1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Predicate;
  32 import java.util.function.Supplier;
  33 import java.util.function.ToIntBiFunction;
  34 import java.util.stream.Collectors;
  35 import java.util.stream.StreamSupport;
  36 
  37 import javax.lang.model.element.ElementKind;
  38 import javax.lang.model.element.NestingKind;
  39 import javax.tools.JavaFileManager;
  40 
  41 import com.sun.source.tree.CaseTree;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Attribute.Compound;
  44 import com.sun.tools.javac.code.Directive.ExportsDirective;
  45 import com.sun.tools.javac.code.Directive.RequiresDirective;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  50 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  51 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  52 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings;
  53 import com.sun.tools.javac.tree.*;
  54 import com.sun.tools.javac.util.*;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  56 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  57 import com.sun.tools.javac.util.JCDiagnostic.Error;
  58 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  59 import com.sun.tools.javac.util.JCDiagnostic.LintWarning;
  60 import com.sun.tools.javac.util.List;
  61 
  62 import com.sun.tools.javac.code.Lint;
  63 import com.sun.tools.javac.code.Lint.LintCategory;
  64 import com.sun.tools.javac.code.Scope.WriteableScope;
  65 import com.sun.tools.javac.code.Type.*;
  66 import com.sun.tools.javac.code.Symbol.*;
  67 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  68 import com.sun.tools.javac.tree.JCTree.*;
  69 
  70 import static com.sun.tools.javac.code.Flags.*;
  71 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  72 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  73 import static com.sun.tools.javac.code.Kinds.*;
  74 import static com.sun.tools.javac.code.Kinds.Kind.*;
  75 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  76 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  77 import static com.sun.tools.javac.code.TypeTag.*;
  78 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  79 
  80 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  81 import javax.lang.model.element.Element;
  82 import javax.lang.model.element.TypeElement;
  83 import javax.lang.model.type.DeclaredType;
  84 import javax.lang.model.util.ElementKindVisitor14;
  85 
  86 /** Type checking helper class for the attribution phase.
  87  *
  88  *  <p><b>This is NOT part of any supported API.
  89  *  If you write code that depends on this, you do so at your own risk.
  90  *  This code and its internal interfaces are subject to change or
  91  *  deletion without notice.</b>
  92  */
  93 public class Check {
  94     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  95 
  96     // Flag bits indicating which item(s) chosen from a pair of items
  97     private static final int FIRST = 0x01;
  98     private static final int SECOND = 0x02;
  99 
 100     private final Names names;
 101     private final Log log;
 102     private final Resolve rs;
 103     private final Symtab syms;
 104     private final Enter enter;
 105     private final DeferredAttr deferredAttr;
 106     private final Infer infer;
 107     private final Types types;
 108     private final TypeAnnotations typeAnnotations;
 109     private final JCDiagnostic.Factory diags;
 110     private final JavaFileManager fileManager;
 111     private final Source source;
 112     private final Target target;
 113     private final Profile profile;
 114     private final Preview preview;
 115     private final boolean warnOnAnyAccessToMembers;
 116 
 117     public boolean disablePreviewCheck;
 118 
 119     // The set of lint options currently in effect. It is initialized
 120     // from the context, and then is set/reset as needed by Attr as it
 121     // visits all the various parts of the trees during attribution.
 122     Lint lint;
 123 
 124     // The method being analyzed in Attr - it is set/reset as needed by
 125     // Attr as it visits new method declarations.
 126     private MethodSymbol method;
 127 
 128     public static Check instance(Context context) {
 129         Check instance = context.get(checkKey);
 130         if (instance == null)
 131             instance = new Check(context);
 132         return instance;
 133     }
 134 
 135     @SuppressWarnings("this-escape")
 136     protected Check(Context context) {
 137         context.put(checkKey, this);
 138 
 139         names = Names.instance(context);
 140         log = Log.instance(context);
 141         rs = Resolve.instance(context);
 142         syms = Symtab.instance(context);
 143         enter = Enter.instance(context);
 144         deferredAttr = DeferredAttr.instance(context);
 145         infer = Infer.instance(context);
 146         types = Types.instance(context);
 147         typeAnnotations = TypeAnnotations.instance(context);
 148         diags = JCDiagnostic.Factory.instance(context);
 149         Options options = Options.instance(context);
 150         lint = Lint.instance(context);
 151         fileManager = context.get(JavaFileManager.class);
 152 
 153         source = Source.instance(context);
 154         target = Target.instance(context);
 155         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 156 
 157         disablePreviewCheck = false;
 158 
 159         Target target = Target.instance(context);
 160         syntheticNameChar = target.syntheticNameChar();
 161 
 162         profile = Profile.instance(context);
 163         preview = Preview.instance(context);
 164 
 165         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 166         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 167         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 168         boolean enforceMandatoryWarnings = true;
 169 
 170         deprecationHandler = new MandatoryWarningHandler(log, null, verboseDeprecated,
 171                 enforceMandatoryWarnings, LintCategory.DEPRECATION, "deprecated");
 172         removalHandler = new MandatoryWarningHandler(log, null, verboseRemoval,
 173                 enforceMandatoryWarnings, LintCategory.REMOVAL);
 174         uncheckedHandler = new MandatoryWarningHandler(log, null, verboseUnchecked,
 175                 enforceMandatoryWarnings, LintCategory.UNCHECKED);
 176 
 177         deferredLintHandler = DeferredLintHandler.instance(context);
 178 
 179         allowModules = Feature.MODULES.allowedInSource(source);
 180         allowRecords = Feature.RECORDS.allowedInSource(source);
 181         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 182         allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 183                 Feature.VALUE_CLASSES.allowedInSource(source);
 184     }
 185 
 186     /** Character for synthetic names
 187      */
 188     char syntheticNameChar;
 189 
 190     /** A table mapping flat names of all compiled classes for each module in this run
 191      *  to their symbols; maintained from outside.
 192      */
 193     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 194 
 195     /** A handler for messages about deprecated usage.
 196      */
 197     private MandatoryWarningHandler deprecationHandler;
 198 
 199     /** A handler for messages about deprecated-for-removal usage.
 200      */
 201     private MandatoryWarningHandler removalHandler;
 202 
 203     /** A handler for messages about unchecked or unsafe usage.
 204      */
 205     private MandatoryWarningHandler uncheckedHandler;
 206 
 207     /** A handler for deferred lint warnings.
 208      */
 209     private DeferredLintHandler deferredLintHandler;
 210 
 211     /** Are modules allowed
 212      */
 213     private final boolean allowModules;
 214 
 215     /** Are records allowed
 216      */
 217     private final boolean allowRecords;
 218 
 219     /** Are sealed classes allowed
 220      */
 221     private final boolean allowSealed;
 222 
 223     /** Are value classes allowed
 224      */
 225     private final boolean allowValueClasses;
 226 
 227     /** Whether to force suppression of deprecation and preview warnings.
 228      *  This happens when attributing import statements for JDK 9+.
 229      *  @see Feature#DEPRECATION_ON_IMPORT
 230      */
 231     private boolean importSuppression;
 232 
 233 /* *************************************************************************
 234  * Errors and Warnings
 235  **************************************************************************/
 236 
 237     Lint setLint(Lint newLint) {
 238         Lint prev = lint;
 239         lint = newLint;
 240         return prev;
 241     }
 242 
 243     boolean setImportSuppression(boolean newImportSuppression) {
 244         boolean prev = importSuppression;
 245         importSuppression = newImportSuppression;
 246         return prev;
 247     }
 248 
 249     MethodSymbol setMethod(MethodSymbol newMethod) {
 250         MethodSymbol prev = method;
 251         method = newMethod;
 252         return prev;
 253     }
 254 
 255     /** Warn about deprecated symbol.
 256      *  @param pos        Position to be used for error reporting.
 257      *  @param sym        The deprecated symbol.
 258      */
 259     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 260         if (sym.isDeprecatedForRemoval()) {
 261             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 262                 if (sym.kind == MDL) {
 263                     removalHandler.report(pos, LintWarnings.HasBeenDeprecatedForRemovalModule(sym));
 264                 } else {
 265                     removalHandler.report(pos, LintWarnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 266                 }
 267             }
 268         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 269             if (sym.kind == MDL) {
 270                 deprecationHandler.report(pos, LintWarnings.HasBeenDeprecatedModule(sym));
 271             } else {
 272                 deprecationHandler.report(pos, LintWarnings.HasBeenDeprecated(sym, sym.location()));
 273             }
 274         }
 275     }
 276 
 277     /** Log a preview warning.
 278      *  @param pos        Position to be used for error reporting.
 279      *  @param msg        A Warning describing the problem.
 280      */
 281     public void warnPreviewAPI(DiagnosticPosition pos, LintWarning warnKey) {
 282         if (!importSuppression && !lint.isSuppressed(LintCategory.PREVIEW))
 283             preview.reportPreviewWarning(pos, warnKey);
 284     }
 285 
 286     /** Log a preview warning.
 287      *  @param pos        Position to be used for error reporting.
 288      *  @param msg        A Warning describing the problem.
 289      */
 290     public void warnRestrictedAPI(DiagnosticPosition pos, Symbol sym) {
 291         lint.logIfEnabled(pos, LintWarnings.RestrictedMethod(sym.enclClass(), sym));
 292     }
 293 
 294     /** Warn about unchecked operation.
 295      *  @param pos        Position to be used for error reporting.
 296      *  @param msg        A string describing the problem.
 297      */
 298     public void warnUnchecked(DiagnosticPosition pos, LintWarning warnKey) {
 299         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 300             uncheckedHandler.report(pos, warnKey);
 301     }
 302 
 303     /**
 304      * Report any deferred diagnostics.
 305      */
 306     public void reportDeferredDiagnostics() {
 307         deprecationHandler.reportDeferredDiagnostic();
 308         removalHandler.reportDeferredDiagnostic();
 309         uncheckedHandler.reportDeferredDiagnostic();
 310     }
 311 
 312 
 313     /** Report a failure to complete a class.
 314      *  @param pos        Position to be used for error reporting.
 315      *  @param ex         The failure to report.
 316      */
 317     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 318         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 319         return syms.errType;
 320     }
 321 
 322     /** Report an error that wrong type tag was found.
 323      *  @param pos        Position to be used for error reporting.
 324      *  @param required   An internationalized string describing the type tag
 325      *                    required.
 326      *  @param found      The type that was found.
 327      */
 328     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 329         // this error used to be raised by the parser,
 330         // but has been delayed to this point:
 331         if (found instanceof Type type && type.hasTag(VOID)) {
 332             log.error(pos, Errors.IllegalStartOfType);
 333             return syms.errType;
 334         }
 335         log.error(pos, Errors.TypeFoundReq(found, required));
 336         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 337     }
 338 
 339     /** Report duplicate declaration error.
 340      */
 341     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 342         if (!sym.type.isErroneous()) {
 343             Symbol location = sym.location();
 344             if (location.kind == MTH &&
 345                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 346                 log.error(pos,
 347                           Errors.AlreadyDefinedInClinit(kindName(sym),
 348                                                         sym,
 349                                                         kindName(sym.location()),
 350                                                         kindName(sym.location().enclClass()),
 351                                                         sym.location().enclClass()));
 352             } else {
 353                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 354                  * as we should have issued an error for the duplicated fields
 355                  */
 356                 if (location.kind != MTH ||
 357                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 358                         ((sym.owner.flags_field & RECORD) == 0)) {
 359                     log.error(pos,
 360                             Errors.AlreadyDefined(kindName(sym),
 361                                     sym,
 362                                     kindName(sym.location()),
 363                                     sym.location()));
 364                 }
 365             }
 366         }
 367     }
 368 
 369     /** Report array/varargs duplicate declaration
 370      */
 371     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 372         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 373             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 374         }
 375     }
 376 
 377 /* ************************************************************************
 378  * duplicate declaration checking
 379  *************************************************************************/
 380 
 381     /** Check that variable does not hide variable with same name in
 382      *  immediately enclosing local scope.
 383      *  @param pos           Position for error reporting.
 384      *  @param v             The symbol.
 385      *  @param s             The scope.
 386      */
 387     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 388         for (Symbol sym : s.getSymbolsByName(v.name)) {
 389             if (sym.owner != v.owner) break;
 390             if (sym.kind == VAR &&
 391                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 392                 v.name != names.error) {
 393                 duplicateError(pos, sym);
 394                 return;
 395             }
 396         }
 397     }
 398 
 399     /** Check that a class or interface does not hide a class or
 400      *  interface with same name in immediately enclosing local scope.
 401      *  @param pos           Position for error reporting.
 402      *  @param c             The symbol.
 403      *  @param s             The scope.
 404      */
 405     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 406         for (Symbol sym : s.getSymbolsByName(c.name)) {
 407             if (sym.owner != c.owner) break;
 408             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 409                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 410                 c.name != names.error) {
 411                 duplicateError(pos, sym);
 412                 return;
 413             }
 414         }
 415     }
 416 
 417     /** Check that class does not have the same name as one of
 418      *  its enclosing classes, or as a class defined in its enclosing scope.
 419      *  return true if class is unique in its enclosing scope.
 420      *  @param pos           Position for error reporting.
 421      *  @param name          The class name.
 422      *  @param s             The enclosing scope.
 423      */
 424     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 425         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 426             if (sym.kind == TYP && sym.name != names.error) {
 427                 duplicateError(pos, sym);
 428                 return false;
 429             }
 430         }
 431         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 432             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 433                     !sym.isImplicit()) {
 434                 duplicateError(pos, sym);
 435                 return true;
 436             }
 437         }
 438         return true;
 439     }
 440 
 441 /* *************************************************************************
 442  * Class name generation
 443  **************************************************************************/
 444 
 445 
 446     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 447 
 448     /** Return name of local class.
 449      *  This is of the form   {@code <enclClass> $ n <classname> }
 450      *  where
 451      *    enclClass is the flat name of the enclosing class,
 452      *    classname is the simple name of the local class
 453      */
 454     public Name localClassName(ClassSymbol c) {
 455         Name enclFlatname = c.owner.enclClass().flatname;
 456         String enclFlatnameStr = enclFlatname.toString();
 457         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 458         Integer index = localClassNameIndexes.get(key);
 459         for (int i = (index == null) ? 1 : index; ; i++) {
 460             Name flatname = names.fromString(enclFlatnameStr
 461                     + syntheticNameChar + i + c.name);
 462             if (getCompiled(c.packge().modle, flatname) == null) {
 463                 localClassNameIndexes.put(key, i + 1);
 464                 return flatname;
 465             }
 466         }
 467     }
 468 
 469     public void clearLocalClassNameIndexes(ClassSymbol c) {
 470         if (c.owner != null && c.owner.kind != NIL) {
 471             localClassNameIndexes.remove(new Pair<>(
 472                     c.owner.enclClass().flatname, c.name));
 473         }
 474     }
 475 
 476     public void newRound() {
 477         compiled.clear();
 478         localClassNameIndexes.clear();
 479     }
 480 
 481     public void clear() {
 482         deprecationHandler.clear();
 483         removalHandler.clear();
 484         uncheckedHandler.clear();
 485     }
 486 
 487     public void putCompiled(ClassSymbol csym) {
 488         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 489     }
 490 
 491     public ClassSymbol getCompiled(ClassSymbol csym) {
 492         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 493     }
 494 
 495     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 496         return compiled.get(Pair.of(msym, flatname));
 497     }
 498 
 499     public void removeCompiled(ClassSymbol csym) {
 500         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 501     }
 502 
 503 /* *************************************************************************
 504  * Type Checking
 505  **************************************************************************/
 506 
 507     /**
 508      * A check context is an object that can be used to perform compatibility
 509      * checks - depending on the check context, meaning of 'compatibility' might
 510      * vary significantly.
 511      */
 512     public interface CheckContext {
 513         /**
 514          * Is type 'found' compatible with type 'req' in given context
 515          */
 516         boolean compatible(Type found, Type req, Warner warn);
 517         /**
 518          * Report a check error
 519          */
 520         void report(DiagnosticPosition pos, JCDiagnostic details);
 521         /**
 522          * Obtain a warner for this check context
 523          */
 524         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 525 
 526         public InferenceContext inferenceContext();
 527 
 528         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 529     }
 530 
 531     /**
 532      * This class represent a check context that is nested within another check
 533      * context - useful to check sub-expressions. The default behavior simply
 534      * redirects all method calls to the enclosing check context leveraging
 535      * the forwarding pattern.
 536      */
 537     static class NestedCheckContext implements CheckContext {
 538         CheckContext enclosingContext;
 539 
 540         NestedCheckContext(CheckContext enclosingContext) {
 541             this.enclosingContext = enclosingContext;
 542         }
 543 
 544         public boolean compatible(Type found, Type req, Warner warn) {
 545             return enclosingContext.compatible(found, req, warn);
 546         }
 547 
 548         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 549             enclosingContext.report(pos, details);
 550         }
 551 
 552         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 553             return enclosingContext.checkWarner(pos, found, req);
 554         }
 555 
 556         public InferenceContext inferenceContext() {
 557             return enclosingContext.inferenceContext();
 558         }
 559 
 560         public DeferredAttrContext deferredAttrContext() {
 561             return enclosingContext.deferredAttrContext();
 562         }
 563     }
 564 
 565     /**
 566      * Check context to be used when evaluating assignment/return statements
 567      */
 568     CheckContext basicHandler = new CheckContext() {
 569         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 570             log.error(pos, Errors.ProbFoundReq(details));
 571         }
 572         public boolean compatible(Type found, Type req, Warner warn) {
 573             return types.isAssignable(found, req, warn);
 574         }
 575 
 576         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 577             return convertWarner(pos, found, req);
 578         }
 579 
 580         public InferenceContext inferenceContext() {
 581             return infer.emptyContext;
 582         }
 583 
 584         public DeferredAttrContext deferredAttrContext() {
 585             return deferredAttr.emptyDeferredAttrContext;
 586         }
 587 
 588         @Override
 589         public String toString() {
 590             return "CheckContext: basicHandler";
 591         }
 592     };
 593 
 594     /** Check that a given type is assignable to a given proto-type.
 595      *  If it is, return the type, otherwise return errType.
 596      *  @param pos        Position to be used for error reporting.
 597      *  @param found      The type that was found.
 598      *  @param req        The type that was required.
 599      */
 600     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 601         return checkType(pos, found, req, basicHandler);
 602     }
 603 
 604     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 605         final InferenceContext inferenceContext = checkContext.inferenceContext();
 606         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 607             inferenceContext.addFreeTypeListener(List.of(req, found),
 608                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 609         }
 610         if (req.hasTag(ERROR))
 611             return req;
 612         if (req.hasTag(NONE))
 613             return found;
 614         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 615             return found;
 616         } else {
 617             if (found.isNumeric() && req.isNumeric()) {
 618                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 619                 return types.createErrorType(found);
 620             }
 621             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 622             return types.createErrorType(found);
 623         }
 624     }
 625 
 626     /** Check that a given type can be cast to a given target type.
 627      *  Return the result of the cast.
 628      *  @param pos        Position to be used for error reporting.
 629      *  @param found      The type that is being cast.
 630      *  @param req        The target type of the cast.
 631      */
 632     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 633         return checkCastable(pos, found, req, basicHandler);
 634     }
 635     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 636         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 637             return req;
 638         } else {
 639             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 640             return types.createErrorType(found);
 641         }
 642     }
 643 
 644     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 645      * The problem should only be reported for non-292 cast
 646      */
 647     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 648         if (!tree.type.isErroneous()
 649                 && types.isSameType(tree.expr.type, tree.clazz.type)
 650                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 651                 && !is292targetTypeCast(tree)) {
 652             deferredLintHandler.report(_l -> {
 653                 lint.logIfEnabled(tree.pos(), LintWarnings.RedundantCast(tree.clazz.type));
 654             });
 655         }
 656     }
 657     //where
 658         private boolean is292targetTypeCast(JCTypeCast tree) {
 659             boolean is292targetTypeCast = false;
 660             JCExpression expr = TreeInfo.skipParens(tree.expr);
 661             if (expr.hasTag(APPLY)) {
 662                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 663                 Symbol sym = TreeInfo.symbol(apply.meth);
 664                 is292targetTypeCast = sym != null &&
 665                     sym.kind == MTH &&
 666                     (sym.flags() & HYPOTHETICAL) != 0;
 667             }
 668             return is292targetTypeCast;
 669         }
 670 
 671         private static final boolean ignoreAnnotatedCasts = true;
 672 
 673     /** Check that a type is within some bounds.
 674      *
 675      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 676      *  type argument.
 677      *  @param a             The type that should be bounded by bs.
 678      *  @param bound         The bound.
 679      */
 680     private boolean checkExtends(Type a, Type bound) {
 681          if (a.isUnbound()) {
 682              return true;
 683          } else if (!a.hasTag(WILDCARD)) {
 684              a = types.cvarUpperBound(a);
 685              return types.isSubtype(a, bound);
 686          } else if (a.isExtendsBound()) {
 687              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 688          } else if (a.isSuperBound()) {
 689              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 690          }
 691          return true;
 692      }
 693 
 694     /** Check that type is different from 'void'.
 695      *  @param pos           Position to be used for error reporting.
 696      *  @param t             The type to be checked.
 697      */
 698     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 699         if (t.hasTag(VOID)) {
 700             log.error(pos, Errors.VoidNotAllowedHere);
 701             return types.createErrorType(t);
 702         } else {
 703             return t;
 704         }
 705     }
 706 
 707     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 708         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 709             return typeTagError(pos,
 710                                 diags.fragment(Fragments.TypeReqClassArray),
 711                                 asTypeParam(t));
 712         } else {
 713             return t;
 714         }
 715     }
 716 
 717     /** Check that type is a class or interface type.
 718      *  @param pos           Position to be used for error reporting.
 719      *  @param t             The type to be checked.
 720      */
 721     Type checkClassType(DiagnosticPosition pos, Type t) {
 722         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 723             return typeTagError(pos,
 724                                 diags.fragment(Fragments.TypeReqClass),
 725                                 asTypeParam(t));
 726         } else {
 727             return t;
 728         }
 729     }
 730     //where
 731         private Object asTypeParam(Type t) {
 732             return (t.hasTag(TYPEVAR))
 733                                     ? diags.fragment(Fragments.TypeParameter(t))
 734                                     : t;
 735         }
 736 
 737     void checkConstraintsOfValueClass(JCClassDecl tree, ClassSymbol c) {
 738         DiagnosticPosition pos = tree.pos();
 739         for (Type st : types.closure(c.type)) {
 740             if (st == null || st.tsym == null || st.tsym.kind == ERR)
 741                 continue;
 742             if  (st.tsym == syms.objectType.tsym || st.tsym == syms.recordType.tsym || st.isInterface())
 743                 continue;
 744             if (!st.tsym.isAbstract()) {
 745                 if (c != st.tsym) {
 746                     log.error(pos, Errors.ConcreteSupertypeForValueClass(c, st));
 747                 }
 748                 continue;
 749             }
 750             // dealing with an abstract value or value super class below.
