1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Consumer;
  32 import java.util.function.Predicate;
  33 import java.util.function.Supplier;
  34 import java.util.function.ToIntBiFunction;
  35 import java.util.stream.Collectors;
  36 import java.util.stream.StreamSupport;
  37 
  38 import javax.lang.model.element.ElementKind;
  39 import javax.lang.model.element.NestingKind;
  40 import javax.tools.JavaFileManager;
  41 
  42 import com.sun.source.tree.CaseTree;
  43 import com.sun.tools.javac.code.*;
  44 import com.sun.tools.javac.code.Attribute.Compound;
  45 import com.sun.tools.javac.code.Directive.ExportsDirective;
  46 import com.sun.tools.javac.code.Directive.RequiresDirective;
  47 import com.sun.tools.javac.code.Source.Feature;
  48 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  49 import com.sun.tools.javac.jvm.*;
  50 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  51 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  52 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  53 import com.sun.tools.javac.tree.*;
  54 import com.sun.tools.javac.util.*;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  56 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  57 import com.sun.tools.javac.util.JCDiagnostic.Error;
  58 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  59 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  60 import com.sun.tools.javac.util.List;
  61 
  62 import com.sun.tools.javac.code.Lint;
  63 import com.sun.tools.javac.code.Lint.LintCategory;
  64 import com.sun.tools.javac.code.Scope.WriteableScope;
  65 import com.sun.tools.javac.code.Type.*;
  66 import com.sun.tools.javac.code.Symbol.*;
  67 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  68 import com.sun.tools.javac.tree.JCTree.*;
  69 
  70 import static com.sun.tools.javac.code.Flags.*;
  71 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  72 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  73 import static com.sun.tools.javac.code.Kinds.*;
  74 import static com.sun.tools.javac.code.Kinds.Kind.*;
  75 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  76 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  77 import static com.sun.tools.javac.code.TypeTag.*;
  78 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  79 
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import javax.lang.model.element.Element;
  82 import javax.lang.model.element.ExecutableElement;
  83 import javax.lang.model.element.TypeElement;
  84 import javax.lang.model.type.DeclaredType;
  85 import javax.lang.model.type.TypeMirror;
  86 import javax.lang.model.util.ElementFilter;
  87 import javax.lang.model.util.ElementKindVisitor14;
  88 
  89 /** Type checking helper class for the attribution phase.
  90  *
  91  *  <p><b>This is NOT part of any supported API.
  92  *  If you write code that depends on this, you do so at your own risk.
  93  *  This code and its internal interfaces are subject to change or
  94  *  deletion without notice.</b>
  95  */
  96 public class Check {
  97     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  98 
  99     // Flag bits indicating which item(s) chosen from a pair of items
 100     private static final int FIRST = 0x01;
 101     private static final int SECOND = 0x02;
 102 
 103     private final Names names;
 104     private final Log log;
 105     private final Resolve rs;
 106     private final Symtab syms;
 107     private final Enter enter;
 108     private final DeferredAttr deferredAttr;
 109     private final Infer infer;
 110     private final Types types;
 111     private final TypeAnnotations typeAnnotations;
 112     private final JCDiagnostic.Factory diags;
 113     private final JavaFileManager fileManager;
 114     private final Source source;
 115     private final Target target;
 116     private final Profile profile;
 117     private final Preview preview;
 118     private final boolean warnOnAnyAccessToMembers;
 119 
 120     public boolean disablePreviewCheck;
 121 
 122     // The set of lint options currently in effect. It is initialized
 123     // from the context, and then is set/reset as needed by Attr as it
 124     // visits all the various parts of the trees during attribution.
 125     private Lint lint;
 126 
 127     // The method being analyzed in Attr - it is set/reset as needed by
 128     // Attr as it visits new method declarations.
 129     private MethodSymbol method;
 130 
 131     public static Check instance(Context context) {
 132         Check instance = context.get(checkKey);
 133         if (instance == null)
 134             instance = new Check(context);
 135         return instance;
 136     }
 137 
 138     @SuppressWarnings("this-escape")
 139     protected Check(Context context) {
 140         context.put(checkKey, this);
 141 
 142         names = Names.instance(context);
 143         log = Log.instance(context);
 144         rs = Resolve.instance(context);
 145         syms = Symtab.instance(context);
 146         enter = Enter.instance(context);
 147         deferredAttr = DeferredAttr.instance(context);
 148         infer = Infer.instance(context);
 149         types = Types.instance(context);
 150         typeAnnotations = TypeAnnotations.instance(context);
 151         diags = JCDiagnostic.Factory.instance(context);
 152         Options options = Options.instance(context);
 153         lint = Lint.instance(context);
 154         fileManager = context.get(JavaFileManager.class);
 155 
 156         source = Source.instance(context);
 157         target = Target.instance(context);
 158         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 159 
 160         disablePreviewCheck = false;
 161 
 162         Target target = Target.instance(context);
 163         syntheticNameChar = target.syntheticNameChar();
 164 
 165         profile = Profile.instance(context);
 166         preview = Preview.instance(context);
 167 
 168         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 169         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 170         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 171         boolean enforceMandatoryWarnings = true;
 172 
 173         deprecationHandler = new MandatoryWarningHandler(log, null, verboseDeprecated,
 174                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 175         removalHandler = new MandatoryWarningHandler(log, null, verboseRemoval,
 176                 enforceMandatoryWarnings, "removal", LintCategory.REMOVAL);
 177         uncheckedHandler = new MandatoryWarningHandler(log, null, verboseUnchecked,
 178                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 179         sunApiHandler = new MandatoryWarningHandler(log, null, false,
 180                 enforceMandatoryWarnings, "sunapi", null);
 181 
 182         deferredLintHandler = DeferredLintHandler.instance(context);
 183 
 184         allowModules = Feature.MODULES.allowedInSource(source);
 185         allowRecords = Feature.RECORDS.allowedInSource(source);
 186         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 187     }
 188 
 189     /** Character for synthetic names
 190      */
 191     char syntheticNameChar;
 192 
 193     /** A table mapping flat names of all compiled classes for each module in this run
 194      *  to their symbols; maintained from outside.
 195      */
 196     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 197 
 198     /** A handler for messages about deprecated usage.
 199      */
 200     private MandatoryWarningHandler deprecationHandler;
 201 
 202     /** A handler for messages about deprecated-for-removal usage.
 203      */
 204     private MandatoryWarningHandler removalHandler;
 205 
 206     /** A handler for messages about unchecked or unsafe usage.
 207      */
 208     private MandatoryWarningHandler uncheckedHandler;
 209 
 210     /** A handler for messages about using proprietary API.
 211      */
 212     private MandatoryWarningHandler sunApiHandler;
 213 
 214     /** A handler for deferred lint warnings.
 215      */
 216     private DeferredLintHandler deferredLintHandler;
 217 
 218     /** Are modules allowed
 219      */
 220     private final boolean allowModules;
 221 
 222     /** Are records allowed
 223      */
 224     private final boolean allowRecords;
 225 
 226     /** Are sealed classes allowed
 227      */
 228     private final boolean allowSealed;
 229 
 230 /* *************************************************************************
 231  * Errors and Warnings
 232  **************************************************************************/
 233 
 234     Lint setLint(Lint newLint) {
 235         Lint prev = lint;
 236         lint = newLint;
 237         return prev;
 238     }
 239 
 240     MethodSymbol setMethod(MethodSymbol newMethod) {
 241         MethodSymbol prev = method;
 242         method = newMethod;
 243         return prev;
 244     }
 245 
 246     /** Warn about deprecated symbol.
 247      *  @param pos        Position to be used for error reporting.
 248      *  @param sym        The deprecated symbol.
 249      */
 250     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 251         if (sym.isDeprecatedForRemoval()) {
 252             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 253                 if (sym.kind == MDL) {
 254                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemovalModule(sym));
 255                 } else {
 256                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 257                 }
 258             }
 259         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 260             if (sym.kind == MDL) {
 261                 deprecationHandler.report(pos, Warnings.HasBeenDeprecatedModule(sym));
 262             } else {
 263                 deprecationHandler.report(pos, Warnings.HasBeenDeprecated(sym, sym.location()));
 264             }
 265         }
 266     }
 267 
 268     /** Log a preview warning.
 269      *  @param pos        Position to be used for error reporting.
 270      *  @param msg        A Warning describing the problem.
 271      */
 272     public void warnPreviewAPI(DiagnosticPosition pos, Warning warnKey) {
 273         if (!lint.isSuppressed(LintCategory.PREVIEW))
 274             preview.reportPreviewWarning(pos, warnKey);
 275     }
 276 
 277     /** Log a preview warning.
 278      *  @param pos        Position to be used for error reporting.
 279      *  @param msg        A Warning describing the problem.
 280      */
 281     public void warnDeclaredUsingPreview(DiagnosticPosition pos, Symbol sym) {
 282         if (!lint.isSuppressed(LintCategory.PREVIEW))
 283             preview.reportPreviewWarning(pos, Warnings.DeclaredUsingPreview(kindName(sym), sym));
 284     }
 285 
 286     /** Log a preview warning.
 287      *  @param pos        Position to be used for error reporting.
 288      *  @param msg        A Warning describing the problem.
 289      */
 290     public void warnRestrictedAPI(DiagnosticPosition pos, Symbol sym) {
 291         if (lint.isEnabled(LintCategory.RESTRICTED))
 292             log.warning(LintCategory.RESTRICTED, pos, Warnings.RestrictedMethod(sym.enclClass(), sym));
 293     }
 294 
 295     /** Warn about unchecked operation.
 296      *  @param pos        Position to be used for error reporting.
 297      *  @param msg        A string describing the problem.
 298      */
 299     public void warnUnchecked(DiagnosticPosition pos, Warning warnKey) {
 300         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 301             uncheckedHandler.report(pos, warnKey);
 302     }
 303 
 304     /** Warn about unsafe vararg method decl.
 305      *  @param pos        Position to be used for error reporting.
 306      */
 307     void warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey) {
 308         if (lint.isEnabled(LintCategory.VARARGS))
 309             log.warning(LintCategory.VARARGS, pos, warnKey);
 310     }
 311 
 312     public void warnStatic(DiagnosticPosition pos, Warning warnKey) {
 313         if (lint.isEnabled(LintCategory.STATIC))
 314             log.warning(LintCategory.STATIC, pos, warnKey);
 315     }
 316 
 317     /** Warn about division by integer constant zero.
 318      *  @param pos        Position to be used for error reporting.
 319      */
 320     void warnDivZero(DiagnosticPosition pos) {
 321         if (lint.isEnabled(LintCategory.DIVZERO))
 322             log.warning(LintCategory.DIVZERO, pos, Warnings.DivZero);
 323     }
 324 
 325     /**
 326      * Report any deferred diagnostics.
 327      */
 328     public void reportDeferredDiagnostics() {
 329         deprecationHandler.reportDeferredDiagnostic();
 330         removalHandler.reportDeferredDiagnostic();
 331         uncheckedHandler.reportDeferredDiagnostic();
 332         sunApiHandler.reportDeferredDiagnostic();
 333     }
 334 
 335 
 336     /** Report a failure to complete a class.
 337      *  @param pos        Position to be used for error reporting.
 338      *  @param ex         The failure to report.
 339      */
 340     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 341         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 342         return syms.errType;
 343     }
 344 
 345     /** Report an error that wrong type tag was found.
 346      *  @param pos        Position to be used for error reporting.
 347      *  @param required   An internationalized string describing the type tag
 348      *                    required.
 349      *  @param found      The type that was found.
 350      */
 351     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 352         // this error used to be raised by the parser,
 353         // but has been delayed to this point:
 354         if (found instanceof Type type && type.hasTag(VOID)) {
 355             log.error(pos, Errors.IllegalStartOfType);
 356             return syms.errType;
 357         }
 358         log.error(pos, Errors.TypeFoundReq(found, required));
 359         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 360     }
 361 
 362     /** Report duplicate declaration error.
 363      */
 364     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 365         if (!sym.type.isErroneous()) {
 366             Symbol location = sym.location();
 367             if (location.kind == MTH &&
 368                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 369                 log.error(pos,
 370                           Errors.AlreadyDefinedInClinit(kindName(sym),
 371                                                         sym,
 372                                                         kindName(sym.location()),
 373                                                         kindName(sym.location().enclClass()),
 374                                                         sym.location().enclClass()));
 375             } else {
 376                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 377                  * as we should have issued an error for the duplicated fields
 378                  */
 379                 if (location.kind != MTH ||
 380                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 381                         ((sym.owner.flags_field & RECORD) == 0)) {
 382                     log.error(pos,
 383                             Errors.AlreadyDefined(kindName(sym),
 384                                     sym,
 385                                     kindName(sym.location()),
 386                                     sym.location()));
 387                 }
 388             }
 389         }
 390     }
 391 
 392     /** Report array/varargs duplicate declaration
 393      */
 394     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 395         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 396             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 397         }
 398     }
 399 
 400 /* ************************************************************************
 401  * duplicate declaration checking
 402  *************************************************************************/
 403 
 404     /** Check that variable does not hide variable with same name in
 405      *  immediately enclosing local scope.
 406      *  @param pos           Position for error reporting.
 407      *  @param v             The symbol.
 408      *  @param s             The scope.
 409      */
 410     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 411         for (Symbol sym : s.getSymbolsByName(v.name)) {
 412             if (sym.owner != v.owner) break;
 413             if (sym.kind == VAR &&
 414                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 415                 v.name != names.error) {
 416                 duplicateError(pos, sym);
 417                 return;
 418             }
 419         }
 420     }
 421 
 422     /** Check that a class or interface does not hide a class or
 423      *  interface with same name in immediately enclosing local scope.
 424      *  @param pos           Position for error reporting.
 425      *  @param c             The symbol.
 426      *  @param s             The scope.
 427      */
 428     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 429         for (Symbol sym : s.getSymbolsByName(c.name)) {
 430             if (sym.owner != c.owner) break;
 431             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 432                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 433                 c.name != names.error) {
 434                 duplicateError(pos, sym);
 435                 return;
 436             }
 437         }
 438     }
 439 
 440     /** Check that class does not have the same name as one of
 441      *  its enclosing classes, or as a class defined in its enclosing scope.
 442      *  return true if class is unique in its enclosing scope.
 443      *  @param pos           Position for error reporting.
 444      *  @param name          The class name.
 445      *  @param s             The enclosing scope.
 446      */
 447     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 448         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 449             if (sym.kind == TYP && sym.name != names.error) {
 450                 duplicateError(pos, sym);
 451                 return false;
 452             }
 453         }
 454         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 455             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 456                     !sym.isImplicit()) {
 457                 duplicateError(pos, sym);
 458                 return true;
 459             }
 460         }
 461         return true;
 462     }
 463 
 464 /* *************************************************************************
 465  * Class name generation
 466  **************************************************************************/
 467 
 468 
 469     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 470 
 471     /** Return name of local class.
 472      *  This is of the form   {@code <enclClass> $ n <classname> }
 473      *  where
 474      *    enclClass is the flat name of the enclosing class,
 475      *    classname is the simple name of the local class
 476      */
 477     public Name localClassName(ClassSymbol c) {
 478         Name enclFlatname = c.owner.enclClass().flatname;
 479         String enclFlatnameStr = enclFlatname.toString();
 480         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 481         Integer index = localClassNameIndexes.get(key);
 482         for (int i = (index == null) ? 1 : index; ; i++) {
 483             Name flatname = names.fromString(enclFlatnameStr
 484                     + syntheticNameChar + i + c.name);
 485             if (getCompiled(c.packge().modle, flatname) == null) {
 486                 localClassNameIndexes.put(key, i + 1);
 487                 return flatname;
 488             }
 489         }
 490     }
 491 
 492     public void clearLocalClassNameIndexes(ClassSymbol c) {
 493         if (c.owner != null && c.owner.kind != NIL) {
 494             localClassNameIndexes.remove(new Pair<>(
 495                     c.owner.enclClass().flatname, c.name));
 496         }
 497     }
 498 
 499     public void newRound() {
 500         compiled.clear();
 501         localClassNameIndexes.clear();
 502     }
 503 
 504     public void clear() {
 505         deprecationHandler.clear();
 506         removalHandler.clear();
 507         uncheckedHandler.clear();
 508         sunApiHandler.clear();
 509     }
 510 
 511     public void putCompiled(ClassSymbol csym) {
 512         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 513     }
 514 
 515     public ClassSymbol getCompiled(ClassSymbol csym) {
 516         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 517     }
 518 
 519     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 520         return compiled.get(Pair.of(msym, flatname));
 521     }
 522 
 523     public void removeCompiled(ClassSymbol csym) {
 524         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 525     }
 526 
 527 /* *************************************************************************
 528  * Type Checking
 529  **************************************************************************/
 530 
 531     /**
 532      * A check context is an object that can be used to perform compatibility
 533      * checks - depending on the check context, meaning of 'compatibility' might
 534      * vary significantly.
 535      */
 536     public interface CheckContext {
 537         /**
 538          * Is type 'found' compatible with type 'req' in given context
 539          */
 540         boolean compatible(Type found, Type req, Warner warn);
 541         /**
 542          * Report a check error
 543          */
 544         void report(DiagnosticPosition pos, JCDiagnostic details);
 545         /**
 546          * Obtain a warner for this check context
 547          */
 548         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 549 
 550         public InferenceContext inferenceContext();
 551 
 552         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 553     }
 554 
 555     /**
 556      * This class represent a check context that is nested within another check
 557      * context - useful to check sub-expressions. The default behavior simply
 558      * redirects all method calls to the enclosing check context leveraging
 559      * the forwarding pattern.
 560      */
 561     static class NestedCheckContext implements CheckContext {
 562         CheckContext enclosingContext;
 563 
 564         NestedCheckContext(CheckContext enclosingContext) {
 565             this.enclosingContext = enclosingContext;
 566         }
 567 
 568         public boolean compatible(Type found, Type req, Warner warn) {
 569             return enclosingContext.compatible(found, req, warn);
 570         }
 571 
 572         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 573             enclosingContext.report(pos, details);
 574         }
 575 
 576         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 577             return enclosingContext.checkWarner(pos, found, req);
 578         }
 579 
 580         public InferenceContext inferenceContext() {
 581             return enclosingContext.inferenceContext();
 582         }
 583 
 584         public DeferredAttrContext deferredAttrContext() {
 585             return enclosingContext.deferredAttrContext();
 586         }
 587     }
 588 
 589     /**
 590      * Check context to be used when evaluating assignment/return statements
 591      */
 592     CheckContext basicHandler = new CheckContext() {
 593         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 594             log.error(pos, Errors.ProbFoundReq(details));
 595         }
 596         public boolean compatible(Type found, Type req, Warner warn) {
 597             return types.isAssignable(found, req, warn);
 598         }
 599 
 600         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 601             return convertWarner(pos, found, req);
 602         }
 603 
 604         public InferenceContext inferenceContext() {
 605             return infer.emptyContext;
 606         }
 607 
 608         public DeferredAttrContext deferredAttrContext() {
 609             return deferredAttr.emptyDeferredAttrContext;
 610         }
 611 
 612         @Override
 613         public String toString() {
 614             return "CheckContext: basicHandler";
 615         }
 616     };
 617 
 618     /** Check that a given type is assignable to a given proto-type.
 619      *  If it is, return the type, otherwise return errType.
 620      *  @param pos        Position to be used for error reporting.
 621      *  @param found      The type that was found.
 622      *  @param req        The type that was required.
 623      */
 624     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 625         return checkType(pos, found, req, basicHandler);
 626     }
 627 
 628     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 629         final InferenceContext inferenceContext = checkContext.inferenceContext();
 630         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 631             inferenceContext.addFreeTypeListener(List.of(req, found),
 632                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 633         }
 634         if (req.hasTag(ERROR))
 635             return req;
 636         if (req.hasTag(NONE))
 637             return found;
 638         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 639             return found;
 640         } else {
 641             if (found.isNumeric() && req.isNumeric()) {
 642                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 643                 return types.createErrorType(found);
 644             }
 645             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 646             return types.createErrorType(found);
 647         }
 648     }
 649 
 650     /** Check that a given type can be cast to a given target type.
 651      *  Return the result of the cast.
 652      *  @param pos        Position to be used for error reporting.
 653      *  @param found      The type that is being cast.
 654      *  @param req        The target type of the cast.
 655      */
 656     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 657         return checkCastable(pos, found, req, basicHandler);
 658     }
 659     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 660         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 661             return req;
 662         } else {
 663             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 664             return types.createErrorType(found);
 665         }
 666     }
 667 
 668     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 669      * The problem should only be reported for non-292 cast
 670      */
 671     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 672         if (!tree.type.isErroneous()
 673                 && types.isSameType(tree.expr.type, tree.clazz.type)
 674                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 675                 && !is292targetTypeCast(tree)) {
 676             deferredLintHandler.report(() -> {
 677                 if (lint.isEnabled(LintCategory.CAST))
 678                     log.warning(LintCategory.CAST,
 679                             tree.pos(), Warnings.RedundantCast(tree.clazz.type));
 680             });
 681         }
 682     }
 683     //where
 684         private boolean is292targetTypeCast(JCTypeCast tree) {
 685             boolean is292targetTypeCast = false;
 686             JCExpression expr = TreeInfo.skipParens(tree.expr);
 687             if (expr.hasTag(APPLY)) {
 688                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 689                 Symbol sym = TreeInfo.symbol(apply.meth);
 690                 is292targetTypeCast = sym != null &&
 691                     sym.kind == MTH &&
 692                     (sym.flags() & HYPOTHETICAL) != 0;
 693             }
 694             return is292targetTypeCast;
 695         }
 696 
 697         private static final boolean ignoreAnnotatedCasts = true;
 698 
 699     /** Check that a type is within some bounds.
 700      *
 701      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 702      *  type argument.
 703      *  @param a             The type that should be bounded by bs.
 704      *  @param bound         The bound.
 705      */
 706     private boolean checkExtends(Type a, Type bound) {
 707          if (a.isUnbound()) {
 708              return true;
 709          } else if (!a.hasTag(WILDCARD)) {
 710              a = types.cvarUpperBound(a);
 711              return types.isSubtype(a, bound);
 712          } else if (a.isExtendsBound()) {
 713              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 714          } else if (a.isSuperBound()) {
 715              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 716          }
 717          return true;
 718      }
 719 
 720     /** Check that type is different from 'void'.
 721      *  @param pos           Position to be used for error reporting.
 722      *  @param t             The type to be checked.
 723      */
 724     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 725         if (t.hasTag(VOID)) {
 726             log.error(pos, Errors.VoidNotAllowedHere);
 727             return types.createErrorType(t);
 728         } else {
 729             return t;
 730         }
 731     }
 732 
 733     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 734         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 735             return typeTagError(pos,
 736                                 diags.fragment(Fragments.TypeReqClassArray),
 737                                 asTypeParam(t));
 738         } else {
 739             return t;
 740         }
 741     }
 742 
 743     /** Check that type is a class or interface type.
