableTargets.add(names.METHOD);
3526             } else if (target == names.PARAMETER) {
3527                 if (s.kind == VAR &&
3528                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3529                     applicableTargets.add(names.PARAMETER);
3530                 }
3531             } else if (target == names.CONSTRUCTOR) {
3532                 if (s.kind == MTH && s.isConstructor())
3533                     applicableTargets.add(names.CONSTRUCTOR);
3534             } else if (target == names.LOCAL_VARIABLE) {
3535                 if (s.kind == VAR && s.owner.kind == MTH &&
3536                       (s.flags() & PARAMETER) == 0) {
3537                     applicableTargets.add(names.LOCAL_VARIABLE);
3538                 }
3539             } else if (target == names.ANNOTATION_TYPE) {
3540                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3541                     applicableTargets.add(names.ANNOTATION_TYPE);
3542                 }
3543             } else if (target == names.PACKAGE) {
3544                 if (s.kind == PCK)
3545                     applicableTargets.add(names.PACKAGE);
3546             } else if (target == names.TYPE_USE) {
3547                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3548                     //cannot type annotate implicitly typed locals
3549                     continue;
3550                 } else if (s.kind == TYP || s.kind == VAR ||
3551                         (s.kind == MTH && !s.isConstructor() &&
3552                                 !s.type.getReturnType().hasTag(VOID)) ||
3553                         (s.kind == MTH && s.isConstructor())) {
3554                     applicableTargets.add(names.TYPE_USE);
3555                 }
3556             } else if (target == names.TYPE_PARAMETER) {
3557                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3558                     applicableTargets.add(names.TYPE_PARAMETER);
3559             } else if (target == names.MODULE) {
3560                 if (s.kind == MDL)
3561                     applicableTargets.add(names.MODULE);
3562             } else {
3563                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3564                 return Optional.empty(); // Unknown ElementType
3565             }
3566         }
3567         return Optional.of(applicableTargets);
3568     }
3569 
3570     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3571         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3572         if (atTarget == null) return null; // ok, is applicable
3573         Attribute atValue = atTarget.member(names.value);
3574         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3575     }
3576 
3577     private Name[] dfltTargetMeta;
3578     private Name[] defaultTargetMetaInfo() {
3579         if (dfltTargetMeta == null) {
3580             ArrayList<Name> defaultTargets = new ArrayList<>();
3581             defaultTargets.add(names.PACKAGE);
3582             defaultTargets.add(names.TYPE);
3583             defaultTargets.add(names.FIELD);
3584             defaultTargets.add(names.METHOD);
3585             defaultTargets.add(names.CONSTRUCTOR);
3586             defaultTargets.add(names.ANNOTATION_TYPE);
3587             defaultTargets.add(names.LOCAL_VARIABLE);
3588             defaultTargets.add(names.PARAMETER);
3589             if (allowRecords) {
3590               defaultTargets.add(names.RECORD_COMPONENT);
3591             }
3592             if (allowModules) {
3593               defaultTargets.add(names.MODULE);
3594             }
3595             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3596         }
3597         return dfltTargetMeta;
3598     }
3599 
3600     /** Check an annotation value.
3601      *
3602      * @param a The annotation tree to check
3603      * @return true if this annotation tree is valid, otherwise false
3604      */
3605     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3606         boolean res = false;
3607         final Log.DiagnosticHandler diagHandler = log.new DiscardDiagnosticHandler();
3608         try {
3609             res = validateAnnotation(a);
3610         } finally {
3611             log.popDiagnosticHandler(diagHandler);
3612         }
3613         return res;
3614     }
3615 
3616     private boolean validateAnnotation(JCAnnotation a) {
3617         boolean isValid = true;
3618         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3619 
3620         // collect an inventory of the annotation elements
3621         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3622 
3623         // remove the ones that are assigned values
3624         for (JCTree arg : a.args) {
3625             if (!arg.hasTag(ASSIGN)) continue; // recovery
3626             JCAssign assign = (JCAssign)arg;
3627             Symbol m = TreeInfo.symbol(assign.lhs);
3628             if (m == null || m.type.isErroneous()) continue;
3629             if (!elements.remove(m)) {
3630                 isValid = false;
3631                 log.error(assign.lhs.pos(),
3632                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3633             }
3634         }
3635 
3636         // all the remaining ones better have default values
3637         List<Name> missingDefaults = List.nil();
3638         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3639         for (MethodSymbol m : elements) {
3640             if (m.type.isErroneous())
3641                 continue;
3642 
3643             if (!membersWithDefault.contains(m))
3644                 missingDefaults = missingDefaults.append(m.name);
3645         }
3646         missingDefaults = missingDefaults.reverse();
3647         if (missingDefaults.nonEmpty()) {
3648             isValid = false;
3649             Error errorKey = (missingDefaults.size() > 1)
3650                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3651                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3652             log.error(a.pos(), errorKey);
3653         }
3654 
3655         return isValid && validateTargetAnnotationValue(a);
3656     }
3657 
3658     /* Validate the special java.lang.annotation.Target annotation */
3659     boolean validateTargetAnnotationValue(JCAnnotation a) {
3660         // special case: java.lang.annotation.Target must not have
3661         // repeated values in its value member
3662         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3663                 a.args.tail == null)
3664             return true;
3665 
3666         boolean isValid = true;
3667         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3668         JCAssign assign = (JCAssign) a.args.head;
3669         Symbol m = TreeInfo.symbol(assign.lhs);
3670         if (m.name != names.value) return false;
3671         JCTree rhs = assign.rhs;
3672         if (!rhs.hasTag(NEWARRAY)) return false;
3673         JCNewArray na = (JCNewArray) rhs;
3674         Set<Symbol> targets = new HashSet<>();
3675         for (JCTree elem : na.elems) {
3676             if (!targets.add(TreeInfo.symbol(elem))) {
3677                 isValid = false;
3678                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3679             }
3680         }
3681         return isValid;
3682     }
3683 
3684     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3685         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3686             (s.flags() & DEPRECATED) != 0 &&
3687             !syms.deprecatedType.isErroneous() &&
3688             s.attribute(syms.deprecatedType.tsym) == null) {
3689             log.warning(pos, LintWarnings.MissingDeprecatedAnnotation);
3690         }
3691         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3692         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3693             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3694                 log.warning(pos, LintWarnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3695             }
3696         }
3697     }
3698 
3699     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3700         checkDeprecated(() -> pos, other, s);
3701     }
3702 
3703     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3704         if (!importSuppression
3705                 && (s.isDeprecatedForRemoval() || s.isDeprecated() && !other.isDeprecated())
3706                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3707                 && s.kind != Kind.PCK) {
3708             warnDeprecated(pos.get(), s);
3709         }
3710     }
3711 
3712     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3713         if ((s.flags() & PROPRIETARY) != 0) {
3714             log.warning(pos, Warnings.SunProprietary(s));
3715         }
3716     }
3717 
3718     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3719         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3720             log.error(pos, Errors.NotInProfile(s, profile));
3721         }
3722     }
3723 
3724     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3725         checkPreview(pos, other, Type.noType, s);
3726     }
3727 
3728     void checkPreview(DiagnosticPosition pos, Symbol other, Type site, Symbol s) {
3729         boolean sIsPreview;
3730         Symbol previewSymbol;
3731         if ((s.flags() & PREVIEW_API) != 0) {
3732             sIsPreview = true;
3733             previewSymbol=  s;
3734         } else if ((s.kind == Kind.MTH || s.kind == Kind.VAR) &&
3735                    site.tsym != null &&
3736                    (site.tsym.flags() & PREVIEW_API) == 0 &&
3737                    (s.owner.flags() & PREVIEW_API) != 0) {
3738             //calling a method, or using a field, whose owner is a preview, but
3739             //using a site that is not a preview. Also produce an error or warning:
3740             sIsPreview = true;
3741             previewSymbol = s.owner;
3742         } else {
3743             sIsPreview = false;
3744             previewSymbol = null;
3745         }
3746         if (sIsPreview && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3747             if ((previewSymbol.flags() & PREVIEW_REFLECTIVE) == 0) {
3748                 if (!preview.isEnabled()) {
3749                     log.error(pos, Errors.IsPreview(s));
3750                 } else {
3751                     preview.markUsesPreview(pos);
3752                     warnPreviewAPI(pos, LintWarnings.IsPreview(s));
3753                 }
3754             } else {
3755                 warnPreviewAPI(pos, LintWarnings.IsPreviewReflective(s));
3756             }
3757         }
3758         if (preview.declaredUsingPreviewFeature(s)) {
3759             if (preview.isEnabled()) {
3760                 //for preview disabled do presumably so not need to do anything?
3761                 //If "s" is compiled from source, then there was an error for it already;
3762                 //if "s" is from classfile, there already was an error for the classfile.
3763                 preview.markUsesPreview(pos);
3764                 warnPreviewAPI(pos, LintWarnings.DeclaredUsingPreview(kindName(s), s));
3765             }
3766         }
3767     }
3768 
3769     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3770         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3771             log.warning(pos, LintWarnings.RestrictedMethod(s.enclClass(), s));
3772         }
3773     }
3774 
3775 /* *************************************************************************
3776  * Check for recursive annotation elements.
3777  **************************************************************************/
3778 
3779     /** Check for cycles in the graph of annotation elements.