 751             for (Symbol s : st.tsym.members().getSymbols(NON_RECURSIVE)) {
 752                 if (s.kind == MTH) {
 753                     if ((s.flags() & (SYNCHRONIZED | STATIC)) == SYNCHRONIZED) {
 754                         log.error(pos, Errors.SuperClassMethodCannotBeSynchronized(s, c, st));
 755                     }
 756                     break;
 757                 }
 758             }
 759         }
 760     }
 761 
 762     /** Check that type is a valid qualifier for a constructor reference expression
 763      */
 764     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 765         t = checkClassOrArrayType(pos, t);
 766         if (t.hasTag(CLASS)) {
 767             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 768                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 769                 t = types.createErrorType(t);
 770             } else if ((t.tsym.flags() & ENUM) != 0) {
 771                 log.error(pos, Errors.EnumCantBeInstantiated);
 772                 t = types.createErrorType(t);
 773             } else {
 774                 t = checkClassType(pos, t, true);
 775             }
 776         } else if (t.hasTag(ARRAY)) {
 777             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 778                 log.error(pos, Errors.GenericArrayCreation);
 779                 t = types.createErrorType(t);
 780             }
 781         }
 782         return t;
 783     }
 784 
 785     /** Check that type is a class or interface type.
 786      *  @param pos           Position to be used for error reporting.
 787      *  @param t             The type to be checked.
 788      *  @param noBounds    True if type bounds are illegal here.
 789      */
 790     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 791         t = checkClassType(pos, t);
 792         if (noBounds && t.isParameterized()) {
 793             List<Type> args = t.getTypeArguments();
 794             while (args.nonEmpty()) {
 795                 if (args.head.hasTag(WILDCARD))
 796                     return typeTagError(pos,
 797                                         diags.fragment(Fragments.TypeReqExact),
 798                                         args.head);
 799                 args = args.tail;
 800             }
 801         }
 802         return t;
 803     }
 804 
 805     /** Check that type is a reference type, i.e. a class, interface or array type
 806      *  or a type variable.
 807      *  @param pos           Position to be used for error reporting.
 808      *  @param t             The type to be checked.
 809      */
 810     Type checkRefType(DiagnosticPosition pos, Type t) {
 811         if (t.isReference())
 812             return t;
 813         else
 814             return typeTagError(pos,
 815                                 diags.fragment(Fragments.TypeReqRef),
 816                                 t);
 817     }
 818 
 819     /** Check that type is an identity type, i.e. not a value type.
 820      *  When not discernible statically, give it the benefit of doubt
 821      *  and defer to runtime.
 822      *
 823      *  @param pos           Position to be used for error reporting.
 824      *  @param t             The type to be checked.
 825      */
 826     boolean checkIdentityType(DiagnosticPosition pos, Type t) {
 827         if (t.hasTag(TYPEVAR)) {
 828             t = types.skipTypeVars(t, false);
 829         }
 830         if (t.isIntersection()) {
 831             IntersectionClassType ict = (IntersectionClassType)t;
 832             boolean result = true;
 833             for (Type component : ict.getExplicitComponents()) {
 834                 result &= checkIdentityType(pos, component);
 835             }
 836             return result;
 837         }
 838         if (t.isPrimitive() || (t.isValueClass() && !t.tsym.isAbstract())) {
 839             typeTagError(pos, diags.fragment(Fragments.TypeReqIdentity), t);
 840             return false;
 841         }
 842         return true;
 843     }
 844 
 845     /** Check that each type is a reference type, i.e. a class, interface or array type
 846      *  or a type variable.
 847      *  @param trees         Original trees, used for error reporting.
 848      *  @param types         The types to be checked.
 849      */
 850     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 851         List<JCExpression> tl = trees;
 852         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 853             l.head = checkRefType(tl.head.pos(), l.head);
 854             tl = tl.tail;
 855         }
 856         return types;
 857     }
 858 
 859     /** Check that type is a null or reference type.
 860      *  @param pos           Position to be used for error reporting.
 861      *  @param t             The type to be checked.
 862      */
 863     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 864         if (t.isReference() || t.hasTag(BOT))
 865             return t;
 866         else
 867             return typeTagError(pos,
 868                                 diags.fragment(Fragments.TypeReqRef),
 869                                 t);
 870     }
 871 
 872     /** Check that flag set does not contain elements of two conflicting sets. s
 873      *  Return true if it doesn't.
 874      *  @param pos           Position to be used for error reporting.
 875      *  @param flags         The set of flags to be checked.
 876      *  @param set1          Conflicting flags set #1.
 877      *  @param set2          Conflicting flags set #2.
 878      */
 879     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 880         if ((flags & set1) != 0 && (flags & set2) != 0) {
 881             log.error(pos,
 882                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 883                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 884             return false;
 885         } else
 886             return true;
 887     }
 888 
 889     /** Check that usage of diamond operator is correct (i.e. diamond should not
 890      * be used with non-generic classes or in anonymous class creation expressions)
 891      */
 892     Type checkDiamond(JCNewClass tree, Type t) {
 893         if (!TreeInfo.isDiamond(tree) ||
 894                 t.isErroneous()) {
 895             return checkClassType(tree.clazz.pos(), t, true);
 896         } else {
 897             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 898                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 899                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 900             }
 901             if (t.tsym.type.getTypeArguments().isEmpty()) {
 902                 log.error(tree.clazz.pos(),
 903                           Errors.CantApplyDiamond1(t,
 904                                                    Fragments.DiamondNonGeneric(t)));
 905                 return types.createErrorType(t);
 906             } else if (tree.typeargs != null &&
 907                     tree.typeargs.nonEmpty()) {
 908                 log.error(tree.clazz.pos(),
 909                           Errors.CantApplyDiamond1(t,
 910                                                    Fragments.DiamondAndExplicitParams(t)));
 911                 return types.createErrorType(t);
 912             } else {
 913                 return t;
 914             }
 915         }
 916     }
 917 
 918     /** Check that the type inferred using the diamond operator does not contain
 919      *  non-denotable types such as captured types or intersection types.
 920      *  @param t the type inferred using the diamond operator
 921      *  @return  the (possibly empty) list of non-denotable types.
 922      */
 923     List<Type> checkDiamondDenotable(ClassType t) {
 924         ListBuffer<Type> buf = new ListBuffer<>();
 925         for (Type arg : t.allparams()) {
 926             if (!checkDenotable(arg)) {
 927                 buf.append(arg);
 928             }
 929         }
 930         return buf.toList();
 931     }
 932 
 933     public boolean checkDenotable(Type t) {
 934         return denotableChecker.visit(t, null);
 935     }
 936         // where
 937 
 938         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 939          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 940          *  otherwise.
 941          */
 942         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 943             @Override
 944             public Boolean visitType(Type t, Void s) {
 945                 return true;
 946             }
 947             @Override
 948             public Boolean visitClassType(ClassType t, Void s) {
 949                 if (t.isUnion() || t.isIntersection()) {
 950                     return false;
 951                 }
 952                 for (Type targ : t.allparams()) {
 953                     if (!visit(targ, s)) {
 954                         return false;
 955                     }
 956                 }
 957                 return true;
 958             }
 959 
 960             @Override
 961             public Boolean visitTypeVar(TypeVar t, Void s) {
 962                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 963                   (i.e cannot have been produced by inference (18.4))
 964                 */
 965                 return (t.tsym.flags() & SYNTHETIC) == 0;
 966             }
 967 
 968             @Override
 969             public Boolean visitCapturedType(CapturedType t, Void s) {
 970                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 971                   (i.e cannot have been produced by capture conversion (5.1.10))
 972                 */
 973                 return false;
 974             }
 975 
 976             @Override
 977             public Boolean visitArrayType(ArrayType t, Void s) {
 978                 return visit(t.elemtype, s);
 979             }
 980 
 981             @Override
 982             public Boolean visitWildcardType(WildcardType t, Void s) {
 983                 return visit(t.type, s);
 984             }
 985         };
 986 
 987     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 988         MethodSymbol m = tree.sym;
 989         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 990         Type varargElemType = null;
 991         if (m.isVarArgs()) {
 992             varargElemType = types.elemtype(tree.params.last().type);
 993         }
 994         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 995             if (varargElemType != null) {
 996                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
 997                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
 998                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
 999                 log.error(tree,
1000                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1001                                                            msg));
1002             } else {
1003                 log.error(tree,
1004                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1005                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
1006             }
1007         } else if (hasTrustMeAnno && varargElemType != null &&
1008                             types.isReifiable(varargElemType)) {
1009             lint.logIfEnabled(tree, LintWarnings.VarargsRedundantTrustmeAnno(
1010                                 syms.trustMeType.tsym,
1011                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
1012         }
1013         else if (!hasTrustMeAnno && varargElemType != null &&
1014                 !types.isReifiable(varargElemType)) {
1015             warnUnchecked(tree.params.head.pos(), LintWarnings.UncheckedVarargsNonReifiableType(varargElemType));
1016         }
1017     }
1018     //where
1019         private boolean isTrustMeAllowedOnMethod(Symbol s) {
1020             return (s.flags() & VARARGS) != 0 &&
1021                 (s.isConstructor() ||
1022                     (s.flags() & (STATIC | FINAL |
1023                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
1024         }
1025 
1026     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
1027         //check that resulting type is not the null type
1028         if (t.hasTag(BOT)) {
1029             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
1030             return types.createErrorType(t);
1031         } else if (t.hasTag(VOID)) {
1032             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
1033             return types.createErrorType(t);
1034         }
1035 
1036         //upward project the initializer type
1037         return types.upward(t, types.captures(t)).baseType();
1038     }
1039 
1040     Type checkMethod(final Type mtype,
1041             final Symbol sym,
1042             final Env<AttrContext> env,
1043             final List<JCExpression> argtrees,
1044             final List<Type> argtypes,
1045             final boolean useVarargs,
1046             InferenceContext inferenceContext) {
1047         // System.out.println("call   : " + env.tree);
1048         // System.out.println("method : " + owntype);
1049         // System.out.println("actuals: " + argtypes);
1050         if (inferenceContext.free(mtype)) {
1051             inferenceContext.addFreeTypeListener(List.of(mtype),
1052                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
1053             return mtype;
1054         }
1055         Type owntype = mtype;
1056         List<Type> formals = owntype.getParameterTypes();
1057         List<Type> nonInferred = sym.type.getParameterTypes();
1058         if (nonInferred.length() != formals.length()) nonInferred = formals;
1059         Type last = useVarargs ? formals.last() : null;
1060         if (sym.name == names.init && sym.owner == syms.enumSym) {
1061             formals = formals.tail.tail;
1062             nonInferred = nonInferred.tail.tail;
1063         }
1064         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
1065             formals = formals.tail;
1066             nonInferred = nonInferred.tail;
1067         }
1068         List<JCExpression> args = argtrees;
1069         if (args != null) {
1070             //this is null when type-checking a method reference
1071             while (formals.head != last) {
1072                 JCTree arg = args.head;
1073                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1074                 assertConvertible(arg, arg.type, formals.head, warn);
1075                 args = args.tail;
1076                 formals = formals.tail;
1077                 nonInferred = nonInferred.tail;
1078             }
1079             if (useVarargs) {
1080                 Type varArg = types.elemtype(last);
1081                 while (args.tail != null) {
1082                     JCTree arg = args.head;
1083                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1084                     assertConvertible(arg, arg.type, varArg, warn);
1085                     args = args.tail;
1086                 }
1087             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1088                 // non-varargs call to varargs method
1089                 Type varParam = owntype.getParameterTypes().last();
1090                 Type lastArg = argtypes.last();
1091                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1092                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1093                     log.warning(argtrees.last().pos(),
1094                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1095             }
1096         }
1097         if (useVarargs) {
1098             Type argtype = owntype.getParameterTypes().last();
1099             if (!types.isReifiable(argtype) &&
1100                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1101                  !isTrustMeAllowedOnMethod(sym))) {
1102                 warnUnchecked(env.tree.pos(), LintWarnings.UncheckedGenericArrayCreation(argtype));
1103             }
1104             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1105          }
1106          return owntype;
1107     }
1108     //where
1109     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1110         if (types.isConvertible(actual, formal, warn))
1111             return;
1112 
1113         if (formal.isCompound()
1114             && types.isSubtype(actual, types.supertype(formal))
1115             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1116             return;
1117     }
1118 
1119     /**
1120      * Check that type 't' is a valid instantiation of a generic class
1121      * (see JLS 4.5)
1122      *
1123      * @param t class type to be checked
1124      * @return true if 't' is well-formed
1125      */
1126     public boolean checkValidGenericType(Type t) {
1127         return firstIncompatibleTypeArg(t) == null;
1128     }
1129     //WHERE
1130         private Type firstIncompatibleTypeArg(Type type) {
1131             List<Type> formals = type.tsym.type.allparams();
1132             List<Type> actuals = type.allparams();
1133             List<Type> args = type.getTypeArguments();
1134             List<Type> forms = type.tsym.type.getTypeArguments();
1135             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1136 
1137             // For matching pairs of actual argument types `a' and
1138             // formal type parameters with declared bound `b' ...
1139             while (args.nonEmpty() && forms.nonEmpty()) {
1140                 // exact type arguments needs to know their
1141                 // bounds (for upper and lower bound
1142                 // calculations).  So we create new bounds where
1143                 // type-parameters are replaced with actuals argument types.
1144                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1145                 args = args.tail;
1146                 forms = forms.tail;
1147             }
1148 
1149             args = type.getTypeArguments();
1150             List<Type> tvars_cap = types.substBounds(formals,
1151                                       formals,
1152                                       types.capture(type).allparams());
1153             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1154                 // Let the actual arguments know their bound
1155                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1156                 args = args.tail;
1157                 tvars_cap = tvars_cap.tail;
1158             }
1159 
1160             args = type.getTypeArguments();
1161             List<Type> bounds = bounds_buf.toList();
1162 
1163             while (args.nonEmpty() && bounds.nonEmpty()) {
1164                 Type actual = args.head;
1165                 if (!isTypeArgErroneous(actual) &&
1166                         !bounds.head.isErroneous() &&
1167                         !checkExtends(actual, bounds.head)) {
1168                     return args.head;
1169                 }
1170                 args = args.tail;
1171                 bounds = bounds.tail;
1172             }
1173 
1174             args = type.getTypeArguments();
1175             bounds = bounds_buf.toList();
1176 
1177             for (Type arg : types.capture(type).getTypeArguments()) {
1178                 if (arg.hasTag(TYPEVAR) &&
1179                         arg.getUpperBound().isErroneous() &&
1180                         !bounds.head.isErroneous() &&
1181                         !isTypeArgErroneous(args.head)) {
1182                     return args.head;
1183                 }
1184                 bounds = bounds.tail;
1185                 args = args.tail;
1186             }
1187 
1188             return null;
1189         }
1190         //where
1191         boolean isTypeArgErroneous(Type t) {
1192             return isTypeArgErroneous.visit(t);
1193         }
1194 
1195         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1196             public Boolean visitType(Type t, Void s) {
1197                 return t.isErroneous();
1198             }
1199             @Override
1200             public Boolean visitTypeVar(TypeVar t, Void s) {
1201                 return visit(t.getUpperBound());
1202             }
1203             @Override
1204             public Boolean visitCapturedType(CapturedType t, Void s) {
1205                 return visit(t.getUpperBound()) ||
1206                         visit(t.getLowerBound());
1207             }
1208             @Override
1209             public Boolean visitWildcardType(WildcardType t, Void s) {
1210                 return visit(t.type);
1211             }
1212         };
1213 
1214     /** Check that given modifiers are legal for given symbol and
1215      *  return modifiers together with any implicit modifiers for that symbol.
1216      *  Warning: we can't use flags() here since this method
1217      *  is called during class enter, when flags() would cause a premature
1218      *  completion.
1219      *  @param flags         The set of modifiers given in a definition.
1220      *  @param sym           The defined symbol.
1221      *  @param tree          The declaration
1222      */
1223     long checkFlags(long flags, Symbol sym, JCTree tree) {
1224         final DiagnosticPosition pos = tree.pos();
1225         long mask;
1226         long implicit = 0;
1227 
1228         switch (sym.kind) {
1229         case VAR:
1230             if (TreeInfo.isReceiverParam(tree))
1231                 mask = ReceiverParamFlags;
1232             else if (sym.owner.kind != TYP)
1233                 mask = LocalVarFlags;
1234             else if ((sym.owner.flags_field & INTERFACE) != 0)
1235                 mask = implicit = InterfaceVarFlags;
1236             else {
1237                 boolean isInstanceField = (flags & STATIC) == 0;
1238                 boolean isInstanceFieldOfValueClass = isInstanceField && sym.owner.type.isValueClass();
1239                 boolean isRecordField = isInstanceField && (sym.owner.flags_field & RECORD) != 0;
1240                 if (allowValueClasses && (isInstanceFieldOfValueClass || isRecordField)) {
1241                     implicit |= FINAL | STRICT;
1242                     mask = ValueFieldFlags;
1243                 } else {
1244                     mask = VarFlags;
1245                 }
1246             }
1247             break;
1248         case MTH:
1249             if (sym.name == names.init) {
1250                 if ((sym.owner.flags_field & ENUM) != 0) {
1251                     // enum constructors cannot be declared public or
1252                     // protected and must be implicitly or explicitly
1253                     // private
1254                     implicit = PRIVATE;
1255                     mask = PRIVATE;
1256                 } else
1257                     mask = ConstructorFlags;
1258             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1259                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1260                     mask = AnnotationTypeElementMask;
1261                     implicit = PUBLIC | ABSTRACT;
1262                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1263                     mask = InterfaceMethodMask;
1264                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1265                     if ((flags & DEFAULT) != 0) {
1266                         implicit |= ABSTRACT;
1267                     }
1268                 } else {
1269                     mask = implicit = InterfaceMethodFlags;
1270                 }
1271             } else if ((sym.owner.flags_field & RECORD) != 0) {
1272                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1273                         RecordMethodFlags & ~SYNCHRONIZED : RecordMethodFlags;
1274             } else {
1275                 // value objects do not have an associated monitor/lock
1276                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1277                         MethodFlags & ~SYNCHRONIZED : MethodFlags;
1278             }
1279             if ((flags & STRICTFP) != 0) {
1280                 warnOnExplicitStrictfp(tree);
1281             }
1282             // Imply STRICTFP if owner has STRICTFP set.
1283             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1284                 ((flags) & Flags.DEFAULT) != 0)
1285                 implicit |= sym.owner.flags_field & STRICTFP;
1286             break;
1287         case TYP:
1288             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1289                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1290                 boolean implicitlyStatic = !sym.isAnonymous() &&
1291                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1292                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1293                 // local statics are allowed only if records are allowed too
1294                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedStaticLocalClassFlags : ExtendedLocalClassFlags;
1295                 implicit = implicitlyStatic ? STATIC : implicit;
1296             } else if (sym.owner.kind == TYP) {
1297                 // statics in inner classes are allowed only if records are allowed too
1298                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1299                 if (sym.owner.owner.kind == PCK ||
1300                     (sym.owner.flags_field & STATIC) != 0) {
1301                     mask |= STATIC;
1302                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1303                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1304                 }
1305                 // Nested interfaces and enums are always STATIC (Spec ???)
1306                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1307             } else {
1308                 mask = ExtendedClassFlags;
1309             }
1310             if ((flags & (VALUE_CLASS | SEALED | ABSTRACT)) == (VALUE_CLASS | SEALED) ||
1311                 (flags & (VALUE_CLASS | NON_SEALED | ABSTRACT)) == (VALUE_CLASS | NON_SEALED)) {
1312                 log.error(pos, Errors.NonAbstractValueClassCantBeSealedOrNonSealed);
1313             }
1314             // Interfaces are always ABSTRACT
1315             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1316 
1317             if ((flags & (INTERFACE | VALUE_CLASS)) == 0) {
1318                 implicit |= IDENTITY_TYPE;
1319             }
1320 
1321             if ((flags & ENUM) != 0) {
1322                 // enums can't be declared abstract, final, sealed or non-sealed or value
1323                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED | VALUE_CLASS);
1324                 implicit |= implicitEnumFinalFlag(tree);
1325             }
1326             if ((flags & RECORD) != 0) {
1327                 // records can't be declared abstract
1328                 mask &= ~ABSTRACT;
1329                 implicit |= FINAL;
1330             }
1331             if ((flags & STRICTFP) != 0) {
1332                 warnOnExplicitStrictfp(tree);
1333             }
1334             // Imply STRICTFP if owner has STRICTFP set.
1335             implicit |= sym.owner.flags_field & STRICTFP;
1336 
1337             // concrete value classes are implicitly final
1338             if ((flags & (ABSTRACT | INTERFACE | VALUE_CLASS)) == VALUE_CLASS) {
1339                 implicit |= FINAL;
1340             }
1341             break;
1342         default:
1343             throw new AssertionError();
1344         }
1345         long illegal = flags & ExtendedStandardFlags & ~mask;
1346         if (illegal != 0) {
1347             if ((illegal & INTERFACE) != 0) {
1348                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1349                 mask |= INTERFACE;
1350             }
1351             else {
1352                 log.error(pos,
1353                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1354             }
1355         } else if ((sym.kind == TYP ||
1356                   // ISSUE: Disallowing abstract&private is no longer appropriate
1357                   // in the presence of inner classes. Should it be deleted here?
1358                   checkDisjoint(pos, flags,
1359                                 ABSTRACT,
1360                                 PRIVATE | STATIC | DEFAULT))
1361                  &&
1362                  checkDisjoint(pos, flags,
1363                                 STATIC | PRIVATE,
1364                                 DEFAULT)
1365                  &&
1366                  checkDisjoint(pos, flags,
1367                                ABSTRACT | INTERFACE,
1368                                FINAL | NATIVE | SYNCHRONIZED)
1369                  &&
1370                  checkDisjoint(pos, flags,
1371                                PUBLIC,
1372                                PRIVATE | PROTECTED)
1373                  &&
1374                  checkDisjoint(pos, flags,
1375                                PRIVATE,
1376                                PUBLIC | PROTECTED)
1377                  &&
1378                  // we are using `implicit` here as instance fields of value classes are implicitly final
1379                  checkDisjoint(pos, flags | implicit,
1380                                FINAL,
1381                                VOLATILE)
1382                  &&
1383                  (sym.kind == TYP ||
1384                   checkDisjoint(pos, flags,
1385                                 ABSTRACT | NATIVE,
1386                                 STRICTFP))
1387                  && checkDisjoint(pos, flags,
1388                                 FINAL,
1389                            SEALED | NON_SEALED)
1390                  && checkDisjoint(pos, flags,
1391                                 SEALED,
1392                            FINAL | NON_SEALED)
1393                  && checkDisjoint(pos, flags,
1394                                 SEALED,
1395                                 ANNOTATION)
1396                 && checkDisjoint(pos, flags,
1397                                 VALUE_CLASS,
1398                                 ANNOTATION)
1399                 && checkDisjoint(pos, flags,
1400                                 VALUE_CLASS,
1401                                 INTERFACE) ) {
1402             // skip
1403         }
1404         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1405     }
1406 
1407     private void warnOnExplicitStrictfp(JCTree tree) {
1408         deferredLintHandler.push(tree);
1409         try {
1410             deferredLintHandler.report(_ -> lint.logIfEnabled(tree.pos(), LintWarnings.Strictfp));
1411         } finally {
1412             deferredLintHandler.pop();
1413         }
1414     }
1415 
1416 
1417     /** Determine if this enum should be implicitly final.