 744      *  @param pos           Position to be used for error reporting.
 745      *  @param t             The type to be checked.
 746      */
 747     Type checkClassType(DiagnosticPosition pos, Type t) {
 748         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 749             return typeTagError(pos,
 750                                 diags.fragment(Fragments.TypeReqClass),
 751                                 asTypeParam(t));
 752         } else {
 753             return t;
 754         }
 755     }
 756     //where
 757         private Object asTypeParam(Type t) {
 758             return (t.hasTag(TYPEVAR))
 759                                     ? diags.fragment(Fragments.TypeParameter(t))
 760                                     : t;
 761         }
 762 
 763     void checkConstraintsOfValueClass(JCClassDecl tree, ClassSymbol c) {
 764         DiagnosticPosition pos = tree.pos();
 765         for (Type st : types.closure(c.type)) {
 766             if (st == null || st.tsym == null || st.tsym.kind == ERR)
 767                 continue;
 768             if  (st.tsym == syms.objectType.tsym || st.tsym == syms.recordType.tsym || st.isInterface())
 769                 continue;
 770             if (!st.tsym.isAbstract()) {
 771                 if (c != st.tsym) {
 772                     log.error(pos, Errors.ConcreteSupertypeForValueClass(c, st));
 773                 }
 774                 continue;
 775             }
 776             // dealing with an abstract value or value super class below.
 777             for (Symbol s : st.tsym.members().getSymbols(NON_RECURSIVE)) {
 778                 if (s.kind == MTH) {
 779                     if ((s.flags() & (SYNCHRONIZED | STATIC)) == SYNCHRONIZED) {
 780                         log.error(pos, Errors.SuperClassMethodCannotBeSynchronized(s, c, st));
 781                     }
 782                     break;
 783                 }
 784             }
 785         }
 786     }
 787 
 788     /** Check that type is a valid qualifier for a constructor reference expression
 789      */
 790     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 791         t = checkClassOrArrayType(pos, t);
 792         if (t.hasTag(CLASS)) {
 793             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 794                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 795                 t = types.createErrorType(t);
 796             } else if ((t.tsym.flags() & ENUM) != 0) {
 797                 log.error(pos, Errors.EnumCantBeInstantiated);
 798                 t = types.createErrorType(t);
 799             } else {
 800                 t = checkClassType(pos, t, true);
 801             }
 802         } else if (t.hasTag(ARRAY)) {
 803             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 804                 log.error(pos, Errors.GenericArrayCreation);
 805                 t = types.createErrorType(t);
 806             }
 807         }
 808         return t;
 809     }
 810 
 811     /** Check that type is a class or interface type.
 812      *  @param pos           Position to be used for error reporting.
 813      *  @param t             The type to be checked.
 814      *  @param noBounds    True if type bounds are illegal here.
 815      */
 816     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 817         t = checkClassType(pos, t);
 818         if (noBounds && t.isParameterized()) {
 819             List<Type> args = t.getTypeArguments();
 820             while (args.nonEmpty()) {
 821                 if (args.head.hasTag(WILDCARD))
 822                     return typeTagError(pos,
 823                                         diags.fragment(Fragments.TypeReqExact),
 824                                         args.head);
 825                 args = args.tail;
 826             }
 827         }
 828         return t;
 829     }
 830 
 831     /** Check that type is a reference type, i.e. a class, interface or array type
 832      *  or a type variable.
 833      *  @param pos           Position to be used for error reporting.
 834      *  @param t             The type to be checked.
 835      */
 836     Type checkRefType(DiagnosticPosition pos, Type t) {
 837         if (t.isReference())
 838             return t;
 839         else
 840             return typeTagError(pos,
 841                                 diags.fragment(Fragments.TypeReqRef),
 842                                 t);
 843     }
 844 
 845     /** Check that type is an identity type, i.e. not a value type.
 846      *  When not discernible statically, give it the benefit of doubt
 847      *  and defer to runtime.
 848      *
 849      *  @param pos           Position to be used for error reporting.
 850      *  @param t             The type to be checked.
 851      */
 852     void checkIdentityType(DiagnosticPosition pos, Type t) {
 853         if (t.hasTag(TYPEVAR)) {
 854             t = types.skipTypeVars(t, false);
 855         }
 856         if (t.isIntersection()) {
 857             IntersectionClassType ict = (IntersectionClassType)t;
 858             for (Type component : ict.getExplicitComponents()) {
 859                 checkIdentityType(pos, component);
 860             }
 861             return;
 862         }
 863         if (t.isPrimitive() || (t.isValueClass() && !t.tsym.isAbstract()))
 864             typeTagError(pos, diags.fragment(Fragments.TypeReqIdentity), t);
 865     }
 866 
 867     /** Check that each type is a reference type, i.e. a class, interface or array type
 868      *  or a type variable.
 869      *  @param trees         Original trees, used for error reporting.
 870      *  @param types         The types to be checked.
 871      */
 872     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 873         List<JCExpression> tl = trees;
 874         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 875             l.head = checkRefType(tl.head.pos(), l.head);
 876             tl = tl.tail;
 877         }
 878         return types;
 879     }
 880 
 881     /** Check that type is a null or reference type.
 882      *  @param pos           Position to be used for error reporting.
 883      *  @param t             The type to be checked.
 884      */
 885     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 886         if (t.isReference() || t.hasTag(BOT))
 887             return t;
 888         else
 889             return typeTagError(pos,
 890                                 diags.fragment(Fragments.TypeReqRef),
 891                                 t);
 892     }
 893 
 894     /** Check that flag set does not contain elements of two conflicting sets. s
 895      *  Return true if it doesn't.
 896      *  @param pos           Position to be used for error reporting.
 897      *  @param flags         The set of flags to be checked.
 898      *  @param set1          Conflicting flags set #1.
 899      *  @param set2          Conflicting flags set #2.
 900      */
 901     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 902         if ((flags & set1) != 0 && (flags & set2) != 0) {
 903             log.error(pos,
 904                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 905                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 906             return false;
 907         } else
 908             return true;
 909     }
 910 
 911     /** Check that usage of diamond operator is correct (i.e. diamond should not
 912      * be used with non-generic classes or in anonymous class creation expressions)
 913      */
 914     Type checkDiamond(JCNewClass tree, Type t) {
 915         if (!TreeInfo.isDiamond(tree) ||
 916                 t.isErroneous()) {
 917             return checkClassType(tree.clazz.pos(), t, true);
 918         } else {
 919             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 920                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 921                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 922             }
 923             if (t.tsym.type.getTypeArguments().isEmpty()) {
 924                 log.error(tree.clazz.pos(),
 925                           Errors.CantApplyDiamond1(t,
 926                                                    Fragments.DiamondNonGeneric(t)));
 927                 return types.createErrorType(t);
 928             } else if (tree.typeargs != null &&
 929                     tree.typeargs.nonEmpty()) {
 930                 log.error(tree.clazz.pos(),
 931                           Errors.CantApplyDiamond1(t,
 932                                                    Fragments.DiamondAndExplicitParams(t)));
 933                 return types.createErrorType(t);
 934             } else {
 935                 return t;
 936             }
 937         }
 938     }
 939 
 940     /** Check that the type inferred using the diamond operator does not contain
 941      *  non-denotable types such as captured types or intersection types.
 942      *  @param t the type inferred using the diamond operator
 943      *  @return  the (possibly empty) list of non-denotable types.
 944      */
 945     List<Type> checkDiamondDenotable(ClassType t) {
 946         ListBuffer<Type> buf = new ListBuffer<>();
 947         for (Type arg : t.allparams()) {
 948             if (!checkDenotable(arg)) {
 949                 buf.append(arg);
 950             }
 951         }
 952         return buf.toList();
 953     }
 954 
 955     public boolean checkDenotable(Type t) {
 956         return denotableChecker.visit(t, null);
 957     }
 958         // where
 959 
 960         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 961          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 962          *  otherwise.
 963          */
 964         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 965             @Override
 966             public Boolean visitType(Type t, Void s) {
 967                 return true;
 968             }
 969             @Override
 970             public Boolean visitClassType(ClassType t, Void s) {
 971                 if (t.isUnion() || t.isIntersection()) {
 972                     return false;
 973                 }
 974                 for (Type targ : t.allparams()) {
 975                     if (!visit(targ, s)) {
 976                         return false;
 977                     }
 978                 }
 979                 return true;
 980             }
 981 
 982             @Override
 983             public Boolean visitTypeVar(TypeVar t, Void s) {
 984                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 985                   (i.e cannot have been produced by inference (18.4))
 986                 */
 987                 return (t.tsym.flags() & SYNTHETIC) == 0;
 988             }
 989 
 990             @Override
 991             public Boolean visitCapturedType(CapturedType t, Void s) {
 992                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 993                   (i.e cannot have been produced by capture conversion (5.1.10))
 994                 */
 995                 return false;
 996             }
 997 
 998             @Override
 999             public Boolean visitArrayType(ArrayType t, Void s) {
1000                 return visit(t.elemtype, s);
1001             }
1002 
1003             @Override
1004             public Boolean visitWildcardType(WildcardType t, Void s) {
1005                 return visit(t.type, s);
1006             }
1007         };
1008 
1009     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
1010         MethodSymbol m = tree.sym;
1011         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
1012         Type varargElemType = null;
1013         if (m.isVarArgs()) {
1014             varargElemType = types.elemtype(tree.params.last().type);
1015         }
1016         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
1017             if (varargElemType != null) {
1018                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
1019                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
1020                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
1021                 log.error(tree,
1022                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1023                                                            msg));
1024             } else {
1025                 log.error(tree,
1026                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1027                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
1028             }
1029         } else if (hasTrustMeAnno && varargElemType != null &&
1030                             types.isReifiable(varargElemType)) {
1031             warnUnsafeVararg(tree, Warnings.VarargsRedundantTrustmeAnno(
1032                                 syms.trustMeType.tsym,
1033                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
1034         }
1035         else if (!hasTrustMeAnno && varargElemType != null &&
1036                 !types.isReifiable(varargElemType)) {
1037             warnUnchecked(tree.params.head.pos(), Warnings.UncheckedVarargsNonReifiableType(varargElemType));
1038         }
1039     }
1040     //where
1041         private boolean isTrustMeAllowedOnMethod(Symbol s) {
1042             return (s.flags() & VARARGS) != 0 &&
1043                 (s.isConstructor() ||
1044                     (s.flags() & (STATIC | FINAL |
1045                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
1046         }
1047 
1048     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
1049         //check that resulting type is not the null type
1050         if (t.hasTag(BOT)) {
1051             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
1052             return types.createErrorType(t);
1053         } else if (t.hasTag(VOID)) {
1054             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
1055             return types.createErrorType(t);
1056         }
1057 
1058         //upward project the initializer type
1059         return types.upward(t, types.captures(t)).baseType();
1060     }
1061 
1062     Type checkMethod(final Type mtype,
1063             final Symbol sym,
1064             final Env<AttrContext> env,
1065             final List<JCExpression> argtrees,
1066             final List<Type> argtypes,
1067             final boolean useVarargs,
1068             InferenceContext inferenceContext) {
1069         // System.out.println("call   : " + env.tree);
1070         // System.out.println("method : " + owntype);
1071         // System.out.println("actuals: " + argtypes);
1072         if (inferenceContext.free(mtype)) {
1073             inferenceContext.addFreeTypeListener(List.of(mtype),
1074                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
1075             return mtype;
1076         }
1077         Type owntype = mtype;
1078         List<Type> formals = owntype.getParameterTypes();
1079         List<Type> nonInferred = sym.type.getParameterTypes();
1080         if (nonInferred.length() != formals.length()) nonInferred = formals;
1081         Type last = useVarargs ? formals.last() : null;
1082         if (sym.name == names.init && sym.owner == syms.enumSym) {
1083             formals = formals.tail.tail;
1084             nonInferred = nonInferred.tail.tail;
1085         }
1086         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
1087             formals = formals.tail;
1088             nonInferred = nonInferred.tail;
1089         }
1090         List<JCExpression> args = argtrees;
1091         if (args != null) {
1092             //this is null when type-checking a method reference
1093             while (formals.head != last) {
1094                 JCTree arg = args.head;
1095                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1096                 assertConvertible(arg, arg.type, formals.head, warn);
1097                 args = args.tail;
1098                 formals = formals.tail;
1099                 nonInferred = nonInferred.tail;
1100             }
1101             if (useVarargs) {
1102                 Type varArg = types.elemtype(last);
1103                 while (args.tail != null) {
1104                     JCTree arg = args.head;
1105                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1106                     assertConvertible(arg, arg.type, varArg, warn);
1107                     args = args.tail;
1108                 }
1109             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1110                 // non-varargs call to varargs method
1111                 Type varParam = owntype.getParameterTypes().last();
1112                 Type lastArg = argtypes.last();
1113                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1114                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1115                     log.warning(argtrees.last().pos(),
1116                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1117             }
1118         }
1119         if (useVarargs) {
1120             Type argtype = owntype.getParameterTypes().last();
1121             if (!types.isReifiable(argtype) &&
1122                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1123                  !isTrustMeAllowedOnMethod(sym))) {
1124                 warnUnchecked(env.tree.pos(), Warnings.UncheckedGenericArrayCreation(argtype));
1125             }
1126             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1127          }
1128          return owntype;
1129     }
1130     //where
1131     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1132         if (types.isConvertible(actual, formal, warn))
1133             return;
1134 
1135         if (formal.isCompound()
1136             && types.isSubtype(actual, types.supertype(formal))
1137             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1138             return;
1139     }
1140 
1141     /**
1142      * Check that type 't' is a valid instantiation of a generic class
1143      * (see JLS 4.5)
1144      *
1145      * @param t class type to be checked
1146      * @return true if 't' is well-formed
1147      */
1148     public boolean checkValidGenericType(Type t) {
1149         return firstIncompatibleTypeArg(t) == null;
1150     }
1151     //WHERE
1152         private Type firstIncompatibleTypeArg(Type type) {
1153             List<Type> formals = type.tsym.type.allparams();
1154             List<Type> actuals = type.allparams();
1155             List<Type> args = type.getTypeArguments();
1156             List<Type> forms = type.tsym.type.getTypeArguments();
1157             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1158 
1159             // For matching pairs of actual argument types `a' and
1160             // formal type parameters with declared bound `b' ...
1161             while (args.nonEmpty() && forms.nonEmpty()) {
1162                 // exact type arguments needs to know their
1163                 // bounds (for upper and lower bound
1164                 // calculations).  So we create new bounds where
1165                 // type-parameters are replaced with actuals argument types.
1166                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1167                 args = args.tail;
1168                 forms = forms.tail;
1169             }
1170 
1171             args = type.getTypeArguments();
1172             List<Type> tvars_cap = types.substBounds(formals,
1173                                       formals,
1174                                       types.capture(type).allparams());
1175             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1176                 // Let the actual arguments know their bound
1177                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1178                 args = args.tail;
1179                 tvars_cap = tvars_cap.tail;
1180             }
1181 
1182             args = type.getTypeArguments();
1183             List<Type> bounds = bounds_buf.toList();
1184 
1185             while (args.nonEmpty() && bounds.nonEmpty()) {
1186                 Type actual = args.head;
1187                 if (!isTypeArgErroneous(actual) &&
1188                         !bounds.head.isErroneous() &&
1189                         !checkExtends(actual, bounds.head)) {
1190                     return args.head;
1191                 }
1192                 args = args.tail;
1193                 bounds = bounds.tail;
1194             }
1195 
1196             args = type.getTypeArguments();
1197             bounds = bounds_buf.toList();
1198 
1199             for (Type arg : types.capture(type).getTypeArguments()) {
1200                 if (arg.hasTag(TYPEVAR) &&
1201                         arg.getUpperBound().isErroneous() &&
1202                         !bounds.head.isErroneous() &&
1203                         !isTypeArgErroneous(args.head)) {
1204                     return args.head;
1205                 }
1206                 bounds = bounds.tail;
1207                 args = args.tail;
1208             }
1209 
1210             return null;
1211         }
1212         //where
1213         boolean isTypeArgErroneous(Type t) {
1214             return isTypeArgErroneous.visit(t);
1215         }
1216 
1217         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1218             public Boolean visitType(Type t, Void s) {
1219                 return t.isErroneous();
1220             }
1221             @Override
1222             public Boolean visitTypeVar(TypeVar t, Void s) {
1223                 return visit(t.getUpperBound());
1224             }
1225             @Override
1226             public Boolean visitCapturedType(CapturedType t, Void s) {
1227                 return visit(t.getUpperBound()) ||
1228                         visit(t.getLowerBound());
1229             }
1230             @Override
1231             public Boolean visitWildcardType(WildcardType t, Void s) {
1232                 return visit(t.type);
1233             }
1234         };
1235 
1236     /** Check that given modifiers are legal for given symbol and
1237      *  return modifiers together with any implicit modifiers for that symbol.
1238      *  Warning: we can't use flags() here since this method
1239      *  is called during class enter, when flags() would cause a premature
1240      *  completion.
1241      *  @param pos           Position to be used for error reporting.
1242      *  @param flags         The set of modifiers given in a definition.
1243      *  @param sym           The defined symbol.
1244      */
1245     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1246         long mask;
1247         long implicit = 0;
1248 
1249         switch (sym.kind) {
1250         case VAR:
1251             if (TreeInfo.isReceiverParam(tree))
1252                 mask = ReceiverParamFlags;
1253             else if (sym.owner.kind != TYP)
1254                 mask = LocalVarFlags;
1255             else if ((sym.owner.flags_field & INTERFACE) != 0)
1256                 mask = implicit = InterfaceVarFlags;
1257             else {
1258                 boolean isInstanceFieldOfValueClass = sym.owner.type.isValueClass() && (flags & STATIC) == 0;
1259                 mask = !isInstanceFieldOfValueClass ? VarFlags : ExtendedVarFlags;
1260                 if (isInstanceFieldOfValueClass) {
1261                     implicit |= FINAL | STRICT;
1262                 }
1263             }
1264             break;
1265         case MTH:
1266             if (sym.name == names.init) {
1267                 if ((sym.owner.flags_field & ENUM) != 0) {
1268                     // enum constructors cannot be declared public or
1269                     // protected and must be implicitly or explicitly
1270                     // private
1271                     implicit = PRIVATE;
1272                     mask = PRIVATE;
1273                 } else
1274                     mask = ConstructorFlags;
1275             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1276                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1277                     mask = AnnotationTypeElementMask;
1278                     implicit = PUBLIC | ABSTRACT;
1279                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1280                     mask = InterfaceMethodMask;
1281                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1282                     if ((flags & DEFAULT) != 0) {
1283                         implicit |= ABSTRACT;
1284                     }
1285                 } else {
1286                     mask = implicit = InterfaceMethodFlags;
1287                 }
1288             } else if ((sym.owner.flags_field & RECORD) != 0) {
1289                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1290                         RecordMethodFlags & ~SYNCHRONIZED : RecordMethodFlags;
1291             } else {
1292                 // value objects do not have an associated monitor/lock
1293                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1294                         MethodFlags & ~SYNCHRONIZED : MethodFlags;
1295             }
1296             if ((flags & STRICTFP) != 0) {
1297                 warnOnExplicitStrictfp(pos);
1298             }
1299             // Imply STRICTFP if owner has STRICTFP set.
1300             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1301                 ((flags) & Flags.DEFAULT) != 0)
1302                 implicit |= sym.owner.flags_field & STRICTFP;
1303             break;
1304         case TYP:
1305             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1306                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1307                 boolean implicitlyStatic = !sym.isAnonymous() &&
1308                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1309                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1310                 // local statics are allowed only if records are allowed too
1311                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedStaticLocalClassFlags : ExtendedLocalClassFlags;
1312                 implicit = implicitlyStatic ? STATIC : implicit;
1313             } else if (sym.owner.kind == TYP) {
1314                 // statics in inner classes are allowed only if records are allowed too
1315                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1316                 if (sym.owner.owner.kind == PCK ||
1317                     (sym.owner.flags_field & STATIC) != 0) {
1318                     mask |= STATIC;
1319                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1320                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1321                 }
1322                 // Nested interfaces and enums are always STATIC (Spec ???)
1323                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1324             } else {
1325                 mask = ExtendedClassFlags;
1326             }
1327             // Interfaces are always ABSTRACT
1328             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1329 
1330             if ((flags & (INTERFACE | VALUE_CLASS)) == 0) {
1331                 implicit |= IDENTITY_TYPE;
1332             }
1333 
1334             if ((flags & ENUM) != 0) {
1335                 // enums can't be declared abstract, final, sealed or non-sealed or value
1336                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED | VALUE_CLASS);
1337                 implicit |= implicitEnumFinalFlag(tree);
1338             }
1339             if ((flags & RECORD) != 0) {
1340                 // records can't be declared abstract
1341                 mask &= ~ABSTRACT;
1342                 implicit |= FINAL;
1343             }
1344             if ((flags & STRICTFP) != 0) {
1345                 warnOnExplicitStrictfp(pos);
1346             }
1347             // Imply STRICTFP if owner has STRICTFP set.
1348             implicit |= sym.owner.flags_field & STRICTFP;
1349 
1350             // concrete value classes are implicitly final
1351             if ((flags & (ABSTRACT | INTERFACE | VALUE_CLASS)) == VALUE_CLASS) {
1352                 implicit |= FINAL;
1353             }
1354 
1355             // TYPs can't be declared synchronized
1356             mask &= ~SYNCHRONIZED;
1357             break;
1358         default:
1359             throw new AssertionError();
1360         }
1361         long illegal = flags & ExtendedStandardFlags & ~mask;
1362         if (illegal != 0) {
1363             if ((illegal & INTERFACE) != 0) {
1364                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1365                 mask |= INTERFACE;
1366             }
1367             else {
1368                 log.error(pos,
1369                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1370             }
1371         }
1372         else if ((sym.kind == TYP ||
1373                   // ISSUE: Disallowing abstract&private is no longer appropriate
1374                   // in the presence of inner classes. Should it be deleted here?
1375                   checkDisjoint(pos, flags,
1376                                 ABSTRACT,
1377                                 PRIVATE | STATIC | DEFAULT))
1378                  &&
1379                  checkDisjoint(pos, flags,
1380                                 STATIC | PRIVATE,
1381                                 DEFAULT)
1382                  &&
1383                  checkDisjoint(pos, flags,
1384                                ABSTRACT | INTERFACE,
1385                                FINAL | NATIVE | SYNCHRONIZED)
1386                  &&
1387                  checkDisjoint(pos, flags,
1388                         INTERFACE,
1389                         VALUE_CLASS)
1390                  &&
1391                  checkDisjoint(pos, flags,
1392                                PUBLIC,
1393                                PRIVATE | PROTECTED)
1394                  &&
1395                  checkDisjoint(pos, flags,
1396                                PRIVATE,
1397                                PUBLIC | PROTECTED)
1398                  &&
1399                  checkDisjoint(pos, (flags | implicit), // complain against volatile & implcitly final entities too.
