1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Function;
  32 import java.util.function.Predicate;
  33 import java.util.function.Supplier;
  34 import java.util.function.ToIntBiFunction;
  35 import java.util.stream.Collectors;
  36 import java.util.stream.StreamSupport;
  37 
  38 import javax.lang.model.element.ElementKind;
  39 import javax.lang.model.element.NestingKind;
  40 import javax.tools.JavaFileManager;
  41 
  42 import com.sun.source.tree.CaseTree;
  43 import com.sun.tools.javac.code.*;
  44 import com.sun.tools.javac.code.Attribute.Compound;
  45 import com.sun.tools.javac.code.Directive.ExportsDirective;
  46 import com.sun.tools.javac.code.Directive.RequiresDirective;
  47 import com.sun.tools.javac.code.Source.Feature;
  48 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  49 import com.sun.tools.javac.jvm.*;
  50 import com.sun.tools.javac.resources.CompilerProperties;
  51 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  52 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  53 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  54 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  55 import com.sun.tools.javac.tree.*;
  56 import com.sun.tools.javac.util.*;
  57 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  58 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  59 import com.sun.tools.javac.util.JCDiagnostic.Error;
  60 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  61 import com.sun.tools.javac.util.JCDiagnostic.LintWarning;
  62 import com.sun.tools.javac.util.List;
  63 
  64 import com.sun.tools.javac.code.Lint;
  65 import com.sun.tools.javac.code.Lint.LintCategory;
  66 import com.sun.tools.javac.code.Scope.WriteableScope;
  67 import com.sun.tools.javac.code.Type.*;
  68 import com.sun.tools.javac.code.Symbol.*;
  69 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  70 import com.sun.tools.javac.tree.JCTree.*;
  71 
  72 import static com.sun.tools.javac.code.Flags.*;
  73 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  74 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  75 import static com.sun.tools.javac.code.Kinds.*;
  76 import static com.sun.tools.javac.code.Kinds.Kind.*;
  77 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  78 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  79 import static com.sun.tools.javac.code.TypeTag.*;
  80 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  81 
  82 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  83 import javax.lang.model.element.Element;
  84 import javax.lang.model.element.TypeElement;
  85 import javax.lang.model.type.DeclaredType;
  86 import javax.lang.model.util.ElementKindVisitor14;
  87 
  88 /** Type checking helper class for the attribution phase.
  89  *
  90  *  <p><b>This is NOT part of any supported API.
  91  *  If you write code that depends on this, you do so at your own risk.
  92  *  This code and its internal interfaces are subject to change or
  93  *  deletion without notice.</b>
  94  */
  95 public class Check {
  96     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  97 
  98     // Flag bits indicating which item(s) chosen from a pair of items
  99     private static final int FIRST = 0x01;
 100     private static final int SECOND = 0x02;
 101 
 102     private final Names names;
 103     private final Log log;
 104     private final Resolve rs;
 105     private final Symtab syms;
 106     private final Enter enter;
 107     private final DeferredAttr deferredAttr;
 108     private final Infer infer;
 109     private final Types types;
 110     private final TypeAnnotations typeAnnotations;
 111     private final JCDiagnostic.Factory diags;
 112     private final JavaFileManager fileManager;
 113     private final Source source;
 114     private final Target target;
 115     private final Profile profile;
 116     private final Preview preview;
 117     private final boolean warnOnAnyAccessToMembers;
 118 
 119     public boolean disablePreviewCheck;
 120 
 121     // The set of lint options currently in effect. It is initialized
 122     // from the context, and then is set/reset as needed by Attr as it
 123     // visits all the various parts of the trees during attribution.
 124     private Lint lint;
 125 
 126     // The method being analyzed in Attr - it is set/reset as needed by
 127     // Attr as it visits new method declarations.
 128     private MethodSymbol method;
 129 
 130     public static Check instance(Context context) {
 131         Check instance = context.get(checkKey);
 132         if (instance == null)
 133             instance = new Check(context);
 134         return instance;
 135     }
 136 
 137     @SuppressWarnings("this-escape")
 138     protected Check(Context context) {
 139         context.put(checkKey, this);
 140 
 141         names = Names.instance(context);
 142         log = Log.instance(context);
 143         rs = Resolve.instance(context);
 144         syms = Symtab.instance(context);
 145         enter = Enter.instance(context);
 146         deferredAttr = DeferredAttr.instance(context);
 147         infer = Infer.instance(context);
 148         types = Types.instance(context);
 149         typeAnnotations = TypeAnnotations.instance(context);
 150         diags = JCDiagnostic.Factory.instance(context);
 151         Options options = Options.instance(context);
 152         lint = Lint.instance(context);
 153         fileManager = context.get(JavaFileManager.class);
 154 
 155         source = Source.instance(context);
 156         target = Target.instance(context);
 157         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 158 
 159         disablePreviewCheck = false;
 160 
 161         Target target = Target.instance(context);
 162         syntheticNameChar = target.syntheticNameChar();
 163 
 164         profile = Profile.instance(context);
 165         preview = Preview.instance(context);
 166 
 167         allowModules = Feature.MODULES.allowedInSource(source);
 168         allowRecords = Feature.RECORDS.allowedInSource(source);
 169         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 170     }
 171 
 172     /** Character for synthetic names
 173      */
 174     char syntheticNameChar;
 175 
 176     /** A table mapping flat names of all compiled classes for each module in this run
 177      *  to their symbols; maintained from outside.
 178      */
 179     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 180 
 181     /** Are modules allowed
 182      */
 183     private final boolean allowModules;
 184 
 185     /** Are records allowed
 186      */
 187     private final boolean allowRecords;
 188 
 189     /** Are sealed classes allowed
 190      */
 191     private final boolean allowSealed;
 192 
 193     /** Whether to force suppression of deprecation and preview warnings.
 194      *  This happens when attributing import statements for JDK 9+.
 195      *  @see Feature#DEPRECATION_ON_IMPORT
 196      */
 197     private boolean importSuppression;
 198 
 199 /* *************************************************************************
 200  * Errors and Warnings
 201  **************************************************************************/
 202 
 203     Lint setLint(Lint newLint) {
 204         Lint prev = lint;
 205         lint = newLint;
 206         return prev;
 207     }
 208 
 209     boolean setImportSuppression(boolean newImportSuppression) {
 210         boolean prev = importSuppression;
 211         importSuppression = newImportSuppression;
 212         return prev;
 213     }
 214 
 215     MethodSymbol setMethod(MethodSymbol newMethod) {
 216         MethodSymbol prev = method;
 217         method = newMethod;
 218         return prev;
 219     }
 220 
 221     /** Warn about deprecated symbol.
 222      *  @param pos        Position to be used for error reporting.
 223      *  @param sym        The deprecated symbol.
 224      */
 225     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 226         Assert.check(!importSuppression);
 227         LintWarning warningKey = sym.isDeprecatedForRemoval() ?
 228             (sym.kind == MDL ?
 229                 LintWarnings.HasBeenDeprecatedForRemovalModule(sym) :
 230                 LintWarnings.HasBeenDeprecatedForRemoval(sym, sym.location())) :
 231             (sym.kind == MDL ?
 232                 LintWarnings.HasBeenDeprecatedModule(sym) :
 233                 LintWarnings.HasBeenDeprecated(sym, sym.location()));
 234         log.warning(pos, warningKey);
 235     }
 236 
 237     /** Log a preview warning.
 238      *  @param pos        Position to be used for error reporting.
 239      *  @param msg        A Warning describing the problem.
 240      */
 241     public void warnPreviewAPI(DiagnosticPosition pos, LintWarning warnKey) {
 242         if (!importSuppression)
 243             log.warning(pos, warnKey);
 244     }
 245 
 246     /** Warn about unchecked operation.
 247      *  @param pos        Position to be used for error reporting.
 248      *  @param msg        A string describing the problem.
 249      */
 250     public void warnUnchecked(DiagnosticPosition pos, LintWarning warnKey) {
 251         log.warning(pos, warnKey);
 252     }
 253 
 254     /** Report a failure to complete a class.
 255      *  @param pos        Position to be used for error reporting.
 256      *  @param ex         The failure to report.
 257      */
 258     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 259         log.error(DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 260         return syms.errType;
 261     }
 262 
 263     /** Report an error that wrong type tag was found.
 264      *  @param pos        Position to be used for error reporting.
 265      *  @param required   An internationalized string describing the type tag
 266      *                    required.
 267      *  @param found      The type that was found.
 268      */
 269     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 270         // this error used to be raised by the parser,
 271         // but has been delayed to this point:
 272         if (found instanceof Type type && type.hasTag(VOID)) {
 273             log.error(pos, Errors.IllegalStartOfType);
 274             return syms.errType;
 275         }
 276         log.error(pos, Errors.TypeFoundReq(found, required));
 277         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 278     }
 279 
 280     /** Report duplicate declaration error.
 281      */
 282     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 283         if (!sym.type.isErroneous()) {
 284             Symbol location = sym.location();
 285             if (location.kind == MTH &&
 286                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 287                 log.error(pos,
 288                           Errors.AlreadyDefinedInClinit(kindName(sym),
 289                                                         sym,
 290                                                         kindName(sym.location()),
 291                                                         kindName(sym.location().enclClass()),
 292                                                         sym.location().enclClass()));
 293             } else {
 294                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 295                  * as we should have issued an error for the duplicated fields
 296                  */
 297                 if (location.kind != MTH ||
 298                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 299                         ((sym.owner.flags_field & RECORD) == 0)) {
 300                     log.error(pos,
 301                             Errors.AlreadyDefined(kindName(sym),
 302                                     sym,
 303                                     kindName(sym.location()),
 304                                     sym.location()));
 305                 }
 306             }
 307         }
 308     }
 309 
 310     /** Report array/varargs duplicate declaration
 311      */
 312     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 313         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 314             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 315         }
 316     }
 317 
 318 /* ************************************************************************
 319  * duplicate declaration checking
 320  *************************************************************************/
 321 
 322     /** Check that variable does not hide variable with same name in
 323      *  immediately enclosing local scope.
 324      *  @param pos           Position for error reporting.
 325      *  @param v             The symbol.
 326      *  @param s             The scope.
 327      */
 328     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 329         for (Symbol sym : s.getSymbolsByName(v.name)) {
 330             if (sym.owner != v.owner) break;
 331             if (sym.kind == VAR &&
 332                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 333                 v.name != names.error) {
 334                 duplicateError(pos, sym);
 335                 return;
 336             }
 337         }
 338     }
 339 
 340     /** Check that a class or interface does not hide a class or
 341      *  interface with same name in immediately enclosing local scope.
 342      *  @param pos           Position for error reporting.
 343      *  @param c             The symbol.
 344      *  @param s             The scope.
 345      */
 346     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 347         for (Symbol sym : s.getSymbolsByName(c.name)) {
 348             if (sym.owner != c.owner) break;
 349             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 350                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 351                 c.name != names.error) {
 352                 duplicateError(pos, sym);
 353                 return;
 354             }
 355         }
 356     }
 357 
 358     /** Check that class does not have the same name as one of
 359      *  its enclosing classes, or as a class defined in its enclosing scope.
 360      *  return true if class is unique in its enclosing scope.
 361      *  @param pos           Position for error reporting.
 362      *  @param name          The class name.
 363      *  @param s             The enclosing scope.
 364      */
 365     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 366         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 367             if (sym.kind == TYP && sym.name != names.error) {
 368                 duplicateError(pos, sym);
 369                 return false;
 370             }
 371         }
 372         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 373             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 374                     !sym.isImplicit()) {
 375                 duplicateError(pos, sym);
 376                 return true;
 377             }
 378         }
 379         return true;
 380     }
 381 
 382 /* *************************************************************************
 383  * Class name generation
 384  **************************************************************************/
 385 
 386 
 387     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 388 
 389     /** Return name of local class.
 390      *  This is of the form   {@code <enclClass> $ n <classname> }
 391      *  where
 392      *    enclClass is the flat name of the enclosing class,
 393      *    classname is the simple name of the local class
 394      */
 395     public Name localClassName(ClassSymbol c) {
 396         Name enclFlatname = c.owner.enclClass().flatname;
 397         String enclFlatnameStr = enclFlatname.toString();
 398         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 399         Integer index = localClassNameIndexes.get(key);
 400         for (int i = (index == null) ? 1 : index; ; i++) {
 401             Name flatname = names.fromString(enclFlatnameStr
 402                     + syntheticNameChar + i + c.name);
 403             if (getCompiled(c.packge().modle, flatname) == null) {
 404                 localClassNameIndexes.put(key, i + 1);
 405                 return flatname;
 406             }
 407         }
 408     }
 409 
 410     public void clearLocalClassNameIndexes(ClassSymbol c) {
 411         if (c.owner != null && c.owner.kind != NIL) {
 412             localClassNameIndexes.remove(new Pair<>(
 413                     c.owner.enclClass().flatname, c.name));
 414         }
 415     }
 416 
 417     public void newRound() {
 418         compiled.clear();
 419         localClassNameIndexes.clear();
 420     }
 421 
 422     public void putCompiled(ClassSymbol csym) {
 423         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 424     }
 425 
 426     public ClassSymbol getCompiled(ClassSymbol csym) {
 427         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 428     }
 429 
 430     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 431         return compiled.get(Pair.of(msym, flatname));
 432     }
 433 
 434     public void removeCompiled(ClassSymbol csym) {
 435         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 436     }
 437 
 438 /* *************************************************************************
 439  * Type Checking
 440  **************************************************************************/
 441 
 442     /**
 443      * A check context is an object that can be used to perform compatibility
 444      * checks - depending on the check context, meaning of 'compatibility' might
 445      * vary significantly.
 446      */
 447     public interface CheckContext {
 448         /**
 449          * Is type 'found' compatible with type 'req' in given context
 450          */
 451         boolean compatible(Type found, Type req, Warner warn);
 452         /**
 453          * Report a check error
 454          */
 455         void report(DiagnosticPosition pos, JCDiagnostic details);
 456         /**
 457          * Obtain a warner for this check context
 458          */
 459         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 460 
 461         public InferenceContext inferenceContext();
 462 
 463         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 464     }
 465 
 466     /**
 467      * This class represent a check context that is nested within another check
 468      * context - useful to check sub-expressions. The default behavior simply
 469      * redirects all method calls to the enclosing check context leveraging
 470      * the forwarding pattern.
 471      */
 472     static class NestedCheckContext implements CheckContext {
 473         CheckContext enclosingContext;
 474 
 475         NestedCheckContext(CheckContext enclosingContext) {
 476             this.enclosingContext = enclosingContext;
 477         }
 478 
 479         public boolean compatible(Type found, Type req, Warner warn) {
 480             return enclosingContext.compatible(found, req, warn);
 481         }
 482 
 483         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 484             enclosingContext.report(pos, details);
 485         }
 486 
 487         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 488             return enclosingContext.checkWarner(pos, found, req);
 489         }
 490 
 491         public InferenceContext inferenceContext() {
 492             return enclosingContext.inferenceContext();
 493         }
 494 
 495         public DeferredAttrContext deferredAttrContext() {
 496             return enclosingContext.deferredAttrContext();
 497         }
 498     }
 499 
 500     /**
 501      * Check context to be used when evaluating assignment/return statements
 502      */
 503     CheckContext basicHandler = new CheckContext() {
 504         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 505             log.error(pos, Errors.ProbFoundReq(details));
 506         }
 507         public boolean compatible(Type found, Type req, Warner warn) {
 508             return types.isAssignable(found, req, warn);
 509         }
 510 
 511         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 512             return convertWarner(pos, found, req);
 513         }
 514 
 515         public InferenceContext inferenceContext() {
 516             return infer.emptyContext;
 517         }
 518 
 519         public DeferredAttrContext deferredAttrContext() {
 520             return deferredAttr.emptyDeferredAttrContext;
 521         }
 522 
 523         @Override
 524         public String toString() {
 525             return "CheckContext: basicHandler";
 526         }
 527     };
 528 
 529     /** Check that a given type is assignable to a given proto-type.
 530      *  If it is, return the type, otherwise return errType.
 531      *  @param pos        Position to be used for error reporting.
 532      *  @param found      The type that was found.
 533      *  @param req        The type that was required.
 534      */
 535     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 536         return checkType(pos, found, req, basicHandler);
 537     }
 538 
 539     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 540         final InferenceContext inferenceContext = checkContext.inferenceContext();
 541         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 542             inferenceContext.addFreeTypeListener(List.of(req, found),
 543                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 544         }
 545         if (req.hasTag(ERROR))
 546             return req;
 547         if (req.hasTag(NONE))
 548             return found;
 549         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 550             return found;
 551         } else {
 552             if (found.isNumeric() && req.isNumeric()) {
 553                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 554                 return types.createErrorType(found);
 555             }
 556             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 557             return types.createErrorType(found);
 558         }
 559     }
 560 
 561     /** Check that a given type can be cast to a given target type.
 562      *  Return the result of the cast.
 563      *  @param pos        Position to be used for error reporting.
 564      *  @param found      The type that is being cast.
 565      *  @param req        The target type of the cast.
 566      */
 567     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 568         return checkCastable(pos, found, req, basicHandler);
 569     }
 570     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 571         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 572             return req;
 573         } else {
 574             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 575             return types.createErrorType(found);
 576         }
 577     }
 578 
 579     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 580      * The problem should only be reported for non-292 cast
 581      */
 582     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 583         if (!tree.type.isErroneous()
 584                 && types.isSameType(tree.expr.type, tree.clazz.type)
 585                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 586                 && !is292targetTypeCast(tree)) {
 587             log.warning(tree.pos(), LintWarnings.RedundantCast(tree.clazz.type));
 588         }
 589     }
 590     //where
 591         private boolean is292targetTypeCast(JCTypeCast tree) {
 592             boolean is292targetTypeCast = false;
 593             JCExpression expr = TreeInfo.skipParens(tree.expr);
 594             if (expr.hasTag(APPLY)) {
 595                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 596                 Symbol sym = TreeInfo.symbol(apply.meth);
 597                 is292targetTypeCast = sym != null &&
 598                     sym.kind == MTH &&
 599                     (sym.flags() & HYPOTHETICAL) != 0;
 600             }
 601             return is292targetTypeCast;
 602         }
 603 
 604         private static final boolean ignoreAnnotatedCasts = true;
 605 
 606     /** Check that a type is within some bounds.
 607      *
 608      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 609      *  type argument.
 610      *  @param a             The type that should be bounded by bs.
 611      *  @param bound         The bound.
 612      */
 613     private boolean checkExtends(Type a, Type bound) {
 614          if (a.isUnbound()) {
 615              return true;
 616          } else if (!a.hasTag(WILDCARD)) {
 617              a = types.cvarUpperBound(a);
 618              return types.isSubtype(a, bound);
 619          } else if (a.isExtendsBound()) {
 620              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 621          } else if (a.isSuperBound()) {
 622              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 623          }
 624          return true;
 625      }
 626 
 627     /** Check that type is different from 'void'.
 628      *  @param pos           Position to be used for error reporting.
 629      *  @param t             The type to be checked.
 630      */
 631     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 632         if (t.hasTag(VOID)) {
 633             log.error(pos, Errors.VoidNotAllowedHere);
 634             return types.createErrorType(t);
 635         } else {
 636             return t;
 637         }
 638     }
 639 
 640     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 641         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 642             return typeTagError(pos,
 643                                 diags.fragment(Fragments.TypeReqClassArray),
 644                                 asTypeParam(t));
 645         } else {
 646             return t;
 647         }
 648     }
 649 
 650     /** Check that type is a class or interface type.
 651      *  @param pos           Position to be used for error reporting.
 652      *  @param t             The type to be checked.
 653      */
 654     Type checkClassType(DiagnosticPosition pos, Type t) {
 655         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 656             return typeTagError(pos,
 657                                 diags.fragment(Fragments.TypeReqClass),
 658                                 asTypeParam(t));
 659         } else {
 660             return t;
 661         }
 662     }
 663     //where
 664         private Object asTypeParam(Type t) {
 665             return (t.hasTag(TYPEVAR))
 666                                     ? diags.fragment(Fragments.TypeParameter(t))
 667                                     : t;
 668         }
 669 
 670     /** Check that type is a valid qualifier for a constructor reference expression
 671      */
 672     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 673         t = checkClassOrArrayType(pos, t);
 674         if (t.hasTag(CLASS)) {
 675             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 676                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 677                 t = types.createErrorType(t);
 678             } else if ((t.tsym.flags() & ENUM) != 0) {
 679                 log.error(pos, Errors.EnumCantBeInstantiated);
 680                 t = types.createErrorType(t);
 681             } else {
 682                 t = checkClassType(pos, t, true);
 683             }
 684         } else if (t.hasTag(ARRAY)) {
 685             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 686                 log.error(pos, Errors.GenericArrayCreation);
 687                 t = types.createErrorType(t);
 688             }
 689         }
 690         return t;
 691     }
 692 
 693     /** Check that type is a class or interface type.
 694      *  @param pos           Position to be used for error reporting.
 695      *  @param t             The type to be checked.
 696      *  @param noBounds    True if type bounds are illegal here.
 697      */
 698     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 699         t = checkClassType(pos, t);
 700         if (noBounds && t.isParameterized()) {
 701             List<Type> args = t.getTypeArguments();
 702             while (args.nonEmpty()) {
 703                 if (args.head.hasTag(WILDCARD))
 704                     return typeTagError(pos,
 705                                         diags.fragment(Fragments.TypeReqExact),
 706                                         args.head);
 707                 args = args.tail;
 708             }
 709         }
 710         return t;
 711     }
 712 
 713     /** Check that type is a reference type, i.e. a class, interface or array type
 714      *  or a type variable.
 715      *  @param pos           Position to be used for error reporting.
 716      *  @param t             The type to be checked.
 717      */
 718     Type checkRefType(DiagnosticPosition pos, Type t) {
 719         if (t.isReference())
 720             return t;
 721         else
 722             return typeTagError(pos,
 723                                 diags.fragment(Fragments.TypeReqRef),
 724                                 t);
 725     }
 726 
 727     /** Check that each type is a reference type, i.e. a class, interface or array type
 728      *  or a type variable.
 729      *  @param trees         Original trees, used for error reporting.
 730      *  @param types         The types to be checked.
 731      */
 732     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 733         List<JCExpression> tl = trees;
 734         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 735             l.head = checkRefType(tl.head.pos(), l.head);
 736             tl = tl.tail;
 737         }
 738         return types;
 739     }
 740 
 741     /** Check that type is a null or reference type.
 742      *  @param pos           Position to be used for error reporting.
 743      *  @param t             The type to be checked.