1418      *
1419      *  If the enum has no specialized enum constants, it is final.
1420      *
1421      *  If the enum does have specialized enum constants, it is
1422      *  <i>not</i> final.
1423      */
1424     private long implicitEnumFinalFlag(JCTree tree) {
1425         if (!tree.hasTag(CLASSDEF)) return 0;
1426         class SpecialTreeVisitor extends JCTree.Visitor {
1427             boolean specialized;
1428             SpecialTreeVisitor() {
1429                 this.specialized = false;
1430             }
1431 
1432             @Override
1433             public void visitTree(JCTree tree) { /* no-op */ }
1434 
1435             @Override
1436             public void visitVarDef(JCVariableDecl tree) {
1437                 if ((tree.mods.flags & ENUM) != 0) {
1438                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1439                         specialized = true;
1440                     }
1441                 }
1442             }
1443         }
1444 
1445         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1446         JCClassDecl cdef = (JCClassDecl) tree;
1447         for (JCTree defs: cdef.defs) {
1448             defs.accept(sts);
1449             if (sts.specialized) return allowSealed ? SEALED : 0;
1450         }
1451         return FINAL;
1452     }
1453 
1454 /* *************************************************************************
1455  * Type Validation
1456  **************************************************************************/
1457 
1458     /** Validate a type expression. That is,
1459      *  check that all type arguments of a parametric type are within
1460      *  their bounds. This must be done in a second phase after type attribution
1461      *  since a class might have a subclass as type parameter bound. E.g:
1462      *
1463      *  <pre>{@code
1464      *  class B<A extends C> { ... }
1465      *  class C extends B<C> { ... }
1466      *  }</pre>
1467      *
1468      *  and we can't make sure that the bound is already attributed because
1469      *  of possible cycles.
1470      *
1471      * Visitor method: Validate a type expression, if it is not null, catching
1472      *  and reporting any completion failures.
1473      */
1474     void validate(JCTree tree, Env<AttrContext> env) {
1475         validate(tree, env, true);
1476     }
1477     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1478         new Validator(env).validateTree(tree, checkRaw, true);
1479     }
1480 
1481     /** Visitor method: Validate a list of type expressions.
1482      */
1483     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1484         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1485             validate(l.head, env);
1486     }
1487 
1488     /** A visitor class for type validation.
1489      */
1490     class Validator extends JCTree.Visitor {
1491 
1492         boolean checkRaw;
1493         boolean isOuter;
1494         Env<AttrContext> env;
1495 
1496         Validator(Env<AttrContext> env) {
1497             this.env = env;
1498         }
1499 
1500         @Override
1501         public void visitTypeArray(JCArrayTypeTree tree) {
1502             validateTree(tree.elemtype, checkRaw, isOuter);
1503         }
1504 
1505         @Override
1506         public void visitTypeApply(JCTypeApply tree) {
1507             if (tree.type.hasTag(CLASS)) {
1508                 List<JCExpression> args = tree.arguments;
1509                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1510 
1511                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1512                 if (incompatibleArg != null) {
1513                     for (JCTree arg : tree.arguments) {
1514                         if (arg.type == incompatibleArg) {
1515                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1516                         }
1517                         forms = forms.tail;
1518                      }
1519                  }
1520 
1521                 forms = tree.type.tsym.type.getTypeArguments();
1522 
1523                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1524 
1525                 // For matching pairs of actual argument types `a' and
1526                 // formal type parameters with declared bound `b' ...
1527                 while (args.nonEmpty() && forms.nonEmpty()) {
1528                     validateTree(args.head,
1529                             !(isOuter && is_java_lang_Class),
1530                             false);
1531                     args = args.tail;
1532                     forms = forms.tail;
1533                 }
1534 
1535                 // Check that this type is either fully parameterized, or
1536                 // not parameterized at all.
1537                 if (tree.type.getEnclosingType().isRaw())
1538                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1539                 if (tree.clazz.hasTag(SELECT))
1540                     visitSelectInternal((JCFieldAccess)tree.clazz);
1541             }
1542         }
1543 
1544         @Override
1545         public void visitTypeParameter(JCTypeParameter tree) {
1546             validateTrees(tree.bounds, true, isOuter);
1547             checkClassBounds(tree.pos(), tree.type);
1548         }
1549 
1550         @Override
1551         public void visitWildcard(JCWildcard tree) {
1552             if (tree.inner != null)
1553                 validateTree(tree.inner, true, isOuter);
1554         }
1555 
1556         @Override
1557         public void visitSelect(JCFieldAccess tree) {
1558             if (tree.type.hasTag(CLASS)) {
1559                 visitSelectInternal(tree);
1560 
1561                 // Check that this type is either fully parameterized, or
1562                 // not parameterized at all.
1563                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1564                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1565             }
1566         }
1567 
1568         public void visitSelectInternal(JCFieldAccess tree) {
1569             if (tree.type.tsym.isStatic() &&
1570                 tree.selected.type.isParameterized()) {
1571                 // The enclosing type is not a class, so we are
1572                 // looking at a static member type.  However, the
1573                 // qualifying expression is parameterized.
1574                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1575             } else {
1576                 // otherwise validate the rest of the expression
1577                 tree.selected.accept(this);
1578             }
1579         }
1580 
1581         @Override
1582         public void visitAnnotatedType(JCAnnotatedType tree) {
1583             tree.underlyingType.accept(this);
1584         }
1585 
1586         @Override
1587         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1588             if (that.type.hasTag(TypeTag.VOID)) {
1589                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1590             }
1591             super.visitTypeIdent(that);
1592         }
1593 
1594         /** Default visitor method: do nothing.
1595          */
1596         @Override
1597         public void visitTree(JCTree tree) {
1598         }
1599 
1600         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1601             if (tree != null) {
1602                 boolean prevCheckRaw = this.checkRaw;
1603                 this.checkRaw = checkRaw;
1604                 this.isOuter = isOuter;
1605 
1606                 try {
1607                     tree.accept(this);
1608                     if (checkRaw)
1609                         checkRaw(tree, env);
1610                 } catch (CompletionFailure ex) {
1611                     completionError(tree.pos(), ex);
1612                 } finally {
1613                     this.checkRaw = prevCheckRaw;
1614                 }
1615             }
1616         }
1617 
1618         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1619             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1620                 validateTree(l.head, checkRaw, isOuter);
1621         }
1622     }
1623 
1624     void checkRaw(JCTree tree, Env<AttrContext> env) {
1625         if (tree.type.hasTag(CLASS) &&
1626             !TreeInfo.isDiamond(tree) &&
1627             !withinAnonConstr(env) &&
1628             tree.type.isRaw()) {
1629             lint.logIfEnabled(tree.pos(), LintWarnings.RawClassUse(tree.type, tree.type.tsym.type));
1630         }
1631     }
1632     //where
1633         private boolean withinAnonConstr(Env<AttrContext> env) {
1634             return env.enclClass.name.isEmpty() &&
1635                     env.enclMethod != null && env.enclMethod.name == names.init;
1636         }
1637 
1638 /* *************************************************************************
1639  * Exception checking
1640  **************************************************************************/
1641 
1642     /* The following methods treat classes as sets that contain
1643      * the class itself and all their subclasses
1644      */
1645 
1646     /** Is given type a subtype of some of the types in given list?
1647      */
1648     boolean subset(Type t, List<Type> ts) {
1649         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1650             if (types.isSubtype(t, l.head)) return true;
1651         return false;
1652     }
1653 
1654     /** Is given type a subtype or supertype of
1655      *  some of the types in given list?
1656      */
1657     boolean intersects(Type t, List<Type> ts) {
1658         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1659             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1660         return false;
1661     }
1662 
1663     /** Add type set to given type list, unless it is a subclass of some class
1664      *  in the list.
1665      */
1666     List<Type> incl(Type t, List<Type> ts) {
1667         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1668     }
1669 
1670     /** Remove type set from type set list.
1671      */
1672     List<Type> excl(Type t, List<Type> ts) {
1673         if (ts.isEmpty()) {
1674             return ts;
1675         } else {
1676             List<Type> ts1 = excl(t, ts.tail);
1677             if (types.isSubtype(ts.head, t)) return ts1;
1678             else if (ts1 == ts.tail) return ts;
1679             else return ts1.prepend(ts.head);
1680         }
1681     }
1682 
1683     /** Form the union of two type set lists.
1684      */
1685     List<Type> union(List<Type> ts1, List<Type> ts2) {
1686         List<Type> ts = ts1;
1687         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1688             ts = incl(l.head, ts);
1689         return ts;
1690     }
1691 
1692     /** Form the difference of two type lists.
1693      */
1694     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1695         List<Type> ts = ts1;
1696         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1697             ts = excl(l.head, ts);
1698         return ts;
1699     }
1700 
1701     /** Form the intersection of two type lists.
1702      */
1703     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1704         List<Type> ts = List.nil();
1705         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1706             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1707         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1708             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1709         return ts;
1710     }
1711 
1712     /** Is exc an exception symbol that need not be declared?
1713      */
1714     boolean isUnchecked(ClassSymbol exc) {
1715         return
1716             exc.kind == ERR ||
1717             exc.isSubClass(syms.errorType.tsym, types) ||
1718             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1719     }
1720 
1721     /** Is exc an exception type that need not be declared?
1722      */
1723     boolean isUnchecked(Type exc) {
1724         return
1725             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1726             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1727             exc.hasTag(BOT);
1728     }
1729 
1730     boolean isChecked(Type exc) {
1731         return !isUnchecked(exc);
1732     }
1733 
1734     /** Same, but handling completion failures.
1735      */
1736     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1737         try {
1738             return isUnchecked(exc);
1739         } catch (CompletionFailure ex) {
1740             completionError(pos, ex);
1741             return true;
1742         }
1743     }
1744 
1745     /** Is exc handled by given exception list?
1746      */
1747     boolean isHandled(Type exc, List<Type> handled) {
1748         return isUnchecked(exc) || subset(exc, handled);
1749     }
1750 
1751     /** Return all exceptions in thrown list that are not in handled list.
1752      *  @param thrown     The list of thrown exceptions.
1753      *  @param handled    The list of handled exceptions.
1754      */
1755     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1756         List<Type> unhandled = List.nil();
1757         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1758             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1759         return unhandled;
1760     }
1761 
1762 /* *************************************************************************
1763  * Overriding/Implementation checking
1764  **************************************************************************/
1765 
1766     /** The level of access protection given by a flag set,
1767      *  where PRIVATE is highest and PUBLIC is lowest.
1768      */
1769     static int protection(long flags) {
1770         switch ((short)(flags & AccessFlags)) {
1771         case PRIVATE: return 3;
1772         case PROTECTED: return 1;
1773         default:
1774         case PUBLIC: return 0;
1775         case 0: return 2;
1776         }
1777     }
1778 
1779     /** A customized "cannot override" error message.
1780      *  @param m      The overriding method.
1781      *  @param other  The overridden method.
1782      *  @return       An internationalized string.
1783      */
1784     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1785         Symbol mloc = m.location();
1786         Symbol oloc = other.location();
1787 
1788         if ((other.owner.flags() & INTERFACE) == 0)
1789             return Fragments.CantOverride(m, mloc, other, oloc);
1790         else if ((m.owner.flags() & INTERFACE) == 0)
1791             return Fragments.CantImplement(m, mloc, other, oloc);
1792         else
1793             return Fragments.ClashesWith(m, mloc, other, oloc);
1794     }
1795 
1796     /** A customized "override" warning message.
1797      *  @param m      The overriding method.
1798      *  @param other  The overridden method.
1799      *  @return       An internationalized string.
1800      */
1801     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1802         Symbol mloc = m.location();
1803         Symbol oloc = other.location();
1804 
1805         if ((other.owner.flags() & INTERFACE) == 0)
1806             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1807         else if ((m.owner.flags() & INTERFACE) == 0)
1808             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1809         else
1810             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1811     }
1812 
1813     /** A customized "override" warning message.
1814      *  @param m      The overriding method.
1815      *  @param other  The overridden method.
1816      *  @return       An internationalized string.
1817      */
1818     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1819         Symbol mloc = m.location();
1820         Symbol oloc = other.location();
1821 
1822         if ((other.owner.flags() & INTERFACE) == 0)
1823             return Fragments.VarargsOverride(m, mloc, other, oloc);
1824         else  if ((m.owner.flags() & INTERFACE) == 0)
1825             return Fragments.VarargsImplement(m, mloc, other, oloc);
1826         else
1827             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1828     }
1829 
1830     /** Check that this method conforms with overridden method 'other'.
1831      *  where `origin' is the class where checking started.
1832      *  Complications:
1833      *  (1) Do not check overriding of synthetic methods
1834      *      (reason: they might be final).
1835      *      todo: check whether this is still necessary.
1836      *  (2) Admit the case where an interface proxy throws fewer exceptions
1837      *      than the method it implements. Augment the proxy methods with the
1838      *      undeclared exceptions in this case.
1839      *  (3) When generics are enabled, admit the case where an interface proxy
1840      *      has a result type
1841      *      extended by the result type of the method it implements.
1842      *      Change the proxies result type to the smaller type in this case.
1843      *
1844      *  @param tree         The tree from which positions
1845      *                      are extracted for errors.
1846      *  @param m            The overriding method.
1847      *  @param other        The overridden method.
1848      *  @param origin       The class of which the overriding method
1849      *                      is a member.
1850      */
1851     void checkOverride(JCTree tree,
1852                        MethodSymbol m,
1853                        MethodSymbol other,
1854                        ClassSymbol origin) {
1855         // Don't check overriding of synthetic methods or by bridge methods.
1856         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1857             return;
1858         }
1859 
1860         // Error if static method overrides instance method (JLS 8.4.8.2).
1861         if ((m.flags() & STATIC) != 0 &&
1862                    (other.flags() & STATIC) == 0) {
1863             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1864                       Errors.OverrideStatic(cannotOverride(m, other)));
1865             m.flags_field |= BAD_OVERRIDE;
1866             return;
1867         }
1868 
1869         // Error if instance method overrides static or final
1870         // method (JLS 8.4.8.1).
1871         if ((other.flags() & FINAL) != 0 ||
1872                  (m.flags() & STATIC) == 0 &&
1873                  (other.flags() & STATIC) != 0) {
1874             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1875                       Errors.OverrideMeth(cannotOverride(m, other),
1876                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1877             m.flags_field |= BAD_OVERRIDE;
1878             return;
1879         }
1880 
1881         if ((m.owner.flags() & ANNOTATION) != 0) {
1882             // handled in validateAnnotationMethod
1883             return;
1884         }
1885 
1886         // Error if overriding method has weaker access (JLS 8.4.8.3).
1887         if (protection(m.flags()) > protection(other.flags())) {
1888             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1889                       (other.flags() & AccessFlags) == 0 ?
1890                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1891                                                           "package") :
1892                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1893                                                           asFlagSet(other.flags() & AccessFlags)));
1894             m.flags_field |= BAD_OVERRIDE;
1895             return;
1896         }
1897 
1898         if (shouldCheckPreview(m, other, origin)) {
1899             checkPreview(TreeInfo.diagnosticPositionFor(m, tree),
1900                          m, origin.type, other);
1901         }
1902 
1903         Type mt = types.memberType(origin.type, m);
1904         Type ot = types.memberType(origin.type, other);
1905         // Error if overriding result type is different
1906         // (or, in the case of generics mode, not a subtype) of
1907         // overridden result type. We have to rename any type parameters
1908         // before comparing types.
1909         List<Type> mtvars = mt.getTypeArguments();
1910         List<Type> otvars = ot.getTypeArguments();
1911         Type mtres = mt.getReturnType();
1912         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1913 
1914         overrideWarner.clear();
1915         boolean resultTypesOK =
1916             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1917         if (!resultTypesOK) {
1918             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1919                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1920                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1921                                         other.location()), mtres, otres));
1922                 m.flags_field |= BAD_OVERRIDE;
1923             } else {
1924                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1925                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1926                 m.flags_field |= BAD_OVERRIDE;
1927             }
1928             return;
1929         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1930             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1931                     LintWarnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1932         }
1933 
1934         // Error if overriding method throws an exception not reported
1935         // by overridden method.
1936         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1937         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1938         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1939         if (unhandledErased.nonEmpty()) {
1940             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1941                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1942             m.flags_field |= BAD_OVERRIDE;
1943             return;
1944         }
1945         else if (unhandledUnerased.nonEmpty()) {
1946             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1947                           LintWarnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1948             return;
1949         }
1950 
1951         // Optional warning if varargs don't agree
1952         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)) {
1953             lint.logIfEnabled(TreeInfo.diagnosticPositionFor(m, tree),
1954                         ((m.flags() & Flags.VARARGS) != 0)
1955                         ? LintWarnings.OverrideVarargsMissing(varargsOverrides(m, other))
1956                         : LintWarnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1957         }
1958 
1959         // Warn if instance method overrides bridge method (compiler spec ??)
1960         if ((other.flags() & BRIDGE) != 0) {
1961             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1962                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1963         }
1964 
1965         // Warn if a deprecated method overridden by a non-deprecated one.
1966         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1967             Lint prevLint = setLint(lint.augment(m));
1968             try {
1969                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1970             } finally {
1971                 setLint(prevLint);
1972             }
1973         }
1974     }
1975     // where
1976         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
1977             if (m.owner != origin ||
1978                 //performance - only do the expensive checks when the overridden method is a Preview API:
1979                 ((other.flags() & PREVIEW_API) == 0 &&
1980                  (other.owner.flags() & PREVIEW_API) == 0)) {
1981                 return false;
1982             }
1983 
1984             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
1985                 if (m != s && m.overrides(s, origin, types, false)) {
1986                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
1987                     //without intermediate overriding methods:
1988                     return s == other;
1989                 }
1990             }
1991 
1992             return false;
1993         }
1994         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1995             // If the method, m, is defined in an interface, then ignore the issue if the method
1996             // is only inherited via a supertype and also implemented in the supertype,
1997             // because in that case, we will rediscover the issue when examining the method
1998             // in the supertype.
1999             // If the method, m, is not defined in an interface, then the only time we need to
2000             // address the issue is when the method is the supertype implementation: any other
2001             // case, we will have dealt with when examining the supertype classes
2002             ClassSymbol mc = m.enclClass();
2003             Type st = types.supertype(origin.type);
2004             if (!st.hasTag(CLASS))
2005                 return true;
2006             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
2007 
2008             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
2009                 List<Type> intfs = types.interfaces(origin.type);
2010                 return (intfs.contains(mc.type) ? false : (stimpl != null));
2011             }
2012             else
2013                 return (stimpl != m);
2014         }
2015 
2016 
2017     // used to check if there were any unchecked conversions
2018     Warner overrideWarner = new Warner();
2019 
2020     /** Check that a class does not inherit two concrete methods
2021      *  with the same signature.
2022      *  @param pos          Position to be used for error reporting.
2023      *  @param site         The class type to be checked.
2024      */
2025     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
2026         Type sup = types.supertype(site);
2027         if (!sup.hasTag(CLASS)) return;
2028 
2029         for (Type t1 = sup;
2030              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
2031              t1 = types.supertype(t1)) {
2032             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2033                 if (s1.kind != MTH ||
2034                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2035                     !s1.isInheritedIn(site.tsym, types) ||
2036                     ((MethodSymbol)s1).implementation(site.tsym,
2037                                                       types,
2038                                                       true) != s1)
2039                     continue;
2040                 Type st1 = types.memberType(t1, s1);
2041                 int s1ArgsLength = st1.getParameterTypes().length();
2042                 if (st1 == s1.type) continue;
2043 
2044                 for (Type t2 = sup;
2045                      t2.hasTag(CLASS);
2046                      t2 = types.supertype(t2)) {
2047                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2048                         if (s2 == s1 ||
2049                             s2.kind != MTH ||
2050                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2051                             s2.type.getParameterTypes().length() != s1ArgsLength ||
2052                             !s2.isInheritedIn(site.tsym, types) ||
2053                             ((MethodSymbol)s2).implementation(site.tsym,
2054                                                               types,
2055                                                               true) != s2)
2056                             continue;
2057                         Type st2 = types.memberType(t2, s2);
2058                         if (types.overrideEquivalent(st1, st2))
2059                             log.error(pos,
2060                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
2061                     }
2062                 }
2063             }
2064         }
2065     }
2066 
2067     /** Check that classes (or interfaces) do not each define an abstract
2068      *  method with same name and arguments but incompatible return types.
2069      *  @param pos          Position to be used for error reporting.
2070      *  @param t1           The first argument type.
2071      *  @param t2           The second argument type.
2072      */
2073     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
2074                                             Type t1,
2075                                             Type t2,
2076                                             Type site) {
2077         if ((site.tsym.flags() & COMPOUND) != 0) {
2078             // special case for intersections: need to eliminate wildcards in supertypes
2079             t1 = types.capture(t1);
2080             t2 = types.capture(t2);
2081         }
2082         return firstIncompatibility(pos, t1, t2, site) == null;
2083     }
2084 
2085     /** Return the first method which is defined with same args
2086      *  but different return types in two given interfaces, or null if none
2087      *  exists.
2088      *  @param t1     The first type.
2089      *  @param t2     The second type.
2090      *  @param site   The most derived type.
2091      *  @return symbol from t2 that conflicts with one in t1.