1400                                FINAL,
1401                                VOLATILE)
1402                  &&
1403                  (sym.kind == TYP ||
1404                   checkDisjoint(pos, flags,
1405                                 ABSTRACT | NATIVE,
1406                                 STRICTFP))
1407                  && checkDisjoint(pos, flags,
1408                                 FINAL,
1409                            SEALED | NON_SEALED)
1410                  && checkDisjoint(pos, flags,
1411                                 SEALED,
1412                            FINAL | NON_SEALED)
1413                  && checkDisjoint(pos, flags,
1414                                 SEALED,
1415                                 ANNOTATION)
1416                 && checkDisjoint(pos, flags,
1417                                 VALUE_CLASS,
1418                                 ANNOTATION)
1419                 && checkDisjoint(pos, flags,
1420                                 VALUE_CLASS,
1421                                 NON_SEALED)
1422                 && checkDisjoint(pos, flags,
1423                                 VALUE_CLASS,
1424                                 INTERFACE) ) {
1425             // skip
1426         }
1427         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1428     }
1429 
1430     private void warnOnExplicitStrictfp(DiagnosticPosition pos) {
1431         DiagnosticPosition prevLintPos = deferredLintHandler.setPos(pos);
1432         try {
1433             deferredLintHandler.report(() -> {
1434                                            if (lint.isEnabled(LintCategory.STRICTFP)) {
1435                                                log.warning(LintCategory.STRICTFP,
1436                                                            pos, Warnings.Strictfp); }
1437                                        });
1438         } finally {
1439             deferredLintHandler.setPos(prevLintPos);
1440         }
1441     }
1442 
1443 
1444     /** Determine if this enum should be implicitly final.
1445      *
1446      *  If the enum has no specialized enum constants, it is final.
1447      *
1448      *  If the enum does have specialized enum constants, it is
1449      *  <i>not</i> final.
1450      */
1451     private long implicitEnumFinalFlag(JCTree tree) {
1452         if (!tree.hasTag(CLASSDEF)) return 0;
1453         class SpecialTreeVisitor extends JCTree.Visitor {
1454             boolean specialized;
1455             SpecialTreeVisitor() {
1456                 this.specialized = false;
1457             }
1458 
1459             @Override
1460             public void visitTree(JCTree tree) { /* no-op */ }
1461 
1462             @Override
1463             public void visitVarDef(JCVariableDecl tree) {
1464                 if ((tree.mods.flags & ENUM) != 0) {
1465                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1466                         specialized = true;
1467                     }
1468                 }
1469             }
1470         }
1471 
1472         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1473         JCClassDecl cdef = (JCClassDecl) tree;
1474         for (JCTree defs: cdef.defs) {
1475             defs.accept(sts);
1476             if (sts.specialized) return allowSealed ? SEALED : 0;
1477         }
1478         return FINAL;
1479     }
1480 
1481 /* *************************************************************************
1482  * Type Validation
1483  **************************************************************************/
1484 
1485     /** Validate a type expression. That is,
1486      *  check that all type arguments of a parametric type are within
1487      *  their bounds. This must be done in a second phase after type attribution
1488      *  since a class might have a subclass as type parameter bound. E.g:
1489      *
1490      *  <pre>{@code
1491      *  class B<A extends C> { ... }
1492      *  class C extends B<C> { ... }
1493      *  }</pre>
1494      *
1495      *  and we can't make sure that the bound is already attributed because
1496      *  of possible cycles.
1497      *
1498      * Visitor method: Validate a type expression, if it is not null, catching
1499      *  and reporting any completion failures.
1500      */
1501     void validate(JCTree tree, Env<AttrContext> env) {
1502         validate(tree, env, true);
1503     }
1504     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1505         new Validator(env).validateTree(tree, checkRaw, true);
1506     }
1507 
1508     /** Visitor method: Validate a list of type expressions.
1509      */
1510     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1511         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1512             validate(l.head, env);
1513     }
1514 
1515     /** A visitor class for type validation.
1516      */
1517     class Validator extends JCTree.Visitor {
1518 
1519         boolean checkRaw;
1520         boolean isOuter;
1521         Env<AttrContext> env;
1522 
1523         Validator(Env<AttrContext> env) {
1524             this.env = env;
1525         }
1526 
1527         @Override
1528         public void visitTypeArray(JCArrayTypeTree tree) {
1529             validateTree(tree.elemtype, checkRaw, isOuter);
1530         }
1531 
1532         @Override
1533         public void visitTypeApply(JCTypeApply tree) {
1534             if (tree.type.hasTag(CLASS)) {
1535                 List<JCExpression> args = tree.arguments;
1536                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1537 
1538                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1539                 if (incompatibleArg != null) {
1540                     for (JCTree arg : tree.arguments) {
1541                         if (arg.type == incompatibleArg) {
1542                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1543                         }
1544                         forms = forms.tail;
1545                      }
1546                  }
1547 
1548                 forms = tree.type.tsym.type.getTypeArguments();
1549 
1550                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1551 
1552                 // For matching pairs of actual argument types `a' and
1553                 // formal type parameters with declared bound `b' ...
1554                 while (args.nonEmpty() && forms.nonEmpty()) {
1555                     validateTree(args.head,
1556                             !(isOuter && is_java_lang_Class),
1557                             false);
1558                     args = args.tail;
1559                     forms = forms.tail;
1560                 }
1561 
1562                 // Check that this type is either fully parameterized, or
1563                 // not parameterized at all.
1564                 if (tree.type.getEnclosingType().isRaw())
1565                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1566                 if (tree.clazz.hasTag(SELECT))
1567                     visitSelectInternal((JCFieldAccess)tree.clazz);
1568             }
1569         }
1570 
1571         @Override
1572         public void visitTypeParameter(JCTypeParameter tree) {
1573             validateTrees(tree.bounds, true, isOuter);
1574             checkClassBounds(tree.pos(), tree.type);
1575         }
1576 
1577         @Override
1578         public void visitWildcard(JCWildcard tree) {
1579             if (tree.inner != null)
1580                 validateTree(tree.inner, true, isOuter);
1581         }
1582 
1583         @Override
1584         public void visitSelect(JCFieldAccess tree) {
1585             if (tree.type.hasTag(CLASS)) {
1586                 visitSelectInternal(tree);
1587 
1588                 // Check that this type is either fully parameterized, or
1589                 // not parameterized at all.
1590                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1591                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1592             }
1593         }
1594 
1595         public void visitSelectInternal(JCFieldAccess tree) {
1596             if (tree.type.tsym.isStatic() &&
1597                 tree.selected.type.isParameterized()) {
1598                 // The enclosing type is not a class, so we are
1599                 // looking at a static member type.  However, the
1600                 // qualifying expression is parameterized.
1601                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1602             } else {
1603                 // otherwise validate the rest of the expression
1604                 tree.selected.accept(this);
1605             }
1606         }
1607 
1608         @Override
1609         public void visitAnnotatedType(JCAnnotatedType tree) {
1610             tree.underlyingType.accept(this);
1611         }
1612 
1613         @Override
1614         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1615             if (that.type.hasTag(TypeTag.VOID)) {
1616                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1617             }
1618             super.visitTypeIdent(that);
1619         }
1620 
1621         /** Default visitor method: do nothing.
1622          */
1623         @Override
1624         public void visitTree(JCTree tree) {
1625         }
1626 
1627         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1628             if (tree != null) {
1629                 boolean prevCheckRaw = this.checkRaw;
1630                 this.checkRaw = checkRaw;
1631                 this.isOuter = isOuter;
1632 
1633                 try {
1634                     tree.accept(this);
1635                     if (checkRaw)
1636                         checkRaw(tree, env);
1637                 } catch (CompletionFailure ex) {
1638                     completionError(tree.pos(), ex);
1639                 } finally {
1640                     this.checkRaw = prevCheckRaw;
1641                 }
1642             }
1643         }
1644 
1645         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1646             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1647                 validateTree(l.head, checkRaw, isOuter);
1648         }
1649     }
1650 
1651     void checkRaw(JCTree tree, Env<AttrContext> env) {
1652         if (lint.isEnabled(LintCategory.RAW) &&
1653             tree.type.hasTag(CLASS) &&
1654             !TreeInfo.isDiamond(tree) &&
1655             !withinAnonConstr(env) &&
1656             tree.type.isRaw()) {
1657             log.warning(LintCategory.RAW,
1658                     tree.pos(), Warnings.RawClassUse(tree.type, tree.type.tsym.type));
1659         }
1660     }
1661     //where
1662         private boolean withinAnonConstr(Env<AttrContext> env) {
1663             return env.enclClass.name.isEmpty() &&
1664                     env.enclMethod != null && env.enclMethod.name == names.init;
1665         }
1666 
1667 /* *************************************************************************
1668  * Exception checking
1669  **************************************************************************/
1670 
1671     /* The following methods treat classes as sets that contain
1672      * the class itself and all their subclasses
1673      */
1674 
1675     /** Is given type a subtype of some of the types in given list?
1676      */
1677     boolean subset(Type t, List<Type> ts) {
1678         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1679             if (types.isSubtype(t, l.head)) return true;
1680         return false;
1681     }
1682 
1683     /** Is given type a subtype or supertype of
1684      *  some of the types in given list?
1685      */
1686     boolean intersects(Type t, List<Type> ts) {
1687         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1688             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1689         return false;
1690     }
1691 
1692     /** Add type set to given type list, unless it is a subclass of some class
1693      *  in the list.
1694      */
1695     List<Type> incl(Type t, List<Type> ts) {
1696         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1697     }
1698 
1699     /** Remove type set from type set list.
1700      */
1701     List<Type> excl(Type t, List<Type> ts) {
1702         if (ts.isEmpty()) {
1703             return ts;
1704         } else {
1705             List<Type> ts1 = excl(t, ts.tail);
1706             if (types.isSubtype(ts.head, t)) return ts1;
1707             else if (ts1 == ts.tail) return ts;
1708             else return ts1.prepend(ts.head);
1709         }
1710     }
1711 
1712     /** Form the union of two type set lists.
1713      */
1714     List<Type> union(List<Type> ts1, List<Type> ts2) {
1715         List<Type> ts = ts1;
1716         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1717             ts = incl(l.head, ts);
1718         return ts;
1719     }
1720 
1721     /** Form the difference of two type lists.
1722      */
1723     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1724         List<Type> ts = ts1;
1725         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1726             ts = excl(l.head, ts);
1727         return ts;
1728     }
1729 
1730     /** Form the intersection of two type lists.
1731      */
1732     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1733         List<Type> ts = List.nil();
1734         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1735             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1736         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1737             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1738         return ts;
1739     }
1740 
1741     /** Is exc an exception symbol that need not be declared?
1742      */
1743     boolean isUnchecked(ClassSymbol exc) {
1744         return
1745             exc.kind == ERR ||
1746             exc.isSubClass(syms.errorType.tsym, types) ||
1747             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1748     }
1749 
1750     /** Is exc an exception type that need not be declared?
1751      */
1752     boolean isUnchecked(Type exc) {
1753         return
1754             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1755             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1756             exc.hasTag(BOT);
1757     }
1758 
1759     boolean isChecked(Type exc) {
1760         return !isUnchecked(exc);
1761     }
1762 
1763     /** Same, but handling completion failures.
1764      */
1765     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1766         try {
1767             return isUnchecked(exc);
1768         } catch (CompletionFailure ex) {
1769             completionError(pos, ex);
1770             return true;
1771         }
1772     }
1773 
1774     /** Is exc handled by given exception list?
1775      */
1776     boolean isHandled(Type exc, List<Type> handled) {
1777         return isUnchecked(exc) || subset(exc, handled);
1778     }
1779 
1780     /** Return all exceptions in thrown list that are not in handled list.
1781      *  @param thrown     The list of thrown exceptions.
1782      *  @param handled    The list of handled exceptions.
1783      */
1784     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1785         List<Type> unhandled = List.nil();
1786         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1787             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1788         return unhandled;
1789     }
1790 
1791 /* *************************************************************************
1792  * Overriding/Implementation checking
1793  **************************************************************************/
1794 
1795     /** The level of access protection given by a flag set,
1796      *  where PRIVATE is highest and PUBLIC is lowest.
1797      */
1798     static int protection(long flags) {
1799         switch ((short)(flags & AccessFlags)) {
1800         case PRIVATE: return 3;
1801         case PROTECTED: return 1;
1802         default:
1803         case PUBLIC: return 0;
1804         case 0: return 2;
1805         }
1806     }
1807 
1808     /** A customized "cannot override" error message.
1809      *  @param m      The overriding method.
1810      *  @param other  The overridden method.
1811      *  @return       An internationalized string.
1812      */
1813     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1814         Symbol mloc = m.location();
1815         Symbol oloc = other.location();
1816 
1817         if ((other.owner.flags() & INTERFACE) == 0)
1818             return Fragments.CantOverride(m, mloc, other, oloc);
1819         else if ((m.owner.flags() & INTERFACE) == 0)
1820             return Fragments.CantImplement(m, mloc, other, oloc);
1821         else
1822             return Fragments.ClashesWith(m, mloc, other, oloc);
1823     }
1824 
1825     /** A customized "override" warning message.
1826      *  @param m      The overriding method.
1827      *  @param other  The overridden method.
1828      *  @return       An internationalized string.
1829      */
1830     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1831         Symbol mloc = m.location();
1832         Symbol oloc = other.location();
1833 
1834         if ((other.owner.flags() & INTERFACE) == 0)
1835             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1836         else if ((m.owner.flags() & INTERFACE) == 0)
1837             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1838         else
1839             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1840     }
1841 
1842     /** A customized "override" warning message.
1843      *  @param m      The overriding method.
1844      *  @param other  The overridden method.
1845      *  @return       An internationalized string.
1846      */
1847     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1848         Symbol mloc = m.location();
1849         Symbol oloc = other.location();
1850 
1851         if ((other.owner.flags() & INTERFACE) == 0)
1852             return Fragments.VarargsOverride(m, mloc, other, oloc);
1853         else  if ((m.owner.flags() & INTERFACE) == 0)
1854             return Fragments.VarargsImplement(m, mloc, other, oloc);
1855         else
1856             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1857     }
1858 
1859     /** Check that this method conforms with overridden method 'other'.
1860      *  where `origin' is the class where checking started.
1861      *  Complications:
1862      *  (1) Do not check overriding of synthetic methods
1863      *      (reason: they might be final).
1864      *      todo: check whether this is still necessary.
1865      *  (2) Admit the case where an interface proxy throws fewer exceptions
1866      *      than the method it implements. Augment the proxy methods with the
1867      *      undeclared exceptions in this case.
1868      *  (3) When generics are enabled, admit the case where an interface proxy
1869      *      has a result type
1870      *      extended by the result type of the method it implements.
1871      *      Change the proxies result type to the smaller type in this case.
1872      *
1873      *  @param tree         The tree from which positions
1874      *                      are extracted for errors.
1875      *  @param m            The overriding method.
1876      *  @param other        The overridden method.
1877      *  @param origin       The class of which the overriding method
1878      *                      is a member.
1879      */
1880     void checkOverride(JCTree tree,
1881                        MethodSymbol m,
1882                        MethodSymbol other,
1883                        ClassSymbol origin) {
1884         // Don't check overriding of synthetic methods or by bridge methods.
1885         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1886             return;
1887         }
1888 
1889         // Error if static method overrides instance method (JLS 8.4.8.2).
1890         if ((m.flags() & STATIC) != 0 &&
1891                    (other.flags() & STATIC) == 0) {
1892             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1893                       Errors.OverrideStatic(cannotOverride(m, other)));
1894             m.flags_field |= BAD_OVERRIDE;
1895             return;
1896         }
1897 
1898         // Error if instance method overrides static or final
1899         // method (JLS 8.4.8.1).
1900         if ((other.flags() & FINAL) != 0 ||
1901                  (m.flags() & STATIC) == 0 &&
1902                  (other.flags() & STATIC) != 0) {
1903             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1904                       Errors.OverrideMeth(cannotOverride(m, other),
1905                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1906             m.flags_field |= BAD_OVERRIDE;
1907             return;
1908         }
1909 
1910         if ((m.owner.flags() & ANNOTATION) != 0) {
1911             // handled in validateAnnotationMethod
1912             return;
1913         }
1914 
1915         // Error if overriding method has weaker access (JLS 8.4.8.3).
1916         if (protection(m.flags()) > protection(other.flags())) {
1917             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1918                       (other.flags() & AccessFlags) == 0 ?
1919                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1920                                                           "package") :
1921                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1922                                                           asFlagSet(other.flags() & AccessFlags)));
1923             m.flags_field |= BAD_OVERRIDE;
1924             return;
1925         }
1926 
1927         if (shouldCheckPreview(m, other, origin)) {
1928             checkPreview(tree.pos(), m, other);
1929         }
1930 
1931         Type mt = types.memberType(origin.type, m);
1932         Type ot = types.memberType(origin.type, other);
1933         // Error if overriding result type is different
1934         // (or, in the case of generics mode, not a subtype) of
1935         // overridden result type. We have to rename any type parameters
1936         // before comparing types.
1937         List<Type> mtvars = mt.getTypeArguments();
1938         List<Type> otvars = ot.getTypeArguments();
1939         Type mtres = mt.getReturnType();
1940         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1941 
1942         overrideWarner.clear();
1943         boolean resultTypesOK =
1944             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1945         if (!resultTypesOK) {
1946             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1947                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1948                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1949                                         other.location()), mtres, otres));
1950                 m.flags_field |= BAD_OVERRIDE;
1951             } else {
1952                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1953                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1954                 m.flags_field |= BAD_OVERRIDE;
1955             }
1956             return;
1957         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1958             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1959                     Warnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1960         }
1961 
1962         // Error if overriding method throws an exception not reported
1963         // by overridden method.
1964         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1965         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1966         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1967         if (unhandledErased.nonEmpty()) {
1968             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1969                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1970             m.flags_field |= BAD_OVERRIDE;
1971             return;
1972         }
1973         else if (unhandledUnerased.nonEmpty()) {
1974             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1975                           Warnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1976             return;
1977         }
1978 
1979         // Optional warning if varargs don't agree
1980         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1981             && lint.isEnabled(LintCategory.OVERRIDES)) {
1982             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1983                         ((m.flags() & Flags.VARARGS) != 0)
1984                         ? Warnings.OverrideVarargsMissing(varargsOverrides(m, other))
1985                         : Warnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1986         }
1987 
1988         // Warn if instance method overrides bridge method (compiler spec ??)
1989         if ((other.flags() & BRIDGE) != 0) {
1990             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1991                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1992         }
1993 
1994         // Warn if a deprecated method overridden by a non-deprecated one.
1995         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1996             Lint prevLint = setLint(lint.augment(m));
1997             try {
1998                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1999             } finally {
2000                 setLint(prevLint);
2001             }
2002         }
2003     }
2004     // where
2005         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
2006             if (m.owner != origin ||
2007                 //performance - only do the expensive checks when the overridden method is a Preview API:
2008                 (other.flags() & PREVIEW_API) == 0) {
2009                 return false;
2010             }
2011 
2012             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
2013                 if (m != s && m.overrides(s, origin, types, false)) {
2014                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
2015                     //without intermediate overriding methods:
2016                     return s == other;
2017                 }
2018             }
2019 
2020             return false;
2021         }
2022         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
2023             // If the method, m, is defined in an interface, then ignore the issue if the method
2024             // is only inherited via a supertype and also implemented in the supertype,
2025             // because in that case, we will rediscover the issue when examining the method
2026             // in the supertype.
2027             // If the method, m, is not defined in an interface, then the only time we need to
2028             // address the issue is when the method is the supertype implementation: any other
2029             // case, we will have dealt with when examining the supertype classes
2030             ClassSymbol mc = m.enclClass();
2031             Type st = types.supertype(origin.type);
2032             if (!st.hasTag(CLASS))
2033                 return true;
2034             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
2035 
2036             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
2037                 List<Type> intfs = types.interfaces(origin.type);
2038                 return (intfs.contains(mc.type) ? false : (stimpl != null));
2039             }
2040             else
2041                 return (stimpl != m);
2042         }
2043 
2044 
2045     // used to check if there were any unchecked conversions
2046     Warner overrideWarner = new Warner();
2047 
2048     /** Check that a class does not inherit two concrete methods
2049      *  with the same signature.
2050      *  @param pos          Position to be used for error reporting.
2051      *  @param site         The class type to be checked.
2052      */
2053     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
2054         Type sup = types.supertype(site);
2055         if (!sup.hasTag(CLASS)) return;
2056 
2057         for (Type t1 = sup;
2058              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
2059              t1 = types.supertype(t1)) {
2060             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2061                 if (s1.kind != MTH ||
2062                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2063                     !s1.isInheritedIn(site.tsym, types) ||
2064                     ((MethodSymbol)s1).implementation(site.tsym,
2065                                                       types,
2066                                                       true) != s1)
2067                     continue;
2068                 Type st1 = types.memberType(t1, s1);
2069                 int s1ArgsLength = st1.getParameterTypes().length();
2070                 if (st1 == s1.type) continue;
2071 
2072                 for (Type t2 = sup;
2073                      t2.hasTag(CLASS);
2074                      t2 = types.supertype(t2)) {
2075                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2076                         if (s2 == s1 ||
2077                             s2.kind != MTH ||
2078                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2079                             s2.type.getParameterTypes().length() != s1ArgsLength ||
2080                             !s2.isInheritedIn(site.tsym, types) ||
2081                             ((MethodSymbol)s2).implementation(site.tsym,
2082                                                               types,
2083                                                               true) != s2)
2084                             continue;
2085                         Type st2 = types.memberType(t2, s2);
2086                         if (types.overrideEquivalent(st1, st2))
2087                             log.error(pos,
2088                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
2089                     }
2090                 }
2091             }
2092         }
2093     }
2094 
2095     /** Check that classes (or interfaces) do not each define an abstract
2096      *  method with same name and arguments but incompatible return types.
2097      *  @param pos          Position to be used for error reporting.
2098      *  @param t1           The first argument type.
2099      *  @param t2           The second argument type.