 744      */
 745     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 746         if (t.isReference() || t.hasTag(BOT))
 747             return t;
 748         else
 749             return typeTagError(pos,
 750                                 diags.fragment(Fragments.TypeReqRef),
 751                                 t);
 752     }
 753 
 754     /** Check that flag set does not contain elements of two conflicting sets. s
 755      *  Return true if it doesn't.
 756      *  @param pos           Position to be used for error reporting.
 757      *  @param flags         The set of flags to be checked.
 758      *  @param set1          Conflicting flags set #1.
 759      *  @param set2          Conflicting flags set #2.
 760      */
 761     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 762         if ((flags & set1) != 0 && (flags & set2) != 0) {
 763             log.error(pos,
 764                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 765                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 766             return false;
 767         } else
 768             return true;
 769     }
 770 
 771     /** Check that usage of diamond operator is correct (i.e. diamond should not
 772      * be used with non-generic classes or in anonymous class creation expressions)
 773      */
 774     Type checkDiamond(JCNewClass tree, Type t) {
 775         if (!TreeInfo.isDiamond(tree) ||
 776                 t.isErroneous()) {
 777             return checkClassType(tree.clazz.pos(), t, true);
 778         } else {
 779             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 780                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 781                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 782             }
 783             if (t.tsym.type.getTypeArguments().isEmpty()) {
 784                 log.error(tree.clazz.pos(),
 785                           Errors.CantApplyDiamond1(t,
 786                                                    Fragments.DiamondNonGeneric(t)));
 787                 return types.createErrorType(t);
 788             } else if (tree.typeargs != null &&
 789                     tree.typeargs.nonEmpty()) {
 790                 log.error(tree.clazz.pos(),
 791                           Errors.CantApplyDiamond1(t,
 792                                                    Fragments.DiamondAndExplicitParams(t)));
 793                 return types.createErrorType(t);
 794             } else {
 795                 return t;
 796             }
 797         }
 798     }
 799 
 800     /** Check that the type inferred using the diamond operator does not contain
 801      *  non-denotable types such as captured types or intersection types.
 802      *  @param t the type inferred using the diamond operator
 803      *  @return  the (possibly empty) list of non-denotable types.
 804      */
 805     List<Type> checkDiamondDenotable(ClassType t) {
 806         ListBuffer<Type> buf = new ListBuffer<>();
 807         for (Type arg : t.allparams()) {
 808             if (!checkDenotable(arg)) {
 809                 buf.append(arg);
 810             }
 811         }
 812         return buf.toList();
 813     }
 814 
 815     public boolean checkDenotable(Type t) {
 816         return denotableChecker.visit(t, null);
 817     }
 818         // where
 819 
 820         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 821          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 822          *  otherwise.
 823          */
 824         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 825             @Override
 826             public Boolean visitType(Type t, Void s) {
 827                 return true;
 828             }
 829             @Override
 830             public Boolean visitClassType(ClassType t, Void s) {
 831                 if (t.isUnion() || t.isIntersection()) {
 832                     return false;
 833                 }
 834                 for (Type targ : t.allparams()) {
 835                     if (!visit(targ, s)) {
 836                         return false;
 837                     }
 838                 }
 839                 return true;
 840             }
 841 
 842             @Override
 843             public Boolean visitTypeVar(TypeVar t, Void s) {
 844                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 845                   (i.e cannot have been produced by inference (18.4))
 846                 */
 847                 return (t.tsym.flags() & SYNTHETIC) == 0;
 848             }
 849 
 850             @Override
 851             public Boolean visitCapturedType(CapturedType t, Void s) {
 852                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 853                   (i.e cannot have been produced by capture conversion (5.1.10))
 854                 */
 855                 return false;
 856             }
 857 
 858             @Override
 859             public Boolean visitArrayType(ArrayType t, Void s) {
 860                 return visit(t.elemtype, s);
 861             }
 862 
 863             @Override
 864             public Boolean visitWildcardType(WildcardType t, Void s) {
 865                 return visit(t.type, s);
 866             }
 867         };
 868 
 869     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 870         MethodSymbol m = tree.sym;
 871         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 872         Type varargElemType = null;
 873         if (m.isVarArgs()) {
 874             varargElemType = types.elemtype(tree.params.last().type);
 875         }
 876         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 877             if (varargElemType != null) {
 878                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
 879                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
 880                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
 881                 log.error(tree,
 882                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 883                                                            msg));
 884             } else {
 885                 log.error(tree,
 886                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 887                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
 888             }
 889         } else if (hasTrustMeAnno && varargElemType != null &&
 890                             types.isReifiable(varargElemType)) {
 891             log.warning(tree.pos(), LintWarnings.VarargsRedundantTrustmeAnno(
 892                                 syms.trustMeType.tsym,
 893                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
 894         }
 895         else if (!hasTrustMeAnno && varargElemType != null &&
 896                 !types.isReifiable(varargElemType)) {
 897             warnUnchecked(tree.params.head.pos(), LintWarnings.UncheckedVarargsNonReifiableType(varargElemType));
 898         }
 899     }
 900     //where
 901         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 902             return (s.flags() & VARARGS) != 0 &&
 903                 (s.isConstructor() ||
 904                     (s.flags() & (STATIC | FINAL |
 905                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
 906         }
 907 
 908     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
 909         //check that resulting type is not the null type
 910         if (t.hasTag(BOT)) {
 911             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
 912             return types.createErrorType(t);
 913         } else if (t.hasTag(VOID)) {
 914             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
 915             return types.createErrorType(t);
 916         }
 917 
 918         //upward project the initializer type
 919         return types.upward(t, types.captures(t)).baseType();
 920     }
 921 
 922     Type checkMethod(final Type mtype,
 923             final Symbol sym,
 924             final Env<AttrContext> env,
 925             final List<JCExpression> argtrees,
 926             final List<Type> argtypes,
 927             final boolean useVarargs,
 928             InferenceContext inferenceContext) {
 929         // System.out.println("call   : " + env.tree);
 930         // System.out.println("method : " + owntype);
 931         // System.out.println("actuals: " + argtypes);
 932         if (inferenceContext.free(mtype)) {
 933             inferenceContext.addFreeTypeListener(List.of(mtype),
 934                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
 935             return mtype;
 936         }
 937         Type owntype = mtype;
 938         List<Type> formals = owntype.getParameterTypes();
 939         List<Type> nonInferred = sym.type.getParameterTypes();
 940         if (nonInferred.length() != formals.length()) nonInferred = formals;
 941         Type last = useVarargs ? formals.last() : null;
 942         if (sym.name == names.init && sym.owner == syms.enumSym) {
 943             formals = formals.tail.tail;
 944             nonInferred = nonInferred.tail.tail;
 945         }
 946         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
 947             formals = formals.tail;
 948             nonInferred = nonInferred.tail;
 949         }
 950         List<JCExpression> args = argtrees;
 951         if (args != null) {
 952             //this is null when type-checking a method reference
 953             while (formals.head != last) {
 954                 JCTree arg = args.head;
 955                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 956                 assertConvertible(arg, arg.type, formals.head, warn);
 957                 args = args.tail;
 958                 formals = formals.tail;
 959                 nonInferred = nonInferred.tail;
 960             }
 961             if (useVarargs) {
 962                 Type varArg = types.elemtype(last);
 963                 while (args.tail != null) {
 964                     JCTree arg = args.head;
 965                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 966                     assertConvertible(arg, arg.type, varArg, warn);
 967                     args = args.tail;
 968                 }
 969             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
 970                 // non-varargs call to varargs method
 971                 Type varParam = owntype.getParameterTypes().last();
 972                 Type lastArg = argtypes.last();
 973                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 974                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 975                     log.warning(argtrees.last().pos(),
 976                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
 977             }
 978         }
 979         if (useVarargs) {
 980             Type argtype = owntype.getParameterTypes().last();
 981             if (!types.isReifiable(argtype) &&
 982                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
 983                  !isTrustMeAllowedOnMethod(sym))) {
 984                 warnUnchecked(env.tree.pos(), LintWarnings.UncheckedGenericArrayCreation(argtype));
 985             }
 986             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 987          }
 988          return owntype;
 989     }
 990     //where
 991     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 992         if (types.isConvertible(actual, formal, warn))
 993             return;
 994 
 995         if (formal.isCompound()
 996             && types.isSubtype(actual, types.supertype(formal))
 997             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
 998             return;
 999     }
1000 
1001     /**
1002      * Check that type 't' is a valid instantiation of a generic class
1003      * (see JLS 4.5)
1004      *
1005      * @param t class type to be checked
1006      * @return true if 't' is well-formed
1007      */
1008     public boolean checkValidGenericType(Type t) {
1009         return firstIncompatibleTypeArg(t) == null;
1010     }
1011     //WHERE
1012         private Type firstIncompatibleTypeArg(Type type) {
1013             List<Type> formals = type.tsym.type.allparams();
1014             List<Type> actuals = type.allparams();
1015             List<Type> args = type.getTypeArguments();
1016             List<Type> forms = type.tsym.type.getTypeArguments();
1017             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1018 
1019             // For matching pairs of actual argument types `a' and
1020             // formal type parameters with declared bound `b' ...
1021             while (args.nonEmpty() && forms.nonEmpty()) {
1022                 // exact type arguments needs to know their
1023                 // bounds (for upper and lower bound
1024                 // calculations).  So we create new bounds where
1025                 // type-parameters are replaced with actuals argument types.
1026                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1027                 args = args.tail;
1028                 forms = forms.tail;
1029             }
1030 
1031             args = type.getTypeArguments();
1032             List<Type> tvars_cap = types.substBounds(formals,
1033                                       formals,
1034                                       types.capture(type).allparams());
1035             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1036                 // Let the actual arguments know their bound
1037                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1038                 args = args.tail;
1039                 tvars_cap = tvars_cap.tail;
1040             }
1041 
1042             args = type.getTypeArguments();
1043             List<Type> bounds = bounds_buf.toList();
1044 
1045             while (args.nonEmpty() && bounds.nonEmpty()) {
1046                 Type actual = args.head;
1047                 if (!isTypeArgErroneous(actual) &&
1048                         !bounds.head.isErroneous() &&
1049                         !checkExtends(actual, bounds.head)) {
1050                     return args.head;
1051                 }
1052                 args = args.tail;
1053                 bounds = bounds.tail;
1054             }
1055 
1056             args = type.getTypeArguments();
1057             bounds = bounds_buf.toList();
1058 
1059             for (Type arg : types.capture(type).getTypeArguments()) {
1060                 if (arg.hasTag(TYPEVAR) &&
1061                         arg.getUpperBound().isErroneous() &&
1062                         !bounds.head.isErroneous() &&
1063                         !isTypeArgErroneous(args.head)) {
1064                     return args.head;
1065                 }
1066                 bounds = bounds.tail;
1067                 args = args.tail;
1068             }
1069 
1070             return null;
1071         }
1072         //where
1073         boolean isTypeArgErroneous(Type t) {
1074             return isTypeArgErroneous.visit(t);
1075         }
1076 
1077         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1078             public Boolean visitType(Type t, Void s) {
1079                 return t.isErroneous();
1080             }
1081             @Override
1082             public Boolean visitTypeVar(TypeVar t, Void s) {
1083                 return visit(t.getUpperBound());
1084             }
1085             @Override
1086             public Boolean visitCapturedType(CapturedType t, Void s) {
1087                 return visit(t.getUpperBound()) ||
1088                         visit(t.getLowerBound());
1089             }
1090             @Override
1091             public Boolean visitWildcardType(WildcardType t, Void s) {
1092                 return visit(t.type);
1093             }
1094         };
1095 
1096     /** Check that given modifiers are legal for given symbol and
1097      *  return modifiers together with any implicit modifiers for that symbol.
1098      *  Warning: we can't use flags() here since this method
1099      *  is called during class enter, when flags() would cause a premature
1100      *  completion.
1101      *  @param flags         The set of modifiers given in a definition.
1102      *  @param sym           The defined symbol.
1103      *  @param tree          The declaration
1104      */
1105     long checkFlags(long flags, Symbol sym, JCTree tree) {
1106         final DiagnosticPosition pos = tree.pos();
1107         long mask;
1108         long implicit = 0;
1109 
1110         switch (sym.kind) {
1111         case VAR:
1112             if (TreeInfo.isReceiverParam(tree))
1113                 mask = ReceiverParamFlags;
1114             else if (sym.owner.kind != TYP)
1115                 mask = LocalVarFlags;
1116             else if ((sym.owner.flags_field & INTERFACE) != 0)
1117                 mask = implicit = InterfaceVarFlags;
1118             else
1119                 mask = VarFlags;
1120             break;
1121         case MTH:
1122             if (sym.name == names.init) {
1123                 if ((sym.owner.flags_field & ENUM) != 0) {
1124                     // enum constructors cannot be declared public or
1125                     // protected and must be implicitly or explicitly
1126                     // private
1127                     implicit = PRIVATE;
1128                     mask = PRIVATE;
1129                 } else
1130                     mask = ConstructorFlags;
1131             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1132                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1133                     mask = AnnotationTypeElementMask;
1134                     implicit = PUBLIC | ABSTRACT;
1135                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1136                     mask = InterfaceMethodMask;
1137                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1138                     if ((flags & DEFAULT) != 0) {
1139                         implicit |= ABSTRACT;
1140                     }
1141                 } else {
1142                     mask = implicit = InterfaceMethodFlags;
1143                 }
1144             } else if ((sym.owner.flags_field & RECORD) != 0) {
1145                 mask = RecordMethodFlags;
1146             } else {
1147                 mask = MethodFlags;
1148             }
1149             if ((flags & STRICTFP) != 0) {
1150                 log.warning(tree.pos(), LintWarnings.Strictfp);
1151             }
1152             // Imply STRICTFP if owner has STRICTFP set.
1153             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1154                 ((flags) & Flags.DEFAULT) != 0)
1155                 implicit |= sym.owner.flags_field & STRICTFP;
1156             break;
1157         case TYP:
1158             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1159                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1160                 boolean implicitlyStatic = !sym.isAnonymous() &&
1161                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1162                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1163                 // local statics are allowed only if records are allowed too
1164                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? StaticLocalFlags : LocalClassFlags;
1165                 implicit = implicitlyStatic ? STATIC : implicit;
1166             } else if (sym.owner.kind == TYP) {
1167                 // statics in inner classes are allowed only if records are allowed too
1168                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1169                 if (sym.owner.owner.kind == PCK ||
1170                     (sym.owner.flags_field & STATIC) != 0) {
1171                     mask |= STATIC;
1172                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1173                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1174                 }
1175                 // Nested interfaces and enums are always STATIC (Spec ???)
1176                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1177             } else {
1178                 mask = ExtendedClassFlags;
1179             }
1180             // Interfaces are always ABSTRACT
1181             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1182 
1183             if ((flags & ENUM) != 0) {
1184                 // enums can't be declared abstract, final, sealed or non-sealed
1185                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED);
1186                 implicit |= implicitEnumFinalFlag(tree);
1187             }
1188             if ((flags & RECORD) != 0) {
1189                 // records can't be declared abstract
1190                 mask &= ~ABSTRACT;
1191                 implicit |= FINAL;
1192             }
1193             if ((flags & STRICTFP) != 0) {
1194                 log.warning(tree.pos(), LintWarnings.Strictfp);
1195             }
1196             // Imply STRICTFP if owner has STRICTFP set.
1197             implicit |= sym.owner.flags_field & STRICTFP;
1198             break;
1199         default:
1200             throw new AssertionError();
1201         }
1202         long illegal = flags & ExtendedStandardFlags & ~mask;
1203         if (illegal != 0) {
1204             if ((illegal & INTERFACE) != 0) {
1205                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1206                 mask |= INTERFACE;
1207             }
1208             else {
1209                 log.error(pos,
1210                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1211             }
1212         }
1213         else if ((sym.kind == TYP ||
1214                   // ISSUE: Disallowing abstract&private is no longer appropriate
1215                   // in the presence of inner classes. Should it be deleted here?
1216                   checkDisjoint(pos, flags,
1217                                 ABSTRACT,
1218                                 PRIVATE | STATIC | DEFAULT))
1219                  &&
1220                  checkDisjoint(pos, flags,
1221                                 STATIC | PRIVATE,
1222                                 DEFAULT)
1223                  &&
1224                  checkDisjoint(pos, flags,
1225                                ABSTRACT | INTERFACE,
1226                                FINAL | NATIVE | SYNCHRONIZED)
1227                  &&
1228                  checkDisjoint(pos, flags,
1229                                PUBLIC,
1230                                PRIVATE | PROTECTED)
1231                  &&
1232                  checkDisjoint(pos, flags,
1233                                PRIVATE,
1234                                PUBLIC | PROTECTED)
1235                  &&
1236                  checkDisjoint(pos, flags,
1237                                FINAL,
1238                                VOLATILE)
1239                  &&
1240                  (sym.kind == TYP ||
1241                   checkDisjoint(pos, flags,
1242                                 ABSTRACT | NATIVE,
1243                                 STRICTFP))
1244                  && checkDisjoint(pos, flags,
1245                                 FINAL,
1246                            SEALED | NON_SEALED)
1247                  && checkDisjoint(pos, flags,
1248                                 SEALED,
1249                            FINAL | NON_SEALED)
1250                  && checkDisjoint(pos, flags,
1251                                 SEALED,
1252                                 ANNOTATION)) {
1253             // skip
1254         }
1255         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1256     }
1257 
1258     /** Determine if this enum should be implicitly final.
1259      *
1260      *  If the enum has no specialized enum constants, it is final.
1261      *
1262      *  If the enum does have specialized enum constants, it is
1263      *  <i>not</i> final.
1264      */
1265     private long implicitEnumFinalFlag(JCTree tree) {
1266         if (!tree.hasTag(CLASSDEF)) return 0;
1267         class SpecialTreeVisitor extends JCTree.Visitor {
1268             boolean specialized;
1269             SpecialTreeVisitor() {
1270                 this.specialized = false;
1271             }
1272 
1273             @Override
1274             public void visitTree(JCTree tree) { /* no-op */ }
1275 
1276             @Override
1277             public void visitVarDef(JCVariableDecl tree) {
1278                 if ((tree.mods.flags & ENUM) != 0) {
1279                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1280                         specialized = true;
1281                     }
1282                 }
1283             }
1284         }
1285 
1286         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1287         JCClassDecl cdef = (JCClassDecl) tree;
1288         for (JCTree defs: cdef.defs) {
1289             defs.accept(sts);
1290             if (sts.specialized) return allowSealed ? SEALED : 0;
1291         }
1292         return FINAL;
1293     }
1294 
1295 /* *************************************************************************
1296  * Type Validation
1297  **************************************************************************/
1298 
1299     /** Validate a type expression. That is,
1300      *  check that all type arguments of a parametric type are within
1301      *  their bounds. This must be done in a second phase after type attribution
1302      *  since a class might have a subclass as type parameter bound. E.g:
1303      *
1304      *  <pre>{@code
1305      *  class B<A extends C> { ... }
1306      *  class C extends B<C> { ... }
1307      *  }</pre>
1308      *
1309      *  and we can't make sure that the bound is already attributed because
1310      *  of possible cycles.
1311      *
1312      * Visitor method: Validate a type expression, if it is not null, catching
1313      *  and reporting any completion failures.
1314      */
1315     void validate(JCTree tree, Env<AttrContext> env) {
1316         validate(tree, env, true);
1317     }
1318     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1319         new Validator(env).validateTree(tree, checkRaw, true);
1320     }
1321 
1322     /** Visitor method: Validate a list of type expressions.
1323      */
1324     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1325         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1326             validate(l.head, env);
1327     }
1328 
1329     /** A visitor class for type validation.
1330      */
1331     class Validator extends JCTree.Visitor {
1332 
1333         boolean checkRaw;
1334         boolean isOuter;
1335         Env<AttrContext> env;
1336 
1337         Validator(Env<AttrContext> env) {
1338             this.env = env;
1339         }
1340 
1341         @Override
1342         public void visitTypeArray(JCArrayTypeTree tree) {
1343             validateTree(tree.elemtype, checkRaw, isOuter);
1344         }
1345 
1346         @Override
1347         public void visitTypeApply(JCTypeApply tree) {
1348             if (tree.type.hasTag(CLASS)) {
1349                 List<JCExpression> args = tree.arguments;
1350                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1351 
1352                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1353                 if (incompatibleArg != null) {
1354                     for (JCTree arg : tree.arguments) {
1355                         if (arg.type == incompatibleArg) {
1356                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1357                         }
1358                         forms = forms.tail;
1359                      }
1360                  }
1361 
1362                 forms = tree.type.tsym.type.getTypeArguments();
1363 
1364                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1365 
1366                 // For matching pairs of actual argument types `a' and
1367                 // formal type parameters with declared bound `b' ...
1368                 while (args.nonEmpty() && forms.nonEmpty()) {
1369                     validateTree(args.head,
1370                             !(isOuter && is_java_lang_Class),
1371                             false);
1372                     args = args.tail;
1373                     forms = forms.tail;
1374                 }
1375 
1376                 // Check that this type is either fully parameterized, or
1377                 // not parameterized at all.
1378                 if (tree.type.getEnclosingType().isRaw())
1379                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1380                 if (tree.clazz.hasTag(SELECT))
1381                     visitSelectInternal((JCFieldAccess)tree.clazz);
1382             }
1383         }
1384 
1385         @Override
1386         public void visitTypeParameter(JCTypeParameter tree) {
1387             validateTrees(tree.bounds, true, isOuter);
1388             checkClassBounds(tree.pos(), tree.type);
1389         }
1390 
1391         @Override
1392         public void visitWildcard(JCWildcard tree) {
1393             if (tree.inner != null)
1394                 validateTree(tree.inner, true, isOuter);
1395         }
1396 
1397         @Override
1398         public void visitSelect(JCFieldAccess tree) {
1399             if (tree.type.hasTag(CLASS)) {
1400                 visitSelectInternal(tree);
1401 
1402                 // Check that this type is either fully parameterized, or
1403                 // not parameterized at all.
1404                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1405                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1406             }
1407         }
1408 
1409         public void visitSelectInternal(JCFieldAccess tree) {
1410             if (tree.type.tsym.isStatic() &&
1411                 tree.selected.type.isParameterized()) {
1412                 // The enclosing type is not a class, so we are
1413                 // looking at a static member type.  However, the
1414                 // qualifying expression is parameterized.
1415                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1416             } else {
1417                 // otherwise validate the rest of the expression
1418                 tree.selected.accept(this);
1419             }
1420         }
1421 
1422         @Override
1423         public void visitAnnotatedType(JCAnnotatedType tree) {
1424             tree.underlyingType.accept(this);
1425         }
1426 
1427         @Override
1428         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1429             if (that.type.hasTag(TypeTag.VOID)) {
1430                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1431             }
1432             super.visitTypeIdent(that);
1433         }
1434 
1435         /** Default visitor method: do nothing.
