1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Predicate;
  32 import java.util.function.Supplier;
  33 import java.util.function.ToIntBiFunction;
  34 import java.util.stream.Collectors;
  35 import java.util.stream.StreamSupport;
  36 
  37 import javax.lang.model.element.ElementKind;
  38 import javax.lang.model.element.NestingKind;
  39 import javax.tools.JavaFileManager;
  40 
  41 import com.sun.source.tree.CaseTree;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Attribute.Compound;
  44 import com.sun.tools.javac.code.Directive.ExportsDirective;
  45 import com.sun.tools.javac.code.Directive.RequiresDirective;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  50 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  51 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  52 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  53 import com.sun.tools.javac.tree.*;
  54 import com.sun.tools.javac.util.*;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  56 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  57 import com.sun.tools.javac.util.JCDiagnostic.Error;
  58 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  59 import com.sun.tools.javac.util.JCDiagnostic.LintWarning;
  60 import com.sun.tools.javac.util.List;
  61 
  62 import com.sun.tools.javac.code.Lint;
  63 import com.sun.tools.javac.code.Lint.LintCategory;
  64 import com.sun.tools.javac.code.Scope.WriteableScope;
  65 import com.sun.tools.javac.code.Type.*;
  66 import com.sun.tools.javac.code.Symbol.*;
  67 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  68 import com.sun.tools.javac.tree.JCTree.*;
  69 
  70 import static com.sun.tools.javac.code.Flags.*;
  71 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  72 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  73 import static com.sun.tools.javac.code.Kinds.*;
  74 import static com.sun.tools.javac.code.Kinds.Kind.*;
  75 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  76 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  77 import static com.sun.tools.javac.code.TypeTag.*;
  78 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  79 
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import javax.lang.model.element.Element;
  82 import javax.lang.model.element.TypeElement;
  83 import javax.lang.model.type.DeclaredType;
  84 import javax.lang.model.util.ElementKindVisitor14;
  85 
  86 /** Type checking helper class for the attribution phase.
  87  *
  88  *  <p><b>This is NOT part of any supported API.
  89  *  If you write code that depends on this, you do so at your own risk.
  90  *  This code and its internal interfaces are subject to change or
  91  *  deletion without notice.</b>
  92  */
  93 public class Check {
  94     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  95 
  96     // Flag bits indicating which item(s) chosen from a pair of items
  97     private static final int FIRST = 0x01;
  98     private static final int SECOND = 0x02;
  99 
 100     private final Names names;
 101     private final Log log;
 102     private final Resolve rs;
 103     private final Symtab syms;
 104     private final Enter enter;
 105     private final DeferredAttr deferredAttr;
 106     private final Infer infer;
 107     private final Types types;
 108     private final TypeAnnotations typeAnnotations;
 109     private final JCDiagnostic.Factory diags;
 110     private final JavaFileManager fileManager;
 111     private final Source source;
 112     private final Target target;
 113     private final Profile profile;
 114     private final Preview preview;
 115     private final boolean warnOnAnyAccessToMembers;
 116 
 117     public boolean disablePreviewCheck;
 118 
 119     // The set of lint options currently in effect. It is initialized
 120     // from the context, and then is set/reset as needed by Attr as it
 121     // visits all the various parts of the trees during attribution.
 122     Lint lint;
 123 
 124     // The method being analyzed in Attr - it is set/reset as needed by
 125     // Attr as it visits new method declarations.
 126     private MethodSymbol method;
 127 
 128     public static Check instance(Context context) {
 129         Check instance = context.get(checkKey);
 130         if (instance == null)
 131             instance = new Check(context);
 132         return instance;
 133     }
 134 
 135     @SuppressWarnings("this-escape")
 136     protected Check(Context context) {
 137         context.put(checkKey, this);
 138 
 139         names = Names.instance(context);
 140         log = Log.instance(context);
 141         rs = Resolve.instance(context);
 142         syms = Symtab.instance(context);
 143         enter = Enter.instance(context);
 144         deferredAttr = DeferredAttr.instance(context);
 145         infer = Infer.instance(context);
 146         types = Types.instance(context);
 147         typeAnnotations = TypeAnnotations.instance(context);
 148         diags = JCDiagnostic.Factory.instance(context);
 149         Options options = Options.instance(context);
 150         lint = Lint.instance(context);
 151         fileManager = context.get(JavaFileManager.class);
 152 
 153         source = Source.instance(context);
 154         target = Target.instance(context);
 155         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 156 
 157         disablePreviewCheck = false;
 158 
 159         Target target = Target.instance(context);
 160         syntheticNameChar = target.syntheticNameChar();
 161 
 162         profile = Profile.instance(context);
 163         preview = Preview.instance(context);
 164 
 165         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 166         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 167         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 168         boolean enforceMandatoryWarnings = true;
 169 
 170         deprecationHandler = new MandatoryWarningHandler(log, null, verboseDeprecated,
 171                 enforceMandatoryWarnings, LintCategory.DEPRECATION, "deprecated");
 172         removalHandler = new MandatoryWarningHandler(log, null, verboseRemoval,
 173                 enforceMandatoryWarnings, LintCategory.REMOVAL);
 174         uncheckedHandler = new MandatoryWarningHandler(log, null, verboseUnchecked,
 175                 enforceMandatoryWarnings, LintCategory.UNCHECKED);
 176 
 177         deferredLintHandler = DeferredLintHandler.instance(context);
 178 
 179         allowModules = Feature.MODULES.allowedInSource(source);
 180         allowRecords = Feature.RECORDS.allowedInSource(source);
 181         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 182     }
 183 
 184     /** Character for synthetic names
 185      */
 186     char syntheticNameChar;
 187 
 188     /** A table mapping flat names of all compiled classes for each module in this run
 189      *  to their symbols; maintained from outside.
 190      */
 191     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 192 
 193     /** A handler for messages about deprecated usage.
 194      */
 195     private MandatoryWarningHandler deprecationHandler;
 196 
 197     /** A handler for messages about deprecated-for-removal usage.
 198      */
 199     private MandatoryWarningHandler removalHandler;
 200 
 201     /** A handler for messages about unchecked or unsafe usage.
 202      */
 203     private MandatoryWarningHandler uncheckedHandler;
 204 
 205     /** A handler for deferred lint warnings.
 206      */
 207     private DeferredLintHandler deferredLintHandler;
 208 
 209     /** Are modules allowed
 210      */
 211     private final boolean allowModules;
 212 
 213     /** Are records allowed
 214      */
 215     private final boolean allowRecords;
 216 
 217     /** Are sealed classes allowed
 218      */
 219     private final boolean allowSealed;
 220 
 221     /** Whether to force suppression of deprecation and preview warnings.
 222      *  This happens when attributing import statements for JDK 9+.
 223      *  @see Feature#DEPRECATION_ON_IMPORT
 224      */
 225     private boolean importSuppression;
 226 
 227 /* *************************************************************************
 228  * Errors and Warnings
 229  **************************************************************************/
 230 
 231     Lint setLint(Lint newLint) {
 232         Lint prev = lint;
 233         lint = newLint;
 234         return prev;
 235     }
 236 
 237     boolean setImportSuppression(boolean newImportSuppression) {
 238         boolean prev = importSuppression;
 239         importSuppression = newImportSuppression;
 240         return prev;
 241     }
 242 
 243     MethodSymbol setMethod(MethodSymbol newMethod) {
 244         MethodSymbol prev = method;
 245         method = newMethod;
 246         return prev;
 247     }
 248 
 249     /** Warn about deprecated symbol.
 250      *  @param pos        Position to be used for error reporting.
 251      *  @param sym        The deprecated symbol.
 252      */
 253     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 254         if (sym.isDeprecatedForRemoval()) {
 255             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 256                 if (sym.kind == MDL) {
 257                     removalHandler.report(pos, LintWarnings.HasBeenDeprecatedForRemovalModule(sym));
 258                 } else {
 259                     removalHandler.report(pos, LintWarnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 260                 }
 261             }
 262         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 263             if (sym.kind == MDL) {
 264                 deprecationHandler.report(pos, LintWarnings.HasBeenDeprecatedModule(sym));
 265             } else {
 266                 deprecationHandler.report(pos, LintWarnings.HasBeenDeprecated(sym, sym.location()));
 267             }
 268         }
 269     }
 270 
 271     /** Log a preview warning.
 272      *  @param pos        Position to be used for error reporting.
 273      *  @param msg        A Warning describing the problem.
 274      */
 275     public void warnPreviewAPI(DiagnosticPosition pos, LintWarning warnKey) {
 276         if (!importSuppression && !lint.isSuppressed(LintCategory.PREVIEW))
 277             preview.reportPreviewWarning(pos, warnKey);
 278     }
 279 
 280     /** Log a preview warning.
 281      *  @param pos        Position to be used for error reporting.
 282      *  @param msg        A Warning describing the problem.
 283      */
 284     public void warnRestrictedAPI(DiagnosticPosition pos, Symbol sym) {
 285         lint.logIfEnabled(pos, LintWarnings.RestrictedMethod(sym.enclClass(), sym));
 286     }
 287 
 288     /** Warn about unchecked operation.
 289      *  @param pos        Position to be used for error reporting.
 290      *  @param msg        A string describing the problem.
 291      */
 292     public void warnUnchecked(DiagnosticPosition pos, LintWarning warnKey) {
 293         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 294             uncheckedHandler.report(pos, warnKey);
 295     }
 296 
 297     /**
 298      * Report any deferred diagnostics.
 299      */
 300     public void reportDeferredDiagnostics() {
 301         deprecationHandler.reportDeferredDiagnostic();
 302         removalHandler.reportDeferredDiagnostic();
 303         uncheckedHandler.reportDeferredDiagnostic();
 304     }
 305 
 306 
 307     /** Report a failure to complete a class.
 308      *  @param pos        Position to be used for error reporting.
 309      *  @param ex         The failure to report.
 310      */
 311     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 312         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 313         return syms.errType;
 314     }
 315 
 316     /** Report an error that wrong type tag was found.
 317      *  @param pos        Position to be used for error reporting.
 318      *  @param required   An internationalized string describing the type tag
 319      *                    required.
 320      *  @param found      The type that was found.
 321      */
 322     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 323         // this error used to be raised by the parser,
 324         // but has been delayed to this point:
 325         if (found instanceof Type type && type.hasTag(VOID)) {
 326             log.error(pos, Errors.IllegalStartOfType);
 327             return syms.errType;
 328         }
 329         log.error(pos, Errors.TypeFoundReq(found, required));
 330         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 331     }
 332 
 333     /** Report duplicate declaration error.
 334      */
 335     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 336         if (!sym.type.isErroneous()) {
 337             Symbol location = sym.location();
 338             if (location.kind == MTH &&
 339                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 340                 log.error(pos,
 341                           Errors.AlreadyDefinedInClinit(kindName(sym),
 342                                                         sym,
 343                                                         kindName(sym.location()),
 344                                                         kindName(sym.location().enclClass()),
 345                                                         sym.location().enclClass()));
 346             } else {
 347                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 348                  * as we should have issued an error for the duplicated fields
 349                  */
 350                 if (location.kind != MTH ||
 351                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 352                         ((sym.owner.flags_field & RECORD) == 0)) {
 353                     log.error(pos,
 354                             Errors.AlreadyDefined(kindName(sym),
 355                                     sym,
 356                                     kindName(sym.location()),
 357                                     sym.location()));
 358                 }
 359             }
 360         }
 361     }
 362 
 363     /** Report array/varargs duplicate declaration
 364      */
 365     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 366         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 367             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 368         }
 369     }
 370 
 371 /* ************************************************************************
 372  * duplicate declaration checking
 373  *************************************************************************/
 374 
 375     /** Check that variable does not hide variable with same name in
 376      *  immediately enclosing local scope.
 377      *  @param pos           Position for error reporting.
 378      *  @param v             The symbol.
 379      *  @param s             The scope.
 380      */
 381     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 382         for (Symbol sym : s.getSymbolsByName(v.name)) {
 383             if (sym.owner != v.owner) break;
 384             if (sym.kind == VAR &&
 385                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 386                 v.name != names.error) {
 387                 duplicateError(pos, sym);
 388                 return;
 389             }
 390         }
 391     }
 392 
 393     /** Check that a class or interface does not hide a class or
 394      *  interface with same name in immediately enclosing local scope.
 395      *  @param pos           Position for error reporting.
 396      *  @param c             The symbol.
 397      *  @param s             The scope.
 398      */
 399     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 400         for (Symbol sym : s.getSymbolsByName(c.name)) {
 401             if (sym.owner != c.owner) break;
 402             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 403                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 404                 c.name != names.error) {
 405                 duplicateError(pos, sym);
 406                 return;
 407             }
 408         }
 409     }
 410 
 411     /** Check that class does not have the same name as one of
 412      *  its enclosing classes, or as a class defined in its enclosing scope.
 413      *  return true if class is unique in its enclosing scope.
 414      *  @param pos           Position for error reporting.
 415      *  @param name          The class name.
 416      *  @param s             The enclosing scope.
 417      */
 418     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 419         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 420             if (sym.kind == TYP && sym.name != names.error) {
 421                 duplicateError(pos, sym);
 422                 return false;
 423             }
 424         }
 425         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 426             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 427                     !sym.isImplicit()) {
 428                 duplicateError(pos, sym);
 429                 return true;
 430             }
 431         }
 432         return true;
 433     }
 434 
 435 /* *************************************************************************
 436  * Class name generation
 437  **************************************************************************/
 438 
 439 
 440     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 441 
 442     /** Return name of local class.
 443      *  This is of the form   {@code <enclClass> $ n <classname> }
 444      *  where
 445      *    enclClass is the flat name of the enclosing class,
 446      *    classname is the simple name of the local class
 447      */
 448     public Name localClassName(ClassSymbol c) {
 449         Name enclFlatname = c.owner.enclClass().flatname;
 450         String enclFlatnameStr = enclFlatname.toString();
 451         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 452         Integer index = localClassNameIndexes.get(key);
 453         for (int i = (index == null) ? 1 : index; ; i++) {
 454             Name flatname = names.fromString(enclFlatnameStr
 455                     + syntheticNameChar + i + c.name);
 456             if (getCompiled(c.packge().modle, flatname) == null) {
 457                 localClassNameIndexes.put(key, i + 1);
 458                 return flatname;
 459             }
 460         }
 461     }
 462 
 463     public void clearLocalClassNameIndexes(ClassSymbol c) {
 464         if (c.owner != null && c.owner.kind != NIL) {
 465             localClassNameIndexes.remove(new Pair<>(
 466                     c.owner.enclClass().flatname, c.name));
 467         }
 468     }
 469 
 470     public void newRound() {
 471         compiled.clear();
 472         localClassNameIndexes.clear();
 473     }
 474 
 475     public void clear() {
 476         deprecationHandler.clear();
 477         removalHandler.clear();
 478         uncheckedHandler.clear();
 479     }
 480 
 481     public void putCompiled(ClassSymbol csym) {
 482         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 483     }
 484 
 485     public ClassSymbol getCompiled(ClassSymbol csym) {
 486         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 487     }
 488 
 489     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 490         return compiled.get(Pair.of(msym, flatname));
 491     }
 492 
 493     public void removeCompiled(ClassSymbol csym) {
 494         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 495     }
 496 
 497 /* *************************************************************************
 498  * Type Checking
 499  **************************************************************************/
 500 
 501     /**
 502      * A check context is an object that can be used to perform compatibility
 503      * checks - depending on the check context, meaning of 'compatibility' might
 504      * vary significantly.
 505      */
 506     public interface CheckContext {
 507         /**
 508          * Is type 'found' compatible with type 'req' in given context
 509          */
 510         boolean compatible(Type found, Type req, Warner warn);
 511         /**
 512          * Report a check error
 513          */
 514         void report(DiagnosticPosition pos, JCDiagnostic details);
 515         /**
 516          * Obtain a warner for this check context
 517          */
 518         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 519 
 520         public InferenceContext inferenceContext();
 521 
 522         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 523     }
 524 
 525     /**
 526      * This class represent a check context that is nested within another check
 527      * context - useful to check sub-expressions. The default behavior simply
 528      * redirects all method calls to the enclosing check context leveraging
 529      * the forwarding pattern.
 530      */
 531     static class NestedCheckContext implements CheckContext {
 532         CheckContext enclosingContext;
 533 
 534         NestedCheckContext(CheckContext enclosingContext) {
 535             this.enclosingContext = enclosingContext;
 536         }
 537 
 538         public boolean compatible(Type found, Type req, Warner warn) {
 539             return enclosingContext.compatible(found, req, warn);
 540         }
 541 
 542         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 543             enclosingContext.report(pos, details);
 544         }
 545 
 546         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 547             return enclosingContext.checkWarner(pos, found, req);
 548         }
 549 
 550         public InferenceContext inferenceContext() {
 551             return enclosingContext.inferenceContext();
 552         }
 553 
 554         public DeferredAttrContext deferredAttrContext() {
 555             return enclosingContext.deferredAttrContext();
 556         }
 557     }
 558 
 559     /**
 560      * Check context to be used when evaluating assignment/return statements
 561      */
 562     CheckContext basicHandler = new CheckContext() {
 563         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 564             log.error(pos, Errors.ProbFoundReq(details));
 565         }
 566         public boolean compatible(Type found, Type req, Warner warn) {
 567             return types.isAssignable(found, req, warn);
 568         }
 569 
 570         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 571             return convertWarner(pos, found, req);
 572         }
 573 
 574         public InferenceContext inferenceContext() {
 575             return infer.emptyContext;
 576         }
 577 
 578         public DeferredAttrContext deferredAttrContext() {
 579             return deferredAttr.emptyDeferredAttrContext;
 580         }
 581 
 582         @Override
 583         public String toString() {
 584             return "CheckContext: basicHandler";
 585         }
 586     };
 587 
 588     /** Check that a given type is assignable to a given proto-type.
 589      *  If it is, return the type, otherwise return errType.
 590      *  @param pos        Position to be used for error reporting.
 591      *  @param found      The type that was found.
 592      *  @param req        The type that was required.
 593      */
 594     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 595         return checkType(pos, found, req, basicHandler);
 596     }
 597 
 598     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 599         final InferenceContext inferenceContext = checkContext.inferenceContext();
 600         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 601             inferenceContext.addFreeTypeListener(List.of(req, found),
 602                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 603         }
 604         if (req.hasTag(ERROR))
 605             return req;
 606         if (req.hasTag(NONE))
 607             return found;
 608         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 609             return found;
 610         } else {
 611             if (found.isNumeric() && req.isNumeric()) {
 612                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 613                 return types.createErrorType(found);
 614             }
 615             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 616             return types.createErrorType(found);
 617         }
 618     }
 619 
 620     /** Check that a given type can be cast to a given target type.
 621      *  Return the result of the cast.
 622      *  @param pos        Position to be used for error reporting.
 623      *  @param found      The type that is being cast.
 624      *  @param req        The target type of the cast.
 625      */
 626     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 627         return checkCastable(pos, found, req, basicHandler);
 628     }
 629     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 630         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 631             return req;
 632         } else {
 633             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 634             return types.createErrorType(found);
 635         }
 636     }
 637 
 638     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 639      * The problem should only be reported for non-292 cast
 640      */
 641     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 642         if (!tree.type.isErroneous()
 643                 && types.isSameType(tree.expr.type, tree.clazz.type)
 644                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 645                 && !is292targetTypeCast(tree)) {
 646             deferredLintHandler.report(_l -> {
 647                 lint.logIfEnabled(tree.pos(), LintWarnings.RedundantCast(tree.clazz.type));
 648             });
 649         }
 650     }
 651     //where
 652         private boolean is292targetTypeCast(JCTypeCast tree) {
 653             boolean is292targetTypeCast = false;
 654             JCExpression expr = TreeInfo.skipParens(tree.expr);
 655             if (expr.hasTag(APPLY)) {
 656                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 657                 Symbol sym = TreeInfo.symbol(apply.meth);
 658                 is292targetTypeCast = sym != null &&
 659                     sym.kind == MTH &&
 660                     (sym.flags() & HYPOTHETICAL) != 0;
 661             }
 662             return is292targetTypeCast;
 663         }
 664 
 665         private static final boolean ignoreAnnotatedCasts = true;
 666 
 667     /** Check that a type is within some bounds.
 668      *
 669      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 670      *  type argument.
 671      *  @param a             The type that should be bounded by bs.
 672      *  @param bound         The bound.
 673      */
 674     private boolean checkExtends(Type a, Type bound) {
 675          if (a.isUnbound()) {
 676              return true;
 677          } else if (!a.hasTag(WILDCARD)) {
 678              a = types.cvarUpperBound(a);
 679              return types.isSubtype(a, bound);
 680          } else if (a.isExtendsBound()) {
 681              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 682          } else if (a.isSuperBound()) {
 683              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 684          }
 685          return true;
 686      }
 687 
 688     /** Check that type is different from 'void'.
 689      *  @param pos           Position to be used for error reporting.
 690      *  @param t             The type to be checked.
 691      */
 692     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 693         if (t.hasTag(VOID)) {
 694             log.error(pos, Errors.VoidNotAllowedHere);
 695             return types.createErrorType(t);
 696         } else {
 697             return t;
 698         }
 699     }
 700 
 701     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 702         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 703             return typeTagError(pos,
 704                                 diags.fragment(Fragments.TypeReqClassArray),
 705                                 asTypeParam(t));
 706         } else {
 707             return t;
 708         }
 709     }
 710 
 711     /** Check that type is a class or interface type.
 712      *  @param pos           Position to be used for error reporting.
 713      *  @param t             The type to be checked.