2092      */
2093     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2094         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
2095         closure(t1, interfaces1);
2096         Map<TypeSymbol,Type> interfaces2;
2097         if (t1 == t2)
2098             interfaces2 = interfaces1;
2099         else
2100             closure(t2, interfaces1, interfaces2 = new HashMap<>());
2101 
2102         for (Type t3 : interfaces1.values()) {
2103             for (Type t4 : interfaces2.values()) {
2104                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
2105                 if (s != null) return s;
2106             }
2107         }
2108         return null;
2109     }
2110 
2111     /** Compute all the supertypes of t, indexed by type symbol. */
2112     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
2113         if (!t.hasTag(CLASS)) return;
2114         if (typeMap.put(t.tsym, t) == null) {
2115             closure(types.supertype(t), typeMap);
2116             for (Type i : types.interfaces(t))
2117                 closure(i, typeMap);
2118         }
2119     }
2120 
2121     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
2122     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
2123         if (!t.hasTag(CLASS)) return;
2124         if (typesSkip.get(t.tsym) != null) return;
2125         if (typeMap.put(t.tsym, t) == null) {
2126             closure(types.supertype(t), typesSkip, typeMap);
2127             for (Type i : types.interfaces(t))
2128                 closure(i, typesSkip, typeMap);
2129         }
2130     }
2131 
2132     /** Return the first method in t2 that conflicts with a method from t1. */
2133     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2134         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2135             Type st1 = null;
2136             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2137                     (s1.flags() & SYNTHETIC) != 0) continue;
2138             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2139             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2140             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2141                 if (s1 == s2) continue;
2142                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2143                         (s2.flags() & SYNTHETIC) != 0) continue;
2144                 if (st1 == null) st1 = types.memberType(t1, s1);
2145                 Type st2 = types.memberType(t2, s2);
2146                 if (types.overrideEquivalent(st1, st2)) {
2147                     List<Type> tvars1 = st1.getTypeArguments();
2148                     List<Type> tvars2 = st2.getTypeArguments();
2149                     Type rt1 = st1.getReturnType();
2150                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2151                     boolean compat =
2152                         types.isSameType(rt1, rt2) ||
2153                         !rt1.isPrimitiveOrVoid() &&
2154                         !rt2.isPrimitiveOrVoid() &&
2155                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2156                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2157                          checkCommonOverriderIn(s1,s2,site);
2158                     if (!compat) {
2159                         if (types.isSameType(t1, t2)) {
2160                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2161                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2162                         } else {
2163                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2164                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2165                         }
2166                         return s2;
2167                     }
2168                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2169                         !checkCommonOverriderIn(s1, s2, site)) {
2170                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2171                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2172                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2173                     return s2;
2174                 }
2175             }
2176         }
2177         return null;
2178     }
2179     //WHERE
2180     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2181         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2182         Type st1 = types.memberType(site, s1);
2183         Type st2 = types.memberType(site, s2);
2184         closure(site, supertypes);
2185         for (Type t : supertypes.values()) {
2186             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2187                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2188                 Type st3 = types.memberType(site,s3);
2189                 if (types.overrideEquivalent(st3, st1) &&
2190                         types.overrideEquivalent(st3, st2) &&
2191                         types.returnTypeSubstitutable(st3, st1) &&
2192                         types.returnTypeSubstitutable(st3, st2)) {
2193                     return true;
2194                 }
2195             }
2196         }
2197         return false;
2198     }
2199 
2200     /** Check that a given method conforms with any method it overrides.
2201      *  @param tree         The tree from which positions are extracted
2202      *                      for errors.
2203      *  @param m            The overriding method.
2204      */
2205     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2206         ClassSymbol origin = (ClassSymbol)m.owner;
2207         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2208             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2209                 log.error(tree.pos(), Errors.EnumNoFinalize);
2210                 return;
2211             }
2212         }
2213         if (allowValueClasses && origin.isValueClass() && names.finalize.equals(m.name)) {
2214             if (m.overrides(syms.objectFinalize, origin, types, false)) {
2215                 log.warning(tree.pos(), Warnings.ValueFinalize);
2216             }
2217         }
2218         if (allowRecords && origin.isRecord()) {
2219             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2220             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2221                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2222             if (recordComponent.isPresent()) {
2223                 return;
2224             }
2225         }
2226 
2227         for (Type t = origin.type; t.hasTag(CLASS);
2228              t = types.supertype(t)) {
2229             if (t != origin.type) {
2230                 checkOverride(tree, t, origin, m);
2231             }
2232             for (Type t2 : types.interfaces(t)) {
2233                 checkOverride(tree, t2, origin, m);
2234             }
2235         }
2236 
2237         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2238         // Check if this method must override a super method due to being annotated with @Override
2239         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2240         // be treated "as if as they were annotated" with @Override.
2241         boolean mustOverride = explicitOverride ||
2242                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2243         if (mustOverride && !isOverrider(m)) {
2244             DiagnosticPosition pos = tree.pos();
2245             for (JCAnnotation a : tree.getModifiers().annotations) {
2246                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2247                     pos = a.pos();
2248                     break;
2249                 }
2250             }
2251             log.error(pos,
2252                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2253                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2254         }
2255     }
2256 
2257     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2258         TypeSymbol c = site.tsym;
2259         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2260             if (m.overrides(sym, origin, types, false)) {
2261                 if ((sym.flags() & ABSTRACT) == 0) {
2262                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2263                 }
2264             }
2265         }
2266     }
2267 
2268     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2269             (s.flags() & BAD_OVERRIDE) == 0;
2270 
2271     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2272             ClassSymbol someClass) {
2273         /* At present, annotations cannot possibly have a method that is override
2274          * equivalent with Object.equals(Object) but in any case the condition is
2275          * fine for completeness.
2276          */
2277         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2278             someClass.isInterface() || someClass.isEnum() ||
2279             (someClass.flags() & ANNOTATION) != 0 ||
2280             (someClass.flags() & ABSTRACT) != 0) return;
2281         //anonymous inner classes implementing interfaces need especial treatment
2282         if (someClass.isAnonymous()) {
2283             List<Type> interfaces =  types.interfaces(someClass.type);
2284             if (interfaces != null && !interfaces.isEmpty() &&
2285                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2286         }
2287         checkClassOverrideEqualsAndHash(pos, someClass);
2288     }
2289 
2290     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2291             ClassSymbol someClass) {
2292         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2293             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2294                     .tsym.members().findFirst(names.equals);
2295             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2296                     .tsym.members().findFirst(names.hashCode);
2297             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2298                     someClass, false, equalsHasCodeFilter);
2299             boolean overridesEquals = equalsImpl != null &&
2300                                       equalsImpl.owner == someClass;
2301             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2302                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2303 
2304             if (overridesEquals && !overridesHashCode) {
2305                 log.warning(pos,
2306                             LintWarnings.OverrideEqualsButNotHashcode(someClass));
2307             }
2308         }
2309     }
2310 
2311     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2312         boolean found = false;
2313 
2314         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2315             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2316                 MethodSymbol meth = (MethodSymbol)sym;
2317                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2318                     continue;
2319                 }
2320                 if (meth.params.isEmpty()) {
2321                     found = true;
2322                     break;
2323                 }
2324                 if (meth.params.size() != 1) {
2325                     continue;
2326                 }
2327                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2328                     continue;
2329                 }
2330 
2331                 found = true;
2332                 break;
2333             }
2334         }
2335 
2336         if (!found) {
2337             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2338         }
2339     }
2340 
2341     public void checkModuleName (JCModuleDecl tree) {
2342         Name moduleName = tree.sym.name;
2343         Assert.checkNonNull(moduleName);
2344         if (lint.isEnabled(LintCategory.MODULE)) {
2345             JCExpression qualId = tree.qualId;
2346             while (qualId != null) {
2347                 Name componentName;
2348                 DiagnosticPosition pos;
2349                 switch (qualId.getTag()) {
2350                     case SELECT:
2351                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2352                         componentName = selectNode.name;
2353                         pos = selectNode.pos();
2354                         qualId = selectNode.selected;
2355                         break;
2356                     case IDENT:
2357                         componentName = ((JCIdent) qualId).name;
2358                         pos = qualId.pos();
2359                         qualId = null;
2360                         break;
2361                     default:
2362                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2363                 }
2364                 if (componentName != null) {
2365                     String moduleNameComponentString = componentName.toString();
2366                     int nameLength = moduleNameComponentString.length();
2367                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2368                         log.warning(pos, LintWarnings.PoorChoiceForModuleName(componentName));
2369                     }
2370                 }
2371             }
2372         }
2373     }
2374 
2375     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2376         ClashFilter cf = new ClashFilter(origin.type);
2377         return (cf.test(s1) &&
2378                 cf.test(s2) &&
2379                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2380     }
2381 
2382 
2383     /** Check that all abstract members of given class have definitions.
2384      *  @param pos          Position to be used for error reporting.
2385      *  @param c            The class.
2386      */
2387     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2388         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2389         if (undef != null) {
2390             MethodSymbol undef1 =
2391                 new MethodSymbol(undef.flags(), undef.name,
2392                                  types.memberType(c.type, undef), undef.owner);
2393             log.error(pos,
2394                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2395         }
2396     }
2397 
2398     void checkNonCyclicDecl(JCClassDecl tree) {
2399         CycleChecker cc = new CycleChecker();
2400         cc.scan(tree);
2401         if (!cc.errorFound && !cc.partialCheck) {
2402             tree.sym.flags_field |= ACYCLIC;
2403         }
2404     }
2405 
2406     class CycleChecker extends TreeScanner {
2407 
2408         Set<Symbol> seenClasses = new HashSet<>();
2409         boolean errorFound = false;
2410         boolean partialCheck = false;
2411 
2412         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2413             if (sym != null && sym.kind == TYP) {
2414                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2415                 if (classEnv != null) {
2416                     DiagnosticSource prevSource = log.currentSource();
2417                     try {
2418                         log.useSource(classEnv.toplevel.sourcefile);
2419                         scan(classEnv.tree);
2420                     }
2421                     finally {
2422                         log.useSource(prevSource.getFile());
2423                     }
2424                 } else if (sym.kind == TYP) {
2425                     checkClass(pos, sym, List.nil());
2426                 }
2427             } else if (sym == null || sym.kind != PCK) {
2428                 //not completed yet
2429                 partialCheck = true;
2430             }
2431         }
2432 
2433         @Override
2434         public void visitSelect(JCFieldAccess tree) {
2435             super.visitSelect(tree);
2436             checkSymbol(tree.pos(), tree.sym);
2437         }
2438 
2439         @Override
2440         public void visitIdent(JCIdent tree) {
2441             checkSymbol(tree.pos(), tree.sym);
2442         }
2443 
2444         @Override
2445         public void visitTypeApply(JCTypeApply tree) {
2446             scan(tree.clazz);
2447         }
2448 
2449         @Override
2450         public void visitTypeArray(JCArrayTypeTree tree) {
2451             scan(tree.elemtype);
2452         }
2453 
2454         @Override
2455         public void visitClassDef(JCClassDecl tree) {
2456             List<JCTree> supertypes = List.nil();
2457             if (tree.getExtendsClause() != null) {
2458                 supertypes = supertypes.prepend(tree.getExtendsClause());
2459             }
2460             if (tree.getImplementsClause() != null) {
2461                 for (JCTree intf : tree.getImplementsClause()) {
2462                     supertypes = supertypes.prepend(intf);
2463                 }
2464             }
2465             checkClass(tree.pos(), tree.sym, supertypes);
2466         }
2467 
2468         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2469             if ((c.flags_field & ACYCLIC) != 0)
2470                 return;
2471             if (seenClasses.contains(c)) {
2472                 errorFound = true;
2473                 log.error(pos, Errors.CyclicInheritance(c));
2474                 seenClasses.stream()
2475                   .filter(s -> !s.type.isErroneous())
2476                   .filter(ClassSymbol.class::isInstance)
2477                   .map(ClassSymbol.class::cast)
2478                   .forEach(Check.this::handleCyclic);
2479             } else if (!c.type.isErroneous()) {
2480                 try {
2481                     seenClasses.add(c);
2482                     if (c.type.hasTag(CLASS)) {
2483                         if (supertypes.nonEmpty()) {
2484                             scan(supertypes);
2485                         }
2486                         else {
2487                             ClassType ct = (ClassType)c.type;
2488                             if (ct.supertype_field == null ||
2489                                     ct.interfaces_field == null) {
2490                                 //not completed yet
2491                                 partialCheck = true;
2492                                 return;
2493                             }
2494                             checkSymbol(pos, ct.supertype_field.tsym);
2495                             for (Type intf : ct.interfaces_field) {
2496                                 checkSymbol(pos, intf.tsym);
2497                             }
2498                         }
2499                         if (c.owner.kind == TYP) {
2500                             checkSymbol(pos, c.owner);
2501                         }
2502                     }
2503                 } finally {
2504                     seenClasses.remove(c);
2505                 }
2506             }
2507         }
2508     }
2509 
2510     /** Check for cyclic references. Issue an error if the
2511      *  symbol of the type referred to has a LOCKED flag set.
2512      *
2513      *  @param pos      Position to be used for error reporting.
2514      *  @param t        The type referred to.
2515      */
2516     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2517         checkNonCyclicInternal(pos, t);
2518     }
2519 
2520 
2521     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2522         checkNonCyclic1(pos, t, List.nil());
2523     }
2524 
2525     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2526         final TypeVar tv;
2527         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2528             return;
2529         if (seen.contains(t)) {
2530             tv = (TypeVar)t;
2531             tv.setUpperBound(types.createErrorType(t));
2532             log.error(pos, Errors.CyclicInheritance(t));
2533         } else if (t.hasTag(TYPEVAR)) {
2534             tv = (TypeVar)t;
2535             seen = seen.prepend(tv);
2536             for (Type b : types.getBounds(tv))
2537                 checkNonCyclic1(pos, b, seen);
2538         }
2539     }
2540 
2541     /** Check for cyclic references. Issue an error if the
2542      *  symbol of the type referred to has a LOCKED flag set.
2543      *
2544      *  @param pos      Position to be used for error reporting.
2545      *  @param t        The type referred to.
2546      *  @return        True if the check completed on all attributed classes
2547      */
2548     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2549         boolean complete = true; // was the check complete?
2550         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2551         Symbol c = t.tsym;
2552         if ((c.flags_field & ACYCLIC) != 0) return true;
2553 
2554         if ((c.flags_field & LOCKED) != 0) {
2555             log.error(pos, Errors.CyclicInheritance(c));
2556             handleCyclic((ClassSymbol)c);
2557         } else if (!c.type.isErroneous()) {
2558             try {
2559                 c.flags_field |= LOCKED;
2560                 if (c.type.hasTag(CLASS)) {
2561                     ClassType clazz = (ClassType)c.type;
2562                     if (clazz.interfaces_field != null)
2563                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2564                             complete &= checkNonCyclicInternal(pos, l.head);
2565                     if (clazz.supertype_field != null) {
2566                         Type st = clazz.supertype_field;
2567                         if (st != null && st.hasTag(CLASS))
2568                             complete &= checkNonCyclicInternal(pos, st);
2569                     }
2570                     if (c.owner.kind == TYP)
2571                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2572                 }
2573             } finally {
2574                 c.flags_field &= ~LOCKED;
2575             }
2576         }
2577         if (complete)
2578             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2579         if (complete) c.flags_field |= ACYCLIC;
2580         return complete;
2581     }
2582 
2583     /** Handle finding an inheritance cycle on a class by setting
2584      *  the class' and its supertypes' types to the error type.
2585      **/
2586     private void handleCyclic(ClassSymbol c) {
2587         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2588             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2589         Type st = types.supertype(c.type);
2590         if (st.hasTag(CLASS))
2591             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2592         c.type = types.createErrorType(c, c.type);
2593         c.flags_field |= ACYCLIC;
2594     }
2595 
2596     /** Check that all methods which implement some
2597      *  method conform to the method they implement.
2598      *  @param tree         The class definition whose members are checked.
2599      */
2600     void checkImplementations(JCClassDecl tree) {
2601         checkImplementations(tree, tree.sym, tree.sym);
2602     }
2603     //where
2604         /** Check that all methods which implement some
2605          *  method in `ic' conform to the method they implement.
2606          */
2607         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2608             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2609                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2610                 if ((lc.flags() & ABSTRACT) != 0) {
2611                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2612                         if (sym.kind == MTH &&
2613                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2614                             MethodSymbol absmeth = (MethodSymbol)sym;
2615                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2616                             if (implmeth != null && implmeth != absmeth &&
2617                                 (implmeth.owner.flags() & INTERFACE) ==
2618                                 (origin.flags() & INTERFACE)) {
2619                                 // don't check if implmeth is in a class, yet
2620                                 // origin is an interface. This case arises only
2621                                 // if implmeth is declared in Object. The reason is
2622                                 // that interfaces really don't inherit from
2623                                 // Object it's just that the compiler represents
2624                                 // things that way.
2625                                 checkOverride(tree, implmeth, absmeth, origin);
2626                             }
2627                         }
2628                     }
2629                 }
2630             }
2631         }
2632 
2633     /** Check that all abstract methods implemented by a class are
2634      *  mutually compatible.
2635      *  @param pos          Position to be used for error reporting.
2636      *  @param c            The class whose interfaces are checked.
2637      */
2638     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2639         List<Type> supertypes = types.interfaces(c);
2640         Type supertype = types.supertype(c);
2641         if (supertype.hasTag(CLASS) &&
2642             (supertype.tsym.flags() & ABSTRACT) != 0)
2643             supertypes = supertypes.prepend(supertype);
2644         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2645             if (!l.head.getTypeArguments().isEmpty() &&
2646                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2647                 return;
2648             for (List<Type> m = supertypes; m != l; m = m.tail)
2649                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2650                     return;
2651         }
2652         checkCompatibleConcretes(pos, c);
2653 
2654         Type identitySuper = null;
2655         for (Type t : types.closure(c)) {
2656             if (t != c) {
2657                 if (t.isIdentityClass() && (t.tsym.flags() & VALUE_BASED) == 0)
2658                     identitySuper = t;
2659                 if (c.isValueClass() && identitySuper != null && identitySuper.tsym != syms.objectType.tsym) { // Object is special
2660                     log.error(pos, Errors.ValueTypeHasIdentitySuperType(c, identitySuper));
2661                     break;
2662                 }
2663             }
2664         }
2665     }
2666 
2667     /** Check that all non-override equivalent methods accessible from 'site'
2668      *  are mutually compatible (JLS 8.4.8/9.4.1).
2669      *
2670      *  @param pos  Position to be used for error reporting.
2671      *  @param site The class whose methods are checked.
2672      *  @param sym  The method symbol to be checked.
2673      */
2674     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2675          ClashFilter cf = new ClashFilter(site);
2676         //for each method m1 that is overridden (directly or indirectly)
2677         //by method 'sym' in 'site'...
2678 
2679         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2680         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2681         for (Symbol m1 : symbolsByName) {
2682             if (!sym.overrides(m1, site.tsym, types, false)) {
2683                 continue;
2684             }
2685 
2686             //...check each method m2 that is a member of 'site'
2687             for (Symbol m2 : symbolsByName) {
2688                 if (m2 == m1) continue;
2689                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2690                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2691                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2692                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2693                     sym.flags_field |= CLASH;
2694                     if (m1 == sym) {
2695                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2696                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2697                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2698                     } else {
2699                         ClassType ct = (ClassType)site;
2700                         String kind = ct.isInterface() ? "interface" : "class";
2701                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2702                             kind,
2703                             ct.tsym.name,
2704                             m1.name,
2705                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2706                             m1.location(),
2707                             m2.name,
2708                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2709                             m2.location()));
2710                     }
2711                     return;
2712                 }
2713             }
2714         }
2715     }
2716 
2717     /** Check that all static methods accessible from 'site' are
2718      *  mutually compatible (JLS 8.4.8).
2719      *
2720      *  @param pos  Position to be used for error reporting.
2721      *  @param site The class whose methods are checked.
2722      *  @param sym  The method symbol to be checked.
2723      */
2724     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2725         ClashFilter cf = new ClashFilter(site);
2726         //for each method m1 that is a member of 'site'...
2727         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2728             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2729             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2730             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2731                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2732                     log.error(pos,
2733                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2734                     return;
2735                 }
2736             }
2737          }
2738      }
2739 
2740      //where
2741      private class ClashFilter implements Predicate<Symbol> {
2742 
2743          Type site;
2744 
2745          ClashFilter(Type site) {
2746              this.site = site;
2747          }
2748 
2749          boolean shouldSkip(Symbol s) {
2750              return (s.flags() & CLASH) != 0 &&
2751                 s.owner == site.tsym;
2752          }
2753 
2754          @Override
2755          public boolean test(Symbol s) {
2756              return s.kind == MTH &&
2757                      (s.flags() & SYNTHETIC) == 0 &&
2758                      !shouldSkip(s) &&
2759                      s.isInheritedIn(site.tsym, types) &&
2760                      !s.isConstructor();
2761          }
2762      }
2763 
2764     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2765         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2766         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2767             Assert.check(m.kind == MTH);
2768             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2769             if (prov.size() > 1) {
2770                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2771                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2772                 for (MethodSymbol provSym : prov) {
2773                     if ((provSym.flags() & DEFAULT) != 0) {
2774                         defaults = defaults.append(provSym);
2775                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2776                         abstracts = abstracts.append(provSym);
2777                     }
2778                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2779                         //strong semantics - issue an error if two sibling interfaces
2780                         //have two override-equivalent defaults - or if one is abstract
2781                         //and the other is default
2782                         Fragment diagKey;
2783                         Symbol s1 = defaults.first();
2784                         Symbol s2;
2785                         if (defaults.size() > 1) {
2786                             s2 = defaults.toList().tail.head;
2787                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2788                                     m.name, types.memberType(site, m).getParameterTypes(),
2789                                     s1.location(), s2.location());
2790 
2791                         } else {
2792                             s2 = abstracts.first();
2793                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2794                                     m.name, types.memberType(site, m).getParameterTypes(),
2795                                     s1.location(), s2.location());
2796                         }
2797                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2798                         break;
2799                     }
2800                 }
2801             }
2802         }
2803     }
2804 
2805     //where
2806      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2807 
2808          Type site;
2809 
2810          DefaultMethodClashFilter(Type site) {
2811              this.site = site;
2812          }
2813 
2814          @Override
2815          public boolean test(Symbol s) {
2816              return s.kind == MTH &&
2817                      (s.flags() & DEFAULT) != 0 &&
2818                      s.isInheritedIn(site.tsym, types) &&
2819                      !s.isConstructor();
2820          }
2821      }
2822 
2823     /** Report warnings for potentially ambiguous method declarations in the given site. */
2824     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2825 
2826         // Skip if warning not enabled
2827         if (!lint.isEnabled(LintCategory.OVERLOADS))
2828             return;
2829 
2830         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2831         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2832             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2833 
2834         // Build the predicate that determines if site is responsible for an ambiguity
2835         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2836 
2837         // Now remove overridden methods from each group, leaving only site's actual members
2838         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2839 
2840         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2841         methodGroups.forEach(list -> list.removeIf(
2842             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2843 
2844         // Warn about ambiguous overload method pairs for which site is responsible
2845         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2846 
2847             // See if this is an ambiguous overload for which "site" is responsible
2848             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2849                 return 0;
2850 
2851             // Locate the warning at one of the methods, if possible
2852             DiagnosticPosition pos =
2853                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2854                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2855                 tree.pos();
2856 
2857             // Log the warning
2858             log.warning(pos,
2859                 LintWarnings.PotentiallyAmbiguousOverload(
2860                     m1.asMemberOf(site, types), m1.location(),
2861                     m2.asMemberOf(site, types), m2.location()));
2862 
2863             // Don't warn again for either of these two methods
2864             return FIRST | SECOND;
2865         }));
2866     }
2867 
2868     /** Build a predicate that determines, given two methods that are members of the given class,
2869      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2870      *
2871      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2872      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2873      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2874      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2875      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2876      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2877      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2878      *  As an optimization, we first check if either method is declared in C and does not override
2879      *  any other methods; in this case the class is definitely responsible.