2100      */
2101     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
2102                                             Type t1,
2103                                             Type t2,
2104                                             Type site) {
2105         if ((site.tsym.flags() & COMPOUND) != 0) {
2106             // special case for intersections: need to eliminate wildcards in supertypes
2107             t1 = types.capture(t1);
2108             t2 = types.capture(t2);
2109         }
2110         return firstIncompatibility(pos, t1, t2, site) == null;
2111     }
2112 
2113     /** Return the first method which is defined with same args
2114      *  but different return types in two given interfaces, or null if none
2115      *  exists.
2116      *  @param t1     The first type.
2117      *  @param t2     The second type.
2118      *  @param site   The most derived type.
2119      *  @return symbol from t2 that conflicts with one in t1.
2120      */
2121     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2122         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
2123         closure(t1, interfaces1);
2124         Map<TypeSymbol,Type> interfaces2;
2125         if (t1 == t2)
2126             interfaces2 = interfaces1;
2127         else
2128             closure(t2, interfaces1, interfaces2 = new HashMap<>());
2129 
2130         for (Type t3 : interfaces1.values()) {
2131             for (Type t4 : interfaces2.values()) {
2132                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
2133                 if (s != null) return s;
2134             }
2135         }
2136         return null;
2137     }
2138 
2139     /** Compute all the supertypes of t, indexed by type symbol. */
2140     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
2141         if (!t.hasTag(CLASS)) return;
2142         if (typeMap.put(t.tsym, t) == null) {
2143             closure(types.supertype(t), typeMap);
2144             for (Type i : types.interfaces(t))
2145                 closure(i, typeMap);
2146         }
2147     }
2148 
2149     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
2150     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
2151         if (!t.hasTag(CLASS)) return;
2152         if (typesSkip.get(t.tsym) != null) return;
2153         if (typeMap.put(t.tsym, t) == null) {
2154             closure(types.supertype(t), typesSkip, typeMap);
2155             for (Type i : types.interfaces(t))
2156                 closure(i, typesSkip, typeMap);
2157         }
2158     }
2159 
2160     /** Return the first method in t2 that conflicts with a method from t1. */
2161     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2162         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2163             Type st1 = null;
2164             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2165                     (s1.flags() & SYNTHETIC) != 0) continue;
2166             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2167             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2168             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2169                 if (s1 == s2) continue;
2170                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2171                         (s2.flags() & SYNTHETIC) != 0) continue;
2172                 if (st1 == null) st1 = types.memberType(t1, s1);
2173                 Type st2 = types.memberType(t2, s2);
2174                 if (types.overrideEquivalent(st1, st2)) {
2175                     List<Type> tvars1 = st1.getTypeArguments();
2176                     List<Type> tvars2 = st2.getTypeArguments();
2177                     Type rt1 = st1.getReturnType();
2178                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2179                     boolean compat =
2180                         types.isSameType(rt1, rt2) ||
2181                         !rt1.isPrimitiveOrVoid() &&
2182                         !rt2.isPrimitiveOrVoid() &&
2183                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2184                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2185                          checkCommonOverriderIn(s1,s2,site);
2186                     if (!compat) {
2187                         if (types.isSameType(t1, t2)) {
2188                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2189                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2190                         } else {
2191                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2192                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2193                         }
2194                         return s2;
2195                     }
2196                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2197                         !checkCommonOverriderIn(s1, s2, site)) {
2198                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2199                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2200                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2201                     return s2;
2202                 }
2203             }
2204         }
2205         return null;
2206     }
2207     //WHERE
2208     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2209         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2210         Type st1 = types.memberType(site, s1);
2211         Type st2 = types.memberType(site, s2);
2212         closure(site, supertypes);
2213         for (Type t : supertypes.values()) {
2214             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2215                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2216                 Type st3 = types.memberType(site,s3);
2217                 if (types.overrideEquivalent(st3, st1) &&
2218                         types.overrideEquivalent(st3, st2) &&
2219                         types.returnTypeSubstitutable(st3, st1) &&
2220                         types.returnTypeSubstitutable(st3, st2)) {
2221                     return true;
2222                 }
2223             }
2224         }
2225         return false;
2226     }
2227 
2228     /** Check that a given method conforms with any method it overrides.
2229      *  @param tree         The tree from which positions are extracted
2230      *                      for errors.
2231      *  @param m            The overriding method.
2232      */
2233     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2234         ClassSymbol origin = (ClassSymbol)m.owner;
2235         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2236             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2237                 log.error(tree.pos(), Errors.EnumNoFinalize);
2238                 return;
2239             }
2240         }
2241         if (allowRecords && origin.isRecord()) {
2242             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2243             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2244                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2245             if (recordComponent.isPresent()) {
2246                 return;
2247             }
2248         }
2249 
2250         for (Type t = origin.type; t.hasTag(CLASS);
2251              t = types.supertype(t)) {
2252             if (t != origin.type) {
2253                 checkOverride(tree, t, origin, m);
2254             }
2255             for (Type t2 : types.interfaces(t)) {
2256                 checkOverride(tree, t2, origin, m);
2257             }
2258         }
2259 
2260         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2261         // Check if this method must override a super method due to being annotated with @Override
2262         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2263         // be treated "as if as they were annotated" with @Override.
2264         boolean mustOverride = explicitOverride ||
2265                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2266         if (mustOverride && !isOverrider(m)) {
2267             DiagnosticPosition pos = tree.pos();
2268             for (JCAnnotation a : tree.getModifiers().annotations) {
2269                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2270                     pos = a.pos();
2271                     break;
2272                 }
2273             }
2274             log.error(pos,
2275                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2276                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2277         }
2278     }
2279 
2280     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2281         TypeSymbol c = site.tsym;
2282         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2283             if (m.overrides(sym, origin, types, false)) {
2284                 if ((sym.flags() & ABSTRACT) == 0) {
2285                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2286                 }
2287             }
2288         }
2289     }
2290 
2291     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2292             (s.flags() & BAD_OVERRIDE) == 0;
2293 
2294     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2295             ClassSymbol someClass) {
2296         /* At present, annotations cannot possibly have a method that is override
2297          * equivalent with Object.equals(Object) but in any case the condition is
2298          * fine for completeness.
2299          */
2300         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2301             someClass.isInterface() || someClass.isEnum() ||
2302             (someClass.flags() & ANNOTATION) != 0 ||
2303             (someClass.flags() & ABSTRACT) != 0) return;
2304         //anonymous inner classes implementing interfaces need especial treatment
2305         if (someClass.isAnonymous()) {
2306             List<Type> interfaces =  types.interfaces(someClass.type);
2307             if (interfaces != null && !interfaces.isEmpty() &&
2308                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2309         }
2310         checkClassOverrideEqualsAndHash(pos, someClass);
2311     }
2312 
2313     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2314             ClassSymbol someClass) {
2315         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2316             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2317                     .tsym.members().findFirst(names.equals);
2318             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2319                     .tsym.members().findFirst(names.hashCode);
2320             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2321                     someClass, false, equalsHasCodeFilter);
2322             boolean overridesEquals = equalsImpl != null &&
2323                                       equalsImpl.owner == someClass;
2324             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2325                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2326 
2327             if (overridesEquals && !overridesHashCode) {
2328                 log.warning(LintCategory.OVERRIDES, pos,
2329                             Warnings.OverrideEqualsButNotHashcode(someClass));
2330             }
2331         }
2332     }
2333 
2334     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2335         boolean found = false;
2336 
2337         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2338             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2339                 MethodSymbol meth = (MethodSymbol)sym;
2340                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2341                     continue;
2342                 }
2343                 if (meth.params.isEmpty()) {
2344                     found = true;
2345                     break;
2346                 }
2347                 if (meth.params.size() != 1) {
2348                     continue;
2349                 }
2350                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2351                     continue;
2352                 }
2353 
2354                 found = true;
2355                 break;
2356             }
2357         }
2358 
2359         if (!found) {
2360             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2361         }
2362     }
2363 
2364     public void checkModuleName (JCModuleDecl tree) {
2365         Name moduleName = tree.sym.name;
2366         Assert.checkNonNull(moduleName);
2367         if (lint.isEnabled(LintCategory.MODULE)) {
2368             JCExpression qualId = tree.qualId;
2369             while (qualId != null) {
2370                 Name componentName;
2371                 DiagnosticPosition pos;
2372                 switch (qualId.getTag()) {
2373                     case SELECT:
2374                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2375                         componentName = selectNode.name;
2376                         pos = selectNode.pos();
2377                         qualId = selectNode.selected;
2378                         break;
2379                     case IDENT:
2380                         componentName = ((JCIdent) qualId).name;
2381                         pos = qualId.pos();
2382                         qualId = null;
2383                         break;
2384                     default:
2385                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2386                 }
2387                 if (componentName != null) {
2388                     String moduleNameComponentString = componentName.toString();
2389                     int nameLength = moduleNameComponentString.length();
2390                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2391                         log.warning(Lint.LintCategory.MODULE, pos, Warnings.PoorChoiceForModuleName(componentName));
2392                     }
2393                 }
2394             }
2395         }
2396     }
2397 
2398     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2399         ClashFilter cf = new ClashFilter(origin.type);
2400         return (cf.test(s1) &&
2401                 cf.test(s2) &&
2402                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2403     }
2404 
2405 
2406     /** Check that all abstract members of given class have definitions.
2407      *  @param pos          Position to be used for error reporting.
2408      *  @param c            The class.
2409      */
2410     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2411         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2412         if (undef != null) {
2413             MethodSymbol undef1 =
2414                 new MethodSymbol(undef.flags(), undef.name,
2415                                  types.memberType(c.type, undef), undef.owner);
2416             log.error(pos,
2417                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2418         }
2419     }
2420 
2421     void checkNonCyclicDecl(JCClassDecl tree) {
2422         CycleChecker cc = new CycleChecker();
2423         cc.scan(tree);
2424         if (!cc.errorFound && !cc.partialCheck) {
2425             tree.sym.flags_field |= ACYCLIC;
2426         }
2427     }
2428 
2429     class CycleChecker extends TreeScanner {
2430 
2431         Set<Symbol> seenClasses = new HashSet<>();
2432         boolean errorFound = false;
2433         boolean partialCheck = false;
2434 
2435         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2436             if (sym != null && sym.kind == TYP) {
2437                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2438                 if (classEnv != null) {
2439                     DiagnosticSource prevSource = log.currentSource();
2440                     try {
2441                         log.useSource(classEnv.toplevel.sourcefile);
2442                         scan(classEnv.tree);
2443                     }
2444                     finally {
2445                         log.useSource(prevSource.getFile());
2446                     }
2447                 } else if (sym.kind == TYP) {
2448                     checkClass(pos, sym, List.nil());
2449                 }
2450             } else if (sym == null || sym.kind != PCK) {
2451                 //not completed yet
2452                 partialCheck = true;
2453             }
2454         }
2455 
2456         @Override
2457         public void visitSelect(JCFieldAccess tree) {
2458             super.visitSelect(tree);
2459             checkSymbol(tree.pos(), tree.sym);
2460         }
2461 
2462         @Override
2463         public void visitIdent(JCIdent tree) {
2464             checkSymbol(tree.pos(), tree.sym);
2465         }
2466 
2467         @Override
2468         public void visitTypeApply(JCTypeApply tree) {
2469             scan(tree.clazz);
2470         }
2471 
2472         @Override
2473         public void visitTypeArray(JCArrayTypeTree tree) {
2474             scan(tree.elemtype);
2475         }
2476 
2477         @Override
2478         public void visitClassDef(JCClassDecl tree) {
2479             List<JCTree> supertypes = List.nil();
2480             if (tree.getExtendsClause() != null) {
2481                 supertypes = supertypes.prepend(tree.getExtendsClause());
2482             }
2483             if (tree.getImplementsClause() != null) {
2484                 for (JCTree intf : tree.getImplementsClause()) {
2485                     supertypes = supertypes.prepend(intf);
2486                 }
2487             }
2488             checkClass(tree.pos(), tree.sym, supertypes);
2489         }
2490 
2491         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2492             if ((c.flags_field & ACYCLIC) != 0)
2493                 return;
2494             if (seenClasses.contains(c)) {
2495                 errorFound = true;
2496                 noteCyclic(pos, (ClassSymbol)c);
2497             } else if (!c.type.isErroneous()) {
2498                 try {
2499                     seenClasses.add(c);
2500                     if (c.type.hasTag(CLASS)) {
2501                         if (supertypes.nonEmpty()) {
2502                             scan(supertypes);
2503                         }
2504                         else {
2505                             ClassType ct = (ClassType)c.type;
2506                             if (ct.supertype_field == null ||
2507                                     ct.interfaces_field == null) {
2508                                 //not completed yet
2509                                 partialCheck = true;
2510                                 return;
2511                             }
2512                             checkSymbol(pos, ct.supertype_field.tsym);
2513                             for (Type intf : ct.interfaces_field) {
2514                                 checkSymbol(pos, intf.tsym);
2515                             }
2516                         }
2517                         if (c.owner.kind == TYP) {
2518                             checkSymbol(pos, c.owner);
2519                         }
2520                     }
2521                 } finally {
2522                     seenClasses.remove(c);
2523                 }
2524             }
2525         }
2526     }
2527 
2528     /** Check for cyclic references. Issue an error if the
2529      *  symbol of the type referred to has a LOCKED flag set.
2530      *
2531      *  @param pos      Position to be used for error reporting.
2532      *  @param t        The type referred to.
2533      */
2534     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2535         checkNonCyclicInternal(pos, t);
2536     }
2537 
2538 
2539     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2540         checkNonCyclic1(pos, t, List.nil());
2541     }
2542 
2543     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2544         final TypeVar tv;
2545         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2546             return;
2547         if (seen.contains(t)) {
2548             tv = (TypeVar)t;
2549             tv.setUpperBound(types.createErrorType(t));
2550             log.error(pos, Errors.CyclicInheritance(t));
2551         } else if (t.hasTag(TYPEVAR)) {
2552             tv = (TypeVar)t;
2553             seen = seen.prepend(tv);
2554             for (Type b : types.getBounds(tv))
2555                 checkNonCyclic1(pos, b, seen);
2556         }
2557     }
2558 
2559     /** Check for cyclic references. Issue an error if the
2560      *  symbol of the type referred to has a LOCKED flag set.
2561      *
2562      *  @param pos      Position to be used for error reporting.
2563      *  @param t        The type referred to.
2564      *  @return        True if the check completed on all attributed classes
2565      */
2566     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2567         boolean complete = true; // was the check complete?
2568         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2569         Symbol c = t.tsym;
2570         if ((c.flags_field & ACYCLIC) != 0) return true;
2571 
2572         if ((c.flags_field & LOCKED) != 0) {
2573             noteCyclic(pos, (ClassSymbol)c);
2574         } else if (!c.type.isErroneous()) {
2575             try {
2576                 c.flags_field |= LOCKED;
2577                 if (c.type.hasTag(CLASS)) {
2578                     ClassType clazz = (ClassType)c.type;
2579                     if (clazz.interfaces_field != null)
2580                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2581                             complete &= checkNonCyclicInternal(pos, l.head);
2582                     if (clazz.supertype_field != null) {
2583                         Type st = clazz.supertype_field;
2584                         if (st != null && st.hasTag(CLASS))
2585                             complete &= checkNonCyclicInternal(pos, st);
2586                     }
2587                     if (c.owner.kind == TYP)
2588                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2589                 }
2590             } finally {
2591                 c.flags_field &= ~LOCKED;
2592             }
2593         }
2594         if (complete)
2595             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2596         if (complete) c.flags_field |= ACYCLIC;
2597         return complete;
2598     }
2599 
2600     /** Note that we found an inheritance cycle. */
2601     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2602         log.error(pos, Errors.CyclicInheritance(c));
2603         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2604             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2605         Type st = types.supertype(c.type);
2606         if (st.hasTag(CLASS))
2607             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2608         c.type = types.createErrorType(c, c.type);
2609         c.flags_field |= ACYCLIC;
2610     }
2611 
2612     /** Check that all methods which implement some
2613      *  method conform to the method they implement.
2614      *  @param tree         The class definition whose members are checked.
2615      */
2616     void checkImplementations(JCClassDecl tree) {
2617         checkImplementations(tree, tree.sym, tree.sym);
2618     }
2619     //where
2620         /** Check that all methods which implement some
2621          *  method in `ic' conform to the method they implement.
2622          */
2623         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2624             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2625                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2626                 if ((lc.flags() & ABSTRACT) != 0) {
2627                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2628                         if (sym.kind == MTH &&
2629                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2630                             MethodSymbol absmeth = (MethodSymbol)sym;
2631                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2632                             if (implmeth != null && implmeth != absmeth &&
2633                                 (implmeth.owner.flags() & INTERFACE) ==
2634                                 (origin.flags() & INTERFACE)) {
2635                                 // don't check if implmeth is in a class, yet
2636                                 // origin is an interface. This case arises only
2637                                 // if implmeth is declared in Object. The reason is
2638                                 // that interfaces really don't inherit from
2639                                 // Object it's just that the compiler represents
2640                                 // things that way.
2641                                 checkOverride(tree, implmeth, absmeth, origin);
2642                             }
2643                         }
2644                     }
2645                 }
2646             }
2647         }
2648 
2649     /** Check that all abstract methods implemented by a class are
2650      *  mutually compatible.
2651      *  @param pos          Position to be used for error reporting.
2652      *  @param c            The class whose interfaces are checked.
2653      */
2654     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2655         List<Type> supertypes = types.interfaces(c);
2656         Type supertype = types.supertype(c);
2657         if (supertype.hasTag(CLASS) &&
2658             (supertype.tsym.flags() & ABSTRACT) != 0)
2659             supertypes = supertypes.prepend(supertype);
2660         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2661             if (!l.head.getTypeArguments().isEmpty() &&
2662                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2663                 return;
2664             for (List<Type> m = supertypes; m != l; m = m.tail)
2665                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2666                     return;
2667         }
2668         checkCompatibleConcretes(pos, c);
2669 
2670         boolean cIsValue = (c.tsym.flags() & VALUE_CLASS) != 0;
2671         Type identitySuper = null, valueSuper = null;
2672         for (Type t : types.closure(c)) {
2673             if (t != c) {
2674                 if ((t.tsym.flags() & IDENTITY_TYPE) != 0 && (t.tsym.flags() & VALUE_BASED) == 0)
2675                     identitySuper = t;
2676                 else if ((t.tsym.flags() & VALUE_CLASS) != 0)
2677                     valueSuper = t;
2678                 if (cIsValue && identitySuper != null && identitySuper.tsym != syms.objectType.tsym) { // Object is special
2679                     log.error(pos, Errors.ValueTypeHasIdentitySuperType(c, identitySuper));
2680                     break;
2681                 }
2682             }
2683         }
2684     }
2685 
2686     /** Check that all non-override equivalent methods accessible from 'site'
2687      *  are mutually compatible (JLS 8.4.8/9.4.1).
2688      *
2689      *  @param pos  Position to be used for error reporting.
2690      *  @param site The class whose methods are checked.
2691      *  @param sym  The method symbol to be checked.
2692      */
2693     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2694          ClashFilter cf = new ClashFilter(site);
2695         //for each method m1 that is overridden (directly or indirectly)
2696         //by method 'sym' in 'site'...
2697 
2698         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2699         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2700         for (Symbol m1 : symbolsByName) {
2701             if (!sym.overrides(m1, site.tsym, types, false)) {
2702                 continue;
2703             }
2704 
2705             //...check each method m2 that is a member of 'site'
2706             for (Symbol m2 : symbolsByName) {
2707                 if (m2 == m1) continue;
2708                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2709                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2710                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2711                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2712                     sym.flags_field |= CLASH;
2713                     if (m1 == sym) {
2714                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2715                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2716                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2717                     } else {
2718                         ClassType ct = (ClassType)site;
2719                         String kind = ct.isInterface() ? "interface" : "class";
2720                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2721                             kind,
2722                             ct.tsym.name,
2723                             m1.name,
2724                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2725                             m1.location(),
2726                             m2.name,
2727                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2728                             m2.location()));
2729                     }
2730                     return;
2731                 }
2732             }
2733         }
2734     }
2735 
2736     /** Check that all static methods accessible from 'site' are
2737      *  mutually compatible (JLS 8.4.8).
2738      *
2739      *  @param pos  Position to be used for error reporting.
2740      *  @param site The class whose methods are checked.
2741      *  @param sym  The method symbol to be checked.
2742      */
2743     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2744         ClashFilter cf = new ClashFilter(site);
2745         //for each method m1 that is a member of 'site'...
2746         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2747             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2748             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2749             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2750                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2751                     log.error(pos,
2752                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2753                     return;
2754                 }
2755             }
2756          }
2757      }
2758 
2759      //where
2760      private class ClashFilter implements Predicate<Symbol> {
2761 
2762          Type site;
2763 
2764          ClashFilter(Type site) {
2765              this.site = site;
2766          }
2767 
2768          boolean shouldSkip(Symbol s) {
2769              return (s.flags() & CLASH) != 0 &&
2770                 s.owner == site.tsym;
2771          }
2772 
2773          @Override
2774          public boolean test(Symbol s) {
2775              return s.kind == MTH &&
2776                      (s.flags() & SYNTHETIC) == 0 &&
2777                      !shouldSkip(s) &&
2778                      s.isInheritedIn(site.tsym, types) &&
2779                      !s.isConstructor();
2780          }
2781      }
2782 
2783     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2784         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2785         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2786             Assert.check(m.kind == MTH);
2787             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2788             if (prov.size() > 1) {
2789                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2790                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2791                 for (MethodSymbol provSym : prov) {
2792                     if ((provSym.flags() & DEFAULT) != 0) {
2793                         defaults = defaults.append(provSym);
2794                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2795                         abstracts = abstracts.append(provSym);
2796                     }
2797                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2798                         //strong semantics - issue an error if two sibling interfaces
2799                         //have two override-equivalent defaults - or if one is abstract
2800                         //and the other is default
2801                         Fragment diagKey;
2802                         Symbol s1 = defaults.first();
2803                         Symbol s2;
2804                         if (defaults.size() > 1) {
2805                             s2 = defaults.toList().tail.head;
2806                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2807                                     m.name, types.memberType(site, m).getParameterTypes(),
2808                                     s1.location(), s2.location());
2809 
2810                         } else {
2811                             s2 = abstracts.first();
2812                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2813                                     m.name, types.memberType(site, m).getParameterTypes(),
2814                                     s1.location(), s2.location());
2815                         }
2816                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2817                         break;
2818                     }
2819                 }
2820             }
2821         }
2822     }
2823 
2824     //where
2825      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2826 
2827          Type site;
2828 
2829          DefaultMethodClashFilter(Type site) {
2830              this.site = site;
2831          }
2832 
2833          @Override
2834          public boolean test(Symbol s) {
2835              return s.kind == MTH &&
2836                      (s.flags() & DEFAULT) != 0 &&
2837                      s.isInheritedIn(site.tsym, types) &&
2838                      !s.isConstructor();
2839          }
2840      }
2841 
2842     /** Report warnings for potentially ambiguous method declarations in the given site. */
2843     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2844 
2845         // Skip if warning not enabled
2846         if (!lint.isEnabled(LintCategory.OVERLOADS))
2847             return;
2848 
2849         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2850         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2851             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2852 
2853         // Build the predicate that determines if site is responsible for an ambiguity
2854         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2855 
2856         // Now remove overridden methods from each group, leaving only site's actual members
2857         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2858 
2859         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2860         methodGroups.forEach(list -> list.removeIf(
2861             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2862 
2863         // Warn about ambiguous overload method pairs for which site is responsible
2864         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2865 
2866             // See if this is an ambiguous overload for which "site" is responsible
2867             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2868                 return 0;
2869 
2870             // Locate the warning at one of the methods, if possible
2871             DiagnosticPosition pos =
2872                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2873                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2874                 tree.pos();
2875 
2876             // Log the warning
2877             log.warning(LintCategory.OVERLOADS, pos,
2878                 Warnings.PotentiallyAmbiguousOverload(
2879                     m1.asMemberOf(site, types), m1.location(),
2880                     m2.asMemberOf(site, types), m2.location()));
2881 
2882             // Don't warn again for either of these two methods
2883             return FIRST | SECOND;
2884         }));
2885     }
2886 
2887     /** Build a predicate that determines, given two methods that are members of the given class,
2888      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2889      *
2890      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2891      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2892      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2893      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2894      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2895      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2896      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2897      *  As an optimization, we first check if either method is declared in C and does not override
2898      *  any other methods; in this case the class is definitely responsible.