3780      */
3781     void checkNonCyclicElements(JCClassDecl tree) {
3782         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3783         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3784         try {
3785             tree.sym.flags_field |= LOCKED;
3786             for (JCTree def : tree.defs) {
3787                 if (!def.hasTag(METHODDEF)) continue;
3788                 JCMethodDecl meth = (JCMethodDecl)def;
3789                 checkAnnotationResType(meth.pos(), meth.restype.type);
3790             }
3791         } finally {
3792             tree.sym.flags_field &= ~LOCKED;
3793             tree.sym.flags_field |= ACYCLIC_ANN;
3794         }
3795     }
3796 
3797     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3798         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3799             return;
3800         if ((tsym.flags_field & LOCKED) != 0) {
3801             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3802             return;
3803         }
3804         try {
3805             tsym.flags_field |= LOCKED;
3806             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3807                 if (s.kind != MTH)
3808                     continue;
3809                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3810             }
3811         } finally {
3812             tsym.flags_field &= ~LOCKED;
3813             tsym.flags_field |= ACYCLIC_ANN;
3814         }
3815     }
3816 
3817     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3818         switch (type.getTag()) {
3819         case CLASS:
3820             if ((type.tsym.flags() & ANNOTATION) != 0)
3821                 checkNonCyclicElementsInternal(pos, type.tsym);
3822             break;
3823         case ARRAY:
3824             checkAnnotationResType(pos, types.elemtype(type));
3825             break;
3826         default:
3827             break; // int etc
3828         }
3829     }
3830 
3831 /* *************************************************************************
3832  * Check for cycles in the constructor call graph.
3833  **************************************************************************/
3834 
3835     /** Check for cycles in the graph of constructors calling other
3836      *  constructors.
3837      */
3838     void checkCyclicConstructors(JCClassDecl tree) {
3839         // use LinkedHashMap so we generate errors deterministically
3840         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
3841 
3842         // enter each constructor this-call into the map
3843         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3844             if (!TreeInfo.isConstructor(l.head))
3845                 continue;
3846             JCMethodDecl meth = (JCMethodDecl)l.head;
3847             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
3848             if (app != null && TreeInfo.name(app.meth) == names._this) {
3849                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3850             } else {
3851                 meth.sym.flags_field |= ACYCLIC;
3852             }
3853         }
3854 
3855         // Check for cycles in the map
3856         Symbol[] ctors = new Symbol[0];
3857         ctors = callMap.keySet().toArray(ctors);
3858         for (Symbol caller : ctors) {
3859             checkCyclicConstructor(tree, caller, callMap);
3860         }
3861     }
3862 
3863     /** Look in the map to see if the given constructor is part of a
3864      *  call cycle.
3865      */
3866     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3867                                         Map<Symbol,Symbol> callMap) {
3868         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3869             if ((ctor.flags_field & LOCKED) != 0) {
3870                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
3871                           Errors.RecursiveCtorInvocation);
3872             } else {
3873                 ctor.flags_field |= LOCKED;
3874                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3875                 ctor.flags_field &= ~LOCKED;
3876             }
3877             ctor.flags_field |= ACYCLIC;
3878         }
3879     }
3880 
3881 /* *************************************************************************
3882  * Verify the proper placement of super()/this() calls.
3883  *
3884  *    - super()/this() may only appear in constructors
3885  *    - There must be at most one super()/this() call per constructor
3886  *    - The super()/this() call, if any, must be a top-level statement in the
3887  *      constructor, i.e., not nested inside any other statement or block
3888  *    - There must be no return statements prior to the super()/this() call
3889  **************************************************************************/
3890 
3891     void checkSuperInitCalls(JCClassDecl tree) {
3892         new SuperThisChecker().check(tree);
3893     }
3894 
3895     private class SuperThisChecker extends TreeScanner {
3896 
3897         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
3898         private static final int MATCH_SCAN_DEPTH = 3;
3899 
3900         private boolean constructor;        // is this method a constructor?
3901         private boolean firstStatement;     // at the first statement in method?
3902         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
3903         private Name initCall;              // whichever of "super" or "init" we've seen already
3904         private int scanDepth;              // current scan recursion depth in method body
3905 
3906         public void check(JCClassDecl classDef) {
3907             scan(classDef.defs);
3908         }
3909 
3910         @Override
3911         public void visitMethodDef(JCMethodDecl tree) {
3912             Assert.check(!constructor);
3913             Assert.check(earlyReturn == null);
3914             Assert.check(initCall == null);
3915             Assert.check(scanDepth == 1);
3916 
3917             // Initialize state for this method
3918             constructor = TreeInfo.isConstructor(tree);
3919             try {
3920 
3921                 // Scan method body
3922                 if (tree.body != null) {
3923                     firstStatement = true;
3924                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
3925                         scan(l.head);
3926                         firstStatement = false;
3927                     }
3928                 }
3929 
3930                 // Verify no 'return' seen prior to an explicit super()/this() call
3931                 if (constructor && earlyReturn != null && initCall != null)
3932                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
3933             } finally {
3934                 firstStatement = false;
3935                 constructor = false;
3936                 earlyReturn = null;
3937                 initCall = null;
3938             }
3939         }
3940 
3941         @Override
3942         public void scan(JCTree tree) {
3943             scanDepth++;
3944             try {
3945                 super.scan(tree);
3946             } finally {
3947                 scanDepth--;
3948             }
3949         }
3950 
3951         @Override
3952         public void visitApply(JCMethodInvocation apply) {
3953             do {
3954 
3955                 // Is this a super() or this() call?
3956                 Name methodName = TreeInfo.name(apply.meth);
3957                 if (methodName != names._super && methodName != names._this)
3958                     break;
3959 
3960                 // super()/this() calls must only appear in a constructor
3961                 if (!constructor) {
3962                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
3963                     break;
3964                 }
3965 
3966                 // super()/this() calls must be a top level statement
3967                 if (scanDepth != MATCH_SCAN_DEPTH) {
3968                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
3969                     break;
3970                 }
3971 
3972                 // super()/this() calls must not appear more than once
3973                 if (initCall != null) {
3974                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
3975                     break;
3976                 }
3977 
3978                 // If super()/this() isn't first, require flexible constructors feature
3979                 if (!firstStatement)
3980                     preview.checkSourceLevel(apply.pos(), Feature.FLEXIBLE_CONSTRUCTORS);
3981 
3982                 // We found a legitimate super()/this() call; remember it
3983                 initCall = methodName;
3984             } while (false);
3985 
3986             // Proceed
3987             super.visitApply(apply);
3988         }
3989 
3990         @Override
3991         public void visitReturn(JCReturn tree) {
3992             if (constructor && initCall == null && earlyReturn == null)
3993                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
3994             super.visitReturn(tree);
3995         }
3996 
3997         @Override
3998         public void visitClassDef(JCClassDecl tree) {
3999             // don't descend any further
4000         }
4001 
4002         @Override
4003         public void visitLambda(JCLambda tree) {
4004             final boolean constructorPrev = constructor;
4005             final boolean firstStatementPrev = firstStatement;
4006             final JCReturn earlyReturnPrev = earlyReturn;
4007             final Name initCallPrev = initCall;
4008             final int scanDepthPrev = scanDepth;
4009             constructor = false;
4010             firstStatement = false;
4011             earlyReturn = null;
4012             initCall = null;
4013             scanDepth = 0;
4014             try {
4015                 super.visitLambda(tree);
4016             } finally {
4017                 constructor = constructorPrev;
4018                 firstStatement = firstStatementPrev;
4019                 earlyReturn = earlyReturnPrev;
4020                 initCall = initCallPrev;
4021                 scanDepth = scanDepthPrev;
4022             }
4023         }
4024     }
4025 
4026 /* *************************************************************************
4027  * Miscellaneous
4028  **************************************************************************/
4029 
4030     /**
4031      *  Check for division by integer constant zero
4032      *  @param pos           Position for error reporting.
4033      *  @param operator      The operator for the expression
4034      *  @param operand       The right hand operand for the expression
4035      */
4036     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4037         if (operand.constValue() != null
4038             && operand.getTag().isSubRangeOf(LONG)
4039             && ((Number) (operand.constValue())).longValue() == 0) {
4040             int opc = ((OperatorSymbol)operator).opcode;
4041             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4042                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4043                 log.warning(pos, LintWarnings.DivZero);
4044             }
4045         }
4046     }
4047 
4048     /**
4049      *  Check for bit shifts using an out-of-range bit count.
4050      *  @param pos           Position for error reporting.
4051      *  @param operator      The operator for the expression
4052      *  @param operand       The right hand operand for the expression
4053      */
4054     void checkOutOfRangeShift(final DiagnosticPosition pos, Symbol operator, Type operand) {
4055         if (operand.constValue() instanceof Number shiftAmount) {
4056             Type targetType;
4057             int maximumShift;
4058             switch (((OperatorSymbol)operator).opcode) {
4059             case ByteCodes.ishl, ByteCodes.ishr, ByteCodes.iushr, ByteCodes.ishll, ByteCodes.ishrl, ByteCodes.iushrl -> {
4060                 targetType = syms.intType;
4061                 maximumShift = 0x1f;
4062             }
4063             case ByteCodes.lshl, ByteCodes.lshr, ByteCodes.lushr, ByteCodes.lshll, ByteCodes.lshrl, ByteCodes.lushrl -> {
4064                 targetType = syms.longType;
4065                 maximumShift = 0x3f;
4066             }
4067             default -> {
4068                 return;
4069             }
4070             }
4071             long specifiedShift = shiftAmount.longValue();
4072             if (specifiedShift > maximumShift || specifiedShift < -maximumShift) {
4073                 int actualShift = (int)specifiedShift & (maximumShift - 1);
4074                 log.warning(pos, LintWarnings.BitShiftOutOfRange(targetType, specifiedShift, actualShift));
4075             }
4076         }
4077     }
4078 
4079     /**
4080      *  Check for possible loss of precission
4081      *  @param pos           Position for error reporting.