 714      */
 715     Type checkClassType(DiagnosticPosition pos, Type t) {
 716         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 717             return typeTagError(pos,
 718                                 diags.fragment(Fragments.TypeReqClass),
 719                                 asTypeParam(t));
 720         } else {
 721             return t;
 722         }
 723     }
 724     //where
 725         private Object asTypeParam(Type t) {
 726             return (t.hasTag(TYPEVAR))
 727                                     ? diags.fragment(Fragments.TypeParameter(t))
 728                                     : t;
 729         }
 730 
 731     /** Check that type is a valid qualifier for a constructor reference expression
 732      */
 733     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 734         t = checkClassOrArrayType(pos, t);
 735         if (t.hasTag(CLASS)) {
 736             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 737                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 738                 t = types.createErrorType(t);
 739             } else if ((t.tsym.flags() & ENUM) != 0) {
 740                 log.error(pos, Errors.EnumCantBeInstantiated);
 741                 t = types.createErrorType(t);
 742             } else {
 743                 t = checkClassType(pos, t, true);
 744             }
 745         } else if (t.hasTag(ARRAY)) {
 746             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 747                 log.error(pos, Errors.GenericArrayCreation);
 748                 t = types.createErrorType(t);
 749             }
 750         }
 751         return t;
 752     }
 753 
 754     /** Check that type is a class or interface type.
 755      *  @param pos           Position to be used for error reporting.
 756      *  @param t             The type to be checked.
 757      *  @param noBounds    True if type bounds are illegal here.
 758      */
 759     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 760         t = checkClassType(pos, t);
 761         if (noBounds && t.isParameterized()) {
 762             List<Type> args = t.getTypeArguments();
 763             while (args.nonEmpty()) {
 764                 if (args.head.hasTag(WILDCARD))
 765                     return typeTagError(pos,
 766                                         diags.fragment(Fragments.TypeReqExact),
 767                                         args.head);
 768                 args = args.tail;
 769             }
 770         }
 771         return t;
 772     }
 773 
 774     /** Check that type is a reference type, i.e. a class, interface or array type
 775      *  or a type variable.
 776      *  @param pos           Position to be used for error reporting.
 777      *  @param t             The type to be checked.
 778      */
 779     Type checkRefType(DiagnosticPosition pos, Type t) {
 780         if (t.isReference())
 781             return t;
 782         else
 783             return typeTagError(pos,
 784                                 diags.fragment(Fragments.TypeReqRef),
 785                                 t);
 786     }
 787 
 788     /** Check that each type is a reference type, i.e. a class, interface or array type
 789      *  or a type variable.
 790      *  @param trees         Original trees, used for error reporting.
 791      *  @param types         The types to be checked.
 792      */
 793     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 794         List<JCExpression> tl = trees;
 795         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 796             l.head = checkRefType(tl.head.pos(), l.head);
 797             tl = tl.tail;
 798         }
 799         return types;
 800     }
 801 
 802     /** Check that type is a null or reference type.
 803      *  @param pos           Position to be used for error reporting.
 804      *  @param t             The type to be checked.
 805      */
 806     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 807         if (t.isReference() || t.hasTag(BOT))
 808             return t;
 809         else
 810             return typeTagError(pos,
 811                                 diags.fragment(Fragments.TypeReqRef),
 812                                 t);
 813     }
 814 
 815     /** Check that flag set does not contain elements of two conflicting sets. s
 816      *  Return true if it doesn't.
 817      *  @param pos           Position to be used for error reporting.
 818      *  @param flags         The set of flags to be checked.
 819      *  @param set1          Conflicting flags set #1.
 820      *  @param set2          Conflicting flags set #2.
 821      */
 822     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 823         if ((flags & set1) != 0 && (flags & set2) != 0) {
 824             log.error(pos,
 825                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 826                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 827             return false;
 828         } else
 829             return true;
 830     }
 831 
 832     /** Check that usage of diamond operator is correct (i.e. diamond should not
 833      * be used with non-generic classes or in anonymous class creation expressions)
 834      */
 835     Type checkDiamond(JCNewClass tree, Type t) {
 836         if (!TreeInfo.isDiamond(tree) ||
 837                 t.isErroneous()) {
 838             return checkClassType(tree.clazz.pos(), t, true);
 839         } else {
 840             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 841                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 842                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 843             }
 844             if (t.tsym.type.getTypeArguments().isEmpty()) {
 845                 log.error(tree.clazz.pos(),
 846                           Errors.CantApplyDiamond1(t,
 847                                                    Fragments.DiamondNonGeneric(t)));
 848                 return types.createErrorType(t);
 849             } else if (tree.typeargs != null &&
 850                     tree.typeargs.nonEmpty()) {
 851                 log.error(tree.clazz.pos(),
 852                           Errors.CantApplyDiamond1(t,
 853                                                    Fragments.DiamondAndExplicitParams(t)));
 854                 return types.createErrorType(t);
 855             } else {
 856                 return t;
 857             }
 858         }
 859     }
 860 
 861     /** Check that the type inferred using the diamond operator does not contain
 862      *  non-denotable types such as captured types or intersection types.
 863      *  @param t the type inferred using the diamond operator
 864      *  @return  the (possibly empty) list of non-denotable types.
 865      */
 866     List<Type> checkDiamondDenotable(ClassType t) {
 867         ListBuffer<Type> buf = new ListBuffer<>();
 868         for (Type arg : t.allparams()) {
 869             if (!checkDenotable(arg)) {
 870                 buf.append(arg);
 871             }
 872         }
 873         return buf.toList();
 874     }
 875 
 876     public boolean checkDenotable(Type t) {
 877         return denotableChecker.visit(t, null);
 878     }
 879         // where
 880 
 881         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 882          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 883          *  otherwise.
 884          */
 885         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 886             @Override
 887             public Boolean visitType(Type t, Void s) {
 888                 return true;
 889             }
 890             @Override
 891             public Boolean visitClassType(ClassType t, Void s) {
 892                 if (t.isUnion() || t.isIntersection()) {
 893                     return false;
 894                 }
 895                 for (Type targ : t.allparams()) {
 896                     if (!visit(targ, s)) {
 897                         return false;
 898                     }
 899                 }
 900                 return true;
 901             }
 902 
 903             @Override
 904             public Boolean visitTypeVar(TypeVar t, Void s) {
 905                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 906                   (i.e cannot have been produced by inference (18.4))
 907                 */
 908                 return (t.tsym.flags() & SYNTHETIC) == 0;
 909             }
 910 
 911             @Override
 912             public Boolean visitCapturedType(CapturedType t, Void s) {
 913                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 914                   (i.e cannot have been produced by capture conversion (5.1.10))
 915                 */
 916                 return false;
 917             }
 918 
 919             @Override
 920             public Boolean visitArrayType(ArrayType t, Void s) {
 921                 return visit(t.elemtype, s);
 922             }
 923 
 924             @Override
 925             public Boolean visitWildcardType(WildcardType t, Void s) {
 926                 return visit(t.type, s);
 927             }
 928         };
 929 
 930     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 931         MethodSymbol m = tree.sym;
 932         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 933         Type varargElemType = null;
 934         if (m.isVarArgs()) {
 935             varargElemType = types.elemtype(tree.params.last().type);
 936         }
 937         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 938             if (varargElemType != null) {
 939                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
 940                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
 941                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
 942                 log.error(tree,
 943                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 944                                                            msg));
 945             } else {
 946                 log.error(tree,
 947                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 948                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
 949             }
 950         } else if (hasTrustMeAnno && varargElemType != null &&
 951                             types.isReifiable(varargElemType)) {
 952             lint.logIfEnabled(tree, LintWarnings.VarargsRedundantTrustmeAnno(
 953                                 syms.trustMeType.tsym,
 954                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
 955         }
 956         else if (!hasTrustMeAnno && varargElemType != null &&
 957                 !types.isReifiable(varargElemType)) {
 958             warnUnchecked(tree.params.head.pos(), LintWarnings.UncheckedVarargsNonReifiableType(varargElemType));
 959         }
 960     }
 961     //where
 962         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 963             return (s.flags() & VARARGS) != 0 &&
 964                 (s.isConstructor() ||
 965                     (s.flags() & (STATIC | FINAL |
 966                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
 967         }
 968 
 969     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
 970         //check that resulting type is not the null type
 971         if (t.hasTag(BOT)) {
 972             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
 973             return types.createErrorType(t);
 974         } else if (t.hasTag(VOID)) {
 975             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
 976             return types.createErrorType(t);
 977         }
 978 
 979         //upward project the initializer type
 980         return types.upward(t, types.captures(t)).baseType();
 981     }
 982 
 983     Type checkMethod(final Type mtype,
 984             final Symbol sym,
 985             final Env<AttrContext> env,
 986             final List<JCExpression> argtrees,
 987             final List<Type> argtypes,
 988             final boolean useVarargs,
 989             InferenceContext inferenceContext) {
 990         // System.out.println("call   : " + env.tree);
 991         // System.out.println("method : " + owntype);
 992         // System.out.println("actuals: " + argtypes);
 993         if (inferenceContext.free(mtype)) {
 994             inferenceContext.addFreeTypeListener(List.of(mtype),
 995                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
 996             return mtype;
 997         }
 998         Type owntype = mtype;
 999         List<Type> formals = owntype.getParameterTypes();
1000         List<Type> nonInferred = sym.type.getParameterTypes();
1001         if (nonInferred.length() != formals.length()) nonInferred = formals;
1002         Type last = useVarargs ? formals.last() : null;
1003         if (sym.name == names.init && sym.owner == syms.enumSym) {
1004             formals = formals.tail.tail;
1005             nonInferred = nonInferred.tail.tail;
1006         }
1007         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
1008             formals = formals.tail;
1009             nonInferred = nonInferred.tail;
1010         }
1011         List<JCExpression> args = argtrees;
1012         if (args != null) {
1013             //this is null when type-checking a method reference
1014             while (formals.head != last) {
1015                 JCTree arg = args.head;
1016                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1017                 assertConvertible(arg, arg.type, formals.head, warn);
1018                 args = args.tail;
1019                 formals = formals.tail;
1020                 nonInferred = nonInferred.tail;
1021             }
1022             if (useVarargs) {
1023                 Type varArg = types.elemtype(last);
1024                 while (args.tail != null) {
1025                     JCTree arg = args.head;
1026                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1027                     assertConvertible(arg, arg.type, varArg, warn);
1028                     args = args.tail;
1029                 }
1030             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1031                 // non-varargs call to varargs method
1032                 Type varParam = owntype.getParameterTypes().last();
1033                 Type lastArg = argtypes.last();
1034                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1035                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1036                     log.warning(argtrees.last().pos(),
1037                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1038             }
1039         }
1040         if (useVarargs) {
1041             Type argtype = owntype.getParameterTypes().last();
1042             if (!types.isReifiable(argtype) &&
1043                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1044                  !isTrustMeAllowedOnMethod(sym))) {
1045                 warnUnchecked(env.tree.pos(), LintWarnings.UncheckedGenericArrayCreation(argtype));
1046             }
1047             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1048          }
1049          return owntype;
1050     }
1051     //where
1052     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1053         if (types.isConvertible(actual, formal, warn))
1054             return;
1055 
1056         if (formal.isCompound()
1057             && types.isSubtype(actual, types.supertype(formal))
1058             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1059             return;
1060     }
1061 
1062     /**
1063      * Check that type 't' is a valid instantiation of a generic class
1064      * (see JLS 4.5)
1065      *
1066      * @param t class type to be checked
1067      * @return true if 't' is well-formed
1068      */
1069     public boolean checkValidGenericType(Type t) {
1070         return firstIncompatibleTypeArg(t) == null;
1071     }
1072     //WHERE
1073         private Type firstIncompatibleTypeArg(Type type) {
1074             List<Type> formals = type.tsym.type.allparams();
1075             List<Type> actuals = type.allparams();
1076             List<Type> args = type.getTypeArguments();
1077             List<Type> forms = type.tsym.type.getTypeArguments();
1078             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1079 
1080             // For matching pairs of actual argument types `a' and
1081             // formal type parameters with declared bound `b' ...
1082             while (args.nonEmpty() && forms.nonEmpty()) {
1083                 // exact type arguments needs to know their
1084                 // bounds (for upper and lower bound
1085                 // calculations).  So we create new bounds where
1086                 // type-parameters are replaced with actuals argument types.
1087                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1088                 args = args.tail;
1089                 forms = forms.tail;
1090             }
1091 
1092             args = type.getTypeArguments();
1093             List<Type> tvars_cap = types.substBounds(formals,
1094                                       formals,
1095                                       types.capture(type).allparams());
1096             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1097                 // Let the actual arguments know their bound
1098                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1099                 args = args.tail;
1100                 tvars_cap = tvars_cap.tail;
1101             }
1102 
1103             args = type.getTypeArguments();
1104             List<Type> bounds = bounds_buf.toList();
1105 
1106             while (args.nonEmpty() && bounds.nonEmpty()) {
1107                 Type actual = args.head;
1108                 if (!isTypeArgErroneous(actual) &&
1109                         !bounds.head.isErroneous() &&
1110                         !checkExtends(actual, bounds.head)) {
1111                     return args.head;
1112                 }
1113                 args = args.tail;
1114                 bounds = bounds.tail;
1115             }
1116 
1117             args = type.getTypeArguments();
1118             bounds = bounds_buf.toList();
1119 
1120             for (Type arg : types.capture(type).getTypeArguments()) {
1121                 if (arg.hasTag(TYPEVAR) &&
1122                         arg.getUpperBound().isErroneous() &&
1123                         !bounds.head.isErroneous() &&
1124                         !isTypeArgErroneous(args.head)) {
1125                     return args.head;
1126                 }
1127                 bounds = bounds.tail;
1128                 args = args.tail;
1129             }
1130 
1131             return null;
1132         }
1133         //where
1134         boolean isTypeArgErroneous(Type t) {
1135             return isTypeArgErroneous.visit(t);
1136         }
1137 
1138         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1139             public Boolean visitType(Type t, Void s) {
1140                 return t.isErroneous();
1141             }
1142             @Override
1143             public Boolean visitTypeVar(TypeVar t, Void s) {
1144                 return visit(t.getUpperBound());
1145             }
1146             @Override
1147             public Boolean visitCapturedType(CapturedType t, Void s) {
1148                 return visit(t.getUpperBound()) ||
1149                         visit(t.getLowerBound());
1150             }
1151             @Override
1152             public Boolean visitWildcardType(WildcardType t, Void s) {
1153                 return visit(t.type);
1154             }
1155         };
1156 
1157     /** Check that given modifiers are legal for given symbol and
1158      *  return modifiers together with any implicit modifiers for that symbol.
1159      *  Warning: we can't use flags() here since this method
1160      *  is called during class enter, when flags() would cause a premature
1161      *  completion.
1162      *  @param flags         The set of modifiers given in a definition.
1163      *  @param sym           The defined symbol.
1164      *  @param tree          The declaration
1165      */
1166     long checkFlags(long flags, Symbol sym, JCTree tree) {
1167         final DiagnosticPosition pos = tree.pos();
1168         long mask;
1169         long implicit = 0;
1170 
1171         switch (sym.kind) {
1172         case VAR:
1173             if (TreeInfo.isReceiverParam(tree))
1174                 mask = ReceiverParamFlags;
1175             else if (sym.owner.kind != TYP)
1176                 mask = LocalVarFlags;
1177             else if ((sym.owner.flags_field & INTERFACE) != 0)
1178                 mask = implicit = InterfaceVarFlags;
1179             else
1180                 mask = VarFlags;
1181             break;
1182         case MTH:
1183             if (sym.name == names.init) {
1184                 if ((sym.owner.flags_field & ENUM) != 0) {
1185                     // enum constructors cannot be declared public or
1186                     // protected and must be implicitly or explicitly
1187                     // private
1188                     implicit = PRIVATE;
1189                     mask = PRIVATE;
1190                 } else
1191                     mask = ConstructorFlags;
1192             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1193                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1194                     mask = AnnotationTypeElementMask;
1195                     implicit = PUBLIC | ABSTRACT;
1196                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1197                     mask = InterfaceMethodMask;
1198                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1199                     if ((flags & DEFAULT) != 0) {
1200                         implicit |= ABSTRACT;
1201                     }
1202                 } else {
1203                     mask = implicit = InterfaceMethodFlags;
1204                 }
1205             } else if ((sym.owner.flags_field & RECORD) != 0) {
1206                 mask = RecordMethodFlags;
1207             } else {
1208                 mask = MethodFlags;
1209             }
1210             if ((flags & STRICTFP) != 0) {
1211                 warnOnExplicitStrictfp(tree);
1212             }
1213             // Imply STRICTFP if owner has STRICTFP set.
1214             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1215                 ((flags) & Flags.DEFAULT) != 0)
1216                 implicit |= sym.owner.flags_field & STRICTFP;
1217             break;
1218         case TYP:
1219             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1220                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1221                 boolean implicitlyStatic = !sym.isAnonymous() &&
1222                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1223                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1224                 // local statics are allowed only if records are allowed too
1225                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? StaticLocalFlags : LocalClassFlags;
1226                 implicit = implicitlyStatic ? STATIC : implicit;
1227             } else if (sym.owner.kind == TYP) {
1228                 // statics in inner classes are allowed only if records are allowed too
1229                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1230                 if (sym.owner.owner.kind == PCK ||
1231                     (sym.owner.flags_field & STATIC) != 0) {
1232                     mask |= STATIC;
1233                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1234                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1235                 }
1236                 // Nested interfaces and enums are always STATIC (Spec ???)
1237                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1238             } else {
1239                 mask = ExtendedClassFlags;
1240             }
1241             // Interfaces are always ABSTRACT
1242             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1243 
1244             if ((flags & ENUM) != 0) {
1245                 // enums can't be declared abstract, final, sealed or non-sealed
1246                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED);
1247                 implicit |= implicitEnumFinalFlag(tree);
1248             }
1249             if ((flags & RECORD) != 0) {
1250                 // records can't be declared abstract
1251                 mask &= ~ABSTRACT;
1252                 implicit |= FINAL;
1253             }
1254             if ((flags & STRICTFP) != 0) {
1255                 warnOnExplicitStrictfp(tree);
1256             }
1257             // Imply STRICTFP if owner has STRICTFP set.
1258             implicit |= sym.owner.flags_field & STRICTFP;
1259             break;
1260         default:
1261             throw new AssertionError();
1262         }
1263         long illegal = flags & ExtendedStandardFlags & ~mask;
1264         if (illegal != 0) {
1265             if ((illegal & INTERFACE) != 0) {
1266                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1267                 mask |= INTERFACE;
1268             }
1269             else {
1270                 log.error(pos,
1271                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1272             }
1273         }
1274         else if ((sym.kind == TYP ||
1275                   // ISSUE: Disallowing abstract&private is no longer appropriate
1276                   // in the presence of inner classes. Should it be deleted here?
1277                   checkDisjoint(pos, flags,
1278                                 ABSTRACT,
1279                                 PRIVATE | STATIC | DEFAULT))
1280                  &&
1281                  checkDisjoint(pos, flags,
1282                                 STATIC | PRIVATE,
1283                                 DEFAULT)
1284                  &&
1285                  checkDisjoint(pos, flags,
1286                                ABSTRACT | INTERFACE,
1287                                FINAL | NATIVE | SYNCHRONIZED)
1288                  &&
1289                  checkDisjoint(pos, flags,
1290                                PUBLIC,
1291                                PRIVATE | PROTECTED)
1292                  &&
1293                  checkDisjoint(pos, flags,
1294                                PRIVATE,
1295                                PUBLIC | PROTECTED)
1296                  &&
1297                  checkDisjoint(pos, flags,
1298                                FINAL,
1299                                VOLATILE)
1300                  &&
1301                  (sym.kind == TYP ||
1302                   checkDisjoint(pos, flags,
1303                                 ABSTRACT | NATIVE,
1304                                 STRICTFP))
1305                  && checkDisjoint(pos, flags,
1306                                 FINAL,
1307                            SEALED | NON_SEALED)
1308                  && checkDisjoint(pos, flags,
1309                                 SEALED,
1310                            FINAL | NON_SEALED)
1311                  && checkDisjoint(pos, flags,
1312                                 SEALED,
1313                                 ANNOTATION)) {
1314             // skip
1315         }
1316         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1317     }
1318 
1319     private void warnOnExplicitStrictfp(JCTree tree) {
1320         deferredLintHandler.push(tree);
1321         try {
1322             deferredLintHandler.report(_ -> lint.logIfEnabled(tree.pos(), LintWarnings.Strictfp));
1323         } finally {
1324             deferredLintHandler.pop();
1325         }
1326     }
1327 
1328 
1329     /** Determine if this enum should be implicitly final.
1330      *
1331      *  If the enum has no specialized enum constants, it is final.
1332      *
1333      *  If the enum does have specialized enum constants, it is
1334      *  <i>not</i> final.
1335      */
1336     private long implicitEnumFinalFlag(JCTree tree) {
1337         if (!tree.hasTag(CLASSDEF)) return 0;
1338         class SpecialTreeVisitor extends JCTree.Visitor {
1339             boolean specialized;
1340             SpecialTreeVisitor() {
1341                 this.specialized = false;
1342             }
1343 
1344             @Override
1345             public void visitTree(JCTree tree) { /* no-op */ }
1346 
1347             @Override
1348             public void visitVarDef(JCVariableDecl tree) {
1349                 if ((tree.mods.flags & ENUM) != 0) {
1350                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1351                         specialized = true;
1352                     }
1353                 }
1354             }
1355         }
1356 
1357         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1358         JCClassDecl cdef = (JCClassDecl) tree;
1359         for (JCTree defs: cdef.defs) {
1360             defs.accept(sts);
1361             if (sts.specialized) return allowSealed ? SEALED : 0;
1362         }
1363         return FINAL;
1364     }
1365 
1366 /* *************************************************************************
1367  * Type Validation
1368  **************************************************************************/
1369 
1370     /** Validate a type expression. That is,
1371      *  check that all type arguments of a parametric type are within
1372      *  their bounds. This must be done in a second phase after type attribution
1373      *  since a class might have a subclass as type parameter bound. E.g:
1374      *
1375      *  <pre>{@code
1376      *  class B<A extends C> { ... }
1377      *  class C extends B<C> { ... }
1378      *  }</pre>
1379      *
1380      *  and we can't make sure that the bound is already attributed because
1381      *  of possible cycles.
