1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;
  31 import java.util.function.Predicate;
  32 import java.util.function.Supplier;
  33 import java.util.function.ToIntBiFunction;
  34 import java.util.stream.Collectors;
  35 import java.util.stream.StreamSupport;
  36 
  37 import javax.lang.model.element.ElementKind;
  38 import javax.lang.model.element.NestingKind;
  39 import javax.tools.JavaFileManager;
  40 
  41 import com.sun.source.tree.CaseTree;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Attribute.Compound;
  44 import com.sun.tools.javac.code.Directive.ExportsDirective;
  45 import com.sun.tools.javac.code.Directive.RequiresDirective;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  50 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  51 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  52 import com.sun.tools.javac.tree.*;
  53 import com.sun.tools.javac.util.*;
  54 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  56 import com.sun.tools.javac.util.JCDiagnostic.Error;
  57 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  58 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  59 import com.sun.tools.javac.util.List;
  60 
  61 import com.sun.tools.javac.code.Lint;
  62 import com.sun.tools.javac.code.Lint.LintCategory;
  63 import com.sun.tools.javac.code.Scope.WriteableScope;
  64 import com.sun.tools.javac.code.Type.*;
  65 import com.sun.tools.javac.code.Symbol.*;
  66 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  67 import com.sun.tools.javac.tree.JCTree.*;
  68 
  69 import static com.sun.tools.javac.code.Flags.*;
  70 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  71 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  72 import static com.sun.tools.javac.code.Kinds.*;
  73 import static com.sun.tools.javac.code.Kinds.Kind.*;
  74 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  75 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  76 import static com.sun.tools.javac.code.TypeTag.*;
  77 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  78 
  79 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  80 import javax.lang.model.element.Element;
  81 import javax.lang.model.element.TypeElement;
  82 import javax.lang.model.type.DeclaredType;
  83 import javax.lang.model.util.ElementKindVisitor14;
  84 
  85 /** Type checking helper class for the attribution phase.
  86  *
  87  *  <p><b>This is NOT part of any supported API.
  88  *  If you write code that depends on this, you do so at your own risk.
  89  *  This code and its internal interfaces are subject to change or
  90  *  deletion without notice.</b>
  91  */
  92 public class Check {
  93     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  94 
  95     // Flag bits indicating which item(s) chosen from a pair of items
  96     private static final int FIRST = 0x01;
  97     private static final int SECOND = 0x02;
  98 
  99     private final Names names;
 100     private final Log log;
 101     private final Resolve rs;
 102     private final Symtab syms;
 103     private final Enter enter;
 104     private final DeferredAttr deferredAttr;
 105     private final Infer infer;
 106     private final Types types;
 107     private final TypeAnnotations typeAnnotations;
 108     private final JCDiagnostic.Factory diags;
 109     private final JavaFileManager fileManager;
 110     private final Source source;
 111     private final Target target;
 112     private final Profile profile;
 113     private final Preview preview;
 114     private final boolean warnOnAnyAccessToMembers;
 115 
 116     public boolean disablePreviewCheck;
 117 
 118     // The set of lint options currently in effect. It is initialized
 119     // from the context, and then is set/reset as needed by Attr as it
 120     // visits all the various parts of the trees during attribution.
 121     private Lint lint;
 122 
 123     // The method being analyzed in Attr - it is set/reset as needed by
 124     // Attr as it visits new method declarations.
 125     private MethodSymbol method;
 126 
 127     public static Check instance(Context context) {
 128         Check instance = context.get(checkKey);
 129         if (instance == null)
 130             instance = new Check(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Check(Context context) {
 136         context.put(checkKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         rs = Resolve.instance(context);
 141         syms = Symtab.instance(context);
 142         enter = Enter.instance(context);
 143         deferredAttr = DeferredAttr.instance(context);
 144         infer = Infer.instance(context);
 145         types = Types.instance(context);
 146         typeAnnotations = TypeAnnotations.instance(context);
 147         diags = JCDiagnostic.Factory.instance(context);
 148         Options options = Options.instance(context);
 149         lint = Lint.instance(context);
 150         fileManager = context.get(JavaFileManager.class);
 151 
 152         source = Source.instance(context);
 153         target = Target.instance(context);
 154         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 155 
 156         disablePreviewCheck = false;
 157 
 158         Target target = Target.instance(context);
 159         syntheticNameChar = target.syntheticNameChar();
 160 
 161         profile = Profile.instance(context);
 162         preview = Preview.instance(context);
 163 
 164         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 165         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 166         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 167         boolean enforceMandatoryWarnings = true;
 168 
 169         deprecationHandler = new MandatoryWarningHandler(log, null, verboseDeprecated,
 170                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 171         removalHandler = new MandatoryWarningHandler(log, null, verboseRemoval,
 172                 enforceMandatoryWarnings, "removal", LintCategory.REMOVAL);
 173         uncheckedHandler = new MandatoryWarningHandler(log, null, verboseUnchecked,
 174                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 175         sunApiHandler = new MandatoryWarningHandler(log, null, false,
 176                 enforceMandatoryWarnings, "sunapi", null);
 177 
 178         deferredLintHandler = DeferredLintHandler.instance(context);
 179 
 180         allowModules = Feature.MODULES.allowedInSource(source);
 181         allowRecords = Feature.RECORDS.allowedInSource(source);
 182         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 183         allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 184                 Feature.VALUE_CLASSES.allowedInSource(source);
 185     }
 186 
 187     /** Character for synthetic names
 188      */
 189     char syntheticNameChar;
 190 
 191     /** A table mapping flat names of all compiled classes for each module in this run
 192      *  to their symbols; maintained from outside.
 193      */
 194     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 195 
 196     /** A handler for messages about deprecated usage.
 197      */
 198     private MandatoryWarningHandler deprecationHandler;
 199 
 200     /** A handler for messages about deprecated-for-removal usage.
 201      */
 202     private MandatoryWarningHandler removalHandler;
 203 
 204     /** A handler for messages about unchecked or unsafe usage.
 205      */
 206     private MandatoryWarningHandler uncheckedHandler;
 207 
 208     /** A handler for messages about using proprietary API.
 209      */
 210     private MandatoryWarningHandler sunApiHandler;
 211 
 212     /** A handler for deferred lint warnings.
 213      */
 214     private DeferredLintHandler deferredLintHandler;
 215 
 216     /** Are modules allowed
 217      */
 218     private final boolean allowModules;
 219 
 220     /** Are records allowed
 221      */
 222     private final boolean allowRecords;
 223 
 224     /** Are sealed classes allowed
 225      */
 226     private final boolean allowSealed;
 227 
 228     /** Are value classes allowed
 229      */
 230     private final boolean allowValueClasses;
 231 
 232 /* *************************************************************************
 233  * Errors and Warnings
 234  **************************************************************************/
 235 
 236     Lint setLint(Lint newLint) {
 237         Lint prev = lint;
 238         lint = newLint;
 239         return prev;
 240     }
 241 
 242     MethodSymbol setMethod(MethodSymbol newMethod) {
 243         MethodSymbol prev = method;
 244         method = newMethod;
 245         return prev;
 246     }
 247 
 248     /** Warn about deprecated symbol.
 249      *  @param pos        Position to be used for error reporting.
 250      *  @param sym        The deprecated symbol.
 251      */
 252     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 253         if (sym.isDeprecatedForRemoval()) {
 254             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 255                 if (sym.kind == MDL) {
 256                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemovalModule(sym));
 257                 } else {
 258                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 259                 }
 260             }
 261         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 262             if (sym.kind == MDL) {
 263                 deprecationHandler.report(pos, Warnings.HasBeenDeprecatedModule(sym));
 264             } else {
 265                 deprecationHandler.report(pos, Warnings.HasBeenDeprecated(sym, sym.location()));
 266             }
 267         }
 268     }
 269 
 270     /** Log a preview warning.
 271      *  @param pos        Position to be used for error reporting.
 272      *  @param msg        A Warning describing the problem.
 273      */
 274     public void warnPreviewAPI(DiagnosticPosition pos, Warning warnKey) {
 275         if (!lint.isSuppressed(LintCategory.PREVIEW))
 276             preview.reportPreviewWarning(pos, warnKey);
 277     }
 278 
 279     /** Log a preview warning.
 280      *  @param pos        Position to be used for error reporting.
 281      *  @param msg        A Warning describing the problem.
 282      */
 283     public void warnDeclaredUsingPreview(DiagnosticPosition pos, Symbol sym) {
 284         if (!lint.isSuppressed(LintCategory.PREVIEW))
 285             preview.reportPreviewWarning(pos, Warnings.DeclaredUsingPreview(kindName(sym), sym));
 286     }
 287 
 288     /** Log a preview warning.
 289      *  @param pos        Position to be used for error reporting.
 290      *  @param msg        A Warning describing the problem.
 291      */
 292     public void warnRestrictedAPI(DiagnosticPosition pos, Symbol sym) {
 293         if (lint.isEnabled(LintCategory.RESTRICTED))
 294             log.warning(LintCategory.RESTRICTED, pos, Warnings.RestrictedMethod(sym.enclClass(), sym));
 295     }
 296 
 297     /** Warn about unchecked operation.
 298      *  @param pos        Position to be used for error reporting.
 299      *  @param msg        A string describing the problem.
 300      */
 301     public void warnUnchecked(DiagnosticPosition pos, Warning warnKey) {
 302         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 303             uncheckedHandler.report(pos, warnKey);
 304     }
 305 
 306     /** Warn about unsafe vararg method decl.
 307      *  @param pos        Position to be used for error reporting.
 308      */
 309     void warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey) {
 310         if (lint.isEnabled(LintCategory.VARARGS))
 311             log.warning(LintCategory.VARARGS, pos, warnKey);
 312     }
 313 
 314     public void warnStatic(DiagnosticPosition pos, Warning warnKey) {
 315         if (lint.isEnabled(LintCategory.STATIC))
 316             log.warning(LintCategory.STATIC, pos, warnKey);
 317     }
 318 
 319     /** Warn about division by integer constant zero.
 320      *  @param pos        Position to be used for error reporting.
 321      */
 322     void warnDivZero(DiagnosticPosition pos) {
 323         if (lint.isEnabled(LintCategory.DIVZERO))
 324             log.warning(LintCategory.DIVZERO, pos, Warnings.DivZero);
 325     }
 326 
 327     /**
 328      * Report any deferred diagnostics.
 329      */
 330     public void reportDeferredDiagnostics() {
 331         deprecationHandler.reportDeferredDiagnostic();
 332         removalHandler.reportDeferredDiagnostic();
 333         uncheckedHandler.reportDeferredDiagnostic();
 334         sunApiHandler.reportDeferredDiagnostic();
 335     }
 336 
 337 
 338     /** Report a failure to complete a class.
 339      *  @param pos        Position to be used for error reporting.
 340      *  @param ex         The failure to report.
 341      */
 342     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 343         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 344         return syms.errType;
 345     }
 346 
 347     /** Report an error that wrong type tag was found.
 348      *  @param pos        Position to be used for error reporting.
 349      *  @param required   An internationalized string describing the type tag
 350      *                    required.
 351      *  @param found      The type that was found.
 352      */
 353     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 354         // this error used to be raised by the parser,
 355         // but has been delayed to this point:
 356         if (found instanceof Type type && type.hasTag(VOID)) {
 357             log.error(pos, Errors.IllegalStartOfType);
 358             return syms.errType;
 359         }
 360         log.error(pos, Errors.TypeFoundReq(found, required));
 361         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 362     }
 363 
 364     /** Report duplicate declaration error.
 365      */
 366     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 367         if (!sym.type.isErroneous()) {
 368             Symbol location = sym.location();
 369             if (location.kind == MTH &&
 370                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 371                 log.error(pos,
 372                           Errors.AlreadyDefinedInClinit(kindName(sym),
 373                                                         sym,
 374                                                         kindName(sym.location()),
 375                                                         kindName(sym.location().enclClass()),
 376                                                         sym.location().enclClass()));
 377             } else {
 378                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 379                  * as we should have issued an error for the duplicated fields
 380                  */
 381                 if (location.kind != MTH ||
 382                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 383                         ((sym.owner.flags_field & RECORD) == 0)) {
 384                     log.error(pos,
 385                             Errors.AlreadyDefined(kindName(sym),
 386                                     sym,
 387                                     kindName(sym.location()),
 388                                     sym.location()));
 389                 }
 390             }
 391         }
 392     }
 393 
 394     /** Report array/varargs duplicate declaration
 395      */
 396     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 397         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 398             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 399         }
 400     }
 401 
 402 /* ************************************************************************
 403  * duplicate declaration checking
 404  *************************************************************************/
 405 
 406     /** Check that variable does not hide variable with same name in
 407      *  immediately enclosing local scope.
 408      *  @param pos           Position for error reporting.
 409      *  @param v             The symbol.
 410      *  @param s             The scope.
 411      */
 412     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 413         for (Symbol sym : s.getSymbolsByName(v.name)) {
 414             if (sym.owner != v.owner) break;
 415             if (sym.kind == VAR &&
 416                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 417                 v.name != names.error) {
 418                 duplicateError(pos, sym);
 419                 return;
 420             }
 421         }
 422     }
 423 
 424     /** Check that a class or interface does not hide a class or
 425      *  interface with same name in immediately enclosing local scope.
 426      *  @param pos           Position for error reporting.
 427      *  @param c             The symbol.
 428      *  @param s             The scope.
 429      */
 430     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 431         for (Symbol sym : s.getSymbolsByName(c.name)) {
 432             if (sym.owner != c.owner) break;
 433             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 434                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 435                 c.name != names.error) {
 436                 duplicateError(pos, sym);
 437                 return;
 438             }
 439         }
 440     }
 441 
 442     /** Check that class does not have the same name as one of
 443      *  its enclosing classes, or as a class defined in its enclosing scope.
 444      *  return true if class is unique in its enclosing scope.
 445      *  @param pos           Position for error reporting.
 446      *  @param name          The class name.
 447      *  @param s             The enclosing scope.
 448      */
 449     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 450         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 451             if (sym.kind == TYP && sym.name != names.error) {
 452                 duplicateError(pos, sym);
 453                 return false;
 454             }
 455         }
 456         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 457             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 458                     !sym.isImplicit()) {
 459                 duplicateError(pos, sym);
 460                 return true;
 461             }
 462         }
 463         return true;
 464     }
 465 
 466 /* *************************************************************************
 467  * Class name generation
 468  **************************************************************************/
 469 
 470 
 471     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 472 
 473     /** Return name of local class.