2899      */
2900     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2901         List<? extends Collection<MethodSymbol>> methodGroups) {
2902 
2903         // Define the "overrides" predicate
2904         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2905 
2906         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2907         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2908         methodGroups.forEach(list -> {
2909             for (MethodSymbol m : list) {
2910 
2911                 // Skip methods not declared in site
2912                 if (m.owner != site.tsym)
2913                     continue;
2914 
2915                 // Gather all supertype methods overridden by m, directly or indirectly
2916                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2917                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2918                   .collect(Collectors.toCollection(ArrayList::new));
2919 
2920                 // Eliminate non-direct overrides
2921                 removePreempted(overriddenMethods, overrides);
2922 
2923                 // Add to map
2924                 overriddenMethodsMap.put(m, overriddenMethods);
2925             }
2926         });
2927 
2928         // Build the predicate
2929         return (m1, m2) -> {
2930 
2931             // Get corresponding supertype methods (if declared in site)
2932             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2933             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2934 
2935             // Quick check for the case where a method was added by site itself
2936             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2937                 return true;
2938             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2939                 return true;
2940 
2941             // Get each method's corresponding method(s) from supertypes of site
2942             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2943               overriddenMethods1 : Collections.singletonList(m1);
2944             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2945               overriddenMethods2 : Collections.singletonList(m2);
2946 
2947             // See if we can blame some direct supertype instead
2948             return types.directSupertypes(site).stream()
2949               .filter(stype -> stype != syms.objectType)
2950               .map(stype -> stype.tsym.type)                // view supertype in its original form
2951               .noneMatch(stype -> {
2952                 for (MethodSymbol sm1 : supertypeMethods1) {
2953                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2954                         continue;
2955                     for (MethodSymbol sm2 : supertypeMethods2) {
2956                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2957                             continue;
2958                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2959                             return true;
2960                     }
2961                 }
2962                 return false;
2963             });
2964         };
2965     }
2966 
2967     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2968      *  after applying the given filter.
2969      */
2970     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2971             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2972         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2973         return StreamSupport.stream(symbols.spliterator(), false)
2974           .map(MethodSymbol.class::cast)
2975           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2976           .entrySet()
2977           .stream()
2978           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2979           .map(Map.Entry::getValue)
2980           .collect(List.collector());
2981     }
2982 
2983     /** Compare elements in a list pair-wise in order to remove some of them.
2984      *  @param list mutable list of items
2985      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2986      */
2987     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2988         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2989             T item1 = list.get(index1);
2990             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2991                 T item2 = list.get(index2);
2992                 int flags = comparer.applyAsInt(item1, item2);
2993                 if ((flags & SECOND) != 0)
2994                     list.remove(index2--);          // remove item2
2995                 if ((flags & FIRST) != 0) {
2996                     list.remove(index1--);          // remove item1
2997                     break;
2998                 }
2999             }
3000         }
3001     }
3002 
3003     /** Remove elements in a list that are preempted by some other element in the list.
3004      *  @param list mutable list of items
3005      *  @param preempts decides if one item preempts another, causing the second one to be removed
3006      */
3007     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
3008         compareAndRemove(list, (item1, item2) -> {
3009             int flags = 0;
3010             if (preempts.test(item1, item2))
3011                 flags |= SECOND;
3012             if (preempts.test(item2, item1))
3013                 flags |= FIRST;
3014             return flags;
3015         });
3016     }
3017 
3018     /** Filters method candidates for the "potentially ambiguous method" check */
3019     class PotentiallyAmbiguousFilter extends ClashFilter {
3020 
3021         PotentiallyAmbiguousFilter(Type site) {
3022             super(site);
3023         }
3024 
3025         @Override
3026         boolean shouldSkip(Symbol s) {
3027             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
3028         }
3029     }
3030 
3031     /**
3032       * Report warnings for potentially ambiguous method declarations. Two declarations
3033       * are potentially ambiguous if they feature two unrelated functional interface
3034       * in same argument position (in which case, a call site passing an implicit
3035       * lambda would be ambiguous). This assumes they already have the same name.
3036       */
3037     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
3038         Assert.check(msym1.name == msym2.name);
3039         if (msym1 == msym2)
3040             return false;
3041         Type mt1 = types.memberType(site, msym1);
3042         Type mt2 = types.memberType(site, msym2);
3043         //if both generic methods, adjust type variables
3044         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
3045                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
3046             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
3047         }
3048         //expand varargs methods if needed
3049         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
3050         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
3051         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
3052         //if arities don't match, exit
3053         if (args1.length() != args2.length())
3054             return false;
3055         boolean potentiallyAmbiguous = false;
3056         while (args1.nonEmpty() && args2.nonEmpty()) {
3057             Type s = args1.head;
3058             Type t = args2.head;
3059             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
3060                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
3061                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
3062                         types.findDescriptorType(s).getParameterTypes().length() ==
3063                         types.findDescriptorType(t).getParameterTypes().length()) {
3064                     potentiallyAmbiguous = true;
3065                 } else {
3066                     return false;
3067                 }
3068             }
3069             args1 = args1.tail;
3070             args2 = args2.tail;
3071         }
3072         return potentiallyAmbiguous;
3073     }
3074 
3075     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
3076         if (warnOnAnyAccessToMembers ||
3077             (lint.isEnabled(LintCategory.SERIAL) &&
3078             !lint.isSuppressed(LintCategory.SERIAL) &&
3079             isLambda)) {
3080             Symbol sym = TreeInfo.symbol(tree);
3081             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
3082                 return;
3083             }
3084 
3085             if (sym.kind == VAR) {
3086                 if ((sym.flags() & PARAMETER) != 0 ||
3087                     sym.isDirectlyOrIndirectlyLocal() ||
3088                     sym.name == names._this ||
3089                     sym.name == names._super) {
3090                     return;
3091                 }
3092             }
3093 
3094             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
3095                 isEffectivelyNonPublic(sym)) {
3096                 if (isLambda) {
3097                     if (belongsToRestrictedPackage(sym)) {
3098                         log.warning(LintCategory.SERIAL, tree.pos(),
3099                                     Warnings.AccessToMemberFromSerializableLambda(sym));
3100                     }
3101                 } else {
3102                     log.warning(tree.pos(),
3103                                 Warnings.AccessToMemberFromSerializableElement(sym));
3104                 }
3105             }
3106         }
3107     }
3108 
3109     private boolean isEffectivelyNonPublic(Symbol sym) {
3110         if (sym.packge() == syms.rootPackage) {
3111             return false;
3112         }
3113 
3114         while (sym.kind != PCK) {
3115             if ((sym.flags() & PUBLIC) == 0) {
3116                 return true;
3117             }
3118             sym = sym.owner;
3119         }
3120         return false;
3121     }
3122 
3123     private boolean belongsToRestrictedPackage(Symbol sym) {
3124         String fullName = sym.packge().fullname.toString();
3125         return fullName.startsWith("java.") ||
3126                 fullName.startsWith("javax.") ||
3127                 fullName.startsWith("sun.") ||
3128                 fullName.contains(".internal.");
3129     }
3130 
3131     /** Check that class c does not implement directly or indirectly
3132      *  the same parameterized interface with two different argument lists.
3133      *  @param pos          Position to be used for error reporting.
3134      *  @param type         The type whose interfaces are checked.
3135      */
3136     void checkClassBounds(DiagnosticPosition pos, Type type) {
3137         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
3138     }
3139 //where
3140         /** Enter all interfaces of type `type' into the hash table `seensofar'
3141          *  with their class symbol as key and their type as value. Make
3142          *  sure no class is entered with two different types.
3143          */
3144         void checkClassBounds(DiagnosticPosition pos,
3145                               Map<TypeSymbol,Type> seensofar,
3146                               Type type) {
3147             if (type.isErroneous()) return;
3148             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
3149                 Type it = l.head;
3150                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
3151 
3152                 Type oldit = seensofar.put(it.tsym, it);
3153                 if (oldit != null) {
3154                     List<Type> oldparams = oldit.allparams();
3155                     List<Type> newparams = it.allparams();
3156                     if (!types.containsTypeEquivalent(oldparams, newparams))
3157                         log.error(pos,
3158                                   Errors.CantInheritDiffArg(it.tsym,
3159                                                             Type.toString(oldparams),
3160                                                             Type.toString(newparams)));
3161                 }
3162                 checkClassBounds(pos, seensofar, it);
3163             }
3164             Type st = types.supertype(type);
3165             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
3166             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
3167         }
3168 
3169     /** Enter interface into into set.
3170      *  If it existed already, issue a "repeated interface" error.
3171      */
3172     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
3173         if (its.contains(it.tsym))
3174             log.error(pos, Errors.RepeatedInterface);
3175         else {
3176             its.add(it.tsym);
3177         }
3178     }
3179 
3180 /* *************************************************************************
3181  * Check annotations
3182  **************************************************************************/
3183 
3184     /**
3185      * Recursively validate annotations values
3186      */
3187     void validateAnnotationTree(JCTree tree) {
3188         class AnnotationValidator extends TreeScanner {
3189             @Override
3190             public void visitAnnotation(JCAnnotation tree) {
3191                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
3192                     super.visitAnnotation(tree);
3193                     validateAnnotation(tree);
3194                 }
3195             }
3196         }
3197         tree.accept(new AnnotationValidator());
3198     }
3199 
3200     /**
3201      *  {@literal
3202      *  Annotation types are restricted to primitives, String, an
3203      *  enum, an annotation, Class, Class<?>, Class<? extends
3204      *  Anything>, arrays of the preceding.
3205      *  }
3206      */
3207     void validateAnnotationType(JCTree restype) {
3208         // restype may be null if an error occurred, so don't bother validating it
3209         if (restype != null) {
3210             validateAnnotationType(restype.pos(), restype.type);
3211         }
3212     }
3213 
3214     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3215         if (type.isPrimitive()) return;
3216         if (types.isSameType(type, syms.stringType)) return;
3217         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3218         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3219         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3220         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3221             validateAnnotationType(pos, types.elemtype(type));
3222             return;
3223         }
3224         log.error(pos, Errors.InvalidAnnotationMemberType);
3225     }
3226 
3227     /**
3228      * "It is also a compile-time error if any method declared in an
3229      * annotation type has a signature that is override-equivalent to
3230      * that of any public or protected method declared in class Object
3231      * or in the interface annotation.Annotation."
3232      *
3233      * @jls 9.6 Annotation Types
3234      */
3235     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3236         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3237             Scope s = sup.tsym.members();
3238             for (Symbol sym : s.getSymbolsByName(m.name)) {
3239                 if (sym.kind == MTH &&
3240                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3241                     types.overrideEquivalent(m.type, sym.type))
3242                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3243             }
3244         }
3245     }
3246 
3247     /** Check the annotations of a symbol.
3248      */
3249     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3250         for (JCAnnotation a : annotations)
3251             validateAnnotation(a, declarationTree, s);
3252     }
3253 
3254     /** Check the type annotations.
3255      */
3256     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3257         for (JCAnnotation a : annotations)
3258             validateTypeAnnotation(a, s, isTypeParameter);
3259     }
3260 
3261     /** Check an annotation of a symbol.
3262      */
3263     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3264         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3265          *  this can impact in particular records for which annotations are forcibly propagated.
3266          */
3267         validateAnnotationTree(a);
3268         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3269 
3270         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3271                 declarationTree.hasTag(VARDEF) &&
3272                 s.owner.kind == TYP;
3273 
3274         if (isRecordField) {
3275             // first we need to check if the annotation is applicable to records
3276             Name[] targets = getTargetNames(a);
3277             boolean appliesToRecords = false;
3278             for (Name target : targets) {
3279                 appliesToRecords =
3280                                 target == names.FIELD ||
3281                                 target == names.PARAMETER ||
3282                                 target == names.METHOD ||
3283                                 target == names.TYPE_USE ||
3284                                 target == names.RECORD_COMPONENT;
3285                 if (appliesToRecords) {
3286                     break;
3287                 }
3288             }
3289             if (!appliesToRecords) {
3290                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3291             } else {
3292                 /* lets now find the annotations in the field that are targeted to record components and append them to
3293                  * the corresponding record component
3294                  */
3295                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3296                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3297                 SymbolMetadata metadata = rc.getMetadata();
3298                 if (metadata == null || metadata.isEmpty()) {
3299                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3300                      * to the record component declaration
3301                      */
3302                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3303                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3304                     ).collect(List.collector()));
3305 
3306                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3307                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3308                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3309                             if (rcAnnot.pos == fieldAnnot.pos) {
3310                                 rcAnnot.setType(fieldAnnot.type);
3311                                 break;
3312                             }
3313                         }
3314                     }
3315 
3316                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3317                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3318                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3319                      * annotations in the SE5 annotation location.
3320                      *
3321                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3322                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3323                      */
3324                 }
3325             }
3326         }
3327 
3328         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3329          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3330          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3331          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3332          * to all the possible locations.
3333          *
3334          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3335          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3336          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3337          * was both a field and a record component.
3338          *
3339          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3340          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3341          * be see by annotation processors.
3342          *
3343          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3344          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3345          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3346          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3347          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3348          *
3349          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3350          * further inspection by annotation processors.
3351          *
3352          * For example:
3353          *
3354          *     import java.lang.annotation.*;
3355          *
3356          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3357          *     @Retention(RetentionPolicy.RUNTIME)
3358          *     @interface Anno { }
3359          *
3360          *     record R(@Anno String s) {}
3361          *
3362          * at this point we will have for the case of the generated field:
3363          *   - @Anno in the modifier
3364          *   - @Anno as a type annotation
3365          *   - @Anno as a declaration annotation
3366          *
3367          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3368          * declaration annotation because the field was being treated both as a field and as a record component
3369          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3370          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3371          * is applicable as a type annotation to the type of the field.
3372          */
3373 
3374         if (a.type.tsym.isAnnotationType()) {
3375             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3376             if (!applicableTargetsOp.isEmpty()) {
3377                 Set<Name> applicableTargets = applicableTargetsOp.get();
3378                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3379                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3380                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3381                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3382 
3383                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3384                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3385                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3386                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3387                              * that are not applicable to the given record member
3388                              */
3389                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3390                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3391                              * it could be a type annotation
3392                              */
3393                         if (modifiers != null && applicableTargets.isEmpty()) {
3394                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3395                             for (JCAnnotation anno : modifiers.annotations) {
3396                                 if (anno != a) {
3397                                     newAnnotations.add(anno);
3398                                 }
3399                             }
3400                             modifiers.annotations = newAnnotations.toList();
3401                         }
3402                         // now lets remove it from the symbol
3403                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3404                     } else {
3405                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3406                     }
3407                 }
3408                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3409                  * then this is an error as we know that no compiler generated accessor will be a varargs
3410                  * method, better to fail asap
3411                  */
3412                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3413                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3414                 }
3415             }
3416         }
3417 
3418         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3419             if (s.kind != TYP) {
3420                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3421             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3422                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3423             }
3424         }
3425     }
3426 
3427     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3428         Assert.checkNonNull(a.type);
3429         // we just want to validate that the anotation doesn't have any wrong target
3430         if (s != null) getApplicableTargets(a, s);
3431         validateAnnotationTree(a);
3432 
3433         if (a.hasTag(TYPE_ANNOTATION) &&
3434                 !a.annotationType.type.isErroneous() &&
3435                 !isTypeAnnotation(a, isTypeParameter)) {
3436             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3437         }
3438     }
3439 
3440     /**
3441      * Validate the proposed container 'repeatable' on the
3442      * annotation type symbol 's'. Report errors at position
3443      * 'pos'.
3444      *
3445      * @param s The (annotation)type declaration annotated with a @Repeatable
3446      * @param repeatable the @Repeatable on 's'
3447      * @param pos where to report errors
3448      */
3449     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3450         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3451 
3452         Type t = null;
3453         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3454         if (!l.isEmpty()) {
3455             Assert.check(l.head.fst.name == names.value);
3456             if (l.head.snd instanceof Attribute.Class) {
3457                 t = ((Attribute.Class)l.head.snd).getValue();
3458             }
3459         }
3460 
3461         if (t == null) {
3462             // errors should already have been reported during Annotate
3463             return;
3464         }
3465 
3466         validateValue(t.tsym, s, pos);
3467         validateRetention(t.tsym, s, pos);
3468         validateDocumented(t.tsym, s, pos);
3469         validateInherited(t.tsym, s, pos);
3470         validateTarget(t.tsym, s, pos);
3471         validateDefault(t.tsym, pos);
3472     }
3473 
3474     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3475         Symbol sym = container.members().findFirst(names.value);
3476         if (sym != null && sym.kind == MTH) {
3477             MethodSymbol m = (MethodSymbol) sym;
3478             Type ret = m.getReturnType();
3479             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3480                 log.error(pos,
3481                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3482                                                                         ret,
3483                                                                         types.makeArrayType(contained.type)));
3484             }
3485         } else {
3486             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3487         }
3488     }
3489 
3490     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3491         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3492         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3493 
3494         boolean error = false;
3495         switch (containedRetention) {
3496         case RUNTIME:
3497             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3498                 error = true;
3499             }
3500             break;
3501         case CLASS:
3502             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3503                 error = true;
3504             }
3505         }
3506         if (error ) {
3507             log.error(pos,
3508                       Errors.InvalidRepeatableAnnotationRetention(container,
3509                                                                   containerRetention.name(),
3510                                                                   contained,
3511                                                                   containedRetention.name()));
3512         }
3513     }
3514 
3515     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3516         if (contained.attribute(syms.documentedType.tsym) != null) {
3517             if (container.attribute(syms.documentedType.tsym) == null) {
3518                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3519             }
3520         }
3521     }
3522 
3523     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3524         if (contained.attribute(syms.inheritedType.tsym) != null) {
3525             if (container.attribute(syms.inheritedType.tsym) == null) {
3526                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3527             }
3528         }
3529     }
3530 
3531     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3532         // The set of targets the container is applicable to must be a subset
3533         // (with respect to annotation target semantics) of the set of targets
3534         // the contained is applicable to. The target sets may be implicit or
3535         // explicit.
3536 
3537         Set<Name> containerTargets;
3538         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3539         if (containerTarget == null) {
3540             containerTargets = getDefaultTargetSet();
3541         } else {
3542             containerTargets = new HashSet<>();
3543             for (Attribute app : containerTarget.values) {
3544                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3545                     continue; // recovery
3546                 }
3547                 containerTargets.add(attributeEnum.value.name);
3548             }
3549         }
3550 
3551         Set<Name> containedTargets;
3552         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3553         if (containedTarget == null) {
3554             containedTargets = getDefaultTargetSet();
3555         } else {
3556             containedTargets = new HashSet<>();
3557             for (Attribute app : containedTarget.values) {
3558                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3559                     continue; // recovery
3560                 }
3561                 containedTargets.add(attributeEnum.value.name);
3562             }
3563         }
3564 
3565         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3566             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3567         }
3568     }
3569 
3570     /* get a set of names for the default target */
3571     private Set<Name> getDefaultTargetSet() {
3572         if (defaultTargets == null) {
3573             defaultTargets = Set.of(defaultTargetMetaInfo());
3574         }
3575 
3576         return defaultTargets;
3577     }
3578     private Set<Name> defaultTargets;
3579 
3580 
3581     /** Checks that s is a subset of t, with respect to ElementType
3582      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3583      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3584      * TYPE_PARAMETER}.
3585      */
3586     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3587         // Check that all elements in s are present in t
3588         for (Name n2 : s) {
3589             boolean currentElementOk = false;
3590             for (Name n1 : t) {
3591                 if (n1 == n2) {
3592                     currentElementOk = true;
3593                     break;
3594                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3595                     currentElementOk = true;
3596                     break;
3597                 } else if (n1 == names.TYPE_USE &&
3598                         (n2 == names.TYPE ||
3599                          n2 == names.ANNOTATION_TYPE ||
3600                          n2 == names.TYPE_PARAMETER)) {
3601                     currentElementOk = true;
3602                     break;
3603                 }
3604             }
3605             if (!currentElementOk)
3606                 return false;
3607         }
3608         return true;
3609     }
3610 
3611     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3612         // validate that all other elements of containing type has defaults
3613         Scope scope = container.members();
3614         for(Symbol elm : scope.getSymbols()) {
3615             if (elm.name != names.value &&
3616                 elm.kind == MTH &&
3617                 ((MethodSymbol)elm).defaultValue == null) {
3618                 log.error(pos,
3619                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3620             }
3621         }
3622     }
3623 
3624     /** Is s a method symbol that overrides a method in a superclass? */
3625     boolean isOverrider(Symbol s) {
3626         if (s.kind != MTH || s.isStatic())
3627             return false;
3628         MethodSymbol m = (MethodSymbol)s;
3629         TypeSymbol owner = (TypeSymbol)m.owner;
3630         for (Type sup : types.closure(owner.type)) {
3631             if (sup == owner.type)
3632                 continue; // skip "this"
3633             Scope scope = sup.tsym.members();
3634             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3635                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3636                     return true;
3637             }
3638         }
3639         return false;
3640     }
3641 
3642     /** Is the annotation applicable to types? */
3643     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3644         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3645         return (targets == null) ?