2880      */
2881     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2882         List<? extends Collection<MethodSymbol>> methodGroups) {
2883 
2884         // Define the "overrides" predicate
2885         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2886 
2887         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2888         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2889         methodGroups.forEach(list -> {
2890             for (MethodSymbol m : list) {
2891 
2892                 // Skip methods not declared in site
2893                 if (m.owner != site.tsym)
2894                     continue;
2895 
2896                 // Gather all supertype methods overridden by m, directly or indirectly
2897                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2898                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2899                   .collect(Collectors.toCollection(ArrayList::new));
2900 
2901                 // Eliminate non-direct overrides
2902                 removePreempted(overriddenMethods, overrides);
2903 
2904                 // Add to map
2905                 overriddenMethodsMap.put(m, overriddenMethods);
2906             }
2907         });
2908 
2909         // Build the predicate
2910         return (m1, m2) -> {
2911 
2912             // Get corresponding supertype methods (if declared in site)
2913             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2914             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2915 
2916             // Quick check for the case where a method was added by site itself
2917             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2918                 return true;
2919             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2920                 return true;
2921 
2922             // Get each method's corresponding method(s) from supertypes of site
2923             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2924               overriddenMethods1 : Collections.singletonList(m1);
2925             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2926               overriddenMethods2 : Collections.singletonList(m2);
2927 
2928             // See if we can blame some direct supertype instead
2929             return types.directSupertypes(site).stream()
2930               .filter(stype -> stype != syms.objectType)
2931               .map(stype -> stype.tsym.type)                // view supertype in its original form
2932               .noneMatch(stype -> {
2933                 for (MethodSymbol sm1 : supertypeMethods1) {
2934                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2935                         continue;
2936                     for (MethodSymbol sm2 : supertypeMethods2) {
2937                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2938                             continue;
2939                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2940                             return true;
2941                     }
2942                 }
2943                 return false;
2944             });
2945         };
2946     }
2947 
2948     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2949      *  after applying the given filter.
2950      */
2951     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2952             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2953         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2954         return StreamSupport.stream(symbols.spliterator(), false)
2955           .map(MethodSymbol.class::cast)
2956           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2957           .entrySet()
2958           .stream()
2959           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2960           .map(Map.Entry::getValue)
2961           .collect(List.collector());
2962     }
2963 
2964     /** Compare elements in a list pair-wise in order to remove some of them.
2965      *  @param list mutable list of items
2966      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2967      */
2968     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2969         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2970             T item1 = list.get(index1);
2971             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2972                 T item2 = list.get(index2);
2973                 int flags = comparer.applyAsInt(item1, item2);
2974                 if ((flags & SECOND) != 0)
2975                     list.remove(index2--);          // remove item2
2976                 if ((flags & FIRST) != 0) {
2977                     list.remove(index1--);          // remove item1
2978                     break;
2979                 }
2980             }
2981         }
2982     }
2983 
2984     /** Remove elements in a list that are preempted by some other element in the list.
2985      *  @param list mutable list of items
2986      *  @param preempts decides if one item preempts another, causing the second one to be removed
2987      */
2988     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
2989         compareAndRemove(list, (item1, item2) -> {
2990             int flags = 0;
2991             if (preempts.test(item1, item2))
2992                 flags |= SECOND;
2993             if (preempts.test(item2, item1))
2994                 flags |= FIRST;
2995             return flags;
2996         });
2997     }
2998 
2999     /** Filters method candidates for the "potentially ambiguous method" check */
3000     class PotentiallyAmbiguousFilter extends ClashFilter {
3001 
3002         PotentiallyAmbiguousFilter(Type site) {
3003             super(site);
3004         }
3005 
3006         @Override
3007         boolean shouldSkip(Symbol s) {
3008             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
3009         }
3010     }
3011 
3012     /**
3013       * Report warnings for potentially ambiguous method declarations. Two declarations
3014       * are potentially ambiguous if they feature two unrelated functional interface
3015       * in same argument position (in which case, a call site passing an implicit
3016       * lambda would be ambiguous). This assumes they already have the same name.
3017       */
3018     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
3019         Assert.check(msym1.name == msym2.name);
3020         if (msym1 == msym2)
3021             return false;
3022         Type mt1 = types.memberType(site, msym1);
3023         Type mt2 = types.memberType(site, msym2);
3024         //if both generic methods, adjust type variables
3025         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
3026                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
3027             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
3028         }
3029         //expand varargs methods if needed
3030         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
3031         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
3032         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
3033         //if arities don't match, exit
3034         if (args1.length() != args2.length())
3035             return false;
3036         boolean potentiallyAmbiguous = false;
3037         while (args1.nonEmpty() && args2.nonEmpty()) {
3038             Type s = args1.head;
3039             Type t = args2.head;
3040             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
3041                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
3042                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
3043                         types.findDescriptorType(s).getParameterTypes().length() ==
3044                         types.findDescriptorType(t).getParameterTypes().length()) {
3045                     potentiallyAmbiguous = true;
3046                 } else {
3047                     return false;
3048                 }
3049             }
3050             args1 = args1.tail;
3051             args2 = args2.tail;
3052         }
3053         return potentiallyAmbiguous;
3054     }
3055 
3056     // Apply special flag "-XDwarnOnAccessToMembers" which turns on just this particular warning for all types of access
3057     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
3058         final Lint prevLint = setLint(warnOnAnyAccessToMembers ? lint.enable(LintCategory.SERIAL) : lint);
3059         try {
3060             if (warnOnAnyAccessToMembers || isLambda)
3061                 checkAccessFromSerializableElementInner(tree, isLambda);
3062         } finally {
3063             setLint(prevLint);
3064         }
3065     }
3066 
3067     private void checkAccessFromSerializableElementInner(final JCTree tree, boolean isLambda) {
3068         if (lint.isEnabled(LintCategory.SERIAL)) {
3069             Symbol sym = TreeInfo.symbol(tree);
3070             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
3071                 return;
3072             }
3073 
3074             if (sym.kind == VAR) {
3075                 if ((sym.flags() & PARAMETER) != 0 ||
3076                     sym.isDirectlyOrIndirectlyLocal() ||
3077                     sym.name == names._this ||
3078                     sym.name == names._super) {
3079                     return;
3080                 }
3081             }
3082 
3083             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
3084                 isEffectivelyNonPublic(sym)) {
3085                 if (isLambda) {
3086                     if (belongsToRestrictedPackage(sym)) {
3087                         log.warning(tree.pos(),
3088                                     LintWarnings.AccessToMemberFromSerializableLambda(sym));
3089                     }
3090                 } else {
3091                     log.warning(tree.pos(),
3092                                 LintWarnings.AccessToMemberFromSerializableElement(sym));
3093                 }
3094             }
3095         }
3096     }
3097 
3098     private boolean isEffectivelyNonPublic(Symbol sym) {
3099         if (sym.packge() == syms.rootPackage) {
3100             return false;
3101         }
3102 
3103         while (sym.kind != PCK) {
3104             if ((sym.flags() & PUBLIC) == 0) {
3105                 return true;
3106             }
3107             sym = sym.owner;
3108         }
3109         return false;
3110     }
3111 
3112     private boolean belongsToRestrictedPackage(Symbol sym) {
3113         String fullName = sym.packge().fullname.toString();
3114         return fullName.startsWith("java.") ||
3115                 fullName.startsWith("javax.") ||
3116                 fullName.startsWith("sun.") ||
3117                 fullName.contains(".internal.");
3118     }
3119 
3120     /** Check that class c does not implement directly or indirectly
3121      *  the same parameterized interface with two different argument lists.
3122      *  @param pos          Position to be used for error reporting.
3123      *  @param type         The type whose interfaces are checked.
3124      */
3125     void checkClassBounds(DiagnosticPosition pos, Type type) {
3126         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
3127     }
3128 //where
3129         /** Enter all interfaces of type `type' into the hash table `seensofar'
3130          *  with their class symbol as key and their type as value. Make
3131          *  sure no class is entered with two different types.
3132          */
3133         void checkClassBounds(DiagnosticPosition pos,
3134                               Map<TypeSymbol,Type> seensofar,
3135                               Type type) {
3136             if (type.isErroneous()) return;
3137             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
3138                 Type it = l.head;
3139                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
3140 
3141                 Type oldit = seensofar.put(it.tsym, it);
3142                 if (oldit != null) {
3143                     List<Type> oldparams = oldit.allparams();
3144                     List<Type> newparams = it.allparams();
3145                     if (!types.containsTypeEquivalent(oldparams, newparams))
3146                         log.error(pos,
3147                                   Errors.CantInheritDiffArg(it.tsym,
3148                                                             Type.toString(oldparams),
3149                                                             Type.toString(newparams)));
3150                 }
3151                 checkClassBounds(pos, seensofar, it);
3152             }
3153             Type st = types.supertype(type);
3154             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
3155             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
3156         }
3157 
3158     /** Enter interface into into set.
3159      *  If it existed already, issue a "repeated interface" error.
3160      */
3161     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
3162         if (its.contains(it.tsym))
3163             log.error(pos, Errors.RepeatedInterface);
3164         else {
3165             its.add(it.tsym);
3166         }
3167     }
3168 
3169 /* *************************************************************************
3170  * Check annotations
3171  **************************************************************************/
3172 
3173     /**
3174      * Recursively validate annotations values
3175      */
3176     void validateAnnotationTree(JCTree tree) {
3177         class AnnotationValidator extends TreeScanner {
3178             @Override
3179             public void visitAnnotation(JCAnnotation tree) {
3180                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
3181                     super.visitAnnotation(tree);
3182                     validateAnnotation(tree);
3183                 }
3184             }
3185         }
3186         tree.accept(new AnnotationValidator());
3187     }
3188 
3189     /**
3190      *  {@literal
3191      *  Annotation types are restricted to primitives, String, an
3192      *  enum, an annotation, Class, Class<?>, Class<? extends
3193      *  Anything>, arrays of the preceding.
3194      *  }
3195      */
3196     void validateAnnotationType(JCTree restype) {
3197         // restype may be null if an error occurred, so don't bother validating it
3198         if (restype != null) {
3199             validateAnnotationType(restype.pos(), restype.type);
3200         }
3201     }
3202 
3203     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3204         if (type.isPrimitive()) return;
3205         if (types.isSameType(type, syms.stringType)) return;
3206         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3207         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3208         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3209         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3210             validateAnnotationType(pos, types.elemtype(type));
3211             return;
3212         }
3213         log.error(pos, Errors.InvalidAnnotationMemberType);
3214     }
3215 
3216     /**
3217      * "It is also a compile-time error if any method declared in an
3218      * annotation type has a signature that is override-equivalent to
3219      * that of any public or protected method declared in class Object
3220      * or in the interface annotation.Annotation."
3221      *
3222      * @jls 9.6 Annotation Types
3223      */
3224     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3225         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3226             Scope s = sup.tsym.members();
3227             for (Symbol sym : s.getSymbolsByName(m.name)) {
3228                 if (sym.kind == MTH &&
3229                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3230                     types.overrideEquivalent(m.type, sym.type))
3231                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3232             }
3233         }
3234     }
3235 
3236     /** Check the annotations of a symbol.
3237      */
3238     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3239         for (JCAnnotation a : annotations)
3240             validateAnnotation(a, declarationTree, s);
3241     }
3242 
3243     /** Check the type annotations.
3244      */
3245     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3246         for (JCAnnotation a : annotations)
3247             validateTypeAnnotation(a, s, isTypeParameter);
3248     }
3249 
3250     /** Check an annotation of a symbol.
3251      */
3252     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3253         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3254          *  this can impact in particular records for which annotations are forcibly propagated.
3255          */
3256         validateAnnotationTree(a);
3257         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3258 
3259         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3260                 declarationTree.hasTag(VARDEF) &&
3261                 s.owner.kind == TYP;
3262 
3263         if (isRecordField) {
3264             // first we need to check if the annotation is applicable to records
3265             Name[] targets = getTargetNames(a);
3266             boolean appliesToRecords = false;
3267             for (Name target : targets) {
3268                 appliesToRecords =
3269                                 target == names.FIELD ||
3270                                 target == names.PARAMETER ||
3271                                 target == names.METHOD ||
3272                                 target == names.TYPE_USE ||
3273                                 target == names.RECORD_COMPONENT;
3274                 if (appliesToRecords) {
3275                     break;
3276                 }
3277             }
3278             if (!appliesToRecords) {
3279                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3280             } else {
3281                 /* lets now find the annotations in the field that are targeted to record components and append them to
3282                  * the corresponding record component
3283                  */
3284                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3285                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3286                 SymbolMetadata metadata = rc.getMetadata();
3287                 if (metadata == null || metadata.isEmpty()) {
3288                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3289                      * to the record component declaration
3290                      */
3291                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3292                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3293                     ).collect(List.collector()));
3294 
3295                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3296                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3297                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3298                             if (rcAnnot.pos == fieldAnnot.pos) {
3299                                 rcAnnot.setType(fieldAnnot.type);
3300                                 break;
3301                             }
3302                         }
3303                     }
3304 
3305                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3306                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3307                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3308                      * annotations in the SE5 annotation location.
3309                      *
3310                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3311                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3312                      */
3313                 }
3314             }
3315         }
3316 
3317         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3318          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3319          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3320          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3321          * to all the possible locations.
3322          *
3323          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3324          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3325          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3326          * was both a field and a record component.
3327          *
3328          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3329          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3330          * be see by annotation processors.
3331          *
3332          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3333          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3334          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3335          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3336          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3337          *
3338          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3339          * further inspection by annotation processors.
3340          *
3341          * For example:
3342          *
3343          *     import java.lang.annotation.*;
3344          *
3345          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3346          *     @Retention(RetentionPolicy.RUNTIME)
3347          *     @interface Anno { }
3348          *
3349          *     record R(@Anno String s) {}
3350          *
3351          * at this point we will have for the case of the generated field:
3352          *   - @Anno in the modifier
3353          *   - @Anno as a type annotation
3354          *   - @Anno as a declaration annotation
3355          *
3356          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3357          * declaration annotation because the field was being treated both as a field and as a record component
3358          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3359          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3360          * is applicable as a type annotation to the type of the field.
3361          */
3362 
3363         if (a.type.tsym.isAnnotationType()) {
3364             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3365             if (!applicableTargetsOp.isEmpty()) {
3366                 Set<Name> applicableTargets = applicableTargetsOp.get();
3367                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3368                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3369                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3370                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3371 
3372                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3373                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3374                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3375                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3376                              * that are not applicable to the given record member
3377                              */
3378                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3379                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3380                              * it could be a type annotation
3381                              */
3382                         if (modifiers != null && applicableTargets.isEmpty()) {
3383                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3384                             for (JCAnnotation anno : modifiers.annotations) {
3385                                 if (anno != a) {
3386                                     newAnnotations.add(anno);
3387                                 }
3388                             }
3389                             modifiers.annotations = newAnnotations.toList();
3390                         }
3391                         // now lets remove it from the symbol
3392                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3393                     } else {
3394                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3395                     }
3396                 }
3397                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3398                  * then this is an error as we know that no compiler generated accessor will be a varargs
3399                  * method, better to fail asap
3400                  */
3401                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3402                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3403                 }
3404             }
3405         }
3406 
3407         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3408             if (s.kind != TYP) {
3409                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3410             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3411                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3412             }
3413         }
3414     }
3415 
3416     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3417         Assert.checkNonNull(a.type);
3418         // we just want to validate that the anotation doesn't have any wrong target
3419         if (s != null) getApplicableTargets(a, s);
3420         validateAnnotationTree(a);
3421 
3422         if (a.hasTag(TYPE_ANNOTATION) &&
3423                 !a.annotationType.type.isErroneous() &&
3424                 !isTypeAnnotation(a, isTypeParameter)) {
3425             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3426         }
3427     }
3428 
3429     /**
3430      * Validate the proposed container 'repeatable' on the
3431      * annotation type symbol 's'. Report errors at position
3432      * 'pos'.
3433      *
3434      * @param s The (annotation)type declaration annotated with a @Repeatable
3435      * @param repeatable the @Repeatable on 's'
3436      * @param pos where to report errors
3437      */
3438     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3439         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3440 
3441         Type t = null;
3442         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3443         if (!l.isEmpty()) {
3444             Assert.check(l.head.fst.name == names.value);
3445             if (l.head.snd instanceof Attribute.Class) {
3446                 t = ((Attribute.Class)l.head.snd).getValue();
3447             }
3448         }
3449 
3450         if (t == null) {
3451             // errors should already have been reported during Annotate
3452             return;
3453         }
3454 
3455         validateValue(t.tsym, s, pos);
3456         validateRetention(t.tsym, s, pos);
3457         validateDocumented(t.tsym, s, pos);
3458         validateInherited(t.tsym, s, pos);
3459         validateTarget(t.tsym, s, pos);
3460         validateDefault(t.tsym, pos);
3461     }
3462 
3463     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3464         Symbol sym = container.members().findFirst(names.value);
3465         if (sym != null && sym.kind == MTH) {
3466             MethodSymbol m = (MethodSymbol) sym;
3467             Type ret = m.getReturnType();
3468             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3469                 log.error(pos,
3470                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3471                                                                         ret,
3472                                                                         types.makeArrayType(contained.type)));
3473             }
3474         } else {
3475             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3476         }
3477     }
3478 
3479     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3480         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3481         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3482 
3483         boolean error = false;
3484         switch (containedRetention) {
3485         case RUNTIME:
3486             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3487                 error = true;
3488             }
3489             break;
3490         case CLASS:
3491             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3492                 error = true;
3493             }
3494         }
3495         if (error ) {
3496             log.error(pos,
3497                       Errors.InvalidRepeatableAnnotationRetention(container,
3498                                                                   containerRetention.name(),
3499                                                                   contained,
3500                                                                   containedRetention.name()));
3501         }
3502     }
3503 
3504     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3505         if (contained.attribute(syms.documentedType.tsym) != null) {
3506             if (container.attribute(syms.documentedType.tsym) == null) {
3507                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3508             }
3509         }
3510     }
3511 
3512     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3513         if (contained.attribute(syms.inheritedType.tsym) != null) {
3514             if (container.attribute(syms.inheritedType.tsym) == null) {
3515                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3516             }
3517         }
3518     }
3519 
3520     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3521         // The set of targets the container is applicable to must be a subset
3522         // (with respect to annotation target semantics) of the set of targets
3523         // the contained is applicable to. The target sets may be implicit or
3524         // explicit.
3525 
3526         Set<Name> containerTargets;
3527         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3528         if (containerTarget == null) {
3529             containerTargets = getDefaultTargetSet();
3530         } else {
3531             containerTargets = new HashSet<>();
3532             for (Attribute app : containerTarget.values) {
3533                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3534                     continue; // recovery
3535                 }
3536                 containerTargets.add(attributeEnum.value.name);
3537             }
3538         }
3539 
3540         Set<Name> containedTargets;
3541         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3542         if (containedTarget == null) {
3543             containedTargets = getDefaultTargetSet();
3544         } else {
3545             containedTargets = new HashSet<>();
3546             for (Attribute app : containedTarget.values) {
3547                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3548                     continue; // recovery
3549                 }
3550                 containedTargets.add(attributeEnum.value.name);
3551             }
3552         }
3553 
3554         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3555             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3556         }
3557     }
3558 
3559     /* get a set of names for the default target */
3560     private Set<Name> getDefaultTargetSet() {
3561         if (defaultTargets == null) {
3562             defaultTargets = Set.of(defaultTargetMetaInfo());
3563         }
3564 
3565         return defaultTargets;
3566     }
3567     private Set<Name> defaultTargets;
3568 
3569 
3570     /** Checks that s is a subset of t, with respect to ElementType
3571      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3572      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3573      * TYPE_PARAMETER}.
3574      */
3575     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3576         // Check that all elements in s are present in t
3577         for (Name n2 : s) {
3578             boolean currentElementOk = false;
3579             for (Name n1 : t) {
3580                 if (n1 == n2) {
3581                     currentElementOk = true;
3582                     break;
3583                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3584                     currentElementOk = true;
3585                     break;
3586                 } else if (n1 == names.TYPE_USE &&
3587                         (n2 == names.TYPE ||
3588                          n2 == names.ANNOTATION_TYPE ||
3589                          n2 == names.TYPE_PARAMETER)) {
3590                     currentElementOk = true;
3591                     break;
3592                 }
3593             }
3594             if (!currentElementOk)
3595                 return false;
3596         }
3597         return true;
3598     }
3599 
3600     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3601         // validate that all other elements of containing type has defaults
3602         Scope scope = container.members();
3603         for(Symbol elm : scope.getSymbols()) {
3604             if (elm.name != names.value &&
3605                 elm.kind == MTH &&
3606                 ((MethodSymbol)elm).defaultValue == null) {
3607                 log.error(pos,
3608                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3609             }
3610         }
3611     }
3612 
3613     /** Is s a method symbol that overrides a method in a superclass? */
3614     boolean isOverrider(Symbol s) {
3615         if (s.kind != MTH || s.isStatic())
3616             return false;
3617         MethodSymbol m = (MethodSymbol)s;
3618         TypeSymbol owner = (TypeSymbol)m.owner;
3619         for (Type sup : types.closure(owner.type)) {
3620             if (sup == owner.type)
3621                 continue; // skip "this"
3622             Scope scope = sup.tsym.members();
3623             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3624                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3625                     return true;
3626             }
3627         }
3628         return false;
3629     }
3630 
3631     /** Is the annotation applicable to types? */
3632     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3633         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3634         return (targets == null) ?
3635                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3636                 targets.stream()
3637                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3638     }
3639     //where
3640         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3641             Attribute.Enum e = (Attribute.Enum)a;
3642             return (e.value.name == names.TYPE_USE ||
3643                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3644         }
3645 
3646     /** Is the annotation applicable to the symbol? */
3647     Name[] getTargetNames(JCAnnotation a) {
3648         return getTargetNames(a.annotationType.type.tsym);
3649     }
3650 
3651     public Name[] getTargetNames(TypeSymbol annoSym) {
3652         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3653         Name[] targets;
3654         if (arr == null) {
3655             targets = defaultTargetMetaInfo();
3656         } else {
3657             // TODO: can we optimize this?
3658             targets = new Name[arr.values.length];
3659             for (int i=0; i<arr.values.length; ++i) {
3660                 Attribute app = arr.values[i];
3661                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3662                     return new Name[0];
3663                 }
3664                 targets[i] = attributeEnum.value.name;
3665             }
3666         }
3667         return targets;
3668     }
3669 
3670     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3671         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3672         /* the optional could be empty if the annotation is unknown in that case
3673          * we return that it is applicable and if it is erroneous that should imply
3674          * an error at the declaration site
3675          */
3676         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3677     }
3678 
3679     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3680         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3681         Name[] targets;
3682         Set<Name> applicableTargets = new HashSet<>();
3683 
3684         if (arr == null) {
3685             targets = defaultTargetMetaInfo();
3686         } else {
3687             // TODO: can we optimize this?