 474      *  This is of the form   {@code <enclClass> $ n <classname> }
 475      *  where
 476      *    enclClass is the flat name of the enclosing class,
 477      *    classname is the simple name of the local class
 478      */
 479     public Name localClassName(ClassSymbol c) {
 480         Name enclFlatname = c.owner.enclClass().flatname;
 481         String enclFlatnameStr = enclFlatname.toString();
 482         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 483         Integer index = localClassNameIndexes.get(key);
 484         for (int i = (index == null) ? 1 : index; ; i++) {
 485             Name flatname = names.fromString(enclFlatnameStr
 486                     + syntheticNameChar + i + c.name);
 487             if (getCompiled(c.packge().modle, flatname) == null) {
 488                 localClassNameIndexes.put(key, i + 1);
 489                 return flatname;
 490             }
 491         }
 492     }
 493 
 494     public void clearLocalClassNameIndexes(ClassSymbol c) {
 495         if (c.owner != null && c.owner.kind != NIL) {
 496             localClassNameIndexes.remove(new Pair<>(
 497                     c.owner.enclClass().flatname, c.name));
 498         }
 499     }
 500 
 501     public void newRound() {
 502         compiled.clear();
 503         localClassNameIndexes.clear();
 504     }
 505 
 506     public void clear() {
 507         deprecationHandler.clear();
 508         removalHandler.clear();
 509         uncheckedHandler.clear();
 510         sunApiHandler.clear();
 511     }
 512 
 513     public void putCompiled(ClassSymbol csym) {
 514         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 515     }
 516 
 517     public ClassSymbol getCompiled(ClassSymbol csym) {
 518         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 519     }
 520 
 521     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 522         return compiled.get(Pair.of(msym, flatname));
 523     }
 524 
 525     public void removeCompiled(ClassSymbol csym) {
 526         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 527     }
 528 
 529 /* *************************************************************************
 530  * Type Checking
 531  **************************************************************************/
 532 
 533     /**
 534      * A check context is an object that can be used to perform compatibility
 535      * checks - depending on the check context, meaning of 'compatibility' might
 536      * vary significantly.
 537      */
 538     public interface CheckContext {
 539         /**
 540          * Is type 'found' compatible with type 'req' in given context
 541          */
 542         boolean compatible(Type found, Type req, Warner warn);
 543         /**
 544          * Report a check error
 545          */
 546         void report(DiagnosticPosition pos, JCDiagnostic details);
 547         /**
 548          * Obtain a warner for this check context
 549          */
 550         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 551 
 552         public InferenceContext inferenceContext();
 553 
 554         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 555     }
 556 
 557     /**
 558      * This class represent a check context that is nested within another check
 559      * context - useful to check sub-expressions. The default behavior simply
 560      * redirects all method calls to the enclosing check context leveraging
 561      * the forwarding pattern.
 562      */
 563     static class NestedCheckContext implements CheckContext {
 564         CheckContext enclosingContext;
 565 
 566         NestedCheckContext(CheckContext enclosingContext) {
 567             this.enclosingContext = enclosingContext;
 568         }
 569 
 570         public boolean compatible(Type found, Type req, Warner warn) {
 571             return enclosingContext.compatible(found, req, warn);
 572         }
 573 
 574         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 575             enclosingContext.report(pos, details);
 576         }
 577 
 578         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 579             return enclosingContext.checkWarner(pos, found, req);
 580         }
 581 
 582         public InferenceContext inferenceContext() {
 583             return enclosingContext.inferenceContext();
 584         }
 585 
 586         public DeferredAttrContext deferredAttrContext() {
 587             return enclosingContext.deferredAttrContext();
 588         }
 589     }
 590 
 591     /**
 592      * Check context to be used when evaluating assignment/return statements
 593      */
 594     CheckContext basicHandler = new CheckContext() {
 595         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 596             log.error(pos, Errors.ProbFoundReq(details));
 597         }
 598         public boolean compatible(Type found, Type req, Warner warn) {
 599             return types.isAssignable(found, req, warn);
 600         }
 601 
 602         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 603             return convertWarner(pos, found, req);
 604         }
 605 
 606         public InferenceContext inferenceContext() {
 607             return infer.emptyContext;
 608         }
 609 
 610         public DeferredAttrContext deferredAttrContext() {
 611             return deferredAttr.emptyDeferredAttrContext;
 612         }
 613 
 614         @Override
 615         public String toString() {
 616             return "CheckContext: basicHandler";
 617         }
 618     };
 619 
 620     /** Check that a given type is assignable to a given proto-type.
 621      *  If it is, return the type, otherwise return errType.
 622      *  @param pos        Position to be used for error reporting.
 623      *  @param found      The type that was found.
 624      *  @param req        The type that was required.
 625      */
 626     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 627         return checkType(pos, found, req, basicHandler);
 628     }
 629 
 630     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 631         final InferenceContext inferenceContext = checkContext.inferenceContext();
 632         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 633             inferenceContext.addFreeTypeListener(List.of(req, found),
 634                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 635         }
 636         if (req.hasTag(ERROR))
 637             return req;
 638         if (req.hasTag(NONE))
 639             return found;
 640         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 641             return found;
 642         } else {
 643             if (found.isNumeric() && req.isNumeric()) {
 644                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 645                 return types.createErrorType(found);
 646             }
 647             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 648             return types.createErrorType(found);
 649         }
 650     }
 651 
 652     /** Check that a given type can be cast to a given target type.
 653      *  Return the result of the cast.
 654      *  @param pos        Position to be used for error reporting.
 655      *  @param found      The type that is being cast.
 656      *  @param req        The target type of the cast.
 657      */
 658     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 659         return checkCastable(pos, found, req, basicHandler);
 660     }
 661     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 662         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 663             return req;
 664         } else {
 665             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 666             return types.createErrorType(found);
 667         }
 668     }
 669 
 670     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 671      * The problem should only be reported for non-292 cast
 672      */
 673     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 674         if (!tree.type.isErroneous()
 675                 && types.isSameType(tree.expr.type, tree.clazz.type)
 676                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 677                 && !is292targetTypeCast(tree)) {
 678             deferredLintHandler.report(_l -> {
 679                 if (lint.isEnabled(LintCategory.CAST))
 680                     log.warning(LintCategory.CAST,
 681                             tree.pos(), Warnings.RedundantCast(tree.clazz.type));
 682             });
 683         }
 684     }
 685     //where
 686         private boolean is292targetTypeCast(JCTypeCast tree) {
 687             boolean is292targetTypeCast = false;
 688             JCExpression expr = TreeInfo.skipParens(tree.expr);
 689             if (expr.hasTag(APPLY)) {
 690                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 691                 Symbol sym = TreeInfo.symbol(apply.meth);
 692                 is292targetTypeCast = sym != null &&
 693                     sym.kind == MTH &&
 694                     (sym.flags() & HYPOTHETICAL) != 0;
 695             }
 696             return is292targetTypeCast;
 697         }
 698 
 699         private static final boolean ignoreAnnotatedCasts = true;
 700 
 701     /** Check that a type is within some bounds.
 702      *
 703      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 704      *  type argument.
 705      *  @param a             The type that should be bounded by bs.
 706      *  @param bound         The bound.
 707      */
 708     private boolean checkExtends(Type a, Type bound) {
 709          if (a.isUnbound()) {
 710              return true;
 711          } else if (!a.hasTag(WILDCARD)) {
 712              a = types.cvarUpperBound(a);
 713              return types.isSubtype(a, bound);
 714          } else if (a.isExtendsBound()) {
 715              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 716          } else if (a.isSuperBound()) {
 717              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 718          }
 719          return true;
 720      }
 721 
 722     /** Check that type is different from 'void'.
 723      *  @param pos           Position to be used for error reporting.
 724      *  @param t             The type to be checked.
 725      */
 726     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 727         if (t.hasTag(VOID)) {
 728             log.error(pos, Errors.VoidNotAllowedHere);
 729             return types.createErrorType(t);
 730         } else {
 731             return t;
 732         }
 733     }
 734 
 735     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 736         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 737             return typeTagError(pos,
 738                                 diags.fragment(Fragments.TypeReqClassArray),
 739                                 asTypeParam(t));
 740         } else {
 741             return t;
 742         }
 743     }
 744 
 745     /** Check that type is a class or interface type.
 746      *  @param pos           Position to be used for error reporting.
 747      *  @param t             The type to be checked.
 748      */
 749     Type checkClassType(DiagnosticPosition pos, Type t) {
 750         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 751             return typeTagError(pos,
 752                                 diags.fragment(Fragments.TypeReqClass),
 753                                 asTypeParam(t));
 754         } else {
 755             return t;
 756         }
 757     }
 758     //where
 759         private Object asTypeParam(Type t) {
 760             return (t.hasTag(TYPEVAR))
 761                                     ? diags.fragment(Fragments.TypeParameter(t))
 762                                     : t;
 763         }
 764 
 765     void checkConstraintsOfValueClass(JCClassDecl tree, ClassSymbol c) {
 766         DiagnosticPosition pos = tree.pos();
 767         for (Type st : types.closure(c.type)) {
 768             if (st == null || st.tsym == null || st.tsym.kind == ERR)
 769                 continue;
 770             if  (st.tsym == syms.objectType.tsym || st.tsym == syms.recordType.tsym || st.isInterface())
 771                 continue;
 772             if (!st.tsym.isAbstract()) {
 773                 if (c != st.tsym) {
 774                     log.error(pos, Errors.ConcreteSupertypeForValueClass(c, st));
 775                 }
 776                 continue;
 777             }
 778             // dealing with an abstract value or value super class below.
 779             for (Symbol s : st.tsym.members().getSymbols(NON_RECURSIVE)) {
 780                 if (s.kind == MTH) {
 781                     if ((s.flags() & (SYNCHRONIZED | STATIC)) == SYNCHRONIZED) {
 782                         log.error(pos, Errors.SuperClassMethodCannotBeSynchronized(s, c, st));
 783                     }
 784                     break;
 785                 }
 786             }
 787         }
 788     }
 789 
 790     /** Check that type is a valid qualifier for a constructor reference expression
 791      */
 792     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 793         t = checkClassOrArrayType(pos, t);
 794         if (t.hasTag(CLASS)) {
 795             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 796                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 797                 t = types.createErrorType(t);
 798             } else if ((t.tsym.flags() & ENUM) != 0) {
 799                 log.error(pos, Errors.EnumCantBeInstantiated);
 800                 t = types.createErrorType(t);
 801             } else {
 802                 t = checkClassType(pos, t, true);
 803             }
 804         } else if (t.hasTag(ARRAY)) {
 805             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 806                 log.error(pos, Errors.GenericArrayCreation);
 807                 t = types.createErrorType(t);
 808             }
 809         }
 810         return t;
 811     }
 812 
 813     /** Check that type is a class or interface type.
 814      *  @param pos           Position to be used for error reporting.
 815      *  @param t             The type to be checked.
 816      *  @param noBounds    True if type bounds are illegal here.
 817      */
 818     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 819         t = checkClassType(pos, t);
 820         if (noBounds && t.isParameterized()) {
 821             List<Type> args = t.getTypeArguments();
 822             while (args.nonEmpty()) {
 823                 if (args.head.hasTag(WILDCARD))
 824                     return typeTagError(pos,
 825                                         diags.fragment(Fragments.TypeReqExact),
 826                                         args.head);
 827                 args = args.tail;
 828             }
 829         }
 830         return t;
 831     }
 832 
 833     /** Check that type is a reference type, i.e. a class, interface or array type
 834      *  or a type variable.
 835      *  @param pos           Position to be used for error reporting.
 836      *  @param t             The type to be checked.
 837      */
 838     Type checkRefType(DiagnosticPosition pos, Type t) {
 839         if (t.isReference())
 840             return t;
 841         else
 842             return typeTagError(pos,
 843                                 diags.fragment(Fragments.TypeReqRef),
 844                                 t);
 845     }
 846 
 847     /** Check that type is an identity type, i.e. not a value type.
 848      *  When not discernible statically, give it the benefit of doubt
 849      *  and defer to runtime.
 850      *
 851      *  @param pos           Position to be used for error reporting.
 852      *  @param t             The type to be checked.
 853      */
 854     boolean checkIdentityType(DiagnosticPosition pos, Type t) {
 855         if (t.hasTag(TYPEVAR)) {
 856             t = types.skipTypeVars(t, false);
 857         }
 858         if (t.isIntersection()) {
 859             IntersectionClassType ict = (IntersectionClassType)t;
 860             boolean result = true;
 861             for (Type component : ict.getExplicitComponents()) {
 862                 result &= checkIdentityType(pos, component);
 863             }
 864             return result;
 865         }
 866         if (t.isPrimitive() || (t.isValueClass() && !t.tsym.isAbstract())) {
 867             typeTagError(pos, diags.fragment(Fragments.TypeReqIdentity), t);
 868             return false;
 869         }
 870         return true;
 871     }
 872 
 873     /** Check that each type is a reference type, i.e. a class, interface or array type
 874      *  or a type variable.
 875      *  @param trees         Original trees, used for error reporting.
 876      *  @param types         The types to be checked.
 877      */
 878     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 879         List<JCExpression> tl = trees;
 880         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 881             l.head = checkRefType(tl.head.pos(), l.head);
 882             tl = tl.tail;
 883         }
 884         return types;
 885     }
 886 
 887     /** Check that type is a null or reference type.
 888      *  @param pos           Position to be used for error reporting.
 889      *  @param t             The type to be checked.
 890      */
 891     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 892         if (t.isReference() || t.hasTag(BOT))
 893             return t;
 894         else
 895             return typeTagError(pos,
 896                                 diags.fragment(Fragments.TypeReqRef),
 897                                 t);
 898     }
 899 
 900     /** Check that flag set does not contain elements of two conflicting sets. s
 901      *  Return true if it doesn't.
 902      *  @param pos           Position to be used for error reporting.
 903      *  @param flags         The set of flags to be checked.
 904      *  @param set1          Conflicting flags set #1.
 905      *  @param set2          Conflicting flags set #2.