1382      *
1383      * Visitor method: Validate a type expression, if it is not null, catching
1384      *  and reporting any completion failures.
1385      */
1386     void validate(JCTree tree, Env<AttrContext> env) {
1387         validate(tree, env, true);
1388     }
1389     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1390         new Validator(env).validateTree(tree, checkRaw, true);
1391     }
1392 
1393     /** Visitor method: Validate a list of type expressions.
1394      */
1395     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1396         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1397             validate(l.head, env);
1398     }
1399 
1400     /** A visitor class for type validation.
1401      */
1402     class Validator extends JCTree.Visitor {
1403 
1404         boolean checkRaw;
1405         boolean isOuter;
1406         Env<AttrContext> env;
1407 
1408         Validator(Env<AttrContext> env) {
1409             this.env = env;
1410         }
1411 
1412         @Override
1413         public void visitTypeArray(JCArrayTypeTree tree) {
1414             validateTree(tree.elemtype, checkRaw, isOuter);
1415         }
1416 
1417         @Override
1418         public void visitTypeApply(JCTypeApply tree) {
1419             if (tree.type.hasTag(CLASS)) {
1420                 List<JCExpression> args = tree.arguments;
1421                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1422 
1423                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1424                 if (incompatibleArg != null) {
1425                     for (JCTree arg : tree.arguments) {
1426                         if (arg.type == incompatibleArg) {
1427                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1428                         }
1429                         forms = forms.tail;
1430                      }
1431                  }
1432 
1433                 forms = tree.type.tsym.type.getTypeArguments();
1434 
1435                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1436 
1437                 // For matching pairs of actual argument types `a' and
1438                 // formal type parameters with declared bound `b' ...
1439                 while (args.nonEmpty() && forms.nonEmpty()) {
1440                     validateTree(args.head,
1441                             !(isOuter && is_java_lang_Class),
1442                             false);
1443                     args = args.tail;
1444                     forms = forms.tail;
1445                 }
1446 
1447                 // Check that this type is either fully parameterized, or
1448                 // not parameterized at all.
1449                 if (tree.type.getEnclosingType().isRaw())
1450                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1451                 if (tree.clazz.hasTag(SELECT))
1452                     visitSelectInternal((JCFieldAccess)tree.clazz);
1453             }
1454         }
1455 
1456         @Override
1457         public void visitTypeParameter(JCTypeParameter tree) {
1458             validateTrees(tree.bounds, true, isOuter);
1459             checkClassBounds(tree.pos(), tree.type);
1460         }
1461 
1462         @Override
1463         public void visitWildcard(JCWildcard tree) {
1464             if (tree.inner != null)
1465                 validateTree(tree.inner, true, isOuter);
1466         }
1467 
1468         @Override
1469         public void visitSelect(JCFieldAccess tree) {
1470             if (tree.type.hasTag(CLASS)) {
1471                 visitSelectInternal(tree);
1472 
1473                 // Check that this type is either fully parameterized, or
1474                 // not parameterized at all.
1475                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1476                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1477             }
1478         }
1479 
1480         public void visitSelectInternal(JCFieldAccess tree) {
1481             if (tree.type.tsym.isStatic() &&
1482                 tree.selected.type.isParameterized()) {
1483                 // The enclosing type is not a class, so we are
1484                 // looking at a static member type.  However, the
1485                 // qualifying expression is parameterized.
1486                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1487             } else {
1488                 // otherwise validate the rest of the expression
1489                 tree.selected.accept(this);
1490             }
1491         }
1492 
1493         @Override
1494         public void visitAnnotatedType(JCAnnotatedType tree) {
1495             tree.underlyingType.accept(this);
1496         }
1497 
1498         @Override
1499         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1500             if (that.type.hasTag(TypeTag.VOID)) {
1501                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1502             }
1503             super.visitTypeIdent(that);
1504         }
1505 
1506         /** Default visitor method: do nothing.
1507          */
1508         @Override
1509         public void visitTree(JCTree tree) {
1510         }
1511 
1512         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1513             if (tree != null) {
1514                 boolean prevCheckRaw = this.checkRaw;
1515                 this.checkRaw = checkRaw;
1516                 this.isOuter = isOuter;
1517 
1518                 try {
1519                     tree.accept(this);
1520                     if (checkRaw)
1521                         checkRaw(tree, env);
1522                 } catch (CompletionFailure ex) {
1523                     completionError(tree.pos(), ex);
1524                 } finally {
1525                     this.checkRaw = prevCheckRaw;
1526                 }
1527             }
1528         }
1529 
1530         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1531             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1532                 validateTree(l.head, checkRaw, isOuter);
1533         }
1534     }
1535 
1536     void checkRaw(JCTree tree, Env<AttrContext> env) {
1537         if (tree.type.hasTag(CLASS) &&
1538             !TreeInfo.isDiamond(tree) &&
1539             !withinAnonConstr(env) &&
1540             tree.type.isRaw()) {
1541             lint.logIfEnabled(tree.pos(), LintWarnings.RawClassUse(tree.type, tree.type.tsym.type));
1542         }
1543     }
1544     //where
1545         private boolean withinAnonConstr(Env<AttrContext> env) {
1546             return env.enclClass.name.isEmpty() &&
1547                     env.enclMethod != null && env.enclMethod.name == names.init;
1548         }
1549 
1550 /* *************************************************************************
1551  * Exception checking
1552  **************************************************************************/
1553 
1554     /* The following methods treat classes as sets that contain
1555      * the class itself and all their subclasses
1556      */
1557 
1558     /** Is given type a subtype of some of the types in given list?
1559      */
1560     boolean subset(Type t, List<Type> ts) {
1561         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1562             if (types.isSubtype(t, l.head)) return true;
1563         return false;
1564     }
1565 
1566     /** Is given type a subtype or supertype of
1567      *  some of the types in given list?
1568      */
1569     boolean intersects(Type t, List<Type> ts) {
1570         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1571             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1572         return false;
1573     }
1574 
1575     /** Add type set to given type list, unless it is a subclass of some class
1576      *  in the list.
1577      */
1578     List<Type> incl(Type t, List<Type> ts) {
1579         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1580     }
1581 
1582     /** Remove type set from type set list.
1583      */
1584     List<Type> excl(Type t, List<Type> ts) {
1585         if (ts.isEmpty()) {
1586             return ts;
1587         } else {
1588             List<Type> ts1 = excl(t, ts.tail);
1589             if (types.isSubtype(ts.head, t)) return ts1;
1590             else if (ts1 == ts.tail) return ts;
1591             else return ts1.prepend(ts.head);
1592         }
1593     }
1594 
1595     /** Form the union of two type set lists.
1596      */
1597     List<Type> union(List<Type> ts1, List<Type> ts2) {
1598         List<Type> ts = ts1;
1599         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1600             ts = incl(l.head, ts);
1601         return ts;
1602     }
1603 
1604     /** Form the difference of two type lists.
1605      */
1606     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1607         List<Type> ts = ts1;
1608         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1609             ts = excl(l.head, ts);
1610         return ts;
1611     }
1612 
1613     /** Form the intersection of two type lists.
1614      */
1615     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1616         List<Type> ts = List.nil();
1617         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1618             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1619         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1620             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1621         return ts;
1622     }
1623 
1624     /** Is exc an exception symbol that need not be declared?
1625      */
1626     boolean isUnchecked(ClassSymbol exc) {
1627         return
1628             exc.kind == ERR ||
1629             exc.isSubClass(syms.errorType.tsym, types) ||
1630             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1631     }
1632 
1633     /** Is exc an exception type that need not be declared?
1634      */
1635     boolean isUnchecked(Type exc) {
1636         return
1637             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1638             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1639             exc.hasTag(BOT);
1640     }
1641 
1642     boolean isChecked(Type exc) {
1643         return !isUnchecked(exc);
1644     }
1645 
1646     /** Same, but handling completion failures.
1647      */
1648     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1649         try {
1650             return isUnchecked(exc);
1651         } catch (CompletionFailure ex) {
1652             completionError(pos, ex);
1653             return true;
1654         }
1655     }
1656 
1657     /** Is exc handled by given exception list?
1658      */
1659     boolean isHandled(Type exc, List<Type> handled) {
1660         return isUnchecked(exc) || subset(exc, handled);
1661     }
1662 
1663     /** Return all exceptions in thrown list that are not in handled list.
1664      *  @param thrown     The list of thrown exceptions.
1665      *  @param handled    The list of handled exceptions.
1666      */
1667     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1668         List<Type> unhandled = List.nil();
1669         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1670             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1671         return unhandled;
1672     }
1673 
1674 /* *************************************************************************
1675  * Overriding/Implementation checking
1676  **************************************************************************/
1677 
1678     /** The level of access protection given by a flag set,
1679      *  where PRIVATE is highest and PUBLIC is lowest.
1680      */
1681     static int protection(long flags) {
1682         switch ((short)(flags & AccessFlags)) {
1683         case PRIVATE: return 3;
1684         case PROTECTED: return 1;
1685         default:
1686         case PUBLIC: return 0;
1687         case 0: return 2;
1688         }
1689     }
1690 
1691     /** A customized "cannot override" error message.
1692      *  @param m      The overriding method.
1693      *  @param other  The overridden method.
1694      *  @return       An internationalized string.
1695      */
1696     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1697         Symbol mloc = m.location();
1698         Symbol oloc = other.location();
1699 
1700         if ((other.owner.flags() & INTERFACE) == 0)
1701             return Fragments.CantOverride(m, mloc, other, oloc);
1702         else if ((m.owner.flags() & INTERFACE) == 0)
1703             return Fragments.CantImplement(m, mloc, other, oloc);
1704         else
1705             return Fragments.ClashesWith(m, mloc, other, oloc);
1706     }
1707 
1708     /** A customized "override" warning message.
1709      *  @param m      The overriding method.
1710      *  @param other  The overridden method.
1711      *  @return       An internationalized string.
1712      */
1713     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1714         Symbol mloc = m.location();
1715         Symbol oloc = other.location();
1716 
1717         if ((other.owner.flags() & INTERFACE) == 0)
1718             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1719         else if ((m.owner.flags() & INTERFACE) == 0)
1720             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1721         else
1722             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1723     }
1724 
1725     /** A customized "override" warning message.
1726      *  @param m      The overriding method.
1727      *  @param other  The overridden method.
1728      *  @return       An internationalized string.
1729      */
1730     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1731         Symbol mloc = m.location();
1732         Symbol oloc = other.location();
1733 
1734         if ((other.owner.flags() & INTERFACE) == 0)
1735             return Fragments.VarargsOverride(m, mloc, other, oloc);
1736         else  if ((m.owner.flags() & INTERFACE) == 0)
1737             return Fragments.VarargsImplement(m, mloc, other, oloc);
1738         else
1739             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1740     }
1741 
1742     /** Check that this method conforms with overridden method 'other'.
1743      *  where `origin' is the class where checking started.
1744      *  Complications:
1745      *  (1) Do not check overriding of synthetic methods
1746      *      (reason: they might be final).
1747      *      todo: check whether this is still necessary.
1748      *  (2) Admit the case where an interface proxy throws fewer exceptions
1749      *      than the method it implements. Augment the proxy methods with the
1750      *      undeclared exceptions in this case.
1751      *  (3) When generics are enabled, admit the case where an interface proxy
1752      *      has a result type
1753      *      extended by the result type of the method it implements.
1754      *      Change the proxies result type to the smaller type in this case.
1755      *
1756      *  @param tree         The tree from which positions
1757      *                      are extracted for errors.
1758      *  @param m            The overriding method.
1759      *  @param other        The overridden method.
1760      *  @param origin       The class of which the overriding method
1761      *                      is a member.
1762      */
1763     void checkOverride(JCTree tree,
1764                        MethodSymbol m,
1765                        MethodSymbol other,
1766                        ClassSymbol origin) {
1767         // Don't check overriding of synthetic methods or by bridge methods.
1768         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1769             return;
1770         }
1771 
1772         // Error if static method overrides instance method (JLS 8.4.8.2).
1773         if ((m.flags() & STATIC) != 0 &&
1774                    (other.flags() & STATIC) == 0) {
1775             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1776                       Errors.OverrideStatic(cannotOverride(m, other)));
1777             m.flags_field |= BAD_OVERRIDE;
1778             return;
1779         }
1780 
1781         // Error if instance method overrides static or final
1782         // method (JLS 8.4.8.1).
1783         if ((other.flags() & FINAL) != 0 ||
1784                  (m.flags() & STATIC) == 0 &&
1785                  (other.flags() & STATIC) != 0) {
1786             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1787                       Errors.OverrideMeth(cannotOverride(m, other),
1788                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1789             m.flags_field |= BAD_OVERRIDE;
1790             return;
1791         }
1792 
1793         if ((m.owner.flags() & ANNOTATION) != 0) {
1794             // handled in validateAnnotationMethod
1795             return;
1796         }
1797 
1798         // Error if overriding method has weaker access (JLS 8.4.8.3).
1799         if (protection(m.flags()) > protection(other.flags())) {
1800             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1801                       (other.flags() & AccessFlags) == 0 ?
1802                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1803                                                           "package") :
1804                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1805                                                           asFlagSet(other.flags() & AccessFlags)));
1806             m.flags_field |= BAD_OVERRIDE;
1807             return;
1808         }
1809 
1810         if (shouldCheckPreview(m, other, origin)) {
1811             checkPreview(TreeInfo.diagnosticPositionFor(m, tree),
1812                          m, origin.type, other);
1813         }
1814 
1815         Type mt = types.memberType(origin.type, m);
1816         Type ot = types.memberType(origin.type, other);
1817         // Error if overriding result type is different
1818         // (or, in the case of generics mode, not a subtype) of
1819         // overridden result type. We have to rename any type parameters
1820         // before comparing types.
1821         List<Type> mtvars = mt.getTypeArguments();
1822         List<Type> otvars = ot.getTypeArguments();
1823         Type mtres = mt.getReturnType();
1824         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1825 
1826         overrideWarner.clear();
1827         boolean resultTypesOK =
1828             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1829         if (!resultTypesOK) {
1830             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1831                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1832                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1833                                         other.location()), mtres, otres));
1834                 m.flags_field |= BAD_OVERRIDE;
1835             } else {
1836                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1837                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1838                 m.flags_field |= BAD_OVERRIDE;
1839             }
1840             return;
1841         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1842             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1843                     LintWarnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1844         }
1845 
1846         // Error if overriding method throws an exception not reported
1847         // by overridden method.
1848         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1849         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1850         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1851         if (unhandledErased.nonEmpty()) {
1852             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1853                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1854             m.flags_field |= BAD_OVERRIDE;
1855             return;
1856         }
1857         else if (unhandledUnerased.nonEmpty()) {
1858             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1859                           LintWarnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1860             return;
1861         }
1862 
1863         // Optional warning if varargs don't agree
1864         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)) {
1865             lint.logIfEnabled(TreeInfo.diagnosticPositionFor(m, tree),
1866                         ((m.flags() & Flags.VARARGS) != 0)
1867                         ? LintWarnings.OverrideVarargsMissing(varargsOverrides(m, other))
1868                         : LintWarnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1869         }
1870 
1871         // Warn if instance method overrides bridge method (compiler spec ??)
1872         if ((other.flags() & BRIDGE) != 0) {
1873             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1874                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1875         }
1876 
1877         // Warn if a deprecated method overridden by a non-deprecated one.
1878         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1879             Lint prevLint = setLint(lint.augment(m));
1880             try {
1881                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1882             } finally {
1883                 setLint(prevLint);
1884             }
1885         }
1886     }
1887     // where
1888         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
1889             if (m.owner != origin ||
1890                 //performance - only do the expensive checks when the overridden method is a Preview API:
1891                 ((other.flags() & PREVIEW_API) == 0 &&
1892                  (other.owner.flags() & PREVIEW_API) == 0)) {
1893                 return false;
1894             }
1895 
1896             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
1897                 if (m != s && m.overrides(s, origin, types, false)) {
1898                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
1899                     //without intermediate overriding methods:
1900                     return s == other;
1901                 }
1902             }
1903 
1904             return false;
1905         }
1906         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1907             // If the method, m, is defined in an interface, then ignore the issue if the method
1908             // is only inherited via a supertype and also implemented in the supertype,
1909             // because in that case, we will rediscover the issue when examining the method
1910             // in the supertype.
1911             // If the method, m, is not defined in an interface, then the only time we need to
1912             // address the issue is when the method is the supertype implementation: any other
1913             // case, we will have dealt with when examining the supertype classes
1914             ClassSymbol mc = m.enclClass();
1915             Type st = types.supertype(origin.type);
1916             if (!st.hasTag(CLASS))
1917                 return true;
1918             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1919 
1920             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1921                 List<Type> intfs = types.interfaces(origin.type);
1922                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1923             }
1924             else
1925                 return (stimpl != m);
1926         }
1927 
1928 
1929     // used to check if there were any unchecked conversions
1930     Warner overrideWarner = new Warner();
1931 
1932     /** Check that a class does not inherit two concrete methods
1933      *  with the same signature.
1934      *  @param pos          Position to be used for error reporting.
1935      *  @param site         The class type to be checked.
1936      */
1937     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1938         Type sup = types.supertype(site);
1939         if (!sup.hasTag(CLASS)) return;
1940 
1941         for (Type t1 = sup;
1942              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1943              t1 = types.supertype(t1)) {
1944             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1945                 if (s1.kind != MTH ||
1946                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1947                     !s1.isInheritedIn(site.tsym, types) ||
1948                     ((MethodSymbol)s1).implementation(site.tsym,
1949                                                       types,
1950                                                       true) != s1)
1951                     continue;
1952                 Type st1 = types.memberType(t1, s1);
1953                 int s1ArgsLength = st1.getParameterTypes().length();
1954                 if (st1 == s1.type) continue;
1955 
1956                 for (Type t2 = sup;
1957                      t2.hasTag(CLASS);
1958                      t2 = types.supertype(t2)) {
1959                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1960                         if (s2 == s1 ||
1961                             s2.kind != MTH ||
1962                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1963                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1964                             !s2.isInheritedIn(site.tsym, types) ||
1965                             ((MethodSymbol)s2).implementation(site.tsym,
1966                                                               types,
1967                                                               true) != s2)
1968                             continue;
1969                         Type st2 = types.memberType(t2, s2);
1970                         if (types.overrideEquivalent(st1, st2))
1971                             log.error(pos,
1972                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
1973                     }
1974                 }
1975             }
1976         }
1977     }
1978 
1979     /** Check that classes (or interfaces) do not each define an abstract
1980      *  method with same name and arguments but incompatible return types.
1981      *  @param pos          Position to be used for error reporting.
1982      *  @param t1           The first argument type.
1983      *  @param t2           The second argument type.
1984      */
1985     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1986                                             Type t1,
1987                                             Type t2,
1988                                             Type site) {
1989         if ((site.tsym.flags() & COMPOUND) != 0) {
1990             // special case for intersections: need to eliminate wildcards in supertypes
1991             t1 = types.capture(t1);
1992             t2 = types.capture(t2);
1993         }
1994         return firstIncompatibility(pos, t1, t2, site) == null;
1995     }
1996 
1997     /** Return the first method which is defined with same args
1998      *  but different return types in two given interfaces, or null if none
1999      *  exists.
2000      *  @param t1     The first type.
2001      *  @param t2     The second type.
2002      *  @param site   The most derived type.
2003      *  @return symbol from t2 that conflicts with one in t1.
2004      */
2005     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2006         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
2007         closure(t1, interfaces1);
2008         Map<TypeSymbol,Type> interfaces2;
2009         if (t1 == t2)
2010             interfaces2 = interfaces1;
2011         else
2012             closure(t2, interfaces1, interfaces2 = new HashMap<>());
2013 
2014         for (Type t3 : interfaces1.values()) {
2015             for (Type t4 : interfaces2.values()) {
2016                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
2017                 if (s != null) return s;
2018             }
2019         }
2020         return null;
2021     }
2022 
2023     /** Compute all the supertypes of t, indexed by type symbol. */
2024     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
2025         if (!t.hasTag(CLASS)) return;
2026         if (typeMap.put(t.tsym, t) == null) {
2027             closure(types.supertype(t), typeMap);
2028             for (Type i : types.interfaces(t))
2029                 closure(i, typeMap);
2030         }
2031     }
2032 
2033     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
2034     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
2035         if (!t.hasTag(CLASS)) return;
2036         if (typesSkip.get(t.tsym) != null) return;
2037         if (typeMap.put(t.tsym, t) == null) {
2038             closure(types.supertype(t), typesSkip, typeMap);
2039             for (Type i : types.interfaces(t))
2040                 closure(i, typesSkip, typeMap);
2041         }
2042     }
2043 
2044     /** Return the first method in t2 that conflicts with a method from t1. */
2045     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2046         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2047             Type st1 = null;
2048             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2049                     (s1.flags() & SYNTHETIC) != 0) continue;
2050             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2051             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2052             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2053                 if (s1 == s2) continue;
2054                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2055                         (s2.flags() & SYNTHETIC) != 0) continue;
2056                 if (st1 == null) st1 = types.memberType(t1, s1);
2057                 Type st2 = types.memberType(t2, s2);
2058                 if (types.overrideEquivalent(st1, st2)) {
2059                     List<Type> tvars1 = st1.getTypeArguments();
2060                     List<Type> tvars2 = st2.getTypeArguments();
2061                     Type rt1 = st1.getReturnType();
2062                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2063                     boolean compat =
2064                         types.isSameType(rt1, rt2) ||
2065                         !rt1.isPrimitiveOrVoid() &&
2066                         !rt2.isPrimitiveOrVoid() &&
2067                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2068                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2069                          checkCommonOverriderIn(s1,s2,site);
2070                     if (!compat) {
2071                         if (types.isSameType(t1, t2)) {
2072                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2073                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2074                         } else {
2075                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2076                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2077                         }
2078                         return s2;
2079                     }
2080                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2081                         !checkCommonOverriderIn(s1, s2, site)) {
2082                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2083                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2084                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2085                     return s2;
2086                 }
2087             }
2088         }
2089         return null;
2090     }
2091     //WHERE
2092     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2093         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2094         Type st1 = types.memberType(site, s1);
2095         Type st2 = types.memberType(site, s2);
2096         closure(site, supertypes);
2097         for (Type t : supertypes.values()) {
2098             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2099                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2100                 Type st3 = types.memberType(site,s3);
2101                 if (types.overrideEquivalent(st3, st1) &&
2102                         types.overrideEquivalent(st3, st2) &&
2103                         types.returnTypeSubstitutable(st3, st1) &&
2104                         types.returnTypeSubstitutable(st3, st2)) {
2105                     return true;
2106                 }
2107             }
2108         }
2109         return false;
2110     }
2111 
2112     /** Check that a given method conforms with any method it overrides.