1436          */
1437         @Override
1438         public void visitTree(JCTree tree) {
1439         }
1440 
1441         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1442             if (tree != null) {
1443                 boolean prevCheckRaw = this.checkRaw;
1444                 this.checkRaw = checkRaw;
1445                 this.isOuter = isOuter;
1446 
1447                 try {
1448                     tree.accept(this);
1449                     if (checkRaw)
1450                         checkRaw(tree, env);
1451                 } catch (CompletionFailure ex) {
1452                     completionError(tree.pos(), ex);
1453                 } finally {
1454                     this.checkRaw = prevCheckRaw;
1455                 }
1456             }
1457         }
1458 
1459         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1460             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1461                 validateTree(l.head, checkRaw, isOuter);
1462         }
1463     }
1464 
1465     void checkRaw(JCTree tree, Env<AttrContext> env) {
1466         if (tree.type.hasTag(CLASS) &&
1467             !TreeInfo.isDiamond(tree) &&
1468             !withinAnonConstr(env) &&
1469             tree.type.isRaw()) {
1470             log.warning(tree.pos(), LintWarnings.RawClassUse(tree.type, tree.type.tsym.type));
1471         }
1472     }
1473     //where
1474         private boolean withinAnonConstr(Env<AttrContext> env) {
1475             return env.enclClass.name.isEmpty() &&
1476                     env.enclMethod != null && env.enclMethod.name == names.init;
1477         }
1478 
1479 /* *************************************************************************
1480  * Exception checking
1481  **************************************************************************/
1482 
1483     /* The following methods treat classes as sets that contain
1484      * the class itself and all their subclasses
1485      */
1486 
1487     /** Is given type a subtype of some of the types in given list?
1488      */
1489     boolean subset(Type t, List<Type> ts) {
1490         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1491             if (types.isSubtype(t, l.head)) return true;
1492         return false;
1493     }
1494 
1495     /** Is given type a subtype or supertype of
1496      *  some of the types in given list?
1497      */
1498     boolean intersects(Type t, List<Type> ts) {
1499         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1500             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1501         return false;
1502     }
1503 
1504     /** Add type set to given type list, unless it is a subclass of some class
1505      *  in the list.
1506      */
1507     List<Type> incl(Type t, List<Type> ts) {
1508         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1509     }
1510 
1511     /** Remove type set from type set list.
1512      */
1513     List<Type> excl(Type t, List<Type> ts) {
1514         if (ts.isEmpty()) {
1515             return ts;
1516         } else {
1517             List<Type> ts1 = excl(t, ts.tail);
1518             if (types.isSubtype(ts.head, t)) return ts1;
1519             else if (ts1 == ts.tail) return ts;
1520             else return ts1.prepend(ts.head);
1521         }
1522     }
1523 
1524     /** Form the union of two type set lists.
1525      */
1526     List<Type> union(List<Type> ts1, List<Type> ts2) {
1527         List<Type> ts = ts1;
1528         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1529             ts = incl(l.head, ts);
1530         return ts;
1531     }
1532 
1533     /** Form the difference of two type lists.
1534      */
1535     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1536         List<Type> ts = ts1;
1537         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1538             ts = excl(l.head, ts);
1539         return ts;
1540     }
1541 
1542     /** Form the intersection of two type lists.
1543      */
1544     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1545         List<Type> ts = List.nil();
1546         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1547             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1548         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1549             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1550         return ts;
1551     }
1552 
1553     /** Is exc an exception symbol that need not be declared?
1554      */
1555     boolean isUnchecked(ClassSymbol exc) {
1556         return
1557             exc.kind == ERR ||
1558             exc.isSubClass(syms.errorType.tsym, types) ||
1559             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1560     }
1561 
1562     /** Is exc an exception type that need not be declared?
1563      */
1564     boolean isUnchecked(Type exc) {
1565         return
1566             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1567             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1568             exc.hasTag(BOT);
1569     }
1570 
1571     boolean isChecked(Type exc) {
1572         return !isUnchecked(exc);
1573     }
1574 
1575     /** Same, but handling completion failures.
1576      */
1577     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1578         try {
1579             return isUnchecked(exc);
1580         } catch (CompletionFailure ex) {
1581             completionError(pos, ex);
1582             return true;
1583         }
1584     }
1585 
1586     /** Is exc handled by given exception list?
1587      */
1588     boolean isHandled(Type exc, List<Type> handled) {
1589         return isUnchecked(exc) || subset(exc, handled);
1590     }
1591 
1592     /** Return all exceptions in thrown list that are not in handled list.
1593      *  @param thrown     The list of thrown exceptions.
1594      *  @param handled    The list of handled exceptions.
1595      */
1596     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1597         List<Type> unhandled = List.nil();
1598         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1599             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1600         return unhandled;
1601     }
1602 
1603 /* *************************************************************************
1604  * Overriding/Implementation checking
1605  **************************************************************************/
1606 
1607     /** The level of access protection given by a flag set,
1608      *  where PRIVATE is highest and PUBLIC is lowest.
1609      */
1610     static int protection(long flags) {
1611         switch ((short)(flags & AccessFlags)) {
1612         case PRIVATE: return 3;
1613         case PROTECTED: return 1;
1614         default:
1615         case PUBLIC: return 0;
1616         case 0: return 2;
1617         }
1618     }
1619 
1620     /** A customized "cannot override" error message.
1621      *  @param m      The overriding method.
1622      *  @param other  The overridden method.
1623      *  @return       An internationalized string.
1624      */
1625     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1626         Symbol mloc = m.location();
1627         Symbol oloc = other.location();
1628 
1629         if ((other.owner.flags() & INTERFACE) == 0)
1630             return Fragments.CantOverride(m, mloc, other, oloc);
1631         else if ((m.owner.flags() & INTERFACE) == 0)
1632             return Fragments.CantImplement(m, mloc, other, oloc);
1633         else
1634             return Fragments.ClashesWith(m, mloc, other, oloc);
1635     }
1636 
1637     /** A customized "override" warning message.
1638      *  @param m      The overriding method.
1639      *  @param other  The overridden method.
1640      *  @return       An internationalized string.
1641      */
1642     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1643         Symbol mloc = m.location();
1644         Symbol oloc = other.location();
1645 
1646         if ((other.owner.flags() & INTERFACE) == 0)
1647             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1648         else if ((m.owner.flags() & INTERFACE) == 0)
1649             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1650         else
1651             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1652     }
1653 
1654     /** A customized "override" warning message.
1655      *  @param m      The overriding method.
1656      *  @param other  The overridden method.
1657      *  @return       An internationalized string.
1658      */
1659     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1660         Symbol mloc = m.location();
1661         Symbol oloc = other.location();
1662 
1663         if ((other.owner.flags() & INTERFACE) == 0)
1664             return Fragments.VarargsOverride(m, mloc, other, oloc);
1665         else  if ((m.owner.flags() & INTERFACE) == 0)
1666             return Fragments.VarargsImplement(m, mloc, other, oloc);
1667         else
1668             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1669     }
1670 
1671     /** Check that this method conforms with overridden method 'other'.
1672      *  where `origin' is the class where checking started.
1673      *  Complications:
1674      *  (1) Do not check overriding of synthetic methods
1675      *      (reason: they might be final).
1676      *      todo: check whether this is still necessary.
1677      *  (2) Admit the case where an interface proxy throws fewer exceptions
1678      *      than the method it implements. Augment the proxy methods with the
1679      *      undeclared exceptions in this case.
1680      *  (3) When generics are enabled, admit the case where an interface proxy
1681      *      has a result type
1682      *      extended by the result type of the method it implements.
1683      *      Change the proxies result type to the smaller type in this case.
1684      *
1685      *  @param tree         The tree from which positions
1686      *                      are extracted for errors.
1687      *  @param m            The overriding method.
1688      *  @param other        The overridden method.
1689      *  @param origin       The class of which the overriding method
1690      *                      is a member.
1691      */
1692     void checkOverride(JCTree tree,
1693                        MethodSymbol m,
1694                        MethodSymbol other,
1695                        ClassSymbol origin) {
1696         // Don't check overriding of synthetic methods or by bridge methods.
1697         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1698             return;
1699         }
1700 
1701         // Error if static method overrides instance method (JLS 8.4.8.2).
1702         if ((m.flags() & STATIC) != 0 &&
1703                    (other.flags() & STATIC) == 0) {
1704             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1705                       Errors.OverrideStatic(cannotOverride(m, other)));
1706             m.flags_field |= BAD_OVERRIDE;
1707             return;
1708         }
1709 
1710         // Error if instance method overrides static or final
1711         // method (JLS 8.4.8.1).
1712         if ((other.flags() & FINAL) != 0 ||
1713                  (m.flags() & STATIC) == 0 &&
1714                  (other.flags() & STATIC) != 0) {
1715             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1716                       Errors.OverrideMeth(cannotOverride(m, other),
1717                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1718             m.flags_field |= BAD_OVERRIDE;
1719             return;
1720         }
1721 
1722         if ((m.owner.flags() & ANNOTATION) != 0) {
1723             // handled in validateAnnotationMethod
1724             return;
1725         }
1726 
1727         // Error if overriding method has weaker access (JLS 8.4.8.3).
1728         if (protection(m.flags()) > protection(other.flags())) {
1729             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1730                       (other.flags() & AccessFlags) == 0 ?
1731                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1732                                                           "package") :
1733                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1734                                                           asFlagSet(other.flags() & AccessFlags)));
1735             m.flags_field |= BAD_OVERRIDE;
1736             return;
1737         }
1738 
1739         if (shouldCheckPreview(m, other, origin)) {
1740             checkPreview(TreeInfo.diagnosticPositionFor(m, tree),
1741                          m, origin.type, other);
1742         }
1743 
1744         Type mt = types.memberType(origin.type, m);
1745         Type ot = types.memberType(origin.type, other);
1746         // Error if overriding result type is different
1747         // (or, in the case of generics mode, not a subtype) of
1748         // overridden result type. We have to rename any type parameters
1749         // before comparing types.
1750         List<Type> mtvars = mt.getTypeArguments();
1751         List<Type> otvars = ot.getTypeArguments();
1752         Type mtres = mt.getReturnType();
1753         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1754 
1755         overrideWarner.clear();
1756         boolean resultTypesOK =
1757             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1758         if (!resultTypesOK) {
1759             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1760                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1761                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1762                                         other.location()), mtres, otres));
1763                 m.flags_field |= BAD_OVERRIDE;
1764             } else {
1765                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1766                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1767                 m.flags_field |= BAD_OVERRIDE;
1768             }
1769             return;
1770         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1771             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1772                     LintWarnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1773         }
1774 
1775         // Error if overriding method throws an exception not reported
1776         // by overridden method.
1777         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1778         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1779         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1780         if (unhandledErased.nonEmpty()) {
1781             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1782                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1783             m.flags_field |= BAD_OVERRIDE;
1784             return;
1785         }
1786         else if (unhandledUnerased.nonEmpty()) {
1787             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1788                           LintWarnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1789             return;
1790         }
1791 
1792         // Optional warning if varargs don't agree
1793         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)) {
1794             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1795                         ((m.flags() & Flags.VARARGS) != 0)
1796                         ? LintWarnings.OverrideVarargsMissing(varargsOverrides(m, other))
1797                         : LintWarnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1798         }
1799 
1800         // Warn if instance method overrides bridge method (compiler spec ??)
1801         if ((other.flags() & BRIDGE) != 0) {
1802             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1803                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1804         }
1805 
1806         // Warn if a deprecated method overridden by a non-deprecated one.
1807         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1808             checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1809         }
1810     }
1811     // where
1812         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
1813             if (m.owner != origin ||
1814                 //performance - only do the expensive checks when the overridden method is a Preview API:
1815                 ((other.flags() & PREVIEW_API) == 0 &&
1816                  (other.owner.flags() & PREVIEW_API) == 0)) {
1817                 return false;
1818             }
1819 
1820             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
1821                 if (m != s && m.overrides(s, origin, types, false)) {
1822                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
1823                     //without intermediate overriding methods:
1824                     return s == other;
1825                 }
1826             }
1827 
1828             return false;
1829         }
1830         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1831             // If the method, m, is defined in an interface, then ignore the issue if the method
1832             // is only inherited via a supertype and also implemented in the supertype,
1833             // because in that case, we will rediscover the issue when examining the method
1834             // in the supertype.
1835             // If the method, m, is not defined in an interface, then the only time we need to
1836             // address the issue is when the method is the supertype implementation: any other
1837             // case, we will have dealt with when examining the supertype classes
1838             ClassSymbol mc = m.enclClass();
1839             Type st = types.supertype(origin.type);
1840             if (!st.hasTag(CLASS))
1841                 return true;
1842             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1843 
1844             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1845                 List<Type> intfs = types.interfaces(origin.type);
1846                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1847             }
1848             else
1849                 return (stimpl != m);
1850         }
1851 
1852 
1853     // used to check if there were any unchecked conversions
1854     Warner overrideWarner = new Warner();
1855 
1856     /** Check that a class does not inherit two concrete methods
1857      *  with the same signature.
1858      *  @param pos          Position to be used for error reporting.
1859      *  @param site         The class type to be checked.
1860      */
1861     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1862         Type sup = types.supertype(site);
1863         if (!sup.hasTag(CLASS)) return;
1864 
1865         for (Type t1 = sup;
1866              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1867              t1 = types.supertype(t1)) {
1868             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1869                 if (s1.kind != MTH ||
1870                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1871                     !s1.isInheritedIn(site.tsym, types) ||
1872                     ((MethodSymbol)s1).implementation(site.tsym,
1873                                                       types,
1874                                                       true) != s1)
1875                     continue;
1876                 Type st1 = types.memberType(t1, s1);
1877                 int s1ArgsLength = st1.getParameterTypes().length();
1878                 if (st1 == s1.type) continue;
1879 
1880                 for (Type t2 = sup;
1881                      t2.hasTag(CLASS);
1882                      t2 = types.supertype(t2)) {
1883                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1884                         if (s2 == s1 ||
1885                             s2.kind != MTH ||
1886                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1887                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1888                             !s2.isInheritedIn(site.tsym, types) ||
1889                             ((MethodSymbol)s2).implementation(site.tsym,
1890                                                               types,
1891                                                               true) != s2)
1892                             continue;
1893                         Type st2 = types.memberType(t2, s2);
1894                         if (types.overrideEquivalent(st1, st2))
1895                             log.error(pos,
1896                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
1897                     }
1898                 }
1899             }
1900         }
1901     }
1902 
1903     /** Check that classes (or interfaces) do not each define an abstract
1904      *  method with same name and arguments but incompatible return types.
1905      *  @param pos          Position to be used for error reporting.
1906      *  @param t1           The first argument type.
1907      *  @param t2           The second argument type.
1908      */
1909     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1910                                             Type t1,
1911                                             Type t2,
1912                                             Type site) {
1913         if ((site.tsym.flags() & COMPOUND) != 0) {
1914             // special case for intersections: need to eliminate wildcards in supertypes
1915             t1 = types.capture(t1);
1916             t2 = types.capture(t2);
1917         }
1918         return firstIncompatibility(pos, t1, t2, site) == null;
1919     }
1920 
1921     /** Return the first method which is defined with same args
1922      *  but different return types in two given interfaces, or null if none
1923      *  exists.
1924      *  @param t1     The first type.
1925      *  @param t2     The second type.
1926      *  @param site   The most derived type.
1927      *  @return symbol from t2 that conflicts with one in t1.
1928      */
1929     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1930         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1931         closure(t1, interfaces1);
1932         Map<TypeSymbol,Type> interfaces2;
1933         if (t1 == t2)
1934             interfaces2 = interfaces1;
1935         else
1936             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1937 
1938         for (Type t3 : interfaces1.values()) {
1939             for (Type t4 : interfaces2.values()) {
1940                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1941                 if (s != null) return s;
1942             }
1943         }
1944         return null;
1945     }
1946 
1947     /** Compute all the supertypes of t, indexed by type symbol. */
1948     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1949         if (!t.hasTag(CLASS)) return;
1950         if (typeMap.put(t.tsym, t) == null) {
1951             closure(types.supertype(t), typeMap);
1952             for (Type i : types.interfaces(t))
1953                 closure(i, typeMap);
1954         }
1955     }
1956 
1957     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
1958     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1959         if (!t.hasTag(CLASS)) return;
1960         if (typesSkip.get(t.tsym) != null) return;
1961         if (typeMap.put(t.tsym, t) == null) {
1962             closure(types.supertype(t), typesSkip, typeMap);
1963             for (Type i : types.interfaces(t))
1964                 closure(i, typesSkip, typeMap);
1965         }
1966     }
1967 
1968     /** Return the first method in t2 that conflicts with a method from t1. */
1969     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1970         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1971             Type st1 = null;
1972             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1973                     (s1.flags() & SYNTHETIC) != 0) continue;
1974             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1975             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1976             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1977                 if (s1 == s2) continue;
1978                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1979                         (s2.flags() & SYNTHETIC) != 0) continue;
1980                 if (st1 == null) st1 = types.memberType(t1, s1);
1981                 Type st2 = types.memberType(t2, s2);
1982                 if (types.overrideEquivalent(st1, st2)) {
1983                     List<Type> tvars1 = st1.getTypeArguments();
1984                     List<Type> tvars2 = st2.getTypeArguments();
1985                     Type rt1 = st1.getReturnType();
1986                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1987                     boolean compat =
1988                         types.isSameType(rt1, rt2) ||
1989                         !rt1.isPrimitiveOrVoid() &&
1990                         !rt2.isPrimitiveOrVoid() &&
1991                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1992                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1993                          checkCommonOverriderIn(s1,s2,site);
1994                     if (!compat) {
1995                         if (types.isSameType(t1, t2)) {
1996                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
1997                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
1998                         } else {
1999                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2000                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2001                         }
2002                         return s2;
2003                     }
2004                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2005                         !checkCommonOverriderIn(s1, s2, site)) {
2006                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2007                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2008                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2009                     return s2;
2010                 }
2011             }
2012         }
2013         return null;
2014     }
2015     //WHERE
2016     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2017         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2018         Type st1 = types.memberType(site, s1);
2019         Type st2 = types.memberType(site, s2);
2020         closure(site, supertypes);
2021         for (Type t : supertypes.values()) {
2022             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2023                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2024                 Type st3 = types.memberType(site,s3);
2025                 if (types.overrideEquivalent(st3, st1) &&
2026                         types.overrideEquivalent(st3, st2) &&
2027                         types.returnTypeSubstitutable(st3, st1) &&
2028                         types.returnTypeSubstitutable(st3, st2)) {
2029                     return true;
2030                 }
2031             }
2032         }
2033         return false;
2034     }
2035 
2036     /** Check that a given method conforms with any method it overrides.
2037      *  @param tree         The tree from which positions are extracted
2038      *                      for errors.
2039      *  @param m            The overriding method.
2040      */
2041     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2042         ClassSymbol origin = (ClassSymbol)m.owner;
2043         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2044             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2045                 log.error(tree.pos(), Errors.EnumNoFinalize);
2046                 return;
2047             }
2048         }
2049         if (allowRecords && origin.isRecord()) {
2050             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2051             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2052                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2053             if (recordComponent.isPresent()) {
2054                 return;
2055             }
2056         }
2057 
2058         for (Type t = origin.type; t.hasTag(CLASS);
2059              t = types.supertype(t)) {
2060             if (t != origin.type) {
2061                 checkOverride(tree, t, origin, m);
2062             }
2063             for (Type t2 : types.interfaces(t)) {
2064                 checkOverride(tree, t2, origin, m);
2065             }
2066         }
2067 
2068         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2069         // Check if this method must override a super method due to being annotated with @Override
2070         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2071         // be treated "as if as they were annotated" with @Override.
2072         boolean mustOverride = explicitOverride ||
2073                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2074         if (mustOverride && !isOverrider(m)) {
2075             DiagnosticPosition pos = tree.pos();
2076             for (JCAnnotation a : tree.getModifiers().annotations) {
2077                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2078                     pos = a.pos();
2079                     break;
2080                 }
2081             }
2082             log.error(pos,
2083                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2084                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2085         }
2086     }
2087 
2088     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2089         TypeSymbol c = site.tsym;
2090         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2091             if (m.overrides(sym, origin, types, false)) {
2092                 if ((sym.flags() & ABSTRACT) == 0) {
2093                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2094                 }
2095             }
2096         }
2097     }
2098 
2099     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2100             (s.flags() & BAD_OVERRIDE) == 0;
2101 
2102     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2103             ClassSymbol someClass) {
2104         /* At present, annotations cannot possibly have a method that is override
2105          * equivalent with Object.equals(Object) but in any case the condition is
2106          * fine for completeness.
2107          */
2108         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2109             someClass.isInterface() || someClass.isEnum() ||
2110             (someClass.flags() & ANNOTATION) != 0 ||
2111             (someClass.flags() & ABSTRACT) != 0) return;
2112         //anonymous inner classes implementing interfaces need especial treatment
2113         if (someClass.isAnonymous()) {
2114             List<Type> interfaces =  types.interfaces(someClass.type);
2115             if (interfaces != null && !interfaces.isEmpty() &&
2116                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2117         }
2118         checkClassOverrideEqualsAndHash(pos, someClass);
2119     }
2120 
2121     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2122             ClassSymbol someClass) {
2123         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2124             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2125                     .tsym.members().findFirst(names.equals);
2126             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2127                     .tsym.members().findFirst(names.hashCode);
2128             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2129                     someClass, false, equalsHasCodeFilter);
2130             boolean overridesEquals = equalsImpl != null &&
2131                                       equalsImpl.owner == someClass;
2132             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2133                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2134 
2135             if (overridesEquals && !overridesHashCode) {
2136                 log.warning(pos,
2137                             LintWarnings.OverrideEqualsButNotHashcode(someClass));
2138             }
2139         }
2140     }
2141 
2142     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2143         boolean found = false;
2144 
2145         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2146             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2147                 MethodSymbol meth = (MethodSymbol)sym;
2148                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2149                     continue;
2150                 }
2151                 if (meth.params.isEmpty()) {
2152                     found = true;
2153                     break;
2154                 }
2155                 if (meth.params.size() != 1) {
2156                     continue;
2157                 }
2158                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2159                     continue;
2160                 }
2161 
2162                 found = true;
2163                 break;
2164             }
2165         }
2166 
2167         if (!found) {
2168             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2169         }
2170     }
2171 
2172     public void checkModuleName (JCModuleDecl tree) {
2173         Name moduleName = tree.sym.name;
2174         Assert.checkNonNull(moduleName);
2175         if (lint.isEnabled(LintCategory.MODULE)) {
2176             JCExpression qualId = tree.qualId;
2177             while (qualId != null) {
2178                 Name componentName;
2179                 DiagnosticPosition pos;
2180                 switch (qualId.getTag()) {
2181                     case SELECT:
2182                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2183                         componentName = selectNode.name;
2184                         pos = selectNode.pos();
2185                         qualId = selectNode.selected;
2186                         break;
2187                     case IDENT:
2188                         componentName = ((JCIdent) qualId).name;
2189                         pos = qualId.pos();
2190                         qualId = null;
2191                         break;
2192                     default:
2193                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2194                 }
2195                 if (componentName != null) {
2196                     String moduleNameComponentString = componentName.toString();
2197                     int nameLength = moduleNameComponentString.length();
2198                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2199                         log.warning(pos, LintWarnings.PoorChoiceForModuleName(componentName));
2200                     }
2201                 }
2202             }
2203         }
2204     }
2205 
2206     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2207         ClashFilter cf = new ClashFilter(origin.type);
2208         return (cf.test(s1) &&
2209                 cf.test(s2) &&
2210                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2211     }
2212 
2213 
2214     /** Check that all abstract members of given class have definitions.