 906      */
 907     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 908         if ((flags & set1) != 0 && (flags & set2) != 0) {
 909             log.error(pos,
 910                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 911                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 912             return false;
 913         } else
 914             return true;
 915     }
 916 
 917     /** Check that usage of diamond operator is correct (i.e. diamond should not
 918      * be used with non-generic classes or in anonymous class creation expressions)
 919      */
 920     Type checkDiamond(JCNewClass tree, Type t) {
 921         if (!TreeInfo.isDiamond(tree) ||
 922                 t.isErroneous()) {
 923             return checkClassType(tree.clazz.pos(), t, true);
 924         } else {
 925             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 926                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 927                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 928             }
 929             if (t.tsym.type.getTypeArguments().isEmpty()) {
 930                 log.error(tree.clazz.pos(),
 931                           Errors.CantApplyDiamond1(t,
 932                                                    Fragments.DiamondNonGeneric(t)));
 933                 return types.createErrorType(t);
 934             } else if (tree.typeargs != null &&
 935                     tree.typeargs.nonEmpty()) {
 936                 log.error(tree.clazz.pos(),
 937                           Errors.CantApplyDiamond1(t,
 938                                                    Fragments.DiamondAndExplicitParams(t)));
 939                 return types.createErrorType(t);
 940             } else {
 941                 return t;
 942             }
 943         }
 944     }
 945 
 946     /** Check that the type inferred using the diamond operator does not contain
 947      *  non-denotable types such as captured types or intersection types.
 948      *  @param t the type inferred using the diamond operator
 949      *  @return  the (possibly empty) list of non-denotable types.
 950      */
 951     List<Type> checkDiamondDenotable(ClassType t) {
 952         ListBuffer<Type> buf = new ListBuffer<>();
 953         for (Type arg : t.allparams()) {
 954             if (!checkDenotable(arg)) {
 955                 buf.append(arg);
 956             }
 957         }
 958         return buf.toList();
 959     }
 960 
 961     public boolean checkDenotable(Type t) {
 962         return denotableChecker.visit(t, null);
 963     }
 964         // where
 965 
 966         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 967          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 968          *  otherwise.
 969          */
 970         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 971             @Override
 972             public Boolean visitType(Type t, Void s) {
 973                 return true;
 974             }
 975             @Override
 976             public Boolean visitClassType(ClassType t, Void s) {
 977                 if (t.isUnion() || t.isIntersection()) {
 978                     return false;
 979                 }
 980                 for (Type targ : t.allparams()) {
 981                     if (!visit(targ, s)) {
 982                         return false;
 983                     }
 984                 }
 985                 return true;
 986             }
 987 
 988             @Override
 989             public Boolean visitTypeVar(TypeVar t, Void s) {
 990                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 991                   (i.e cannot have been produced by inference (18.4))
 992                 */
 993                 return (t.tsym.flags() & SYNTHETIC) == 0;
 994             }
 995 
 996             @Override
 997             public Boolean visitCapturedType(CapturedType t, Void s) {
 998                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 999                   (i.e cannot have been produced by capture conversion (5.1.10))
1000                 */
1001                 return false;
1002             }
1003 
1004             @Override
1005             public Boolean visitArrayType(ArrayType t, Void s) {
1006                 return visit(t.elemtype, s);
1007             }
1008 
1009             @Override
1010             public Boolean visitWildcardType(WildcardType t, Void s) {
1011                 return visit(t.type, s);
1012             }
1013         };
1014 
1015     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
1016         MethodSymbol m = tree.sym;
1017         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
1018         Type varargElemType = null;
1019         if (m.isVarArgs()) {
1020             varargElemType = types.elemtype(tree.params.last().type);
1021         }
1022         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
1023             if (varargElemType != null) {
1024                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
1025                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
1026                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
1027                 log.error(tree,
1028                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1029                                                            msg));
1030             } else {
1031                 log.error(tree,
1032                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1033                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
1034             }
1035         } else if (hasTrustMeAnno && varargElemType != null &&
1036                             types.isReifiable(varargElemType)) {
1037             warnUnsafeVararg(tree, Warnings.VarargsRedundantTrustmeAnno(
1038                                 syms.trustMeType.tsym,
1039                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
1040         }
1041         else if (!hasTrustMeAnno && varargElemType != null &&
1042                 !types.isReifiable(varargElemType)) {
1043             warnUnchecked(tree.params.head.pos(), Warnings.UncheckedVarargsNonReifiableType(varargElemType));
1044         }
1045     }
1046     //where
1047         private boolean isTrustMeAllowedOnMethod(Symbol s) {
1048             return (s.flags() & VARARGS) != 0 &&
1049                 (s.isConstructor() ||
1050                     (s.flags() & (STATIC | FINAL |
1051                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
1052         }
1053 
1054     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
1055         //check that resulting type is not the null type
1056         if (t.hasTag(BOT)) {
1057             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
1058             return types.createErrorType(t);
1059         } else if (t.hasTag(VOID)) {
1060             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
1061             return types.createErrorType(t);
1062         }
1063 
1064         //upward project the initializer type
1065         return types.upward(t, types.captures(t)).baseType();
1066     }
1067 
1068     Type checkMethod(final Type mtype,
1069             final Symbol sym,
1070             final Env<AttrContext> env,
1071             final List<JCExpression> argtrees,
1072             final List<Type> argtypes,
1073             final boolean useVarargs,
1074             InferenceContext inferenceContext) {
1075         // System.out.println("call   : " + env.tree);
1076         // System.out.println("method : " + owntype);
1077         // System.out.println("actuals: " + argtypes);
1078         if (inferenceContext.free(mtype)) {
1079             inferenceContext.addFreeTypeListener(List.of(mtype),
1080                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
1081             return mtype;
1082         }
1083         Type owntype = mtype;
1084         List<Type> formals = owntype.getParameterTypes();
1085         List<Type> nonInferred = sym.type.getParameterTypes();
1086         if (nonInferred.length() != formals.length()) nonInferred = formals;
1087         Type last = useVarargs ? formals.last() : null;
1088         if (sym.name == names.init && sym.owner == syms.enumSym) {
1089             formals = formals.tail.tail;
1090             nonInferred = nonInferred.tail.tail;
1091         }
1092         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
1093             formals = formals.tail;
1094             nonInferred = nonInferred.tail;
1095         }
1096         List<JCExpression> args = argtrees;
1097         if (args != null) {
1098             //this is null when type-checking a method reference
1099             while (formals.head != last) {
1100                 JCTree arg = args.head;
1101                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1102                 assertConvertible(arg, arg.type, formals.head, warn);
1103                 args = args.tail;
1104                 formals = formals.tail;
1105                 nonInferred = nonInferred.tail;
1106             }
1107             if (useVarargs) {
1108                 Type varArg = types.elemtype(last);
1109                 while (args.tail != null) {
1110                     JCTree arg = args.head;
1111                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1112                     assertConvertible(arg, arg.type, varArg, warn);
1113                     args = args.tail;
1114                 }
1115             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1116                 // non-varargs call to varargs method
1117                 Type varParam = owntype.getParameterTypes().last();
1118                 Type lastArg = argtypes.last();
1119                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1120                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1121                     log.warning(argtrees.last().pos(),
1122                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1123             }
1124         }
1125         if (useVarargs) {
1126             Type argtype = owntype.getParameterTypes().last();
1127             if (!types.isReifiable(argtype) &&
1128                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1129                  !isTrustMeAllowedOnMethod(sym))) {
1130                 warnUnchecked(env.tree.pos(), Warnings.UncheckedGenericArrayCreation(argtype));
1131             }
1132             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1133          }
1134          return owntype;
1135     }
1136     //where
1137     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1138         if (types.isConvertible(actual, formal, warn))
1139             return;
1140 
1141         if (formal.isCompound()
1142             && types.isSubtype(actual, types.supertype(formal))
1143             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1144             return;
1145     }
1146 
1147     /**
1148      * Check that type 't' is a valid instantiation of a generic class
1149      * (see JLS 4.5)
1150      *
1151      * @param t class type to be checked
1152      * @return true if 't' is well-formed
1153      */
1154     public boolean checkValidGenericType(Type t) {
1155         return firstIncompatibleTypeArg(t) == null;
1156     }
1157     //WHERE
1158         private Type firstIncompatibleTypeArg(Type type) {
1159             List<Type> formals = type.tsym.type.allparams();
1160             List<Type> actuals = type.allparams();
1161             List<Type> args = type.getTypeArguments();
1162             List<Type> forms = type.tsym.type.getTypeArguments();
1163             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1164 
1165             // For matching pairs of actual argument types `a' and
1166             // formal type parameters with declared bound `b' ...
1167             while (args.nonEmpty() && forms.nonEmpty()) {
1168                 // exact type arguments needs to know their
1169                 // bounds (for upper and lower bound
1170                 // calculations).  So we create new bounds where
1171                 // type-parameters are replaced with actuals argument types.
1172                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1173                 args = args.tail;
1174                 forms = forms.tail;
1175             }
1176 
1177             args = type.getTypeArguments();
1178             List<Type> tvars_cap = types.substBounds(formals,
1179                                       formals,
1180                                       types.capture(type).allparams());
1181             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1182                 // Let the actual arguments know their bound
1183                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1184                 args = args.tail;
1185                 tvars_cap = tvars_cap.tail;
1186             }
1187 
1188             args = type.getTypeArguments();
1189             List<Type> bounds = bounds_buf.toList();
1190 
1191             while (args.nonEmpty() && bounds.nonEmpty()) {
1192                 Type actual = args.head;
1193                 if (!isTypeArgErroneous(actual) &&
1194                         !bounds.head.isErroneous() &&
1195                         !checkExtends(actual, bounds.head)) {
1196                     return args.head;
1197                 }
1198                 args = args.tail;
1199                 bounds = bounds.tail;
1200             }
1201 
1202             args = type.getTypeArguments();
1203             bounds = bounds_buf.toList();
1204 
1205             for (Type arg : types.capture(type).getTypeArguments()) {
1206                 if (arg.hasTag(TYPEVAR) &&
1207                         arg.getUpperBound().isErroneous() &&
1208                         !bounds.head.isErroneous() &&
1209                         !isTypeArgErroneous(args.head)) {
1210                     return args.head;
1211                 }
1212                 bounds = bounds.tail;
1213                 args = args.tail;
1214             }
1215 
1216             return null;
1217         }
1218         //where
1219         boolean isTypeArgErroneous(Type t) {
1220             return isTypeArgErroneous.visit(t);
1221         }
1222 
1223         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1224             public Boolean visitType(Type t, Void s) {
1225                 return t.isErroneous();
1226             }
1227             @Override
1228             public Boolean visitTypeVar(TypeVar t, Void s) {
1229                 return visit(t.getUpperBound());
1230             }
1231             @Override
1232             public Boolean visitCapturedType(CapturedType t, Void s) {
1233                 return visit(t.getUpperBound()) ||
1234                         visit(t.getLowerBound());
1235             }
1236             @Override
1237             public Boolean visitWildcardType(WildcardType t, Void s) {
1238                 return visit(t.type);
1239             }
1240         };
1241 
1242     /** Check that given modifiers are legal for given symbol and
1243      *  return modifiers together with any implicit modifiers for that symbol.
1244      *  Warning: we can't use flags() here since this method
1245      *  is called during class enter, when flags() would cause a premature
1246      *  completion.
1247      *  @param pos           Position to be used for error reporting.
1248      *  @param flags         The set of modifiers given in a definition.
1249      *  @param sym           The defined symbol.
1250      */
1251     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1252         long mask;
1253         long implicit = 0;
1254 
1255         switch (sym.kind) {
1256         case VAR:
1257             if (TreeInfo.isReceiverParam(tree))
1258                 mask = ReceiverParamFlags;
1259             else if (sym.owner.kind != TYP)
1260                 mask = LocalVarFlags;
1261             else if ((sym.owner.flags_field & INTERFACE) != 0)
1262                 mask = implicit = InterfaceVarFlags;
1263             else {
1264                 boolean isInstanceFieldOfValueClass = sym.owner.type.isValueClass() && (flags & STATIC) == 0;
1265                 mask = !isInstanceFieldOfValueClass ? VarFlags : ValueFieldFlags;
1266                 if (isInstanceFieldOfValueClass) {
1267                     implicit |= FINAL | STRICT;
1268                 }
1269             }
1270             break;
1271         case MTH:
1272             if (sym.name == names.init) {
1273                 if ((sym.owner.flags_field & ENUM) != 0) {
1274                     // enum constructors cannot be declared public or
1275                     // protected and must be implicitly or explicitly
1276                     // private
1277                     implicit = PRIVATE;
1278                     mask = PRIVATE;
1279                 } else
1280                     mask = ConstructorFlags;
1281             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1282                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1283                     mask = AnnotationTypeElementMask;
1284                     implicit = PUBLIC | ABSTRACT;
1285                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1286                     mask = InterfaceMethodMask;
1287                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1288                     if ((flags & DEFAULT) != 0) {
1289                         implicit |= ABSTRACT;
1290                     }
1291                 } else {
1292                     mask = implicit = InterfaceMethodFlags;
1293                 }
1294             } else if ((sym.owner.flags_field & RECORD) != 0) {
1295                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1296                         RecordMethodFlags & ~SYNCHRONIZED : RecordMethodFlags;
1297             } else {
1298                 // value objects do not have an associated monitor/lock
1299                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1300                         MethodFlags & ~SYNCHRONIZED : MethodFlags;
1301             }
1302             if ((flags & STRICTFP) != 0) {
1303                 warnOnExplicitStrictfp(pos);
1304             }
1305             // Imply STRICTFP if owner has STRICTFP set.
1306             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1307                 ((flags) & Flags.DEFAULT) != 0)
1308                 implicit |= sym.owner.flags_field & STRICTFP;
1309             break;
1310         case TYP:
1311             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1312                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1313                 boolean implicitlyStatic = !sym.isAnonymous() &&
1314                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1315                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1316                 // local statics are allowed only if records are allowed too
1317                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedStaticLocalClassFlags : ExtendedLocalClassFlags;
1318                 implicit = implicitlyStatic ? STATIC : implicit;
1319             } else if (sym.owner.kind == TYP) {
1320                 // statics in inner classes are allowed only if records are allowed too
1321                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1322                 if (sym.owner.owner.kind == PCK ||
1323                     (sym.owner.flags_field & STATIC) != 0) {
1324                     mask |= STATIC;
1325                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1326                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1327                 }
1328                 // Nested interfaces and enums are always STATIC (Spec ???)
1329                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1330             } else {
1331                 mask = ExtendedClassFlags;
1332             }
1333             if ((flags & (VALUE_CLASS | SEALED | ABSTRACT)) == (VALUE_CLASS | SEALED) ||
1334                 (flags & (VALUE_CLASS | NON_SEALED | ABSTRACT)) == (VALUE_CLASS | NON_SEALED)) {
1335                 log.error(pos, Errors.NonAbstractValueClassCantBeSealedOrNonSealed);
1336             }
1337             // Interfaces are always ABSTRACT
1338             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1339 
1340             if ((flags & (INTERFACE | VALUE_CLASS)) == 0) {
1341                 implicit |= IDENTITY_TYPE;
1342             }
1343 
1344             if ((flags & ENUM) != 0) {
1345                 // enums can't be declared abstract, final, sealed or non-sealed or value
1346                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED | VALUE_CLASS);
1347                 implicit |= implicitEnumFinalFlag(tree);
1348             }
1349             if ((flags & RECORD) != 0) {
1350                 // records can't be declared abstract
1351                 mask &= ~ABSTRACT;
1352                 implicit |= FINAL;
1353             }
1354             if ((flags & STRICTFP) != 0) {
1355                 warnOnExplicitStrictfp(pos);
1356             }
1357             // Imply STRICTFP if owner has STRICTFP set.