2113      *  @param tree         The tree from which positions are extracted
2114      *                      for errors.
2115      *  @param m            The overriding method.
2116      */
2117     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2118         ClassSymbol origin = (ClassSymbol)m.owner;
2119         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2120             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2121                 log.error(tree.pos(), Errors.EnumNoFinalize);
2122                 return;
2123             }
2124         }
2125         if (allowRecords && origin.isRecord()) {
2126             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2127             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2128                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2129             if (recordComponent.isPresent()) {
2130                 return;
2131             }
2132         }
2133 
2134         for (Type t = origin.type; t.hasTag(CLASS);
2135              t = types.supertype(t)) {
2136             if (t != origin.type) {
2137                 checkOverride(tree, t, origin, m);
2138             }
2139             for (Type t2 : types.interfaces(t)) {
2140                 checkOverride(tree, t2, origin, m);
2141             }
2142         }
2143 
2144         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2145         // Check if this method must override a super method due to being annotated with @Override
2146         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2147         // be treated "as if as they were annotated" with @Override.
2148         boolean mustOverride = explicitOverride ||
2149                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2150         if (mustOverride && !isOverrider(m)) {
2151             DiagnosticPosition pos = tree.pos();
2152             for (JCAnnotation a : tree.getModifiers().annotations) {
2153                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2154                     pos = a.pos();
2155                     break;
2156                 }
2157             }
2158             log.error(pos,
2159                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2160                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2161         }
2162     }
2163 
2164     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2165         TypeSymbol c = site.tsym;
2166         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2167             if (m.overrides(sym, origin, types, false)) {
2168                 if ((sym.flags() & ABSTRACT) == 0) {
2169                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2170                 }
2171             }
2172         }
2173     }
2174 
2175     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2176             (s.flags() & BAD_OVERRIDE) == 0;
2177 
2178     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2179             ClassSymbol someClass) {
2180         /* At present, annotations cannot possibly have a method that is override
2181          * equivalent with Object.equals(Object) but in any case the condition is
2182          * fine for completeness.
2183          */
2184         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2185             someClass.isInterface() || someClass.isEnum() ||
2186             (someClass.flags() & ANNOTATION) != 0 ||
2187             (someClass.flags() & ABSTRACT) != 0) return;
2188         //anonymous inner classes implementing interfaces need especial treatment
2189         if (someClass.isAnonymous()) {
2190             List<Type> interfaces =  types.interfaces(someClass.type);
2191             if (interfaces != null && !interfaces.isEmpty() &&
2192                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2193         }
2194         checkClassOverrideEqualsAndHash(pos, someClass);
2195     }
2196 
2197     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2198             ClassSymbol someClass) {
2199         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2200             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2201                     .tsym.members().findFirst(names.equals);
2202             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2203                     .tsym.members().findFirst(names.hashCode);
2204             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2205                     someClass, false, equalsHasCodeFilter);
2206             boolean overridesEquals = equalsImpl != null &&
2207                                       equalsImpl.owner == someClass;
2208             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2209                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2210 
2211             if (overridesEquals && !overridesHashCode) {
2212                 log.warning(pos,
2213                             LintWarnings.OverrideEqualsButNotHashcode(someClass));
2214             }
2215         }
2216     }
2217 
2218     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2219         boolean found = false;
2220 
2221         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2222             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2223                 MethodSymbol meth = (MethodSymbol)sym;
2224                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2225                     continue;
2226                 }
2227                 if (meth.params.isEmpty()) {
2228                     found = true;
2229                     break;
2230                 }
2231                 if (meth.params.size() != 1) {
2232                     continue;
2233                 }
2234                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2235                     continue;
2236                 }
2237 
2238                 found = true;
2239                 break;
2240             }
2241         }
2242 
2243         if (!found) {
2244             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2245         }
2246     }
2247 
2248     public void checkModuleName (JCModuleDecl tree) {
2249         Name moduleName = tree.sym.name;
2250         Assert.checkNonNull(moduleName);
2251         if (lint.isEnabled(LintCategory.MODULE)) {
2252             JCExpression qualId = tree.qualId;
2253             while (qualId != null) {
2254                 Name componentName;
2255                 DiagnosticPosition pos;
2256                 switch (qualId.getTag()) {
2257                     case SELECT:
2258                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2259                         componentName = selectNode.name;
2260                         pos = selectNode.pos();
2261                         qualId = selectNode.selected;
2262                         break;
2263                     case IDENT:
2264                         componentName = ((JCIdent) qualId).name;
2265                         pos = qualId.pos();
2266                         qualId = null;
2267                         break;
2268                     default:
2269                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2270                 }
2271                 if (componentName != null) {
2272                     String moduleNameComponentString = componentName.toString();
2273                     int nameLength = moduleNameComponentString.length();
2274                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2275                         log.warning(pos, LintWarnings.PoorChoiceForModuleName(componentName));
2276                     }
2277                 }
2278             }
2279         }
2280     }
2281 
2282     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2283         ClashFilter cf = new ClashFilter(origin.type);
2284         return (cf.test(s1) &&
2285                 cf.test(s2) &&
2286                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2287     }
2288 
2289 
2290     /** Check that all abstract members of given class have definitions.
2291      *  @param pos          Position to be used for error reporting.
2292      *  @param c            The class.
2293      */
2294     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2295         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2296         if (undef != null) {
2297             MethodSymbol undef1 =
2298                 new MethodSymbol(undef.flags(), undef.name,
2299                                  types.memberType(c.type, undef), undef.owner);
2300             log.error(pos,
2301                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2302         }
2303     }
2304 
2305     void checkNonCyclicDecl(JCClassDecl tree) {
2306         CycleChecker cc = new CycleChecker();
2307         cc.scan(tree);
2308         if (!cc.errorFound && !cc.partialCheck) {
2309             tree.sym.flags_field |= ACYCLIC;
2310         }
2311     }
2312 
2313     class CycleChecker extends TreeScanner {
2314 
2315         Set<Symbol> seenClasses = new HashSet<>();
2316         boolean errorFound = false;
2317         boolean partialCheck = false;
2318 
2319         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2320             if (sym != null && sym.kind == TYP) {
2321                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2322                 if (classEnv != null) {
2323                     DiagnosticSource prevSource = log.currentSource();
2324                     try {
2325                         log.useSource(classEnv.toplevel.sourcefile);
2326                         scan(classEnv.tree);
2327                     }
2328                     finally {
2329                         log.useSource(prevSource.getFile());
2330                     }
2331                 } else if (sym.kind == TYP) {
2332                     checkClass(pos, sym, List.nil());
2333                 }
2334             } else if (sym == null || sym.kind != PCK) {
2335                 //not completed yet
2336                 partialCheck = true;
2337             }
2338         }
2339 
2340         @Override
2341         public void visitSelect(JCFieldAccess tree) {
2342             super.visitSelect(tree);
2343             checkSymbol(tree.pos(), tree.sym);
2344         }
2345 
2346         @Override
2347         public void visitIdent(JCIdent tree) {
2348             checkSymbol(tree.pos(), tree.sym);
2349         }
2350 
2351         @Override
2352         public void visitTypeApply(JCTypeApply tree) {
2353             scan(tree.clazz);
2354         }
2355 
2356         @Override
2357         public void visitTypeArray(JCArrayTypeTree tree) {
2358             scan(tree.elemtype);
2359         }
2360 
2361         @Override
2362         public void visitClassDef(JCClassDecl tree) {
2363             List<JCTree> supertypes = List.nil();
2364             if (tree.getExtendsClause() != null) {
2365                 supertypes = supertypes.prepend(tree.getExtendsClause());
2366             }
2367             if (tree.getImplementsClause() != null) {
2368                 for (JCTree intf : tree.getImplementsClause()) {
2369                     supertypes = supertypes.prepend(intf);
2370                 }
2371             }
2372             checkClass(tree.pos(), tree.sym, supertypes);
2373         }
2374 
2375         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2376             if ((c.flags_field & ACYCLIC) != 0)
2377                 return;
2378             if (seenClasses.contains(c)) {
2379                 errorFound = true;
2380                 log.error(pos, Errors.CyclicInheritance(c));
2381                 seenClasses.stream()
2382                   .filter(s -> !s.type.isErroneous())
2383                   .filter(ClassSymbol.class::isInstance)
2384                   .map(ClassSymbol.class::cast)
2385                   .forEach(Check.this::handleCyclic);
2386             } else if (!c.type.isErroneous()) {
2387                 try {
2388                     seenClasses.add(c);
2389                     if (c.type.hasTag(CLASS)) {
2390                         if (supertypes.nonEmpty()) {
2391                             scan(supertypes);
2392                         }
2393                         else {
2394                             ClassType ct = (ClassType)c.type;
2395                             if (ct.supertype_field == null ||
2396                                     ct.interfaces_field == null) {
2397                                 //not completed yet
2398                                 partialCheck = true;
2399                                 return;
2400                             }
2401                             checkSymbol(pos, ct.supertype_field.tsym);
2402                             for (Type intf : ct.interfaces_field) {
2403                                 checkSymbol(pos, intf.tsym);
2404                             }
2405                         }
2406                         if (c.owner.kind == TYP) {
2407                             checkSymbol(pos, c.owner);
2408                         }
2409                     }
2410                 } finally {
2411                     seenClasses.remove(c);
2412                 }
2413             }
2414         }
2415     }
2416 
2417     /** Check for cyclic references. Issue an error if the
2418      *  symbol of the type referred to has a LOCKED flag set.
2419      *
2420      *  @param pos      Position to be used for error reporting.
2421      *  @param t        The type referred to.
2422      */
2423     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2424         checkNonCyclicInternal(pos, t);
2425     }
2426 
2427 
2428     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2429         checkNonCyclic1(pos, t, List.nil());
2430     }
2431 
2432     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2433         final TypeVar tv;
2434         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2435             return;
2436         if (seen.contains(t)) {
2437             tv = (TypeVar)t;
2438             tv.setUpperBound(types.createErrorType(t));
2439             log.error(pos, Errors.CyclicInheritance(t));
2440         } else if (t.hasTag(TYPEVAR)) {
2441             tv = (TypeVar)t;
2442             seen = seen.prepend(tv);
2443             for (Type b : types.getBounds(tv))
2444                 checkNonCyclic1(pos, b, seen);
2445         }
2446     }
2447 
2448     /** Check for cyclic references. Issue an error if the
2449      *  symbol of the type referred to has a LOCKED flag set.
2450      *
2451      *  @param pos      Position to be used for error reporting.
2452      *  @param t        The type referred to.
2453      *  @return        True if the check completed on all attributed classes
2454      */
2455     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2456         boolean complete = true; // was the check complete?
2457         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2458         Symbol c = t.tsym;
2459         if ((c.flags_field & ACYCLIC) != 0) return true;
2460 
2461         if ((c.flags_field & LOCKED) != 0) {
2462             log.error(pos, Errors.CyclicInheritance(c));
2463             handleCyclic((ClassSymbol)c);
2464         } else if (!c.type.isErroneous()) {
2465             try {
2466                 c.flags_field |= LOCKED;
2467                 if (c.type.hasTag(CLASS)) {
2468                     ClassType clazz = (ClassType)c.type;
2469                     if (clazz.interfaces_field != null)
2470                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2471                             complete &= checkNonCyclicInternal(pos, l.head);
2472                     if (clazz.supertype_field != null) {
2473                         Type st = clazz.supertype_field;
2474                         if (st != null && st.hasTag(CLASS))
2475                             complete &= checkNonCyclicInternal(pos, st);
2476                     }
2477                     if (c.owner.kind == TYP)
2478                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2479                 }
2480             } finally {
2481                 c.flags_field &= ~LOCKED;
2482             }
2483         }
2484         if (complete)
2485             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2486         if (complete) c.flags_field |= ACYCLIC;
2487         return complete;
2488     }
2489 
2490     /** Handle finding an inheritance cycle on a class by setting
2491      *  the class' and its supertypes' types to the error type.
2492      **/
2493     private void handleCyclic(ClassSymbol c) {
2494         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2495             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2496         Type st = types.supertype(c.type);
2497         if (st.hasTag(CLASS))
2498             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2499         c.type = types.createErrorType(c, c.type);
2500         c.flags_field |= ACYCLIC;
2501     }
2502 
2503     /** Check that all methods which implement some
2504      *  method conform to the method they implement.
2505      *  @param tree         The class definition whose members are checked.
2506      */
2507     void checkImplementations(JCClassDecl tree) {
2508         checkImplementations(tree, tree.sym, tree.sym);
2509     }
2510     //where
2511         /** Check that all methods which implement some
2512          *  method in `ic' conform to the method they implement.
2513          */
2514         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2515             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2516                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2517                 if ((lc.flags() & ABSTRACT) != 0) {
2518                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2519                         if (sym.kind == MTH &&
2520                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2521                             MethodSymbol absmeth = (MethodSymbol)sym;
2522                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2523                             if (implmeth != null && implmeth != absmeth &&
2524                                 (implmeth.owner.flags() & INTERFACE) ==
2525                                 (origin.flags() & INTERFACE)) {
2526                                 // don't check if implmeth is in a class, yet
2527                                 // origin is an interface. This case arises only
2528                                 // if implmeth is declared in Object. The reason is
2529                                 // that interfaces really don't inherit from
2530                                 // Object it's just that the compiler represents
2531                                 // things that way.
2532                                 checkOverride(tree, implmeth, absmeth, origin);
2533                             }
2534                         }
2535                     }
2536                 }
2537             }
2538         }
2539 
2540     /** Check that all abstract methods implemented by a class are
2541      *  mutually compatible.
2542      *  @param pos          Position to be used for error reporting.
2543      *  @param c            The class whose interfaces are checked.
2544      */
2545     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2546         List<Type> supertypes = types.interfaces(c);
2547         Type supertype = types.supertype(c);
2548         if (supertype.hasTag(CLASS) &&
2549             (supertype.tsym.flags() & ABSTRACT) != 0)
2550             supertypes = supertypes.prepend(supertype);
2551         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2552             if (!l.head.getTypeArguments().isEmpty() &&
2553                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2554                 return;
2555             for (List<Type> m = supertypes; m != l; m = m.tail)
2556                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2557                     return;
2558         }
2559         checkCompatibleConcretes(pos, c);
2560     }
2561 
2562     /** Check that all non-override equivalent methods accessible from 'site'
2563      *  are mutually compatible (JLS 8.4.8/9.4.1).
2564      *
2565      *  @param pos  Position to be used for error reporting.
2566      *  @param site The class whose methods are checked.
2567      *  @param sym  The method symbol to be checked.
2568      */
2569     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2570          ClashFilter cf = new ClashFilter(site);
2571         //for each method m1 that is overridden (directly or indirectly)
2572         //by method 'sym' in 'site'...
2573 
2574         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2575         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2576         for (Symbol m1 : symbolsByName) {
2577             if (!sym.overrides(m1, site.tsym, types, false)) {
2578                 continue;
2579             }
2580 
2581             //...check each method m2 that is a member of 'site'
2582             for (Symbol m2 : symbolsByName) {
2583                 if (m2 == m1) continue;
2584                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2585                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2586                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2587                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2588                     sym.flags_field |= CLASH;
2589                     if (m1 == sym) {
2590                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2591                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2592                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2593                     } else {
2594                         ClassType ct = (ClassType)site;
2595                         String kind = ct.isInterface() ? "interface" : "class";
2596                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2597                             kind,
2598                             ct.tsym.name,
2599                             m1.name,
2600                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2601                             m1.location(),
2602                             m2.name,
2603                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2604                             m2.location()));
2605                     }
2606                     return;
2607                 }
2608             }
2609         }
2610     }
2611 
2612     /** Check that all static methods accessible from 'site' are
2613      *  mutually compatible (JLS 8.4.8).
2614      *
2615      *  @param pos  Position to be used for error reporting.
2616      *  @param site The class whose methods are checked.
2617      *  @param sym  The method symbol to be checked.
2618      */
2619     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2620         ClashFilter cf = new ClashFilter(site);
2621         //for each method m1 that is a member of 'site'...
2622         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2623             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2624             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2625             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2626                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2627                     log.error(pos,
2628                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2629                     return;
2630                 }
2631             }
2632          }
2633      }
2634 
2635      //where
2636      private class ClashFilter implements Predicate<Symbol> {
2637 
2638          Type site;
2639 
2640          ClashFilter(Type site) {
2641              this.site = site;
2642          }
2643 
2644          boolean shouldSkip(Symbol s) {
2645              return (s.flags() & CLASH) != 0 &&
2646                 s.owner == site.tsym;
2647          }
2648 
2649          @Override
2650          public boolean test(Symbol s) {
2651              return s.kind == MTH &&
2652                      (s.flags() & SYNTHETIC) == 0 &&
2653                      !shouldSkip(s) &&
2654                      s.isInheritedIn(site.tsym, types) &&
2655                      !s.isConstructor();
2656          }
2657      }
2658 
2659     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2660         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2661         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2662             Assert.check(m.kind == MTH);
2663             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2664             if (prov.size() > 1) {
2665                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2666                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2667                 for (MethodSymbol provSym : prov) {
2668                     if ((provSym.flags() & DEFAULT) != 0) {
2669                         defaults = defaults.append(provSym);
2670                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2671                         abstracts = abstracts.append(provSym);
2672                     }
2673                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2674                         //strong semantics - issue an error if two sibling interfaces
2675                         //have two override-equivalent defaults - or if one is abstract
2676                         //and the other is default
2677                         Fragment diagKey;
2678                         Symbol s1 = defaults.first();
2679                         Symbol s2;
2680                         if (defaults.size() > 1) {
2681                             s2 = defaults.toList().tail.head;
2682                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2683                                     m.name, types.memberType(site, m).getParameterTypes(),
2684                                     s1.location(), s2.location());
2685 
2686                         } else {
2687                             s2 = abstracts.first();
2688                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2689                                     m.name, types.memberType(site, m).getParameterTypes(),
2690                                     s1.location(), s2.location());
2691                         }
2692                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2693                         break;
2694                     }
2695                 }
2696             }
2697         }
2698     }
2699 
2700     //where
2701      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2702 
2703          Type site;
2704 
2705          DefaultMethodClashFilter(Type site) {
2706              this.site = site;
2707          }
2708 
2709          @Override
2710          public boolean test(Symbol s) {
2711              return s.kind == MTH &&
2712                      (s.flags() & DEFAULT) != 0 &&
2713                      s.isInheritedIn(site.tsym, types) &&
2714                      !s.isConstructor();
2715          }
2716      }
2717 
2718     /** Report warnings for potentially ambiguous method declarations in the given site. */
2719     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2720 
2721         // Skip if warning not enabled
2722         if (!lint.isEnabled(LintCategory.OVERLOADS))
2723             return;
2724 
2725         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2726         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2727             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2728 
2729         // Build the predicate that determines if site is responsible for an ambiguity
2730         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2731 
2732         // Now remove overridden methods from each group, leaving only site's actual members
2733         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2734 
2735         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2736         methodGroups.forEach(list -> list.removeIf(
2737             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2738 
2739         // Warn about ambiguous overload method pairs for which site is responsible
2740         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2741 
2742             // See if this is an ambiguous overload for which "site" is responsible
2743             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2744                 return 0;
2745 
2746             // Locate the warning at one of the methods, if possible
2747             DiagnosticPosition pos =
2748                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2749                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2750                 tree.pos();
2751 
2752             // Log the warning
2753             log.warning(pos,
2754                 LintWarnings.PotentiallyAmbiguousOverload(
2755                     m1.asMemberOf(site, types), m1.location(),
2756                     m2.asMemberOf(site, types), m2.location()));
2757 
2758             // Don't warn again for either of these two methods
2759             return FIRST | SECOND;
2760         }));
2761     }
2762 
2763     /** Build a predicate that determines, given two methods that are members of the given class,
2764      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2765      *
2766      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2767      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2768      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2769      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2770      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2771      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2772      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2773      *  As an optimization, we first check if either method is declared in C and does not override
2774      *  any other methods; in this case the class is definitely responsible.
2775      */
2776     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2777         List<? extends Collection<MethodSymbol>> methodGroups) {
2778 
2779         // Define the "overrides" predicate
2780         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2781 
2782         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2783         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2784         methodGroups.forEach(list -> {
2785             for (MethodSymbol m : list) {
2786 
2787                 // Skip methods not declared in site
2788                 if (m.owner != site.tsym)
2789                     continue;
2790 
2791                 // Gather all supertype methods overridden by m, directly or indirectly
2792                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2793                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2794                   .collect(Collectors.toCollection(ArrayList::new));
2795 
2796                 // Eliminate non-direct overrides
2797                 removePreempted(overriddenMethods, overrides);
2798 
2799                 // Add to map
2800                 overriddenMethodsMap.put(m, overriddenMethods);
2801             }
2802         });
2803 
2804         // Build the predicate
2805         return (m1, m2) -> {
2806 
2807             // Get corresponding supertype methods (if declared in site)
2808             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2809             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2810 
2811             // Quick check for the case where a method was added by site itself
2812             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2813                 return true;
2814             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2815                 return true;
2816 
2817             // Get each method's corresponding method(s) from supertypes of site
2818             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2819               overriddenMethods1 : Collections.singletonList(m1);
2820             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2821               overriddenMethods2 : Collections.singletonList(m2);
2822 
2823             // See if we can blame some direct supertype instead
2824             return types.directSupertypes(site).stream()
2825               .filter(stype -> stype != syms.objectType)
2826               .map(stype -> stype.tsym.type)                // view supertype in its original form
2827               .noneMatch(stype -> {
2828                 for (MethodSymbol sm1 : supertypeMethods1) {
2829                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2830                         continue;
2831                     for (MethodSymbol sm2 : supertypeMethods2) {
2832                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2833                             continue;
2834                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2835                             return true;
2836                     }
2837                 }
2838                 return false;
2839             });
2840         };
2841     }
2842 
2843     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2844      *  after applying the given filter.