4082      *  @param found    The computed type of the tree
4083      *  @param req  The computed type of the tree
4084      */
4085     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4086         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4087             log.warning(pos, LintWarnings.PossibleLossOfPrecision(found, req));
4088         }
4089     }
4090 
4091     /**
4092      * Check for empty statements after if
4093      */
4094     void checkEmptyIf(JCIf tree) {
4095         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null) {
4096             log.warning(tree.thenpart.pos(), LintWarnings.EmptyIf);
4097         }
4098     }
4099 
4100     /** Check that symbol is unique in given scope.
4101      *  @param pos           Position for error reporting.
4102      *  @param sym           The symbol.
4103      *  @param s             The scope.
4104      */
4105     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4106         if (sym.type.isErroneous())
4107             return true;
4108         if (sym.owner.name == names.any) return false;
4109         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4110             if (sym != byName &&
4111                     (byName.flags() & CLASH) == 0 &&
4112                     sym.kind == byName.kind &&
4113                     sym.name != names.error &&
4114                     (sym.kind != MTH ||
4115                      types.hasSameArgs(sym.type, byName.type) ||
4116                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4117                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4118                     sym.flags_field |= CLASH;
4119                     varargsDuplicateError(pos, sym, byName);
4120                     return true;
4121                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4122                     duplicateErasureError(pos, sym, byName);
4123                     sym.flags_field |= CLASH;
4124                     return true;
4125                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4126                            (byName.flags() & MATCH_BINDING) != 0 &&
4127                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4128                     if (!sym.type.isErroneous()) {
4129                         log.error(pos, Errors.MatchBindingExists);
4130                         sym.flags_field |= CLASH;
4131                     }
4132                     return false;
4133                 } else {
4134                     duplicateError(pos, byName);
4135                     return false;
4136                 }
4137             }
4138         }
4139         return true;
4140     }
4141 
4142     /** Report duplicate declaration error.
4143      */
4144     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4145         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4146             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4147         }
4148     }
4149 
4150     /**Check that types imported through the ordinary imports don't clash with types imported
4151      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4152      * types without an error on the imports.
4153      * @param toplevel       The toplevel tree for which the test should be performed.
4154      */
4155     void checkImportsUnique(JCCompilationUnit toplevel) {
4156         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4157         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4158         WriteableScope topLevelScope = toplevel.toplevelScope;
4159 
4160         for (JCTree def : toplevel.defs) {
4161             if (!def.hasTag(IMPORT))
4162                 continue;
4163 
4164             JCImport imp = (JCImport) def;
4165 
4166             if (imp.importScope == null)
4167                 continue;
4168 
4169             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4170                 if (imp.isStatic()) {
4171                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4172                     staticallyImportedSoFar.enter(sym);
4173                 } else {
4174                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4175                     ordinallyImportedSoFar.enter(sym);
4176                 }
4177             }
4178 
4179             imp.importScope = null;
4180         }
4181     }
4182 
4183     /** Check that single-type import is not already imported or top-level defined,
4184      *  but make an exception for two single-type imports which denote the same type.
4185      *  @param pos                     Position for error reporting.
4186      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4187      *                                 ordinary imports.
4188      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4189      *                                 static imports.
4190      *  @param topLevelScope           The current file's top-level Scope
4191      *  @param sym                     The symbol.
4192      *  @param staticImport            Whether or not this was a static import
4193      */
4194     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4195                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4196                                       Symbol sym, boolean staticImport) {
4197         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4198         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4199         Symbol staticClashing = null;
4200         if (ordinaryClashing == null && !staticImport) {
4201             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4202         }
4203         if (ordinaryClashing != null || staticClashing != null) {
4204             if (ordinaryClashing != null)
4205                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4206             else
4207                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4208             return false;
4209         }
4210         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4211         if (clashing != null) {
4212             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4213             return false;
4214         }
4215         return true;
4216     }
4217 
4218     /** Check that a qualified name is in canonical form (for import decls).
4219      */
4220     public void checkCanonical(JCTree tree) {
4221         if (!isCanonical(tree))
4222             log.error(tree.pos(),
4223                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4224     }
4225         // where
4226         private boolean isCanonical(JCTree tree) {
4227             while (tree.hasTag(SELECT)) {
4228                 JCFieldAccess s = (JCFieldAccess) tree;
4229                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4230                     return false;
4231                 tree = s.selected;
4232             }
4233             return true;
4234         }
4235 
4236     /** Check that an auxiliary class is not accessed from any other file than its own.
4237      */
4238     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4239         if ((c.flags() & AUXILIARY) != 0 &&
4240             rs.isAccessible(env, c) &&
4241             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4242         {
4243             log.warning(pos, LintWarnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4244         }
4245     }
4246 
4247     /**
4248      * Check for a default constructor in an exported package.
4249      */
4250     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4251         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4252             ((c.flags() & (ENUM | RECORD)) == 0) &&
4253             !c.isAnonymous() &&
4254             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4255             Feature.MODULES.allowedInSource(source)) {
4256             NestingKind nestingKind = c.getNestingKind();
4257             switch (nestingKind) {
4258                 case ANONYMOUS,
4259                      LOCAL -> {return;}
4260                 case TOP_LEVEL -> {;} // No additional checks needed
4261                 case MEMBER -> {
4262                     // For nested member classes, all the enclosing
4263                     // classes must be public or protected.
4264                     Symbol owner = c.owner;
4265                     while (owner != null && owner.kind == TYP) {
4266                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4267                             return;
4268                         owner = owner.owner;
4269                     }
4270                 }
4271             }
4272 
4273             // Only check classes in named packages exported by its module
4274             PackageSymbol pkg = c.packge();
4275             if (!pkg.isUnnamed()) {
4276                 ModuleSymbol modle = pkg.modle;
4277                 for (ExportsDirective exportDir : modle.exports) {
4278                     // Report warning only if the containing
4279                     // package is unconditionally exported
4280                     if (exportDir.packge.equals(pkg)) {
4281                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4282                             // Warning may be suppressed by
4283                             // annotations; check again for being
4284                             // enabled in the deferred context.
4285                             log.warning(pos, LintWarnings.MissingExplicitCtor(c, pkg, modle));
4286                         } else {
4287                             return;
4288                         }
4289                     }
4290                 }
4291             }
4292         }
4293         return;
4294     }
4295 
4296     private class ConversionWarner extends Warner {
4297         final String uncheckedKey;
4298         final Type found;
4299         final Type expected;
4300         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4301             super(pos);
4302             this.uncheckedKey = uncheckedKey;
4303             this.found = found;
4304             this.expected = expected;
4305         }
4306 
4307         @Override
4308         public void warn(LintCategory lint) {
4309             boolean warned = this.warned;
4310             super.warn(lint);
4311             if (warned) return; // suppress redundant diagnostics
4312             switch (lint) {
4313                 case UNCHECKED:
4314                     Check.this.warnUnchecked(pos(), LintWarnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4315                     break;
4316                 case VARARGS:
4317                     if (method != null &&
4318                             method.attribute(syms.trustMeType.tsym) != null &&
4319                             isTrustMeAllowedOnMethod(method) &&
4320                             !types.isReifiable(method.type.getParameterTypes().last())) {
4321                         log.warning(pos(), LintWarnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4322                     }
4323                     break;
4324                 default:
4325                     throw new AssertionError("Unexpected lint: " + lint);
4326             }
4327         }
4328     }
4329 
4330     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4331         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4332     }
4333 
4334     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4335         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4336     }
4337 
4338     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4339         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4340 
4341         if (functionalType != null) {
4342             try {
4343                 types.findDescriptorSymbol((TypeSymbol)cs);
4344             } catch (Types.FunctionDescriptorLookupError ex) {
4345                 DiagnosticPosition pos = tree.pos();
4346                 for (JCAnnotation a : tree.getModifiers().annotations) {
4347                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4348                         pos = a.pos();
4349                         break;
4350                     }
4351                 }
4352                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4353             }
4354         }
4355     }
4356 
4357     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4358         for (final JCImportBase impBase : toplevel.getImports()) {
4359             if (!(impBase instanceof JCImport imp))
4360                 continue;
4361             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4362                 continue;
4363             final JCFieldAccess select = imp.qualid;
4364             final Symbol origin;
4365             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4366                 continue;
4367 
4368             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4369             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4370                 log.error(imp.pos(),
4371                           Errors.CantResolveLocation(KindName.STATIC,
4372                                                      select.name,
4373                                                      null,
4374                                                      null,
4375                                                      Fragments.Location(kindName(site),
4376                                                                         site,
4377                                                                         null)));
4378             }
4379         }
4380     }
4381 
4382     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4383     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4384         OUTER: for (JCImportBase impBase : toplevel.getImports()) {
4385             if (impBase instanceof JCImport imp && !imp.staticImport &&
4386                 TreeInfo.name(imp.qualid) == names.asterisk) {
4387                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4388                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4389                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4390                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.qualid.selected.pos(), Errors.DoesntExist(tsym));
4391                 }
4392             }
4393         }
4394     }
4395 
4396     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4397         if (tsym == null || !processed.add(tsym))
4398             return false;
4399 
4400             // also search through inherited names
4401         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4402             return true;
4403 
4404         for (Type t : types.interfaces(tsym.type))
4405             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4406                 return true;
4407 
4408         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4409             if (sym.isStatic() &&
4410                 importAccessible(sym, packge) &&
4411                 sym.isMemberOf(origin, types)) {
4412                 return true;
4413             }
4414         }
4415 
4416         return false;
4417     }
4418 
4419     // is the sym accessible everywhere in packge?