3688             targets = new Name[arr.values.length];
3689             for (int i=0; i<arr.values.length; ++i) {
3690                 Attribute app = arr.values[i];
3691                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3692                     // recovery
3693                     return Optional.empty();
3694                 }
3695                 targets[i] = attributeEnum.value.name;
3696             }
3697         }
3698         for (Name target : targets) {
3699             if (target == names.TYPE) {
3700                 if (s.kind == TYP)
3701                     applicableTargets.add(names.TYPE);
3702             } else if (target == names.FIELD) {
3703                 if (s.kind == VAR && s.owner.kind != MTH)
3704                     applicableTargets.add(names.FIELD);
3705             } else if (target == names.RECORD_COMPONENT) {
3706                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3707                     applicableTargets.add(names.RECORD_COMPONENT);
3708                 }
3709             } else if (target == names.METHOD) {
3710                 if (s.kind == MTH && !s.isConstructor())
3711                     applicableTargets.add(names.METHOD);
3712             } else if (target == names.PARAMETER) {
3713                 if (s.kind == VAR &&
3714                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3715                     applicableTargets.add(names.PARAMETER);
3716                 }
3717             } else if (target == names.CONSTRUCTOR) {
3718                 if (s.kind == MTH && s.isConstructor())
3719                     applicableTargets.add(names.CONSTRUCTOR);
3720             } else if (target == names.LOCAL_VARIABLE) {
3721                 if (s.kind == VAR && s.owner.kind == MTH &&
3722                       (s.flags() & PARAMETER) == 0) {
3723                     applicableTargets.add(names.LOCAL_VARIABLE);
3724                 }
3725             } else if (target == names.ANNOTATION_TYPE) {
3726                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3727                     applicableTargets.add(names.ANNOTATION_TYPE);
3728                 }
3729             } else if (target == names.PACKAGE) {
3730                 if (s.kind == PCK)
3731                     applicableTargets.add(names.PACKAGE);
3732             } else if (target == names.TYPE_USE) {
3733                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3734                     //cannot type annotate implicitly typed locals
3735                     continue;
3736                 } else if (s.kind == TYP || s.kind == VAR ||
3737                         (s.kind == MTH && !s.isConstructor() &&
3738                                 !s.type.getReturnType().hasTag(VOID)) ||
3739                         (s.kind == MTH && s.isConstructor())) {
3740                     applicableTargets.add(names.TYPE_USE);
3741                 }
3742             } else if (target == names.TYPE_PARAMETER) {
3743                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3744                     applicableTargets.add(names.TYPE_PARAMETER);
3745             } else if (target == names.MODULE) {
3746                 if (s.kind == MDL)
3747                     applicableTargets.add(names.MODULE);
3748             } else {
3749                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3750                 return Optional.empty(); // Unknown ElementType
3751             }
3752         }
3753         return Optional.of(applicableTargets);
3754     }
3755 
3756     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3757         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3758         if (atTarget == null) return null; // ok, is applicable
3759         Attribute atValue = atTarget.member(names.value);
3760         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3761     }
3762 
3763     private Name[] dfltTargetMeta;
3764     private Name[] defaultTargetMetaInfo() {
3765         if (dfltTargetMeta == null) {
3766             ArrayList<Name> defaultTargets = new ArrayList<>();
3767             defaultTargets.add(names.PACKAGE);
3768             defaultTargets.add(names.TYPE);
3769             defaultTargets.add(names.FIELD);
3770             defaultTargets.add(names.METHOD);
3771             defaultTargets.add(names.CONSTRUCTOR);
3772             defaultTargets.add(names.ANNOTATION_TYPE);
3773             defaultTargets.add(names.LOCAL_VARIABLE);
3774             defaultTargets.add(names.PARAMETER);
3775             if (allowRecords) {
3776               defaultTargets.add(names.RECORD_COMPONENT);
3777             }
3778             if (allowModules) {
3779               defaultTargets.add(names.MODULE);
3780             }
3781             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3782         }
3783         return dfltTargetMeta;
3784     }
3785 
3786     /** Check an annotation value.
3787      *
3788      * @param a The annotation tree to check
3789      * @return true if this annotation tree is valid, otherwise false
3790      */
3791     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3792         boolean res = false;
3793         final Log.DiagnosticHandler diagHandler = log.new DiscardDiagnosticHandler();
3794         try {
3795             res = validateAnnotation(a);
3796         } finally {
3797             log.popDiagnosticHandler(diagHandler);
3798         }
3799         return res;
3800     }
3801 
3802     private boolean validateAnnotation(JCAnnotation a) {
3803         boolean isValid = true;
3804         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3805 
3806         // collect an inventory of the annotation elements
3807         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3808 
3809         // remove the ones that are assigned values
3810         for (JCTree arg : a.args) {
3811             if (!arg.hasTag(ASSIGN)) continue; // recovery
3812             JCAssign assign = (JCAssign)arg;
3813             Symbol m = TreeInfo.symbol(assign.lhs);
3814             if (m == null || m.type.isErroneous()) continue;
3815             if (!elements.remove(m)) {
3816                 isValid = false;
3817                 log.error(assign.lhs.pos(),
3818                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3819             }
3820         }
3821 
3822         // all the remaining ones better have default values
3823         List<Name> missingDefaults = List.nil();
3824         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3825         for (MethodSymbol m : elements) {
3826             if (m.type.isErroneous())
3827                 continue;
3828 
3829             if (!membersWithDefault.contains(m))
3830                 missingDefaults = missingDefaults.append(m.name);
3831         }
3832         missingDefaults = missingDefaults.reverse();
3833         if (missingDefaults.nonEmpty()) {
3834             isValid = false;
3835             Error errorKey = (missingDefaults.size() > 1)
3836                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3837                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3838             log.error(a.pos(), errorKey);
3839         }
3840 
3841         return isValid && validateTargetAnnotationValue(a);
3842     }
3843 
3844     /* Validate the special java.lang.annotation.Target annotation */
3845     boolean validateTargetAnnotationValue(JCAnnotation a) {
3846         // special case: java.lang.annotation.Target must not have
3847         // repeated values in its value member
3848         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3849                 a.args.tail == null)
3850             return true;
3851 
3852         boolean isValid = true;
3853         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3854         JCAssign assign = (JCAssign) a.args.head;
3855         Symbol m = TreeInfo.symbol(assign.lhs);
3856         if (m.name != names.value) return false;
3857         JCTree rhs = assign.rhs;
3858         if (!rhs.hasTag(NEWARRAY)) return false;
3859         JCNewArray na = (JCNewArray) rhs;
3860         Set<Symbol> targets = new HashSet<>();
3861         for (JCTree elem : na.elems) {
3862             if (!targets.add(TreeInfo.symbol(elem))) {
3863                 isValid = false;
3864                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3865             }
3866         }
3867         return isValid;
3868     }
3869 
3870     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3871         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3872             (s.flags() & DEPRECATED) != 0 &&
3873             !syms.deprecatedType.isErroneous() &&
3874             s.attribute(syms.deprecatedType.tsym) == null) {
3875             log.warning(pos, LintWarnings.MissingDeprecatedAnnotation);
3876         }
3877         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3878         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3879             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3880                 log.warning(pos,
3881                             LintWarnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3882             }
3883         }
3884     }
3885 
3886     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3887         checkDeprecated(() -> pos, other, s);
3888     }
3889 
3890     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3891         if (!importSuppression
3892                 && (s.isDeprecatedForRemoval() || s.isDeprecated() && !other.isDeprecated())
3893                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3894                 && s.kind != Kind.PCK) {
3895             deferredLintHandler.report(_l -> warnDeprecated(pos.get(), s));
3896         }
3897     }
3898 
3899     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3900         if ((s.flags() & PROPRIETARY) != 0) {
3901             deferredLintHandler.report(_l -> {
3902                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3903             });
3904         }
3905     }
3906 
3907     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3908         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3909             log.error(pos, Errors.NotInProfile(s, profile));
3910         }
3911     }
3912 
3913     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3914         checkPreview(pos, other, Type.noType, s);
3915     }
3916 
3917     void checkPreview(DiagnosticPosition pos, Symbol other, Type site, Symbol s) {
3918         boolean sIsPreview;
3919         Symbol previewSymbol;
3920         if ((s.flags() & PREVIEW_API) != 0) {
3921             sIsPreview = true;
3922             previewSymbol=  s;
3923         } else if ((s.kind == Kind.MTH || s.kind == Kind.VAR) &&
3924                    site.tsym != null &&
3925                    (site.tsym.flags() & PREVIEW_API) == 0 &&
3926                    (s.owner.flags() & PREVIEW_API) != 0) {
3927             //calling a method, or using a field, whose owner is a preview, but
3928             //using a site that is not a preview. Also produce an error or warning:
3929             sIsPreview = true;
3930             previewSymbol = s.owner;
3931         } else {
3932             sIsPreview = false;
3933             previewSymbol = null;
3934         }
3935         if (sIsPreview && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3936             if ((previewSymbol.flags() & PREVIEW_REFLECTIVE) == 0) {
3937                 if (!preview.isEnabled()) {
3938                     log.error(pos, Errors.IsPreview(s));
3939                 } else {
3940                     preview.markUsesPreview(pos);
3941                     warnPreviewAPI(pos, LintWarnings.IsPreview(s));
3942                 }
3943             } else {
3944                 warnPreviewAPI(pos, LintWarnings.IsPreviewReflective(s));
3945             }
3946         }
3947         if (preview.declaredUsingPreviewFeature(s)) {
3948             if (preview.isEnabled()) {
3949                 //for preview disabled do presumably so not need to do anything?
3950                 //If "s" is compiled from source, then there was an error for it already;
3951                 //if "s" is from classfile, there already was an error for the classfile.
3952                 preview.markUsesPreview(pos);
3953                 warnPreviewAPI(pos, LintWarnings.DeclaredUsingPreview(kindName(s), s));
3954             }
3955         }
3956     }
3957 
3958     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3959         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3960             deferredLintHandler.report(_l -> warnRestrictedAPI(pos, s));
3961         }
3962     }
3963 
3964 /* *************************************************************************
3965  * Check for recursive annotation elements.
3966  **************************************************************************/
3967 
3968     /** Check for cycles in the graph of annotation elements.
3969      */
3970     void checkNonCyclicElements(JCClassDecl tree) {
3971         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3972         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3973         try {
3974             tree.sym.flags_field |= LOCKED;
3975             for (JCTree def : tree.defs) {
3976                 if (!def.hasTag(METHODDEF)) continue;
3977                 JCMethodDecl meth = (JCMethodDecl)def;
3978                 checkAnnotationResType(meth.pos(), meth.restype.type);
3979             }
3980         } finally {
3981             tree.sym.flags_field &= ~LOCKED;
3982             tree.sym.flags_field |= ACYCLIC_ANN;
3983         }
3984     }
3985 
3986     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3987         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3988             return;
3989         if ((tsym.flags_field & LOCKED) != 0) {
3990             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3991             return;
3992         }
3993         try {
3994             tsym.flags_field |= LOCKED;
3995             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3996                 if (s.kind != MTH)
3997                     continue;
3998                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3999             }
4000         } finally {
4001             tsym.flags_field &= ~LOCKED;
4002             tsym.flags_field |= ACYCLIC_ANN;
4003         }
4004     }
4005 
4006     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
4007         switch (type.getTag()) {
4008         case CLASS:
4009             if ((type.tsym.flags() & ANNOTATION) != 0)
4010                 checkNonCyclicElementsInternal(pos, type.tsym);
4011             break;
4012         case ARRAY:
4013             checkAnnotationResType(pos, types.elemtype(type));
4014             break;
4015         default:
4016             break; // int etc
4017         }
4018     }
4019 
4020 /* *************************************************************************
4021  * Check for cycles in the constructor call graph.
4022  **************************************************************************/
4023 
4024     /** Check for cycles in the graph of constructors calling other
4025      *  constructors.
4026      */
4027     void checkCyclicConstructors(JCClassDecl tree) {
4028         // use LinkedHashMap so we generate errors deterministically
4029         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
4030 
4031         // enter each constructor this-call into the map
4032         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4033             if (!TreeInfo.isConstructor(l.head))
4034                 continue;
4035             JCMethodDecl meth = (JCMethodDecl)l.head;
4036             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
4037             if (app != null && TreeInfo.name(app.meth) == names._this) {
4038                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
4039             } else {
4040                 meth.sym.flags_field |= ACYCLIC;
4041             }
4042         }
4043 
4044         // Check for cycles in the map
4045         Symbol[] ctors = new Symbol[0];
4046         ctors = callMap.keySet().toArray(ctors);
4047         for (Symbol caller : ctors) {
4048             checkCyclicConstructor(tree, caller, callMap);
4049         }
4050     }
4051 
4052     /** Look in the map to see if the given constructor is part of a
4053      *  call cycle.
4054      */
4055     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
4056                                         Map<Symbol,Symbol> callMap) {
4057         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
4058             if ((ctor.flags_field & LOCKED) != 0) {
4059                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
4060                           Errors.RecursiveCtorInvocation);
4061             } else {
4062                 ctor.flags_field |= LOCKED;
4063                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
4064                 ctor.flags_field &= ~LOCKED;
4065             }
4066             ctor.flags_field |= ACYCLIC;
4067         }
4068     }
4069 
4070 /* *************************************************************************
4071  * Verify the proper placement of super()/this() calls.
4072  *
4073  *    - super()/this() may only appear in constructors
4074  *    - There must be at most one super()/this() call per constructor
4075  *    - The super()/this() call, if any, must be a top-level statement in the
4076  *      constructor, i.e., not nested inside any other statement or block
4077  *    - There must be no return statements prior to the super()/this() call
4078  **************************************************************************/
4079 
4080     void checkSuperInitCalls(JCClassDecl tree) {
4081         new SuperThisChecker().check(tree);
4082     }
4083 
4084     private class SuperThisChecker extends TreeScanner {
4085 
4086         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
4087         private static final int MATCH_SCAN_DEPTH = 3;
4088 
4089         private boolean constructor;        // is this method a constructor?
4090         private boolean firstStatement;     // at the first statement in method?
4091         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
4092         private Name initCall;              // whichever of "super" or "init" we've seen already
4093         private int scanDepth;              // current scan recursion depth in method body
4094 
4095         public void check(JCClassDecl classDef) {
4096             scan(classDef.defs);
4097         }
4098 
4099         @Override
4100         public void visitMethodDef(JCMethodDecl tree) {
4101             Assert.check(!constructor);
4102             Assert.check(earlyReturn == null);
4103             Assert.check(initCall == null);
4104             Assert.check(scanDepth == 1);
4105 
4106             // Initialize state for this method
4107             constructor = TreeInfo.isConstructor(tree);
4108             try {
4109 
4110                 // Scan method body
4111                 if (tree.body != null) {
4112                     firstStatement = true;
4113                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
4114                         scan(l.head);
4115                         firstStatement = false;
4116                     }
4117                 }
4118 
4119                 // Verify no 'return' seen prior to an explicit super()/this() call
4120                 if (constructor && earlyReturn != null && initCall != null)
4121                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
4122             } finally {
4123                 firstStatement = false;
4124                 constructor = false;
4125                 earlyReturn = null;
4126                 initCall = null;
4127             }
4128         }
4129 
4130         @Override
4131         public void scan(JCTree tree) {
4132             scanDepth++;
4133             try {
4134                 super.scan(tree);
4135             } finally {
4136                 scanDepth--;
4137             }
4138         }
4139 
4140         @Override
4141         public void visitApply(JCMethodInvocation apply) {
4142             do {
4143 
4144                 // Is this a super() or this() call?
4145                 Name methodName = TreeInfo.name(apply.meth);
4146                 if (methodName != names._super && methodName != names._this)
4147                     break;
4148 
4149                 // super()/this() calls must only appear in a constructor
4150                 if (!constructor) {
4151                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
4152                     break;
4153                 }
4154 
4155                 // super()/this() calls must be a top level statement
4156                 if (scanDepth != MATCH_SCAN_DEPTH) {
4157                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
4158                     break;
4159                 }
4160 
4161                 // super()/this() calls must not appear more than once
4162                 if (initCall != null) {
4163                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
4164                     break;
4165                 }
4166 
4167                 // If super()/this() isn't first, require flexible constructors feature
4168                 if (!firstStatement)
4169                     preview.checkSourceLevel(apply.pos(), Feature.FLEXIBLE_CONSTRUCTORS);
4170 
4171                 // We found a legitimate super()/this() call; remember it
4172                 initCall = methodName;
4173             } while (false);
4174 
4175             // Proceed
4176             super.visitApply(apply);
4177         }
4178 
4179         @Override
4180         public void visitReturn(JCReturn tree) {
4181             if (constructor && initCall == null && earlyReturn == null)
4182                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
4183             super.visitReturn(tree);
4184         }
4185 
4186         @Override
4187         public void visitClassDef(JCClassDecl tree) {
4188             // don't descend any further
4189         }
4190 
4191         @Override
4192         public void visitLambda(JCLambda tree) {
4193             final boolean constructorPrev = constructor;
4194             final boolean firstStatementPrev = firstStatement;
4195             final JCReturn earlyReturnPrev = earlyReturn;
4196             final Name initCallPrev = initCall;
4197             final int scanDepthPrev = scanDepth;
4198             constructor = false;
4199             firstStatement = false;
4200             earlyReturn = null;
4201             initCall = null;
4202             scanDepth = 0;
4203             try {
4204                 super.visitLambda(tree);
4205             } finally {
4206                 constructor = constructorPrev;
4207                 firstStatement = firstStatementPrev;
4208                 earlyReturn = earlyReturnPrev;
4209                 initCall = initCallPrev;
4210                 scanDepth = scanDepthPrev;
4211             }
4212         }
4213     }
4214 
4215 /* *************************************************************************
4216  * Miscellaneous
4217  **************************************************************************/
4218 
4219     /**
4220      *  Check for division by integer constant zero
4221      *  @param pos           Position for error reporting.
4222      *  @param operator      The operator for the expression
4223      *  @param operand       The right hand operand for the expression
4224      */
4225     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4226         if (operand.constValue() != null
4227             && operand.getTag().isSubRangeOf(LONG)
4228             && ((Number) (operand.constValue())).longValue() == 0) {
4229             int opc = ((OperatorSymbol)operator).opcode;
4230             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4231                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4232                 deferredLintHandler.report(_ -> lint.logIfEnabled(pos, LintWarnings.DivZero));
4233             }
4234         }
4235     }
4236 
4237     /**
4238      *  Check for possible loss of precission
4239      *  @param pos           Position for error reporting.
4240      *  @param found    The computed type of the tree
4241      *  @param req  The computed type of the tree
4242      */
4243     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4244         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4245             deferredLintHandler.report(_ ->
4246                 lint.logIfEnabled(pos, LintWarnings.PossibleLossOfPrecision(found, req)));
4247         }
4248     }
4249 
4250     /**
4251      * Check for empty statements after if
4252      */
4253     void checkEmptyIf(JCIf tree) {
4254         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null) {
4255             lint.logIfEnabled(tree.thenpart.pos(), LintWarnings.EmptyIf);
4256         }
4257     }
4258 
4259     /** Check that symbol is unique in given scope.
4260      *  @param pos           Position for error reporting.
4261      *  @param sym           The symbol.
4262      *  @param s             The scope.
4263      */
4264     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4265         if (sym.type.isErroneous())
4266             return true;
4267         if (sym.owner.name == names.any) return false;
4268         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4269             if (sym != byName &&
4270                     (byName.flags() & CLASH) == 0 &&
4271                     sym.kind == byName.kind &&
4272                     sym.name != names.error &&
4273                     (sym.kind != MTH ||
4274                      types.hasSameArgs(sym.type, byName.type) ||
4275                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4276                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4277                     sym.flags_field |= CLASH;
4278                     varargsDuplicateError(pos, sym, byName);
4279                     return true;
4280                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4281                     duplicateErasureError(pos, sym, byName);
4282                     sym.flags_field |= CLASH;
4283                     return true;
4284                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4285                            (byName.flags() & MATCH_BINDING) != 0 &&
4286                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4287                     if (!sym.type.isErroneous()) {
4288                         log.error(pos, Errors.MatchBindingExists);
4289                         sym.flags_field |= CLASH;
4290                     }
4291                     return false;
4292                 } else {
4293                     duplicateError(pos, byName);
4294                     return false;
4295                 }
4296             }
4297         }
4298         return true;
4299     }
4300 
4301     /** Report duplicate declaration error.
4302      */
4303     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4304         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4305             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4306         }
4307     }
4308 
4309     /**Check that types imported through the ordinary imports don't clash with types imported
4310      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4311      * types without an error on the imports.
4312      * @param toplevel       The toplevel tree for which the test should be performed.
4313      */
4314     void checkImportsUnique(JCCompilationUnit toplevel) {
4315         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4316         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4317         WriteableScope topLevelScope = toplevel.toplevelScope;
4318 
4319         for (JCTree def : toplevel.defs) {
4320             if (!def.hasTag(IMPORT))
4321                 continue;
4322 
4323             JCImport imp = (JCImport) def;
4324 
4325             if (imp.importScope == null)
4326                 continue;
4327 
4328             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4329                 if (imp.isStatic()) {
4330                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4331                     staticallyImportedSoFar.enter(sym);
4332                 } else {
4333                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4334                     ordinallyImportedSoFar.enter(sym);
4335                 }
4336             }
4337 
4338             imp.importScope = null;
4339         }
4340     }
4341 
4342     /** Check that single-type import is not already imported or top-level defined,
4343      *  but make an exception for two single-type imports which denote the same type.
4344      *  @param pos                     Position for error reporting.
4345      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4346      *                                 ordinary imports.
4347      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4348      *                                 static imports.
4349      *  @param topLevelScope           The current file's top-level Scope
4350      *  @param sym                     The symbol.
4351      *  @param staticImport            Whether or not this was a static import
4352      */
4353     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4354                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4355                                       Symbol sym, boolean staticImport) {
4356         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4357         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4358         Symbol staticClashing = null;
4359         if (ordinaryClashing == null && !staticImport) {
4360             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4361         }
4362         if (ordinaryClashing != null || staticClashing != null) {
4363             if (ordinaryClashing != null)
4364                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4365             else
4366                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4367             return false;
4368         }
4369         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4370         if (clashing != null) {
4371             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4372             return false;
4373         }
4374         return true;
4375     }
4376 
4377     /** Check that a qualified name is in canonical form (for import decls).
4378      */
4379     public void checkCanonical(JCTree tree) {
4380         if (!isCanonical(tree))
4381             log.error(tree.pos(),
4382                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4383     }
4384         // where
4385         private boolean isCanonical(JCTree tree) {
4386             while (tree.hasTag(SELECT)) {
4387                 JCFieldAccess s = (JCFieldAccess) tree;
4388                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4389                     return false;
4390                 tree = s.selected;
4391             }
4392             return true;
4393         }
4394 
4395     /** Check that an auxiliary class is not accessed from any other file than its own.