2845      */
2846     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2847             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2848         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2849         return StreamSupport.stream(symbols.spliterator(), false)
2850           .map(MethodSymbol.class::cast)
2851           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2852           .entrySet()
2853           .stream()
2854           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2855           .map(Map.Entry::getValue)
2856           .collect(List.collector());
2857     }
2858 
2859     /** Compare elements in a list pair-wise in order to remove some of them.
2860      *  @param list mutable list of items
2861      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2862      */
2863     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2864         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2865             T item1 = list.get(index1);
2866             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2867                 T item2 = list.get(index2);
2868                 int flags = comparer.applyAsInt(item1, item2);
2869                 if ((flags & SECOND) != 0)
2870                     list.remove(index2--);          // remove item2
2871                 if ((flags & FIRST) != 0) {
2872                     list.remove(index1--);          // remove item1
2873                     break;
2874                 }
2875             }
2876         }
2877     }
2878 
2879     /** Remove elements in a list that are preempted by some other element in the list.
2880      *  @param list mutable list of items
2881      *  @param preempts decides if one item preempts another, causing the second one to be removed
2882      */
2883     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
2884         compareAndRemove(list, (item1, item2) -> {
2885             int flags = 0;
2886             if (preempts.test(item1, item2))
2887                 flags |= SECOND;
2888             if (preempts.test(item2, item1))
2889                 flags |= FIRST;
2890             return flags;
2891         });
2892     }
2893 
2894     /** Filters method candidates for the "potentially ambiguous method" check */
2895     class PotentiallyAmbiguousFilter extends ClashFilter {
2896 
2897         PotentiallyAmbiguousFilter(Type site) {
2898             super(site);
2899         }
2900 
2901         @Override
2902         boolean shouldSkip(Symbol s) {
2903             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
2904         }
2905     }
2906 
2907     /**
2908       * Report warnings for potentially ambiguous method declarations. Two declarations
2909       * are potentially ambiguous if they feature two unrelated functional interface
2910       * in same argument position (in which case, a call site passing an implicit
2911       * lambda would be ambiguous). This assumes they already have the same name.
2912       */
2913     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
2914         Assert.check(msym1.name == msym2.name);
2915         if (msym1 == msym2)
2916             return false;
2917         Type mt1 = types.memberType(site, msym1);
2918         Type mt2 = types.memberType(site, msym2);
2919         //if both generic methods, adjust type variables
2920         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2921                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2922             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2923         }
2924         //expand varargs methods if needed
2925         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2926         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2927         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2928         //if arities don't match, exit
2929         if (args1.length() != args2.length())
2930             return false;
2931         boolean potentiallyAmbiguous = false;
2932         while (args1.nonEmpty() && args2.nonEmpty()) {
2933             Type s = args1.head;
2934             Type t = args2.head;
2935             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2936                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2937                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2938                         types.findDescriptorType(s).getParameterTypes().length() ==
2939                         types.findDescriptorType(t).getParameterTypes().length()) {
2940                     potentiallyAmbiguous = true;
2941                 } else {
2942                     return false;
2943                 }
2944             }
2945             args1 = args1.tail;
2946             args2 = args2.tail;
2947         }
2948         return potentiallyAmbiguous;
2949     }
2950 
2951     // Apply special flag "-XDwarnOnAccessToMembers" which turns on just this particular warning for all types of access
2952     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2953         final Lint prevLint = setLint(warnOnAnyAccessToMembers ? lint.enable(LintCategory.SERIAL) : lint);
2954         try {
2955             if (warnOnAnyAccessToMembers || isLambda)
2956                 checkAccessFromSerializableElementInner(tree, isLambda);
2957         } finally {
2958             setLint(prevLint);
2959         }
2960     }
2961 
2962     private void checkAccessFromSerializableElementInner(final JCTree tree, boolean isLambda) {
2963         if (lint.isEnabled(LintCategory.SERIAL)) {
2964             Symbol sym = TreeInfo.symbol(tree);
2965             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2966                 return;
2967             }
2968 
2969             if (sym.kind == VAR) {
2970                 if ((sym.flags() & PARAMETER) != 0 ||
2971                     sym.isDirectlyOrIndirectlyLocal() ||
2972                     sym.name == names._this ||
2973                     sym.name == names._super) {
2974                     return;
2975                 }
2976             }
2977 
2978             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2979                 isEffectivelyNonPublic(sym)) {
2980                 if (isLambda) {
2981                     if (belongsToRestrictedPackage(sym)) {
2982                         log.warning(tree.pos(),
2983                                     LintWarnings.AccessToMemberFromSerializableLambda(sym));
2984                     }
2985                 } else {
2986                     log.warning(tree.pos(),
2987                                 LintWarnings.AccessToMemberFromSerializableElement(sym));
2988                 }
2989             }
2990         }
2991     }
2992 
2993     private boolean isEffectivelyNonPublic(Symbol sym) {
2994         if (sym.packge() == syms.rootPackage) {
2995             return false;
2996         }
2997 
2998         while (sym.kind != PCK) {
2999             if ((sym.flags() & PUBLIC) == 0) {
3000                 return true;
3001             }
3002             sym = sym.owner;
3003         }
3004         return false;
3005     }
3006 
3007     private boolean belongsToRestrictedPackage(Symbol sym) {
3008         String fullName = sym.packge().fullname.toString();
3009         return fullName.startsWith("java.") ||
3010                 fullName.startsWith("javax.") ||
3011                 fullName.startsWith("sun.") ||
3012                 fullName.contains(".internal.");
3013     }
3014 
3015     /** Check that class c does not implement directly or indirectly
3016      *  the same parameterized interface with two different argument lists.
3017      *  @param pos          Position to be used for error reporting.
3018      *  @param type         The type whose interfaces are checked.
3019      */
3020     void checkClassBounds(DiagnosticPosition pos, Type type) {
3021         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
3022     }
3023 //where
3024         /** Enter all interfaces of type `type' into the hash table `seensofar'
3025          *  with their class symbol as key and their type as value. Make
3026          *  sure no class is entered with two different types.
3027          */
3028         void checkClassBounds(DiagnosticPosition pos,
3029                               Map<TypeSymbol,Type> seensofar,
3030                               Type type) {
3031             if (type.isErroneous()) return;
3032             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
3033                 Type it = l.head;
3034                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
3035 
3036                 Type oldit = seensofar.put(it.tsym, it);
3037                 if (oldit != null) {
3038                     List<Type> oldparams = oldit.allparams();
3039                     List<Type> newparams = it.allparams();
3040                     if (!types.containsTypeEquivalent(oldparams, newparams))
3041                         log.error(pos,
3042                                   Errors.CantInheritDiffArg(it.tsym,
3043                                                             Type.toString(oldparams),
3044                                                             Type.toString(newparams)));
3045                 }
3046                 checkClassBounds(pos, seensofar, it);
3047             }
3048             Type st = types.supertype(type);
3049             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
3050             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
3051         }
3052 
3053     /** Enter interface into into set.
3054      *  If it existed already, issue a "repeated interface" error.
3055      */
3056     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
3057         if (its.contains(it.tsym))
3058             log.error(pos, Errors.RepeatedInterface);
3059         else {
3060             its.add(it.tsym);
3061         }
3062     }
3063 
3064 /* *************************************************************************
3065  * Check annotations
3066  **************************************************************************/
3067 
3068     /**
3069      * Recursively validate annotations values
3070      */
3071     void validateAnnotationTree(JCTree tree) {
3072         class AnnotationValidator extends TreeScanner {
3073             @Override
3074             public void visitAnnotation(JCAnnotation tree) {
3075                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
3076                     super.visitAnnotation(tree);
3077                     validateAnnotation(tree);
3078                 }
3079             }
3080         }
3081         tree.accept(new AnnotationValidator());
3082     }
3083 
3084     /**
3085      *  {@literal
3086      *  Annotation types are restricted to primitives, String, an
3087      *  enum, an annotation, Class, Class<?>, Class<? extends
3088      *  Anything>, arrays of the preceding.
3089      *  }
3090      */
3091     void validateAnnotationType(JCTree restype) {
3092         // restype may be null if an error occurred, so don't bother validating it
3093         if (restype != null) {
3094             validateAnnotationType(restype.pos(), restype.type);
3095         }
3096     }
3097 
3098     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3099         if (type.isPrimitive()) return;
3100         if (types.isSameType(type, syms.stringType)) return;
3101         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3102         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3103         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3104         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3105             validateAnnotationType(pos, types.elemtype(type));
3106             return;
3107         }
3108         log.error(pos, Errors.InvalidAnnotationMemberType);
3109     }
3110 
3111     /**
3112      * "It is also a compile-time error if any method declared in an
3113      * annotation type has a signature that is override-equivalent to
3114      * that of any public or protected method declared in class Object
3115      * or in the interface annotation.Annotation."
3116      *
3117      * @jls 9.6 Annotation Types
3118      */
3119     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3120         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3121             Scope s = sup.tsym.members();
3122             for (Symbol sym : s.getSymbolsByName(m.name)) {
3123                 if (sym.kind == MTH &&
3124                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3125                     types.overrideEquivalent(m.type, sym.type))
3126                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3127             }
3128         }
3129     }
3130 
3131     /** Check the annotations of a symbol.
3132      */
3133     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3134         for (JCAnnotation a : annotations)
3135             validateAnnotation(a, declarationTree, s);
3136     }
3137 
3138     /** Check the type annotations.
3139      */
3140     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3141         for (JCAnnotation a : annotations)
3142             validateTypeAnnotation(a, s, isTypeParameter);
3143     }
3144 
3145     /** Check an annotation of a symbol.
3146      */
3147     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3148         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3149          *  this can impact in particular records for which annotations are forcibly propagated.
3150          */
3151         validateAnnotationTree(a);
3152         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3153 
3154         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3155                 declarationTree.hasTag(VARDEF) &&
3156                 s.owner.kind == TYP;
3157 
3158         if (isRecordField) {
3159             // first we need to check if the annotation is applicable to records
3160             Name[] targets = getTargetNames(a);
3161             boolean appliesToRecords = false;
3162             for (Name target : targets) {
3163                 appliesToRecords =
3164                                 target == names.FIELD ||
3165                                 target == names.PARAMETER ||
3166                                 target == names.METHOD ||
3167                                 target == names.TYPE_USE ||
3168                                 target == names.RECORD_COMPONENT;
3169                 if (appliesToRecords) {
3170                     break;
3171                 }
3172             }
3173             if (!appliesToRecords) {
3174                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3175             } else {
3176                 /* lets now find the annotations in the field that are targeted to record components and append them to
3177                  * the corresponding record component
3178                  */
3179                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3180                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3181                 SymbolMetadata metadata = rc.getMetadata();
3182                 if (metadata == null || metadata.isEmpty()) {
3183                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3184                      * to the record component declaration
3185                      */
3186                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3187                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3188                     ).collect(List.collector()));
3189 
3190                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3191                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3192                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3193                             if (rcAnnot.pos == fieldAnnot.pos) {
3194                                 rcAnnot.setType(fieldAnnot.type);
3195                                 break;
3196                             }
3197                         }
3198                     }
3199 
3200                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3201                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3202                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3203                      * annotations in the SE5 annotation location.
3204                      *
3205                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3206                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3207                      */
3208                 }
3209             }
3210         }
3211 
3212         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3213          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3214          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3215          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3216          * to all the possible locations.
3217          *
3218          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3219          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3220          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3221          * was both a field and a record component.
3222          *
3223          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3224          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3225          * be see by annotation processors.
3226          *
3227          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3228          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3229          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3230          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3231          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3232          *
3233          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3234          * further inspection by annotation processors.
3235          *
3236          * For example:
3237          *
3238          *     import java.lang.annotation.*;
3239          *
3240          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3241          *     @Retention(RetentionPolicy.RUNTIME)
3242          *     @interface Anno { }
3243          *
3244          *     record R(@Anno String s) {}
3245          *
3246          * at this point we will have for the case of the generated field:
3247          *   - @Anno in the modifier
3248          *   - @Anno as a type annotation
3249          *   - @Anno as a declaration annotation
3250          *
3251          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3252          * declaration annotation because the field was being treated both as a field and as a record component
3253          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3254          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3255          * is applicable as a type annotation to the type of the field.
3256          */
3257 
3258         if (a.type.tsym.isAnnotationType()) {
3259             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3260             if (!applicableTargetsOp.isEmpty()) {
3261                 Set<Name> applicableTargets = applicableTargetsOp.get();
3262                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3263                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3264                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3265                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3266 
3267                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3268                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3269                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3270                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3271                              * that are not applicable to the given record member
3272                              */
3273                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3274                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3275                              * it could be a type annotation
3276                              */
3277                         if (modifiers != null && applicableTargets.isEmpty()) {
3278                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3279                             for (JCAnnotation anno : modifiers.annotations) {
3280                                 if (anno != a) {
3281                                     newAnnotations.add(anno);
3282                                 }
3283                             }
3284                             modifiers.annotations = newAnnotations.toList();
3285                         }
3286                         // now lets remove it from the symbol
3287                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3288                     } else {
3289                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3290                     }
3291                 }
3292                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3293                  * then this is an error as we know that no compiler generated accessor will be a varargs
3294                  * method, better to fail asap
3295                  */
3296                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3297                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3298                 }
3299             }
3300         }
3301 
3302         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3303             if (s.kind != TYP) {
3304                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3305             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3306                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3307             }
3308         }
3309     }
3310 
3311     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3312         Assert.checkNonNull(a.type);
3313         // we just want to validate that the anotation doesn't have any wrong target
3314         if (s != null) getApplicableTargets(a, s);
3315         validateAnnotationTree(a);
3316 
3317         if (a.hasTag(TYPE_ANNOTATION) &&
3318                 !a.annotationType.type.isErroneous() &&
3319                 !isTypeAnnotation(a, isTypeParameter)) {
3320             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3321         }
3322     }
3323 
3324     /**
3325      * Validate the proposed container 'repeatable' on the
3326      * annotation type symbol 's'. Report errors at position
3327      * 'pos'.
3328      *
3329      * @param s The (annotation)type declaration annotated with a @Repeatable
3330      * @param repeatable the @Repeatable on 's'
3331      * @param pos where to report errors
3332      */
3333     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3334         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3335 
3336         Type t = null;
3337         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3338         if (!l.isEmpty()) {
3339             Assert.check(l.head.fst.name == names.value);
3340             if (l.head.snd instanceof Attribute.Class) {
3341                 t = ((Attribute.Class)l.head.snd).getValue();
3342             }
3343         }
3344 
3345         if (t == null) {
3346             // errors should already have been reported during Annotate
3347             return;
3348         }
3349 
3350         validateValue(t.tsym, s, pos);
3351         validateRetention(t.tsym, s, pos);
3352         validateDocumented(t.tsym, s, pos);
3353         validateInherited(t.tsym, s, pos);
3354         validateTarget(t.tsym, s, pos);
3355         validateDefault(t.tsym, pos);
3356     }
3357 
3358     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3359         Symbol sym = container.members().findFirst(names.value);
3360         if (sym != null && sym.kind == MTH) {
3361             MethodSymbol m = (MethodSymbol) sym;
3362             Type ret = m.getReturnType();
3363             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3364                 log.error(pos,
3365                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3366                                                                         ret,
3367                                                                         types.makeArrayType(contained.type)));
3368             }
3369         } else {
3370             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3371         }
3372     }
3373 
3374     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3375         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3376         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3377 
3378         boolean error = false;
3379         switch (containedRetention) {
3380         case RUNTIME:
3381             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3382                 error = true;
3383             }
3384             break;
3385         case CLASS:
3386             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3387                 error = true;
3388             }
3389         }
3390         if (error ) {
3391             log.error(pos,
3392                       Errors.InvalidRepeatableAnnotationRetention(container,
3393                                                                   containerRetention.name(),
3394                                                                   contained,
3395                                                                   containedRetention.name()));
3396         }
3397     }
3398 
3399     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3400         if (contained.attribute(syms.documentedType.tsym) != null) {
3401             if (container.attribute(syms.documentedType.tsym) == null) {
3402                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3403             }
3404         }
3405     }
3406 
3407     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3408         if (contained.attribute(syms.inheritedType.tsym) != null) {
3409             if (container.attribute(syms.inheritedType.tsym) == null) {
3410                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3411             }
3412         }
3413     }
3414 
3415     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3416         // The set of targets the container is applicable to must be a subset
3417         // (with respect to annotation target semantics) of the set of targets
3418         // the contained is applicable to. The target sets may be implicit or
3419         // explicit.
3420 
3421         Set<Name> containerTargets;
3422         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3423         if (containerTarget == null) {
3424             containerTargets = getDefaultTargetSet();
3425         } else {
3426             containerTargets = new HashSet<>();
3427             for (Attribute app : containerTarget.values) {
3428                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3429                     continue; // recovery
3430                 }
3431                 containerTargets.add(attributeEnum.value.name);
3432             }
3433         }
3434 
3435         Set<Name> containedTargets;
3436         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3437         if (containedTarget == null) {
3438             containedTargets = getDefaultTargetSet();
3439         } else {
3440             containedTargets = new HashSet<>();
3441             for (Attribute app : containedTarget.values) {
3442                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3443                     continue; // recovery
3444                 }
3445                 containedTargets.add(attributeEnum.value.name);
3446             }
3447         }
3448 
3449         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3450             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3451         }
3452     }
3453 
3454     /* get a set of names for the default target */
3455     private Set<Name> getDefaultTargetSet() {
3456         if (defaultTargets == null) {
3457             defaultTargets = Set.of(defaultTargetMetaInfo());
3458         }
3459 
3460         return defaultTargets;
3461     }
3462     private Set<Name> defaultTargets;
3463 
3464 
3465     /** Checks that s is a subset of t, with respect to ElementType
3466      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3467      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3468      * TYPE_PARAMETER}.
3469      */
3470     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3471         // Check that all elements in s are present in t
3472         for (Name n2 : s) {
3473             boolean currentElementOk = false;
3474             for (Name n1 : t) {
3475                 if (n1 == n2) {
3476                     currentElementOk = true;
3477                     break;
3478                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3479                     currentElementOk = true;
3480                     break;
3481                 } else if (n1 == names.TYPE_USE &&
3482                         (n2 == names.TYPE ||
3483                          n2 == names.ANNOTATION_TYPE ||
3484                          n2 == names.TYPE_PARAMETER)) {
3485                     currentElementOk = true;
3486                     break;
3487                 }
3488             }
3489             if (!currentElementOk)
3490                 return false;
3491         }
3492         return true;
3493     }
3494 
3495     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3496         // validate that all other elements of containing type has defaults
3497         Scope scope = container.members();
3498         for(Symbol elm : scope.getSymbols()) {
3499             if (elm.name != names.value &&
3500                 elm.kind == MTH &&
3501                 ((MethodSymbol)elm).defaultValue == null) {
3502                 log.error(pos,
3503                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3504             }
3505         }
3506     }
3507 
3508     /** Is s a method symbol that overrides a method in a superclass? */
3509     boolean isOverrider(Symbol s) {
3510         if (s.kind != MTH || s.isStatic())
3511             return false;
3512         MethodSymbol m = (MethodSymbol)s;
3513         TypeSymbol owner = (TypeSymbol)m.owner;
3514         for (Type sup : types.closure(owner.type)) {
3515             if (sup == owner.type)
3516                 continue; // skip "this"
3517             Scope scope = sup.tsym.members();
3518             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3519                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3520                     return true;
3521             }
3522         }
3523         return false;
3524     }
3525 
3526     /** Is the annotation applicable to types? */
3527     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3528         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3529         return (targets == null) ?
3530                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3531                 targets.stream()
3532                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3533     }
3534     //where
3535         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3536             Attribute.Enum e = (Attribute.Enum)a;
3537             return (e.value.name == names.TYPE_USE ||
3538                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3539         }
3540 
3541     /** Is the annotation applicable to the symbol? */
3542     Name[] getTargetNames(JCAnnotation a) {
3543         return getTargetNames(a.annotationType.type.tsym);
3544     }
3545 
3546     public Name[] getTargetNames(TypeSymbol annoSym) {
3547         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3548         Name[] targets;
3549         if (arr == null) {
3550             targets = defaultTargetMetaInfo();
3551         } else {
3552             // TODO: can we optimize this?
3553             targets = new Name[arr.values.length];
3554             for (int i=0; i<arr.values.length; ++i) {
3555                 Attribute app = arr.values[i];
3556                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3557                     return new Name[0];
3558                 }
3559                 targets[i] = attributeEnum.value.name;
3560             }
3561         }
3562         return targets;
3563     }
3564 
3565     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3566         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3567         /* the optional could be empty if the annotation is unknown in that case
3568          * we return that it is applicable and if it is erroneous that should imply
3569          * an error at the declaration site
3570          */
3571         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3572     }
3573 
3574     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3575         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3576         Name[] targets;
3577         Set<Name> applicableTargets = new HashSet<>();
3578 
3579         if (arr == null) {
3580             targets = defaultTargetMetaInfo();
3581         } else {
3582             // TODO: can we optimize this?