2215      *  @param pos          Position to be used for error reporting.
2216      *  @param c            The class.
2217      */
2218     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2219         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2220         if (undef != null) {
2221             MethodSymbol undef1 =
2222                 new MethodSymbol(undef.flags(), undef.name,
2223                                  types.memberType(c.type, undef), undef.owner);
2224             log.error(pos,
2225                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2226         }
2227     }
2228 
2229     void checkNonCyclicDecl(JCClassDecl tree) {
2230         CycleChecker cc = new CycleChecker();
2231         cc.scan(tree);
2232         if (!cc.errorFound && !cc.partialCheck) {
2233             tree.sym.flags_field |= ACYCLIC;
2234         }
2235     }
2236 
2237     class CycleChecker extends TreeScanner {
2238 
2239         Set<Symbol> seenClasses = new HashSet<>();
2240         boolean errorFound = false;
2241         boolean partialCheck = false;
2242 
2243         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2244             if (sym != null && sym.kind == TYP) {
2245                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2246                 if (classEnv != null) {
2247                     DiagnosticSource prevSource = log.currentSource();
2248                     try {
2249                         log.useSource(classEnv.toplevel.sourcefile);
2250                         scan(classEnv.tree);
2251                     }
2252                     finally {
2253                         log.useSource(prevSource.getFile());
2254                     }
2255                 } else if (sym.kind == TYP) {
2256                     checkClass(pos, sym, List.nil());
2257                 }
2258             } else if (sym == null || sym.kind != PCK) {
2259                 //not completed yet
2260                 partialCheck = true;
2261             }
2262         }
2263 
2264         @Override
2265         public void visitSelect(JCFieldAccess tree) {
2266             super.visitSelect(tree);
2267             checkSymbol(tree.pos(), tree.sym);
2268         }
2269 
2270         @Override
2271         public void visitIdent(JCIdent tree) {
2272             checkSymbol(tree.pos(), tree.sym);
2273         }
2274 
2275         @Override
2276         public void visitTypeApply(JCTypeApply tree) {
2277             scan(tree.clazz);
2278         }
2279 
2280         @Override
2281         public void visitTypeArray(JCArrayTypeTree tree) {
2282             scan(tree.elemtype);
2283         }
2284 
2285         @Override
2286         public void visitClassDef(JCClassDecl tree) {
2287             List<JCTree> supertypes = List.nil();
2288             if (tree.getExtendsClause() != null) {
2289                 supertypes = supertypes.prepend(tree.getExtendsClause());
2290             }
2291             if (tree.getImplementsClause() != null) {
2292                 for (JCTree intf : tree.getImplementsClause()) {
2293                     supertypes = supertypes.prepend(intf);
2294                 }
2295             }
2296             checkClass(tree.pos(), tree.sym, supertypes);
2297         }
2298 
2299         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2300             if ((c.flags_field & ACYCLIC) != 0)
2301                 return;
2302             if (seenClasses.contains(c)) {
2303                 errorFound = true;
2304                 log.error(pos, Errors.CyclicInheritance(c));
2305                 seenClasses.stream()
2306                   .filter(s -> !s.type.isErroneous())
2307                   .filter(ClassSymbol.class::isInstance)
2308                   .map(ClassSymbol.class::cast)
2309                   .forEach(Check.this::handleCyclic);
2310             } else if (!c.type.isErroneous()) {
2311                 try {
2312                     seenClasses.add(c);
2313                     if (c.type.hasTag(CLASS)) {
2314                         if (supertypes.nonEmpty()) {
2315                             scan(supertypes);
2316                         }
2317                         else {
2318                             ClassType ct = (ClassType)c.type;
2319                             if (ct.supertype_field == null ||
2320                                     ct.interfaces_field == null) {
2321                                 //not completed yet
2322                                 partialCheck = true;
2323                                 return;
2324                             }
2325                             checkSymbol(pos, ct.supertype_field.tsym);
2326                             for (Type intf : ct.interfaces_field) {
2327                                 checkSymbol(pos, intf.tsym);
2328                             }
2329                         }
2330                         if (c.owner.kind == TYP) {
2331                             checkSymbol(pos, c.owner);
2332                         }
2333                     }
2334                 } finally {
2335                     seenClasses.remove(c);
2336                 }
2337             }
2338         }
2339     }
2340 
2341     /** Check for cyclic references. Issue an error if the
2342      *  symbol of the type referred to has a LOCKED flag set.
2343      *
2344      *  @param pos      Position to be used for error reporting.
2345      *  @param t        The type referred to.
2346      */
2347     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2348         checkNonCyclicInternal(pos, t);
2349     }
2350 
2351 
2352     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2353         checkNonCyclic1(pos, t, List.nil());
2354     }
2355 
2356     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2357         final TypeVar tv;
2358         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2359             return;
2360         if (seen.contains(t)) {
2361             tv = (TypeVar)t;
2362             tv.setUpperBound(types.createErrorType(t));
2363             log.error(pos, Errors.CyclicInheritance(t));
2364         } else if (t.hasTag(TYPEVAR)) {
2365             tv = (TypeVar)t;
2366             seen = seen.prepend(tv);
2367             for (Type b : types.getBounds(tv))
2368                 checkNonCyclic1(pos, b, seen);
2369         }
2370     }
2371 
2372     /** Check for cyclic references. Issue an error if the
2373      *  symbol of the type referred to has a LOCKED flag set.
2374      *
2375      *  @param pos      Position to be used for error reporting.
2376      *  @param t        The type referred to.
2377      *  @return        True if the check completed on all attributed classes
2378      */
2379     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2380         boolean complete = true; // was the check complete?
2381         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2382         Symbol c = t.tsym;
2383         if ((c.flags_field & ACYCLIC) != 0) return true;
2384 
2385         if ((c.flags_field & LOCKED) != 0) {
2386             log.error(pos, Errors.CyclicInheritance(c));
2387             handleCyclic((ClassSymbol)c);
2388         } else if (!c.type.isErroneous()) {
2389             try {
2390                 c.flags_field |= LOCKED;
2391                 if (c.type.hasTag(CLASS)) {
2392                     ClassType clazz = (ClassType)c.type;
2393                     if (clazz.interfaces_field != null)
2394                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2395                             complete &= checkNonCyclicInternal(pos, l.head);
2396                     if (clazz.supertype_field != null) {
2397                         Type st = clazz.supertype_field;
2398                         if (st != null && st.hasTag(CLASS))
2399                             complete &= checkNonCyclicInternal(pos, st);
2400                     }
2401                     if (c.owner.kind == TYP)
2402                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2403                 }
2404             } finally {
2405                 c.flags_field &= ~LOCKED;
2406             }
2407         }
2408         if (complete)
2409             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2410         if (complete) c.flags_field |= ACYCLIC;
2411         return complete;
2412     }
2413 
2414     /** Handle finding an inheritance cycle on a class by setting
2415      *  the class' and its supertypes' types to the error type.
2416      **/
2417     private void handleCyclic(ClassSymbol c) {
2418         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2419             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2420         Type st = types.supertype(c.type);
2421         if (st.hasTag(CLASS))
2422             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2423         c.type = types.createErrorType(c, c.type);
2424         c.flags_field |= ACYCLIC;
2425     }
2426 
2427     /** Check that all methods which implement some
2428      *  method conform to the method they implement.
2429      *  @param tree         The class definition whose members are checked.
2430      */
2431     void checkImplementations(JCClassDecl tree) {
2432         checkImplementations(tree, tree.sym, tree.sym);
2433     }
2434     //where
2435         /** Check that all methods which implement some
2436          *  method in `ic' conform to the method they implement.
2437          */
2438         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2439             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2440                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2441                 if ((lc.flags() & ABSTRACT) != 0) {
2442                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2443                         if (sym.kind == MTH &&
2444                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2445                             MethodSymbol absmeth = (MethodSymbol)sym;
2446                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2447                             if (implmeth != null && implmeth != absmeth &&
2448                                 (implmeth.owner.flags() & INTERFACE) ==
2449                                 (origin.flags() & INTERFACE)) {
2450                                 // don't check if implmeth is in a class, yet
2451                                 // origin is an interface. This case arises only
2452                                 // if implmeth is declared in Object. The reason is
2453                                 // that interfaces really don't inherit from
2454                                 // Object it's just that the compiler represents
2455                                 // things that way.
2456                                 checkOverride(tree, implmeth, absmeth, origin);
2457                             }
2458                         }
2459                     }
2460                 }
2461             }
2462         }
2463 
2464     /** Check that all abstract methods implemented by a class are
2465      *  mutually compatible.
2466      *  @param pos          Position to be used for error reporting.
2467      *  @param c            The class whose interfaces are checked.
2468      */
2469     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2470         List<Type> supertypes = types.interfaces(c);
2471         Type supertype = types.supertype(c);
2472         if (supertype.hasTag(CLASS) &&
2473             (supertype.tsym.flags() & ABSTRACT) != 0)
2474             supertypes = supertypes.prepend(supertype);
2475         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2476             if (!l.head.getTypeArguments().isEmpty() &&
2477                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2478                 return;
2479             for (List<Type> m = supertypes; m != l; m = m.tail)
2480                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2481                     return;
2482         }
2483         checkCompatibleConcretes(pos, c);
2484     }
2485 
2486     /** Check that all non-override equivalent methods accessible from 'site'
2487      *  are mutually compatible (JLS 8.4.8/9.4.1).
2488      *
2489      *  @param pos  Position to be used for error reporting.
2490      *  @param site The class whose methods are checked.
2491      *  @param sym  The method symbol to be checked.
2492      */
2493     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2494          ClashFilter cf = new ClashFilter(site);
2495         //for each method m1 that is overridden (directly or indirectly)
2496         //by method 'sym' in 'site'...
2497 
2498         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2499         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2500         for (Symbol m1 : symbolsByName) {
2501             if (!sym.overrides(m1, site.tsym, types, false)) {
2502                 continue;
2503             }
2504 
2505             //...check each method m2 that is a member of 'site'
2506             for (Symbol m2 : symbolsByName) {
2507                 if (m2 == m1) continue;
2508                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2509                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2510                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2511                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2512                     sym.flags_field |= CLASH;
2513                     if (m1 == sym) {
2514                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2515                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2516                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2517                     } else {
2518                         ClassType ct = (ClassType)site;
2519                         String kind = ct.isInterface() ? "interface" : "class";
2520                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2521                             kind,
2522                             ct.tsym.name,
2523                             m1.name,
2524                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2525                             m1.location(),
2526                             m2.name,
2527                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2528                             m2.location()));
2529                     }
2530                     return;
2531                 }
2532             }
2533         }
2534     }
2535 
2536     /** Check that all static methods accessible from 'site' are
2537      *  mutually compatible (JLS 8.4.8).
2538      *
2539      *  @param pos  Position to be used for error reporting.
2540      *  @param site The class whose methods are checked.
2541      *  @param sym  The method symbol to be checked.
2542      */
2543     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2544         ClashFilter cf = new ClashFilter(site);
2545         //for each method m1 that is a member of 'site'...
2546         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2547             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2548             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2549             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2550                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2551                     log.error(pos,
2552                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2553                     return;
2554                 }
2555             }
2556          }
2557      }
2558 
2559      //where
2560      private class ClashFilter implements Predicate<Symbol> {
2561 
2562          Type site;
2563 
2564          ClashFilter(Type site) {
2565              this.site = site;
2566          }
2567 
2568          boolean shouldSkip(Symbol s) {
2569              return (s.flags() & CLASH) != 0 &&
2570                 s.owner == site.tsym;
2571          }
2572 
2573          @Override
2574          public boolean test(Symbol s) {
2575              return s.kind == MTH &&
2576                      (s.flags() & SYNTHETIC) == 0 &&
2577                      !shouldSkip(s) &&
2578                      s.isInheritedIn(site.tsym, types) &&
2579                      !s.isConstructor();
2580          }
2581      }
2582 
2583     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2584         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2585         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2586             Assert.check(m.kind == MTH);
2587             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2588             if (prov.size() > 1) {
2589                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2590                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2591                 for (MethodSymbol provSym : prov) {
2592                     if ((provSym.flags() & DEFAULT) != 0) {
2593                         defaults = defaults.append(provSym);
2594                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2595                         abstracts = abstracts.append(provSym);
2596                     }
2597                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2598                         //strong semantics - issue an error if two sibling interfaces
2599                         //have two override-equivalent defaults - or if one is abstract
2600                         //and the other is default
2601                         Fragment diagKey;
2602                         Symbol s1 = defaults.first();
2603                         Symbol s2;
2604                         if (defaults.size() > 1) {
2605                             s2 = defaults.toList().tail.head;
2606                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2607                                     m.name, types.memberType(site, m).getParameterTypes(),
2608                                     s1.location(), s2.location());
2609 
2610                         } else {
2611                             s2 = abstracts.first();
2612                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2613                                     m.name, types.memberType(site, m).getParameterTypes(),
2614                                     s1.location(), s2.location());
2615                         }
2616                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2617                         break;
2618                     }
2619                 }
2620             }
2621         }
2622     }
2623 
2624     //where
2625      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2626 
2627          Type site;
2628 
2629          DefaultMethodClashFilter(Type site) {
2630              this.site = site;
2631          }
2632 
2633          @Override
2634          public boolean test(Symbol s) {
2635              return s.kind == MTH &&
2636                      (s.flags() & DEFAULT) != 0 &&
2637                      s.isInheritedIn(site.tsym, types) &&
2638                      !s.isConstructor();
2639          }
2640      }
2641 
2642     /** Report warnings for potentially ambiguous method declarations in the given site. */
2643     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2644 
2645         // Skip if warning not enabled
2646         if (!lint.isEnabled(LintCategory.OVERLOADS))
2647             return;
2648 
2649         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2650         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2651             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2652 
2653         // Build the predicate that determines if site is responsible for an ambiguity
2654         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2655 
2656         // Now remove overridden methods from each group, leaving only site's actual members
2657         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2658 
2659         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2660         methodGroups.forEach(list -> list.removeIf(
2661             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2662 
2663         // Warn about ambiguous overload method pairs for which site is responsible
2664         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2665 
2666             // See if this is an ambiguous overload for which "site" is responsible
2667             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2668                 return 0;
2669 
2670             // Locate the warning at one of the methods, if possible
2671             DiagnosticPosition pos =
2672                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2673                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2674                 tree.pos();
2675 
2676             // Log the warning
2677             log.warning(pos,
2678                 LintWarnings.PotentiallyAmbiguousOverload(
2679                     m1.asMemberOf(site, types), m1.location(),
2680                     m2.asMemberOf(site, types), m2.location()));
2681 
2682             // Don't warn again for either of these two methods
2683             return FIRST | SECOND;
2684         }));
2685     }
2686 
2687     /** Build a predicate that determines, given two methods that are members of the given class,
2688      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2689      *
2690      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2691      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2692      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2693      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2694      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2695      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2696      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2697      *  As an optimization, we first check if either method is declared in C and does not override
2698      *  any other methods; in this case the class is definitely responsible.
2699      */
2700     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2701         List<? extends Collection<MethodSymbol>> methodGroups) {
2702 
2703         // Define the "overrides" predicate
2704         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2705 
2706         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2707         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2708         methodGroups.forEach(list -> {
2709             for (MethodSymbol m : list) {
2710 
2711                 // Skip methods not declared in site
2712                 if (m.owner != site.tsym)
2713                     continue;
2714 
2715                 // Gather all supertype methods overridden by m, directly or indirectly
2716                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2717                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2718                   .collect(Collectors.toCollection(ArrayList::new));
2719 
2720                 // Eliminate non-direct overrides
2721                 removePreempted(overriddenMethods, overrides);
2722 
2723                 // Add to map
2724                 overriddenMethodsMap.put(m, overriddenMethods);
2725             }
2726         });
2727 
2728         // Build the predicate
2729         return (m1, m2) -> {
2730 
2731             // Get corresponding supertype methods (if declared in site)
2732             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2733             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2734 
2735             // Quick check for the case where a method was added by site itself
2736             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2737                 return true;
2738             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2739                 return true;
2740 
2741             // Get each method's corresponding method(s) from supertypes of site
2742             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2743               overriddenMethods1 : Collections.singletonList(m1);
2744             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2745               overriddenMethods2 : Collections.singletonList(m2);
2746 
2747             // See if we can blame some direct supertype instead
2748             return types.directSupertypes(site).stream()
2749               .filter(stype -> stype != syms.objectType)
2750               .map(stype -> stype.tsym.type)                // view supertype in its original form
2751               .noneMatch(stype -> {
2752                 for (MethodSymbol sm1 : supertypeMethods1) {
2753                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2754                         continue;
2755                     for (MethodSymbol sm2 : supertypeMethods2) {
2756                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2757                             continue;
2758                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2759                             return true;
2760                     }
2761                 }
2762                 return false;
2763             });
2764         };
2765     }
2766 
2767     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2768      *  after applying the given filter.
2769      */
2770     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2771             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2772         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2773         return StreamSupport.stream(symbols.spliterator(), false)
2774           .map(MethodSymbol.class::cast)
2775           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2776           .entrySet()
2777           .stream()
2778           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2779           .map(Map.Entry::getValue)
2780           .collect(List.collector());
2781     }
2782 
2783     /** Compare elements in a list pair-wise in order to remove some of them.
2784      *  @param list mutable list of items
2785      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2786      */
2787     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2788         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2789             T item1 = list.get(index1);
2790             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2791                 T item2 = list.get(index2);
2792                 int flags = comparer.applyAsInt(item1, item2);
2793                 if ((flags & SECOND) != 0)
2794                     list.remove(index2--);          // remove item2
2795                 if ((flags & FIRST) != 0) {
2796                     list.remove(index1--);          // remove item1
2797                     break;
2798                 }
2799             }
2800         }
2801     }
2802 
2803     /** Remove elements in a list that are preempted by some other element in the list.
2804      *  @param list mutable list of items
2805      *  @param preempts decides if one item preempts another, causing the second one to be removed
2806      */
2807     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
2808         compareAndRemove(list, (item1, item2) -> {
2809             int flags = 0;
2810             if (preempts.test(item1, item2))
2811                 flags |= SECOND;
2812             if (preempts.test(item2, item1))
2813                 flags |= FIRST;
2814             return flags;
2815         });
2816     }
2817 
2818     /** Filters method candidates for the "potentially ambiguous method" check */
2819     class PotentiallyAmbiguousFilter extends ClashFilter {
2820 
2821         PotentiallyAmbiguousFilter(Type site) {
2822             super(site);
2823         }
2824 
2825         @Override
2826         boolean shouldSkip(Symbol s) {
2827             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
2828         }
2829     }
2830 
2831     /**
2832       * Report warnings for potentially ambiguous method declarations. Two declarations
2833       * are potentially ambiguous if they feature two unrelated functional interface
2834       * in same argument position (in which case, a call site passing an implicit
2835       * lambda would be ambiguous). This assumes they already have the same name.
2836       */
2837     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
2838         Assert.check(msym1.name == msym2.name);
2839         if (msym1 == msym2)
2840             return false;
2841         Type mt1 = types.memberType(site, msym1);
2842         Type mt2 = types.memberType(site, msym2);
2843         //if both generic methods, adjust type variables
2844         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2845                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2846             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2847         }
2848         //expand varargs methods if needed
2849         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2850         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2851         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2852         //if arities don't match, exit
2853         if (args1.length() != args2.length())
2854             return false;
2855         boolean potentiallyAmbiguous = false;
2856         while (args1.nonEmpty() && args2.nonEmpty()) {
2857             Type s = args1.head;
2858             Type t = args2.head;
2859             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2860                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2861                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2862                         types.findDescriptorType(s).getParameterTypes().length() ==
2863                         types.findDescriptorType(t).getParameterTypes().length()) {
2864                     potentiallyAmbiguous = true;
2865                 } else {
2866                     return false;
2867                 }
2868             }
2869             args1 = args1.tail;
2870             args2 = args2.tail;
2871         }
2872         return potentiallyAmbiguous;
2873     }
2874 
2875     // Apply special flag "-XDwarnOnAccessToMembers" which turns on just this particular warning for all types of access
2876     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2877         if (warnOnAnyAccessToMembers || isLambda)
2878             checkAccessFromSerializableElementInner(tree, isLambda);
2879     }
2880 
2881     private void checkAccessFromSerializableElementInner(final JCTree tree, boolean isLambda) {
2882         Symbol sym = TreeInfo.symbol(tree);
2883         if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2884             return;
2885         }
2886 
2887         if (sym.kind == VAR) {
2888             if ((sym.flags() & PARAMETER) != 0 ||
2889                 sym.isDirectlyOrIndirectlyLocal() ||
2890                 sym.name == names._this ||
2891                 sym.name == names._super) {
2892                 return;
2893             }
2894         }
2895 
2896         if (!types.isSubtype(sym.owner.type, syms.serializableType) && isEffectivelyNonPublic(sym)) {
2897             DiagnosticFlag flag = warnOnAnyAccessToMembers ? DiagnosticFlag.DEFAULT_ENABLED : null;
2898             if (isLambda) {
2899                 if (belongsToRestrictedPackage(sym)) {
2900                     log.warning(flag, tree.pos(), LintWarnings.AccessToMemberFromSerializableLambda(sym));
2901                 }
2902             } else {
2903                 log.warning(flag, tree.pos(), LintWarnings.AccessToMemberFromSerializableElement(sym));
2904             }
2905         }
2906     }
2907 
2908     private boolean isEffectivelyNonPublic(Symbol sym) {
2909         if (sym.packge() == syms.rootPackage) {
2910             return false;
2911         }
2912 
2913         while (sym.kind != PCK) {
2914             if ((sym.flags() & PUBLIC) == 0) {
2915                 return true;
2916             }
2917             sym = sym.owner;
2918         }
2919         return false;
2920     }
2921 
2922     private boolean belongsToRestrictedPackage(Symbol sym) {
2923         String fullName = sym.packge().fullname.toString();
2924         return fullName.startsWith("java.") ||
2925                 fullName.startsWith("javax.") ||
2926                 fullName.startsWith("sun.") ||
2927                 fullName.contains(".internal.");
2928     }
2929 
2930     /** Check that class c does not implement directly or indirectly
2931      *  the same parameterized interface with two different argument lists.