4420     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4421         try {
4422             int flags = (int)(sym.flags() & AccessFlags);
4423             switch (flags) {
4424             default:
4425             case PUBLIC:
4426                 return true;
4427             case PRIVATE:
4428                 return false;
4429             case 0:
4430             case PROTECTED:
4431                 return sym.packge() == packge;
4432             }
4433         } catch (ClassFinder.BadClassFile err) {
4434             throw err;
4435         } catch (CompletionFailure ex) {
4436             return false;
4437         }
4438     }
4439 
4440     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4441         JCCompilationUnit toplevel = env.toplevel;
4442 
4443         if (   toplevel.modle == syms.unnamedModule
4444             || toplevel.modle == syms.noModule
4445             || (check.sym.flags() & COMPOUND) != 0) {
4446             return ;
4447         }
4448 
4449         ExportsDirective currentExport = findExport(toplevel.packge);
4450 
4451         if (   currentExport == null //not exported
4452             || currentExport.modules != null) //don't check classes in qualified export
4453             return ;
4454 
4455         new TreeScanner() {
4456             Lint lint = env.info.lint;
4457             boolean inSuperType;
4458 
4459             @Override
4460             public void visitBlock(JCBlock tree) {
4461             }
4462             @Override
4463             public void visitMethodDef(JCMethodDecl tree) {
4464                 if (!isAPISymbol(tree.sym))
4465                     return;
4466                 Lint prevLint = lint;
4467                 try {
4468                     lint = lint.augment(tree.sym);
4469                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4470                         super.visitMethodDef(tree);
4471                     }
4472                 } finally {
4473                     lint = prevLint;
4474                 }
4475             }
4476             @Override
4477             public void visitVarDef(JCVariableDecl tree) {
4478                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4479                     return;
4480                 Lint prevLint = lint;
4481                 try {
4482                     lint = lint.augment(tree.sym);
4483                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4484                         scan(tree.mods);
4485                         scan(tree.vartype);
4486                     }
4487                 } finally {
4488                     lint = prevLint;
4489                 }
4490             }
4491             @Override
4492             public void visitClassDef(JCClassDecl tree) {
4493                 if (tree != check)
4494                     return ;
4495 
4496                 if (!isAPISymbol(tree.sym))
4497                     return ;
4498 
4499                 Lint prevLint = lint;
4500                 try {
4501                     lint = lint.augment(tree.sym);
4502                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4503                         scan(tree.mods);
4504                         scan(tree.typarams);
4505                         try {
4506                             inSuperType = true;
4507                             scan(tree.extending);
4508                             scan(tree.implementing);
4509                         } finally {
4510                             inSuperType = false;
4511                         }
4512                         scan(tree.defs);
4513                     }
4514                 } finally {
4515                     lint = prevLint;
4516                 }
4517             }
4518             @Override
4519             public void visitTypeApply(JCTypeApply tree) {
4520                 scan(tree.clazz);
4521                 boolean oldInSuperType = inSuperType;
4522                 try {
4523                     inSuperType = false;
4524                     scan(tree.arguments);
4525                 } finally {
4526                     inSuperType = oldInSuperType;
4527                 }
4528             }
4529             @Override
4530             public void visitIdent(JCIdent tree) {
4531                 Symbol sym = TreeInfo.symbol(tree);
4532                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4533                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4534                 }
4535             }
4536 
4537             @Override
4538             public void visitSelect(JCFieldAccess tree) {
4539                 Symbol sym = TreeInfo.symbol(tree);
4540                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4541                 if (sym.kind == TYP && sitesym.kind == PCK) {
4542                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4543                 } else {
4544                     super.visitSelect(tree);
4545                 }
4546             }
4547 
4548             @Override
4549             public void visitAnnotation(JCAnnotation tree) {
4550                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4551                     super.visitAnnotation(tree);
4552             }
4553 
4554         }.scan(check);
4555     }
4556         //where:
4557         private ExportsDirective findExport(PackageSymbol pack) {
4558             for (ExportsDirective d : pack.modle.exports) {
4559                 if (d.packge == pack)
4560                     return d;
4561             }
4562 
4563             return null;
4564         }
4565         private boolean isAPISymbol(Symbol sym) {
4566             while (sym.kind != PCK) {
4567                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4568                     return false;
4569                 }
4570                 sym = sym.owner;
4571             }
4572             return true;
4573         }
4574         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4575             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4576                 log.warning(pos, LintWarnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4577                 return ;
4578             }
4579 
4580             PackageSymbol whatPackage = what.packge();
4581             ExportsDirective whatExport = findExport(whatPackage);
4582             ExportsDirective inExport = findExport(inPackage);
4583 
4584             if (whatExport == null) { //package not exported:
4585                 log.warning(pos, LintWarnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4586                 return ;
4587             }
4588 
4589             if (whatExport.modules != null) {
4590                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4591                     log.warning(pos, LintWarnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4592                 }
4593             }
4594 
4595             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4596                 //check that relativeTo.modle requires transitive what.modle, somehow:
4597                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4598 
4599                 while (todo.nonEmpty()) {
4600                     ModuleSymbol current = todo.head;
4601                     todo = todo.tail;
4602                     if (current == whatPackage.modle)
4603                         return ; //OK
4604                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4605                         continue; //for automatic modules, don't look into their dependencies
4606                     for (RequiresDirective req : current.requires) {
4607                         if (req.isTransitive()) {
4608                             todo = todo.prepend(req.module);
4609                         }
4610                     }
4611                 }
4612 
4613                 log.warning(pos, LintWarnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4614             }
4615         }
4616 
4617     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4618         if (msym.kind != MDL) {
4619             log.warning(pos, LintWarnings.ModuleNotFound(msym));
4620         }
4621     }
4622 
4623     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4624         if (packge.members().isEmpty() &&
4625             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4626             log.warning(pos, LintWarnings.PackageEmptyOrNotFound(packge));
4627         }
4628     }
4629 
4630     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4631         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4632             if (rd.isTransitive()) {    // see comment in Log.applyLint() for special logic that applies
4633                 log.warning(pos, LintWarnings.RequiresTransitiveAutomatic);
4634             } else {
4635                 log.warning(pos, LintWarnings.RequiresAutomatic);
4636             }
4637         }
4638     }
4639 
4640     /**
4641      * Verify the case labels conform to the constraints. Checks constraints related
4642      * combinations of patterns and other labels.
4643      *
4644      * @param cases the cases that should be checked.
4645      */
4646     void checkSwitchCaseStructure(List<JCCase> cases) {
4647         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4648             JCCase c = l.head;
4649             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4650                 if (TreeInfo.isNull(constLabel.expr)) {
4651                     if (c.labels.tail.nonEmpty()) {
4652                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4653                             if (c.labels.tail.tail.nonEmpty()) {
4654                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4655                             }
4656                         } else {
4657                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4658                         }
4659                     }
4660                 } else {
4661                     for (JCCaseLabel label : c.labels.tail) {
4662                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4663                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4664                             break;
4665                         }
4666                     }
4667                 }
4668             } else if (c.labels.tail.nonEmpty()) {
4669                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4670                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4671 
4672                 if (!allUnderscore) {
4673                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4674                 }
4675 
4676                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4677 
4678                 if (allPatternCaseLabels) {
4679                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4680                 }
4681 
4682                 for (JCCaseLabel label : c.labels.tail) {
4683                     if (label instanceof JCConstantCaseLabel) {
4684                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4685                         break;
4686                     }
4687                 }
4688             }
4689         }
4690 
4691         boolean isCaseStatementGroup = cases.nonEmpty() &&
4692                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4693 
4694         if (isCaseStatementGroup) {
4695             boolean previousCompletessNormally = false;
4696             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4697                 JCCase c = l.head;
4698                 if (previousCompletessNormally &&
4699                     c.stats.nonEmpty() &&
4700                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4701                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4702                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4703                 } else if (c.stats.isEmpty() &&
4704                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4705                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4706                            hasStatements(l.tail)) {
4707                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4708                 }
4709                 previousCompletessNormally = c.completesNormally;
4710             }
4711         }
4712     }
4713 
4714     boolean hasBindings(JCTree p) {
4715         boolean[] bindings = new boolean[1];
4716 
4717         new TreeScanner() {
4718             @Override
4719             public void visitBindingPattern(JCBindingPattern tree) {
4720                 bindings[0] |= !tree.var.sym.isUnnamedVariable();
4721                 super.visitBindingPattern(tree);
4722             }
4723         }.scan(p);
4724 
4725         return bindings[0];
4726     }
4727 
4728     boolean hasStatements(List<JCCase> cases) {
4729         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4730             if (l.head.stats.nonEmpty()) {
4731                 return true;
4732             }
4733         }
4734 
4735         return false;
4736     }
4737     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4738         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4739         boolean seenDefault = false;
4740         boolean seenDefaultLabel = false;
4741         boolean warnDominatedByDefault = false;
4742         boolean unconditionalFound = false;
4743 
4744         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4745             JCCase c = l.head;
4746             for (JCCaseLabel label : c.labels) {
4747                 if (label.hasTag(DEFAULTCASELABEL)) {
4748                     seenDefault = true;
4749                     seenDefaultLabel |=
4750                             TreeInfo.isNullCaseLabel(c.labels.head);