4396      */
4397     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4398         if ((c.flags() & AUXILIARY) != 0 &&
4399             rs.isAccessible(env, c) &&
4400             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4401         {
4402             lint.logIfEnabled(pos,
4403                         LintWarnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4404         }
4405     }
4406 
4407     /**
4408      * Check for a default constructor in an exported package.
4409      */
4410     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4411         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4412             ((c.flags() & (ENUM | RECORD)) == 0) &&
4413             !c.isAnonymous() &&
4414             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4415             Feature.MODULES.allowedInSource(source)) {
4416             NestingKind nestingKind = c.getNestingKind();
4417             switch (nestingKind) {
4418                 case ANONYMOUS,
4419                      LOCAL -> {return;}
4420                 case TOP_LEVEL -> {;} // No additional checks needed
4421                 case MEMBER -> {
4422                     // For nested member classes, all the enclosing
4423                     // classes must be public or protected.
4424                     Symbol owner = c.owner;
4425                     while (owner != null && owner.kind == TYP) {
4426                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4427                             return;
4428                         owner = owner.owner;
4429                     }
4430                 }
4431             }
4432 
4433             // Only check classes in named packages exported by its module
4434             PackageSymbol pkg = c.packge();
4435             if (!pkg.isUnnamed()) {
4436                 ModuleSymbol modle = pkg.modle;
4437                 for (ExportsDirective exportDir : modle.exports) {
4438                     // Report warning only if the containing
4439                     // package is unconditionally exported
4440                     if (exportDir.packge.equals(pkg)) {
4441                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4442                             // Warning may be suppressed by
4443                             // annotations; check again for being
4444                             // enabled in the deferred context.
4445                             deferredLintHandler.report(_ ->
4446                                 lint.logIfEnabled(pos, LintWarnings.MissingExplicitCtor(c, pkg, modle)));
4447                         } else {
4448                             return;
4449                         }
4450                     }
4451                 }
4452             }
4453         }
4454         return;
4455     }
4456 
4457     private class ConversionWarner extends Warner {
4458         final String uncheckedKey;
4459         final Type found;
4460         final Type expected;
4461         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4462             super(pos);
4463             this.uncheckedKey = uncheckedKey;
4464             this.found = found;
4465             this.expected = expected;
4466         }
4467 
4468         @Override
4469         public void warn(LintCategory lint) {
4470             boolean warned = this.warned;
4471             super.warn(lint);
4472             if (warned) return; // suppress redundant diagnostics
4473             switch (lint) {
4474                 case UNCHECKED:
4475                     Check.this.warnUnchecked(pos(), LintWarnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4476                     break;
4477                 case VARARGS:
4478                     if (method != null &&
4479                             method.attribute(syms.trustMeType.tsym) != null &&
4480                             isTrustMeAllowedOnMethod(method) &&
4481                             !types.isReifiable(method.type.getParameterTypes().last())) {
4482                         Check.this.lint.logIfEnabled(pos(), LintWarnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4483                     }
4484                     break;
4485                 default:
4486                     throw new AssertionError("Unexpected lint: " + lint);
4487             }
4488         }
4489     }
4490 
4491     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4492         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4493     }
4494 
4495     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4496         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4497     }
4498 
4499     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4500         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4501 
4502         if (functionalType != null) {
4503             try {
4504                 types.findDescriptorSymbol((TypeSymbol)cs);
4505             } catch (Types.FunctionDescriptorLookupError ex) {
4506                 DiagnosticPosition pos = tree.pos();
4507                 for (JCAnnotation a : tree.getModifiers().annotations) {
4508                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4509                         pos = a.pos();
4510                         break;
4511                     }
4512                 }
4513                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4514             }
4515         }
4516     }
4517 
4518     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4519         for (final JCImportBase impBase : toplevel.getImports()) {
4520             if (!(impBase instanceof JCImport imp))
4521                 continue;
4522             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4523                 continue;
4524             final JCFieldAccess select = imp.qualid;
4525             final Symbol origin;
4526             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4527                 continue;
4528 
4529             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4530             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4531                 log.error(imp.pos(),
4532                           Errors.CantResolveLocation(KindName.STATIC,
4533                                                      select.name,
4534                                                      null,
4535                                                      null,
4536                                                      Fragments.Location(kindName(site),
4537                                                                         site,
4538                                                                         null)));
4539             }
4540         }
4541     }
4542 
4543     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4544     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4545         OUTER: for (JCImportBase impBase : toplevel.getImports()) {
4546             if (impBase instanceof JCImport imp && !imp.staticImport &&
4547                 TreeInfo.name(imp.qualid) == names.asterisk) {
4548                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4549                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4550                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4551                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.qualid.selected.pos(), Errors.DoesntExist(tsym));
4552                 }
4553             }
4554         }
4555     }
4556 
4557     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4558         if (tsym == null || !processed.add(tsym))
4559             return false;
4560 
4561             // also search through inherited names
4562         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4563             return true;
4564 
4565         for (Type t : types.interfaces(tsym.type))
4566             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4567                 return true;
4568 
4569         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4570             if (sym.isStatic() &&
4571                 importAccessible(sym, packge) &&
4572                 sym.isMemberOf(origin, types)) {
4573                 return true;
4574             }
4575         }
4576 
4577         return false;
4578     }
4579 
4580     // is the sym accessible everywhere in packge?
4581     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4582         try {
4583             int flags = (int)(sym.flags() & AccessFlags);
4584             switch (flags) {
4585             default:
4586             case PUBLIC:
4587                 return true;
4588             case PRIVATE:
4589                 return false;
4590             case 0:
4591             case PROTECTED:
4592                 return sym.packge() == packge;
4593             }
4594         } catch (ClassFinder.BadClassFile err) {
4595             throw err;
4596         } catch (CompletionFailure ex) {
4597             return false;
4598         }
4599     }
4600 
4601     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4602         JCCompilationUnit toplevel = env.toplevel;
4603 
4604         if (   toplevel.modle == syms.unnamedModule
4605             || toplevel.modle == syms.noModule
4606             || (check.sym.flags() & COMPOUND) != 0) {
4607             return ;
4608         }
4609 
4610         ExportsDirective currentExport = findExport(toplevel.packge);
4611 
4612         if (   currentExport == null //not exported
4613             || currentExport.modules != null) //don't check classes in qualified export
4614             return ;
4615 
4616         new TreeScanner() {
4617             Lint lint = env.info.lint;
4618             boolean inSuperType;
4619 
4620             @Override
4621             public void visitBlock(JCBlock tree) {
4622             }
4623             @Override
4624             public void visitMethodDef(JCMethodDecl tree) {
4625                 if (!isAPISymbol(tree.sym))
4626                     return;
4627                 Lint prevLint = lint;
4628                 try {
4629                     lint = lint.augment(tree.sym);
4630                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4631                         super.visitMethodDef(tree);
4632                     }
4633                 } finally {
4634                     lint = prevLint;
4635                 }
4636             }
4637             @Override
4638             public void visitVarDef(JCVariableDecl tree) {
4639                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4640                     return;
4641                 Lint prevLint = lint;
4642                 try {
4643                     lint = lint.augment(tree.sym);
4644                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4645                         scan(tree.mods);
4646                         scan(tree.vartype);
4647                     }
4648                 } finally {
4649                     lint = prevLint;
4650                 }
4651             }
4652             @Override
4653             public void visitClassDef(JCClassDecl tree) {
4654                 if (tree != check)
4655                     return ;
4656 
4657                 if (!isAPISymbol(tree.sym))
4658                     return ;
4659 
4660                 Lint prevLint = lint;
4661                 try {
4662                     lint = lint.augment(tree.sym);
4663                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4664                         scan(tree.mods);
4665                         scan(tree.typarams);
4666                         try {
4667                             inSuperType = true;
4668                             scan(tree.extending);
4669                             scan(tree.implementing);
4670                         } finally {
4671                             inSuperType = false;
4672                         }
4673                         scan(tree.defs);
4674                     }
4675                 } finally {
4676                     lint = prevLint;
4677                 }
4678             }
4679             @Override
4680             public void visitTypeApply(JCTypeApply tree) {
4681                 scan(tree.clazz);
4682                 boolean oldInSuperType = inSuperType;
4683                 try {
4684                     inSuperType = false;
4685                     scan(tree.arguments);
4686                 } finally {
4687                     inSuperType = oldInSuperType;
4688                 }
4689             }
4690             @Override
4691             public void visitIdent(JCIdent tree) {
4692                 Symbol sym = TreeInfo.symbol(tree);
4693                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4694                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4695                 }
4696             }
4697 
4698             @Override
4699             public void visitSelect(JCFieldAccess tree) {
4700                 Symbol sym = TreeInfo.symbol(tree);
4701                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4702                 if (sym.kind == TYP && sitesym.kind == PCK) {
4703                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4704                 } else {
4705                     super.visitSelect(tree);
4706                 }
4707             }
4708 
4709             @Override
4710             public void visitAnnotation(JCAnnotation tree) {
4711                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4712                     super.visitAnnotation(tree);
4713             }
4714 
4715         }.scan(check);
4716     }
4717         //where:
4718         private ExportsDirective findExport(PackageSymbol pack) {
4719             for (ExportsDirective d : pack.modle.exports) {
4720                 if (d.packge == pack)
4721                     return d;
4722             }
4723 
4724             return null;
4725         }
4726         private boolean isAPISymbol(Symbol sym) {
4727             while (sym.kind != PCK) {
4728                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4729                     return false;
4730                 }
4731                 sym = sym.owner;
4732             }
4733             return true;
4734         }
4735         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4736             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4737                 log.warning(pos, LintWarnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4738                 return ;
4739             }
4740 
4741             PackageSymbol whatPackage = what.packge();
4742             ExportsDirective whatExport = findExport(whatPackage);
4743             ExportsDirective inExport = findExport(inPackage);
4744 
4745             if (whatExport == null) { //package not exported:
4746                 log.warning(pos, LintWarnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4747                 return ;
4748             }
4749 
4750             if (whatExport.modules != null) {
4751                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4752                     log.warning(pos, LintWarnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4753                 }
4754             }
4755 
4756             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4757                 //check that relativeTo.modle requires transitive what.modle, somehow:
4758                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4759 
4760                 while (todo.nonEmpty()) {
4761                     ModuleSymbol current = todo.head;
4762                     todo = todo.tail;
4763                     if (current == whatPackage.modle)
4764                         return ; //OK
4765                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4766                         continue; //for automatic modules, don't look into their dependencies
4767                     for (RequiresDirective req : current.requires) {
4768                         if (req.isTransitive()) {
4769                             todo = todo.prepend(req.module);
4770                         }
4771                     }
4772                 }
4773 
4774                 log.warning(pos, LintWarnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4775             }
4776         }
4777 
4778     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4779         if (msym.kind != MDL) {
4780             deferredLintHandler.report(_ ->
4781                 lint.logIfEnabled(pos, LintWarnings.ModuleNotFound(msym)));
4782         }
4783     }
4784 
4785     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4786         if (packge.members().isEmpty() &&
4787             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4788             deferredLintHandler.report(_ ->
4789                 lint.logIfEnabled(pos, LintWarnings.PackageEmptyOrNotFound(packge)));
4790         }
4791     }
4792 
4793     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4794         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4795             deferredLintHandler.report(_ -> {
4796                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4797                     log.warning(pos, LintWarnings.RequiresTransitiveAutomatic);
4798                 } else {
4799                     lint.logIfEnabled(pos, LintWarnings.RequiresAutomatic);
4800                 }
4801             });
4802         }
4803     }
4804 
4805     /**
4806      * Verify the case labels conform to the constraints. Checks constraints related
4807      * combinations of patterns and other labels.
4808      *
4809      * @param cases the cases that should be checked.
4810      */
4811     void checkSwitchCaseStructure(List<JCCase> cases) {
4812         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4813             JCCase c = l.head;
4814             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4815                 if (TreeInfo.isNull(constLabel.expr)) {
4816                     if (c.labels.tail.nonEmpty()) {
4817                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4818                             if (c.labels.tail.tail.nonEmpty()) {
4819                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4820                             }
4821                         } else {
4822                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4823                         }
4824                     }
4825                 } else {
4826                     for (JCCaseLabel label : c.labels.tail) {
4827                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4828                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4829                             break;
4830                         }
4831                     }
4832                 }
4833             } else if (c.labels.tail.nonEmpty()) {
4834                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4835                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4836 
4837                 if (!allUnderscore) {
4838                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4839                 }
4840 
4841                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4842 
4843                 if (allPatternCaseLabels) {
4844                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4845                 }
4846 
4847                 for (JCCaseLabel label : c.labels.tail) {
4848                     if (label instanceof JCConstantCaseLabel) {
4849                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4850                         break;
4851                     }
4852                 }
4853             }
4854         }
4855 
4856         boolean isCaseStatementGroup = cases.nonEmpty() &&
4857                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4858 
4859         if (isCaseStatementGroup) {
4860             boolean previousCompletessNormally = false;
4861             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4862                 JCCase c = l.head;
4863                 if (previousCompletessNormally &&
4864                     c.stats.nonEmpty() &&
4865                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4866                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4867                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4868                 } else if (c.stats.isEmpty() &&
4869                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4870                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4871                            hasStatements(l.tail)) {
4872                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4873                 }
4874                 previousCompletessNormally = c.completesNormally;
4875             }
4876         }
4877     }
4878 
4879     boolean hasBindings(JCTree p) {
4880         boolean[] bindings = new boolean[1];
4881 
4882         new TreeScanner() {
4883             @Override
4884             public void visitBindingPattern(JCBindingPattern tree) {
4885                 bindings[0] |= !tree.var.sym.isUnnamedVariable();
4886                 super.visitBindingPattern(tree);
4887             }
4888         }.scan(p);
4889 
4890         return bindings[0];
4891     }
4892 
4893     boolean hasStatements(List<JCCase> cases) {
4894         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4895             if (l.head.stats.nonEmpty()) {
4896                 return true;
4897             }
4898         }
4899 
4900         return false;
4901     }
4902     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4903         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4904         boolean seenDefault = false;
4905         boolean seenDefaultLabel = false;
4906         boolean warnDominatedByDefault = false;
4907         boolean unconditionalFound = false;
4908 
4909         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4910             JCCase c = l.head;
4911             for (JCCaseLabel label : c.labels) {
4912                 if (label.hasTag(DEFAULTCASELABEL)) {
4913                     seenDefault = true;
4914                     seenDefaultLabel |=
4915                             TreeInfo.isNullCaseLabel(c.labels.head);
4916                     continue;
4917                 }
4918                 if (TreeInfo.isNullCaseLabel(label)) {
4919                     if (seenDefault) {
4920                         log.error(label.pos(), Errors.PatternDominated);
4921                     }
4922                     continue;
4923                 }
4924                 if (seenDefault && !warnDominatedByDefault) {
4925                     if (label.hasTag(PATTERNCASELABEL) ||
4926                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4927                         log.error(label.pos(), Errors.PatternDominated);
4928                         warnDominatedByDefault = true;
4929                     }
4930                 }
4931                 Type currentType = labelType(label);
4932                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4933                     JCCase testCase = caseAndLabel.fst;
4934                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4935                     Type testType = labelType(testCaseLabel);
4936                     boolean dominated = false;
4937                     if (types.isUnconditionallyExact(currentType, testType) &&
4938                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4939                         //the current label is potentially dominated by the existing (test) label, check:
4940                         if (label instanceof JCConstantCaseLabel) {
4941                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4942                                          TreeInfo.unguardedCase(testCase);
4943                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4944                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4945                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4946                             dominated = patternDominated(testPatternCaseLabel.pat,
4947                                                          patternCL.pat);
4948                         }
4949                     }
4950 
4951                     if (dominated) {
4952                         log.error(label.pos(), Errors.PatternDominated);
4953                     }
4954                 }
4955                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4956             }
4957         }
4958     }
4959         //where:
4960         private Type labelType(JCCaseLabel label) {
4961             return types.erasure(switch (label.getTag()) {
4962                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4963                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4964                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4965             });
4966         }
4967         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4968             Type existingPatternType = types.erasure(existingPattern.type);
4969             Type currentPatternType = types.erasure(currentPattern.type);
4970             if (!types.isUnconditionallyExact(currentPatternType, existingPatternType)) {
4971                 return false;
4972             }
4973             if (currentPattern instanceof JCBindingPattern ||
4974                 currentPattern instanceof JCAnyPattern) {
4975                 return existingPattern instanceof JCBindingPattern ||
4976                        existingPattern instanceof JCAnyPattern;
4977             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4978                 if (existingPattern instanceof JCBindingPattern ||
4979                     existingPattern instanceof JCAnyPattern) {
4980                     return true;
4981                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4982                     List<JCPattern> existingNested = existingRecordPattern.nested;
4983                     List<JCPattern> currentNested = currentRecordPattern.nested;
4984                     if (existingNested.size() != currentNested.size()) {
4985                         return false;
4986                     }
4987                     while (existingNested.nonEmpty()) {
4988                         if (!patternDominated(existingNested.head, currentNested.head)) {
4989                             return false;
4990                         }
4991                         existingNested = existingNested.tail;
4992                         currentNested = currentNested.tail;
4993                     }
4994                     return true;
4995                 } else {
4996                     Assert.error("Unknown pattern: " + existingPattern.getTag());
4997                 }
4998             } else {
4999                 Assert.error("Unknown pattern: " + currentPattern.getTag());
5000             }
5001             return false;
5002         }
5003 
5004     /** check if a type is a subtype of Externalizable, if that is available. */
5005     boolean isExternalizable(Type t) {
5006         try {
5007             syms.externalizableType.complete();
5008         } catch (CompletionFailure e) {
5009             return false;
5010         }
5011         return types.isSubtype(t, syms.externalizableType);
5012     }
5013 
5014     /**
5015      * Check structure of serialization declarations.
5016      */
5017     public void checkSerialStructure(Env<AttrContext> env, JCClassDecl tree, ClassSymbol c) {
5018         (new SerialTypeVisitor(env)).visit(c, tree);
5019     }
5020 
5021     /**
5022      * This visitor will warn if a serialization-related field or
5023      * method is declared in a suspicious or incorrect way. In
5024      * particular, it will warn for cases where the runtime
5025      * serialization mechanism will silently ignore a mis-declared
5026      * entity.
5027      *
5028      * Distinguished serialization-related fields and methods:
5029      *
5030      * Methods:
5031      *
5032      * private void writeObject(ObjectOutputStream stream) throws IOException
5033      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
5034      *
5035      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
5036      * private void readObjectNoData() throws ObjectStreamException
5037      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
5038      *
5039      * Fields:
5040      *
5041      * private static final long serialVersionUID
5042      * private static final ObjectStreamField[] serialPersistentFields
5043      *
5044      * Externalizable: methods defined on the interface
5045      * public void writeExternal(ObjectOutput) throws IOException
5046      * public void readExternal(ObjectInput) throws IOException
5047      */
5048     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
5049         Env<AttrContext> env;
5050         SerialTypeVisitor(Env<AttrContext> env) {
5051             this.lint = Check.this.lint;
5052             this.env = env;
5053         }
5054 
5055         private static final Set<String> serialMethodNames =
5056             Set.of("writeObject", "writeReplace",
5057                    "readObject",  "readObjectNoData",
5058                    "readResolve");
5059 
5060         private static final Set<String> serialFieldNames =
5061             Set.of("serialVersionUID", "serialPersistentFields");
5062 
5063         // Type of serialPersistentFields
5064         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
5065 
5066         Lint lint;
5067 
5068         @Override
5069         public Void defaultAction(Element e, JCClassDecl p) {
5070             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
5071         }
5072 
5073         @Override
5074         public Void visitType(TypeElement e, JCClassDecl p) {
5075             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
5076             return null;
5077         }
5078 
5079         @Override
5080         public Void visitTypeAsClass(TypeElement e,
5081                                      JCClassDecl p) {
5082             // Anonymous classes filtered out by caller.
5083 
5084             ClassSymbol c = (ClassSymbol)e;
5085 
5086             checkCtorAccess(p, c);
5087 
5088             // Check for missing serialVersionUID; check *not* done
5089             // for enums or records.
5090             VarSymbol svuidSym = null;
5091             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5092                 if (sym.kind == VAR) {
5093                     svuidSym = (VarSymbol)sym;
5094                     break;
5095                 }
5096             }
5097 
5098             if (svuidSym == null) {
5099                 log.warning(p.pos(), LintWarnings.MissingSVUID(c));
5100             }
5101 
5102             // Check for serialPersistentFields to gate checks for
5103             // non-serializable non-transient instance fields
5104             boolean serialPersistentFieldsPresent =
5105                     c.members()
5106                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
5107                      .iterator()
5108                      .hasNext();
5109 
5110             // Check declarations of serialization-related methods and
5111             // fields
5112             final boolean[] hasWriteReplace = {false};
5113             for(Symbol el : c.getEnclosedElements()) {
5114                 runUnderLint(el, p, (enclosed, tree) -> {
5115                     String name = null;
5116                     switch(enclosed.getKind()) {
5117                     case FIELD -> {
5118                         if (!serialPersistentFieldsPresent) {
5119                             var flags = enclosed.flags();
5120                             if ( ((flags & TRANSIENT) == 0) &&
5121                                  ((flags & STATIC) == 0)) {
5122                                 Type varType = enclosed.asType();
5123                                 if (!canBeSerialized(varType)) {
5124                                     // Note per JLS arrays are
5125                                     // serializable even if the
5126                                     // component type is not.
5127                                     log.warning(
5128                                             TreeInfo.diagnosticPositionFor(enclosed, tree),
5129                                                 LintWarnings.NonSerializableInstanceField);
5130                                 } else if (varType.hasTag(ARRAY)) {
5131                                     ArrayType arrayType = (ArrayType)varType;
5132                                     Type elementType = arrayType.elemtype;
5133                                     while (elementType.hasTag(ARRAY)) {
5134                                         arrayType = (ArrayType)elementType;
5135                                         elementType = arrayType.elemtype;
5136                                     }
5137                                     if (!canBeSerialized(elementType)) {
5138                                         log.warning(
5139                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
5140                                                     LintWarnings.NonSerializableInstanceFieldArray(elementType));
5141                                     }
5142                                 }
5143                             }
5144                         }
5145 
5146                         name = enclosed.getSimpleName().toString();
5147                         if (serialFieldNames.contains(name)) {
5148                             VarSymbol field = (VarSymbol)enclosed;
5149                             switch (name) {
5150                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
5151                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
5152                             default -> throw new AssertionError();
5153                             }
5154                         }
5155                     }
5156 
5157                     // Correctly checking the serialization-related
5158                     // methods is subtle. For the methods declared to be
5159                     // private or directly declared in the class, the
5160                     // enclosed elements of the class can be checked in
5161                     // turn. However, writeReplace and readResolve can be
5162                     // declared in a superclass and inherited. Note that
5163                     // the runtime lookup walks the superclass chain
5164                     // looking for writeReplace/readResolve via
5165                     // Class.getDeclaredMethod. This differs from calling
5166                     // Elements.getAllMembers(TypeElement) as the latter
5167                     // will also pull in default methods from
5168                     // superinterfaces. In other words, the runtime checks
5169                     // (which long predate default methods on interfaces)
5170                     // do not admit the possibility of inheriting methods
5171                     // this way, a difference from general inheritance.