3583             targets = new Name[arr.values.length];
3584             for (int i=0; i<arr.values.length; ++i) {
3585                 Attribute app = arr.values[i];
3586                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3587                     // recovery
3588                     return Optional.empty();
3589                 }
3590                 targets[i] = attributeEnum.value.name;
3591             }
3592         }
3593         for (Name target : targets) {
3594             if (target == names.TYPE) {
3595                 if (s.kind == TYP)
3596                     applicableTargets.add(names.TYPE);
3597             } else if (target == names.FIELD) {
3598                 if (s.kind == VAR && s.owner.kind != MTH)
3599                     applicableTargets.add(names.FIELD);
3600             } else if (target == names.RECORD_COMPONENT) {
3601                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3602                     applicableTargets.add(names.RECORD_COMPONENT);
3603                 }
3604             } else if (target == names.METHOD) {
3605                 if (s.kind == MTH && !s.isConstructor())
3606                     applicableTargets.add(names.METHOD);
3607             } else if (target == names.PARAMETER) {
3608                 if (s.kind == VAR &&
3609                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3610                     applicableTargets.add(names.PARAMETER);
3611                 }
3612             } else if (target == names.CONSTRUCTOR) {
3613                 if (s.kind == MTH && s.isConstructor())
3614                     applicableTargets.add(names.CONSTRUCTOR);
3615             } else if (target == names.LOCAL_VARIABLE) {
3616                 if (s.kind == VAR && s.owner.kind == MTH &&
3617                       (s.flags() & PARAMETER) == 0) {
3618                     applicableTargets.add(names.LOCAL_VARIABLE);
3619                 }
3620             } else if (target == names.ANNOTATION_TYPE) {
3621                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3622                     applicableTargets.add(names.ANNOTATION_TYPE);
3623                 }
3624             } else if (target == names.PACKAGE) {
3625                 if (s.kind == PCK)
3626                     applicableTargets.add(names.PACKAGE);
3627             } else if (target == names.TYPE_USE) {
3628                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3629                     //cannot type annotate implicitly typed locals
3630                     continue;
3631                 } else if (s.kind == TYP || s.kind == VAR ||
3632                         (s.kind == MTH && !s.isConstructor() &&
3633                                 !s.type.getReturnType().hasTag(VOID)) ||
3634                         (s.kind == MTH && s.isConstructor())) {
3635                     applicableTargets.add(names.TYPE_USE);
3636                 }
3637             } else if (target == names.TYPE_PARAMETER) {
3638                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3639                     applicableTargets.add(names.TYPE_PARAMETER);
3640             } else if (target == names.MODULE) {
3641                 if (s.kind == MDL)
3642                     applicableTargets.add(names.MODULE);
3643             } else {
3644                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3645                 return Optional.empty(); // Unknown ElementType
3646             }
3647         }
3648         return Optional.of(applicableTargets);
3649     }
3650 
3651     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3652         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3653         if (atTarget == null) return null; // ok, is applicable
3654         Attribute atValue = atTarget.member(names.value);
3655         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3656     }
3657 
3658     private Name[] dfltTargetMeta;
3659     private Name[] defaultTargetMetaInfo() {
3660         if (dfltTargetMeta == null) {
3661             ArrayList<Name> defaultTargets = new ArrayList<>();
3662             defaultTargets.add(names.PACKAGE);
3663             defaultTargets.add(names.TYPE);
3664             defaultTargets.add(names.FIELD);
3665             defaultTargets.add(names.METHOD);
3666             defaultTargets.add(names.CONSTRUCTOR);
3667             defaultTargets.add(names.ANNOTATION_TYPE);
3668             defaultTargets.add(names.LOCAL_VARIABLE);
3669             defaultTargets.add(names.PARAMETER);
3670             if (allowRecords) {
3671               defaultTargets.add(names.RECORD_COMPONENT);
3672             }
3673             if (allowModules) {
3674               defaultTargets.add(names.MODULE);
3675             }
3676             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3677         }
3678         return dfltTargetMeta;
3679     }
3680 
3681     /** Check an annotation value.
3682      *
3683      * @param a The annotation tree to check
3684      * @return true if this annotation tree is valid, otherwise false
3685      */
3686     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3687         boolean res = false;
3688         final Log.DiagnosticHandler diagHandler = log.new DiscardDiagnosticHandler();
3689         try {
3690             res = validateAnnotation(a);
3691         } finally {
3692             log.popDiagnosticHandler(diagHandler);
3693         }
3694         return res;
3695     }
3696 
3697     private boolean validateAnnotation(JCAnnotation a) {
3698         boolean isValid = true;
3699         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3700 
3701         // collect an inventory of the annotation elements
3702         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3703 
3704         // remove the ones that are assigned values
3705         for (JCTree arg : a.args) {
3706             if (!arg.hasTag(ASSIGN)) continue; // recovery
3707             JCAssign assign = (JCAssign)arg;
3708             Symbol m = TreeInfo.symbol(assign.lhs);
3709             if (m == null || m.type.isErroneous()) continue;
3710             if (!elements.remove(m)) {
3711                 isValid = false;
3712                 log.error(assign.lhs.pos(),
3713                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3714             }
3715         }
3716 
3717         // all the remaining ones better have default values
3718         List<Name> missingDefaults = List.nil();
3719         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3720         for (MethodSymbol m : elements) {
3721             if (m.type.isErroneous())
3722                 continue;
3723 
3724             if (!membersWithDefault.contains(m))
3725                 missingDefaults = missingDefaults.append(m.name);
3726         }
3727         missingDefaults = missingDefaults.reverse();
3728         if (missingDefaults.nonEmpty()) {
3729             isValid = false;
3730             Error errorKey = (missingDefaults.size() > 1)
3731                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3732                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3733             log.error(a.pos(), errorKey);
3734         }
3735 
3736         return isValid && validateTargetAnnotationValue(a);
3737     }
3738 
3739     /* Validate the special java.lang.annotation.Target annotation */
3740     boolean validateTargetAnnotationValue(JCAnnotation a) {
3741         // special case: java.lang.annotation.Target must not have
3742         // repeated values in its value member
3743         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3744                 a.args.tail == null)
3745             return true;
3746 
3747         boolean isValid = true;
3748         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3749         JCAssign assign = (JCAssign) a.args.head;
3750         Symbol m = TreeInfo.symbol(assign.lhs);
3751         if (m.name != names.value) return false;
3752         JCTree rhs = assign.rhs;
3753         if (!rhs.hasTag(NEWARRAY)) return false;
3754         JCNewArray na = (JCNewArray) rhs;
3755         Set<Symbol> targets = new HashSet<>();
3756         for (JCTree elem : na.elems) {
3757             if (!targets.add(TreeInfo.symbol(elem))) {
3758                 isValid = false;
3759                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3760             }
3761         }
3762         return isValid;
3763     }
3764 
3765     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3766         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3767             (s.flags() & DEPRECATED) != 0 &&
3768             !syms.deprecatedType.isErroneous() &&
3769             s.attribute(syms.deprecatedType.tsym) == null) {
3770             log.warning(pos, LintWarnings.MissingDeprecatedAnnotation);
3771         }
3772         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3773         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3774             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3775                 log.warning(pos,
3776                             LintWarnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3777             }
3778         }
3779     }
3780 
3781     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3782         checkDeprecated(() -> pos, other, s);
3783     }
3784 
3785     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3786         if (!importSuppression
3787                 && (s.isDeprecatedForRemoval() || s.isDeprecated() && !other.isDeprecated())
3788                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3789                 && s.kind != Kind.PCK) {
3790             deferredLintHandler.report(_l -> warnDeprecated(pos.get(), s));
3791         }
3792     }
3793 
3794     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3795         if ((s.flags() & PROPRIETARY) != 0) {
3796             deferredLintHandler.report(_l -> {
3797                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3798             });
3799         }
3800     }
3801 
3802     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3803         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3804             log.error(pos, Errors.NotInProfile(s, profile));
3805         }
3806     }
3807 
3808     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3809         checkPreview(pos, other, Type.noType, s);
3810     }
3811 
3812     void checkPreview(DiagnosticPosition pos, Symbol other, Type site, Symbol s) {
3813         boolean sIsPreview;
3814         Symbol previewSymbol;
3815         if ((s.flags() & PREVIEW_API) != 0) {
3816             sIsPreview = true;
3817             previewSymbol=  s;
3818         } else if ((s.kind == Kind.MTH || s.kind == Kind.VAR) &&
3819                    site.tsym != null &&
3820                    (site.tsym.flags() & PREVIEW_API) == 0 &&
3821                    (s.owner.flags() & PREVIEW_API) != 0) {
3822             //calling a method, or using a field, whose owner is a preview, but
3823             //using a site that is not a preview. Also produce an error or warning:
3824             sIsPreview = true;
3825             previewSymbol = s.owner;
3826         } else {
3827             sIsPreview = false;
3828             previewSymbol = null;
3829         }
3830         if (sIsPreview && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3831             if ((previewSymbol.flags() & PREVIEW_REFLECTIVE) == 0) {
3832                 if (!preview.isEnabled()) {
3833                     log.error(pos, Errors.IsPreview(s));
3834                 } else {
3835                     preview.markUsesPreview(pos);
3836                     warnPreviewAPI(pos, LintWarnings.IsPreview(s));
3837                 }
3838             } else {
3839                 warnPreviewAPI(pos, LintWarnings.IsPreviewReflective(s));
3840             }
3841         }
3842         if (preview.declaredUsingPreviewFeature(s)) {
3843             if (preview.isEnabled()) {
3844                 //for preview disabled do presumably so not need to do anything?
3845                 //If "s" is compiled from source, then there was an error for it already;
3846                 //if "s" is from classfile, there already was an error for the classfile.
3847                 preview.markUsesPreview(pos);
3848                 warnPreviewAPI(pos, LintWarnings.DeclaredUsingPreview(kindName(s), s));
3849             }
3850         }
3851     }
3852 
3853     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3854         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3855             deferredLintHandler.report(_l -> warnRestrictedAPI(pos, s));
3856         }
3857     }
3858 
3859 /* *************************************************************************
3860  * Check for recursive annotation elements.
3861  **************************************************************************/
3862 
3863     /** Check for cycles in the graph of annotation elements.
3864      */
3865     void checkNonCyclicElements(JCClassDecl tree) {
3866         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3867         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3868         try {
3869             tree.sym.flags_field |= LOCKED;
3870             for (JCTree def : tree.defs) {
3871                 if (!def.hasTag(METHODDEF)) continue;
3872                 JCMethodDecl meth = (JCMethodDecl)def;
3873                 checkAnnotationResType(meth.pos(), meth.restype.type);
3874             }
3875         } finally {
3876             tree.sym.flags_field &= ~LOCKED;
3877             tree.sym.flags_field |= ACYCLIC_ANN;
3878         }
3879     }
3880 
3881     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3882         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3883             return;
3884         if ((tsym.flags_field & LOCKED) != 0) {
3885             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3886             return;
3887         }
3888         try {
3889             tsym.flags_field |= LOCKED;
3890             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3891                 if (s.kind != MTH)
3892                     continue;
3893                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3894             }
3895         } finally {
3896             tsym.flags_field &= ~LOCKED;
3897             tsym.flags_field |= ACYCLIC_ANN;
3898         }
3899     }
3900 
3901     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3902         switch (type.getTag()) {
3903         case CLASS:
3904             if ((type.tsym.flags() & ANNOTATION) != 0)
3905                 checkNonCyclicElementsInternal(pos, type.tsym);
3906             break;
3907         case ARRAY:
3908             checkAnnotationResType(pos, types.elemtype(type));
3909             break;
3910         default:
3911             break; // int etc
3912         }
3913     }
3914 
3915 /* *************************************************************************
3916  * Check for cycles in the constructor call graph.
3917  **************************************************************************/
3918 
3919     /** Check for cycles in the graph of constructors calling other
3920      *  constructors.
3921      */
3922     void checkCyclicConstructors(JCClassDecl tree) {
3923         // use LinkedHashMap so we generate errors deterministically
3924         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
3925 
3926         // enter each constructor this-call into the map
3927         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3928             if (!TreeInfo.isConstructor(l.head))
3929                 continue;
3930             JCMethodDecl meth = (JCMethodDecl)l.head;
3931             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
3932             if (app != null && TreeInfo.name(app.meth) == names._this) {
3933                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3934             } else {
3935                 meth.sym.flags_field |= ACYCLIC;
3936             }
3937         }
3938 
3939         // Check for cycles in the map
3940         Symbol[] ctors = new Symbol[0];
3941         ctors = callMap.keySet().toArray(ctors);
3942         for (Symbol caller : ctors) {
3943             checkCyclicConstructor(tree, caller, callMap);
3944         }
3945     }
3946 
3947     /** Look in the map to see if the given constructor is part of a
3948      *  call cycle.
3949      */
3950     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3951                                         Map<Symbol,Symbol> callMap) {
3952         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3953             if ((ctor.flags_field & LOCKED) != 0) {
3954                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
3955                           Errors.RecursiveCtorInvocation);
3956             } else {
3957                 ctor.flags_field |= LOCKED;
3958                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3959                 ctor.flags_field &= ~LOCKED;
3960             }
3961             ctor.flags_field |= ACYCLIC;
3962         }
3963     }
3964 
3965 /* *************************************************************************
3966  * Verify the proper placement of super()/this() calls.
3967  *
3968  *    - super()/this() may only appear in constructors
3969  *    - There must be at most one super()/this() call per constructor
3970  *    - The super()/this() call, if any, must be a top-level statement in the
3971  *      constructor, i.e., not nested inside any other statement or block
3972  *    - There must be no return statements prior to the super()/this() call
3973  **************************************************************************/
3974 
3975     void checkSuperInitCalls(JCClassDecl tree) {
3976         new SuperThisChecker().check(tree);
3977     }
3978 
3979     private class SuperThisChecker extends TreeScanner {
3980 
3981         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
3982         private static final int MATCH_SCAN_DEPTH = 3;
3983 
3984         private boolean constructor;        // is this method a constructor?
3985         private boolean firstStatement;     // at the first statement in method?
3986         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
3987         private Name initCall;              // whichever of "super" or "init" we've seen already
3988         private int scanDepth;              // current scan recursion depth in method body
3989 
3990         public void check(JCClassDecl classDef) {
3991             scan(classDef.defs);
3992         }
3993 
3994         @Override
3995         public void visitMethodDef(JCMethodDecl tree) {
3996             Assert.check(!constructor);
3997             Assert.check(earlyReturn == null);
3998             Assert.check(initCall == null);
3999             Assert.check(scanDepth == 1);
4000 
4001             // Initialize state for this method
4002             constructor = TreeInfo.isConstructor(tree);
4003             try {
4004 
4005                 // Scan method body
4006                 if (tree.body != null) {
4007                     firstStatement = true;
4008                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
4009                         scan(l.head);
4010                         firstStatement = false;
4011                     }
4012                 }
4013 
4014                 // Verify no 'return' seen prior to an explicit super()/this() call
4015                 if (constructor && earlyReturn != null && initCall != null)
4016                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
4017             } finally {
4018                 firstStatement = false;
4019                 constructor = false;
4020                 earlyReturn = null;
4021                 initCall = null;
4022             }
4023         }
4024 
4025         @Override
4026         public void scan(JCTree tree) {
4027             scanDepth++;
4028             try {
4029                 super.scan(tree);
4030             } finally {
4031                 scanDepth--;
4032             }
4033         }
4034 
4035         @Override
4036         public void visitApply(JCMethodInvocation apply) {
4037             do {
4038 
4039                 // Is this a super() or this() call?
4040                 Name methodName = TreeInfo.name(apply.meth);
4041                 if (methodName != names._super && methodName != names._this)
4042                     break;
4043 
4044                 // super()/this() calls must only appear in a constructor
4045                 if (!constructor) {
4046                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
4047                     break;
4048                 }
4049 
4050                 // super()/this() calls must be a top level statement
4051                 if (scanDepth != MATCH_SCAN_DEPTH) {
4052                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
4053                     break;
4054                 }
4055 
4056                 // super()/this() calls must not appear more than once
4057                 if (initCall != null) {
4058                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
4059                     break;
4060                 }
4061 
4062                 // If super()/this() isn't first, require flexible constructors feature
4063                 if (!firstStatement)
4064                     preview.checkSourceLevel(apply.pos(), Feature.FLEXIBLE_CONSTRUCTORS);
4065 
4066                 // We found a legitimate super()/this() call; remember it
4067                 initCall = methodName;
4068             } while (false);
4069 
4070             // Proceed
4071             super.visitApply(apply);
4072         }
4073 
4074         @Override
4075         public void visitReturn(JCReturn tree) {
4076             if (constructor && initCall == null && earlyReturn == null)
4077                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
4078             super.visitReturn(tree);
4079         }
4080 
4081         @Override
4082         public void visitClassDef(JCClassDecl tree) {
4083             // don't descend any further
4084         }
4085 
4086         @Override
4087         public void visitLambda(JCLambda tree) {
4088             final boolean constructorPrev = constructor;
4089             final boolean firstStatementPrev = firstStatement;
4090             final JCReturn earlyReturnPrev = earlyReturn;
4091             final Name initCallPrev = initCall;
4092             final int scanDepthPrev = scanDepth;
4093             constructor = false;
4094             firstStatement = false;
4095             earlyReturn = null;
4096             initCall = null;
4097             scanDepth = 0;
4098             try {
4099                 super.visitLambda(tree);
4100             } finally {
4101                 constructor = constructorPrev;
4102                 firstStatement = firstStatementPrev;
4103                 earlyReturn = earlyReturnPrev;
4104                 initCall = initCallPrev;
4105                 scanDepth = scanDepthPrev;
4106             }
4107         }
4108     }
4109 
4110 /* *************************************************************************
4111  * Miscellaneous
4112  **************************************************************************/
4113 
4114     /**
4115      *  Check for division by integer constant zero
4116      *  @param pos           Position for error reporting.
4117      *  @param operator      The operator for the expression
4118      *  @param operand       The right hand operand for the expression
4119      */
4120     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4121         if (operand.constValue() != null
4122             && operand.getTag().isSubRangeOf(LONG)
4123             && ((Number) (operand.constValue())).longValue() == 0) {
4124             int opc = ((OperatorSymbol)operator).opcode;
4125             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4126                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4127                 deferredLintHandler.report(_ -> lint.logIfEnabled(pos, LintWarnings.DivZero));
4128             }
4129         }
4130     }
4131 
4132     /**
4133      *  Check for possible loss of precission
4134      *  @param pos           Position for error reporting.
4135      *  @param found    The computed type of the tree
4136      *  @param req  The computed type of the tree
4137      */
4138     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4139         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4140             deferredLintHandler.report(_ ->
4141                 lint.logIfEnabled(pos, LintWarnings.PossibleLossOfPrecision(found, req)));
4142         }
4143     }
4144 
4145     /**
4146      * Check for empty statements after if
4147      */
4148     void checkEmptyIf(JCIf tree) {
4149         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null) {
4150             lint.logIfEnabled(tree.thenpart.pos(), LintWarnings.EmptyIf);
4151         }
4152     }
4153 
4154     /** Check that symbol is unique in given scope.
4155      *  @param pos           Position for error reporting.
4156      *  @param sym           The symbol.
4157      *  @param s             The scope.
4158      */
4159     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4160         if (sym.type.isErroneous())
4161             return true;
4162         if (sym.owner.name == names.any) return false;
4163         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4164             if (sym != byName &&
4165                     (byName.flags() & CLASH) == 0 &&
4166                     sym.kind == byName.kind &&
4167                     sym.name != names.error &&
4168                     (sym.kind != MTH ||
4169                      types.hasSameArgs(sym.type, byName.type) ||
4170                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4171                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4172                     sym.flags_field |= CLASH;
4173                     varargsDuplicateError(pos, sym, byName);
4174                     return true;
4175                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4176                     duplicateErasureError(pos, sym, byName);
4177                     sym.flags_field |= CLASH;
4178                     return true;
4179                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4180                            (byName.flags() & MATCH_BINDING) != 0 &&
4181                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4182                     if (!sym.type.isErroneous()) {
4183                         log.error(pos, Errors.MatchBindingExists);
4184                         sym.flags_field |= CLASH;
4185                     }
4186                     return false;
4187                 } else {
4188                     duplicateError(pos, byName);
4189                     return false;
4190                 }
4191             }
4192         }
4193         return true;
4194     }
4195 
4196     /** Report duplicate declaration error.
4197      */
4198     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4199         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4200             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4201         }
4202     }
4203 
4204     /**Check that types imported through the ordinary imports don't clash with types imported
4205      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4206      * types without an error on the imports.
4207      * @param toplevel       The toplevel tree for which the test should be performed.
4208      */
4209     void checkImportsUnique(JCCompilationUnit toplevel) {
4210         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4211         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4212         WriteableScope topLevelScope = toplevel.toplevelScope;
4213 
4214         for (JCTree def : toplevel.defs) {
4215             if (!def.hasTag(IMPORT))
4216                 continue;
4217 
4218             JCImport imp = (JCImport) def;
4219 
4220             if (imp.importScope == null)
4221                 continue;
4222 
4223             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4224                 if (imp.isStatic()) {
4225                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4226                     staticallyImportedSoFar.enter(sym);
4227                 } else {
4228                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4229                     ordinallyImportedSoFar.enter(sym);
4230                 }
4231             }
4232 
4233             imp.importScope = null;
4234         }
4235     }
4236 
4237     /** Check that single-type import is not already imported or top-level defined,
4238      *  but make an exception for two single-type imports which denote the same type.
4239      *  @param pos                     Position for error reporting.
4240      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4241      *                                 ordinary imports.
4242      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4243      *                                 static imports.
4244      *  @param topLevelScope           The current file's top-level Scope
4245      *  @param sym                     The symbol.
4246      *  @param staticImport            Whether or not this was a static import
4247      */
4248     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4249                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4250                                       Symbol sym, boolean staticImport) {
4251         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4252         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4253         Symbol staticClashing = null;
4254         if (ordinaryClashing == null && !staticImport) {
4255             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4256         }
4257         if (ordinaryClashing != null || staticClashing != null) {
4258             if (ordinaryClashing != null)
4259                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4260             else
4261                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4262             return false;
4263         }
4264         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4265         if (clashing != null) {
4266             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4267             return false;
4268         }
4269         return true;
4270     }
4271 
4272     /** Check that a qualified name is in canonical form (for import decls).