2932      *  @param pos          Position to be used for error reporting.
2933      *  @param type         The type whose interfaces are checked.
2934      */
2935     void checkClassBounds(DiagnosticPosition pos, Type type) {
2936         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2937     }
2938 //where
2939         /** Enter all interfaces of type `type' into the hash table `seensofar'
2940          *  with their class symbol as key and their type as value. Make
2941          *  sure no class is entered with two different types.
2942          */
2943         void checkClassBounds(DiagnosticPosition pos,
2944                               Map<TypeSymbol,Type> seensofar,
2945                               Type type) {
2946             if (type.isErroneous()) return;
2947             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2948                 Type it = l.head;
2949                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
2950 
2951                 Type oldit = seensofar.put(it.tsym, it);
2952                 if (oldit != null) {
2953                     List<Type> oldparams = oldit.allparams();
2954                     List<Type> newparams = it.allparams();
2955                     if (!types.containsTypeEquivalent(oldparams, newparams))
2956                         log.error(pos,
2957                                   Errors.CantInheritDiffArg(it.tsym,
2958                                                             Type.toString(oldparams),
2959                                                             Type.toString(newparams)));
2960                 }
2961                 checkClassBounds(pos, seensofar, it);
2962             }
2963             Type st = types.supertype(type);
2964             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
2965             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2966         }
2967 
2968     /** Enter interface into into set.
2969      *  If it existed already, issue a "repeated interface" error.
2970      */
2971     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
2972         if (its.contains(it.tsym))
2973             log.error(pos, Errors.RepeatedInterface);
2974         else {
2975             its.add(it.tsym);
2976         }
2977     }
2978 
2979 /* *************************************************************************
2980  * Check annotations
2981  **************************************************************************/
2982 
2983     /**
2984      * Recursively validate annotations values
2985      */
2986     void validateAnnotationTree(JCTree tree) {
2987         class AnnotationValidator extends TreeScanner {
2988             @Override
2989             public void visitAnnotation(JCAnnotation tree) {
2990                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
2991                     super.visitAnnotation(tree);
2992                     validateAnnotation(tree);
2993                 }
2994             }
2995         }
2996         tree.accept(new AnnotationValidator());
2997     }
2998 
2999     /**
3000      *  {@literal
3001      *  Annotation types are restricted to primitives, String, an
3002      *  enum, an annotation, Class, Class<?>, Class<? extends
3003      *  Anything>, arrays of the preceding.
3004      *  }
3005      */
3006     void validateAnnotationType(JCTree restype) {
3007         // restype may be null if an error occurred, so don't bother validating it
3008         if (restype != null) {
3009             validateAnnotationType(restype.pos(), restype.type);
3010         }
3011     }
3012 
3013     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3014         if (type.isPrimitive()) return;
3015         if (types.isSameType(type, syms.stringType)) return;
3016         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3017         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3018         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3019         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3020             validateAnnotationType(pos, types.elemtype(type));
3021             return;
3022         }
3023         log.error(pos, Errors.InvalidAnnotationMemberType);
3024     }
3025 
3026     /**
3027      * "It is also a compile-time error if any method declared in an
3028      * annotation type has a signature that is override-equivalent to
3029      * that of any public or protected method declared in class Object
3030      * or in the interface annotation.Annotation."
3031      *
3032      * @jls 9.6 Annotation Types
3033      */
3034     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3035         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3036             Scope s = sup.tsym.members();
3037             for (Symbol sym : s.getSymbolsByName(m.name)) {
3038                 if (sym.kind == MTH &&
3039                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3040                     types.overrideEquivalent(m.type, sym.type))
3041                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3042             }
3043         }
3044     }
3045 
3046     /** Check the annotations of a symbol.
3047      */
3048     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3049         for (JCAnnotation a : annotations)
3050             validateAnnotation(a, declarationTree, s);
3051     }
3052 
3053     /** Check the type annotations.
3054      */
3055     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3056         for (JCAnnotation a : annotations)
3057             validateTypeAnnotation(a, s, isTypeParameter);
3058     }
3059 
3060     /** Check an annotation of a symbol.
3061      */
3062     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3063         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3064          *  this can impact in particular records for which annotations are forcibly propagated.
3065          */
3066         validateAnnotationTree(a);
3067         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3068 
3069         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3070                 declarationTree.hasTag(VARDEF) &&
3071                 s.owner.kind == TYP;
3072 
3073         if (isRecordField) {
3074             // first we need to check if the annotation is applicable to records
3075             Name[] targets = getTargetNames(a);
3076             boolean appliesToRecords = false;
3077             for (Name target : targets) {
3078                 appliesToRecords =
3079                                 target == names.FIELD ||
3080                                 target == names.PARAMETER ||
3081                                 target == names.METHOD ||
3082                                 target == names.TYPE_USE ||
3083                                 target == names.RECORD_COMPONENT;
3084                 if (appliesToRecords) {
3085                     break;
3086                 }
3087             }
3088             if (!appliesToRecords) {
3089                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3090             } else {
3091                 /* lets now find the annotations in the field that are targeted to record components and append them to
3092                  * the corresponding record component
3093                  */
3094                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3095                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3096                 SymbolMetadata metadata = rc.getMetadata();
3097                 if (metadata == null || metadata.isEmpty()) {
3098                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3099                      * to the record component declaration
3100                      */
3101                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3102                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3103                     ).collect(List.collector()));
3104 
3105                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3106                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3107                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3108                             if (rcAnnot.pos == fieldAnnot.pos) {
3109                                 rcAnnot.setType(fieldAnnot.type);
3110                                 break;
3111                             }
3112                         }
3113                     }
3114 
3115                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3116                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3117                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3118                      * annotations in the SE5 annotation location.
3119                      *
3120                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3121                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3122                      */
3123                 }
3124             }
3125         }
3126 
3127         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3128          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3129          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3130          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3131          * to all the possible locations.
3132          *
3133          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3134          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3135          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3136          * was both a field and a record component.
3137          *
3138          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3139          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3140          * be see by annotation processors.
3141          *
3142          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3143          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3144          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3145          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3146          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3147          *
3148          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3149          * further inspection by annotation processors.
3150          *
3151          * For example:
3152          *
3153          *     import java.lang.annotation.*;
3154          *
3155          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3156          *     @Retention(RetentionPolicy.RUNTIME)
3157          *     @interface Anno { }
3158          *
3159          *     record R(@Anno String s) {}
3160          *
3161          * at this point we will have for the case of the generated field:
3162          *   - @Anno in the modifier
3163          *   - @Anno as a type annotation
3164          *   - @Anno as a declaration annotation
3165          *
3166          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3167          * declaration annotation because the field was being treated both as a field and as a record component
3168          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3169          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3170          * is applicable as a type annotation to the type of the field.
3171          */
3172 
3173         if (a.type.tsym.isAnnotationType()) {
3174             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3175             if (!applicableTargetsOp.isEmpty()) {
3176                 Set<Name> applicableTargets = applicableTargetsOp.get();
3177                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3178                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3179                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3180                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3181 
3182                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3183                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3184                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3185                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3186                              * that are not applicable to the given record member
3187                              */
3188                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3189                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3190                              * it could be a type annotation
3191                              */
3192                         if (modifiers != null && applicableTargets.isEmpty()) {
3193                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3194                             for (JCAnnotation anno : modifiers.annotations) {
3195                                 if (anno != a) {
3196                                     newAnnotations.add(anno);
3197                                 }
3198                             }
3199                             modifiers.annotations = newAnnotations.toList();
3200                         }
3201                         // now lets remove it from the symbol
3202                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3203                     } else {
3204                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3205                     }
3206                 }
3207                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3208                  * then this is an error as we know that no compiler generated accessor will be a varargs
3209                  * method, better to fail asap
3210                  */
3211                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3212                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3213                 }
3214             }
3215         }
3216 
3217         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3218             if (s.kind != TYP) {
3219                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3220             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3221                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3222             }
3223         }
3224     }
3225 
3226     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3227         Assert.checkNonNull(a.type);
3228         // we just want to validate that the anotation doesn't have any wrong target
3229         if (s != null) getApplicableTargets(a, s);
3230         validateAnnotationTree(a);
3231 
3232         if (a.hasTag(TYPE_ANNOTATION) &&
3233                 !a.annotationType.type.isErroneous() &&
3234                 !isTypeAnnotation(a, isTypeParameter)) {
3235             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3236         }
3237     }
3238 
3239     /**
3240      * Validate the proposed container 'repeatable' on the
3241      * annotation type symbol 's'. Report errors at position
3242      * 'pos'.
3243      *
3244      * @param s The (annotation)type declaration annotated with a @Repeatable
3245      * @param repeatable the @Repeatable on 's'
3246      * @param pos where to report errors
3247      */
3248     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3249         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3250 
3251         Type t = null;
3252         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3253         if (!l.isEmpty()) {
3254             Assert.check(l.head.fst.name == names.value);
3255             if (l.head.snd instanceof Attribute.Class) {
3256                 t = ((Attribute.Class)l.head.snd).getValue();
3257             }
3258         }
3259 
3260         if (t == null) {
3261             // errors should already have been reported during Annotate
3262             return;
3263         }
3264 
3265         validateValue(t.tsym, s, pos);
3266         validateRetention(t.tsym, s, pos);
3267         validateDocumented(t.tsym, s, pos);
3268         validateInherited(t.tsym, s, pos);
3269         validateTarget(t.tsym, s, pos);
3270         validateDefault(t.tsym, pos);
3271     }
3272 
3273     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3274         Symbol sym = container.members().findFirst(names.value);
3275         if (sym != null && sym.kind == MTH) {
3276             MethodSymbol m = (MethodSymbol) sym;
3277             Type ret = m.getReturnType();
3278             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3279                 log.error(pos,
3280                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3281                                                                         ret,
3282                                                                         types.makeArrayType(contained.type)));
3283             }
3284         } else {
3285             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3286         }
3287     }
3288 
3289     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3290         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3291         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3292 
3293         boolean error = false;
3294         switch (containedRetention) {
3295         case RUNTIME:
3296             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3297                 error = true;
3298             }
3299             break;
3300         case CLASS:
3301             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3302                 error = true;
3303             }
3304         }
3305         if (error ) {
3306             log.error(pos,
3307                       Errors.InvalidRepeatableAnnotationRetention(container,
3308                                                                   containerRetention.name(),
3309                                                                   contained,
3310                                                                   containedRetention.name()));
3311         }
3312     }
3313 
3314     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3315         if (contained.attribute(syms.documentedType.tsym) != null) {
3316             if (container.attribute(syms.documentedType.tsym) == null) {
3317                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3318             }
3319         }
3320     }
3321 
3322     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3323         if (contained.attribute(syms.inheritedType.tsym) != null) {
3324             if (container.attribute(syms.inheritedType.tsym) == null) {
3325                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3326             }
3327         }
3328     }
3329 
3330     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3331         // The set of targets the container is applicable to must be a subset
3332         // (with respect to annotation target semantics) of the set of targets
3333         // the contained is applicable to. The target sets may be implicit or
3334         // explicit.
3335 
3336         Set<Name> containerTargets;
3337         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3338         if (containerTarget == null) {
3339             containerTargets = getDefaultTargetSet();
3340         } else {
3341             containerTargets = new HashSet<>();
3342             for (Attribute app : containerTarget.values) {
3343                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3344                     continue; // recovery
3345                 }
3346                 containerTargets.add(attributeEnum.value.name);
3347             }
3348         }
3349 
3350         Set<Name> containedTargets;
3351         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3352         if (containedTarget == null) {
3353             containedTargets = getDefaultTargetSet();
3354         } else {
3355             containedTargets = new HashSet<>();
3356             for (Attribute app : containedTarget.values) {
3357                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3358                     continue; // recovery
3359                 }
3360                 containedTargets.add(attributeEnum.value.name);
3361             }
3362         }
3363 
3364         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3365             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3366         }
3367     }
3368 
3369     /* get a set of names for the default target */
3370     private Set<Name> getDefaultTargetSet() {
3371         if (defaultTargets == null) {
3372             defaultTargets = Set.of(defaultTargetMetaInfo());
3373         }
3374 
3375         return defaultTargets;
3376     }
3377     private Set<Name> defaultTargets;
3378 
3379 
3380     /** Checks that s is a subset of t, with respect to ElementType
3381      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3382      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3383      * TYPE_PARAMETER}.
3384      */
3385     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3386         // Check that all elements in s are present in t
3387         for (Name n2 : s) {
3388             boolean currentElementOk = false;
3389             for (Name n1 : t) {
3390                 if (n1 == n2) {
3391                     currentElementOk = true;
3392                     break;
3393                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3394                     currentElementOk = true;
3395                     break;
3396                 } else if (n1 == names.TYPE_USE &&
3397                         (n2 == names.TYPE ||
3398                          n2 == names.ANNOTATION_TYPE ||
3399                          n2 == names.TYPE_PARAMETER)) {
3400                     currentElementOk = true;
3401                     break;
3402                 }
3403             }
3404             if (!currentElementOk)
3405                 return false;
3406         }
3407         return true;
3408     }
3409 
3410     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3411         // validate that all other elements of containing type has defaults
3412         Scope scope = container.members();
3413         for(Symbol elm : scope.getSymbols()) {
3414             if (elm.name != names.value &&
3415                 elm.kind == MTH &&
3416                 ((MethodSymbol)elm).defaultValue == null) {
3417                 log.error(pos,
3418                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3419             }
3420         }
3421     }
3422 
3423     /** Is s a method symbol that overrides a method in a superclass? */
3424     boolean isOverrider(Symbol s) {
3425         if (s.kind != MTH || s.isStatic())
3426             return false;
3427         MethodSymbol m = (MethodSymbol)s;
3428         TypeSymbol owner = (TypeSymbol)m.owner;
3429         for (Type sup : types.closure(owner.type)) {
3430             if (sup == owner.type)
3431                 continue; // skip "this"
3432             Scope scope = sup.tsym.members();
3433             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3434                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3435                     return true;
3436             }
3437         }
3438         return false;
3439     }
3440 
3441     /** Is the annotation applicable to types? */
3442     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3443         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3444         return (targets == null) ?
3445                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3446                 targets.stream()
3447                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3448     }
3449     //where
3450         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3451             Attribute.Enum e = (Attribute.Enum)a;
3452             return (e.value.name == names.TYPE_USE ||
3453                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3454         }
3455 
3456     /** Is the annotation applicable to the symbol? */
3457     Name[] getTargetNames(JCAnnotation a) {
3458         return getTargetNames(a.annotationType.type.tsym);
3459     }
3460 
3461     public Name[] getTargetNames(TypeSymbol annoSym) {
3462         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3463         Name[] targets;
3464         if (arr == null) {
3465             targets = defaultTargetMetaInfo();
3466         } else {
3467             // TODO: can we optimize this?
3468             targets = new Name[arr.values.length];
3469             for (int i=0; i<arr.values.length; ++i) {
3470                 Attribute app = arr.values[i];
3471                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3472                     return new Name[0];
3473                 }
3474                 targets[i] = attributeEnum.value.name;
3475             }
3476         }
3477         return targets;
3478     }
3479 
3480     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3481         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3482         /* the optional could be empty if the annotation is unknown in that case
3483          * we return that it is applicable and if it is erroneous that should imply
3484          * an error at the declaration site
3485          */
3486         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3487     }
3488 
3489     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3490         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3491         Name[] targets;
3492         Set<Name> applicableTargets = new HashSet<>();
3493 
3494         if (arr == null) {
3495             targets = defaultTargetMetaInfo();
3496         } else {
3497             // TODO: can we optimize this?
3498             targets = new Name[arr.values.length];
3499             for (int i=0; i<arr.values.length; ++i) {
3500                 Attribute app = arr.values[i];
3501                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3502                     // recovery
3503                     return Optional.empty();
3504                 }
3505                 targets[i] = attributeEnum.value.name;
3506             }
3507         }
3508         for (Name target : targets) {
3509             if (target == names.TYPE) {
3510                 if (s.kind == TYP)
3511                     applicableTargets.add(names.TYPE);
3512             } else if (target == names.FIELD) {
3513                 if (s.kind == VAR && s.owner.kind != MTH)
3514                     applicableTargets.add(names.FIELD);
3515             } else if (target == names.RECORD_COMPONENT) {
3516                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3517                     applicableTargets.add(names.RECORD_COMPONENT);
3518                 }
3519             } else if (target == names.METHOD) {
3520                 if (s.kind == MTH && !s.isConstructor())
3521                     applicableTargets.add(names.METHOD);
3522             } else if (target == names.PARAMETER) {
3523                 if (s.kind == VAR &&
3524                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3525                     applicableTargets.add(names.PARAMETER);
3526                 }
3527             } else if (target == names.CONSTRUCTOR) {
3528                 if (s.kind == MTH && s.isConstructor())
3529                     applicableTargets.add(names.CONSTRUCTOR);
3530             } else if (target == names.LOCAL_VARIABLE) {
3531                 if (s.kind == VAR && s.owner.kind == MTH &&
3532                       (s.flags() & PARAMETER) == 0) {
3533                     applicableTargets.add(names.LOCAL_VARIABLE);
3534                 }
3535             } else if (target == names.ANNOTATION_TYPE) {
3536                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3537                     applicableTargets.add(names.ANNOTATION_TYPE);
3538                 }
3539             } else if (target == names.PACKAGE) {
3540                 if (s.kind == PCK)
3541                     applicableTargets.add(names.PACKAGE);
3542             } else if (target == names.TYPE_USE) {
3543                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3544                     //cannot type annotate implicitly typed locals
3545                     continue;
3546                 } else if (s.kind == TYP || s.kind == VAR ||
3547                         (s.kind == MTH && !s.isConstructor() &&
3548                                 !s.type.getReturnType().hasTag(VOID)) ||
3549                         (s.kind == MTH && s.isConstructor())) {
3550                     applicableTargets.add(names.TYPE_USE);
3551                 }
3552             } else if (target == names.TYPE_PARAMETER) {
3553                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3554                     applicableTargets.add(names.TYPE_PARAMETER);
3555             } else if (target == names.MODULE) {
3556                 if (s.kind == MDL)
3557                     applicableTargets.add(names.MODULE);
3558             } else {
3559                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3560                 return Optional.empty(); // Unknown ElementType
3561             }
3562         }
3563         return Optional.of(applicableTargets);
3564     }
3565 
3566     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3567         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3568         if (atTarget == null) return null; // ok, is applicable
3569         Attribute atValue = atTarget.member(names.value);
3570         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3571     }
3572 
3573     private Name[] dfltTargetMeta;
3574     private Name[] defaultTargetMetaInfo() {
3575         if (dfltTargetMeta == null) {
3576             ArrayList<Name> defaultTargets = new ArrayList<>();
3577             defaultTargets.add(names.PACKAGE);
3578             defaultTargets.add(names.TYPE);
3579             defaultTargets.add(names.FIELD);
3580             defaultTargets.add(names.METHOD);
3581             defaultTargets.add(names.CONSTRUCTOR);
3582             defaultTargets.add(names.ANNOTATION_TYPE);
3583             defaultTargets.add(names.LOCAL_VARIABLE);
3584             defaultTargets.add(names.PARAMETER);
3585             if (allowRecords) {
3586               defaultTargets.add(names.RECORD_COMPONENT);
3587             }
3588             if (allowModules) {
3589               defaultTargets.add(names.MODULE);
3590             }
3591             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3592         }
3593         return dfltTargetMeta;
3594     }
3595 
3596     /** Check an annotation value.