4751                     continue;
4752                 }
4753                 if (TreeInfo.isNullCaseLabel(label)) {
4754                     if (seenDefault) {
4755                         log.error(label.pos(), Errors.PatternDominated);
4756                     }
4757                     continue;
4758                 }
4759                 if (seenDefault && !warnDominatedByDefault) {
4760                     if (label.hasTag(PATTERNCASELABEL) ||
4761                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4762                         log.error(label.pos(), Errors.PatternDominated);
4763                         warnDominatedByDefault = true;
4764                     }
4765                 }
4766                 Type currentType = labelType(label);
4767                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4768                     JCCase testCase = caseAndLabel.fst;
4769                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4770                     Type testType = labelType(testCaseLabel);
4771 
4772                     // an unconditional pattern cannot be followed by any other label
4773                     if (allowPrimitivePatterns && unconditionalCaseLabel == testCaseLabel && unconditionalCaseLabel != label) {
4774                         log.error(label.pos(), Errors.PatternDominated);
4775                         continue;
4776                     }
4777 
4778                     boolean dominated = false;
4779                     if (!currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4780                         // the current label is potentially dominated by the existing (test) label, check:
4781                         if (types.isUnconditionallyExactCombined(currentType, testType) &&
4782                                 label instanceof JCConstantCaseLabel) {
4783                             dominated = !(testCaseLabel instanceof JCConstantCaseLabel) &&
4784                                          TreeInfo.unguardedCase(testCase);
4785                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4786                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4787                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4788                             dominated = patternDominated(testPatternCaseLabel.pat, patternCL.pat);
4789                         }
4790                     }
4791                     if (dominated) {
4792                         log.error(label.pos(), Errors.PatternDominated);
4793                     }
4794                 }
4795                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4796             }
4797         }
4798     }
4799         //where:
4800         private Type labelType(JCCaseLabel label) {
4801             return types.erasure(switch (label.getTag()) {
4802                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4803                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4804                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4805             });
4806         }
4807         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4808             Type existingPatternType = types.erasure(existingPattern.type);
4809             Type currentPatternType = types.erasure(currentPattern.type);
4810             if (!types.isUnconditionallyExactTypeBased(currentPatternType, existingPatternType)) {
4811                 return false;
4812             }
4813             if (currentPattern instanceof JCBindingPattern ||
4814                 currentPattern instanceof JCAnyPattern) {
4815                 return existingPattern instanceof JCBindingPattern ||
4816                        existingPattern instanceof JCAnyPattern;
4817             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4818                 if (existingPattern instanceof JCBindingPattern ||
4819                     existingPattern instanceof JCAnyPattern) {
4820                     return true;
4821                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4822                     List<JCPattern> existingNested = existingRecordPattern.nested;
4823                     List<JCPattern> currentNested = currentRecordPattern.nested;
4824                     if (existingNested.size() != currentNested.size()) {
4825                         return false;
4826                     }
4827                     while (existingNested.nonEmpty()) {
4828                         if (!patternDominated(existingNested.head, currentNested.head)) {
4829                             return false;
4830                         }
4831                         existingNested = existingNested.tail;
4832                         currentNested = currentNested.tail;
4833                     }
4834                     return true;
4835                 } else {
4836                     Assert.error("Unknown pattern: " + existingPattern.getTag());
4837                 }
4838             } else {
4839                 Assert.error("Unknown pattern: " + currentPattern.getTag());
4840             }
4841             return false;
4842         }
4843 
4844     /** check if a type is a subtype of Externalizable, if that is available. */
4845     boolean isExternalizable(Type t) {
4846         try {
4847             syms.externalizableType.complete();
4848         } catch (CompletionFailure e) {
4849             return false;
4850         }
4851         return types.isSubtype(t, syms.externalizableType);
4852     }
4853 
4854     /**
4855      * Check structure of serialization declarations.
4856      */
4857     public void checkSerialStructure(JCClassDecl tree, ClassSymbol c) {
4858         (new SerialTypeVisitor()).visit(c, tree);
4859     }
4860 
4861     /**
4862      * This visitor will warn if a serialization-related field or
4863      * method is declared in a suspicious or incorrect way. In
4864      * particular, it will warn for cases where the runtime
4865      * serialization mechanism will silently ignore a mis-declared
4866      * entity.
4867      *
4868      * Distinguished serialization-related fields and methods:
4869      *
4870      * Methods:
4871      *
4872      * private void writeObject(ObjectOutputStream stream) throws IOException
4873      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
4874      *
4875      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
4876      * private void readObjectNoData() throws ObjectStreamException
4877      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
4878      *
4879      * Fields:
4880      *
4881      * private static final long serialVersionUID
4882      * private static final ObjectStreamField[] serialPersistentFields
4883      *
4884      * Externalizable: methods defined on the interface
4885      * public void writeExternal(ObjectOutput) throws IOException
4886      * public void readExternal(ObjectInput) throws IOException
4887      */
4888     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
4889         SerialTypeVisitor() {
4890             this.lint = Check.this.lint;
4891         }
4892 
4893         private static final Set<String> serialMethodNames =
4894             Set.of("writeObject", "writeReplace",
4895                    "readObject",  "readObjectNoData",
4896                    "readResolve");
4897 
4898         private static final Set<String> serialFieldNames =
4899             Set.of("serialVersionUID", "serialPersistentFields");
4900 
4901         // Type of serialPersistentFields
4902         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
4903 
4904         Lint lint;
4905 
4906         @Override
4907         public Void defaultAction(Element e, JCClassDecl p) {
4908             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
4909         }
4910 
4911         @Override
4912         public Void visitType(TypeElement e, JCClassDecl p) {
4913             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
4914             return null;
4915         }
4916 
4917         @Override
4918         public Void visitTypeAsClass(TypeElement e,
4919                                      JCClassDecl p) {
4920             // Anonymous classes filtered out by caller.
4921 
4922             ClassSymbol c = (ClassSymbol)e;
4923 
4924             checkCtorAccess(p, c);
4925 
4926             // Check for missing serialVersionUID; check *not* done
4927             // for enums or records.
4928             VarSymbol svuidSym = null;
4929             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4930                 if (sym.kind == VAR) {
4931                     svuidSym = (VarSymbol)sym;
4932                     break;
4933                 }
4934             }
4935 
4936             if (svuidSym == null) {
4937                 log.warning(p.pos(), LintWarnings.MissingSVUID(c));
4938             }
4939 
4940             // Check for serialPersistentFields to gate checks for
4941             // non-serializable non-transient instance fields
4942             boolean serialPersistentFieldsPresent =
4943                     c.members()
4944                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
4945                      .iterator()
4946                      .hasNext();
4947 
4948             // Check declarations of serialization-related methods and
4949             // fields
4950             for(Symbol el : c.getEnclosedElements()) {
4951                 runUnderLint(el, p, (enclosed, tree) -> {
4952                     String name = null;
4953                     switch(enclosed.getKind()) {
4954                     case FIELD -> {
4955                         if (!serialPersistentFieldsPresent) {
4956                             var flags = enclosed.flags();
4957                             if ( ((flags & TRANSIENT) == 0) &&
4958                                  ((flags & STATIC) == 0)) {
4959                                 Type varType = enclosed.asType();
4960                                 if (!canBeSerialized(varType)) {
4961                                     // Note per JLS arrays are
4962                                     // serializable even if the
4963                                     // component type is not.
4964                                     log.warning(
4965                                             TreeInfo.diagnosticPositionFor(enclosed, tree),
4966                                                 LintWarnings.NonSerializableInstanceField);
4967                                 } else if (varType.hasTag(ARRAY)) {
4968                                     ArrayType arrayType = (ArrayType)varType;
4969                                     Type elementType = arrayType.elemtype;
4970                                     while (elementType.hasTag(ARRAY)) {
4971                                         arrayType = (ArrayType)elementType;
4972                                         elementType = arrayType.elemtype;
4973                                     }
4974                                     if (!canBeSerialized(elementType)) {
4975                                         log.warning(
4976                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
4977                                                     LintWarnings.NonSerializableInstanceFieldArray(elementType));
4978                                     }
4979                                 }
4980                             }
4981                         }
4982 
4983                         name = enclosed.getSimpleName().toString();
4984                         if (serialFieldNames.contains(name)) {
4985                             VarSymbol field = (VarSymbol)enclosed;
4986                             switch (name) {
4987                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
4988                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
4989                             default -> throw new AssertionError();
4990                             }
4991                         }
4992                     }
4993 
4994                     // Correctly checking the serialization-related
4995                     // methods is subtle. For the methods declared to be
4996                     // private or directly declared in the class, the
4997                     // enclosed elements of the class can be checked in
4998                     // turn. However, writeReplace and readResolve can be
4999                     // declared in a superclass and inherited. Note that
5000                     // the runtime lookup walks the superclass chain
5001                     // looking for writeReplace/readResolve via
5002                     // Class.getDeclaredMethod. This differs from calling
5003                     // Elements.getAllMembers(TypeElement) as the latter
5004                     // will also pull in default methods from
5005                     // superinterfaces. In other words, the runtime checks
5006                     // (which long predate default methods on interfaces)
5007                     // do not admit the possibility of inheriting methods
5008                     // this way, a difference from general inheritance.
5009 
5010                     // The current implementation just checks the enclosed
5011                     // elements and does not directly check the inherited
5012                     // methods. If all the types are being checked this is
5013                     // less of a concern; however, there are cases that
5014                     // could be missed. In particular, readResolve and
5015                     // writeReplace could, in principle, by inherited from
5016                     // a non-serializable superclass and thus not checked
5017                     // even if compiled with a serializable child class.