1358             implicit |= sym.owner.flags_field & STRICTFP;
1359 
1360             // concrete value classes are implicitly final
1361             if ((flags & (ABSTRACT | INTERFACE | VALUE_CLASS)) == VALUE_CLASS) {
1362                 implicit |= FINAL;
1363             }
1364             break;
1365         default:
1366             throw new AssertionError();
1367         }
1368         long illegal = flags & ExtendedStandardFlags & ~mask;
1369         if (illegal != 0) {
1370             if ((illegal & INTERFACE) != 0) {
1371                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1372                 mask |= INTERFACE;
1373             }
1374             else {
1375                 log.error(pos,
1376                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1377             }
1378         } else if ((sym.kind == TYP ||
1379                   // ISSUE: Disallowing abstract&private is no longer appropriate
1380                   // in the presence of inner classes. Should it be deleted here?
1381                   checkDisjoint(pos, flags,
1382                                 ABSTRACT,
1383                                 PRIVATE | STATIC | DEFAULT))
1384                  &&
1385                  checkDisjoint(pos, flags,
1386                                 STATIC | PRIVATE,
1387                                 DEFAULT)
1388                  &&
1389                  checkDisjoint(pos, flags,
1390                                ABSTRACT | INTERFACE,
1391                                FINAL | NATIVE | SYNCHRONIZED)
1392                  &&
1393                  checkDisjoint(pos, flags,
1394                                PUBLIC,
1395                                PRIVATE | PROTECTED)
1396                  &&
1397                  checkDisjoint(pos, flags,
1398                                PRIVATE,
1399                                PUBLIC | PROTECTED)
1400                  &&
1401                  // we are using `implicit` here as instance fields of value classes are implicitly final
1402                  checkDisjoint(pos, flags | implicit,
1403                                FINAL,
1404                                VOLATILE)
1405                  &&
1406                  (sym.kind == TYP ||
1407                   checkDisjoint(pos, flags,
1408                                 ABSTRACT | NATIVE,
1409                                 STRICTFP))
1410                  && checkDisjoint(pos, flags,
1411                                 FINAL,
1412                            SEALED | NON_SEALED)
1413                  && checkDisjoint(pos, flags,
1414                                 SEALED,
1415                            FINAL | NON_SEALED)
1416                  && checkDisjoint(pos, flags,
1417                                 SEALED,
1418                                 ANNOTATION)
1419                 && checkDisjoint(pos, flags,
1420                                 VALUE_CLASS,
1421                                 ANNOTATION)
1422                 && checkDisjoint(pos, flags,
1423                                 VALUE_CLASS,
1424                                 INTERFACE) ) {
1425             // skip
1426         }
1427         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1428     }
1429 
1430     private void warnOnExplicitStrictfp(DiagnosticPosition pos) {
1431         DiagnosticPosition prevLintPos = deferredLintHandler.setPos(pos);
1432         try {
1433             deferredLintHandler.report(_l -> {
1434                                            if (lint.isEnabled(LintCategory.STRICTFP)) {
1435                                                log.warning(LintCategory.STRICTFP,
1436                                                            pos, Warnings.Strictfp); }
1437                                        });
1438         } finally {
1439             deferredLintHandler.setPos(prevLintPos);
1440         }
1441     }
1442 
1443 
1444     /** Determine if this enum should be implicitly final.
1445      *
1446      *  If the enum has no specialized enum constants, it is final.
1447      *
1448      *  If the enum does have specialized enum constants, it is
1449      *  <i>not</i> final.
1450      */
1451     private long implicitEnumFinalFlag(JCTree tree) {
1452         if (!tree.hasTag(CLASSDEF)) return 0;
1453         class SpecialTreeVisitor extends JCTree.Visitor {
1454             boolean specialized;
1455             SpecialTreeVisitor() {
1456                 this.specialized = false;
1457             }
1458 
1459             @Override
1460             public void visitTree(JCTree tree) { /* no-op */ }
1461 
1462             @Override
1463             public void visitVarDef(JCVariableDecl tree) {
1464                 if ((tree.mods.flags & ENUM) != 0) {
1465                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1466                         specialized = true;
1467                     }
1468                 }
1469             }
1470         }
1471 
1472         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1473         JCClassDecl cdef = (JCClassDecl) tree;
1474         for (JCTree defs: cdef.defs) {
1475             defs.accept(sts);
1476             if (sts.specialized) return allowSealed ? SEALED : 0;
1477         }
1478         return FINAL;
1479     }
1480 
1481 /* *************************************************************************
1482  * Type Validation
1483  **************************************************************************/
1484 
1485     /** Validate a type expression. That is,
1486      *  check that all type arguments of a parametric type are within
1487      *  their bounds. This must be done in a second phase after type attribution
1488      *  since a class might have a subclass as type parameter bound. E.g:
1489      *
1490      *  <pre>{@code
1491      *  class B<A extends C> { ... }
1492      *  class C extends B<C> { ... }
1493      *  }</pre>
1494      *
1495      *  and we can't make sure that the bound is already attributed because
1496      *  of possible cycles.
1497      *
1498      * Visitor method: Validate a type expression, if it is not null, catching
1499      *  and reporting any completion failures.
1500      */
1501     void validate(JCTree tree, Env<AttrContext> env) {
1502         validate(tree, env, true);
1503     }
1504     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1505         new Validator(env).validateTree(tree, checkRaw, true);
1506     }
1507 
1508     /** Visitor method: Validate a list of type expressions.
1509      */
1510     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1511         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1512             validate(l.head, env);
1513     }
1514 
1515     /** A visitor class for type validation.
1516      */
1517     class Validator extends JCTree.Visitor {
1518 
1519         boolean checkRaw;
1520         boolean isOuter;
1521         Env<AttrContext> env;
1522 
1523         Validator(Env<AttrContext> env) {
1524             this.env = env;
1525         }
1526 
1527         @Override
1528         public void visitTypeArray(JCArrayTypeTree tree) {
1529             validateTree(tree.elemtype, checkRaw, isOuter);
1530         }
1531 
1532         @Override
1533         public void visitTypeApply(JCTypeApply tree) {
1534             if (tree.type.hasTag(CLASS)) {
1535                 List<JCExpression> args = tree.arguments;
1536                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1537 
1538                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1539                 if (incompatibleArg != null) {
1540                     for (JCTree arg : tree.arguments) {
1541                         if (arg.type == incompatibleArg) {
1542                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1543                         }
1544                         forms = forms.tail;
1545                      }
1546                  }
1547 
1548                 forms = tree.type.tsym.type.getTypeArguments();
1549 
1550                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1551 
1552                 // For matching pairs of actual argument types `a' and
1553                 // formal type parameters with declared bound `b' ...
1554                 while (args.nonEmpty() && forms.nonEmpty()) {
1555                     validateTree(args.head,
1556                             !(isOuter && is_java_lang_Class),
1557                             false);
1558                     args = args.tail;
1559                     forms = forms.tail;
1560                 }
1561 
1562                 // Check that this type is either fully parameterized, or
1563                 // not parameterized at all.
1564                 if (tree.type.getEnclosingType().isRaw())
1565                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1566                 if (tree.clazz.hasTag(SELECT))
1567                     visitSelectInternal((JCFieldAccess)tree.clazz);
1568             }
1569         }
1570 
1571         @Override
1572         public void visitTypeParameter(JCTypeParameter tree) {
1573             validateTrees(tree.bounds, true, isOuter);
1574             checkClassBounds(tree.pos(), tree.type);
1575         }
1576 
1577         @Override
1578         public void visitWildcard(JCWildcard tree) {
1579             if (tree.inner != null)
1580                 validateTree(tree.inner, true, isOuter);
1581         }
1582 
1583         @Override
1584         public void visitSelect(JCFieldAccess tree) {
1585             if (tree.type.hasTag(CLASS)) {
1586                 visitSelectInternal(tree);
1587 
1588                 // Check that this type is either fully parameterized, or
1589                 // not parameterized at all.
1590                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1591                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1592             }
1593         }
1594 
1595         public void visitSelectInternal(JCFieldAccess tree) {
1596             if (tree.type.tsym.isStatic() &&
1597                 tree.selected.type.isParameterized()) {
1598                 // The enclosing type is not a class, so we are
1599                 // looking at a static member type.  However, the
1600                 // qualifying expression is parameterized.
1601                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1602             } else {
1603                 // otherwise validate the rest of the expression
1604                 tree.selected.accept(this);
1605             }
1606         }
1607 
1608         @Override
1609         public void visitAnnotatedType(JCAnnotatedType tree) {
1610             tree.underlyingType.accept(this);
1611         }
1612 
1613         @Override
1614         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1615             if (that.type.hasTag(TypeTag.VOID)) {
1616                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1617             }
1618             super.visitTypeIdent(that);
1619         }
1620 
1621         /** Default visitor method: do nothing.
1622          */
1623         @Override
1624         public void visitTree(JCTree tree) {
1625         }
1626 
1627         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1628             if (tree != null) {
1629                 boolean prevCheckRaw = this.checkRaw;
1630                 this.checkRaw = checkRaw;
1631                 this.isOuter = isOuter;
1632 
1633                 try {
1634                     tree.accept(this);
1635                     if (checkRaw)
1636                         checkRaw(tree, env);
1637                 } catch (CompletionFailure ex) {
1638                     completionError(tree.pos(), ex);
1639                 } finally {
1640                     this.checkRaw = prevCheckRaw;
1641                 }
1642             }
1643         }
1644 
1645         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1646             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1647                 validateTree(l.head, checkRaw, isOuter);
1648         }
1649     }
1650 
1651     void checkRaw(JCTree tree, Env<AttrContext> env) {
1652         if (lint.isEnabled(LintCategory.RAW) &&
1653             tree.type.hasTag(CLASS) &&
1654             !TreeInfo.isDiamond(tree) &&
1655             !withinAnonConstr(env) &&
1656             tree.type.isRaw()) {
1657             log.warning(LintCategory.RAW,
1658                     tree.pos(), Warnings.RawClassUse(tree.type, tree.type.tsym.type));
1659         }
1660     }
1661     //where
1662         private boolean withinAnonConstr(Env<AttrContext> env) {
1663             return env.enclClass.name.isEmpty() &&
1664                     env.enclMethod != null && env.enclMethod.name == names.init;
1665         }
1666 
1667 /* *************************************************************************
1668  * Exception checking
1669  **************************************************************************/
1670 
1671     /* The following methods treat classes as sets that contain
1672      * the class itself and all their subclasses
1673      */
1674 
1675     /** Is given type a subtype of some of the types in given list?
1676      */
1677     boolean subset(Type t, List<Type> ts) {
1678         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1679             if (types.isSubtype(t, l.head)) return true;
1680         return false;
1681     }
1682 
1683     /** Is given type a subtype or supertype of
1684      *  some of the types in given list?
1685      */
1686     boolean intersects(Type t, List<Type> ts) {
1687         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1688             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1689         return false;
1690     }
1691 
1692     /** Add type set to given type list, unless it is a subclass of some class
1693      *  in the list.
1694      */
1695     List<Type> incl(Type t, List<Type> ts) {
1696         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1697     }
1698 
1699     /** Remove type set from type set list.
1700      */
1701     List<Type> excl(Type t, List<Type> ts) {
1702         if (ts.isEmpty()) {
1703             return ts;
1704         } else {
1705             List<Type> ts1 = excl(t, ts.tail);
1706             if (types.isSubtype(ts.head, t)) return ts1;
1707             else if (ts1 == ts.tail) return ts;
1708             else return ts1.prepend(ts.head);
1709         }
1710     }
1711 
1712     /** Form the union of two type set lists.
1713      */
1714     List<Type> union(List<Type> ts1, List<Type> ts2) {
1715         List<Type> ts = ts1;
1716         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1717             ts = incl(l.head, ts);
1718         return ts;
1719     }
1720 
1721     /** Form the difference of two type lists.
1722      */
1723     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1724         List<Type> ts = ts1;
1725         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1726             ts = excl(l.head, ts);
1727         return ts;
1728     }
1729 
1730     /** Form the intersection of two type lists.
1731      */
1732     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1733         List<Type> ts = List.nil();
1734         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1735             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1736         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1737             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1738         return ts;
1739     }
1740 
1741     /** Is exc an exception symbol that need not be declared?
1742      */
1743     boolean isUnchecked(ClassSymbol exc) {
1744         return
1745             exc.kind == ERR ||
1746             exc.isSubClass(syms.errorType.tsym, types) ||
1747             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1748     }
1749 
1750     /** Is exc an exception type that need not be declared?
1751      */
1752     boolean isUnchecked(Type exc) {
1753         return
1754             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1755             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1756             exc.hasTag(BOT);
1757     }
1758 
1759     boolean isChecked(Type exc) {
1760         return !isUnchecked(exc);
1761     }
1762 
1763     /** Same, but handling completion failures.
1764      */
1765     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1766         try {
1767             return isUnchecked(exc);
1768         } catch (CompletionFailure ex) {
1769             completionError(pos, ex);
1770             return true;
1771         }
1772     }
1773 
1774     /** Is exc handled by given exception list?
1775      */
1776     boolean isHandled(Type exc, List<Type> handled) {
1777         return isUnchecked(exc) || subset(exc, handled);
1778     }
1779 
1780     /** Return all exceptions in thrown list that are not in handled list.
1781      *  @param thrown     The list of thrown exceptions.
1782      *  @param handled    The list of handled exceptions.
1783      */
1784     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1785         List<Type> unhandled = List.nil();
1786         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1787             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1788         return unhandled;
1789     }
1790 
1791 /* *************************************************************************
1792  * Overriding/Implementation checking
1793  **************************************************************************/
1794 
1795     /** The level of access protection given by a flag set,
1796      *  where PRIVATE is highest and PUBLIC is lowest.
1797      */
1798     static int protection(long flags) {
1799         switch ((short)(flags & AccessFlags)) {
1800         case PRIVATE: return 3;
1801         case PROTECTED: return 1;
1802         default:
1803         case PUBLIC: return 0;
1804         case 0: return 2;
1805         }
1806     }
1807 
1808     /** A customized "cannot override" error message.
1809      *  @param m      The overriding method.