3597      *
3598      * @param a The annotation tree to check
3599      * @return true if this annotation tree is valid, otherwise false
3600      */
3601     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3602         boolean res = false;
3603         final Log.DiagnosticHandler diagHandler = log.new DiscardDiagnosticHandler();
3604         try {
3605             res = validateAnnotation(a);
3606         } finally {
3607             log.popDiagnosticHandler(diagHandler);
3608         }
3609         return res;
3610     }
3611 
3612     private boolean validateAnnotation(JCAnnotation a) {
3613         boolean isValid = true;
3614         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3615 
3616         // collect an inventory of the annotation elements
3617         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3618 
3619         // remove the ones that are assigned values
3620         for (JCTree arg : a.args) {
3621             if (!arg.hasTag(ASSIGN)) continue; // recovery
3622             JCAssign assign = (JCAssign)arg;
3623             Symbol m = TreeInfo.symbol(assign.lhs);
3624             if (m == null || m.type.isErroneous()) continue;
3625             if (!elements.remove(m)) {
3626                 isValid = false;
3627                 log.error(assign.lhs.pos(),
3628                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3629             }
3630         }
3631 
3632         // all the remaining ones better have default values
3633         List<Name> missingDefaults = List.nil();
3634         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3635         for (MethodSymbol m : elements) {
3636             if (m.type.isErroneous())
3637                 continue;
3638 
3639             if (!membersWithDefault.contains(m))
3640                 missingDefaults = missingDefaults.append(m.name);
3641         }
3642         missingDefaults = missingDefaults.reverse();
3643         if (missingDefaults.nonEmpty()) {
3644             isValid = false;
3645             Error errorKey = (missingDefaults.size() > 1)
3646                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3647                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3648             log.error(a.pos(), errorKey);
3649         }
3650 
3651         return isValid && validateTargetAnnotationValue(a);
3652     }
3653 
3654     /* Validate the special java.lang.annotation.Target annotation */
3655     boolean validateTargetAnnotationValue(JCAnnotation a) {
3656         // special case: java.lang.annotation.Target must not have
3657         // repeated values in its value member
3658         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3659                 a.args.tail == null)
3660             return true;
3661 
3662         boolean isValid = true;
3663         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3664         JCAssign assign = (JCAssign) a.args.head;
3665         Symbol m = TreeInfo.symbol(assign.lhs);
3666         if (m.name != names.value) return false;
3667         JCTree rhs = assign.rhs;
3668         if (!rhs.hasTag(NEWARRAY)) return false;
3669         JCNewArray na = (JCNewArray) rhs;
3670         Set<Symbol> targets = new HashSet<>();
3671         for (JCTree elem : na.elems) {
3672             if (!targets.add(TreeInfo.symbol(elem))) {
3673                 isValid = false;
3674                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3675             }
3676         }
3677         return isValid;
3678     }
3679 
3680     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3681         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3682             (s.flags() & DEPRECATED) != 0 &&
3683             !syms.deprecatedType.isErroneous() &&
3684             s.attribute(syms.deprecatedType.tsym) == null) {
3685             log.warning(pos, LintWarnings.MissingDeprecatedAnnotation);
3686         }
3687         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3688         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3689             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3690                 log.warning(pos, LintWarnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3691             }
3692         }
3693     }
3694 
3695     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3696         checkDeprecated(() -> pos, other, s);
3697     }
3698 
3699     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3700         if (!importSuppression
3701                 && (s.isDeprecatedForRemoval() || s.isDeprecated() && !other.isDeprecated())
3702                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3703                 && s.kind != Kind.PCK) {
3704             warnDeprecated(pos.get(), s);
3705         }
3706     }
3707 
3708     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3709         if ((s.flags() & PROPRIETARY) != 0) {
3710             log.warning(pos, Warnings.SunProprietary(s));
3711         }
3712     }
3713 
3714     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3715         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3716             log.error(pos, Errors.NotInProfile(s, profile));
3717         }
3718     }
3719 
3720     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3721         checkPreview(pos, other, Type.noType, s);
3722     }
3723 
3724     void checkPreview(DiagnosticPosition pos, Symbol other, Type site, Symbol s) {
3725         boolean sIsPreview;
3726         Symbol previewSymbol;
3727         if ((s.flags() & PREVIEW_API) != 0) {
3728             sIsPreview = true;
3729             previewSymbol=  s;
3730         } else if ((s.kind == Kind.MTH || s.kind == Kind.VAR) &&
3731                    site.tsym != null &&
3732                    (site.tsym.flags() & PREVIEW_API) == 0 &&
3733                    (s.owner.flags() & PREVIEW_API) != 0) {
3734             //calling a method, or using a field, whose owner is a preview, but
3735             //using a site that is not a preview. Also produce an error or warning:
3736             sIsPreview = true;
3737             previewSymbol = s.owner;
3738         } else {
3739             sIsPreview = false;
3740             previewSymbol = null;
3741         }
3742         if (sIsPreview && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3743             if ((previewSymbol.flags() & PREVIEW_REFLECTIVE) == 0) {
3744                 if (!preview.isEnabled()) {
3745                     log.error(pos, Errors.IsPreview(s));
3746                 } else {
3747                     preview.markUsesPreview(pos);
3748                     warnPreviewAPI(pos, LintWarnings.IsPreview(s));
3749                 }
3750             } else {
3751                 warnPreviewAPI(pos, LintWarnings.IsPreviewReflective(s));
3752             }
3753         }
3754         if (preview.declaredUsingPreviewFeature(s)) {
3755             if (preview.isEnabled()) {
3756                 //for preview disabled do presumably so not need to do anything?
3757                 //If "s" is compiled from source, then there was an error for it already;
3758                 //if "s" is from classfile, there already was an error for the classfile.
3759                 preview.markUsesPreview(pos);
3760                 warnPreviewAPI(pos, LintWarnings.DeclaredUsingPreview(kindName(s), s));
3761             }
3762         }
3763     }
3764 
3765     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3766         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3767             log.warning(pos, LintWarnings.RestrictedMethod(s.enclClass(), s));
3768         }
3769     }
3770 
3771 /* *************************************************************************
3772  * Check for recursive annotation elements.
3773  **************************************************************************/
3774 
3775     /** Check for cycles in the graph of annotation elements.
3776      */
3777     void checkNonCyclicElements(JCClassDecl tree) {
3778         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3779         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3780         try {
3781             tree.sym.flags_field |= LOCKED;
3782             for (JCTree def : tree.defs) {
3783                 if (!def.hasTag(METHODDEF)) continue;
3784                 JCMethodDecl meth = (JCMethodDecl)def;
3785                 checkAnnotationResType(meth.pos(), meth.restype.type);
3786             }
3787         } finally {
3788             tree.sym.flags_field &= ~LOCKED;
3789             tree.sym.flags_field |= ACYCLIC_ANN;
3790         }
3791     }
3792 
3793     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3794         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3795             return;
3796         if ((tsym.flags_field & LOCKED) != 0) {
3797             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3798             return;
3799         }
3800         try {
3801             tsym.flags_field |= LOCKED;
3802             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3803                 if (s.kind != MTH)
3804                     continue;
3805                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3806             }
3807         } finally {
3808             tsym.flags_field &= ~LOCKED;
3809             tsym.flags_field |= ACYCLIC_ANN;
3810         }
3811     }
3812 
3813     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3814         switch (type.getTag()) {
3815         case CLASS:
3816             if ((type.tsym.flags() & ANNOTATION) != 0)
3817                 checkNonCyclicElementsInternal(pos, type.tsym);
3818             break;
3819         case ARRAY:
3820             checkAnnotationResType(pos, types.elemtype(type));
3821             break;
3822         default:
3823             break; // int etc
3824         }
3825     }
3826 
3827 /* *************************************************************************
3828  * Check for cycles in the constructor call graph.
3829  **************************************************************************/
3830 
3831     /** Check for cycles in the graph of constructors calling other
3832      *  constructors.
3833      */
3834     void checkCyclicConstructors(JCClassDecl tree) {
3835         // use LinkedHashMap so we generate errors deterministically
3836         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
3837 
3838         // enter each constructor this-call into the map
3839         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3840             if (!TreeInfo.isConstructor(l.head))
3841                 continue;
3842             JCMethodDecl meth = (JCMethodDecl)l.head;
3843             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
3844             if (app != null && TreeInfo.name(app.meth) == names._this) {
3845                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3846             } else {
3847                 meth.sym.flags_field |= ACYCLIC;
3848             }
3849         }
3850 
3851         // Check for cycles in the map
3852         Symbol[] ctors = new Symbol[0];
3853         ctors = callMap.keySet().toArray(ctors);
3854         for (Symbol caller : ctors) {
3855             checkCyclicConstructor(tree, caller, callMap);
3856         }
3857     }
3858 
3859     /** Look in the map to see if the given constructor is part of a
3860      *  call cycle.
3861      */
3862     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3863                                         Map<Symbol,Symbol> callMap) {
3864         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3865             if ((ctor.flags_field & LOCKED) != 0) {
3866                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
3867                           Errors.RecursiveCtorInvocation);
3868             } else {
3869                 ctor.flags_field |= LOCKED;
3870                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3871                 ctor.flags_field &= ~LOCKED;
3872             }
3873             ctor.flags_field |= ACYCLIC;
3874         }
3875     }
3876 
3877 /* *************************************************************************
3878  * Verify the proper placement of super()/this() calls.
3879  *
3880  *    - super()/this() may only appear in constructors
3881  *    - There must be at most one super()/this() call per constructor
3882  *    - The super()/this() call, if any, must be a top-level statement in the
3883  *      constructor, i.e., not nested inside any other statement or block
3884  *    - There must be no return statements prior to the super()/this() call
3885  **************************************************************************/
3886 
3887     void checkSuperInitCalls(JCClassDecl tree) {
3888         new SuperThisChecker().check(tree);
3889     }
3890 
3891     private class SuperThisChecker extends TreeScanner {
3892 
3893         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
3894         private static final int MATCH_SCAN_DEPTH = 3;
3895 
3896         private boolean constructor;        // is this method a constructor?
3897         private boolean firstStatement;     // at the first statement in method?
3898         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
3899         private Name initCall;              // whichever of "super" or "init" we've seen already
3900         private int scanDepth;              // current scan recursion depth in method body
3901 
3902         public void check(JCClassDecl classDef) {
3903             scan(classDef.defs);
3904         }
3905 
3906         @Override
3907         public void visitMethodDef(JCMethodDecl tree) {
3908             Assert.check(!constructor);
3909             Assert.check(earlyReturn == null);
3910             Assert.check(initCall == null);
3911             Assert.check(scanDepth == 1);
3912 
3913             // Initialize state for this method
3914             constructor = TreeInfo.isConstructor(tree);
3915             try {
3916 
3917                 // Scan method body
3918                 if (tree.body != null) {
3919                     firstStatement = true;
3920                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
3921                         scan(l.head);
3922                         firstStatement = false;
3923                     }
3924                 }
3925 
3926                 // Verify no 'return' seen prior to an explicit super()/this() call
3927                 if (constructor && earlyReturn != null && initCall != null)
3928                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
3929             } finally {
3930                 firstStatement = false;
3931                 constructor = false;
3932                 earlyReturn = null;
3933                 initCall = null;
3934             }
3935         }
3936 
3937         @Override
3938         public void scan(JCTree tree) {
3939             scanDepth++;
3940             try {
3941                 super.scan(tree);
3942             } finally {
3943                 scanDepth--;
3944             }
3945         }
3946 
3947         @Override
3948         public void visitApply(JCMethodInvocation apply) {
3949             do {
3950 
3951                 // Is this a super() or this() call?
3952                 Name methodName = TreeInfo.name(apply.meth);
3953                 if (methodName != names._super && methodName != names._this)
3954                     break;
3955 
3956                 // super()/this() calls must only appear in a constructor
3957                 if (!constructor) {
3958                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
3959                     break;
3960                 }
3961 
3962                 // super()/this() calls must be a top level statement
3963                 if (scanDepth != MATCH_SCAN_DEPTH) {
3964                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
3965                     break;
3966                 }
3967 
3968                 // super()/this() calls must not appear more than once
3969                 if (initCall != null) {
3970                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
3971                     break;
3972                 }
3973 
3974                 // If super()/this() isn't first, require flexible constructors feature
3975                 if (!firstStatement)
3976                     preview.checkSourceLevel(apply.pos(), Feature.FLEXIBLE_CONSTRUCTORS);
3977 
3978                 // We found a legitimate super()/this() call; remember it
3979                 initCall = methodName;
3980             } while (false);
3981 
3982             // Proceed
3983             super.visitApply(apply);
3984         }
3985 
3986         @Override
3987         public void visitReturn(JCReturn tree) {
3988             if (constructor && initCall == null && earlyReturn == null)
3989                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
3990             super.visitReturn(tree);
3991         }
3992 
3993         @Override
3994         public void visitClassDef(JCClassDecl tree) {
3995             // don't descend any further
3996         }
3997 
3998         @Override
3999         public void visitLambda(JCLambda tree) {
4000             final boolean constructorPrev = constructor;
4001             final boolean firstStatementPrev = firstStatement;
4002             final JCReturn earlyReturnPrev = earlyReturn;
4003             final Name initCallPrev = initCall;
4004             final int scanDepthPrev = scanDepth;
4005             constructor = false;
4006             firstStatement = false;
4007             earlyReturn = null;
4008             initCall = null;
4009             scanDepth = 0;
4010             try {
4011                 super.visitLambda(tree);
4012             } finally {
4013                 constructor = constructorPrev;
4014                 firstStatement = firstStatementPrev;
4015                 earlyReturn = earlyReturnPrev;
4016                 initCall = initCallPrev;
4017                 scanDepth = scanDepthPrev;
4018             }
4019         }
4020     }
4021 
4022 /* *************************************************************************
4023  * Miscellaneous
4024  **************************************************************************/
4025 
4026     /**
4027      *  Check for division by integer constant zero
4028      *  @param pos           Position for error reporting.
4029      *  @param operator      The operator for the expression
4030      *  @param operand       The right hand operand for the expression
4031      */
4032     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4033         if (operand.constValue() != null
4034             && operand.getTag().isSubRangeOf(LONG)
4035             && ((Number) (operand.constValue())).longValue() == 0) {
4036             int opc = ((OperatorSymbol)operator).opcode;
4037             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4038                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4039                 log.warning(pos, LintWarnings.DivZero);
4040             }
4041         }
4042     }
4043 
4044     /**
4045      *  Check for possible loss of precission
4046      *  @param pos           Position for error reporting.
4047      *  @param found    The computed type of the tree
4048      *  @param req  The computed type of the tree
4049      */
4050     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4051         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4052             log.warning(pos, LintWarnings.PossibleLossOfPrecision(found, req));
4053         }
4054     }
4055 
4056     /**
4057      * Check for empty statements after if
4058      */
4059     void checkEmptyIf(JCIf tree) {
4060         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null) {
4061             log.warning(tree.thenpart.pos(), LintWarnings.EmptyIf);
4062         }
4063     }
4064 
4065     /** Check that symbol is unique in given scope.
4066      *  @param pos           Position for error reporting.
4067      *  @param sym           The symbol.
4068      *  @param s             The scope.
4069      */
4070     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4071         if (sym.type.isErroneous())
4072             return true;
4073         if (sym.owner.name == names.any) return false;
4074         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4075             if (sym != byName &&
4076                     (byName.flags() & CLASH) == 0 &&
4077                     sym.kind == byName.kind &&
4078                     sym.name != names.error &&
4079                     (sym.kind != MTH ||
4080                      types.hasSameArgs(sym.type, byName.type) ||
4081                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4082                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4083                     sym.flags_field |= CLASH;
4084                     varargsDuplicateError(pos, sym, byName);
4085                     return true;
4086                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4087                     duplicateErasureError(pos, sym, byName);
4088                     sym.flags_field |= CLASH;
4089                     return true;
4090                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4091                            (byName.flags() & MATCH_BINDING) != 0 &&
4092                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4093                     if (!sym.type.isErroneous()) {
4094                         log.error(pos, Errors.MatchBindingExists);
4095                         sym.flags_field |= CLASH;
4096                     }
4097                     return false;
4098                 } else {
4099                     duplicateError(pos, byName);
4100                     return false;
4101                 }
4102             }
4103         }
4104         return true;
4105     }
4106 
4107     /** Report duplicate declaration error.
4108      */
4109     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4110         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4111             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4112         }
4113     }
4114 
4115     /**Check that types imported through the ordinary imports don't clash with types imported
4116      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4117      * types without an error on the imports.
4118      * @param toplevel       The toplevel tree for which the test should be performed.
4119      */
4120     void checkImportsUnique(JCCompilationUnit toplevel) {
4121         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4122         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4123         WriteableScope topLevelScope = toplevel.toplevelScope;
4124 
4125         for (JCTree def : toplevel.defs) {
4126             if (!def.hasTag(IMPORT))
4127                 continue;
4128 
4129             JCImport imp = (JCImport) def;
4130 
4131             if (imp.importScope == null)
4132                 continue;
4133 
4134             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4135                 if (imp.isStatic()) {
4136                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4137                     staticallyImportedSoFar.enter(sym);
4138                 } else {
4139                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4140                     ordinallyImportedSoFar.enter(sym);
4141                 }
4142             }
4143 
4144             imp.importScope = null;
4145         }
4146     }
4147 
4148     /** Check that single-type import is not already imported or top-level defined,
4149      *  but make an exception for two single-type imports which denote the same type.
4150      *  @param pos                     Position for error reporting.
4151      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4152      *                                 ordinary imports.
4153      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4154      *                                 static imports.
4155      *  @param topLevelScope           The current file's top-level Scope
4156      *  @param sym                     The symbol.
4157      *  @param staticImport            Whether or not this was a static import
4158      */
4159     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4160                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4161                                       Symbol sym, boolean staticImport) {
4162         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4163         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4164         Symbol staticClashing = null;
4165         if (ordinaryClashing == null && !staticImport) {
4166             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4167         }
4168         if (ordinaryClashing != null || staticClashing != null) {
4169             if (ordinaryClashing != null)
4170                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4171             else
4172                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4173             return false;
4174         }
4175         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4176         if (clashing != null) {
4177             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4178             return false;
4179         }
4180         return true;
4181     }
4182 
4183     /** Check that a qualified name is in canonical form (for import decls).
4184      */
4185     public void checkCanonical(JCTree tree) {
4186         if (!isCanonical(tree))
4187             log.error(tree.pos(),
4188                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4189     }
4190         // where
4191         private boolean isCanonical(JCTree tree) {
4192             while (tree.hasTag(SELECT)) {
4193                 JCFieldAccess s = (JCFieldAccess) tree;
4194                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4195                     return false;
4196                 tree = s.selected;
4197             }
4198             return true;
4199         }
4200 
4201     /** Check that an auxiliary class is not accessed from any other file than its own.
4202      */
4203     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4204         if ((c.flags() & AUXILIARY) != 0 &&
4205             rs.isAccessible(env, c) &&
4206             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4207         {
4208             log.warning(pos, LintWarnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4209         }
4210     }
4211 
4212     /**
4213      * Check for a default constructor in an exported package.
4214      */
4215     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4216         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4217             ((c.flags() & (ENUM | RECORD)) == 0) &&
4218             !c.isAnonymous() &&
4219             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4220             Feature.MODULES.allowedInSource(source)) {
4221             NestingKind nestingKind = c.getNestingKind();
4222             switch (nestingKind) {
4223                 case ANONYMOUS,
4224                      LOCAL -> {return;}
4225                 case TOP_LEVEL -> {;} // No additional checks needed
4226                 case MEMBER -> {
4227                     // For nested member classes, all the enclosing
4228                     // classes must be public or protected.
4229                     Symbol owner = c.owner;
4230                     while (owner != null && owner.kind == TYP) {
4231                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4232                             return;
4233                         owner = owner.owner;
4234                     }
4235                 }
4236             }
4237 
4238             // Only check classes in named packages exported by its module
4239             PackageSymbol pkg = c.packge();
4240             if (!pkg.isUnnamed()) {
4241                 ModuleSymbol modle = pkg.modle;
4242                 for (ExportsDirective exportDir : modle.exports) {
4243                     // Report warning only if the containing
4244                     // package is unconditionally exported
4245                     if (exportDir.packge.equals(pkg)) {
4246                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4247                             // Warning may be suppressed by
4248                             // annotations; check again for being
4249                             // enabled in the deferred context.
4250                             log.warning(pos, LintWarnings.MissingExplicitCtor(c, pkg, modle));
4251                         } else {
4252                             return;
4253                         }
4254                     }
4255                 }
4256             }
4257         }
4258         return;
4259     }
4260 
4261     private class ConversionWarner extends Warner {
4262         final String uncheckedKey;
4263         final Type found;
4264         final Type expected;
4265         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4266             super(pos);
4267             this.uncheckedKey = uncheckedKey;
4268             this.found = found;
4269             this.expected = expected;
4270         }
4271 
4272         @Override
4273         public void warn(LintCategory lint) {
4274             boolean warned = this.warned;
4275             super.warn(lint);
4276             if (warned) return; // suppress redundant diagnostics
4277             switch (lint) {
4278                 case UNCHECKED:
4279                     Check.this.warnUnchecked(pos(), LintWarnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4280                     break;
4281                 case VARARGS:
4282                     if (method != null &&
4283                             method.attribute(syms.trustMeType.tsym) != null &&
4284                             isTrustMeAllowedOnMethod(method) &&
4285                             !types.isReifiable(method.type.getParameterTypes().last())) {
4286                         log.warning(pos(), LintWarnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4287                     }
4288                     break;
4289                 default:
4290                     throw new AssertionError("Unexpected lint: " + lint);
4291             }
4292         }
4293     }
4294 
4295     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4296         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4297     }
4298 
4299     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4300         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4301     }
4302 
4303     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4304         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4305 
4306         if (functionalType != null) {
4307             try {
4308                 types.findDescriptorSymbol((TypeSymbol)cs);
4309             } catch (Types.FunctionDescriptorLookupError ex) {
4310                 DiagnosticPosition pos = tree.pos();
4311                 for (JCAnnotation a : tree.getModifiers().annotations) {
4312                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4313                         pos = a.pos();
4314                         break;
4315                     }
4316                 }
4317                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4318             }
4319         }
4320     }
4321 
4322     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4323         for (final JCImportBase impBase : toplevel.getImports()) {
4324             if (!(impBase instanceof JCImport imp))
4325                 continue;
4326             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4327                 continue;
4328             final JCFieldAccess select = imp.qualid;
4329             final Symbol origin;
4330             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4331                 continue;
4332 
4333             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4334             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4335                 log.error(imp.pos(),
4336                           Errors.CantResolveLocation(KindName.STATIC,
4337                                                      select.name,
4338                                                      null,
4339                                                      null,
4340                                                      Fragments.Location(kindName(site),
4341                                                                         site,
4342                                                                         null)));
4343             }
4344         }
4345     }
4346 
4347     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4348     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4349         OUTER: for (JCImportBase impBase : toplevel.getImports()) {
4350             if (impBase instanceof JCImport imp && !imp.staticImport &&
4351                 TreeInfo.name(imp.qualid) == names.asterisk) {
4352                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4353                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4354                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4355                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.qualid.selected.pos(), Errors.DoesntExist(tsym));
4356                 }
4357             }
4358         }
4359     }
4360 
4361     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4362         if (tsym == null || !processed.add(tsym))
4363             return false;
4364 
4365             // also search through inherited names
4366         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4367             return true;
4368 
4369         for (Type t : types.interfaces(tsym.type))
4370             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4371                 return true;
4372 
4373         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4374             if (sym.isStatic() &&
4375                 importAccessible(sym, packge) &&
4376                 sym.isMemberOf(origin, types)) {
4377                 return true;
4378             }
4379         }
4380 
4381         return false;
4382     }
4383 
4384     // is the sym accessible everywhere in packge?