3646                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3647                 targets.stream()
3648                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3649     }
3650     //where
3651         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3652             Attribute.Enum e = (Attribute.Enum)a;
3653             return (e.value.name == names.TYPE_USE ||
3654                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3655         }
3656 
3657     /** Is the annotation applicable to the symbol? */
3658     Name[] getTargetNames(JCAnnotation a) {
3659         return getTargetNames(a.annotationType.type.tsym);
3660     }
3661 
3662     public Name[] getTargetNames(TypeSymbol annoSym) {
3663         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3664         Name[] targets;
3665         if (arr == null) {
3666             targets = defaultTargetMetaInfo();
3667         } else {
3668             // TODO: can we optimize this?
3669             targets = new Name[arr.values.length];
3670             for (int i=0; i<arr.values.length; ++i) {
3671                 Attribute app = arr.values[i];
3672                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3673                     return new Name[0];
3674                 }
3675                 targets[i] = attributeEnum.value.name;
3676             }
3677         }
3678         return targets;
3679     }
3680 
3681     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3682         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3683         /* the optional could be empty if the annotation is unknown in that case
3684          * we return that it is applicable and if it is erroneous that should imply
3685          * an error at the declaration site
3686          */
3687         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3688     }
3689 
3690     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3691         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3692         Name[] targets;
3693         Set<Name> applicableTargets = new HashSet<>();
3694 
3695         if (arr == null) {
3696             targets = defaultTargetMetaInfo();
3697         } else {
3698             // TODO: can we optimize this?
3699             targets = new Name[arr.values.length];
3700             for (int i=0; i<arr.values.length; ++i) {
3701                 Attribute app = arr.values[i];
3702                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3703                     // recovery
3704                     return Optional.empty();
3705                 }
3706                 targets[i] = attributeEnum.value.name;
3707             }
3708         }
3709         for (Name target : targets) {
3710             if (target == names.TYPE) {
3711                 if (s.kind == TYP)
3712                     applicableTargets.add(names.TYPE);
3713             } else if (target == names.FIELD) {
3714                 if (s.kind == VAR && s.owner.kind != MTH)
3715                     applicableTargets.add(names.FIELD);
3716             } else if (target == names.RECORD_COMPONENT) {
3717                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3718                     applicableTargets.add(names.RECORD_COMPONENT);
3719                 }
3720             } else if (target == names.METHOD) {
3721                 if (s.kind == MTH && !s.isConstructor())
3722                     applicableTargets.add(names.METHOD);
3723             } else if (target == names.PARAMETER) {
3724                 if (s.kind == VAR &&
3725                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3726                     applicableTargets.add(names.PARAMETER);
3727                 }
3728             } else if (target == names.CONSTRUCTOR) {
3729                 if (s.kind == MTH && s.isConstructor())
3730                     applicableTargets.add(names.CONSTRUCTOR);
3731             } else if (target == names.LOCAL_VARIABLE) {
3732                 if (s.kind == VAR && s.owner.kind == MTH &&
3733                       (s.flags() & PARAMETER) == 0) {
3734                     applicableTargets.add(names.LOCAL_VARIABLE);
3735                 }
3736             } else if (target == names.ANNOTATION_TYPE) {
3737                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3738                     applicableTargets.add(names.ANNOTATION_TYPE);
3739                 }
3740             } else if (target == names.PACKAGE) {
3741                 if (s.kind == PCK)
3742                     applicableTargets.add(names.PACKAGE);
3743             } else if (target == names.TYPE_USE) {
3744                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3745                     //cannot type annotate implicitly typed locals
3746                     continue;
3747                 } else if (s.kind == TYP || s.kind == VAR ||
3748                         (s.kind == MTH && !s.isConstructor() &&
3749                                 !s.type.getReturnType().hasTag(VOID)) ||
3750                         (s.kind == MTH && s.isConstructor())) {
3751                     applicableTargets.add(names.TYPE_USE);
3752                 }
3753             } else if (target == names.TYPE_PARAMETER) {
3754                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3755                     applicableTargets.add(names.TYPE_PARAMETER);
3756             } else if (target == names.MODULE) {
3757                 if (s.kind == MDL)
3758                     applicableTargets.add(names.MODULE);
3759             } else {
3760                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3761                 return Optional.empty(); // Unknown ElementType
3762             }
3763         }
3764         return Optional.of(applicableTargets);
3765     }
3766 
3767     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3768         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3769         if (atTarget == null) return null; // ok, is applicable
3770         Attribute atValue = atTarget.member(names.value);
3771         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3772     }
3773 
3774     private Name[] dfltTargetMeta;
3775     private Name[] defaultTargetMetaInfo() {
3776         if (dfltTargetMeta == null) {
3777             ArrayList<Name> defaultTargets = new ArrayList<>();
3778             defaultTargets.add(names.PACKAGE);
3779             defaultTargets.add(names.TYPE);
3780             defaultTargets.add(names.FIELD);
3781             defaultTargets.add(names.METHOD);
3782             defaultTargets.add(names.CONSTRUCTOR);
3783             defaultTargets.add(names.ANNOTATION_TYPE);
3784             defaultTargets.add(names.LOCAL_VARIABLE);
3785             defaultTargets.add(names.PARAMETER);
3786             if (allowRecords) {
3787               defaultTargets.add(names.RECORD_COMPONENT);
3788             }
3789             if (allowModules) {
3790               defaultTargets.add(names.MODULE);
3791             }
3792             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3793         }
3794         return dfltTargetMeta;
3795     }
3796 
3797     /** Check an annotation value.
3798      *
3799      * @param a The annotation tree to check
3800      * @return true if this annotation tree is valid, otherwise false
3801      */
3802     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3803         boolean res = false;
3804         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3805         try {
3806             res = validateAnnotation(a);
3807         } finally {
3808             log.popDiagnosticHandler(diagHandler);
3809         }
3810         return res;
3811     }
3812 
3813     private boolean validateAnnotation(JCAnnotation a) {
3814         boolean isValid = true;
3815         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3816 
3817         // collect an inventory of the annotation elements
3818         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3819 
3820         // remove the ones that are assigned values
3821         for (JCTree arg : a.args) {
3822             if (!arg.hasTag(ASSIGN)) continue; // recovery
3823             JCAssign assign = (JCAssign)arg;
3824             Symbol m = TreeInfo.symbol(assign.lhs);
3825             if (m == null || m.type.isErroneous()) continue;
3826             if (!elements.remove(m)) {
3827                 isValid = false;
3828                 log.error(assign.lhs.pos(),
3829                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3830             }
3831         }
3832 
3833         // all the remaining ones better have default values
3834         List<Name> missingDefaults = List.nil();
3835         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3836         for (MethodSymbol m : elements) {
3837             if (m.type.isErroneous())
3838                 continue;
3839 
3840             if (!membersWithDefault.contains(m))
3841                 missingDefaults = missingDefaults.append(m.name);
3842         }
3843         missingDefaults = missingDefaults.reverse();
3844         if (missingDefaults.nonEmpty()) {
3845             isValid = false;
3846             Error errorKey = (missingDefaults.size() > 1)
3847                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3848                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3849             log.error(a.pos(), errorKey);
3850         }
3851 
3852         return isValid && validateTargetAnnotationValue(a);
3853     }
3854 
3855     /* Validate the special java.lang.annotation.Target annotation */
3856     boolean validateTargetAnnotationValue(JCAnnotation a) {
3857         // special case: java.lang.annotation.Target must not have
3858         // repeated values in its value member
3859         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3860                 a.args.tail == null)
3861             return true;
3862 
3863         boolean isValid = true;
3864         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3865         JCAssign assign = (JCAssign) a.args.head;
3866         Symbol m = TreeInfo.symbol(assign.lhs);
3867         if (m.name != names.value) return false;
3868         JCTree rhs = assign.rhs;
3869         if (!rhs.hasTag(NEWARRAY)) return false;
3870         JCNewArray na = (JCNewArray) rhs;
3871         Set<Symbol> targets = new HashSet<>();
3872         for (JCTree elem : na.elems) {
3873             if (!targets.add(TreeInfo.symbol(elem))) {
3874                 isValid = false;
3875                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3876             }
3877         }
3878         return isValid;
3879     }
3880 
3881     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3882         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3883             (s.flags() & DEPRECATED) != 0 &&
3884             !syms.deprecatedType.isErroneous() &&
3885             s.attribute(syms.deprecatedType.tsym) == null) {
3886             log.warning(LintCategory.DEP_ANN,
3887                     pos, Warnings.MissingDeprecatedAnnotation);
3888         }
3889         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3890         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3891             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3892                 log.warning(LintCategory.DEPRECATION, pos,
3893                             Warnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3894             }
3895         }
3896     }
3897 
3898     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3899         checkDeprecated(() -> pos, other, s);
3900     }
3901 
3902     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3903         if ( (s.isDeprecatedForRemoval()
3904                 || s.isDeprecated() && !other.isDeprecated())
3905                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3906                 && s.kind != Kind.PCK) {
3907             deferredLintHandler.report(() -> warnDeprecated(pos.get(), s));
3908         }
3909     }
3910 
3911     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3912         if ((s.flags() & PROPRIETARY) != 0) {
3913             deferredLintHandler.report(() -> {
3914                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3915             });
3916         }
3917     }
3918 
3919     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3920         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3921             log.error(pos, Errors.NotInProfile(s, profile));
3922         }
3923     }
3924 
3925     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3926         if ((s.flags() & PREVIEW_API) != 0 && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3927             if ((s.flags() & PREVIEW_REFLECTIVE) == 0) {
3928                 if (!preview.isEnabled()) {
3929                     log.error(pos, Errors.IsPreview(s));
3930                 } else {
3931                     preview.markUsesPreview(pos);
3932                     deferredLintHandler.report(() -> warnPreviewAPI(pos, Warnings.IsPreview(s)));
3933                 }
3934             } else {
3935                     deferredLintHandler.report(() -> warnPreviewAPI(pos, Warnings.IsPreviewReflective(s)));
3936             }
3937         }
3938         if (preview.declaredUsingPreviewFeature(s)) {
3939             if (preview.isEnabled()) {
3940                 //for preview disabled do presumably so not need to do anything?
3941                 //If "s" is compiled from source, then there was an error for it already;
3942                 //if "s" is from classfile, there already was an error for the classfile.
3943                 preview.markUsesPreview(pos);
3944                 deferredLintHandler.report(() -> warnDeclaredUsingPreview(pos, s));
3945             }
3946         }
3947     }
3948 
3949     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3950         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3951             deferredLintHandler.report(() -> warnRestrictedAPI(pos, s));
3952         }
3953     }
3954 
3955 /* *************************************************************************
3956  * Check for recursive annotation elements.
3957  **************************************************************************/
3958 
3959     /** Check for cycles in the graph of annotation elements.
3960      */
3961     void checkNonCyclicElements(JCClassDecl tree) {
3962         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3963         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3964         try {
3965             tree.sym.flags_field |= LOCKED;
3966             for (JCTree def : tree.defs) {
3967                 if (!def.hasTag(METHODDEF)) continue;
3968                 JCMethodDecl meth = (JCMethodDecl)def;
3969                 checkAnnotationResType(meth.pos(), meth.restype.type);
3970             }
3971         } finally {
3972             tree.sym.flags_field &= ~LOCKED;
3973             tree.sym.flags_field |= ACYCLIC_ANN;
3974         }
3975     }
3976 
3977     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3978         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3979             return;
3980         if ((tsym.flags_field & LOCKED) != 0) {
3981             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3982             return;
3983         }
3984         try {
3985             tsym.flags_field |= LOCKED;
3986             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3987                 if (s.kind != MTH)
3988                     continue;
3989                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3990             }
3991         } finally {
3992             tsym.flags_field &= ~LOCKED;
3993             tsym.flags_field |= ACYCLIC_ANN;
3994         }
3995     }
3996 
3997     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3998         switch (type.getTag()) {
3999         case CLASS:
4000             if ((type.tsym.flags() & ANNOTATION) != 0)
4001                 checkNonCyclicElementsInternal(pos, type.tsym);
4002             break;
4003         case ARRAY:
4004             checkAnnotationResType(pos, types.elemtype(type));
4005             break;
4006         default:
4007             break; // int etc
4008         }
4009     }
4010 
4011 /* *************************************************************************
4012  * Check for cycles in the constructor call graph.
4013  **************************************************************************/
4014 
4015     /** Check for cycles in the graph of constructors calling other
4016      *  constructors.
4017      */
4018     void checkCyclicConstructors(JCClassDecl tree) {
4019         // use LinkedHashMap so we generate errors deterministically
4020         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
4021 
4022         // enter each constructor this-call into the map
4023         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4024             if (!TreeInfo.isConstructor(l.head))
4025                 continue;
4026             JCMethodDecl meth = (JCMethodDecl)l.head;
4027             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
4028             if (app != null && TreeInfo.name(app.meth) == names._this) {
4029                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
4030             } else {
4031                 meth.sym.flags_field |= ACYCLIC;
4032             }
4033         }
4034 
4035         // Check for cycles in the map
4036         Symbol[] ctors = new Symbol[0];
4037         ctors = callMap.keySet().toArray(ctors);
4038         for (Symbol caller : ctors) {
4039             checkCyclicConstructor(tree, caller, callMap);
4040         }
4041     }
4042 
4043     /** Look in the map to see if the given constructor is part of a
4044      *  call cycle.
4045      */
4046     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
4047                                         Map<Symbol,Symbol> callMap) {
4048         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
4049             if ((ctor.flags_field & LOCKED) != 0) {
4050                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
4051                           Errors.RecursiveCtorInvocation);
4052             } else {
4053                 ctor.flags_field |= LOCKED;
4054                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
4055                 ctor.flags_field &= ~LOCKED;
4056             }
4057             ctor.flags_field |= ACYCLIC;
4058         }
4059     }
4060 
4061 /* *************************************************************************
4062  * Verify the proper placement of super()/this() calls.
4063  *
4064  *    - super()/this() may only appear in constructors
4065  *    - There must be at most one super()/this() call per constructor
4066  *    - The super()/this() call, if any, must be a top-level statement in the
4067  *      constructor, i.e., not nested inside any other statement or block
4068  *    - There must be no return statements prior to the super()/this() call
4069  **************************************************************************/
4070 
4071     void checkSuperInitCalls(JCClassDecl tree) {
4072         new SuperThisChecker().check(tree);
4073     }
4074 
4075     private class SuperThisChecker extends TreeScanner {
4076 
4077         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
4078         private static final int MATCH_SCAN_DEPTH = 3;
4079 
4080         private boolean constructor;        // is this method a constructor?
4081         private boolean firstStatement;     // at the first statement in method?
4082         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
4083         private Name initCall;              // whichever of "super" or "init" we've seen already
4084         private int scanDepth;              // current scan recursion depth in method body
4085 
4086         public void check(JCClassDecl classDef) {
4087             scan(classDef.defs);
4088         }
4089 
4090         @Override
4091         public void visitMethodDef(JCMethodDecl tree) {
4092             Assert.check(!constructor);
4093             Assert.check(earlyReturn == null);
4094             Assert.check(initCall == null);
4095             Assert.check(scanDepth == 1);
4096 
4097             // Initialize state for this method
4098             constructor = TreeInfo.isConstructor(tree);
4099             try {
4100 
4101                 // Scan method body
4102                 if (tree.body != null) {
4103                     firstStatement = true;
4104                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
4105                         scan(l.head);
4106                         firstStatement = false;
4107                     }
4108                 }
4109 
4110                 // Verify no 'return' seen prior to an explicit super()/this() call
4111                 if (constructor && earlyReturn != null && initCall != null)
4112                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
4113             } finally {
4114                 firstStatement = false;
4115                 constructor = false;
4116                 earlyReturn = null;
4117                 initCall = null;
4118             }
4119         }
4120 
4121         @Override
4122         public void scan(JCTree tree) {
4123             scanDepth++;
4124             try {
4125                 super.scan(tree);
4126             } finally {
4127                 scanDepth--;
4128             }
4129         }
4130 
4131         @Override
4132         public void visitApply(JCMethodInvocation apply) {
4133             do {
4134 
4135                 // Is this a super() or this() call?
4136                 Name methodName = TreeInfo.name(apply.meth);
4137                 if (methodName != names._super && methodName != names._this)
4138                     break;
4139 
4140                 // super()/this() calls must only appear in a constructor
4141                 if (!constructor) {
4142                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
4143                     break;
4144                 }
4145 
4146                 // super()/this() calls must be a top level statement
4147                 if (scanDepth != MATCH_SCAN_DEPTH) {
4148                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
4149                     break;
4150                 }
4151 
4152                 // super()/this() calls must not appear more than once
4153                 if (initCall != null) {
4154                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
4155                     break;
4156                 }
4157 
4158                 // valhalla is using this feature so commenting this code for now so that the
4159                 // build doesn't depend on preview code
4160                 // If super()/this() isn't first, require "statements before super()" feature
4161                 /*if (!firstStatement) {
4162                     preview.checkSourceLevel(apply.pos(), Feature.SUPER_INIT);
4163                 }*/
4164 
4165                 // We found a legitimate super()/this() call; remember it
4166                 initCall = methodName;
4167             } while (false);
4168 
4169             // Proceed
4170             super.visitApply(apply);
4171         }
4172 
4173         @Override
4174         public void visitReturn(JCReturn tree) {
4175             if (constructor && initCall == null && earlyReturn == null)
4176                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
4177             super.visitReturn(tree);
4178         }
4179 
4180         @Override
4181         public void visitClassDef(JCClassDecl tree) {
4182             // don't descend any further
4183         }
4184     }
4185 
4186 /* *************************************************************************
4187  * Miscellaneous
4188  **************************************************************************/
4189 
4190     /**
4191      *  Check for division by integer constant zero
4192      *  @param pos           Position for error reporting.
4193      *  @param operator      The operator for the expression
4194      *  @param operand       The right hand operand for the expression
4195      */
4196     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4197         if (operand.constValue() != null
4198             && operand.getTag().isSubRangeOf(LONG)
4199             && ((Number) (operand.constValue())).longValue() == 0) {
4200             int opc = ((OperatorSymbol)operator).opcode;
4201             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4202                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4203                 deferredLintHandler.report(() -> warnDivZero(pos));
4204             }
4205         }
4206     }
4207 
4208     /**
4209      *  Check for possible loss of precission
4210      *  @param pos           Position for error reporting.
4211      *  @param found    The computed type of the tree
4212      *  @param req  The computed type of the tree
4213      */
4214     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4215         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4216             deferredLintHandler.report(() -> {
4217                 if (lint.isEnabled(LintCategory.LOSSY_CONVERSIONS))
4218                     log.warning(LintCategory.LOSSY_CONVERSIONS,
4219                             pos, Warnings.PossibleLossOfPrecision(found, req));
4220             });
4221         }
4222     }
4223 
4224     /**
4225      * Check for empty statements after if
4226      */
4227     void checkEmptyIf(JCIf tree) {
4228         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
4229                 lint.isEnabled(LintCategory.EMPTY))
4230             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), Warnings.EmptyIf);
4231     }
4232 
4233     /** Check that symbol is unique in given scope.
4234      *  @param pos           Position for error reporting.
4235      *  @param sym           The symbol.
4236      *  @param s             The scope.
4237      */
4238     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4239         if (sym.type.isErroneous())
4240             return true;
4241         if (sym.owner.name == names.any) return false;
4242         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4243             if (sym != byName &&
4244                     (byName.flags() & CLASH) == 0 &&
4245                     sym.kind == byName.kind &&
4246                     sym.name != names.error &&
4247                     (sym.kind != MTH ||
4248                      types.hasSameArgs(sym.type, byName.type) ||
4249                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4250                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4251                     sym.flags_field |= CLASH;
4252                     varargsDuplicateError(pos, sym, byName);
4253                     return true;
4254                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4255                     duplicateErasureError(pos, sym, byName);
4256                     sym.flags_field |= CLASH;
4257                     return true;
4258                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4259                            (byName.flags() & MATCH_BINDING) != 0 &&
4260                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4261                     if (!sym.type.isErroneous()) {
4262                         log.error(pos, Errors.MatchBindingExists);
4263                         sym.flags_field |= CLASH;
4264                     }
4265                     return false;
4266                 } else {
4267                     duplicateError(pos, byName);
4268                     return false;
4269                 }
4270             }
4271         }
4272         return true;
4273     }
4274 
4275     /** Report duplicate declaration error.
4276      */
4277     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4278         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4279             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4280         }
4281     }
4282 
4283     /**Check that types imported through the ordinary imports don't clash with types imported
4284      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4285      * types without an error on the imports.
4286      * @param toplevel       The toplevel tree for which the test should be performed.
4287      */
4288     void checkImportsUnique(JCCompilationUnit toplevel) {
4289         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4290         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4291         WriteableScope topLevelScope = toplevel.toplevelScope;
4292 
4293         for (JCTree def : toplevel.defs) {
4294             if (!def.hasTag(IMPORT))
4295                 continue;
4296 
4297             JCImport imp = (JCImport) def;
4298 
4299             if (imp.importScope == null)
4300                 continue;
4301 
4302             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4303                 if (imp.isStatic()) {
4304                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4305                     staticallyImportedSoFar.enter(sym);
4306                 } else {
4307                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4308                     ordinallyImportedSoFar.enter(sym);
4309                 }
4310             }
4311 
4312             imp.importScope = null;
4313         }
4314     }
4315 
4316     /** Check that single-type import is not already imported or top-level defined,
4317      *  but make an exception for two single-type imports which denote the same type.
4318      *  @param pos                     Position for error reporting.
4319      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4320      *                                 ordinary imports.
4321      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4322      *                                 static imports.
4323      *  @param topLevelScope           The current file's top-level Scope
4324      *  @param sym                     The symbol.
4325      *  @param staticImport            Whether or not this was a static import
4326      */
4327     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4328                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4329                                       Symbol sym, boolean staticImport) {
4330         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4331         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4332         Symbol staticClashing = null;
4333         if (ordinaryClashing == null && !staticImport) {
4334             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4335         }
4336         if (ordinaryClashing != null || staticClashing != null) {
4337             if (ordinaryClashing != null)
4338                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4339             else
4340                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4341             return false;
4342         }
4343         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4344         if (clashing != null) {
4345             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4346             return false;
4347         }
4348         return true;
4349     }
4350 
4351     /** Check that a qualified name is in canonical form (for import decls).
4352      */
4353     public void checkCanonical(JCTree tree) {
4354         if (!isCanonical(tree))
4355             log.error(tree.pos(),
4356                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4357     }
4358         // where
4359         private boolean isCanonical(JCTree tree) {
4360             while (tree.hasTag(SELECT)) {
4361                 JCFieldAccess s = (JCFieldAccess) tree;
4362                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4363                     return false;
4364                 tree = s.selected;
4365             }
4366             return true;
4367         }
4368 
4369     /** Check that an auxiliary class is not accessed from any other file than its own.