5172 
5173                     // The current implementation just checks the enclosed
5174                     // elements and does not directly check the inherited
5175                     // methods. If all the types are being checked this is
5176                     // less of a concern; however, there are cases that
5177                     // could be missed. In particular, readResolve and
5178                     // writeReplace could, in principle, by inherited from
5179                     // a non-serializable superclass and thus not checked
5180                     // even if compiled with a serializable child class.
5181                     case METHOD -> {
5182                         var method = (MethodSymbol)enclosed;
5183                         name = method.getSimpleName().toString();
5184                         if (serialMethodNames.contains(name)) {
5185                             switch (name) {
5186                             case "writeObject"      -> checkWriteObject(tree, e, method);
5187                             case "writeReplace"     -> {hasWriteReplace[0] = true; hasAppropriateWriteReplace(tree, method, true);}
5188                             case "readObject"       -> checkReadObject(tree,e, method);
5189                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5190                             case "readResolve"      -> checkReadResolve(tree, e, method);
5191                             default ->  throw new AssertionError();
5192                             }
5193                         }
5194                     }
5195                     }
5196                 });
5197             }
5198             if (!hasWriteReplace[0] &&
5199                     (c.isValueClass() || hasAbstractValueSuperClass(c, Set.of(syms.numberType.tsym))) &&
5200                     !c.isAbstract() && !c.isRecord() &&
5201                     types.unboxedType(c.type) == Type.noType) {
5202                 // we need to check if the class is inheriting an appropriate writeReplace method
5203                 MethodSymbol ms = null;
5204                 Log.DiagnosticHandler discardHandler = log.new DiscardDiagnosticHandler();
5205                 try {
5206                     ms = rs.resolveInternalMethod(env.tree, env, c.type, names.writeReplace, List.nil(), List.nil());
5207                 } catch (FatalError fe) {
5208                     // ignore no method was found
5209                 } finally {
5210                     log.popDiagnosticHandler(discardHandler);
5211                 }
5212                 if (ms == null || !hasAppropriateWriteReplace(p, ms, false)) {
5213                     log.warning(p.pos(),
5214                             c.isValueClass() ? LintWarnings.SerializableValueClassWithoutWriteReplace1 :
5215                                     LintWarnings.SerializableValueClassWithoutWriteReplace2);
5216                 }
5217             }
5218             return null;
5219         }
5220 
5221         boolean canBeSerialized(Type type) {
5222             return type.isPrimitive() || rs.isSerializable(type);
5223         }
5224 
5225         private boolean hasAbstractValueSuperClass(Symbol c, Set<Symbol> excluding) {
5226             while (c.getKind() == ElementKind.CLASS) {
5227                 Type sup = ((ClassSymbol)c).getSuperclass();
5228                 if (!sup.hasTag(CLASS) || sup.isErroneous() ||
5229                         sup.tsym == syms.objectType.tsym) {
5230                     return false;
5231                 }
5232                 // if it is a value super class it has to be abstract
5233                 if (sup.isValueClass() && !excluding.contains(sup.tsym)) {
5234                     return true;
5235                 }
5236                 c = sup.tsym;
5237             }
5238             return false;
5239         }
5240 
5241         /**
5242          * Check that Externalizable class needs a public no-arg
5243          * constructor.
5244          *
5245          * Check that a Serializable class has access to the no-arg
5246          * constructor of its first nonserializable superclass.
5247          */
5248         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5249             if (isExternalizable(c.type)) {
5250                 for(var sym : c.getEnclosedElements()) {
5251                     if (sym.isConstructor() &&
5252                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5253                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5254                             return;
5255                         }
5256                     }
5257                 }
5258                 log.warning(tree.pos(),
5259                             LintWarnings.ExternalizableMissingPublicNoArgCtor);
5260             } else {
5261                 // Approximate access to the no-arg constructor up in
5262                 // the superclass chain by checking that the
5263                 // constructor is not private. This may not handle
5264                 // some cross-package situations correctly.
5265                 Type superClass = c.getSuperclass();
5266                 // java.lang.Object is *not* Serializable so this loop
5267                 // should terminate.
5268                 while (rs.isSerializable(superClass) ) {
5269                     try {
5270                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5271                     } catch(ClassCastException cce) {
5272                         return ; // Don't try to recover
5273                     }
5274                 }
5275                 // Non-Serializable superclass
5276                 try {
5277                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5278                     for(var sym : supertype.getEnclosedElements()) {
5279                         if (sym.isConstructor()) {
5280                             MethodSymbol ctor = (MethodSymbol)sym;
5281                             if (ctor.getParameters().isEmpty()) {
5282                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5283                                     // Handle nested classes and implicit this$0
5284                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5285                                      ((supertype.flags() & STATIC) == 0)))
5286                                     log.warning(tree.pos(),
5287                                                 LintWarnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5288                             }
5289                         }
5290                     }
5291                 } catch (ClassCastException cce) {
5292                     return ; // Don't try to recover
5293                 }
5294                 return;
5295             }
5296         }
5297 
5298         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5299             // To be effective, serialVersionUID must be marked static
5300             // and final, but private is recommended. But alas, in
5301             // practice there are many non-private serialVersionUID
5302             // fields.
5303              if ((svuid.flags() & (STATIC | FINAL)) !=
5304                  (STATIC | FINAL)) {
5305                  log.warning(
5306                          TreeInfo.diagnosticPositionFor(svuid, tree),
5307                              LintWarnings.ImproperSVUID((Symbol)e));
5308              }
5309 
5310              // check svuid has type long
5311              if (!svuid.type.hasTag(LONG)) {
5312                  log.warning(
5313                          TreeInfo.diagnosticPositionFor(svuid, tree),
5314                              LintWarnings.LongSVUID((Symbol)e));
5315              }
5316 
5317              if (svuid.getConstValue() == null)
5318                  log.warning(
5319                          TreeInfo.diagnosticPositionFor(svuid, tree),
5320                              LintWarnings.ConstantSVUID((Symbol)e));
5321         }
5322 
5323         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5324             // To be effective, serialPersisentFields must be private, static, and final.
5325              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5326                  (PRIVATE | STATIC | FINAL)) {
5327                  log.warning(
5328                          TreeInfo.diagnosticPositionFor(spf, tree),
5329                              LintWarnings.ImproperSPF);
5330              }
5331 
5332              if (!types.isSameType(spf.type, OSF_TYPE)) {
5333                  log.warning(
5334                          TreeInfo.diagnosticPositionFor(spf, tree),
5335                              LintWarnings.OSFArraySPF);
5336              }
5337 
5338             if (isExternalizable((Type)(e.asType()))) {
5339                 log.warning(
5340                         TreeInfo.diagnosticPositionFor(spf, tree),
5341                             LintWarnings.IneffectualSerialFieldExternalizable);
5342             }
5343 
5344             // Warn if serialPersistentFields is initialized to a
5345             // literal null.
5346             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5347             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5348                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5349                 JCExpression initExpr = variableDef.init;
5350                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5351                      log.warning(initExpr.pos(),
5352                                  LintWarnings.SPFNullInit);
5353                  }
5354             }
5355         }
5356 
5357         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5358             // The "synchronized" modifier is seen in the wild on
5359             // readObject and writeObject methods and is generally
5360             // innocuous.
5361 
5362             // private void writeObject(ObjectOutputStream stream) throws IOException
5363             checkPrivateNonStaticMethod(tree, method);
5364             isExpectedReturnType(tree, method, syms.voidType, true);
5365             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5366             hasExpectedExceptions(tree, method, true, syms.ioExceptionType);
5367             checkExternalizable(tree, e, method);
5368         }
5369 
5370         private boolean hasAppropriateWriteReplace(JCClassDecl tree, MethodSymbol method, boolean warn) {
5371             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5372             // ObjectStreamException
5373 
5374             // Excluding abstract, could have a more complicated
5375             // rule based on abstract-ness of the class
5376             return isConcreteInstanceMethod(tree, method, warn) &&
5377                     isExpectedReturnType(tree, method, syms.objectType, warn) &&
5378                     hasNoArgs(tree, method, warn) &&
5379                     hasExpectedExceptions(tree, method, warn, syms.objectStreamExceptionType);
5380         }
5381 
5382         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5383             // The "synchronized" modifier is seen in the wild on
5384             // readObject and writeObject methods and is generally
5385             // innocuous.
5386 
5387             // private void readObject(ObjectInputStream stream)
5388             //   throws IOException, ClassNotFoundException
5389             checkPrivateNonStaticMethod(tree, method);
5390             isExpectedReturnType(tree, method, syms.voidType, true);
5391             checkOneArg(tree, e, method, syms.objectInputStreamType);
5392             hasExpectedExceptions(tree, method, true, syms.ioExceptionType, syms.classNotFoundExceptionType);
5393             checkExternalizable(tree, e, method);
5394         }
5395 
5396         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5397             // private void readObjectNoData() throws ObjectStreamException
5398             checkPrivateNonStaticMethod(tree, method);
5399             isExpectedReturnType(tree, method, syms.voidType, true);
5400             hasNoArgs(tree, method, true);
5401             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5402             checkExternalizable(tree, e, method);
5403         }
5404 
5405         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5406             // ANY-ACCESS-MODIFIER Object readResolve()
5407             // throws ObjectStreamException
5408 
5409             // Excluding abstract, could have a more complicated
5410             // rule based on abstract-ness of the class
5411             isConcreteInstanceMethod(tree, method, true);
5412             isExpectedReturnType(tree, method, syms.objectType, true);
5413             hasNoArgs(tree, method, true);
5414             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5415         }
5416 
5417         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5418             //public void writeExternal(ObjectOutput) throws IOException
5419             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5420         }
5421 
5422         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5423             // public void readExternal(ObjectInput) throws IOException
5424             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5425          }
5426 
5427         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5428                                              boolean isExtern) {
5429             if (isExtern && isExternMethod(tree, e, method, argType)) {
5430                 log.warning(
5431                         TreeInfo.diagnosticPositionFor(method, tree),
5432                             LintWarnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5433             }
5434         }
5435 
5436         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5437             var flags = method.flags();
5438             if ((flags & PRIVATE) == 0) {
5439                 log.warning(
5440                         TreeInfo.diagnosticPositionFor(method, tree),
5441                             LintWarnings.SerialMethodNotPrivate(method.getSimpleName()));
5442             }
5443 
5444             if ((flags & STATIC) != 0) {
5445                 log.warning(
5446                         TreeInfo.diagnosticPositionFor(method, tree),
5447                             LintWarnings.SerialMethodStatic(method.getSimpleName()));
5448             }
5449         }
5450 
5451         /**
5452          * Per section 1.12 "Serialization of Enum Constants" of
5453          * the serialization specification, due to the special
5454          * serialization handling of enums, any writeObject,
5455          * readObject, writeReplace, and readResolve methods are
5456          * ignored as are serialPersistentFields and
5457          * serialVersionUID fields.
5458          */
5459         @Override
5460         public Void visitTypeAsEnum(TypeElement e,
5461                                     JCClassDecl p) {
5462             boolean isExtern = isExternalizable((Type)e.asType());
5463             for(Element el : e.getEnclosedElements()) {
5464                 runUnderLint(el, p, (enclosed, tree) -> {
5465                     String name = enclosed.getSimpleName().toString();
5466                     switch(enclosed.getKind()) {
5467                     case FIELD -> {
5468                         var field = (VarSymbol)enclosed;
5469                         if (serialFieldNames.contains(name)) {
5470                             log.warning(
5471                                     TreeInfo.diagnosticPositionFor(field, tree),
5472                                         LintWarnings.IneffectualSerialFieldEnum(name));
5473                         }
5474                     }
5475 
5476                     case METHOD -> {
5477                         var method = (MethodSymbol)enclosed;
5478                         if (serialMethodNames.contains(name)) {
5479                             log.warning(
5480                                     TreeInfo.diagnosticPositionFor(method, tree),
5481                                         LintWarnings.IneffectualSerialMethodEnum(name));
5482                         }
5483 
5484                         if (isExtern) {
5485                             switch(name) {
5486                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5487                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5488                             }
5489                         }
5490                     }
5491 
5492                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5493                     case ENUM_CONSTANT -> {
5494                         var field = (VarSymbol)enclosed;
5495                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5496                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5497                             ClassSymbol enumConstantType = nc.def.sym;
5498                             visitTypeAsEnum(enumConstantType, p);
5499                         }
5500                     }
5501 
5502                     }});
5503             }
5504             return null;
5505         }
5506 
5507         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5508             //public void writeExternal(ObjectOutput) throws IOException
5509             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5510         }
5511 
5512         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5513              // public void readExternal(ObjectInput) throws IOException
5514             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5515          }
5516 
5517         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5518             if (isExternMethod(tree, e, method, argType)) {
5519                 log.warning(
5520                         TreeInfo.diagnosticPositionFor(method, tree),
5521                             LintWarnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5522             }
5523         }
5524 
5525         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5526             long flags = method.flags();
5527             Type rtype = method.getReturnType();
5528 
5529             // Not necessary to check throws clause in this context
5530             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5531                 types.isSameType(syms.voidType, rtype) &&
5532                 hasExactlyOneArgWithType(tree, e, method, argType);
5533         }
5534 
5535         /**
5536          * Most serialization-related fields and methods on interfaces
5537          * are ineffectual or problematic.
5538          */
5539         @Override
5540         public Void visitTypeAsInterface(TypeElement e,
5541                                          JCClassDecl p) {
5542             for(Element el : e.getEnclosedElements()) {
5543                 runUnderLint(el, p, (enclosed, tree) -> {
5544                     String name = null;
5545                     switch(enclosed.getKind()) {
5546                     case FIELD -> {
5547                         var field = (VarSymbol)enclosed;
5548                         name = field.getSimpleName().toString();
5549                         switch(name) {
5550                         case "serialPersistentFields" -> {
5551                             log.warning(
5552                                     TreeInfo.diagnosticPositionFor(field, tree),
5553                                         LintWarnings.IneffectualSerialFieldInterface);
5554                         }
5555 
5556                         case "serialVersionUID" -> {
5557                             checkSerialVersionUID(tree, e, field);
5558                         }
5559                         }
5560                     }
5561 
5562                     case METHOD -> {
5563                         var method = (MethodSymbol)enclosed;
5564                         name = enclosed.getSimpleName().toString();
5565                         if (serialMethodNames.contains(name)) {
5566                             switch (name) {
5567                             case
5568                                 "readObject",
5569                                 "readObjectNoData",
5570                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5571 
5572                             case
5573                                 "writeReplace",
5574                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5575 
5576                             default ->  throw new AssertionError();
5577                             }
5578 
5579                         }
5580                     }}
5581                 });
5582             }
5583 
5584             return null;
5585         }
5586 
5587         private void checkPrivateMethod(JCClassDecl tree,
5588                                         Element e,
5589                                         MethodSymbol method) {
5590             if ((method.flags() & PRIVATE) == 0) {
5591                 log.warning(
5592                         TreeInfo.diagnosticPositionFor(method, tree),
5593                             LintWarnings.NonPrivateMethodWeakerAccess);
5594             }
5595         }
5596 
5597         private void checkDefaultIneffective(JCClassDecl tree,
5598                                              Element e,
5599                                              MethodSymbol method) {
5600             if ((method.flags() & DEFAULT) == DEFAULT) {
5601                 log.warning(
5602                         TreeInfo.diagnosticPositionFor(method, tree),
5603                             LintWarnings.DefaultIneffective);
5604 
5605             }
5606         }
5607 
5608         @Override
5609         public Void visitTypeAsAnnotationType(TypeElement e,
5610                                               JCClassDecl p) {
5611             // Per the JLS, annotation types are not serializeable
5612             return null;
5613         }
5614 
5615         /**
5616          * From the Java Object Serialization Specification, 1.13
5617          * Serialization of Records:
5618          *
5619          * "The process by which record objects are serialized or
5620          * externalized cannot be customized; any class-specific
5621          * writeObject, readObject, readObjectNoData, writeExternal,
5622          * and readExternal methods defined by record classes are
5623          * ignored during serialization and deserialization. However,
5624          * a substitute object to be serialized or a designate
5625          * replacement may be specified, by the writeReplace and
5626          * readResolve methods, respectively. Any
5627          * serialPersistentFields field declaration is
5628          * ignored. Documenting serializable fields and data for
5629          * record classes is unnecessary, since there is no variation
5630          * in the serial form, other than whether a substitute or
5631          * replacement object is used. The serialVersionUID of a
5632          * record class is 0L unless explicitly declared. The
5633          * requirement for matching serialVersionUID values is waived
5634          * for record classes."
5635          */
5636         @Override
5637         public Void visitTypeAsRecord(TypeElement e,
5638                                       JCClassDecl p) {
5639             boolean isExtern = isExternalizable((Type)e.asType());
5640             for(Element el : e.getEnclosedElements()) {
5641                 runUnderLint(el, p, (enclosed, tree) -> {
5642                     String name = enclosed.getSimpleName().toString();
5643                     switch(enclosed.getKind()) {
5644                     case FIELD -> {
5645                         var field = (VarSymbol)enclosed;
5646                         switch(name) {
5647                         case "serialPersistentFields" -> {
5648                             log.warning(
5649                                     TreeInfo.diagnosticPositionFor(field, tree),
5650                                         LintWarnings.IneffectualSerialFieldRecord);
5651                         }
5652 
5653                         case "serialVersionUID" -> {
5654                             // Could generate additional warning that
5655                             // svuid value is not checked to match for
5656                             // records.
5657                             checkSerialVersionUID(tree, e, field);
5658                         }}
5659                     }
5660 
5661                     case METHOD -> {
5662                         var method = (MethodSymbol)enclosed;
5663                         switch(name) {
5664                         case "writeReplace" -> hasAppropriateWriteReplace(tree, method, true);
5665                         case "readResolve"  -> checkReadResolve(tree, e, method);
5666 
5667                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5668                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5669 
5670                         default -> {
5671                             if (serialMethodNames.contains(name)) {
5672                                 log.warning(
5673                                         TreeInfo.diagnosticPositionFor(method, tree),
5674                                             LintWarnings.IneffectualSerialMethodRecord(name));
5675                             }
5676                         }}
5677                     }}});
5678             }
5679             return null;
5680         }
5681 
5682         boolean isConcreteInstanceMethod(JCClassDecl tree,
5683                                          MethodSymbol method,
5684                                          boolean warn) {
5685             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5686                 if (warn) {
5687                     log.warning(
5688                             TreeInfo.diagnosticPositionFor(method, tree),
5689                                 LintWarnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5690                 }
5691                 return false;
5692             }
5693             return true;
5694         }
5695 
5696         private boolean isExpectedReturnType(JCClassDecl tree,
5697                                           MethodSymbol method,
5698                                           Type expectedReturnType,
5699                                           boolean warn) {
5700             // Note: there may be complications checking writeReplace
5701             // and readResolve since they return Object and could, in
5702             // principle, have covariant overrides and any synthetic
5703             // bridge method would not be represented here for
5704             // checking.
5705             Type rtype = method.getReturnType();
5706             if (!types.isSameType(expectedReturnType, rtype)) {
5707                 if (warn) {
5708                     log.warning(
5709                             TreeInfo.diagnosticPositionFor(method, tree),
5710                             LintWarnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5711                                                                       rtype, expectedReturnType));
5712                 }
5713                 return false;
5714             }
5715             return true;
5716         }
5717 
5718         private void checkOneArg(JCClassDecl tree,
5719                                  Element enclosing,
5720                                  MethodSymbol method,
5721                                  Type expectedType) {
5722             String name = method.getSimpleName().toString();
5723 
5724             var parameters= method.getParameters();
5725 
5726             if (parameters.size() != 1) {
5727                 log.warning(
5728                         TreeInfo.diagnosticPositionFor(method, tree),
5729                             LintWarnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5730                 return;
5731             }
5732 
5733             Type parameterType = parameters.get(0).asType();
5734             if (!types.isSameType(parameterType, expectedType)) {
5735                 log.warning(
5736                         TreeInfo.diagnosticPositionFor(method, tree),
5737                             LintWarnings.SerialMethodParameterType(method.getSimpleName(),
5738                                                                expectedType,
5739                                                                parameterType));
5740             }
5741         }
5742 
5743         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5744                                                  Element enclosing,
5745                                                  MethodSymbol method,
5746                                                  Type expectedType) {
5747             var parameters = method.getParameters();
5748             return (parameters.size() == 1) &&
5749                 types.isSameType(parameters.get(0).asType(), expectedType);
5750         }
5751 
5752 
5753         boolean hasNoArgs(JCClassDecl tree, MethodSymbol method, boolean warn) {
5754             var parameters = method.getParameters();
5755             if (!parameters.isEmpty()) {
5756                 if (warn) {
5757                     log.warning(
5758                             TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5759                             LintWarnings.SerialMethodNoArgs(method.getSimpleName()));
5760                 }
5761                 return false;
5762             }
5763             return true;
5764         }
5765 
5766         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5767             // If the enclosing class is externalizable, warn for the method
5768             if (isExternalizable((Type)enclosing.asType())) {
5769                 log.warning(
5770                         TreeInfo.diagnosticPositionFor(method, tree),
5771                             LintWarnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5772             }
5773             return;
5774         }
5775 
5776         private boolean hasExpectedExceptions(JCClassDecl tree,
5777                                               MethodSymbol method,
5778                                               boolean warn,
5779                                               Type... declaredExceptions) {
5780             for (Type thrownType: method.getThrownTypes()) {
5781                 // For each exception in the throws clause of the
5782                 // method, if not an Error and not a RuntimeException,
5783                 // check if the exception is a subtype of a declared
5784                 // exception from the throws clause of the
5785                 // serialization method in question.
5786                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5787                     types.isSubtype(thrownType, syms.errorType) ) {
5788                     continue;
5789                 } else {
5790                     boolean declared = false;
5791                     for (Type declaredException : declaredExceptions) {
5792                         if (types.isSubtype(thrownType, declaredException)) {
5793                             declared = true;
5794                             continue;
5795                         }
5796                     }
5797                     if (!declared) {
5798                         if (warn) {
5799                             log.warning(
5800                                     TreeInfo.diagnosticPositionFor(method, tree),
5801                                     LintWarnings.SerialMethodUnexpectedException(method.getSimpleName(),
5802                                                                              thrownType));
5803                         }
5804                         return false;
5805                     }
5806                 }
5807             }
5808             return true;
5809         }
5810 
5811         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5812             Lint prevLint = lint;
5813             try {
5814                 lint = lint.augment((Symbol) symbol);
5815 
5816                 if (lint.isEnabled(LintCategory.SERIAL)) {
5817                     task.accept(symbol, p);
5818                 }
5819 
5820                 return null;
5821             } finally {
5822                 lint = prevLint;
5823             }
5824         }
5825 
5826     }
5827 
5828 }