4385     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4386         try {
4387             int flags = (int)(sym.flags() & AccessFlags);
4388             switch (flags) {
4389             default:
4390             case PUBLIC:
4391                 return true;
4392             case PRIVATE:
4393                 return false;
4394             case 0:
4395             case PROTECTED:
4396                 return sym.packge() == packge;
4397             }
4398         } catch (ClassFinder.BadClassFile err) {
4399             throw err;
4400         } catch (CompletionFailure ex) {
4401             return false;
4402         }
4403     }
4404 
4405     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4406         JCCompilationUnit toplevel = env.toplevel;
4407 
4408         if (   toplevel.modle == syms.unnamedModule
4409             || toplevel.modle == syms.noModule
4410             || (check.sym.flags() & COMPOUND) != 0) {
4411             return ;
4412         }
4413 
4414         ExportsDirective currentExport = findExport(toplevel.packge);
4415 
4416         if (   currentExport == null //not exported
4417             || currentExport.modules != null) //don't check classes in qualified export
4418             return ;
4419 
4420         new TreeScanner() {
4421             Lint lint = env.info.lint;
4422             boolean inSuperType;
4423 
4424             @Override
4425             public void visitBlock(JCBlock tree) {
4426             }
4427             @Override
4428             public void visitMethodDef(JCMethodDecl tree) {
4429                 if (!isAPISymbol(tree.sym))
4430                     return;
4431                 Lint prevLint = lint;
4432                 try {
4433                     lint = lint.augment(tree.sym);
4434                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4435                         super.visitMethodDef(tree);
4436                     }
4437                 } finally {
4438                     lint = prevLint;
4439                 }
4440             }
4441             @Override
4442             public void visitVarDef(JCVariableDecl tree) {
4443                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4444                     return;
4445                 Lint prevLint = lint;
4446                 try {
4447                     lint = lint.augment(tree.sym);
4448                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4449                         scan(tree.mods);
4450                         scan(tree.vartype);
4451                     }
4452                 } finally {
4453                     lint = prevLint;
4454                 }
4455             }
4456             @Override
4457             public void visitClassDef(JCClassDecl tree) {
4458                 if (tree != check)
4459                     return ;
4460 
4461                 if (!isAPISymbol(tree.sym))
4462                     return ;
4463 
4464                 Lint prevLint = lint;
4465                 try {
4466                     lint = lint.augment(tree.sym);
4467                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4468                         scan(tree.mods);
4469                         scan(tree.typarams);
4470                         try {
4471                             inSuperType = true;
4472                             scan(tree.extending);
4473                             scan(tree.implementing);
4474                         } finally {
4475                             inSuperType = false;
4476                         }
4477                         scan(tree.defs);
4478                     }
4479                 } finally {
4480                     lint = prevLint;
4481                 }
4482             }
4483             @Override
4484             public void visitTypeApply(JCTypeApply tree) {
4485                 scan(tree.clazz);
4486                 boolean oldInSuperType = inSuperType;
4487                 try {
4488                     inSuperType = false;
4489                     scan(tree.arguments);
4490                 } finally {
4491                     inSuperType = oldInSuperType;
4492                 }
4493             }
4494             @Override
4495             public void visitIdent(JCIdent tree) {
4496                 Symbol sym = TreeInfo.symbol(tree);
4497                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4498                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4499                 }
4500             }
4501 
4502             @Override
4503             public void visitSelect(JCFieldAccess tree) {
4504                 Symbol sym = TreeInfo.symbol(tree);
4505                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4506                 if (sym.kind == TYP && sitesym.kind == PCK) {
4507                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4508                 } else {
4509                     super.visitSelect(tree);
4510                 }
4511             }
4512 
4513             @Override
4514             public void visitAnnotation(JCAnnotation tree) {
4515                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4516                     super.visitAnnotation(tree);
4517             }
4518 
4519         }.scan(check);
4520     }
4521         //where:
4522         private ExportsDirective findExport(PackageSymbol pack) {
4523             for (ExportsDirective d : pack.modle.exports) {
4524                 if (d.packge == pack)
4525                     return d;
4526             }
4527 
4528             return null;
4529         }
4530         private boolean isAPISymbol(Symbol sym) {
4531             while (sym.kind != PCK) {
4532                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4533                     return false;
4534                 }
4535                 sym = sym.owner;
4536             }
4537             return true;
4538         }
4539         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4540             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4541                 log.warning(pos, LintWarnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4542                 return ;
4543             }
4544 
4545             PackageSymbol whatPackage = what.packge();
4546             ExportsDirective whatExport = findExport(whatPackage);
4547             ExportsDirective inExport = findExport(inPackage);
4548 
4549             if (whatExport == null) { //package not exported:
4550                 log.warning(pos, LintWarnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4551                 return ;
4552             }
4553 
4554             if (whatExport.modules != null) {
4555                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4556                     log.warning(pos, LintWarnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4557                 }
4558             }
4559 
4560             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4561                 //check that relativeTo.modle requires transitive what.modle, somehow:
4562                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4563 
4564                 while (todo.nonEmpty()) {
4565                     ModuleSymbol current = todo.head;
4566                     todo = todo.tail;
4567                     if (current == whatPackage.modle)
4568                         return ; //OK
4569                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4570                         continue; //for automatic modules, don't look into their dependencies
4571                     for (RequiresDirective req : current.requires) {
4572                         if (req.isTransitive()) {
4573                             todo = todo.prepend(req.module);
4574                         }
4575                     }
4576                 }
4577 
4578                 log.warning(pos, LintWarnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4579             }
4580         }
4581 
4582     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4583         if (msym.kind != MDL) {
4584             log.warning(pos, LintWarnings.ModuleNotFound(msym));
4585         }
4586     }
4587 
4588     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4589         if (packge.members().isEmpty() &&
4590             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4591             log.warning(pos, LintWarnings.PackageEmptyOrNotFound(packge));
4592         }
4593     }
4594 
4595     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4596         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4597             if (rd.isTransitive()) {    // see comment in Log.applyLint() for special logic that applies
4598                 log.warning(pos, LintWarnings.RequiresTransitiveAutomatic);
4599             } else {
4600                 log.warning(pos, LintWarnings.RequiresAutomatic);
4601             }
4602         }
4603     }
4604 
4605     /**
4606      * Verify the case labels conform to the constraints. Checks constraints related
4607      * combinations of patterns and other labels.
4608      *
4609      * @param cases the cases that should be checked.
4610      */
4611     void checkSwitchCaseStructure(List<JCCase> cases) {
4612         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4613             JCCase c = l.head;
4614             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4615                 if (TreeInfo.isNull(constLabel.expr)) {
4616                     if (c.labels.tail.nonEmpty()) {
4617                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4618                             if (c.labels.tail.tail.nonEmpty()) {
4619                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4620                             }
4621                         } else {
4622                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4623                         }
4624                     }
4625                 } else {
4626                     for (JCCaseLabel label : c.labels.tail) {
4627                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4628                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4629                             break;
4630                         }
4631                     }
4632                 }
4633             } else if (c.labels.tail.nonEmpty()) {
4634                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4635                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4636 
4637                 if (!allUnderscore) {
4638                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4639                 }
4640 
4641                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4642 
4643                 if (allPatternCaseLabels) {
4644                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4645                 }
4646 
4647                 for (JCCaseLabel label : c.labels.tail) {
4648                     if (label instanceof JCConstantCaseLabel) {
4649                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4650                         break;
4651                     }
4652                 }
4653             }
4654         }
4655 
4656         boolean isCaseStatementGroup = cases.nonEmpty() &&
4657                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4658 
4659         if (isCaseStatementGroup) {
4660             boolean previousCompletessNormally = false;
4661             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4662                 JCCase c = l.head;
4663                 if (previousCompletessNormally &&
4664                     c.stats.nonEmpty() &&
4665                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4666                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4667                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4668                 } else if (c.stats.isEmpty() &&
4669                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4670                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4671                            hasStatements(l.tail)) {
4672                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4673                 }
4674                 previousCompletessNormally = c.completesNormally;
4675             }
4676         }
4677     }
4678 
4679     boolean hasBindings(JCTree p) {
4680         boolean[] bindings = new boolean[1];
4681 
4682         new TreeScanner() {
4683             @Override
4684             public void visitBindingPattern(JCBindingPattern tree) {
4685                 bindings[0] |= !tree.var.sym.isUnnamedVariable();
4686                 super.visitBindingPattern(tree);
4687             }
4688         }.scan(p);
4689 
4690         return bindings[0];
4691     }
4692 
4693     boolean hasStatements(List<JCCase> cases) {
4694         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4695             if (l.head.stats.nonEmpty()) {
4696                 return true;
4697             }
4698         }
4699 
4700         return false;
4701     }
4702     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4703         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4704         boolean seenDefault = false;
4705         boolean seenDefaultLabel = false;
4706         boolean warnDominatedByDefault = false;
4707         boolean unconditionalFound = false;
4708 
4709         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4710             JCCase c = l.head;
4711             for (JCCaseLabel label : c.labels) {
4712                 if (label.hasTag(DEFAULTCASELABEL)) {
4713                     seenDefault = true;
4714                     seenDefaultLabel |=
4715                             TreeInfo.isNullCaseLabel(c.labels.head);
4716                     continue;
4717                 }
4718                 if (TreeInfo.isNullCaseLabel(label)) {
4719                     if (seenDefault) {
4720                         log.error(label.pos(), Errors.PatternDominated);
4721                     }
4722                     continue;
4723                 }
4724                 if (seenDefault && !warnDominatedByDefault) {
4725                     if (label.hasTag(PATTERNCASELABEL) ||
4726                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4727                         log.error(label.pos(), Errors.PatternDominated);
4728                         warnDominatedByDefault = true;
4729                     }
4730                 }
4731                 Type currentType = labelType(label);
4732                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4733                     JCCase testCase = caseAndLabel.fst;
4734                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4735                     Type testType = labelType(testCaseLabel);
4736                     boolean dominated = false;
4737                     if (types.isUnconditionallyExact(currentType, testType) &&
4738                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4739                         //the current label is potentially dominated by the existing (test) label, check:
4740                         if (label instanceof JCConstantCaseLabel) {
4741                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4742                                          TreeInfo.unguardedCase(testCase);
4743                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4744                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4745                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4746                             dominated = patternDominated(testPatternCaseLabel.pat,
4747                                                          patternCL.pat);
4748                         }
4749                     }
4750 
4751                     if (dominated) {
4752                         log.error(label.pos(), Errors.PatternDominated);
4753                     }
4754                 }
4755                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4756             }
4757         }
4758     }
4759         //where:
4760         private Type labelType(JCCaseLabel label) {
4761             return types.erasure(switch (label.getTag()) {
4762                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4763                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4764                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4765             });
4766         }
4767         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4768             Type existingPatternType = types.erasure(existingPattern.type);
4769             Type currentPatternType = types.erasure(currentPattern.type);
4770             if (!types.isUnconditionallyExact(currentPatternType, existingPatternType)) {
4771                 return false;
4772             }
4773             if (currentPattern instanceof JCBindingPattern ||
4774                 currentPattern instanceof JCAnyPattern) {
4775                 return existingPattern instanceof JCBindingPattern ||
4776                        existingPattern instanceof JCAnyPattern;
4777             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4778                 if (existingPattern instanceof JCBindingPattern ||
4779                     existingPattern instanceof JCAnyPattern) {
4780                     return true;
4781                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4782                     List<JCPattern> existingNested = existingRecordPattern.nested;
4783                     List<JCPattern> currentNested = currentRecordPattern.nested;
4784                     if (existingNested.size() != currentNested.size()) {
4785                         return false;
4786                     }
4787                     while (existingNested.nonEmpty()) {
4788                         if (!patternDominated(existingNested.head, currentNested.head)) {
4789                             return false;
4790                         }
4791                         existingNested = existingNested.tail;
4792                         currentNested = currentNested.tail;
4793                     }
4794                     return true;
4795                 } else {
4796                     Assert.error("Unknown pattern: " + existingPattern.getTag());
4797                 }
4798             } else {
4799                 Assert.error("Unknown pattern: " + currentPattern.getTag());
4800             }
4801             return false;
4802         }
4803 
4804     /** check if a type is a subtype of Externalizable, if that is available. */
4805     boolean isExternalizable(Type t) {
4806         try {
4807             syms.externalizableType.complete();
4808         } catch (CompletionFailure e) {
4809             return false;
4810         }
4811         return types.isSubtype(t, syms.externalizableType);
4812     }
4813 
4814     /**
4815      * Check structure of serialization declarations.
4816      */
4817     public void checkSerialStructure(JCClassDecl tree, ClassSymbol c) {
4818         (new SerialTypeVisitor()).visit(c, tree);
4819     }
4820 
4821     /**
4822      * This visitor will warn if a serialization-related field or
4823      * method is declared in a suspicious or incorrect way. In
4824      * particular, it will warn for cases where the runtime
4825      * serialization mechanism will silently ignore a mis-declared
4826      * entity.
4827      *
4828      * Distinguished serialization-related fields and methods:
4829      *
4830      * Methods:
4831      *
4832      * private void writeObject(ObjectOutputStream stream) throws IOException
4833      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
4834      *
4835      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
4836      * private void readObjectNoData() throws ObjectStreamException
4837      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
4838      *
4839      * Fields:
4840      *
4841      * private static final long serialVersionUID
4842      * private static final ObjectStreamField[] serialPersistentFields
4843      *
4844      * Externalizable: methods defined on the interface
4845      * public void writeExternal(ObjectOutput) throws IOException
4846      * public void readExternal(ObjectInput) throws IOException
4847      */
4848     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
4849         SerialTypeVisitor() {
4850             this.lint = Check.this.lint;
4851         }
4852 
4853         private static final Set<String> serialMethodNames =
4854             Set.of("writeObject", "writeReplace",
4855                    "readObject",  "readObjectNoData",
4856                    "readResolve");
4857 
4858         private static final Set<String> serialFieldNames =
4859             Set.of("serialVersionUID", "serialPersistentFields");
4860 
4861         // Type of serialPersistentFields
4862         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
4863 
4864         Lint lint;
4865 
4866         @Override
4867         public Void defaultAction(Element e, JCClassDecl p) {
4868             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
4869         }
4870 
4871         @Override
4872         public Void visitType(TypeElement e, JCClassDecl p) {
4873             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
4874             return null;
4875         }
4876 
4877         @Override
4878         public Void visitTypeAsClass(TypeElement e,
4879                                      JCClassDecl p) {
4880             // Anonymous classes filtered out by caller.
4881 
4882             ClassSymbol c = (ClassSymbol)e;
4883 
4884             checkCtorAccess(p, c);
4885 
4886             // Check for missing serialVersionUID; check *not* done
4887             // for enums or records.
4888             VarSymbol svuidSym = null;
4889             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4890                 if (sym.kind == VAR) {
4891                     svuidSym = (VarSymbol)sym;
4892                     break;
4893                 }
4894             }
4895 
4896             if (svuidSym == null) {
4897                 log.warning(p.pos(), LintWarnings.MissingSVUID(c));
4898             }
4899 
4900             // Check for serialPersistentFields to gate checks for
4901             // non-serializable non-transient instance fields
4902             boolean serialPersistentFieldsPresent =
4903                     c.members()
4904                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
4905                      .iterator()
4906                      .hasNext();
4907 
4908             // Check declarations of serialization-related methods and
4909             // fields
4910             for(Symbol el : c.getEnclosedElements()) {
4911                 runUnderLint(el, p, (enclosed, tree) -> {
4912                     String name = null;
4913                     switch(enclosed.getKind()) {
4914                     case FIELD -> {
4915                         if (!serialPersistentFieldsPresent) {
4916                             var flags = enclosed.flags();
4917                             if ( ((flags & TRANSIENT) == 0) &&
4918                                  ((flags & STATIC) == 0)) {
4919                                 Type varType = enclosed.asType();
4920                                 if (!canBeSerialized(varType)) {
4921                                     // Note per JLS arrays are
4922                                     // serializable even if the
4923                                     // component type is not.
4924                                     log.warning(
4925                                             TreeInfo.diagnosticPositionFor(enclosed, tree),
4926                                                 LintWarnings.NonSerializableInstanceField);
4927                                 } else if (varType.hasTag(ARRAY)) {
4928                                     ArrayType arrayType = (ArrayType)varType;
4929                                     Type elementType = arrayType.elemtype;
4930                                     while (elementType.hasTag(ARRAY)) {
4931                                         arrayType = (ArrayType)elementType;
4932                                         elementType = arrayType.elemtype;
4933                                     }
4934                                     if (!canBeSerialized(elementType)) {
4935                                         log.warning(
4936                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
4937                                                     LintWarnings.NonSerializableInstanceFieldArray(elementType));
4938                                     }
4939                                 }
4940                             }
4941                         }
4942 
4943                         name = enclosed.getSimpleName().toString();
4944                         if (serialFieldNames.contains(name)) {
4945                             VarSymbol field = (VarSymbol)enclosed;
4946                             switch (name) {
4947                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
4948                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
4949                             default -> throw new AssertionError();
4950                             }
4951                         }
4952                     }
4953 
4954                     // Correctly checking the serialization-related
4955                     // methods is subtle. For the methods declared to be
4956                     // private or directly declared in the class, the
4957                     // enclosed elements of the class can be checked in
4958                     // turn. However, writeReplace and readResolve can be
4959                     // declared in a superclass and inherited. Note that
4960                     // the runtime lookup walks the superclass chain
4961                     // looking for writeReplace/readResolve via
4962                     // Class.getDeclaredMethod. This differs from calling
4963                     // Elements.getAllMembers(TypeElement) as the latter
4964                     // will also pull in default methods from
4965                     // superinterfaces. In other words, the runtime checks
4966                     // (which long predate default methods on interfaces)
4967                     // do not admit the possibility of inheriting methods
4968                     // this way, a difference from general inheritance.
4969 
4970                     // The current implementation just checks the enclosed
4971                     // elements and does not directly check the inherited
4972                     // methods. If all the types are being checked this is
4973                     // less of a concern; however, there are cases that
4974                     // could be missed. In particular, readResolve and
4975                     // writeReplace could, in principle, by inherited from
4976                     // a non-serializable superclass and thus not checked
4977                     // even if compiled with a serializable child class.
4978                     case METHOD -> {
4979                         var method = (MethodSymbol)enclosed;
4980                         name = method.getSimpleName().toString();
4981                         if (serialMethodNames.contains(name)) {
4982                             switch (name) {
4983                             case "writeObject"      -> checkWriteObject(tree, e, method);
4984                             case "writeReplace"     -> checkWriteReplace(tree,e, method);
4985                             case "readObject"       -> checkReadObject(tree,e, method);
4986                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
4987                             case "readResolve"      -> checkReadResolve(tree, e, method);
4988                             default ->  throw new AssertionError();
4989                             }
4990                         }
4991                     }
4992                     }
4993                 });
4994             }
4995 
4996             return null;
4997         }
4998 
4999         boolean canBeSerialized(Type type) {
5000             return type.isPrimitive() || rs.isSerializable(type);
5001         }
5002 
5003         /**
5004          * Check that Externalizable class needs a public no-arg
5005          * constructor.
5006          *
5007          * Check that a Serializable class has access to the no-arg
5008          * constructor of its first nonserializable superclass.
5009          */
5010         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5011             if (isExternalizable(c.type)) {
5012                 for(var sym : c.getEnclosedElements()) {
5013                     if (sym.isConstructor() &&
5014                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5015                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5016                             return;
5017                         }
5018                     }
5019                 }
5020                 log.warning(tree.pos(),
5021                             LintWarnings.ExternalizableMissingPublicNoArgCtor);
5022             } else {
5023                 // Approximate access to the no-arg constructor up in
5024                 // the superclass chain by checking that the
5025                 // constructor is not private. This may not handle
5026                 // some cross-package situations correctly.
5027                 Type superClass = c.getSuperclass();
5028                 // java.lang.Object is *not* Serializable so this loop
5029                 // should terminate.
5030                 while (rs.isSerializable(superClass) ) {
5031                     try {
5032                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5033                     } catch(ClassCastException cce) {
5034                         return ; // Don't try to recover
5035                     }
5036                 }
5037                 // Non-Serializable superclass
5038                 try {
5039                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5040                     for(var sym : supertype.getEnclosedElements()) {
5041                         if (sym.isConstructor()) {
5042                             MethodSymbol ctor = (MethodSymbol)sym;
5043                             if (ctor.getParameters().isEmpty()) {
5044                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5045                                     // Handle nested classes and implicit this$0
5046                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5047                                      ((supertype.flags() & STATIC) == 0)))
5048                                     log.warning(tree.pos(),
5049                                                 LintWarnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5050                             }
5051                         }
5052                     }
5053                 } catch (ClassCastException cce) {
5054                     return ; // Don't try to recover
5055                 }
5056                 return;
5057             }
5058         }
5059 
5060         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5061             // To be effective, serialVersionUID must be marked static
5062             // and final, but private is recommended. But alas, in
5063             // practice there are many non-private serialVersionUID
5064             // fields.
5065              if ((svuid.flags() & (STATIC | FINAL)) !=
5066                  (STATIC | FINAL)) {
5067                  log.warning(
5068                          TreeInfo.diagnosticPositionFor(svuid, tree),
5069                              LintWarnings.ImproperSVUID((Symbol)e));
5070              }
5071 
5072              // check svuid has type long
5073              if (!svuid.type.hasTag(LONG)) {
5074                  log.warning(
5075                          TreeInfo.diagnosticPositionFor(svuid, tree),
5076                              LintWarnings.LongSVUID((Symbol)e));
5077              }
5078 
5079              if (svuid.getConstValue() == null)
5080                  log.warning(
5081                          TreeInfo.diagnosticPositionFor(svuid, tree),
5082                              LintWarnings.ConstantSVUID((Symbol)e));
5083         }
5084 
5085         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5086             // To be effective, serialPersisentFields must be private, static, and final.
5087              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5088                  (PRIVATE | STATIC | FINAL)) {
5089                  log.warning(
5090                          TreeInfo.diagnosticPositionFor(spf, tree),
5091                              LintWarnings.ImproperSPF);
5092              }
5093 
5094              if (!types.isSameType(spf.type, OSF_TYPE)) {
5095                  log.warning(
5096                          TreeInfo.diagnosticPositionFor(spf, tree),
5097                              LintWarnings.OSFArraySPF);
5098              }
5099 
5100             if (isExternalizable((Type)(e.asType()))) {
5101                 log.warning(
5102                         TreeInfo.diagnosticPositionFor(spf, tree),
5103                             LintWarnings.IneffectualSerialFieldExternalizable);
5104             }
5105 
5106             // Warn if serialPersistentFields is initialized to a
5107             // literal null.
5108             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5109             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5110                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5111                 JCExpression initExpr = variableDef.init;
5112                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5113                      log.warning(initExpr.pos(),
5114                                  LintWarnings.SPFNullInit);
5115                  }
5116             }
5117         }
5118 
5119         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5120             // The "synchronized" modifier is seen in the wild on
5121             // readObject and writeObject methods and is generally
5122             // innocuous.
5123 
5124             // private void writeObject(ObjectOutputStream stream) throws IOException
5125             checkPrivateNonStaticMethod(tree, method);
5126             checkReturnType(tree, e, method, syms.voidType);
5127             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5128             checkExceptions(tree, e, method, syms.ioExceptionType);
5129             checkExternalizable(tree, e, method);
5130         }
5131 
5132         private void checkWriteReplace(JCClassDecl tree, Element e, MethodSymbol method) {
5133             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5134             // ObjectStreamException
5135 
5136             // Excluding abstract, could have a more complicated
5137             // rule based on abstract-ness of the class
5138             checkConcreteInstanceMethod(tree, e, method);
5139             checkReturnType(tree, e, method, syms.objectType);
5140             checkNoArgs(tree, e, method);
5141             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5142         }
5143 
5144         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5145             // The "synchronized" modifier is seen in the wild on
5146             // readObject and writeObject methods and is generally
5147             // innocuous.