1810      *  @param other  The overridden method.
1811      *  @return       An internationalized string.
1812      */
1813     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1814         Symbol mloc = m.location();
1815         Symbol oloc = other.location();
1816 
1817         if ((other.owner.flags() & INTERFACE) == 0)
1818             return Fragments.CantOverride(m, mloc, other, oloc);
1819         else if ((m.owner.flags() & INTERFACE) == 0)
1820             return Fragments.CantImplement(m, mloc, other, oloc);
1821         else
1822             return Fragments.ClashesWith(m, mloc, other, oloc);
1823     }
1824 
1825     /** A customized "override" warning message.
1826      *  @param m      The overriding method.
1827      *  @param other  The overridden method.
1828      *  @return       An internationalized string.
1829      */
1830     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1831         Symbol mloc = m.location();
1832         Symbol oloc = other.location();
1833 
1834         if ((other.owner.flags() & INTERFACE) == 0)
1835             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1836         else if ((m.owner.flags() & INTERFACE) == 0)
1837             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1838         else
1839             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1840     }
1841 
1842     /** A customized "override" warning message.
1843      *  @param m      The overriding method.
1844      *  @param other  The overridden method.
1845      *  @return       An internationalized string.
1846      */
1847     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1848         Symbol mloc = m.location();
1849         Symbol oloc = other.location();
1850 
1851         if ((other.owner.flags() & INTERFACE) == 0)
1852             return Fragments.VarargsOverride(m, mloc, other, oloc);
1853         else  if ((m.owner.flags() & INTERFACE) == 0)
1854             return Fragments.VarargsImplement(m, mloc, other, oloc);
1855         else
1856             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1857     }
1858 
1859     /** Check that this method conforms with overridden method 'other'.
1860      *  where `origin' is the class where checking started.
1861      *  Complications:
1862      *  (1) Do not check overriding of synthetic methods
1863      *      (reason: they might be final).
1864      *      todo: check whether this is still necessary.
1865      *  (2) Admit the case where an interface proxy throws fewer exceptions
1866      *      than the method it implements. Augment the proxy methods with the
1867      *      undeclared exceptions in this case.
1868      *  (3) When generics are enabled, admit the case where an interface proxy
1869      *      has a result type
1870      *      extended by the result type of the method it implements.
1871      *      Change the proxies result type to the smaller type in this case.
1872      *
1873      *  @param tree         The tree from which positions
1874      *                      are extracted for errors.
1875      *  @param m            The overriding method.
1876      *  @param other        The overridden method.
1877      *  @param origin       The class of which the overriding method
1878      *                      is a member.
1879      */
1880     void checkOverride(JCTree tree,
1881                        MethodSymbol m,
1882                        MethodSymbol other,
1883                        ClassSymbol origin) {
1884         // Don't check overriding of synthetic methods or by bridge methods.
1885         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1886             return;
1887         }
1888 
1889         // Error if static method overrides instance method (JLS 8.4.8.2).
1890         if ((m.flags() & STATIC) != 0 &&
1891                    (other.flags() & STATIC) == 0) {
1892             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1893                       Errors.OverrideStatic(cannotOverride(m, other)));
1894             m.flags_field |= BAD_OVERRIDE;
1895             return;
1896         }
1897 
1898         // Error if instance method overrides static or final
1899         // method (JLS 8.4.8.1).
1900         if ((other.flags() & FINAL) != 0 ||
1901                  (m.flags() & STATIC) == 0 &&
1902                  (other.flags() & STATIC) != 0) {
1903             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1904                       Errors.OverrideMeth(cannotOverride(m, other),
1905                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1906             m.flags_field |= BAD_OVERRIDE;
1907             return;
1908         }
1909 
1910         if ((m.owner.flags() & ANNOTATION) != 0) {
1911             // handled in validateAnnotationMethod
1912             return;
1913         }
1914 
1915         // Error if overriding method has weaker access (JLS 8.4.8.3).
1916         if (protection(m.flags()) > protection(other.flags())) {
1917             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1918                       (other.flags() & AccessFlags) == 0 ?
1919                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1920                                                           "package") :
1921                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1922                                                           asFlagSet(other.flags() & AccessFlags)));
1923             m.flags_field |= BAD_OVERRIDE;
1924             return;
1925         }
1926 
1927         if (shouldCheckPreview(m, other, origin)) {
1928             checkPreview(tree.pos(), m, other);
1929         }
1930 
1931         Type mt = types.memberType(origin.type, m);
1932         Type ot = types.memberType(origin.type, other);
1933         // Error if overriding result type is different
1934         // (or, in the case of generics mode, not a subtype) of
1935         // overridden result type. We have to rename any type parameters
1936         // before comparing types.
1937         List<Type> mtvars = mt.getTypeArguments();
1938         List<Type> otvars = ot.getTypeArguments();
1939         Type mtres = mt.getReturnType();
1940         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1941 
1942         overrideWarner.clear();
1943         boolean resultTypesOK =
1944             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1945         if (!resultTypesOK) {
1946             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1947                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1948                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1949                                         other.location()), mtres, otres));
1950                 m.flags_field |= BAD_OVERRIDE;
1951             } else {
1952                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1953                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1954                 m.flags_field |= BAD_OVERRIDE;
1955             }
1956             return;
1957         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1958             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1959                     Warnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1960         }
1961 
1962         // Error if overriding method throws an exception not reported
1963         // by overridden method.
1964         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1965         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1966         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1967         if (unhandledErased.nonEmpty()) {
1968             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1969                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1970             m.flags_field |= BAD_OVERRIDE;
1971             return;
1972         }
1973         else if (unhandledUnerased.nonEmpty()) {
1974             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1975                           Warnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1976             return;
1977         }
1978 
1979         // Optional warning if varargs don't agree
1980         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1981             && lint.isEnabled(LintCategory.OVERRIDES)) {
1982             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1983                         ((m.flags() & Flags.VARARGS) != 0)
1984                         ? Warnings.OverrideVarargsMissing(varargsOverrides(m, other))
1985                         : Warnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1986         }
1987 
1988         // Warn if instance method overrides bridge method (compiler spec ??)
1989         if ((other.flags() & BRIDGE) != 0) {
1990             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1991                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1992         }
1993 
1994         // Warn if a deprecated method overridden by a non-deprecated one.
1995         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1996             Lint prevLint = setLint(lint.augment(m));
1997             try {
1998                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1999             } finally {
2000                 setLint(prevLint);
2001             }
2002         }
2003     }
2004     // where
2005         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
2006             if (m.owner != origin ||
2007                 //performance - only do the expensive checks when the overridden method is a Preview API:
2008                 (other.flags() & PREVIEW_API) == 0) {
2009                 return false;
2010             }
2011 
2012             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
2013                 if (m != s && m.overrides(s, origin, types, false)) {
2014                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
2015                     //without intermediate overriding methods:
2016                     return s == other;
2017                 }
2018             }
2019 
2020             return false;
2021         }
2022         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
2023             // If the method, m, is defined in an interface, then ignore the issue if the method
2024             // is only inherited via a supertype and also implemented in the supertype,
2025             // because in that case, we will rediscover the issue when examining the method
2026             // in the supertype.
2027             // If the method, m, is not defined in an interface, then the only time we need to
2028             // address the issue is when the method is the supertype implementation: any other
2029             // case, we will have dealt with when examining the supertype classes
2030             ClassSymbol mc = m.enclClass();
2031             Type st = types.supertype(origin.type);
2032             if (!st.hasTag(CLASS))
2033                 return true;
2034             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
2035 
2036             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
2037                 List<Type> intfs = types.interfaces(origin.type);
2038                 return (intfs.contains(mc.type) ? false : (stimpl != null));
2039             }
2040             else
2041                 return (stimpl != m);
2042         }
2043 
2044 
2045     // used to check if there were any unchecked conversions
2046     Warner overrideWarner = new Warner();
2047 
2048     /** Check that a class does not inherit two concrete methods
2049      *  with the same signature.
2050      *  @param pos          Position to be used for error reporting.
2051      *  @param site         The class type to be checked.
2052      */
2053     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
2054         Type sup = types.supertype(site);
2055         if (!sup.hasTag(CLASS)) return;
2056 
2057         for (Type t1 = sup;
2058              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
2059              t1 = types.supertype(t1)) {
2060             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2061                 if (s1.kind != MTH ||
2062                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2063                     !s1.isInheritedIn(site.tsym, types) ||
2064                     ((MethodSymbol)s1).implementation(site.tsym,
2065                                                       types,
2066                                                       true) != s1)
2067                     continue;
2068                 Type st1 = types.memberType(t1, s1);
2069                 int s1ArgsLength = st1.getParameterTypes().length();
2070                 if (st1 == s1.type) continue;
2071 
2072                 for (Type t2 = sup;
2073                      t2.hasTag(CLASS);
2074                      t2 = types.supertype(t2)) {
2075                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2076                         if (s2 == s1 ||
2077                             s2.kind != MTH ||
2078                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2079                             s2.type.getParameterTypes().length() != s1ArgsLength ||
2080                             !s2.isInheritedIn(site.tsym, types) ||
2081                             ((MethodSymbol)s2).implementation(site.tsym,
2082                                                               types,
2083                                                               true) != s2)
2084                             continue;
2085                         Type st2 = types.memberType(t2, s2);
2086                         if (types.overrideEquivalent(st1, st2))
2087                             log.error(pos,
2088                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
2089                     }
2090                 }
2091             }
2092         }
2093     }
2094 
2095     /** Check that classes (or interfaces) do not each define an abstract
2096      *  method with same name and arguments but incompatible return types.
2097      *  @param pos          Position to be used for error reporting.
2098      *  @param t1           The first argument type.
2099      *  @param t2           The second argument type.
2100      */
2101     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
2102                                             Type t1,
2103                                             Type t2,
2104                                             Type site) {
2105         if ((site.tsym.flags() & COMPOUND) != 0) {
2106             // special case for intersections: need to eliminate wildcards in supertypes
2107             t1 = types.capture(t1);
2108             t2 = types.capture(t2);
2109         }
2110         return firstIncompatibility(pos, t1, t2, site) == null;
2111     }
2112 
2113     /** Return the first method which is defined with same args
2114      *  but different return types in two given interfaces, or null if none
2115      *  exists.
2116      *  @param t1     The first type.
2117      *  @param t2     The second type.
2118      *  @param site   The most derived type.
2119      *  @return symbol from t2 that conflicts with one in t1.
2120      */
2121     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2122         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
2123         closure(t1, interfaces1);
2124         Map<TypeSymbol,Type> interfaces2;
2125         if (t1 == t2)
2126             interfaces2 = interfaces1;
2127         else
2128             closure(t2, interfaces1, interfaces2 = new HashMap<>());
2129 
2130         for (Type t3 : interfaces1.values()) {
2131             for (Type t4 : interfaces2.values()) {
2132                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
2133                 if (s != null) return s;
2134             }
2135         }
2136         return null;
2137     }
2138 
2139     /** Compute all the supertypes of t, indexed by type symbol. */
2140     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
2141         if (!t.hasTag(CLASS)) return;
2142         if (typeMap.put(t.tsym, t) == null) {
2143             closure(types.supertype(t), typeMap);
2144             for (Type i : types.interfaces(t))
2145                 closure(i, typeMap);
2146         }
2147     }
2148 
2149     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
2150     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
2151         if (!t.hasTag(CLASS)) return;
2152         if (typesSkip.get(t.tsym) != null) return;
2153         if (typeMap.put(t.tsym, t) == null) {
2154             closure(types.supertype(t), typesSkip, typeMap);
2155             for (Type i : types.interfaces(t))
2156                 closure(i, typesSkip, typeMap);
2157         }
2158     }
2159 
2160     /** Return the first method in t2 that conflicts with a method from t1. */
2161     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2162         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2163             Type st1 = null;
2164             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2165                     (s1.flags() & SYNTHETIC) != 0) continue;
2166             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2167             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2168             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2169                 if (s1 == s2) continue;
2170                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2171                         (s2.flags() & SYNTHETIC) != 0) continue;
2172                 if (st1 == null) st1 = types.memberType(t1, s1);
2173                 Type st2 = types.memberType(t2, s2);
2174                 if (types.overrideEquivalent(st1, st2)) {
2175                     List<Type> tvars1 = st1.getTypeArguments();
2176                     List<Type> tvars2 = st2.getTypeArguments();
2177                     Type rt1 = st1.getReturnType();
2178                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2179                     boolean compat =
2180                         types.isSameType(rt1, rt2) ||
2181                         !rt1.isPrimitiveOrVoid() &&
2182                         !rt2.isPrimitiveOrVoid() &&
2183                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2184                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2185                          checkCommonOverriderIn(s1,s2,site);
2186                     if (!compat) {
2187                         if (types.isSameType(t1, t2)) {
2188                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2189                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2190                         } else {
2191                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2192                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2193                         }
2194                         return s2;
2195                     }
2196                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2197                         !checkCommonOverriderIn(s1, s2, site)) {
2198                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2199                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2200                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2201                     return s2;
2202                 }
2203             }
2204         }
2205         return null;
2206     }
2207     //WHERE
2208     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2209         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2210         Type st1 = types.memberType(site, s1);
2211         Type st2 = types.memberType(site, s2);
2212         closure(site, supertypes);
2213         for (Type t : supertypes.values()) {
2214             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2215                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2216                 Type st3 = types.memberType(site,s3);
2217                 if (types.overrideEquivalent(st3, st1) &&
2218                         types.overrideEquivalent(st3, st2) &&
2219                         types.returnTypeSubstitutable(st3, st1) &&
2220                         types.returnTypeSubstitutable(st3, st2)) {
2221                     return true;
2222                 }
2223             }
2224         }
2225         return false;
2226     }
2227 
2228     /** Check that a given method conforms with any method it overrides.
2229      *  @param tree         The tree from which positions are extracted
2230      *                      for errors.
2231      *  @param m            The overriding method.
2232      */
2233     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2234         ClassSymbol origin = (ClassSymbol)m.owner;
2235         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2236             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2237                 log.error(tree.pos(), Errors.EnumNoFinalize);
2238                 return;
2239             }
2240         }
2241         if (allowValueClasses && origin.isValueClass() && names.finalize.equals(m.name)) {
2242             if (m.overrides(syms.objectFinalize, origin, types, false)) {
2243                 log.warning(tree.pos(), Warnings.ValueFinalize);
2244             }
2245         }
2246         if (allowRecords && origin.isRecord()) {
2247             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2248             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2249                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2250             if (recordComponent.isPresent()) {
2251                 return;
2252             }
2253         }
2254 
2255         for (Type t = origin.type; t.hasTag(CLASS);
2256              t = types.supertype(t)) {
2257             if (t != origin.type) {
2258                 checkOverride(tree, t, origin, m);
2259             }
2260             for (Type t2 : types.interfaces(t)) {
2261                 checkOverride(tree, t2, origin, m);
2262             }
2263         }
2264 
2265         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2266         // Check if this method must override a super method due to being annotated with @Override
2267         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2268         // be treated "as if as they were annotated" with @Override.