5018                     case METHOD -> {
5019                         var method = (MethodSymbol)enclosed;
5020                         name = method.getSimpleName().toString();
5021                         if (serialMethodNames.contains(name)) {
5022                             switch (name) {
5023                             case "writeObject"      -> checkWriteObject(tree, e, method);
5024                             case "writeReplace"     -> checkWriteReplace(tree,e, method);
5025                             case "readObject"       -> checkReadObject(tree,e, method);
5026                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5027                             case "readResolve"      -> checkReadResolve(tree, e, method);
5028                             default ->  throw new AssertionError();
5029                             }
5030                         }
5031                     }
5032                     }
5033                 });
5034             }
5035 
5036             return null;
5037         }
5038 
5039         boolean canBeSerialized(Type type) {
5040             return type.isPrimitive() || rs.isSerializable(type);
5041         }
5042 
5043         /**
5044          * Check that Externalizable class needs a public no-arg
5045          * constructor.
5046          *
5047          * Check that a Serializable class has access to the no-arg
5048          * constructor of its first nonserializable superclass.
5049          */
5050         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5051             if (isExternalizable(c.type)) {
5052                 for(var sym : c.getEnclosedElements()) {
5053                     if (sym.isConstructor() &&
5054                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5055                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5056                             return;
5057                         }
5058                     }
5059                 }
5060                 log.warning(tree.pos(),
5061                             LintWarnings.ExternalizableMissingPublicNoArgCtor);
5062             } else {
5063                 // Approximate access to the no-arg constructor up in
5064                 // the superclass chain by checking that the
5065                 // constructor is not private. This may not handle
5066                 // some cross-package situations correctly.
5067                 Type superClass = c.getSuperclass();
5068                 // java.lang.Object is *not* Serializable so this loop
5069                 // should terminate.
5070                 while (rs.isSerializable(superClass) ) {
5071                     try {
5072                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5073                     } catch(ClassCastException cce) {
5074                         return ; // Don't try to recover
5075                     }
5076                 }
5077                 // Non-Serializable superclass
5078                 try {
5079                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5080                     for(var sym : supertype.getEnclosedElements()) {
5081                         if (sym.isConstructor()) {
5082                             MethodSymbol ctor = (MethodSymbol)sym;
5083                             if (ctor.getParameters().isEmpty()) {
5084                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5085                                     // Handle nested classes and implicit this$0
5086                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5087                                      ((supertype.flags() & STATIC) == 0)))
5088                                     log.warning(tree.pos(),
5089                                                 LintWarnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5090                             }
5091                         }
5092                     }
5093                 } catch (ClassCastException cce) {
5094                     return ; // Don't try to recover
5095                 }
5096                 return;
5097             }
5098         }
5099 
5100         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5101             // To be effective, serialVersionUID must be marked static
5102             // and final, but private is recommended. But alas, in
5103             // practice there are many non-private serialVersionUID
5104             // fields.
5105              if ((svuid.flags() & (STATIC | FINAL)) !=
5106                  (STATIC | FINAL)) {
5107                  log.warning(
5108                          TreeInfo.diagnosticPositionFor(svuid, tree),
5109                              LintWarnings.ImproperSVUID((Symbol)e));
5110              }
5111 
5112              // check svuid has type long
5113              if (!svuid.type.hasTag(LONG)) {
5114                  log.warning(
5115                          TreeInfo.diagnosticPositionFor(svuid, tree),
5116                              LintWarnings.LongSVUID((Symbol)e));
5117              }
5118 
5119              if (svuid.getConstValue() == null)
5120                  log.warning(
5121                          TreeInfo.diagnosticPositionFor(svuid, tree),
5122                              LintWarnings.ConstantSVUID((Symbol)e));
5123         }
5124 
5125         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5126             // To be effective, serialPersisentFields must be private, static, and final.
5127              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5128                  (PRIVATE | STATIC | FINAL)) {
5129                  log.warning(
5130                          TreeInfo.diagnosticPositionFor(spf, tree),
5131                              LintWarnings.ImproperSPF);
5132              }
5133 
5134              if (!types.isSameType(spf.type, OSF_TYPE)) {
5135                  log.warning(
5136                          TreeInfo.diagnosticPositionFor(spf, tree),
5137                              LintWarnings.OSFArraySPF);
5138              }
5139 
5140             if (isExternalizable((Type)(e.asType()))) {
5141                 log.warning(
5142                         TreeInfo.diagnosticPositionFor(spf, tree),
5143                             LintWarnings.IneffectualSerialFieldExternalizable);
5144             }
5145 
5146             // Warn if serialPersistentFields is initialized to a
5147             // literal null.
5148             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5149             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5150                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5151                 JCExpression initExpr = variableDef.init;
5152                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5153                      log.warning(initExpr.pos(),
5154                                  LintWarnings.SPFNullInit);
5155                  }
5156             }
5157         }
5158 
5159         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5160             // The "synchronized" modifier is seen in the wild on
5161             // readObject and writeObject methods and is generally
5162             // innocuous.
5163 
5164             // private void writeObject(ObjectOutputStream stream) throws IOException
5165             checkPrivateNonStaticMethod(tree, method);
5166             checkReturnType(tree, e, method, syms.voidType);
5167             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5168             checkExceptions(tree, e, method, syms.ioExceptionType);
5169             checkExternalizable(tree, e, method);
5170         }
5171 
5172         private void checkWriteReplace(JCClassDecl tree, Element e, MethodSymbol method) {
5173             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5174             // ObjectStreamException
5175 
5176             // Excluding abstract, could have a more complicated
5177             // rule based on abstract-ness of the class
5178             checkConcreteInstanceMethod(tree, e, method);
5179             checkReturnType(tree, e, method, syms.objectType);
5180             checkNoArgs(tree, e, method);
5181             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5182         }
5183 
5184         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5185             // The "synchronized" modifier is seen in the wild on
5186             // readObject and writeObject methods and is generally
5187             // innocuous.
5188 
5189             // private void readObject(ObjectInputStream stream)
5190             //   throws IOException, ClassNotFoundException
5191             checkPrivateNonStaticMethod(tree, method);
5192             checkReturnType(tree, e, method, syms.voidType);
5193             checkOneArg(tree, e, method, syms.objectInputStreamType);
5194             checkExceptions(tree, e, method, syms.ioExceptionType, syms.classNotFoundExceptionType);
5195             checkExternalizable(tree, e, method);
5196         }
5197 
5198         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5199             // private void readObjectNoData() throws ObjectStreamException
5200             checkPrivateNonStaticMethod(tree, method);
5201             checkReturnType(tree, e, method, syms.voidType);
5202             checkNoArgs(tree, e, method);
5203             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5204             checkExternalizable(tree, e, method);
5205         }
5206 
5207         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5208             // ANY-ACCESS-MODIFIER Object readResolve()
5209             // throws ObjectStreamException
5210 
5211             // Excluding abstract, could have a more complicated
5212             // rule based on abstract-ness of the class
5213             checkConcreteInstanceMethod(tree, e, method);
5214             checkReturnType(tree,e, method, syms.objectType);
5215             checkNoArgs(tree, e, method);
5216             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5217         }
5218 
5219         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5220             //public void writeExternal(ObjectOutput) throws IOException
5221             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5222         }
5223 
5224         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5225             // public void readExternal(ObjectInput) throws IOException
5226             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5227          }
5228 
5229         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5230                                              boolean isExtern) {
5231             if (isExtern && isExternMethod(tree, e, method, argType)) {
5232                 log.warning(
5233                         TreeInfo.diagnosticPositionFor(method, tree),
5234                             LintWarnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5235             }
5236         }
5237 
5238         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5239             var flags = method.flags();
5240             if ((flags & PRIVATE) == 0) {
5241                 log.warning(
5242                         TreeInfo.diagnosticPositionFor(method, tree),
5243                             LintWarnings.SerialMethodNotPrivate(method.getSimpleName()));
5244             }
5245 
5246             if ((flags & STATIC) != 0) {
5247                 log.warning(
5248                         TreeInfo.diagnosticPositionFor(method, tree),
5249                             LintWarnings.SerialMethodStatic(method.getSimpleName()));
5250             }
5251         }
5252 
5253         /**
5254          * Per section 1.12 "Serialization of Enum Constants" of
5255          * the serialization specification, due to the special
5256          * serialization handling of enums, any writeObject,
5257          * readObject, writeReplace, and readResolve methods are
5258          * ignored as are serialPersistentFields and
5259          * serialVersionUID fields.
5260          */
5261         @Override
5262         public Void visitTypeAsEnum(TypeElement e,
5263                                     JCClassDecl p) {
5264             boolean isExtern = isExternalizable((Type)e.asType());
5265             for(Element el : e.getEnclosedElements()) {
5266                 runUnderLint(el, p, (enclosed, tree) -> {
5267                     String name = enclosed.getSimpleName().toString();
5268                     switch(enclosed.getKind()) {
5269                     case FIELD -> {
5270                         var field = (VarSymbol)enclosed;
5271                         if (serialFieldNames.contains(name)) {
5272                             log.warning(
5273                                     TreeInfo.diagnosticPositionFor(field, tree),
5274                                         LintWarnings.IneffectualSerialFieldEnum(name));
5275                         }
5276                     }
5277 
5278                     case METHOD -> {
5279                         var method = (MethodSymbol)enclosed;
5280                         if (serialMethodNames.contains(name)) {
5281                             log.warning(
5282                                     TreeInfo.diagnosticPositionFor(method, tree),
5283                                         LintWarnings.IneffectualSerialMethodEnum(name));
5284                         }
5285 
5286                         if (isExtern) {
5287                             switch(name) {
5288                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5289                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5290                             }
5291                         }
5292                     }
5293 
5294                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5295                     case ENUM_CONSTANT -> {
5296                         var field = (VarSymbol)enclosed;
5297                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5298                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5299                             ClassSymbol enumConstantType = nc.def.sym;
5300                             visitTypeAsEnum(enumConstantType, p);
5301                         }
5302                     }
5303 
5304                     }});
5305             }
5306             return null;
5307         }
5308 
5309         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5310             //public void writeExternal(ObjectOutput) throws IOException
5311             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5312         }
5313 
5314         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5315              // public void readExternal(ObjectInput) throws IOException
5316             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5317          }
5318 
5319         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5320             if (isExternMethod(tree, e, method, argType)) {
5321                 log.warning(
5322                         TreeInfo.diagnosticPositionFor(method, tree),
5323                             LintWarnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5324             }
5325         }
5326 
5327         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5328             long flags = method.flags();
5329             Type rtype = method.getReturnType();
5330 
5331             // Not necessary to check throws clause in this context
5332             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5333                 types.isSameType(syms.voidType, rtype) &&
5334                 hasExactlyOneArgWithType(tree, e, method, argType);
5335         }
5336 
5337         /**
5338          * Most serialization-related fields and methods on interfaces
5339          * are ineffectual or problematic.