4370      */
4371     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4372         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
4373             (c.flags() & AUXILIARY) != 0 &&
4374             rs.isAccessible(env, c) &&
4375             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4376         {
4377             log.warning(pos,
4378                         Warnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4379         }
4380     }
4381 
4382     /**
4383      * Check for a default constructor in an exported package.
4384      */
4385     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4386         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4387             ((c.flags() & (ENUM | RECORD)) == 0) &&
4388             !c.isAnonymous() &&
4389             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4390             Feature.MODULES.allowedInSource(source)) {
4391             NestingKind nestingKind = c.getNestingKind();
4392             switch (nestingKind) {
4393                 case ANONYMOUS,
4394                      LOCAL -> {return;}
4395                 case TOP_LEVEL -> {;} // No additional checks needed
4396                 case MEMBER -> {
4397                     // For nested member classes, all the enclosing
4398                     // classes must be public or protected.
4399                     Symbol owner = c.owner;
4400                     while (owner != null && owner.kind == TYP) {
4401                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4402                             return;
4403                         owner = owner.owner;
4404                     }
4405                 }
4406             }
4407 
4408             // Only check classes in named packages exported by its module
4409             PackageSymbol pkg = c.packge();
4410             if (!pkg.isUnnamed()) {
4411                 ModuleSymbol modle = pkg.modle;
4412                 for (ExportsDirective exportDir : modle.exports) {
4413                     // Report warning only if the containing
4414                     // package is unconditionally exported
4415                     if (exportDir.packge.equals(pkg)) {
4416                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4417                             // Warning may be suppressed by
4418                             // annotations; check again for being
4419                             // enabled in the deferred context.
4420                             deferredLintHandler.report(() -> {
4421                                 if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR))
4422                                    log.warning(LintCategory.MISSING_EXPLICIT_CTOR,
4423                                                pos, Warnings.MissingExplicitCtor(c, pkg, modle));
4424                                                        });
4425                         } else {
4426                             return;
4427                         }
4428                     }
4429                 }
4430             }
4431         }
4432         return;
4433     }
4434 
4435     private class ConversionWarner extends Warner {
4436         final String uncheckedKey;
4437         final Type found;
4438         final Type expected;
4439         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4440             super(pos);
4441             this.uncheckedKey = uncheckedKey;
4442             this.found = found;
4443             this.expected = expected;
4444         }
4445 
4446         @Override
4447         public void warn(LintCategory lint) {
4448             boolean warned = this.warned;
4449             super.warn(lint);
4450             if (warned) return; // suppress redundant diagnostics
4451             switch (lint) {
4452                 case UNCHECKED:
4453                     Check.this.warnUnchecked(pos(), Warnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4454                     break;
4455                 case VARARGS:
4456                     if (method != null &&
4457                             method.attribute(syms.trustMeType.tsym) != null &&
4458                             isTrustMeAllowedOnMethod(method) &&
4459                             !types.isReifiable(method.type.getParameterTypes().last())) {
4460                         Check.this.warnUnsafeVararg(pos(), Warnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4461                     }
4462                     break;
4463                 default:
4464                     throw new AssertionError("Unexpected lint: " + lint);
4465             }
4466         }
4467     }
4468 
4469     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4470         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4471     }
4472 
4473     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4474         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4475     }
4476 
4477     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4478         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4479 
4480         if (functionalType != null) {
4481             try {
4482                 types.findDescriptorSymbol((TypeSymbol)cs);
4483             } catch (Types.FunctionDescriptorLookupError ex) {
4484                 DiagnosticPosition pos = tree.pos();
4485                 for (JCAnnotation a : tree.getModifiers().annotations) {
4486                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4487                         pos = a.pos();
4488                         break;
4489                     }
4490                 }
4491                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4492             }
4493         }
4494     }
4495 
4496     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4497         for (final JCImport imp : toplevel.getImports()) {
4498             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4499                 continue;
4500             final JCFieldAccess select = imp.qualid;
4501             final Symbol origin;
4502             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4503                 continue;
4504 
4505             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4506             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4507                 log.error(imp.pos(),
4508                           Errors.CantResolveLocation(KindName.STATIC,
4509                                                      select.name,
4510                                                      null,
4511                                                      null,
4512                                                      Fragments.Location(kindName(site),
4513                                                                         site,
4514                                                                         null)));
4515             }
4516         }
4517     }
4518 
4519     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4520     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4521         OUTER: for (JCImport imp : toplevel.getImports()) {
4522             if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
4523                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4524                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4525                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4526                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, Errors.DoesntExist(tsym));
4527                 }
4528             }
4529         }
4530     }
4531 
4532     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4533         if (tsym == null || !processed.add(tsym))
4534             return false;
4535 
4536             // also search through inherited names
4537         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4538             return true;
4539 
4540         for (Type t : types.interfaces(tsym.type))
4541             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4542                 return true;
4543 
4544         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4545             if (sym.isStatic() &&
4546                 importAccessible(sym, packge) &&
4547                 sym.isMemberOf(origin, types)) {
4548                 return true;
4549             }
4550         }
4551 
4552         return false;
4553     }
4554 
4555     // is the sym accessible everywhere in packge?
4556     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4557         try {
4558             int flags = (int)(sym.flags() & AccessFlags);
4559             switch (flags) {
4560             default:
4561             case PUBLIC:
4562                 return true;
4563             case PRIVATE:
4564                 return false;
4565             case 0:
4566             case PROTECTED:
4567                 return sym.packge() == packge;
4568             }
4569         } catch (ClassFinder.BadClassFile err) {
4570             throw err;
4571         } catch (CompletionFailure ex) {
4572             return false;
4573         }
4574     }
4575 
4576     public Type checkProcessorType(JCExpression processor, Type resultType, Env<AttrContext> env) {
4577         Type processorType = processor.type;
4578         Type interfaceType = types.asSuper(processorType, syms.processorType.tsym);
4579 
4580         if (interfaceType != null) {
4581             List<Type> typeArguments = interfaceType.getTypeArguments();
4582 
4583             if (typeArguments.size() == 2) {
4584                 resultType = typeArguments.head;
4585             } else {
4586                 resultType = syms.objectType;
4587             }
4588         } else {
4589             log.error(DiagnosticFlag.RESOLVE_ERROR, processor.pos,
4590                     Errors.NotAProcessorType(processorType.tsym));
4591         }
4592 
4593         return resultType;
4594     }
4595 
4596     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4597         JCCompilationUnit toplevel = env.toplevel;
4598 
4599         if (   toplevel.modle == syms.unnamedModule
4600             || toplevel.modle == syms.noModule
4601             || (check.sym.flags() & COMPOUND) != 0) {
4602             return ;
4603         }
4604 
4605         ExportsDirective currentExport = findExport(toplevel.packge);
4606 
4607         if (   currentExport == null //not exported
4608             || currentExport.modules != null) //don't check classes in qualified export
4609             return ;
4610 
4611         new TreeScanner() {
4612             Lint lint = env.info.lint;
4613             boolean inSuperType;
4614 
4615             @Override
4616             public void visitBlock(JCBlock tree) {
4617             }
4618             @Override
4619             public void visitMethodDef(JCMethodDecl tree) {
4620                 if (!isAPISymbol(tree.sym))
4621                     return;
4622                 Lint prevLint = lint;
4623                 try {
4624                     lint = lint.augment(tree.sym);
4625                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4626                         super.visitMethodDef(tree);
4627                     }
4628                 } finally {
4629                     lint = prevLint;
4630                 }
4631             }
4632             @Override
4633             public void visitVarDef(JCVariableDecl tree) {
4634                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4635                     return;
4636                 Lint prevLint = lint;
4637                 try {
4638                     lint = lint.augment(tree.sym);
4639                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4640                         scan(tree.mods);
4641                         scan(tree.vartype);
4642                     }
4643                 } finally {
4644                     lint = prevLint;
4645                 }
4646             }
4647             @Override
4648             public void visitClassDef(JCClassDecl tree) {
4649                 if (tree != check)
4650                     return ;
4651 
4652                 if (!isAPISymbol(tree.sym))
4653                     return ;
4654 
4655                 Lint prevLint = lint;
4656                 try {
4657                     lint = lint.augment(tree.sym);
4658                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4659                         scan(tree.mods);
4660                         scan(tree.typarams);
4661                         try {
4662                             inSuperType = true;
4663                             scan(tree.extending);
4664                             scan(tree.implementing);
4665                         } finally {
4666                             inSuperType = false;
4667                         }
4668                         scan(tree.defs);
4669                     }
4670                 } finally {
4671                     lint = prevLint;
4672                 }
4673             }
4674             @Override
4675             public void visitTypeApply(JCTypeApply tree) {
4676                 scan(tree.clazz);
4677                 boolean oldInSuperType = inSuperType;
4678                 try {
4679                     inSuperType = false;
4680                     scan(tree.arguments);
4681                 } finally {
4682                     inSuperType = oldInSuperType;
4683                 }
4684             }
4685             @Override
4686             public void visitIdent(JCIdent tree) {
4687                 Symbol sym = TreeInfo.symbol(tree);
4688                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4689                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4690                 }
4691             }
4692 
4693             @Override
4694             public void visitSelect(JCFieldAccess tree) {
4695                 Symbol sym = TreeInfo.symbol(tree);
4696                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4697                 if (sym.kind == TYP && sitesym.kind == PCK) {
4698                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4699                 } else {
4700                     super.visitSelect(tree);
4701                 }
4702             }
4703 
4704             @Override
4705             public void visitAnnotation(JCAnnotation tree) {
4706                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4707                     super.visitAnnotation(tree);
4708             }
4709 
4710         }.scan(check);
4711     }
4712         //where:
4713         private ExportsDirective findExport(PackageSymbol pack) {
4714             for (ExportsDirective d : pack.modle.exports) {
4715                 if (d.packge == pack)
4716                     return d;
4717             }
4718 
4719             return null;
4720         }
4721         private boolean isAPISymbol(Symbol sym) {
4722             while (sym.kind != PCK) {
4723                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4724                     return false;
4725                 }
4726                 sym = sym.owner;
4727             }
4728             return true;
4729         }
4730         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4731             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4732                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4733                 return ;
4734             }
4735 
4736             PackageSymbol whatPackage = what.packge();
4737             ExportsDirective whatExport = findExport(whatPackage);
4738             ExportsDirective inExport = findExport(inPackage);
4739 
4740             if (whatExport == null) { //package not exported:
4741                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4742                 return ;
4743             }
4744 
4745             if (whatExport.modules != null) {
4746                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4747                     log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4748                 }
4749             }
4750 
4751             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4752                 //check that relativeTo.modle requires transitive what.modle, somehow:
4753                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4754 
4755                 while (todo.nonEmpty()) {
4756                     ModuleSymbol current = todo.head;
4757                     todo = todo.tail;
4758                     if (current == whatPackage.modle)
4759                         return ; //OK
4760                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4761                         continue; //for automatic modules, don't look into their dependencies
4762                     for (RequiresDirective req : current.requires) {
4763                         if (req.isTransitive()) {
4764                             todo = todo.prepend(req.module);
4765                         }
4766                     }
4767                 }
4768 
4769                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4770             }
4771         }
4772 
4773     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4774         if (msym.kind != MDL) {
4775             deferredLintHandler.report(() -> {
4776                 if (lint.isEnabled(LintCategory.MODULE))
4777                     log.warning(LintCategory.MODULE, pos, Warnings.ModuleNotFound(msym));
4778             });
4779         }
4780     }
4781 
4782     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4783         if (packge.members().isEmpty() &&
4784             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4785             deferredLintHandler.report(() -> {
4786                 if (lint.isEnabled(LintCategory.OPENS))
4787                     log.warning(pos, Warnings.PackageEmptyOrNotFound(packge));
4788             });
4789         }
4790     }
4791 
4792     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4793         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4794             deferredLintHandler.report(() -> {
4795                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4796                     log.warning(pos, Warnings.RequiresTransitiveAutomatic);
4797                 } else if (lint.isEnabled(LintCategory.REQUIRES_AUTOMATIC)) {
4798                     log.warning(pos, Warnings.RequiresAutomatic);
4799                 }
4800             });
4801         }
4802     }
4803 
4804     /**
4805      * Verify the case labels conform to the constraints. Checks constraints related
4806      * combinations of patterns and other labels.
4807      *
4808      * @param cases the cases that should be checked.
4809      */
4810     void checkSwitchCaseStructure(List<JCCase> cases) {
4811         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4812             JCCase c = l.head;
4813             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4814                 if (TreeInfo.isNull(constLabel.expr)) {
4815                     if (c.labels.tail.nonEmpty()) {
4816                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4817                             if (c.labels.tail.tail.nonEmpty()) {
4818                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4819                             }
4820                         } else {
4821                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4822                         }
4823                     }
4824                 } else {
4825                     for (JCCaseLabel label : c.labels.tail) {
4826                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4827                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4828                             break;
4829                         }
4830                     }
4831                 }
4832             } else if (c.labels.tail.nonEmpty()) {
4833                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4834                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4835 
4836                 if (!allUnderscore) {
4837                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4838                 }
4839 
4840                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4841 
4842                 if (allPatternCaseLabels) {
4843                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4844                 }
4845 
4846                 for (JCCaseLabel label : c.labels.tail) {
4847                     if (label instanceof JCConstantCaseLabel) {
4848                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4849                         break;
4850                     }
4851                 }
4852             }
4853         }
4854 
4855         boolean isCaseStatementGroup = cases.nonEmpty() &&
4856                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4857 
4858         if (isCaseStatementGroup) {
4859             boolean previousCompletessNormally = false;
4860             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4861                 JCCase c = l.head;
4862                 if (previousCompletessNormally &&
4863                     c.stats.nonEmpty() &&
4864                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4865                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4866                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4867                 } else if (c.stats.isEmpty() &&
4868                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4869                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4870                            hasStatements(l.tail)) {
4871                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4872                 }
4873                 previousCompletessNormally = c.completesNormally;
4874             }
4875         }
4876     }
4877 
4878     boolean hasBindings(JCTree p) {
4879         boolean[] bindings = new boolean[1];
4880 
4881         new TreeScanner() {
4882             @Override
4883             public void visitBindingPattern(JCBindingPattern tree) {
4884                 bindings[0] = !tree.var.sym.isUnnamedVariable();
4885                 super.visitBindingPattern(tree);
4886             }
4887         }.scan(p);
4888 
4889         return bindings[0];
4890     }
4891 
4892     boolean hasStatements(List<JCCase> cases) {
4893         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4894             if (l.head.stats.nonEmpty()) {
4895                 return true;
4896             }
4897         }
4898 
4899         return false;
4900     }
4901     void checkSwitchCaseLabelDominated(List<JCCase> cases) {
4902         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4903         boolean seenDefault = false;
4904         boolean seenDefaultLabel = false;
4905         boolean warnDominatedByDefault = false;
4906         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4907             JCCase c = l.head;
4908             for (JCCaseLabel label : c.labels) {
4909                 if (label.hasTag(DEFAULTCASELABEL)) {
4910                     seenDefault = true;
4911                     seenDefaultLabel |=
4912                             TreeInfo.isNullCaseLabel(c.labels.head);
4913                     continue;
4914                 }
4915                 if (TreeInfo.isNullCaseLabel(label)) {
4916                     if (seenDefault) {
4917                         log.error(label.pos(), Errors.PatternDominated);
4918                     }
4919                     continue;
4920                 }
4921                 if (seenDefault && !warnDominatedByDefault) {
4922                     if (label.hasTag(PATTERNCASELABEL) ||
4923                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4924                         log.error(label.pos(), Errors.PatternDominated);
4925                         warnDominatedByDefault = true;
4926                     }
4927                 }
4928                 Type currentType = labelType(label);
4929                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4930                     JCCase testCase = caseAndLabel.fst;
4931                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4932                     Type testType = labelType(testCaseLabel);
4933                     if (types.isSubtype(currentType, testType) &&
4934                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4935                         //the current label is potentially dominated by the existing (test) label, check:
4936                         boolean dominated = false;
4937                         if (label instanceof JCConstantCaseLabel) {
4938                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4939                                          TreeInfo.unguardedCase(testCase);
4940                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4941                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4942                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4943                             dominated = patternDominated(testPatternCaseLabel.pat,
4944                                                          patternCL.pat);
4945                         }
4946                         if (dominated) {
4947                             log.error(label.pos(), Errors.PatternDominated);
4948                         }
4949                     }
4950                 }
4951                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4952             }
4953         }
4954     }
4955         //where:
4956         private Type labelType(JCCaseLabel label) {
4957             return types.erasure(switch (label.getTag()) {
4958                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4959                 case CONSTANTCASELABEL -> types.boxedTypeOrType(((JCConstantCaseLabel) label).expr.type);
4960                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4961             });
4962         }
4963         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4964             Type existingPatternType = types.erasure(existingPattern.type);
4965             Type currentPatternType = types.erasure(currentPattern.type);
4966             if (existingPatternType.isPrimitive() ^ currentPatternType.isPrimitive()) {
4967                 return false;
4968             }
4969             if (existingPatternType.isPrimitive()) {
4970                 return types.isSameType(existingPatternType, currentPatternType);
4971             } else {
4972                 if (!types.isSubtype(currentPatternType, existingPatternType)) {
4973                     return false;
4974                 }
4975             }
4976             if (currentPattern instanceof JCBindingPattern ||
4977                 currentPattern instanceof JCAnyPattern) {
4978                 return existingPattern instanceof JCBindingPattern ||
4979                        existingPattern instanceof JCAnyPattern;
4980             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4981                 if (existingPattern instanceof JCBindingPattern ||
4982                     existingPattern instanceof JCAnyPattern) {
4983                     return true;
4984                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4985                     List<JCPattern> existingNested = existingRecordPattern.nested;
4986                     List<JCPattern> currentNested = currentRecordPattern.nested;
4987                     if (existingNested.size() != currentNested.size()) {
4988                         return false;
4989                     }
4990                     while (existingNested.nonEmpty()) {
4991                         if (!patternDominated(existingNested.head, currentNested.head)) {
4992                             return false;
4993                         }
4994                         existingNested = existingNested.tail;
4995                         currentNested = currentNested.tail;
4996                     }
4997                     return true;
4998                 } else {
4999                     Assert.error("Unknown pattern: " + existingPattern.getTag());
5000                 }
5001             } else {
5002                 Assert.error("Unknown pattern: " + currentPattern.getTag());
5003             }
5004             return false;
5005         }
5006 
5007     /** check if a type is a subtype of Externalizable, if that is available. */
5008     boolean isExternalizable(Type t) {
5009         try {
5010             syms.externalizableType.complete();
5011         } catch (CompletionFailure e) {
5012             return false;
5013         }
5014         return types.isSubtype(t, syms.externalizableType);
5015     }
5016 
5017     /**
5018      * Check structure of serialization declarations.
5019      */
5020     public void checkSerialStructure(JCClassDecl tree, ClassSymbol c) {
5021         (new SerialTypeVisitor()).visit(c, tree);
5022     }
5023 
5024     /**
5025      * This visitor will warn if a serialization-related field or
5026      * method is declared in a suspicious or incorrect way. In
5027      * particular, it will warn for cases where the runtime
5028      * serialization mechanism will silently ignore a mis-declared
5029      * entity.
5030      *
5031      * Distinguished serialization-related fields and methods:
5032      *
5033      * Methods:
5034      *
5035      * private void writeObject(ObjectOutputStream stream) throws IOException
5036      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
5037      *
5038      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
5039      * private void readObjectNoData() throws ObjectStreamException
5040      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
5041      *
5042      * Fields:
5043      *
5044      * private static final long serialVersionUID
5045      * private static final ObjectStreamField[] serialPersistentFields
5046      *
5047      * Externalizable: methods defined on the interface
5048      * public void writeExternal(ObjectOutput) throws IOException
5049      * public void readExternal(ObjectInput) throws IOException
5050      */
5051     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
5052         SerialTypeVisitor() {
5053             this.lint = Check.this.lint;
5054         }
5055 
5056         private static final Set<String> serialMethodNames =
5057             Set.of("writeObject", "writeReplace",
5058                    "readObject",  "readObjectNoData",
5059                    "readResolve");
5060 
5061         private static final Set<String> serialFieldNames =
5062             Set.of("serialVersionUID", "serialPersistentFields");
5063 
5064         // Type of serialPersistentFields
5065         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
5066 
5067         Lint lint;
5068 
5069         @Override
5070         public Void defaultAction(Element e, JCClassDecl p) {
5071             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
5072         }
5073 
5074         @Override
5075         public Void visitType(TypeElement e, JCClassDecl p) {
5076             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
5077             return null;
5078         }
5079 
5080         @Override
5081         public Void visitTypeAsClass(TypeElement e,
5082                                      JCClassDecl p) {
5083             // Anonymous classes filtered out by caller.
5084 
5085             ClassSymbol c = (ClassSymbol)e;
5086 
5087             checkCtorAccess(p, c);
5088 
5089             // Check for missing serialVersionUID; check *not* done
5090             // for enums or records.
5091             VarSymbol svuidSym = null;
5092             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5093                 if (sym.kind == VAR) {
5094                     svuidSym = (VarSymbol)sym;
5095                     break;
5096                 }
5097             }
5098 
5099             if (svuidSym == null) {
5100                 log.warning(LintCategory.SERIAL, p.pos(), Warnings.MissingSVUID(c));
5101             }
5102 
5103             // Check for serialPersistentFields to gate checks for
5104             // non-serializable non-transient instance fields
5105             boolean serialPersistentFieldsPresent =
5106                     c.members()
5107                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
5108                      .iterator()
5109                      .hasNext();
5110 
5111             // Check declarations of serialization-related methods and
5112             // fields
5113             for(Symbol el : c.getEnclosedElements()) {
5114                 runUnderLint(el, p, (enclosed, tree) -> {
5115                     String name = null;
5116                     switch(enclosed.getKind()) {
5117                     case FIELD -> {
5118                         if (!serialPersistentFieldsPresent) {
5119                             var flags = enclosed.flags();
5120                             if ( ((flags & TRANSIENT) == 0) &&
5121                                  ((flags & STATIC) == 0)) {
5122                                 Type varType = enclosed.asType();
5123                                 if (!canBeSerialized(varType)) {
5124                                     // Note per JLS arrays are
5125                                     // serializable even if the
5126                                     // component type is not.