2269         boolean mustOverride = explicitOverride ||
2270                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2271         if (mustOverride && !isOverrider(m)) {
2272             DiagnosticPosition pos = tree.pos();
2273             for (JCAnnotation a : tree.getModifiers().annotations) {
2274                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2275                     pos = a.pos();
2276                     break;
2277                 }
2278             }
2279             log.error(pos,
2280                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2281                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2282         }
2283     }
2284 
2285     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2286         TypeSymbol c = site.tsym;
2287         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2288             if (m.overrides(sym, origin, types, false)) {
2289                 if ((sym.flags() & ABSTRACT) == 0) {
2290                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2291                 }
2292             }
2293         }
2294     }
2295 
2296     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2297             (s.flags() & BAD_OVERRIDE) == 0;
2298 
2299     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2300             ClassSymbol someClass) {
2301         /* At present, annotations cannot possibly have a method that is override
2302          * equivalent with Object.equals(Object) but in any case the condition is
2303          * fine for completeness.
2304          */
2305         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2306             someClass.isInterface() || someClass.isEnum() ||
2307             (someClass.flags() & ANNOTATION) != 0 ||
2308             (someClass.flags() & ABSTRACT) != 0) return;
2309         //anonymous inner classes implementing interfaces need especial treatment
2310         if (someClass.isAnonymous()) {
2311             List<Type> interfaces =  types.interfaces(someClass.type);
2312             if (interfaces != null && !interfaces.isEmpty() &&
2313                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2314         }
2315         checkClassOverrideEqualsAndHash(pos, someClass);
2316     }
2317 
2318     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2319             ClassSymbol someClass) {
2320         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2321             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2322                     .tsym.members().findFirst(names.equals);
2323             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2324                     .tsym.members().findFirst(names.hashCode);
2325             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2326                     someClass, false, equalsHasCodeFilter);
2327             boolean overridesEquals = equalsImpl != null &&
2328                                       equalsImpl.owner == someClass;
2329             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2330                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2331 
2332             if (overridesEquals && !overridesHashCode) {
2333                 log.warning(LintCategory.OVERRIDES, pos,
2334                             Warnings.OverrideEqualsButNotHashcode(someClass));
2335             }
2336         }
2337     }
2338 
2339     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2340         boolean found = false;
2341 
2342         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2343             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2344                 MethodSymbol meth = (MethodSymbol)sym;
2345                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2346                     continue;
2347                 }
2348                 if (meth.params.isEmpty()) {
2349                     found = true;
2350                     break;
2351                 }
2352                 if (meth.params.size() != 1) {
2353                     continue;
2354                 }
2355                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2356                     continue;
2357                 }
2358 
2359                 found = true;
2360                 break;
2361             }
2362         }
2363 
2364         if (!found) {
2365             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2366         }
2367     }
2368 
2369     public void checkModuleName (JCModuleDecl tree) {
2370         Name moduleName = tree.sym.name;
2371         Assert.checkNonNull(moduleName);
2372         if (lint.isEnabled(LintCategory.MODULE)) {
2373             JCExpression qualId = tree.qualId;
2374             while (qualId != null) {
2375                 Name componentName;
2376                 DiagnosticPosition pos;
2377                 switch (qualId.getTag()) {
2378                     case SELECT:
2379                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2380                         componentName = selectNode.name;
2381                         pos = selectNode.pos();
2382                         qualId = selectNode.selected;
2383                         break;
2384                     case IDENT:
2385                         componentName = ((JCIdent) qualId).name;
2386                         pos = qualId.pos();
2387                         qualId = null;
2388                         break;
2389                     default:
2390                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2391                 }
2392                 if (componentName != null) {
2393                     String moduleNameComponentString = componentName.toString();
2394                     int nameLength = moduleNameComponentString.length();
2395                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2396                         log.warning(Lint.LintCategory.MODULE, pos, Warnings.PoorChoiceForModuleName(componentName));
2397                     }
2398                 }
2399             }
2400         }
2401     }
2402 
2403     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2404         ClashFilter cf = new ClashFilter(origin.type);
2405         return (cf.test(s1) &&
2406                 cf.test(s2) &&
2407                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2408     }
2409 
2410 
2411     /** Check that all abstract members of given class have definitions.
2412      *  @param pos          Position to be used for error reporting.
2413      *  @param c            The class.
2414      */
2415     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2416         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2417         if (undef != null) {
2418             MethodSymbol undef1 =
2419                 new MethodSymbol(undef.flags(), undef.name,
2420                                  types.memberType(c.type, undef), undef.owner);
2421             log.error(pos,
2422                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2423         }
2424     }
2425 
2426     void checkNonCyclicDecl(JCClassDecl tree) {
2427         CycleChecker cc = new CycleChecker();
2428         cc.scan(tree);
2429         if (!cc.errorFound && !cc.partialCheck) {
2430             tree.sym.flags_field |= ACYCLIC;
2431         }
2432     }
2433 
2434     class CycleChecker extends TreeScanner {
2435 
2436         Set<Symbol> seenClasses = new HashSet<>();
2437         boolean errorFound = false;
2438         boolean partialCheck = false;
2439 
2440         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2441             if (sym != null && sym.kind == TYP) {
2442                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2443                 if (classEnv != null) {
2444                     DiagnosticSource prevSource = log.currentSource();
2445                     try {
2446                         log.useSource(classEnv.toplevel.sourcefile);
2447                         scan(classEnv.tree);
2448                     }
2449                     finally {
2450                         log.useSource(prevSource.getFile());
2451                     }
2452                 } else if (sym.kind == TYP) {
2453                     checkClass(pos, sym, List.nil());
2454                 }
2455             } else if (sym == null || sym.kind != PCK) {
2456                 //not completed yet
2457                 partialCheck = true;
2458             }
2459         }
2460 
2461         @Override
2462         public void visitSelect(JCFieldAccess tree) {
2463             super.visitSelect(tree);
2464             checkSymbol(tree.pos(), tree.sym);
2465         }
2466 
2467         @Override
2468         public void visitIdent(JCIdent tree) {
2469             checkSymbol(tree.pos(), tree.sym);
2470         }
2471 
2472         @Override
2473         public void visitTypeApply(JCTypeApply tree) {
2474             scan(tree.clazz);
2475         }
2476 
2477         @Override
2478         public void visitTypeArray(JCArrayTypeTree tree) {
2479             scan(tree.elemtype);
2480         }
2481 
2482         @Override
2483         public void visitClassDef(JCClassDecl tree) {
2484             List<JCTree> supertypes = List.nil();
2485             if (tree.getExtendsClause() != null) {
2486                 supertypes = supertypes.prepend(tree.getExtendsClause());
2487             }
2488             if (tree.getImplementsClause() != null) {
2489                 for (JCTree intf : tree.getImplementsClause()) {
2490                     supertypes = supertypes.prepend(intf);
2491                 }
2492             }
2493             checkClass(tree.pos(), tree.sym, supertypes);
2494         }
2495 
2496         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2497             if ((c.flags_field & ACYCLIC) != 0)
2498                 return;
2499             if (seenClasses.contains(c)) {
2500                 errorFound = true;
2501                 noteCyclic(pos, (ClassSymbol)c);
2502             } else if (!c.type.isErroneous()) {
2503                 try {
2504                     seenClasses.add(c);
2505                     if (c.type.hasTag(CLASS)) {
2506                         if (supertypes.nonEmpty()) {
2507                             scan(supertypes);
2508                         }
2509                         else {
2510                             ClassType ct = (ClassType)c.type;
2511                             if (ct.supertype_field == null ||
2512                                     ct.interfaces_field == null) {
2513                                 //not completed yet
2514                                 partialCheck = true;
2515                                 return;
2516                             }
2517                             checkSymbol(pos, ct.supertype_field.tsym);
2518                             for (Type intf : ct.interfaces_field) {
2519                                 checkSymbol(pos, intf.tsym);
2520                             }
2521                         }
2522                         if (c.owner.kind == TYP) {
2523                             checkSymbol(pos, c.owner);
2524                         }
2525                     }
2526                 } finally {
2527                     seenClasses.remove(c);
2528                 }
2529             }
2530         }
2531     }
2532 
2533     /** Check for cyclic references. Issue an error if the
2534      *  symbol of the type referred to has a LOCKED flag set.
2535      *
2536      *  @param pos      Position to be used for error reporting.
2537      *  @param t        The type referred to.
2538      */
2539     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2540         checkNonCyclicInternal(pos, t);
2541     }
2542 
2543 
2544     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2545         checkNonCyclic1(pos, t, List.nil());
2546     }
2547 
2548     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2549         final TypeVar tv;
2550         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2551             return;
2552         if (seen.contains(t)) {
2553             tv = (TypeVar)t;
2554             tv.setUpperBound(types.createErrorType(t));
2555             log.error(pos, Errors.CyclicInheritance(t));
2556         } else if (t.hasTag(TYPEVAR)) {
2557             tv = (TypeVar)t;
2558             seen = seen.prepend(tv);
2559             for (Type b : types.getBounds(tv))
2560                 checkNonCyclic1(pos, b, seen);
2561         }
2562     }
2563 
2564     /** Check for cyclic references. Issue an error if the
2565      *  symbol of the type referred to has a LOCKED flag set.
2566      *
2567      *  @param pos      Position to be used for error reporting.
2568      *  @param t        The type referred to.
2569      *  @return        True if the check completed on all attributed classes
2570      */
2571     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2572         boolean complete = true; // was the check complete?
2573         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2574         Symbol c = t.tsym;
2575         if ((c.flags_field & ACYCLIC) != 0) return true;
2576 
2577         if ((c.flags_field & LOCKED) != 0) {
2578             noteCyclic(pos, (ClassSymbol)c);
2579         } else if (!c.type.isErroneous()) {
2580             try {
2581                 c.flags_field |= LOCKED;
2582                 if (c.type.hasTag(CLASS)) {
2583                     ClassType clazz = (ClassType)c.type;
2584                     if (clazz.interfaces_field != null)
2585                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2586                             complete &= checkNonCyclicInternal(pos, l.head);
2587                     if (clazz.supertype_field != null) {
2588                         Type st = clazz.supertype_field;
2589                         if (st != null && st.hasTag(CLASS))
2590                             complete &= checkNonCyclicInternal(pos, st);
2591                     }
2592                     if (c.owner.kind == TYP)
2593                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2594                 }
2595             } finally {
2596                 c.flags_field &= ~LOCKED;
2597             }
2598         }
2599         if (complete)
2600             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2601         if (complete) c.flags_field |= ACYCLIC;
2602         return complete;
2603     }
2604 
2605     /** Note that we found an inheritance cycle. */
2606     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2607         log.error(pos, Errors.CyclicInheritance(c));
2608         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2609             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2610         Type st = types.supertype(c.type);
2611         if (st.hasTag(CLASS))
2612             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2613         c.type = types.createErrorType(c, c.type);
2614         c.flags_field |= ACYCLIC;
2615     }
2616 
2617     /** Check that all methods which implement some
2618      *  method conform to the method they implement.
2619      *  @param tree         The class definition whose members are checked.
2620      */
2621     void checkImplementations(JCClassDecl tree) {
2622         checkImplementations(tree, tree.sym, tree.sym);
2623     }
2624     //where
2625         /** Check that all methods which implement some
2626          *  method in `ic' conform to the method they implement.
2627          */
2628         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2629             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2630                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2631                 if ((lc.flags() & ABSTRACT) != 0) {
2632                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2633                         if (sym.kind == MTH &&
2634                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2635                             MethodSymbol absmeth = (MethodSymbol)sym;
2636                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2637                             if (implmeth != null && implmeth != absmeth &&
2638                                 (implmeth.owner.flags() & INTERFACE) ==
2639                                 (origin.flags() & INTERFACE)) {
2640                                 // don't check if implmeth is in a class, yet
2641                                 // origin is an interface. This case arises only
2642                                 // if implmeth is declared in Object. The reason is
2643                                 // that interfaces really don't inherit from
2644                                 // Object it's just that the compiler represents
2645                                 // things that way.
2646                                 checkOverride(tree, implmeth, absmeth, origin);
2647                             }
2648                         }
2649                     }
2650                 }
2651             }
2652         }
2653 
2654     /** Check that all abstract methods implemented by a class are
2655      *  mutually compatible.
2656      *  @param pos          Position to be used for error reporting.
2657      *  @param c            The class whose interfaces are checked.
2658      */
2659     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2660         List<Type> supertypes = types.interfaces(c);
2661         Type supertype = types.supertype(c);
2662         if (supertype.hasTag(CLASS) &&
2663             (supertype.tsym.flags() & ABSTRACT) != 0)
2664             supertypes = supertypes.prepend(supertype);
2665         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2666             if (!l.head.getTypeArguments().isEmpty() &&
2667                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2668                 return;
2669             for (List<Type> m = supertypes; m != l; m = m.tail)
2670                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2671                     return;
2672         }
2673         checkCompatibleConcretes(pos, c);
2674 
2675         Type identitySuper = null;
2676         for (Type t : types.closure(c)) {
2677             if (t != c) {
2678                 if (t.isIdentityClass() && (t.tsym.flags() & VALUE_BASED) == 0)
2679                     identitySuper = t;
2680                 if (c.isValueClass() && identitySuper != null && identitySuper.tsym != syms.objectType.tsym) { // Object is special
2681                     log.error(pos, Errors.ValueTypeHasIdentitySuperType(c, identitySuper));
2682                     break;
2683                 }
2684             }
2685         }
2686     }
2687 
2688     /** Check that all non-override equivalent methods accessible from 'site'
2689      *  are mutually compatible (JLS 8.4.8/9.4.1).
2690      *
2691      *  @param pos  Position to be used for error reporting.
2692      *  @param site The class whose methods are checked.
2693      *  @param sym  The method symbol to be checked.
2694      */
2695     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2696          ClashFilter cf = new ClashFilter(site);
2697         //for each method m1 that is overridden (directly or indirectly)
2698         //by method 'sym' in 'site'...