4273      */
4274     public void checkCanonical(JCTree tree) {
4275         if (!isCanonical(tree))
4276             log.error(tree.pos(),
4277                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4278     }
4279         // where
4280         private boolean isCanonical(JCTree tree) {
4281             while (tree.hasTag(SELECT)) {
4282                 JCFieldAccess s = (JCFieldAccess) tree;
4283                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4284                     return false;
4285                 tree = s.selected;
4286             }
4287             return true;
4288         }
4289 
4290     /** Check that an auxiliary class is not accessed from any other file than its own.
4291      */
4292     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4293         if ((c.flags() & AUXILIARY) != 0 &&
4294             rs.isAccessible(env, c) &&
4295             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4296         {
4297             lint.logIfEnabled(pos,
4298                         LintWarnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4299         }
4300     }
4301 
4302     /**
4303      * Check for a default constructor in an exported package.
4304      */
4305     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4306         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4307             ((c.flags() & (ENUM | RECORD)) == 0) &&
4308             !c.isAnonymous() &&
4309             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4310             Feature.MODULES.allowedInSource(source)) {
4311             NestingKind nestingKind = c.getNestingKind();
4312             switch (nestingKind) {
4313                 case ANONYMOUS,
4314                      LOCAL -> {return;}
4315                 case TOP_LEVEL -> {;} // No additional checks needed
4316                 case MEMBER -> {
4317                     // For nested member classes, all the enclosing
4318                     // classes must be public or protected.
4319                     Symbol owner = c.owner;
4320                     while (owner != null && owner.kind == TYP) {
4321                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4322                             return;
4323                         owner = owner.owner;
4324                     }
4325                 }
4326             }
4327 
4328             // Only check classes in named packages exported by its module
4329             PackageSymbol pkg = c.packge();
4330             if (!pkg.isUnnamed()) {
4331                 ModuleSymbol modle = pkg.modle;
4332                 for (ExportsDirective exportDir : modle.exports) {
4333                     // Report warning only if the containing
4334                     // package is unconditionally exported
4335                     if (exportDir.packge.equals(pkg)) {
4336                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4337                             // Warning may be suppressed by
4338                             // annotations; check again for being
4339                             // enabled in the deferred context.
4340                             deferredLintHandler.report(_ ->
4341                                 lint.logIfEnabled(pos, LintWarnings.MissingExplicitCtor(c, pkg, modle)));
4342                         } else {
4343                             return;
4344                         }
4345                     }
4346                 }
4347             }
4348         }
4349         return;
4350     }
4351 
4352     private class ConversionWarner extends Warner {
4353         final String uncheckedKey;
4354         final Type found;
4355         final Type expected;
4356         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4357             super(pos);
4358             this.uncheckedKey = uncheckedKey;
4359             this.found = found;
4360             this.expected = expected;
4361         }
4362 
4363         @Override
4364         public void warn(LintCategory lint) {
4365             boolean warned = this.warned;
4366             super.warn(lint);
4367             if (warned) return; // suppress redundant diagnostics
4368             switch (lint) {
4369                 case UNCHECKED:
4370                     Check.this.warnUnchecked(pos(), LintWarnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4371                     break;
4372                 case VARARGS:
4373                     if (method != null &&
4374                             method.attribute(syms.trustMeType.tsym) != null &&
4375                             isTrustMeAllowedOnMethod(method) &&
4376                             !types.isReifiable(method.type.getParameterTypes().last())) {
4377                         Check.this.lint.logIfEnabled(pos(), LintWarnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4378                     }
4379                     break;
4380                 default:
4381                     throw new AssertionError("Unexpected lint: " + lint);
4382             }
4383         }
4384     }
4385 
4386     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4387         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4388     }
4389 
4390     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4391         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4392     }
4393 
4394     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4395         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4396 
4397         if (functionalType != null) {
4398             try {
4399                 types.findDescriptorSymbol((TypeSymbol)cs);
4400             } catch (Types.FunctionDescriptorLookupError ex) {
4401                 DiagnosticPosition pos = tree.pos();
4402                 for (JCAnnotation a : tree.getModifiers().annotations) {
4403                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4404                         pos = a.pos();
4405                         break;
4406                     }
4407                 }
4408                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4409             }
4410         }
4411     }
4412 
4413     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4414         for (final JCImportBase impBase : toplevel.getImports()) {
4415             if (!(impBase instanceof JCImport imp))
4416                 continue;
4417             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4418                 continue;
4419             final JCFieldAccess select = imp.qualid;
4420             final Symbol origin;
4421             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4422                 continue;
4423 
4424             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4425             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4426                 log.error(imp.pos(),
4427                           Errors.CantResolveLocation(KindName.STATIC,
4428                                                      select.name,
4429                                                      null,
4430                                                      null,
4431                                                      Fragments.Location(kindName(site),
4432                                                                         site,
4433                                                                         null)));
4434             }
4435         }
4436     }
4437 
4438     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4439     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4440         OUTER: for (JCImportBase impBase : toplevel.getImports()) {
4441             if (impBase instanceof JCImport imp && !imp.staticImport &&
4442                 TreeInfo.name(imp.qualid) == names.asterisk) {
4443                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4444                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4445                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4446                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.qualid.selected.pos(), Errors.DoesntExist(tsym));
4447                 }
4448             }
4449         }
4450     }
4451 
4452     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4453         if (tsym == null || !processed.add(tsym))
4454             return false;
4455 
4456             // also search through inherited names
4457         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4458             return true;
4459 
4460         for (Type t : types.interfaces(tsym.type))
4461             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4462                 return true;
4463 
4464         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4465             if (sym.isStatic() &&
4466                 importAccessible(sym, packge) &&
4467                 sym.isMemberOf(origin, types)) {
4468                 return true;
4469             }
4470         }
4471 
4472         return false;
4473     }
4474 
4475     // is the sym accessible everywhere in packge?
4476     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4477         try {
4478             int flags = (int)(sym.flags() & AccessFlags);
4479             switch (flags) {
4480             default:
4481             case PUBLIC:
4482                 return true;
4483             case PRIVATE:
4484                 return false;
4485             case 0:
4486             case PROTECTED:
4487                 return sym.packge() == packge;
4488             }
4489         } catch (ClassFinder.BadClassFile err) {
4490             throw err;
4491         } catch (CompletionFailure ex) {
4492             return false;
4493         }
4494     }
4495 
4496     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4497         JCCompilationUnit toplevel = env.toplevel;
4498 
4499         if (   toplevel.modle == syms.unnamedModule
4500             || toplevel.modle == syms.noModule
4501             || (check.sym.flags() & COMPOUND) != 0) {
4502             return ;
4503         }
4504 
4505         ExportsDirective currentExport = findExport(toplevel.packge);
4506 
4507         if (   currentExport == null //not exported
4508             || currentExport.modules != null) //don't check classes in qualified export
4509             return ;
4510 
4511         new TreeScanner() {
4512             Lint lint = env.info.lint;
4513             boolean inSuperType;
4514 
4515             @Override
4516             public void visitBlock(JCBlock tree) {
4517             }
4518             @Override
4519             public void visitMethodDef(JCMethodDecl tree) {
4520                 if (!isAPISymbol(tree.sym))
4521                     return;
4522                 Lint prevLint = lint;
4523                 try {
4524                     lint = lint.augment(tree.sym);
4525                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4526                         super.visitMethodDef(tree);
4527                     }
4528                 } finally {
4529                     lint = prevLint;
4530                 }
4531             }
4532             @Override
4533             public void visitVarDef(JCVariableDecl tree) {
4534                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4535                     return;
4536                 Lint prevLint = lint;
4537                 try {
4538                     lint = lint.augment(tree.sym);
4539                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4540                         scan(tree.mods);
4541                         scan(tree.vartype);
4542                     }
4543                 } finally {
4544                     lint = prevLint;
4545                 }
4546             }
4547             @Override
4548             public void visitClassDef(JCClassDecl tree) {
4549                 if (tree != check)
4550                     return ;
4551 
4552                 if (!isAPISymbol(tree.sym))
4553                     return ;
4554 
4555                 Lint prevLint = lint;
4556                 try {
4557                     lint = lint.augment(tree.sym);
4558                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4559                         scan(tree.mods);
4560                         scan(tree.typarams);
4561                         try {
4562                             inSuperType = true;
4563                             scan(tree.extending);
4564                             scan(tree.implementing);
4565                         } finally {
4566                             inSuperType = false;
4567                         }
4568                         scan(tree.defs);
4569                     }
4570                 } finally {
4571                     lint = prevLint;
4572                 }
4573             }
4574             @Override
4575             public void visitTypeApply(JCTypeApply tree) {
4576                 scan(tree.clazz);
4577                 boolean oldInSuperType = inSuperType;
4578                 try {
4579                     inSuperType = false;
4580                     scan(tree.arguments);
4581                 } finally {
4582                     inSuperType = oldInSuperType;
4583                 }
4584             }
4585             @Override
4586             public void visitIdent(JCIdent tree) {
4587                 Symbol sym = TreeInfo.symbol(tree);
4588                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4589                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4590                 }
4591             }
4592 
4593             @Override
4594             public void visitSelect(JCFieldAccess tree) {
4595                 Symbol sym = TreeInfo.symbol(tree);
4596                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4597                 if (sym.kind == TYP && sitesym.kind == PCK) {
4598                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4599                 } else {
4600                     super.visitSelect(tree);
4601                 }
4602             }
4603 
4604             @Override
4605             public void visitAnnotation(JCAnnotation tree) {
4606                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4607                     super.visitAnnotation(tree);
4608             }
4609 
4610         }.scan(check);
4611     }
4612         //where:
4613         private ExportsDirective findExport(PackageSymbol pack) {
4614             for (ExportsDirective d : pack.modle.exports) {
4615                 if (d.packge == pack)
4616                     return d;
4617             }
4618 
4619             return null;
4620         }
4621         private boolean isAPISymbol(Symbol sym) {
4622             while (sym.kind != PCK) {
4623                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4624                     return false;
4625                 }
4626                 sym = sym.owner;
4627             }
4628             return true;
4629         }
4630         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4631             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4632                 log.warning(pos, LintWarnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4633                 return ;
4634             }
4635 
4636             PackageSymbol whatPackage = what.packge();
4637             ExportsDirective whatExport = findExport(whatPackage);
4638             ExportsDirective inExport = findExport(inPackage);
4639 
4640             if (whatExport == null) { //package not exported:
4641                 log.warning(pos, LintWarnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4642                 return ;
4643             }
4644 
4645             if (whatExport.modules != null) {
4646                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4647                     log.warning(pos, LintWarnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4648                 }
4649             }
4650 
4651             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4652                 //check that relativeTo.modle requires transitive what.modle, somehow:
4653                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4654 
4655                 while (todo.nonEmpty()) {
4656                     ModuleSymbol current = todo.head;
4657                     todo = todo.tail;
4658                     if (current == whatPackage.modle)
4659                         return ; //OK
4660                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4661                         continue; //for automatic modules, don't look into their dependencies
4662                     for (RequiresDirective req : current.requires) {
4663                         if (req.isTransitive()) {
4664                             todo = todo.prepend(req.module);
4665                         }
4666                     }
4667                 }
4668 
4669                 log.warning(pos, LintWarnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4670             }
4671         }
4672 
4673     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4674         if (msym.kind != MDL) {
4675             deferredLintHandler.report(_ ->
4676                 lint.logIfEnabled(pos, LintWarnings.ModuleNotFound(msym)));
4677         }
4678     }
4679 
4680     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4681         if (packge.members().isEmpty() &&
4682             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4683             deferredLintHandler.report(_ ->
4684                 lint.logIfEnabled(pos, LintWarnings.PackageEmptyOrNotFound(packge)));
4685         }
4686     }
4687 
4688     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4689         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4690             deferredLintHandler.report(_ -> {
4691                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4692                     log.warning(pos, LintWarnings.RequiresTransitiveAutomatic);
4693                 } else {
4694                     lint.logIfEnabled(pos, LintWarnings.RequiresAutomatic);
4695                 }
4696             });
4697         }
4698     }
4699 
4700     /**
4701      * Verify the case labels conform to the constraints. Checks constraints related
4702      * combinations of patterns and other labels.
4703      *
4704      * @param cases the cases that should be checked.
4705      */
4706     void checkSwitchCaseStructure(List<JCCase> cases) {
4707         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4708             JCCase c = l.head;
4709             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4710                 if (TreeInfo.isNull(constLabel.expr)) {
4711                     if (c.labels.tail.nonEmpty()) {
4712                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4713                             if (c.labels.tail.tail.nonEmpty()) {
4714                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4715                             }
4716                         } else {
4717                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4718                         }
4719                     }
4720                 } else {
4721                     for (JCCaseLabel label : c.labels.tail) {
4722                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4723                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4724                             break;
4725                         }
4726                     }
4727                 }
4728             } else if (c.labels.tail.nonEmpty()) {
4729                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4730                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4731 
4732                 if (!allUnderscore) {
4733                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4734                 }
4735 
4736                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4737 
4738                 if (allPatternCaseLabels) {
4739                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4740                 }
4741 
4742                 for (JCCaseLabel label : c.labels.tail) {
4743                     if (label instanceof JCConstantCaseLabel) {
4744                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4745                         break;
4746                     }
4747                 }
4748             }
4749         }
4750 
4751         boolean isCaseStatementGroup = cases.nonEmpty() &&
4752                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4753 
4754         if (isCaseStatementGroup) {
4755             boolean previousCompletessNormally = false;
4756             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4757                 JCCase c = l.head;
4758                 if (previousCompletessNormally &&
4759                     c.stats.nonEmpty() &&
4760                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4761                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4762                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4763                 } else if (c.stats.isEmpty() &&
4764                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4765                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4766                            hasStatements(l.tail)) {
4767                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4768                 }
4769                 previousCompletessNormally = c.completesNormally;
4770             }
4771         }
4772     }
4773 
4774     boolean hasBindings(JCTree p) {
4775         boolean[] bindings = new boolean[1];
4776 
4777         new TreeScanner() {
4778             @Override
4779             public void visitBindingPattern(JCBindingPattern tree) {
4780                 bindings[0] |= !tree.var.sym.isUnnamedVariable();
4781                 super.visitBindingPattern(tree);
4782             }
4783         }.scan(p);
4784 
4785         return bindings[0];
4786     }
4787 
4788     boolean hasStatements(List<JCCase> cases) {
4789         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4790             if (l.head.stats.nonEmpty()) {
4791                 return true;
4792             }
4793         }
4794 
4795         return false;
4796     }
4797     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4798         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4799         boolean seenDefault = false;
4800         boolean seenDefaultLabel = false;
4801         boolean warnDominatedByDefault = false;
4802         boolean unconditionalFound = false;
4803 
4804         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4805             JCCase c = l.head;
4806             for (JCCaseLabel label : c.labels) {
4807                 if (label.hasTag(DEFAULTCASELABEL)) {
4808                     seenDefault = true;
4809                     seenDefaultLabel |=
4810                             TreeInfo.isNullCaseLabel(c.labels.head);
4811                     continue;
4812                 }
4813                 if (TreeInfo.isNullCaseLabel(label)) {
4814                     if (seenDefault) {
4815                         log.error(label.pos(), Errors.PatternDominated);
4816                     }
4817                     continue;
4818                 }
4819                 if (seenDefault && !warnDominatedByDefault) {
4820                     if (label.hasTag(PATTERNCASELABEL) ||
4821                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4822                         log.error(label.pos(), Errors.PatternDominated);
4823                         warnDominatedByDefault = true;
4824                     }
4825                 }
4826                 Type currentType = labelType(label);
4827                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4828                     JCCase testCase = caseAndLabel.fst;
4829                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4830                     Type testType = labelType(testCaseLabel);
4831                     boolean dominated = false;
4832                     if (types.isUnconditionallyExact(currentType, testType) &&
4833                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4834                         //the current label is potentially dominated by the existing (test) label, check:
4835                         if (label instanceof JCConstantCaseLabel) {
4836                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4837                                          TreeInfo.unguardedCase(testCase);
4838                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4839                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4840                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4841                             dominated = patternDominated(testPatternCaseLabel.pat,
4842                                                          patternCL.pat);
4843                         }
4844                     }
4845 
4846                     if (dominated) {
4847                         log.error(label.pos(), Errors.PatternDominated);
4848                     }
4849                 }
4850                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4851             }
4852         }
4853     }
4854         //where:
4855         private Type labelType(JCCaseLabel label) {
4856             return types.erasure(switch (label.getTag()) {
4857                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4858                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4859                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4860             });
4861         }
4862         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4863             Type existingPatternType = types.erasure(existingPattern.type);
4864             Type currentPatternType = types.erasure(currentPattern.type);
4865             if (!types.isUnconditionallyExact(currentPatternType, existingPatternType)) {
4866                 return false;
4867             }
4868             if (currentPattern instanceof JCBindingPattern ||
4869                 currentPattern instanceof JCAnyPattern) {
4870                 return existingPattern instanceof JCBindingPattern ||
4871                        existingPattern instanceof JCAnyPattern;
4872             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4873                 if (existingPattern instanceof JCBindingPattern ||
4874                     existingPattern instanceof JCAnyPattern) {
4875                     return true;
4876                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4877                     List<JCPattern> existingNested = existingRecordPattern.nested;
4878                     List<JCPattern> currentNested = currentRecordPattern.nested;
4879                     if (existingNested.size() != currentNested.size()) {
4880                         return false;
4881                     }
4882                     while (existingNested.nonEmpty()) {
4883                         if (!patternDominated(existingNested.head, currentNested.head)) {
4884                             return false;
4885                         }
4886                         existingNested = existingNested.tail;
4887                         currentNested = currentNested.tail;
4888                     }
4889                     return true;
4890                 } else {
4891                     Assert.error("Unknown pattern: " + existingPattern.getTag());
4892                 }
4893             } else {
4894                 Assert.error("Unknown pattern: " + currentPattern.getTag());
4895             }
4896             return false;
4897         }
4898 
4899     /** check if a type is a subtype of Externalizable, if that is available. */
4900     boolean isExternalizable(Type t) {
4901         try {
4902             syms.externalizableType.complete();
4903         } catch (CompletionFailure e) {
4904             return false;
4905         }
4906         return types.isSubtype(t, syms.externalizableType);
4907     }
4908 
4909     /**
4910      * Check structure of serialization declarations.
4911      */
4912     public void checkSerialStructure(JCClassDecl tree, ClassSymbol c) {
4913         (new SerialTypeVisitor()).visit(c, tree);
4914     }
4915 
4916     /**
4917      * This visitor will warn if a serialization-related field or
4918      * method is declared in a suspicious or incorrect way. In
4919      * particular, it will warn for cases where the runtime
4920      * serialization mechanism will silently ignore a mis-declared
4921      * entity.
4922      *
4923      * Distinguished serialization-related fields and methods:
4924      *
4925      * Methods:
4926      *
4927      * private void writeObject(ObjectOutputStream stream) throws IOException
4928      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
4929      *
4930      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
4931      * private void readObjectNoData() throws ObjectStreamException
4932      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
4933      *
4934      * Fields:
4935      *
4936      * private static final long serialVersionUID
4937      * private static final ObjectStreamField[] serialPersistentFields
4938      *
4939      * Externalizable: methods defined on the interface
4940      * public void writeExternal(ObjectOutput) throws IOException
4941      * public void readExternal(ObjectInput) throws IOException
4942      */
4943     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
4944         SerialTypeVisitor() {
4945             this.lint = Check.this.lint;
4946         }
4947 
4948         private static final Set<String> serialMethodNames =
4949             Set.of("writeObject", "writeReplace",
4950                    "readObject",  "readObjectNoData",
4951                    "readResolve");
4952 
4953         private static final Set<String> serialFieldNames =
4954             Set.of("serialVersionUID", "serialPersistentFields");
4955 
4956         // Type of serialPersistentFields
4957         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
4958 
4959         Lint lint;
4960 
4961         @Override
4962         public Void defaultAction(Element e, JCClassDecl p) {
4963             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
4964         }
4965 
4966         @Override
4967         public Void visitType(TypeElement e, JCClassDecl p) {
4968             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
4969             return null;
4970         }
4971 
4972         @Override
4973         public Void visitTypeAsClass(TypeElement e,
4974                                      JCClassDecl p) {
4975             // Anonymous classes filtered out by caller.
4976 
4977             ClassSymbol c = (ClassSymbol)e;
4978 
4979             checkCtorAccess(p, c);
4980 
4981             // Check for missing serialVersionUID; check *not* done
4982             // for enums or records.
4983             VarSymbol svuidSym = null;
4984             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
4985                 if (sym.kind == VAR) {
4986                     svuidSym = (VarSymbol)sym;
4987                     break;
4988                 }
4989             }
4990 
4991             if (svuidSym == null) {
4992                 log.warning(p.pos(), LintWarnings.MissingSVUID(c));
4993             }
4994 
4995             // Check for serialPersistentFields to gate checks for
4996             // non-serializable non-transient instance fields
4997             boolean serialPersistentFieldsPresent =
4998                     c.members()
4999                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
5000                      .iterator()
5001                      .hasNext();
5002 
5003             // Check declarations of serialization-related methods and
5004             // fields
5005             for(Symbol el : c.getEnclosedElements()) {
5006                 runUnderLint(el, p, (enclosed, tree) -> {
5007                     String name = null;
5008                     switch(enclosed.getKind()) {
5009                     case FIELD -> {
5010                         if (!serialPersistentFieldsPresent) {
5011                             var flags = enclosed.flags();
5012                             if ( ((flags & TRANSIENT) == 0) &&
5013                                  ((flags & STATIC) == 0)) {
5014                                 Type varType = enclosed.asType();
5015                                 if (!canBeSerialized(varType)) {
5016                                     // Note per JLS arrays are
5017                                     // serializable even if the
5018                                     // component type is not.