5340          */
5341         @Override
5342         public Void visitTypeAsInterface(TypeElement e,
5343                                          JCClassDecl p) {
5344             for(Element el : e.getEnclosedElements()) {
5345                 runUnderLint(el, p, (enclosed, tree) -> {
5346                     String name = null;
5347                     switch(enclosed.getKind()) {
5348                     case FIELD -> {
5349                         var field = (VarSymbol)enclosed;
5350                         name = field.getSimpleName().toString();
5351                         switch(name) {
5352                         case "serialPersistentFields" -> {
5353                             log.warning(
5354                                     TreeInfo.diagnosticPositionFor(field, tree),
5355                                         LintWarnings.IneffectualSerialFieldInterface);
5356                         }
5357 
5358                         case "serialVersionUID" -> {
5359                             checkSerialVersionUID(tree, e, field);
5360                         }
5361                         }
5362                     }
5363 
5364                     case METHOD -> {
5365                         var method = (MethodSymbol)enclosed;
5366                         name = enclosed.getSimpleName().toString();
5367                         if (serialMethodNames.contains(name)) {
5368                             switch (name) {
5369                             case
5370                                 "readObject",
5371                                 "readObjectNoData",
5372                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5373 
5374                             case
5375                                 "writeReplace",
5376                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5377 
5378                             default ->  throw new AssertionError();
5379                             }
5380 
5381                         }
5382                     }}
5383                 });
5384             }
5385 
5386             return null;
5387         }
5388 
5389         private void checkPrivateMethod(JCClassDecl tree,
5390                                         Element e,
5391                                         MethodSymbol method) {
5392             if ((method.flags() & PRIVATE) == 0) {
5393                 log.warning(
5394                         TreeInfo.diagnosticPositionFor(method, tree),
5395                             LintWarnings.NonPrivateMethodWeakerAccess);
5396             }
5397         }
5398 
5399         private void checkDefaultIneffective(JCClassDecl tree,
5400                                              Element e,
5401                                              MethodSymbol method) {
5402             if ((method.flags() & DEFAULT) == DEFAULT) {
5403                 log.warning(
5404                         TreeInfo.diagnosticPositionFor(method, tree),
5405                             LintWarnings.DefaultIneffective);
5406 
5407             }
5408         }
5409 
5410         @Override
5411         public Void visitTypeAsAnnotationType(TypeElement e,
5412                                               JCClassDecl p) {
5413             // Per the JLS, annotation types are not serializeable
5414             return null;
5415         }
5416 
5417         /**
5418          * From the Java Object Serialization Specification, 1.13
5419          * Serialization of Records:
5420          *
5421          * "The process by which record objects are serialized or
5422          * externalized cannot be customized; any class-specific
5423          * writeObject, readObject, readObjectNoData, writeExternal,
5424          * and readExternal methods defined by record classes are
5425          * ignored during serialization and deserialization. However,
5426          * a substitute object to be serialized or a designate
5427          * replacement may be specified, by the writeReplace and
5428          * readResolve methods, respectively. Any
5429          * serialPersistentFields field declaration is
5430          * ignored. Documenting serializable fields and data for
5431          * record classes is unnecessary, since there is no variation
5432          * in the serial form, other than whether a substitute or
5433          * replacement object is used. The serialVersionUID of a
5434          * record class is 0L unless explicitly declared. The
5435          * requirement for matching serialVersionUID values is waived
5436          * for record classes."
5437          */
5438         @Override
5439         public Void visitTypeAsRecord(TypeElement e,
5440                                       JCClassDecl p) {
5441             boolean isExtern = isExternalizable((Type)e.asType());
5442             for(Element el : e.getEnclosedElements()) {
5443                 runUnderLint(el, p, (enclosed, tree) -> {
5444                     String name = enclosed.getSimpleName().toString();
5445                     switch(enclosed.getKind()) {
5446                     case FIELD -> {
5447                         var field = (VarSymbol)enclosed;
5448                         switch(name) {
5449                         case "serialPersistentFields" -> {
5450                             log.warning(
5451                                     TreeInfo.diagnosticPositionFor(field, tree),
5452                                         LintWarnings.IneffectualSerialFieldRecord);
5453                         }
5454 
5455                         case "serialVersionUID" -> {
5456                             // Could generate additional warning that
5457                             // svuid value is not checked to match for
5458                             // records.
5459                             checkSerialVersionUID(tree, e, field);
5460                         }}
5461                     }
5462 
5463                     case METHOD -> {
5464                         var method = (MethodSymbol)enclosed;
5465                         switch(name) {
5466                         case "writeReplace" -> checkWriteReplace(tree, e, method);
5467                         case "readResolve"  -> checkReadResolve(tree, e, method);
5468 
5469                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5470                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5471 
5472                         default -> {
5473                             if (serialMethodNames.contains(name)) {
5474                                 log.warning(
5475                                         TreeInfo.diagnosticPositionFor(method, tree),
5476                                             LintWarnings.IneffectualSerialMethodRecord(name));
5477                             }
5478                         }}
5479                     }}});
5480             }
5481             return null;
5482         }
5483 
5484         void checkConcreteInstanceMethod(JCClassDecl tree,
5485                                          Element enclosing,
5486                                          MethodSymbol method) {
5487             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5488                     log.warning(
5489                             TreeInfo.diagnosticPositionFor(method, tree),
5490                                 LintWarnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5491             }
5492         }
5493 
5494         private void checkReturnType(JCClassDecl tree,
5495                                      Element enclosing,
5496                                      MethodSymbol method,
5497                                      Type expectedReturnType) {
5498             // Note: there may be complications checking writeReplace
5499             // and readResolve since they return Object and could, in
5500             // principle, have covariant overrides and any synthetic
5501             // bridge method would not be represented here for
5502             // checking.
5503             Type rtype = method.getReturnType();
5504             if (!types.isSameType(expectedReturnType, rtype)) {
5505                 log.warning(
5506                         TreeInfo.diagnosticPositionFor(method, tree),
5507                             LintWarnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5508                                                                       rtype, expectedReturnType));
5509             }
5510         }
5511 
5512         private void checkOneArg(JCClassDecl tree,
5513                                  Element enclosing,
5514                                  MethodSymbol method,
5515                                  Type expectedType) {
5516             String name = method.getSimpleName().toString();
5517 
5518             var parameters= method.getParameters();
5519 
5520             if (parameters.size() != 1) {
5521                 log.warning(
5522                         TreeInfo.diagnosticPositionFor(method, tree),
5523                             LintWarnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5524                 return;
5525             }
5526 
5527             Type parameterType = parameters.get(0).asType();
5528             if (!types.isSameType(parameterType, expectedType)) {
5529                 log.warning(
5530                         TreeInfo.diagnosticPositionFor(method, tree),
5531                             LintWarnings.SerialMethodParameterType(method.getSimpleName(),
5532                                                                expectedType,
5533                                                                parameterType));
5534             }
5535         }
5536 
5537         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5538                                                  Element enclosing,
5539                                                  MethodSymbol method,
5540                                                  Type expectedType) {
5541             var parameters = method.getParameters();
5542             return (parameters.size() == 1) &&
5543                 types.isSameType(parameters.get(0).asType(), expectedType);
5544         }
5545 
5546 
5547         private void checkNoArgs(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5548             var parameters = method.getParameters();
5549             if (!parameters.isEmpty()) {
5550                 log.warning(
5551                         TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5552                             LintWarnings.SerialMethodNoArgs(method.getSimpleName()));
5553             }
5554         }
5555 
5556         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5557             // If the enclosing class is externalizable, warn for the method
5558             if (isExternalizable((Type)enclosing.asType())) {
5559                 log.warning(
5560                         TreeInfo.diagnosticPositionFor(method, tree),
5561                             LintWarnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5562             }
5563             return;
5564         }
5565 
5566         private void checkExceptions(JCClassDecl tree,
5567                                      Element enclosing,
5568                                      MethodSymbol method,
5569                                      Type... declaredExceptions) {
5570             for (Type thrownType: method.getThrownTypes()) {
5571                 // For each exception in the throws clause of the
5572                 // method, if not an Error and not a RuntimeException,
5573                 // check if the exception is a subtype of a declared
5574                 // exception from the throws clause of the
5575                 // serialization method in question.