5127                                     log.warning(LintCategory.SERIAL,
5128                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
5129                                                 Warnings.NonSerializableInstanceField);
5130                                 } else if (varType.hasTag(ARRAY)) {
5131                                     ArrayType arrayType = (ArrayType)varType;
5132                                     Type elementType = arrayType.elemtype;
5133                                     while (elementType.hasTag(ARRAY)) {
5134                                         arrayType = (ArrayType)elementType;
5135                                         elementType = arrayType.elemtype;
5136                                     }
5137                                     if (!canBeSerialized(elementType)) {
5138                                         log.warning(LintCategory.SERIAL,
5139                                                     TreeInfo.diagnosticPositionFor(enclosed, tree),
5140                                                     Warnings.NonSerializableInstanceFieldArray(elementType));
5141                                     }
5142                                 }
5143                             }
5144                         }
5145 
5146                         name = enclosed.getSimpleName().toString();
5147                         if (serialFieldNames.contains(name)) {
5148                             VarSymbol field = (VarSymbol)enclosed;
5149                             switch (name) {
5150                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
5151                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
5152                             default -> throw new AssertionError();
5153                             }
5154                         }
5155                     }
5156 
5157                     // Correctly checking the serialization-related
5158                     // methods is subtle. For the methods declared to be
5159                     // private or directly declared in the class, the
5160                     // enclosed elements of the class can be checked in
5161                     // turn. However, writeReplace and readResolve can be
5162                     // declared in a superclass and inherited. Note that
5163                     // the runtime lookup walks the superclass chain
5164                     // looking for writeReplace/readResolve via
5165                     // Class.getDeclaredMethod. This differs from calling
5166                     // Elements.getAllMembers(TypeElement) as the latter
5167                     // will also pull in default methods from
5168                     // superinterfaces. In other words, the runtime checks
5169                     // (which long predate default methods on interfaces)
5170                     // do not admit the possibility of inheriting methods
5171                     // this way, a difference from general inheritance.
5172 
5173                     // The current implementation just checks the enclosed
5174                     // elements and does not directly check the inherited
5175                     // methods. If all the types are being checked this is
5176                     // less of a concern; however, there are cases that
5177                     // could be missed. In particular, readResolve and
5178                     // writeReplace could, in principle, by inherited from
5179                     // a non-serializable superclass and thus not checked
5180                     // even if compiled with a serializable child class.
5181                     case METHOD -> {
5182                         var method = (MethodSymbol)enclosed;
5183                         name = method.getSimpleName().toString();
5184                         if (serialMethodNames.contains(name)) {
5185                             switch (name) {
5186                             case "writeObject"      -> checkWriteObject(tree, e, method);
5187                             case "writeReplace"     -> checkWriteReplace(tree,e, method);
5188                             case "readObject"       -> checkReadObject(tree,e, method);
5189                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5190                             case "readResolve"      -> checkReadResolve(tree, e, method);
5191                             default ->  throw new AssertionError();
5192                             }
5193                         }
5194                     }
5195                     }
5196                 });
5197             }
5198 
5199             return null;
5200         }
5201 
5202         boolean canBeSerialized(Type type) {
5203             return type.isPrimitive() || rs.isSerializable(type);
5204         }
5205 
5206         /**
5207          * Check that Externalizable class needs a public no-arg
5208          * constructor.
5209          *
5210          * Check that a Serializable class has access to the no-arg
5211          * constructor of its first nonserializable superclass.
5212          */
5213         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5214             if (isExternalizable(c.type)) {
5215                 for(var sym : c.getEnclosedElements()) {
5216                     if (sym.isConstructor() &&
5217                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5218                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5219                             return;
5220                         }
5221                     }
5222                 }
5223                 log.warning(LintCategory.SERIAL, tree.pos(),
5224                             Warnings.ExternalizableMissingPublicNoArgCtor);
5225             } else {
5226                 // Approximate access to the no-arg constructor up in
5227                 // the superclass chain by checking that the
5228                 // constructor is not private. This may not handle
5229                 // some cross-package situations correctly.
5230                 Type superClass = c.getSuperclass();
5231                 // java.lang.Object is *not* Serializable so this loop
5232                 // should terminate.
5233                 while (rs.isSerializable(superClass) ) {
5234                     try {
5235                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5236                     } catch(ClassCastException cce) {
5237                         return ; // Don't try to recover
5238                     }
5239                 }
5240                 // Non-Serializable superclass
5241                 try {
5242                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5243                     for(var sym : supertype.getEnclosedElements()) {
5244                         if (sym.isConstructor()) {
5245                             MethodSymbol ctor = (MethodSymbol)sym;
5246                             if (ctor.getParameters().isEmpty()) {
5247                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5248                                     // Handle nested classes and implicit this$0
5249                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5250                                      ((supertype.flags() & STATIC) == 0)))
5251                                     log.warning(LintCategory.SERIAL, tree.pos(),
5252                                                 Warnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5253                             }
5254                         }
5255                     }
5256                 } catch (ClassCastException cce) {
5257                     return ; // Don't try to recover
5258                 }
5259                 return;
5260             }
5261         }
5262 
5263         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5264             // To be effective, serialVersionUID must be marked static
5265             // and final, but private is recommended. But alas, in
5266             // practice there are many non-private serialVersionUID
5267             // fields.
5268              if ((svuid.flags() & (STATIC | FINAL)) !=
5269                  (STATIC | FINAL)) {
5270                  log.warning(LintCategory.SERIAL,
5271                              TreeInfo.diagnosticPositionFor(svuid, tree),
5272                              Warnings.ImproperSVUID((Symbol)e));
5273              }
5274 
5275              // check svuid has type long
5276              if (!svuid.type.hasTag(LONG)) {
5277                  log.warning(LintCategory.SERIAL,
5278                              TreeInfo.diagnosticPositionFor(svuid, tree),
5279                              Warnings.LongSVUID((Symbol)e));
5280              }
5281 
5282              if (svuid.getConstValue() == null)
5283                  log.warning(LintCategory.SERIAL,
5284                             TreeInfo.diagnosticPositionFor(svuid, tree),
5285                              Warnings.ConstantSVUID((Symbol)e));
5286         }
5287 
5288         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5289             // To be effective, serialPersisentFields must be private, static, and final.
5290              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5291                  (PRIVATE | STATIC | FINAL)) {
5292                  log.warning(LintCategory.SERIAL,
5293                              TreeInfo.diagnosticPositionFor(spf, tree),
5294                              Warnings.ImproperSPF);
5295              }
5296 
5297              if (!types.isSameType(spf.type, OSF_TYPE)) {
5298                  log.warning(LintCategory.SERIAL,
5299                              TreeInfo.diagnosticPositionFor(spf, tree),
5300                              Warnings.OSFArraySPF);
5301              }
5302 
5303             if (isExternalizable((Type)(e.asType()))) {
5304                 log.warning(LintCategory.SERIAL,
5305                             TreeInfo.diagnosticPositionFor(spf, tree),
5306                             Warnings.IneffectualSerialFieldExternalizable);
5307             }
5308 
5309             // Warn if serialPersistentFields is initialized to a
5310             // literal null.
5311             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5312             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5313                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5314                 JCExpression initExpr = variableDef.init;
5315                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5316                      log.warning(LintCategory.SERIAL, initExpr.pos(),
5317                                  Warnings.SPFNullInit);
5318                  }
5319             }
5320         }
5321 
5322         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5323             // The "synchronized" modifier is seen in the wild on
5324             // readObject and writeObject methods and is generally
5325             // innocuous.
5326 
5327             // private void writeObject(ObjectOutputStream stream) throws IOException
5328             checkPrivateNonStaticMethod(tree, method);
5329             checkReturnType(tree, e, method, syms.voidType);
5330             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5331             checkExceptions(tree, e, method, syms.ioExceptionType);
5332             checkExternalizable(tree, e, method);
5333         }
5334 
5335         private void checkWriteReplace(JCClassDecl tree, Element e, MethodSymbol method) {
5336             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5337             // ObjectStreamException
5338 
5339             // Excluding abstract, could have a more complicated
5340             // rule based on abstract-ness of the class
5341             checkConcreteInstanceMethod(tree, e, method);
5342             checkReturnType(tree, e, method, syms.objectType);
5343             checkNoArgs(tree, e, method);
5344             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5345         }
5346 
5347         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5348             // The "synchronized" modifier is seen in the wild on
5349             // readObject and writeObject methods and is generally
5350             // innocuous.
5351 
5352             // private void readObject(ObjectInputStream stream)
5353             //   throws IOException, ClassNotFoundException
5354             checkPrivateNonStaticMethod(tree, method);
5355             checkReturnType(tree, e, method, syms.voidType);
5356             checkOneArg(tree, e, method, syms.objectInputStreamType);
5357             checkExceptions(tree, e, method, syms.ioExceptionType, syms.classNotFoundExceptionType);
5358             checkExternalizable(tree, e, method);
5359         }
5360 
5361         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5362             // private void readObjectNoData() throws ObjectStreamException
5363             checkPrivateNonStaticMethod(tree, method);
5364             checkReturnType(tree, e, method, syms.voidType);
5365             checkNoArgs(tree, e, method);
5366             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5367             checkExternalizable(tree, e, method);
5368         }
5369 
5370         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5371             // ANY-ACCESS-MODIFIER Object readResolve()
5372             // throws ObjectStreamException
5373 
5374             // Excluding abstract, could have a more complicated
5375             // rule based on abstract-ness of the class
5376             checkConcreteInstanceMethod(tree, e, method);
5377             checkReturnType(tree,e, method, syms.objectType);
5378             checkNoArgs(tree, e, method);
5379             checkExceptions(tree, e, method, syms.objectStreamExceptionType);
5380         }
5381 
5382         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5383             //public void writeExternal(ObjectOutput) throws IOException
5384             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5385         }
5386 
5387         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5388             // public void readExternal(ObjectInput) throws IOException
5389             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5390          }
5391 
5392         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5393                                              boolean isExtern) {
5394             if (isExtern && isExternMethod(tree, e, method, argType)) {
5395                 log.warning(LintCategory.SERIAL,
5396                             TreeInfo.diagnosticPositionFor(method, tree),
5397                             Warnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5398             }
5399         }
5400 
5401         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5402             var flags = method.flags();
5403             if ((flags & PRIVATE) == 0) {
5404                 log.warning(LintCategory.SERIAL,
5405                             TreeInfo.diagnosticPositionFor(method, tree),
5406                             Warnings.SerialMethodNotPrivate(method.getSimpleName()));
5407             }
5408 
5409             if ((flags & STATIC) != 0) {
5410                 log.warning(LintCategory.SERIAL,
5411                             TreeInfo.diagnosticPositionFor(method, tree),
5412                             Warnings.SerialMethodStatic(method.getSimpleName()));
5413             }
5414         }
5415 
5416         /**
5417          * Per section 1.12 "Serialization of Enum Constants" of
5418          * the serialization specification, due to the special
5419          * serialization handling of enums, any writeObject,
5420          * readObject, writeReplace, and readResolve methods are
5421          * ignored as are serialPersistentFields and
5422          * serialVersionUID fields.
5423          */
5424         @Override
5425         public Void visitTypeAsEnum(TypeElement e,
5426                                     JCClassDecl p) {
5427             boolean isExtern = isExternalizable((Type)e.asType());
5428             for(Element el : e.getEnclosedElements()) {
5429                 runUnderLint(el, p, (enclosed, tree) -> {
5430                     String name = enclosed.getSimpleName().toString();
5431                     switch(enclosed.getKind()) {
5432                     case FIELD -> {
5433                         var field = (VarSymbol)enclosed;
5434                         if (serialFieldNames.contains(name)) {
5435                             log.warning(LintCategory.SERIAL,
5436                                         TreeInfo.diagnosticPositionFor(field, tree),
5437                                         Warnings.IneffectualSerialFieldEnum(name));
5438                         }
5439                     }
5440 
5441                     case METHOD -> {
5442                         var method = (MethodSymbol)enclosed;
5443                         if (serialMethodNames.contains(name)) {
5444                             log.warning(LintCategory.SERIAL,
5445                                         TreeInfo.diagnosticPositionFor(method, tree),
5446                                         Warnings.IneffectualSerialMethodEnum(name));
5447                         }
5448 
5449                         if (isExtern) {
5450                             switch(name) {
5451                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5452                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5453                             }
5454                         }
5455                     }
5456 
5457                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5458                     case ENUM_CONSTANT -> {
5459                         var field = (VarSymbol)enclosed;
5460                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5461                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5462                             ClassSymbol enumConstantType = nc.def.sym;
5463                             visitTypeAsEnum(enumConstantType, p);
5464                         }
5465                     }
5466 
5467                     }});
5468             }
5469             return null;
5470         }
5471 
5472         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5473             //public void writeExternal(ObjectOutput) throws IOException
5474             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5475         }
5476 
5477         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5478              // public void readExternal(ObjectInput) throws IOException
5479             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5480          }
5481 
5482         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5483             if (isExternMethod(tree, e, method, argType)) {
5484                 log.warning(LintCategory.SERIAL,
5485                             TreeInfo.diagnosticPositionFor(method, tree),
5486                             Warnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5487             }
5488         }
5489 
5490         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5491             long flags = method.flags();
5492             Type rtype = method.getReturnType();
5493 
5494             // Not necessary to check throws clause in this context
5495             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5496                 types.isSameType(syms.voidType, rtype) &&
5497                 hasExactlyOneArgWithType(tree, e, method, argType);
5498         }
5499 
5500         /**
5501          * Most serialization-related fields and methods on interfaces
5502          * are ineffectual or problematic.
5503          */
5504         @Override
5505         public Void visitTypeAsInterface(TypeElement e,
5506                                          JCClassDecl p) {
5507             for(Element el : e.getEnclosedElements()) {
5508                 runUnderLint(el, p, (enclosed, tree) -> {
5509                     String name = null;
5510                     switch(enclosed.getKind()) {
5511                     case FIELD -> {
5512                         var field = (VarSymbol)enclosed;
5513                         name = field.getSimpleName().toString();
5514                         switch(name) {
5515                         case "serialPersistentFields" -> {
5516                             log.warning(LintCategory.SERIAL,
5517                                         TreeInfo.diagnosticPositionFor(field, tree),
5518                                         Warnings.IneffectualSerialFieldInterface);
5519                         }
5520 
5521                         case "serialVersionUID" -> {
5522                             checkSerialVersionUID(tree, e, field);
5523                         }
5524                         }
5525                     }
5526 
5527                     case METHOD -> {
5528                         var method = (MethodSymbol)enclosed;
5529                         name = enclosed.getSimpleName().toString();
5530                         if (serialMethodNames.contains(name)) {
5531                             switch (name) {
5532                             case
5533                                 "readObject",
5534                                 "readObjectNoData",
5535                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5536 
5537                             case
5538                                 "writeReplace",
5539                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5540 
5541                             default ->  throw new AssertionError();
5542                             }
5543 
5544                         }
5545                     }}
5546                 });
5547             }
5548 
5549             return null;
5550         }
5551 
5552         private void checkPrivateMethod(JCClassDecl tree,
5553                                         Element e,
5554                                         MethodSymbol method) {
5555             if ((method.flags() & PRIVATE) == 0) {
5556                 log.warning(LintCategory.SERIAL,
5557                             TreeInfo.diagnosticPositionFor(method, tree),
5558                             Warnings.NonPrivateMethodWeakerAccess);
5559             }
5560         }
5561 
5562         private void checkDefaultIneffective(JCClassDecl tree,
5563                                              Element e,
5564                                              MethodSymbol method) {
5565             if ((method.flags() & DEFAULT) == DEFAULT) {
5566                 log.warning(LintCategory.SERIAL,
5567                             TreeInfo.diagnosticPositionFor(method, tree),
5568                             Warnings.DefaultIneffective);
5569 
5570             }
5571         }
5572 
5573         @Override
5574         public Void visitTypeAsAnnotationType(TypeElement e,
5575                                               JCClassDecl p) {
5576             // Per the JLS, annotation types are not serializeable
5577             return null;
5578         }
5579 
5580         /**
5581          * From the Java Object Serialization Specification, 1.13
5582          * Serialization of Records:
5583          *
5584          * "The process by which record objects are serialized or
5585          * externalized cannot be customized; any class-specific
5586          * writeObject, readObject, readObjectNoData, writeExternal,
5587          * and readExternal methods defined by record classes are
5588          * ignored during serialization and deserialization. However,
5589          * a substitute object to be serialized or a designate
5590          * replacement may be specified, by the writeReplace and
5591          * readResolve methods, respectively. Any
5592          * serialPersistentFields field declaration is
5593          * ignored. Documenting serializable fields and data for
5594          * record classes is unnecessary, since there is no variation
5595          * in the serial form, other than whether a substitute or
5596          * replacement object is used. The serialVersionUID of a
5597          * record class is 0L unless explicitly declared. The
5598          * requirement for matching serialVersionUID values is waived
5599          * for record classes."
5600          */
5601         @Override
5602         public Void visitTypeAsRecord(TypeElement e,
5603                                       JCClassDecl p) {
5604             boolean isExtern = isExternalizable((Type)e.asType());
5605             for(Element el : e.getEnclosedElements()) {
5606                 runUnderLint(el, p, (enclosed, tree) -> {
5607                     String name = enclosed.getSimpleName().toString();
5608                     switch(enclosed.getKind()) {
5609                     case FIELD -> {
5610                         var field = (VarSymbol)enclosed;
5611                         switch(name) {
5612                         case "serialPersistentFields" -> {
5613                             log.warning(LintCategory.SERIAL,
5614                                         TreeInfo.diagnosticPositionFor(field, tree),
5615                                         Warnings.IneffectualSerialFieldRecord);
5616                         }
5617 
5618                         case "serialVersionUID" -> {
5619                             // Could generate additional warning that
5620                             // svuid value is not checked to match for
5621                             // records.
5622                             checkSerialVersionUID(tree, e, field);
5623                         }}
5624                     }
5625 
5626                     case METHOD -> {
5627                         var method = (MethodSymbol)enclosed;
5628                         switch(name) {
5629                         case "writeReplace" -> checkWriteReplace(tree, e, method);
5630                         case "readResolve"  -> checkReadResolve(tree, e, method);
5631 
5632                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5633                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5634 
5635                         default -> {
5636                             if (serialMethodNames.contains(name)) {
5637                                 log.warning(LintCategory.SERIAL,
5638                                             TreeInfo.diagnosticPositionFor(method, tree),
5639                                             Warnings.IneffectualSerialMethodRecord(name));
5640                             }
5641                         }}
5642                     }}});
5643             }
5644             return null;
5645         }
5646 
5647         void checkConcreteInstanceMethod(JCClassDecl tree,
5648                                          Element enclosing,
5649                                          MethodSymbol method) {
5650             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5651                     log.warning(LintCategory.SERIAL,
5652                                 TreeInfo.diagnosticPositionFor(method, tree),
5653                                 Warnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5654             }
5655         }
5656 
5657         private void checkReturnType(JCClassDecl tree,
5658                                      Element enclosing,
5659                                      MethodSymbol method,
5660                                      Type expectedReturnType) {
5661             // Note: there may be complications checking writeReplace
5662             // and readResolve since they return Object and could, in
5663             // principle, have covariant overrides and any synthetic
5664             // bridge method would not be represented here for
5665             // checking.
5666             Type rtype = method.getReturnType();
5667             if (!types.isSameType(expectedReturnType, rtype)) {
5668                 log.warning(LintCategory.SERIAL,
5669                             TreeInfo.diagnosticPositionFor(method, tree),
5670                             Warnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5671                                                                       rtype, expectedReturnType));
5672             }
5673         }
5674 
5675         private void checkOneArg(JCClassDecl tree,
5676                                  Element enclosing,
5677                                  MethodSymbol method,
5678                                  Type expectedType) {
5679             String name = method.getSimpleName().toString();
5680 
5681             var parameters= method.getParameters();
5682 
5683             if (parameters.size() != 1) {
5684                 log.warning(LintCategory.SERIAL,
5685                             TreeInfo.diagnosticPositionFor(method, tree),
5686                             Warnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5687                 return;
5688             }
5689 
5690             Type parameterType = parameters.get(0).asType();
5691             if (!types.isSameType(parameterType, expectedType)) {
5692                 log.warning(LintCategory.SERIAL,
5693                             TreeInfo.diagnosticPositionFor(method, tree),
5694                             Warnings.SerialMethodParameterType(method.getSimpleName(),
5695                                                                expectedType,
5696                                                                parameterType));
5697             }
5698         }
5699 
5700         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5701                                                  Element enclosing,
5702                                                  MethodSymbol method,
5703                                                  Type expectedType) {
5704             var parameters = method.getParameters();
5705             return (parameters.size() == 1) &&
5706                 types.isSameType(parameters.get(0).asType(), expectedType);
5707         }
5708 
5709 
5710         private void checkNoArgs(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5711             var parameters = method.getParameters();
5712             if (!parameters.isEmpty()) {
5713                 log.warning(LintCategory.SERIAL,
5714                             TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5715                             Warnings.SerialMethodNoArgs(method.getSimpleName()));
5716             }
5717         }
5718 
5719         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5720             // If the enclosing class is externalizable, warn for the method
5721             if (isExternalizable((Type)enclosing.asType())) {
5722                 log.warning(LintCategory.SERIAL,
5723                             TreeInfo.diagnosticPositionFor(method, tree),
5724                             Warnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5725             }
5726             return;
5727         }
5728 
5729         private void checkExceptions(JCClassDecl tree,
5730                                      Element enclosing,
5731                                      MethodSymbol method,
5732                                      Type... declaredExceptions) {
5733             for (Type thrownType: method.getThrownTypes()) {
5734                 // For each exception in the throws clause of the
5735                 // method, if not an Error and not a RuntimeException,
5736                 // check if the exception is a subtype of a declared
5737                 // exception from the throws clause of the
5738                 // serialization method in question.
5739                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5740                     types.isSubtype(thrownType, syms.errorType) ) {
5741                     continue;
5742                 } else {
5743                     boolean declared = false;
5744                     for (Type declaredException : declaredExceptions) {
5745                         if (types.isSubtype(thrownType, declaredException)) {
5746                             declared = true;
5747                             continue;
5748                         }
5749                     }
5750                     if (!declared) {
5751                         log.warning(LintCategory.SERIAL,
5752                                     TreeInfo.diagnosticPositionFor(method, tree),
5753                                     Warnings.SerialMethodUnexpectedException(method.getSimpleName(),
5754                                                                              thrownType));
5755                     }
5756                 }
5757             }
5758             return;
5759         }
5760 
5761         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5762             Lint prevLint = lint;
5763             try {
5764                 lint = lint.augment((Symbol) symbol);
5765 
5766                 if (lint.isEnabled(LintCategory.SERIAL)) {
5767                     task.accept(symbol, p);
5768                 }
5769 
5770                 return null;
5771             } finally {
5772                 lint = prevLint;
5773             }
5774         }
5775 
5776     }
5777 
5778 }