5019                                     log.warning(
5020                                             TreeInfo.diagnosticPositionFor(enclosed, tree),
5021                                                 LintWarnings.NonSerializableInstanceField);
5022                                 } else if (varType.hasTag(ARRAY)) {
5023                                     ArrayType arrayType = (ArrayType)varType;
5024                                     Type elementType = arrayType.elemtype;
5025                                     while (elementType.hasTag(ARRAY)) {
5026                                         arrayType = (ArrayType)elementType;
5027                                         elementType = arrayType.elemtype;
5028                                     }
5029                                     if (!canBeSerialized(elementType)) {
5030                                         log.warning(
5031                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
5032                                                     LintWarnings.NonSerializableInstanceFieldArray(elementType));
5033                                     }
5034                                 }
5035                             }
5036                         }
5037 
5038                         name = enclosed.getSimpleName().toString();
5039                         if (serialFieldNames.contains(name)) {
5040                             VarSymbol field = (VarSymbol)enclosed;
5041                             switch (name) {
5042                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
5043                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
5044                             default -> throw new AssertionError();
5045                             }
5046                         }
5047                     }
5048 
5049                     // Correctly checking the serialization-related
5050                     // methods is subtle. For the methods declared to be
5051                     // private or directly declared in the class, the
5052                     // enclosed elements of the class can be checked in
5053                     // turn. However, writeReplace and readResolve can be
5054                     // declared in a superclass and inherited. Note that
5055                     // the runtime lookup walks the superclass chain
5056                     // looking for writeReplace/readResolve via
5057                     // Class.getDeclaredMethod. This differs from calling
5058                     // Elements.getAllMembers(TypeElement) as the latter
5059                     // will also pull in default methods from
5060                     // superinterfaces. In other words, the runtime checks
5061                     // (which long predate default methods on interfaces)
5062                     // do not admit the possibility of inheriting methods
5063                     // this way, a difference from general inheritance.
5064 
5065                     // The current implementation just checks the enclosed
5066                     // elements and does not directly check the inherited
5067                     // methods. If all the types are being checked this is
5068                     // less of a concern; however, there are cases that
5069                     // could be missed. In particular, readResolve and
5070                     // writeReplace could, in principle, by inherited from
5071                     // a non-serializable superclass and thus not checked
5072                     // even if compiled with a serializable child class.
5073                     case METHOD -> {
5074                         var method = (MethodSymbol)enclosed;
5075                         name = method.getSimpleName().toString();
5076                         if (serialMethodNames.contains(name)) {
5077                             switch (name) {
5078                             case "writeObject"      -> checkWriteObject(tree, e, method);
5079                             case "writeReplace"     -> checkWriteReplace(tree,e, method);
5080                             case "readObject"       -> checkReadObject(tree,e, method);
5081                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5082                             case "readResolve"      -> checkReadResolve(tree, e, method);
5083                             default ->  throw new AssertionError();
5084                             }
5085                         }
5086                     }
5087                     }
5088                 });
5089             }
5090 
5091             return null;
5092         }
5093 
5094         boolean canBeSerialized(Type type) {
5095             return type.isPrimitive() || rs.isSerializable(type);
5096         }
5097 
5098         /**
5099          * Check that Externalizable class needs a public no-arg
5100          * constructor.
5101          *
5102          * Check that a Serializable class has access to the no-arg
5103          * constructor of its first nonserializable superclass.
5104          */
5105         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5106             if (isExternalizable(c.type)) {
5107                 for(var sym : c.getEnclosedElements()) {
5108                     if (sym.isConstructor() &&
5109                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5110                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5111                             return;
5112                         }
5113                     }
5114                 }
5115                 log.warning(tree.pos(),
5116                             LintWarnings.ExternalizableMissingPublicNoArgCtor);
5117             } else {
5118                 // Approximate access to the no-arg constructor up in
5119                 // the superclass chain by checking that the
5120                 // constructor is not private. This may not handle
5121                 // some cross-package situations correctly.
5122                 Type superClass = c.getSuperclass();
5123                 // java.lang.Object is *not* Serializable so this loop
5124                 // should terminate.
5125                 while (rs.isSerializable(superClass) ) {
5126                     try {
5127                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5128                     } catch(ClassCastException cce) {
5129                         return ; // Don't try to recover
5130                     }
5131                 }
5132                 // Non-Serializable superclass
5133                 try {
5134                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5135                     for(var sym : supertype.getEnclosedElements()) {
5136                         if (sym.isConstructor()) {
5137                             MethodSymbol ctor = (MethodSymbol)sym;
5138                             if (ctor.getParameters().isEmpty()) {
5139                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5140                                     // Handle nested classes and implicit this$0
5141                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5142                                      ((supertype.flags() & STATIC) == 0)))
5143                                     log.warning(tree.pos(),
5144                                                 LintWarnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5145                             }
5146                         }
5147                     }
5148                 } catch (ClassCastException cce) {
5149                     return ; // Don't try to recover
5150                 }
5151                 return;
5152             }
5153         }
5154 
5155         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5156             // To be effective, serialVersionUID must be marked static
5157             // and final, but private is recommended. But alas, in
5158             // practice there are many non-private serialVersionUID
5159             // fields.
5160              if ((svuid.flags() & (STATIC | FINAL)) !=
5161                  (STATIC | FINAL)) {
5162                  log.warning(
5163                          TreeInfo.diagnosticPositionFor(svuid, tree),
5164                              LintWarnings.ImproperSVUID((Symbol)e));
5165              }
5166 
5167              // check svuid has type long
5168              if (!svuid.type.hasTag(LONG)) {
5169                  log.warning(
5170                          TreeInfo.diagnosticPositionFor(svuid, tree),
5171                              LintWarnings.LongSVUID((Symbol)e));
5172              }
5173 
5174              if (svuid.getConstValue() == null)
5175                  log.warning(
5176                          TreeInfo.diagnosticPositionFor(svuid, tree),
5177                              LintWarnings.ConstantSVUID((Symbol)e));
5178         }
5179 
5180         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5181             // To be effective, serialPersisentFields must be private, static, and final.
5182              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5183                  (PRIVATE | STATIC | FINAL)) {
5184                  log.warning(
5185                          TreeInfo.diagnosticPositionFor(spf, tree),
5186                              LintWarnings.ImproperSPF);
5187              }
5188 
5189              if (!types.isSameType(spf.type, OSF_TYPE)) {
5190                  log.warning(
5191                          TreeInfo.diagnosticPositionFor(spf, tree),
5192                              LintWarnings.OSFArraySPF);
5193              }
5194 
5195             if (isExternalizable((Type)(e.asType()))) {
5196                 log.warning(
5197                         TreeInfo.diagnosticPositionFor(spf, tree),
5198                             LintWarnings.IneffectualSerialFieldExternalizable);
5199             }
5200 
5201             // Warn if serialPersistentFields is initialized to a
5202             // literal null.
5203             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5204             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5205                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5206                 JCExpression initExpr = variableDef.init;
5207                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5208                      log.warning(initExpr.pos(),
5209                                  LintWarnings.SPFNullInit);
5210                  }
5211             }
5212         }
5213 
5214         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5215             // The "synchronized" modifier is seen in the wild on
5216             // readObject and writeObject methods and is generally
5217             // innocuous.
5218 
5219             // private void writeObject(ObjectOutputStream stream) throws IOException
5220             checkPrivateNonStaticMethod(tree, method);
5221             checkReturnType(tree, e, method, syms.voidType);
5222             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5223             checkExceptions(tree, e, method, syms.ioExceptionType);
5224             checkExternalizable(tree, e, method);
5225         }
5226 
5227         private void checkWriteReplace(JCClassDecl tree, Element e, MethodSymbol method) {
5228             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5229             // ObjectStreamException
5230 
5231             // Excluding abstract, could have a more complicated
5232             // rule based on abstract-ness of the class
5233             checkConcreteInstanceMethod(tree, e, method);
5234             checkReturnType(tree, e, method, syms.objectType);
5235             checkNoArgs(tree, e, method);
5236             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5237         }
5238 
5239         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5240             // The "synchronized" modifier is seen in the wild on
5241             // readObject and writeObject methods and is generally
5242             // innocuous.
5243 
5244             // private void readObject(ObjectInputStream stream)
5245             //   throws IOException, ClassNotFoundException
5246             checkPrivateNonStaticMethod(tree, method);
5247             checkReturnType(tree, e, method, syms.voidType);
5248             checkOneArg(tree, e, method, syms.objectInputStreamType);
5249             checkExceptions(tree, e, method, syms.ioExceptionType, syms.classNotFoundExceptionType);
5250             checkExternalizable(tree, e, method);
5251         }
5252 
5253         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5254             // private void readObjectNoData() throws ObjectStreamException
5255             checkPrivateNonStaticMethod(tree, method);
5256             checkReturnType(tree, e, method, syms.voidType);
5257             checkNoArgs(tree, e, method);
5258             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5259             checkExternalizable(tree, e, method);
5260         }
5261 
5262         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5263             // ANY-ACCESS-MODIFIER Object readResolve()
5264             // throws ObjectStreamException
5265 
5266             // Excluding abstract, could have a more complicated
5267             // rule based on abstract-ness of the class
5268             checkConcreteInstanceMethod(tree, e, method);
5269             checkReturnType(tree,e, method, syms.objectType);
5270             checkNoArgs(tree, e, method);
5271             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5272         }
5273 
5274         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5275             //public void writeExternal(ObjectOutput) throws IOException
5276             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5277         }
5278 
5279         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5280             // public void readExternal(ObjectInput) throws IOException
5281             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5282          }
5283 
5284         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5285                                              boolean isExtern) {
5286             if (isExtern && isExternMethod(tree, e, method, argType)) {
5287                 log.warning(
5288                         TreeInfo.diagnosticPositionFor(method, tree),
5289                             LintWarnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5290             }
5291         }
5292 
5293         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5294             var flags = method.flags();
5295             if ((flags & PRIVATE) == 0) {
5296                 log.warning(
5297                         TreeInfo.diagnosticPositionFor(method, tree),
5298                             LintWarnings.SerialMethodNotPrivate(method.getSimpleName()));
5299             }
5300 
5301             if ((flags & STATIC) != 0) {
5302                 log.warning(
5303                         TreeInfo.diagnosticPositionFor(method, tree),
5304                             LintWarnings.SerialMethodStatic(method.getSimpleName()));
5305             }
5306         }
5307 
5308         /**
5309          * Per section 1.12 "Serialization of Enum Constants" of
5310          * the serialization specification, due to the special
5311          * serialization handling of enums, any writeObject,
5312          * readObject, writeReplace, and readResolve methods are
5313          * ignored as are serialPersistentFields and
5314          * serialVersionUID fields.
5315          */
5316         @Override
5317         public Void visitTypeAsEnum(TypeElement e,
5318                                     JCClassDecl p) {
5319             boolean isExtern = isExternalizable((Type)e.asType());
5320             for(Element el : e.getEnclosedElements()) {
5321                 runUnderLint(el, p, (enclosed, tree) -> {
5322                     String name = enclosed.getSimpleName().toString();
5323                     switch(enclosed.getKind()) {
5324                     case FIELD -> {
5325                         var field = (VarSymbol)enclosed;
5326                         if (serialFieldNames.contains(name)) {
5327                             log.warning(
5328                                     TreeInfo.diagnosticPositionFor(field, tree),
5329                                         LintWarnings.IneffectualSerialFieldEnum(name));
5330                         }
5331                     }
5332 
5333                     case METHOD -> {
5334                         var method = (MethodSymbol)enclosed;
5335                         if (serialMethodNames.contains(name)) {
5336                             log.warning(
5337                                     TreeInfo.diagnosticPositionFor(method, tree),
5338                                         LintWarnings.IneffectualSerialMethodEnum(name));
5339                         }
5340 
5341                         if (isExtern) {
5342                             switch(name) {
5343                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5344                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5345                             }
5346                         }
5347                     }
5348 
5349                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5350                     case ENUM_CONSTANT -> {
5351                         var field = (VarSymbol)enclosed;
5352                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5353                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5354                             ClassSymbol enumConstantType = nc.def.sym;
5355                             visitTypeAsEnum(enumConstantType, p);
5356                         }
5357                     }
5358 
5359                     }});
5360             }
5361             return null;
5362         }
5363 
5364         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5365             //public void writeExternal(ObjectOutput) throws IOException
5366             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5367         }
5368 
5369         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5370              // public void readExternal(ObjectInput) throws IOException
5371             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5372          }
5373 
5374         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5375             if (isExternMethod(tree, e, method, argType)) {
5376                 log.warning(
5377                         TreeInfo.diagnosticPositionFor(method, tree),
5378                             LintWarnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5379             }
5380         }
5381 
5382         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5383             long flags = method.flags();
5384             Type rtype = method.getReturnType();
5385 
5386             // Not necessary to check throws clause in this context
5387             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5388                 types.isSameType(syms.voidType, rtype) &&
5389                 hasExactlyOneArgWithType(tree, e, method, argType);
5390         }
5391 
5392         /**
5393          * Most serialization-related fields and methods on interfaces
5394          * are ineffectual or problematic.
5395          */
5396         @Override
5397         public Void visitTypeAsInterface(TypeElement e,
5398                                          JCClassDecl p) {
5399             for(Element el : e.getEnclosedElements()) {
5400                 runUnderLint(el, p, (enclosed, tree) -> {
5401                     String name = null;
5402                     switch(enclosed.getKind()) {
5403                     case FIELD -> {
5404                         var field = (VarSymbol)enclosed;
5405                         name = field.getSimpleName().toString();
5406                         switch(name) {
5407                         case "serialPersistentFields" -> {
5408                             log.warning(
5409                                     TreeInfo.diagnosticPositionFor(field, tree),
5410                                         LintWarnings.IneffectualSerialFieldInterface);
5411                         }
5412 
5413                         case "serialVersionUID" -> {
5414                             checkSerialVersionUID(tree, e, field);
5415                         }
5416                         }
5417                     }
5418 
5419                     case METHOD -> {
5420                         var method = (MethodSymbol)enclosed;
5421                         name = enclosed.getSimpleName().toString();
5422                         if (serialMethodNames.contains(name)) {
5423                             switch (name) {
5424                             case
5425                                 "readObject",
5426                                 "readObjectNoData",
5427                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5428 
5429                             case
5430                                 "writeReplace",
5431                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5432 
5433                             default ->  throw new AssertionError();
5434                             }
5435 
5436                         }
5437                     }}
5438                 });
5439             }
5440 
5441             return null;
5442         }
5443 
5444         private void checkPrivateMethod(JCClassDecl tree,
5445                                         Element e,
5446                                         MethodSymbol method) {
5447             if ((method.flags() & PRIVATE) == 0) {
5448                 log.warning(
5449                         TreeInfo.diagnosticPositionFor(method, tree),
5450                             LintWarnings.NonPrivateMethodWeakerAccess);
5451             }
5452         }
5453 
5454         private void checkDefaultIneffective(JCClassDecl tree,
5455                                              Element e,
5456                                              MethodSymbol method) {
5457             if ((method.flags() & DEFAULT) == DEFAULT) {
5458                 log.warning(
5459                         TreeInfo.diagnosticPositionFor(method, tree),
5460                             LintWarnings.DefaultIneffective);
5461 
5462             }
5463         }
5464 
5465         @Override
5466         public Void visitTypeAsAnnotationType(TypeElement e,
5467                                               JCClassDecl p) {
5468             // Per the JLS, annotation types are not serializeable
5469             return null;
5470         }
5471 
5472         /**
5473          * From the Java Object Serialization Specification, 1.13
5474          * Serialization of Records:
5475          *
5476          * "The process by which record objects are serialized or
5477          * externalized cannot be customized; any class-specific
5478          * writeObject, readObject, readObjectNoData, writeExternal,
5479          * and readExternal methods defined by record classes are
5480          * ignored during serialization and deserialization. However,
5481          * a substitute object to be serialized or a designate
5482          * replacement may be specified, by the writeReplace and
5483          * readResolve methods, respectively. Any
5484          * serialPersistentFields field declaration is
5485          * ignored. Documenting serializable fields and data for
5486          * record classes is unnecessary, since there is no variation
5487          * in the serial form, other than whether a substitute or
5488          * replacement object is used. The serialVersionUID of a
5489          * record class is 0L unless explicitly declared. The
5490          * requirement for matching serialVersionUID values is waived
5491          * for record classes."
5492          */
5493         @Override
5494         public Void visitTypeAsRecord(TypeElement e,
5495                                       JCClassDecl p) {
5496             boolean isExtern = isExternalizable((Type)e.asType());
5497             for(Element el : e.getEnclosedElements()) {
5498                 runUnderLint(el, p, (enclosed, tree) -> {
5499                     String name = enclosed.getSimpleName().toString();
5500                     switch(enclosed.getKind()) {
5501                     case FIELD -> {
5502                         var field = (VarSymbol)enclosed;
5503                         switch(name) {
5504                         case "serialPersistentFields" -> {
5505                             log.warning(
5506                                     TreeInfo.diagnosticPositionFor(field, tree),
5507                                         LintWarnings.IneffectualSerialFieldRecord);
5508                         }
5509 
5510                         case "serialVersionUID" -> {
5511                             // Could generate additional warning that
5512                             // svuid value is not checked to match for
5513                             // records.
5514                             checkSerialVersionUID(tree, e, field);
5515                         }}
5516                     }
5517 
5518                     case METHOD -> {
5519                         var method = (MethodSymbol)enclosed;
5520                         switch(name) {
5521                         case "writeReplace" -> checkWriteReplace(tree, e, method);
5522                         case "readResolve"  -> checkReadResolve(tree, e, method);
5523 
5524                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5525                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5526 
5527                         default -> {
5528                             if (serialMethodNames.contains(name)) {
5529                                 log.warning(
5530                                         TreeInfo.diagnosticPositionFor(method, tree),
5531                                             LintWarnings.IneffectualSerialMethodRecord(name));
5532                             }
5533                         }}
5534                     }}});
5535             }
5536             return null;
5537         }
5538 
5539         void checkConcreteInstanceMethod(JCClassDecl tree,
5540                                          Element enclosing,
5541                                          MethodSymbol method) {
5542             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5543                     log.warning(
5544                             TreeInfo.diagnosticPositionFor(method, tree),
5545                                 LintWarnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5546             }
5547         }
5548 
5549         private void checkReturnType(JCClassDecl tree,
5550                                      Element enclosing,
5551                                      MethodSymbol method,
5552                                      Type expectedReturnType) {
5553             // Note: there may be complications checking writeReplace
5554             // and readResolve since they return Object and could, in
5555             // principle, have covariant overrides and any synthetic
5556             // bridge method would not be represented here for
5557             // checking.
5558             Type rtype = method.getReturnType();
5559             if (!types.isSameType(expectedReturnType, rtype)) {
5560                 log.warning(
5561                         TreeInfo.diagnosticPositionFor(method, tree),
5562                             LintWarnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5563                                                                       rtype, expectedReturnType));
5564             }
5565         }
5566 
5567         private void checkOneArg(JCClassDecl tree,
5568                                  Element enclosing,
5569                                  MethodSymbol method,
5570                                  Type expectedType) {
5571             String name = method.getSimpleName().toString();
5572 
5573             var parameters= method.getParameters();
5574 
5575             if (parameters.size() != 1) {
5576                 log.warning(
5577                         TreeInfo.diagnosticPositionFor(method, tree),
5578                             LintWarnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5579                 return;
5580             }
5581 
5582             Type parameterType = parameters.get(0).asType();
5583             if (!types.isSameType(parameterType, expectedType)) {
5584                 log.warning(
5585                         TreeInfo.diagnosticPositionFor(method, tree),
5586                             LintWarnings.SerialMethodParameterType(method.getSimpleName(),
5587                                                                expectedType,
5588                                                                parameterType));
5589             }
5590         }
5591 
5592         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5593                                                  Element enclosing,
5594                                                  MethodSymbol method,
5595                                                  Type expectedType) {
5596             var parameters = method.getParameters();
5597             return (parameters.size() == 1) &&
5598                 types.isSameType(parameters.get(0).asType(), expectedType);
5599         }
5600 
5601 
5602         private void checkNoArgs(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5603             var parameters = method.getParameters();
5604             if (!parameters.isEmpty()) {
5605                 log.warning(
5606                         TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5607                             LintWarnings.SerialMethodNoArgs(method.getSimpleName()));
5608             }
5609         }
5610 
5611         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5612             // If the enclosing class is externalizable, warn for the method
5613             if (isExternalizable((Type)enclosing.asType())) {
5614                 log.warning(
5615                         TreeInfo.diagnosticPositionFor(method, tree),
5616                             LintWarnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5617             }
5618             return;
5619         }
5620 
5621         private void checkExceptions(JCClassDecl tree,
5622                                      Element enclosing,
5623                                      MethodSymbol method,
5624                                      Type... declaredExceptions) {
5625             for (Type thrownType: method.getThrownTypes()) {
5626                 // For each exception in the throws clause of the
5627                 // method, if not an Error and not a RuntimeException,
5628                 // check if the exception is a subtype of a declared
5629                 // exception from the throws clause of the
5630                 // serialization method in question.
5631                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5632                     types.isSubtype(thrownType, syms.errorType) ) {
5633                     continue;
5634                 } else {
5635                     boolean declared = false;
5636                     for (Type declaredException : declaredExceptions) {
5637                         if (types.isSubtype(thrownType, declaredException)) {
5638                             declared = true;
5639                             continue;
5640                         }
5641                     }
5642                     if (!declared) {
5643                         log.warning(
5644                                 TreeInfo.diagnosticPositionFor(method, tree),
5645                                     LintWarnings.SerialMethodUnexpectedException(method.getSimpleName(),
5646                                                                              thrownType));
5647                     }
5648                 }
5649             }
5650             return;
5651         }
5652 
5653         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5654             Lint prevLint = lint;
5655             try {
5656                 lint = lint.augment((Symbol) symbol);
5657 
5658                 if (lint.isEnabled(LintCategory.SERIAL)) {
5659                     task.accept(symbol, p);
5660                 }
5661 
5662                 return null;
5663             } finally {
5664                 lint = prevLint;
5665             }
5666         }
5667 
5668     }
5669 
5670 }