2699 
2700         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2701         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2702         for (Symbol m1 : symbolsByName) {
2703             if (!sym.overrides(m1, site.tsym, types, false)) {
2704                 continue;
2705             }
2706 
2707             //...check each method m2 that is a member of 'site'
2708             for (Symbol m2 : symbolsByName) {
2709                 if (m2 == m1) continue;
2710                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2711                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2712                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2713                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2714                     sym.flags_field |= CLASH;
2715                     if (m1 == sym) {
2716                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2717                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2718                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2719                     } else {
2720                         ClassType ct = (ClassType)site;
2721                         String kind = ct.isInterface() ? "interface" : "class";
2722                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2723                             kind,
2724                             ct.tsym.name,
2725                             m1.name,
2726                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2727                             m1.location(),
2728                             m2.name,
2729                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2730                             m2.location()));
2731                     }
2732                     return;
2733                 }
2734             }
2735         }
2736     }
2737 
2738     /** Check that all static methods accessible from 'site' are
2739      *  mutually compatible (JLS 8.4.8).
2740      *
2741      *  @param pos  Position to be used for error reporting.
2742      *  @param site The class whose methods are checked.
2743      *  @param sym  The method symbol to be checked.
2744      */
2745     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2746         ClashFilter cf = new ClashFilter(site);
2747         //for each method m1 that is a member of 'site'...
2748         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2749             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2750             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2751             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2752                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2753                     log.error(pos,
2754                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2755                     return;
2756                 }
2757             }
2758          }
2759      }
2760 
2761      //where
2762      private class ClashFilter implements Predicate<Symbol> {
2763 
2764          Type site;
2765 
2766          ClashFilter(Type site) {
2767              this.site = site;
2768          }
2769 
2770          boolean shouldSkip(Symbol s) {
2771              return (s.flags() & CLASH) != 0 &&
2772                 s.owner == site.tsym;
2773          }
2774 
2775          @Override
2776          public boolean test(Symbol s) {
2777              return s.kind == MTH &&
2778                      (s.flags() & SYNTHETIC) == 0 &&
2779                      !shouldSkip(s) &&
2780                      s.isInheritedIn(site.tsym, types) &&
2781                      !s.isConstructor();
2782          }
2783      }
2784 
2785     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2786         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2787         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2788             Assert.check(m.kind == MTH);
2789             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2790             if (prov.size() > 1) {
2791                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2792                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2793                 for (MethodSymbol provSym : prov) {
2794                     if ((provSym.flags() & DEFAULT) != 0) {
2795                         defaults = defaults.append(provSym);
2796                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2797                         abstracts = abstracts.append(provSym);
2798                     }
2799                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2800                         //strong semantics - issue an error if two sibling interfaces
2801                         //have two override-equivalent defaults - or if one is abstract
2802                         //and the other is default
2803                         Fragment diagKey;
2804                         Symbol s1 = defaults.first();
2805                         Symbol s2;
2806                         if (defaults.size() > 1) {
2807                             s2 = defaults.toList().tail.head;
2808                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2809                                     m.name, types.memberType(site, m).getParameterTypes(),
2810                                     s1.location(), s2.location());
2811 
2812                         } else {
2813                             s2 = abstracts.first();
2814                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2815                                     m.name, types.memberType(site, m).getParameterTypes(),
2816                                     s1.location(), s2.location());
2817                         }
2818                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2819                         break;
2820                     }
2821                 }
2822             }
2823         }
2824     }
2825 
2826     //where
2827      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2828 
2829          Type site;
2830 
2831          DefaultMethodClashFilter(Type site) {
2832              this.site = site;
2833          }
2834 
2835          @Override
2836          public boolean test(Symbol s) {
2837              return s.kind == MTH &&
2838                      (s.flags() & DEFAULT) != 0 &&
2839                      s.isInheritedIn(site.tsym, types) &&
2840                      !s.isConstructor();
2841          }
2842      }
2843 
2844     /** Report warnings for potentially ambiguous method declarations in the given site. */
2845     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2846 
2847         // Skip if warning not enabled
2848         if (!lint.isEnabled(LintCategory.OVERLOADS))
2849             return;
2850 
2851         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2852         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2853             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2854 
2855         // Build the predicate that determines if site is responsible for an ambiguity
2856         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2857 
2858         // Now remove overridden methods from each group, leaving only site's actual members
2859         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2860 
2861         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2862         methodGroups.forEach(list -> list.removeIf(
2863             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2864 
2865         // Warn about ambiguous overload method pairs for which site is responsible
2866         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2867 
2868             // See if this is an ambiguous overload for which "site" is responsible
2869             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2870                 return 0;
2871 
2872             // Locate the warning at one of the methods, if possible
2873             DiagnosticPosition pos =
2874                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2875                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2876                 tree.pos();
2877 
2878             // Log the warning
2879             log.warning(LintCategory.OVERLOADS, pos,
2880                 Warnings.PotentiallyAmbiguousOverload(
2881                     m1.asMemberOf(site, types), m1.location(),
2882                     m2.asMemberOf(site, types), m2.location()));
2883 
2884             // Don't warn again for either of these two methods
2885             return FIRST | SECOND;
2886         }));
2887     }
2888 
2889     /** Build a predicate that determines, given two methods that are members of the given class,
2890      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2891      *
2892      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2893      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2894      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2895      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2896      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2897      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2898      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2899      *  As an optimization, we first check if either method is declared in C and does not override
2900      *  any other methods; in this case the class is definitely responsible.
2901      */
2902     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2903         List<? extends Collection<MethodSymbol>> methodGroups) {
2904 
2905         // Define the "overrides" predicate
2906         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2907 
2908         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2909         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2910         methodGroups.forEach(list -> {
2911             for (MethodSymbol m : list) {
2912 
2913                 // Skip methods not declared in site
2914                 if (m.owner != site.tsym)
2915                     continue;
2916 
2917                 // Gather all supertype methods overridden by m, directly or indirectly
2918                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2919                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2920                   .collect(Collectors.toCollection(ArrayList::new));
2921 
2922                 // Eliminate non-direct overrides
2923                 removePreempted(overriddenMethods, overrides);
2924 
2925                 // Add to map
2926                 overriddenMethodsMap.put(m, overriddenMethods);
2927             }
2928         });
2929 
2930         // Build the predicate
2931         return (m1, m2) -> {
2932 
2933             // Get corresponding supertype methods (if declared in site)
2934             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2935             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2936 
2937             // Quick check for the case where a method was added by site itself
2938             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2939                 return true;
2940             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2941                 return true;
2942 
2943             // Get each method's corresponding method(s) from supertypes of site
2944             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2945               overriddenMethods1 : Collections.singletonList(m1);
2946             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2947               overriddenMethods2 : Collections.singletonList(m2);
2948 
2949             // See if we can blame some direct supertype instead
2950             return types.directSupertypes(site).stream()
2951               .filter(stype -> stype != syms.objectType)
2952               .map(stype -> stype.tsym.type)                // view supertype in its original form
2953               .noneMatch(stype -> {
2954                 for (MethodSymbol sm1 : supertypeMethods1) {
2955                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2956                         continue;
2957                     for (MethodSymbol sm2 : supertypeMethods2) {
2958                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2959                             continue;
2960                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2961                             return true;
2962                     }
2963                 }
2964                 return false;
2965             });
2966         };
2967     }
2968 
2969     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2970      *  after applying the given filter.
2971      */
2972     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2973             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2974         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2975         return StreamSupport.stream(symbols.spliterator(), false)
2976           .map(MethodSymbol.class::cast)
2977           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2978           .entrySet()
2979           .stream()
2980           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2981           .map(Map.Entry::getValue)
2982           .collect(List.collector());
2983     }
2984 
2985     /** Compare elements in a list pair-wise in order to remove some of them.
2986      *  @param list mutable list of items
2987      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2988      */
2989     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2990         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2991             T item1 = list.get(index1);
2992             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2993                 T item2 = list.get(index2);
2994                 int flags = comparer.applyAsInt(item1, item2);
2995                 if ((flags & SECOND) != 0)
2996                     list.remove(index2--);          // remove item2
2997                 if ((flags & FIRST) != 0) {
2998                     list.remove(index1--);          // remove item1
2999                     break;
3000                 }
3001             }
3002         }
3003     }
3004 
3005     /** Remove elements in a list that are preempted by some other element in the list.
3006      *  @param list mutable list of items
3007      *  @param preempts decides if one item preempts another, causing the second one to be removed
3008      */
3009     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
3010         compareAndRemove(list, (item1, item2) -> {
3011             int flags = 0;
3012             if (preempts.test(item1, item2))
3013                 flags |= SECOND;
3014             if (preempts.test(item2, item1))
3015                 flags |= FIRST;
3016             return flags;
3017         });
3018     }
3019 
3020     /** Filters method candidates for the "potentially ambiguous method" check */
3021     class PotentiallyAmbiguousFilter extends ClashFilter {
3022 
3023         PotentiallyAmbiguousFilter(Type site) {
3024             super(site);
3025         }
3026 
3027         @Override
3028         boolean shouldSkip(Symbol s) {
3029             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
3030         }
3031     }
3032 
3033     /**
3034       * Report warnings for potentially ambiguous method declarations. Two declarations
3035       * are potentially ambiguous if they feature two unrelated functional interface
3036       * in same argument position (in which case, a call site passing an implicit
3037       * lambda would be ambiguous). This assumes they already have the same name.
3038       */
3039     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
3040         Assert.check(msym1.name == msym2.name);
3041         if (msym1 == msym2)
3042             return false;
3043         Type mt1 = types.memberType(site, msym1);
3044         Type mt2 = types.memberType(site, msym2);
3045         //if both generic methods, adjust type variables
3046         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
3047                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
3048             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
3049         }
3050         //expand varargs methods if needed
3051         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
3052         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
3053         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
3054         //if arities don't match, exit
3055         if (args1.length() != args2.length())
3056             return false;
3057         boolean potentiallyAmbiguous = false;
3058         while (args1.nonEmpty() && args2.nonEmpty()) {
3059             Type s = args1.head;
3060             Type t = args2.head;
3061             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
3062                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
3063                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
3064                         types.findDescriptorType(s).getParameterTypes().length() ==
3065                         types.findDescriptorType(t).getParameterTypes().length()) {
3066                     potentiallyAmbiguous = true;
3067                 } else {
3068                     return false;
3069                 }
3070             }
3071             args1 = args1.tail;
3072             args2 = args2.tail;
3073         }
3074         return potentiallyAmbiguous;
3075     }
3076 
3077     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
3078         if (warnOnAnyAccessToMembers ||
3079             (lint.isEnabled(LintCategory.SERIAL) &&
3080             !lint.isSuppressed(LintCategory.SERIAL) &&
3081             isLambda)) {
3082             Symbol sym = TreeInfo.symbol(tree);
3083             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
3084                 return;
3085             }
3086 
3087             if (sym.kind == VAR) {
3088                 if ((sym.flags() & PARAMETER) != 0 ||
3089                     sym.isDirectlyOrIndirectlyLocal() ||
3090                     sym.name == names._this ||
3091                     sym.name == names._super) {
3092                     return;
3093                 }
3094             }
3095 
3096             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
3097                 isEffectivelyNonPublic(sym)) {
3098                 if (isLambda) {
3099                     if (belongsToRestrictedPackage(sym)) {
3100                         log.warning(LintCategory.SERIAL, tree.pos(),
3101                                     Warnings.AccessToMemberFromSerializableLambda(sym));
3102                     }
3103                 } else {
3104                     log.warning(tree.pos(),
3105                                 Warnings.AccessToMemberFromSerializableElement(sym));
3106                 }
3107             }
3108         }
3109     }
3110 
3111     private boolean isEffectivelyNonPublic(Symbol sym) {
3112         if (sym.packge() == syms.rootPackage) {
3113             return false;
3114         }
3115 
3116         while (sym.kind != PCK) {
3117             if ((sym.flags() & PUBLIC) == 0) {
3118                 return true;
3119             }
3120             sym = sym.owner;
3121         }
3122         return false;
3123     }
3124 
3125     private boolean belongsToRestrictedPackage(Symbol sym) {
3126         String fullName = sym.packge().fullname.toString();
3127         return fullName.startsWith("java.") ||
3128                 fullName.startsWith("javax.") ||
3129                 fullName.startsWith("sun.") ||
3130                 fullName.contains(".internal.");
3131     }
3132 
3133     /** Check that class c does not implement directly or indirectly
3134      *  the same parameterized interface with two different argument lists.
3135      *  @param pos          Position to be used for error reporting.
3136      *  @param type         The type whose interfaces are checked.
3137      */
3138     void checkClassBounds(DiagnosticPosition pos, Type type) {
3139         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
3140     }
3141 //where
3142         /** Enter all interfaces of type `type' into the hash table `seensofar'
3143          *  with their class symbol as key and their type as value. Make
3144          *  sure no class is entered with two different types.
3145          */
3146         void checkClassBounds(DiagnosticPosition pos,
3147                               Map<TypeSymbol,Type> seensofar,
3148                               Type type) {
3149             if (type.isErroneous()) return;
3150             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
3151                 Type it = l.head;
3152                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
3153 
3154                 Type oldit = seensofar.put(it.tsym, it);
3155                 if (oldit != null) {
3156                     List<Type> oldparams = oldit.allparams();
3157                     List<Type> newparams = it.allparams();
3158                     if (!types.containsTypeEquivalent(oldparams, newparams))
3159                         log.error(pos,
3160                                   Errors.CantInheritDiffArg(it.tsym,
3161                                                             Type.toString(oldparams),
3162                                                             Type.toString(newparams)));
3163                 }
3164                 checkClassBounds(pos, seensofar, it);
3165             }
3166             Type st = types.supertype(type);
3167             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
3168             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
3169         }
3170 
3171     /** Enter interface into into set.
3172      *  If it existed already, issue a "repeated interface" error.
3173      */
3174     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
3175         if (its.contains(it.tsym))
3176             log.error(pos, Errors.RepeatedInterface);
3177         else {
3178             its.add(it.tsym);
3179         }
3180     }
3181 
3182 /* *************************************************************************
3183  * Check annotations
3184  **************************************************************************/
3185 
3186     /**
3187      * Recursively validate annotations values
3188      */
3189     void validateAnnotationTree(JCTree tree) {
3190         class AnnotationValidator extends TreeScanner {
3191             @Override
3192             public void visitAnnotation(JCAnnotation tree) {
3193                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
3194                     super.visitAnnotation(tree);
3195                     validateAnnotation(tree);
3196                 }
3197             }
3198         }
3199         tree.accept(new AnnotationValidator());
3200     }
3201 
3202     /**
3203      *  {@literal
3204      *  Annotation types are restricted to primitives, String, an
3205      *  enum, an annotation, Class, Class<?>, Class<? extends
3206      *  Anything>, arrays of the preceding.