5576                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5577                     types.isSubtype(thrownType, syms.errorType) ) {
5578                     continue;
5579                 } else {
5580                     boolean declared = false;
5581                     for (Type declaredException : declaredExceptions) {
5582                         if (types.isSubtype(thrownType, declaredException)) {
5583                             declared = true;
5584                             continue;
5585                         }
5586                     }
5587                     if (!declared) {
5588                         log.warning(
5589                                 TreeInfo.diagnosticPositionFor(method, tree),
5590                                     LintWarnings.SerialMethodUnexpectedException(method.getSimpleName(),
5591                                                                              thrownType));
5592                     }
5593                 }
5594             }
5595             return;
5596         }
5597 
5598         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5599             Lint prevLint = lint;
5600             try {
5601                 lint = lint.augment((Symbol) symbol);
5602 
5603                 if (lint.isEnabled(LintCategory.SERIAL)) {
5604                     task.accept(symbol, p);
5605                 }
5606 
5607                 return null;
5608             } finally {
5609                 lint = prevLint;
5610             }
5611         }
5612 
5613     }
5614 
5615     void checkRequiresIdentity(JCTree tree, Lint lint) {
5616         switch (tree) {
5617             case JCClassDecl classDecl -> {
5618                 Type st = types.supertype(classDecl.sym.type);
5619                 if (st != null &&
5620                         // no need to recheck j.l.Object, shortcut,
5621                         st.tsym != syms.objectType.tsym &&
5622                         // this one could be null, no explicit extends
5623                         classDecl.extending != null) {
5624                     checkIfIdentityIsExpected(classDecl.extending.pos(), st, lint);
5625                 }
5626                 for (JCExpression intrface: classDecl.implementing) {
5627                     checkIfIdentityIsExpected(intrface.pos(), intrface.type, lint);
5628                 }
5629                 for (JCTypeParameter tp : classDecl.typarams) {
5630                     checkIfIdentityIsExpected(tp.pos(), tp.type, lint);
5631                 }
5632             }
5633             case JCVariableDecl variableDecl -> {
5634                 if (variableDecl.vartype != null &&
5635                         (variableDecl.sym.flags_field & RECORD) == 0 ||
5636                         (variableDecl.sym.flags_field & ~(Flags.PARAMETER | RECORD | GENERATED_MEMBER)) != 0) {
5637                     /* we don't want to warn twice so if this variable is a compiler generated parameter of
5638                      * a canonical record constructor, we don't want to issue a warning as we will warn the
5639                      * corresponding compiler generated private record field anyways
5640                      */
5641                     checkIfIdentityIsExpected(variableDecl.vartype.pos(), variableDecl.vartype.type, lint);
5642                 }
5643             }
5644             case JCTypeCast typeCast -> checkIfIdentityIsExpected(typeCast.clazz.pos(), typeCast.clazz.type, lint);
5645             case JCBindingPattern bindingPattern -> {
5646                 if (bindingPattern.var.vartype != null) {
5647                     checkIfIdentityIsExpected(bindingPattern.var.vartype.pos(), bindingPattern.var.vartype.type, lint);
5648                 }
5649             }
5650             case JCMethodDecl methodDecl -> {
5651                 for (JCTypeParameter tp : methodDecl.typarams) {
5652                     checkIfIdentityIsExpected(tp.pos(), tp.type, lint);
5653                 }
5654                 if (methodDecl.restype != null && !methodDecl.restype.type.hasTag(VOID)) {
5655                     checkIfIdentityIsExpected(methodDecl.restype.pos(), methodDecl.restype.type, lint);
5656                 }
5657             }
5658             case JCMemberReference mref -> {
5659                 checkIfIdentityIsExpected(mref.expr.pos(), mref.target, lint);
5660                 checkIfTypeParamsRequiresIdentity(mref.sym.getMetadata(), mref.typeargs, lint);
5661             }
5662             case JCPolyExpression poly
5663                 when (poly instanceof JCNewClass || poly instanceof JCMethodInvocation) -> {
5664                 if (poly instanceof JCNewClass newClass) {
5665                     checkIfIdentityIsExpected(newClass.clazz.pos(), newClass.clazz.type, lint);
5666                 }
5667                 List<JCExpression> argExps = poly instanceof JCNewClass ?
5668                         ((JCNewClass)poly).args :
5669                         ((JCMethodInvocation)poly).args;
5670                 Symbol msym = TreeInfo.symbolFor(poly);
5671                 if (msym != null) {
5672                     if (!argExps.isEmpty() && msym instanceof MethodSymbol ms && ms.params != null) {
5673                         VarSymbol lastParam = ms.params.head;
5674                         for (VarSymbol param: ms.params) {
5675                             if ((param.flags_field & REQUIRES_IDENTITY) != 0 && argExps.head.type.isValueBased()) {
5676                                 log.warning(argExps.head.pos(), LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5677                             }
5678                             lastParam = param;
5679                             argExps = argExps.tail;
5680                         }
5681                         while (argExps != null && !argExps.isEmpty() && lastParam != null) {
5682                             if ((lastParam.flags_field & REQUIRES_IDENTITY) != 0 && argExps.head.type.isValueBased()) {
5683                                 log.warning(argExps.head.pos(), LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5684                             }
5685                             argExps = argExps.tail;
5686                         }
5687                     }
5688                     checkIfTypeParamsRequiresIdentity(
5689                             msym.getMetadata(),
5690                             poly instanceof JCNewClass ?
5691                                 ((JCNewClass)poly).typeargs :
5692                                 ((JCMethodInvocation)poly).typeargs,
5693                             lint);
5694                 }
5695             }
5696             default -> throw new AssertionError("unexpected tree " + tree);
5697         }
5698     }
5699 
5700     /** Check if a type required an identity class
5701      */
5702     private boolean checkIfIdentityIsExpected(DiagnosticPosition pos, Type t, Lint lint) {
5703         if (t != null &&
5704                 lint != null &&
5705                 lint.isEnabled(LintCategory.IDENTITY)) {
5706             RequiresIdentityVisitor requiresIdentityVisitor = new RequiresIdentityVisitor();
5707             // we need to avoid recursion due to self referencing type vars or captures, this is why we need a set
5708             requiresIdentityVisitor.visit(t, new HashSet<>());
5709             if (requiresIdentityVisitor.requiresWarning) {
5710                 log.warning(pos, LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5711                 return true;
5712             }
5713         }
5714         return false;
5715     }
5716 
5717     // where
5718     private class RequiresIdentityVisitor extends Types.SimpleVisitor<Void, Set<Type>> {
5719         boolean requiresWarning = false;
5720 
5721         @Override
5722         public Void visitType(Type t, Set<Type> seen) {
5723             return null;
5724         }
5725 
5726         @Override
5727         public Void visitWildcardType(WildcardType t, Set<Type> seen) {
5728             return visit(t.type, seen);
5729         }
5730 
5731         @Override
5732         public Void visitTypeVar(TypeVar t, Set<Type> seen) {
5733             if (seen.add(t)) {
5734                 visit(t.getUpperBound(), seen);
5735             }
5736             return null;
5737         }
5738 
5739         @Override
5740         public Void visitCapturedType(CapturedType t, Set<Type> seen) {
5741             if (seen.add(t)) {
5742                 visit(t.getUpperBound(), seen);
5743                 visit(t.getLowerBound(), seen);
5744             }
5745             return null;
5746         }
5747 
5748         @Override
5749         public Void visitArrayType(ArrayType t, Set<Type> seen) {
5750             return visit(t.elemtype, seen);
5751         }
5752 
5753         @Override
5754         public Void visitClassType(ClassType t, Set<Type> seen) {
5755             if (t != null && t.tsym != null) {
5756                 SymbolMetadata sm = t.tsym.getMetadata();
5757                 if (sm != null && !t.getTypeArguments().isEmpty()) {
5758                     if (sm.getTypeAttributes().stream()
5759                             .filter(ta -> isRequiresIdentityAnnotation(ta.type.tsym) &&
5760                                     t.getTypeArguments().get(ta.position.parameter_index) != null &&
5761                                     t.getTypeArguments().get(ta.position.parameter_index).isValueBased()).findAny().isPresent()) {
5762                         requiresWarning = true;
5763                         return null;
5764                     }
5765                 }
5766             }
5767             visit(t.getEnclosingType(), seen);
5768             for (Type targ : t.getTypeArguments()) {
5769                 visit(targ, seen);
5770             }
5771             return null;
5772         }
5773     } // RequiresIdentityVisitor
5774 
5775     private void checkIfTypeParamsRequiresIdentity(SymbolMetadata sm,
5776                                                      List<JCExpression> typeParamTrees,
5777                                                      Lint lint) {
5778         if (typeParamTrees != null && !typeParamTrees.isEmpty()) {
5779             for (JCExpression targ : typeParamTrees) {
5780                 checkIfIdentityIsExpected(targ.pos(), targ.type, lint);
5781             }
5782             if (sm != null)
5783                 sm.getTypeAttributes().stream()
5784                         .filter(ta -> isRequiresIdentityAnnotation(ta.type.tsym) &&
5785                                 typeParamTrees.get(ta.position.parameter_index).type != null &&
5786                                 typeParamTrees.get(ta.position.parameter_index).type.isValueBased())
5787                         .forEach(ta -> log.warning(typeParamTrees.get(ta.position.parameter_index).pos(),
5788                                 CompilerProperties.LintWarnings.AttemptToUseValueBasedWhereIdentityExpected));
5789         }
5790     }
5791 
5792     private boolean isRequiresIdentityAnnotation(TypeSymbol annoType) {
5793         return annoType == syms.requiresIdentityType.tsym ||
5794                annoType.flatName() == syms.requiresIdentityInternalType.tsym.flatName();
5795     }
5796 }