5148 
5149             // private void readObject(ObjectInputStream stream)
5150             //   throws IOException, ClassNotFoundException
5151             checkPrivateNonStaticMethod(tree, method);
5152             checkReturnType(tree, e, method, syms.voidType);
5153             checkOneArg(tree, e, method, syms.objectInputStreamType);
5154             checkExceptions(tree, e, method, syms.ioExceptionType, syms.classNotFoundExceptionType);
5155             checkExternalizable(tree, e, method);
5156         }
5157 
5158         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5159             // private void readObjectNoData() throws ObjectStreamException
5160             checkPrivateNonStaticMethod(tree, method);
5161             checkReturnType(tree, e, method, syms.voidType);
5162             checkNoArgs(tree, e, method);
5163             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5164             checkExternalizable(tree, e, method);
5165         }
5166 
5167         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5168             // ANY-ACCESS-MODIFIER Object readResolve()
5169             // throws ObjectStreamException
5170 
5171             // Excluding abstract, could have a more complicated
5172             // rule based on abstract-ness of the class
5173             checkConcreteInstanceMethod(tree, e, method);
5174             checkReturnType(tree,e, method, syms.objectType);
5175             checkNoArgs(tree, e, method);
5176             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5177         }
5178 
5179         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5180             //public void writeExternal(ObjectOutput) throws IOException
5181             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5182         }
5183 
5184         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5185             // public void readExternal(ObjectInput) throws IOException
5186             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5187          }
5188 
5189         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5190                                              boolean isExtern) {
5191             if (isExtern && isExternMethod(tree, e, method, argType)) {
5192                 log.warning(
5193                         TreeInfo.diagnosticPositionFor(method, tree),
5194                             LintWarnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5195             }
5196         }
5197 
5198         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5199             var flags = method.flags();
5200             if ((flags & PRIVATE) == 0) {
5201                 log.warning(
5202                         TreeInfo.diagnosticPositionFor(method, tree),
5203                             LintWarnings.SerialMethodNotPrivate(method.getSimpleName()));
5204             }
5205 
5206             if ((flags & STATIC) != 0) {
5207                 log.warning(
5208                         TreeInfo.diagnosticPositionFor(method, tree),
5209                             LintWarnings.SerialMethodStatic(method.getSimpleName()));
5210             }
5211         }
5212 
5213         /**
5214          * Per section 1.12 "Serialization of Enum Constants" of
5215          * the serialization specification, due to the special
5216          * serialization handling of enums, any writeObject,
5217          * readObject, writeReplace, and readResolve methods are
5218          * ignored as are serialPersistentFields and
5219          * serialVersionUID fields.
5220          */
5221         @Override
5222         public Void visitTypeAsEnum(TypeElement e,
5223                                     JCClassDecl p) {
5224             boolean isExtern = isExternalizable((Type)e.asType());
5225             for(Element el : e.getEnclosedElements()) {
5226                 runUnderLint(el, p, (enclosed, tree) -> {
5227                     String name = enclosed.getSimpleName().toString();
5228                     switch(enclosed.getKind()) {
5229                     case FIELD -> {
5230                         var field = (VarSymbol)enclosed;
5231                         if (serialFieldNames.contains(name)) {
5232                             log.warning(
5233                                     TreeInfo.diagnosticPositionFor(field, tree),
5234                                         LintWarnings.IneffectualSerialFieldEnum(name));
5235                         }
5236                     }
5237 
5238                     case METHOD -> {
5239                         var method = (MethodSymbol)enclosed;
5240                         if (serialMethodNames.contains(name)) {
5241                             log.warning(
5242                                     TreeInfo.diagnosticPositionFor(method, tree),
5243                                         LintWarnings.IneffectualSerialMethodEnum(name));
5244                         }
5245 
5246                         if (isExtern) {
5247                             switch(name) {
5248                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5249                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5250                             }
5251                         }
5252                     }
5253 
5254                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5255                     case ENUM_CONSTANT -> {
5256                         var field = (VarSymbol)enclosed;
5257                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5258                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5259                             ClassSymbol enumConstantType = nc.def.sym;
5260                             visitTypeAsEnum(enumConstantType, p);
5261                         }
5262                     }
5263 
5264                     }});
5265             }
5266             return null;
5267         }
5268 
5269         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5270             //public void writeExternal(ObjectOutput) throws IOException
5271             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5272         }
5273 
5274         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5275              // public void readExternal(ObjectInput) throws IOException
5276             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5277          }
5278 
5279         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5280             if (isExternMethod(tree, e, method, argType)) {
5281                 log.warning(
5282                         TreeInfo.diagnosticPositionFor(method, tree),
5283                             LintWarnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5284             }
5285         }
5286 
5287         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5288             long flags = method.flags();
5289             Type rtype = method.getReturnType();
5290 
5291             // Not necessary to check throws clause in this context
5292             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5293                 types.isSameType(syms.voidType, rtype) &&
5294                 hasExactlyOneArgWithType(tree, e, method, argType);
5295         }
5296 
5297         /**
5298          * Most serialization-related fields and methods on interfaces
5299          * are ineffectual or problematic.
5300          */
5301         @Override
5302         public Void visitTypeAsInterface(TypeElement e,
5303                                          JCClassDecl p) {
5304             for(Element el : e.getEnclosedElements()) {
5305                 runUnderLint(el, p, (enclosed, tree) -> {
5306                     String name = null;
5307                     switch(enclosed.getKind()) {
5308                     case FIELD -> {
5309                         var field = (VarSymbol)enclosed;
5310                         name = field.getSimpleName().toString();
5311                         switch(name) {
5312                         case "serialPersistentFields" -> {
5313                             log.warning(
5314                                     TreeInfo.diagnosticPositionFor(field, tree),
5315                                         LintWarnings.IneffectualSerialFieldInterface);
5316                         }
5317 
5318                         case "serialVersionUID" -> {
5319                             checkSerialVersionUID(tree, e, field);
5320                         }
5321                         }
5322                     }
5323 
5324                     case METHOD -> {
5325                         var method = (MethodSymbol)enclosed;
5326                         name = enclosed.getSimpleName().toString();
5327                         if (serialMethodNames.contains(name)) {
5328                             switch (name) {
5329                             case
5330                                 "readObject",
5331                                 "readObjectNoData",
5332                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5333 
5334                             case
5335                                 "writeReplace",
5336                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5337 
5338                             default ->  throw new AssertionError();
5339                             }
5340 
5341                         }
5342                     }}
5343                 });
5344             }
5345 
5346             return null;
5347         }
5348 
5349         private void checkPrivateMethod(JCClassDecl tree,
5350                                         Element e,
5351                                         MethodSymbol method) {
5352             if ((method.flags() & PRIVATE) == 0) {
5353                 log.warning(
5354                         TreeInfo.diagnosticPositionFor(method, tree),
5355                             LintWarnings.NonPrivateMethodWeakerAccess);
5356             }
5357         }
5358 
5359         private void checkDefaultIneffective(JCClassDecl tree,
5360                                              Element e,
5361                                              MethodSymbol method) {
5362             if ((method.flags() & DEFAULT) == DEFAULT) {
5363                 log.warning(
5364                         TreeInfo.diagnosticPositionFor(method, tree),
5365                             LintWarnings.DefaultIneffective);
5366 
5367             }
5368         }
5369 
5370         @Override
5371         public Void visitTypeAsAnnotationType(TypeElement e,
5372                                               JCClassDecl p) {
5373             // Per the JLS, annotation types are not serializeable
5374             return null;
5375         }
5376 
5377         /**
5378          * From the Java Object Serialization Specification, 1.13
5379          * Serialization of Records:
5380          *
5381          * "The process by which record objects are serialized or
5382          * externalized cannot be customized; any class-specific
5383          * writeObject, readObject, readObjectNoData, writeExternal,
5384          * and readExternal methods defined by record classes are
5385          * ignored during serialization and deserialization. However,
5386          * a substitute object to be serialized or a designate
5387          * replacement may be specified, by the writeReplace and
5388          * readResolve methods, respectively. Any
5389          * serialPersistentFields field declaration is
5390          * ignored. Documenting serializable fields and data for
5391          * record classes is unnecessary, since there is no variation
5392          * in the serial form, other than whether a substitute or
5393          * replacement object is used. The serialVersionUID of a
5394          * record class is 0L unless explicitly declared. The
5395          * requirement for matching serialVersionUID values is waived
5396          * for record classes."
5397          */
5398         @Override
5399         public Void visitTypeAsRecord(TypeElement e,
5400                                       JCClassDecl p) {
5401             boolean isExtern = isExternalizable((Type)e.asType());
5402             for(Element el : e.getEnclosedElements()) {
5403                 runUnderLint(el, p, (enclosed, tree) -> {
5404                     String name = enclosed.getSimpleName().toString();
5405                     switch(enclosed.getKind()) {
5406                     case FIELD -> {
5407                         var field = (VarSymbol)enclosed;
5408                         switch(name) {
5409                         case "serialPersistentFields" -> {
5410                             log.warning(
5411                                     TreeInfo.diagnosticPositionFor(field, tree),
5412                                         LintWarnings.IneffectualSerialFieldRecord);
5413                         }
5414 
5415                         case "serialVersionUID" -> {
5416                             // Could generate additional warning that
5417                             // svuid value is not checked to match for
5418                             // records.
5419                             checkSerialVersionUID(tree, e, field);
5420                         }}
5421                     }
5422 
5423                     case METHOD -> {
5424                         var method = (MethodSymbol)enclosed;
5425                         switch(name) {
5426                         case "writeReplace" -> checkWriteReplace(tree, e, method);
5427                         case "readResolve"  -> checkReadResolve(tree, e, method);
5428 
5429                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5430                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5431 
5432                         default -> {
5433                             if (serialMethodNames.contains(name)) {
5434                                 log.warning(
5435                                         TreeInfo.diagnosticPositionFor(method, tree),
5436                                             LintWarnings.IneffectualSerialMethodRecord(name));
5437                             }
5438                         }}
5439                     }}});
5440             }
5441             return null;
5442         }
5443 
5444         void checkConcreteInstanceMethod(JCClassDecl tree,
5445                                          Element enclosing,
5446                                          MethodSymbol method) {
5447             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5448                     log.warning(
5449                             TreeInfo.diagnosticPositionFor(method, tree),
5450                                 LintWarnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5451             }
5452         }
5453 
5454         private void checkReturnType(JCClassDecl tree,
5455                                      Element enclosing,
5456                                      MethodSymbol method,
5457                                      Type expectedReturnType) {
5458             // Note: there may be complications checking writeReplace
5459             // and readResolve since they return Object and could, in
5460             // principle, have covariant overrides and any synthetic
5461             // bridge method would not be represented here for
5462             // checking.
5463             Type rtype = method.getReturnType();
5464             if (!types.isSameType(expectedReturnType, rtype)) {
5465                 log.warning(
5466                         TreeInfo.diagnosticPositionFor(method, tree),
5467                             LintWarnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5468                                                                       rtype, expectedReturnType));
5469             }
5470         }
5471 
5472         private void checkOneArg(JCClassDecl tree,
5473                                  Element enclosing,
5474                                  MethodSymbol method,
5475                                  Type expectedType) {
5476             String name = method.getSimpleName().toString();
5477 
5478             var parameters= method.getParameters();
5479 
5480             if (parameters.size() != 1) {
5481                 log.warning(
5482                         TreeInfo.diagnosticPositionFor(method, tree),
5483                             LintWarnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5484                 return;
5485             }
5486 
5487             Type parameterType = parameters.get(0).asType();
5488             if (!types.isSameType(parameterType, expectedType)) {
5489                 log.warning(
5490                         TreeInfo.diagnosticPositionFor(method, tree),
5491                             LintWarnings.SerialMethodParameterType(method.getSimpleName(),
5492                                                                expectedType,
5493                                                                parameterType));
5494             }
5495         }
5496 
5497         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5498                                                  Element enclosing,
5499                                                  MethodSymbol method,
5500                                                  Type expectedType) {
5501             var parameters = method.getParameters();
5502             return (parameters.size() == 1) &&
5503                 types.isSameType(parameters.get(0).asType(), expectedType);
5504         }
5505 
5506 
5507         private void checkNoArgs(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5508             var parameters = method.getParameters();
5509             if (!parameters.isEmpty()) {
5510                 log.warning(
5511                         TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5512                             LintWarnings.SerialMethodNoArgs(method.getSimpleName()));
5513             }
5514         }
5515 
5516         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5517             // If the enclosing class is externalizable, warn for the method
5518             if (isExternalizable((Type)enclosing.asType())) {
5519                 log.warning(
5520                         TreeInfo.diagnosticPositionFor(method, tree),
5521                             LintWarnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5522             }
5523             return;
5524         }
5525 
5526         private void checkExceptions(JCClassDecl tree,
5527                                      Element enclosing,
5528                                      MethodSymbol method,
5529                                      Type... declaredExceptions) {
5530             for (Type thrownType: method.getThrownTypes()) {
5531                 // For each exception in the throws clause of the
5532                 // method, if not an Error and not a RuntimeException,
5533                 // check if the exception is a subtype of a declared
5534                 // exception from the throws clause of the
5535                 // serialization method in question.
5536                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5537                     types.isSubtype(thrownType, syms.errorType) ) {
5538                     continue;
5539                 } else {
5540                     boolean declared = false;
5541                     for (Type declaredException : declaredExceptions) {
5542                         if (types.isSubtype(thrownType, declaredException)) {
5543                             declared = true;
5544                             continue;
5545                         }
5546                     }
5547                     if (!declared) {
5548                         log.warning(
5549                                 TreeInfo.diagnosticPositionFor(method, tree),
5550                                     LintWarnings.SerialMethodUnexpectedException(method.getSimpleName(),
5551                                                                              thrownType));
5552                     }
5553                 }
5554             }
5555             return;
5556         }
5557 
5558         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5559             Lint prevLint = lint;
5560             try {
5561                 lint = lint.augment((Symbol) symbol);
5562 
5563                 if (lint.isEnabled(LintCategory.SERIAL)) {
5564                     task.accept(symbol, p);
5565                 }
5566 
5567                 return null;
5568             } finally {
5569                 lint = prevLint;
5570             }
5571         }
5572 
5573     }
5574 
5575     void checkRequiresIdentity(JCTree tree, Lint lint) {
5576         switch (tree) {
5577             case JCClassDecl classDecl -> {
5578                 Type st = types.supertype(classDecl.sym.type);
5579                 if (st != null &&
5580                         // no need to recheck j.l.Object, shortcut,
5581                         st.tsym != syms.objectType.tsym &&
5582                         // this one could be null, no explicit extends
5583                         classDecl.extending != null) {
5584                     checkIfIdentityIsExpected(classDecl.extending.pos(), st, lint);
5585                 }
5586                 for (JCExpression intrface: classDecl.implementing) {
5587                     checkIfIdentityIsExpected(intrface.pos(), intrface.type, lint);
5588                 }
5589                 for (JCTypeParameter tp : classDecl.typarams) {
5590                     checkIfIdentityIsExpected(tp.pos(), tp.type, lint);
5591                 }
5592             }
5593             case JCVariableDecl variableDecl -> {
5594                 if (variableDecl.vartype != null &&
5595                         (variableDecl.sym.flags_field & RECORD) == 0 ||
5596                         (variableDecl.sym.flags_field & ~(Flags.PARAMETER | RECORD | GENERATED_MEMBER)) != 0) {
5597                     /* we don't want to warn twice so if this variable is a compiler generated parameter of
5598                      * a canonical record constructor, we don't want to issue a warning as we will warn the
5599                      * corresponding compiler generated private record field anyways
5600                      */
5601                     checkIfIdentityIsExpected(variableDecl.vartype.pos(), variableDecl.vartype.type, lint);
5602                 }
5603             }
5604             case JCTypeCast typeCast -> checkIfIdentityIsExpected(typeCast.clazz.pos(), typeCast.clazz.type, lint);
5605             case JCBindingPattern bindingPattern -> {
5606                 if (bindingPattern.var.vartype != null) {
5607                     checkIfIdentityIsExpected(bindingPattern.var.vartype.pos(), bindingPattern.var.vartype.type, lint);
5608                 }
5609             }
5610             case JCMethodDecl methodDecl -> {
5611                 for (JCTypeParameter tp : methodDecl.typarams) {
5612                     checkIfIdentityIsExpected(tp.pos(), tp.type, lint);
5613                 }
5614                 if (methodDecl.restype != null && !methodDecl.restype.type.hasTag(VOID)) {
5615                     checkIfIdentityIsExpected(methodDecl.restype.pos(), methodDecl.restype.type, lint);
5616                 }
5617             }
5618             case JCMemberReference mref -> {
5619                 checkIfIdentityIsExpected(mref.expr.pos(), mref.target, lint);
5620                 checkIfTypeParamsRequiresIdentity(mref.sym.getMetadata(), mref.typeargs, lint);
5621             }
5622             case JCPolyExpression poly
5623                 when (poly instanceof JCNewClass || poly instanceof JCMethodInvocation) -> {
5624                 if (poly instanceof JCNewClass newClass) {
5625                     checkIfIdentityIsExpected(newClass.clazz.pos(), newClass.clazz.type, lint);
5626                 }
5627                 List<JCExpression> argExps = poly instanceof JCNewClass ?
5628                         ((JCNewClass)poly).args :
5629                         ((JCMethodInvocation)poly).args;
5630                 Symbol msym = TreeInfo.symbolFor(poly);
5631                 if (msym != null) {
5632                     if (!argExps.isEmpty() && msym instanceof MethodSymbol ms && ms.params != null) {
5633                         VarSymbol lastParam = ms.params.head;
5634                         for (VarSymbol param: ms.params) {
5635                             if ((param.flags_field & REQUIRES_IDENTITY) != 0 && argExps.head.type.isValueBased()) {
5636                                 log.warning(argExps.head.pos(), LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5637                             }
5638                             lastParam = param;
5639                             argExps = argExps.tail;
5640                         }
5641                         while (argExps != null && !argExps.isEmpty() && lastParam != null) {
5642                             if ((lastParam.flags_field & REQUIRES_IDENTITY) != 0 && argExps.head.type.isValueBased()) {
5643                                 log.warning(argExps.head.pos(), LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5644                             }
5645                             argExps = argExps.tail;
5646                         }
5647                     }
5648                     checkIfTypeParamsRequiresIdentity(
5649                             msym.getMetadata(),
5650                             poly instanceof JCNewClass ?
5651                                 ((JCNewClass)poly).typeargs :
5652                                 ((JCMethodInvocation)poly).typeargs,
5653                             lint);
5654                 }
5655             }
5656             default -> throw new AssertionError("unexpected tree " + tree);
5657         }
5658     }
5659 
5660     /** Check if a type required an identity class
5661      */
5662     private boolean checkIfIdentityIsExpected(DiagnosticPosition pos, Type t, Lint lint) {
5663         if (t != null &&
5664                 lint != null &&
5665                 lint.isEnabled(LintCategory.IDENTITY)) {
5666             RequiresIdentityVisitor requiresIdentityVisitor = new RequiresIdentityVisitor();
5667             // we need to avoid recursion due to self referencing type vars or captures, this is why we need a set
5668             requiresIdentityVisitor.visit(t, new HashSet<>());
5669             if (requiresIdentityVisitor.requiresWarning) {
5670                 log.warning(pos, LintWarnings.AttemptToUseValueBasedWhereIdentityExpected);
5671                 return true;
5672             }
5673         }
5674         return false;
5675     }
5676 
5677     // where
5678     private class RequiresIdentityVisitor extends Types.SimpleVisitor<Void, Set<Type>> {
5679         boolean requiresWarning = false;
5680 
5681         @Override
5682         public Void visitType(Type t, Set<Type> seen) {
5683             return null;
5684         }
5685 
5686         @Override
5687         public Void visitWildcardType(WildcardType t, Set<Type> seen) {
5688             return visit(t.type, seen);
5689         }
5690 
5691         @Override
5692         public Void visitTypeVar(TypeVar t, Set<Type> seen) {
5693             if (seen.add(t)) {
5694                 visit(t.getUpperBound(), seen);
5695             }
5696             return null;
5697         }
5698 
5699         @Override
5700         public Void visitCapturedType(CapturedType t, Set<Type> seen) {
5701             if (seen.add(t)) {
5702                 visit(t.getUpperBound(), seen);
5703                 visit(t.getLowerBound(), seen);
5704             }
5705             return null;
5706         }
5707 
5708         @Override
5709         public Void visitArrayType(ArrayType t, Set<Type> seen) {
5710             return visit(t.elemtype, seen);
5711         }
5712 
5713         @Override
5714         public Void visitClassType(ClassType t, Set<Type> seen) {
5715             if (t != null && t.tsym != null) {
5716                 SymbolMetadata sm = t.tsym.getMetadata();
5717                 if (sm != null && !t.getTypeArguments().isEmpty()) {
5718                     if (sm.getTypeAttributes().stream()
5719                             .filter(ta -> isRequiresIdentityAnnotation(ta.type.tsym) &&
5720                                     t.getTypeArguments().get(ta.position.parameter_index) != null &&
5721                                     t.getTypeArguments().get(ta.position.parameter_index).isValueBased()).findAny().isPresent()) {
5722                         requiresWarning = true;
5723                         return null;
5724                     }
5725                 }
5726             }
5727             visit(t.getEnclosingType(), seen);
5728             for (Type targ : t.getTypeArguments()) {
5729                 visit(targ, seen);
5730             }
5731             return null;
5732         }
5733     } // RequiresIdentityVisitor
5734 
5735     private void checkIfTypeParamsRequiresIdentity(SymbolMetadata sm,
5736                                                      List<JCExpression> typeParamTrees,
5737                                                      Lint lint) {
5738         if (typeParamTrees != null && !typeParamTrees.isEmpty()) {
5739             for (JCExpression targ : typeParamTrees) {
5740                 checkIfIdentityIsExpected(targ.pos(), targ.type, lint);
5741             }
5742             if (sm != null)
5743                 sm.getTypeAttributes().stream()
5744                         .filter(ta -> isRequiresIdentityAnnotation(ta.type.tsym) &&
5745                                 typeParamTrees.get(ta.position.parameter_index).type != null &&
5746                                 typeParamTrees.get(ta.position.parameter_index).type.isValueBased())
5747                         .forEach(ta -> log.warning(typeParamTrees.get(ta.position.parameter_index).pos(),
5748                                 CompilerProperties.LintWarnings.AttemptToUseValueBasedWhereIdentityExpected));
5749         }
5750     }
5751 
5752     private boolean isRequiresIdentityAnnotation(TypeSymbol annoType) {
5753         return annoType == syms.requiresIdentityType.tsym ||
5754                annoType.flatName() == syms.requiresIdentityInternalType.tsym.flatName();
5755     }
5756 }