3207      *  }
3208      */
3209     void validateAnnotationType(JCTree restype) {
3210         // restype may be null if an error occurred, so don't bother validating it
3211         if (restype != null) {
3212             validateAnnotationType(restype.pos(), restype.type);
3213         }
3214     }
3215 
3216     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3217         if (type.isPrimitive()) return;
3218         if (types.isSameType(type, syms.stringType)) return;
3219         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3220         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3221         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3222         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3223             validateAnnotationType(pos, types.elemtype(type));
3224             return;
3225         }
3226         log.error(pos, Errors.InvalidAnnotationMemberType);
3227     }
3228 
3229     /**
3230      * "It is also a compile-time error if any method declared in an
3231      * annotation type has a signature that is override-equivalent to
3232      * that of any public or protected method declared in class Object
3233      * or in the interface annotation.Annotation."
3234      *
3235      * @jls 9.6 Annotation Types
3236      */
3237     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3238         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3239             Scope s = sup.tsym.members();
3240             for (Symbol sym : s.getSymbolsByName(m.name)) {
3241                 if (sym.kind == MTH &&
3242                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3243                     types.overrideEquivalent(m.type, sym.type))
3244                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3245             }
3246         }
3247     }
3248 
3249     /** Check the annotations of a symbol.
3250      */
3251     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3252         for (JCAnnotation a : annotations)
3253             validateAnnotation(a, declarationTree, s);
3254     }
3255 
3256     /** Check the type annotations.
3257      */
3258     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3259         for (JCAnnotation a : annotations)
3260             validateTypeAnnotation(a, s, isTypeParameter);
3261     }
3262 
3263     /** Check an annotation of a symbol.
3264      */
3265     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3266         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3267          *  this can impact in particular records for which annotations are forcibly propagated.
3268          */
3269         validateAnnotationTree(a);
3270         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3271 
3272         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3273                 declarationTree.hasTag(VARDEF) &&
3274                 s.owner.kind == TYP;
3275 
3276         if (isRecordField) {
3277             // first we need to check if the annotation is applicable to records
3278             Name[] targets = getTargetNames(a);
3279             boolean appliesToRecords = false;
3280             for (Name target : targets) {
3281                 appliesToRecords =
3282                                 target == names.FIELD ||
3283                                 target == names.PARAMETER ||
3284                                 target == names.METHOD ||
3285                                 target == names.TYPE_USE ||
3286                                 target == names.RECORD_COMPONENT;
3287                 if (appliesToRecords) {
3288                     break;
3289                 }
3290             }
3291             if (!appliesToRecords) {
3292                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3293             } else {
3294                 /* lets now find the annotations in the field that are targeted to record components and append them to
3295                  * the corresponding record component
3296                  */
3297                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3298                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3299                 SymbolMetadata metadata = rc.getMetadata();
3300                 if (metadata == null || metadata.isEmpty()) {
3301                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3302                      * to the record component declaration
3303                      */
3304                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3305                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3306                     ).collect(List.collector()));
3307 
3308                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3309                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3310                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3311                             if (rcAnnot.pos == fieldAnnot.pos) {
3312                                 rcAnnot.setType(fieldAnnot.type);
3313                                 break;
3314                             }
3315                         }
3316                     }
3317 
3318                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3319                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3320                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3321                      * annotations in the SE5 annotation location.
3322                      *
3323                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3324                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3325                      */
3326                 }
3327             }
3328         }
3329 
3330         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3331          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3332          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3333          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3334          * to all the possible locations.
3335          *
3336          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3337          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3338          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3339          * was both a field and a record component.
3340          *
3341          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3342          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3343          * be see by annotation processors.
3344          *
3345          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3346          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3347          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3348          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3349          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3350          *
3351          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3352          * further inspection by annotation processors.
3353          *
3354          * For example:
3355          *
3356          *     import java.lang.annotation.*;
3357          *
3358          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3359          *     @Retention(RetentionPolicy.RUNTIME)
3360          *     @interface Anno { }
3361          *
3362          *     record R(@Anno String s) {}
3363          *
3364          * at this point we will have for the case of the generated field:
3365          *   - @Anno in the modifier
3366          *   - @Anno as a type annotation
3367          *   - @Anno as a declaration annotation
3368          *
3369          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3370          * declaration annotation because the field was being treated both as a field and as a record component
3371          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3372          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3373          * is applicable as a type annotation to the type of the field.
3374          */
3375 
3376         if (a.type.tsym.isAnnotationType()) {
3377             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3378             if (!applicableTargetsOp.isEmpty()) {
3379                 Set<Name> applicableTargets = applicableTargetsOp.get();
3380                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3381                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3382                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3383                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3384 
3385                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3386                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3387                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3388                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3389                              * that are not applicable to the given record member
3390                              */
3391                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3392                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3393                              * it could be a type annotation
3394                              */
3395                         if (modifiers != null && applicableTargets.isEmpty()) {
3396                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3397                             for (JCAnnotation anno : modifiers.annotations) {
3398                                 if (anno != a) {
3399                                     newAnnotations.add(anno);
3400                                 }
3401                             }
3402                             modifiers.annotations = newAnnotations.toList();
3403                         }
3404                         // now lets remove it from the symbol
3405                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3406                     } else {
3407                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3408                     }
3409                 }
3410                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3411                  * then this is an error as we know that no compiler generated accessor will be a varargs
3412                  * method, better to fail asap
3413                  */
3414                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3415                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3416                 }
3417             }
3418         }
3419 
3420         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3421             if (s.kind != TYP) {
3422                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3423             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3424                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3425             }
3426         }
3427     }
3428 
3429     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3430         Assert.checkNonNull(a.type);
3431         // we just want to validate that the anotation doesn't have any wrong target
3432         if (s != null) getApplicableTargets(a, s);
3433         validateAnnotationTree(a);
3434 
3435         if (a.hasTag(TYPE_ANNOTATION) &&
3436                 !a.annotationType.type.isErroneous() &&
3437                 !isTypeAnnotation(a, isTypeParameter)) {
3438             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3439         }
3440     }
3441 
3442     /**
3443      * Validate the proposed container 'repeatable' on the
3444      * annotation type symbol 's'. Report errors at position
3445      * 'pos'.
3446      *
3447      * @param s The (annotation)type declaration annotated with a @Repeatable
3448      * @param repeatable the @Repeatable on 's'
3449      * @param pos where to report errors
3450      */
3451     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3452         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3453 
3454         Type t = null;
3455         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3456         if (!l.isEmpty()) {
3457             Assert.check(l.head.fst.name == names.value);
3458             if (l.head.snd instanceof Attribute.Class) {
3459                 t = ((Attribute.Class)l.head.snd).getValue();
3460             }
3461         }
3462 
3463         if (t == null) {
3464             // errors should already have been reported during Annotate
3465             return;
3466         }
3467 
3468         validateValue(t.tsym, s, pos);
3469         validateRetention(t.tsym, s, pos);
3470         validateDocumented(t.tsym, s, pos);
3471         validateInherited(t.tsym, s, pos);
3472         validateTarget(t.tsym, s, pos);
3473         validateDefault(t.tsym, pos);
3474     }
3475 
3476     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3477         Symbol sym = container.members().findFirst(names.value);
3478         if (sym != null && sym.kind == MTH) {
3479             MethodSymbol m = (MethodSymbol) sym;
3480             Type ret = m.getReturnType();
3481             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3482                 log.error(pos,
3483                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3484                                                                         ret,
3485                                                                         types.makeArrayType(contained.type)));
3486             }
3487         } else {
3488             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3489         }
3490     }
3491 
3492     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3493         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3494         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3495 
3496         boolean error = false;
3497         switch (containedRetention) {
3498         case RUNTIME:
3499             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3500                 error = true;
3501             }
3502             break;
3503         case CLASS:
3504             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3505                 error = true;
3506             }
3507         }
3508         if (error ) {
3509             log.error(pos,
3510                       Errors.InvalidRepeatableAnnotationRetention(container,
3511                                                                   containerRetention.name(),
3512                                                                   contained,
3513                                                                   containedRetention.name()));
3514         }
3515     }
3516 
3517     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3518         if (contained.attribute(syms.documentedType.tsym) != null) {
3519             if (container.attribute(syms.documentedType.tsym) == null) {
3520                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3521             }
3522         }
3523     }
3524 
3525     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3526         if (contained.attribute(syms.inheritedType.tsym) != null) {
3527             if (container.attribute(syms.inheritedType.tsym) == null) {
3528                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3529             }
3530         }
3531     }
3532 
3533     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3534         // The set of targets the container is applicable to must be a subset
3535         // (with respect to annotation target semantics) of the set of targets
3536         // the contained is applicable to. The target sets may be implicit or
3537         // explicit.
3538 
3539         Set<Name> containerTargets;
3540         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3541         if (containerTarget == null) {
3542             containerTargets = getDefaultTargetSet();
3543         } else {
3544             containerTargets = new HashSet<>();
3545             for (Attribute app : containerTarget.values) {
3546                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3547                     continue; // recovery
3548                 }
3549                 containerTargets.add(attributeEnum.value.name);
3550             }
3551         }
3552 
3553         Set<Name> containedTargets;
3554         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3555         if (containedTarget == null) {
3556             containedTargets = getDefaultTargetSet();
3557         } else {
3558             containedTargets = new HashSet<>();
3559             for (Attribute app : containedTarget.values) {
3560                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3561                     continue; // recovery
3562                 }
3563                 containedTargets.add(attributeEnum.value.name);
3564             }
3565         }
3566 
3567         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3568             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3569         }
3570     }
3571 
3572     /* get a set of names for the default target */
3573     private Set<Name> getDefaultTargetSet() {
3574         if (defaultTargets == null) {
3575             defaultTargets = Set.of(defaultTargetMetaInfo());
3576         }
3577 
3578         return defaultTargets;
3579     }
3580     private Set<Name> defaultTargets;
3581 
3582 
3583     /** Checks that s is a subset of t, with respect to ElementType
3584      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3585      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3586      * TYPE_PARAMETER}.
3587      */
3588     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3589         // Check that all elements in s are present in t
3590         for (Name n2 : s) {
3591             boolean currentElementOk = false;
3592             for (Name n1 : t) {
3593                 if (n1 == n2) {
3594                     currentElementOk = true;
3595                     break;
3596                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3597                     currentElementOk = true;
3598                     break;
3599                 } else if (n1 == names.TYPE_USE &&
3600                         (n2 == names.TYPE ||
3601                          n2 == names.ANNOTATION_TYPE ||
3602                          n2 == names.TYPE_PARAMETER)) {
3603                     currentElementOk = true;
3604                     break;
3605                 }
3606             }
3607             if (!currentElementOk)
3608                 return false;
3609         }
3610         return true;
3611     }
3612 
3613     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3614         // validate that all other elements of containing type has defaults
3615         Scope scope = container.members();
3616         for(Symbol elm : scope.getSymbols()) {
3617             if (elm.name != names.value &&
3618                 elm.kind == MTH &&
3619                 ((MethodSymbol)elm).defaultValue == null) {
3620                 log.error(pos,
3621                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3622             }
3623         }
3624     }
3625 
3626     /** Is s a method symbol that overrides a method in a superclass? */
3627     boolean isOverrider(Symbol s) {
3628         if (s.kind != MTH || s.isStatic())
3629             return false;
3630         MethodSymbol m = (MethodSymbol)s;
3631         TypeSymbol owner = (TypeSymbol)m.owner;
3632         for (Type sup : types.closure(owner.type)) {
3633             if (sup == owner.type)
3634                 continue; // skip "this"
3635             Scope scope = sup.tsym.members();
3636             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3637                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3638                     return true;
3639             }
3640         }
3641         return false;
3642     }
3643 
3644     /** Is the annotation applicable to types? */
3645     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3646         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3647         return (targets == null) ?
3648                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3649                 targets.stream()
3650                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3651     }
3652     //where
3653         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3654             Attribute.Enum e = (Attribute.Enum)a;
3655             return (e.value.name == names.TYPE_USE ||
3656                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3657         }
3658 
3659     /** Is the annotation applicable to the symbol? */
3660     Name[] getTargetNames(JCAnnotation a) {
3661         return getTargetNames(a.annotationType.type.tsym);
3662     }
3663 
3664     public Name[] getTargetNames(TypeSymbol annoSym) {
3665         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3666         Name[] targets;
3667         if (arr == null) {
3668             targets = defaultTargetMetaInfo();
3669         } else {
3670             // TODO: can we optimize this?
3671             targets = new Name[arr.values.length];
3672             for (int i=0; i<arr.values.length; ++i) {
3673                 Attribute app = arr.values[i];
3674                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3675                     return new Name[0];
3676                 }
3677                 targets[i] = attributeEnum.value.name;
3678             }
3679         }
3680         return targets;
3681     }
3682 
3683     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3684         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3685         /* the optional could be empty if the annotation is unknown in that case
3686          * we return that it is applicable and if it is erroneous that should imply
3687          * an error at the declaration site
3688          */
3689         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3690     }
3691 
3692     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3693         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3694         Name[] targets;
3695         Set<Name> applicableTargets = new HashSet<>();
3696 
3697         if (arr == null) {
3698             targets = defaultTargetMetaInfo();
3699         } else {
3700             // TODO: can we optimize this?
3701             targets = new Name[arr.values.length];
3702             for (int i=0; i<arr.values.length; ++i) {
3703                 Attribute app = arr.values[i];
3704                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3705                     // recovery
3706                     return Optional.empty();
3707                 }
3708                 targets[i] = attributeEnum.value.name;
3709             }
3710         }
3711         for (Name target : targets) {
3712             if (target == names.TYPE) {
3713                 if (s.kind == TYP)
3714                     applicableTargets.add(names.TYPE);
3715             } else if (target == names.FIELD) {
3716                 if (s.kind == VAR && s.owner.kind != MTH)
3717                     applicableTargets.add(names.FIELD);
3718             } else if (target == names.RECORD_COMPONENT) {
3719                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3720                     applicableTargets.add(names.RECORD_COMPONENT);
3721                 }
3722             } else if (target == names.METHOD) {
3723                 if (s.kind == MTH && !s.isConstructor())
3724                     applicableTargets.add(names.METHOD);
3725             } else if (target == names.PARAMETER) {
3726                 if (s.kind == VAR &&
3727                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3728                     applicableTargets.add(names.PARAMETER);
3729                 }
3730             } else if (target == names.CONSTRUCTOR) {
3731                 if (s.kind == MTH && s.isConstructor())
3732                     applicableTargets.add(names.CONSTRUCTOR);
3733             } else if (target == names.LOCAL_VARIABLE) {
3734                 if (s.kind == VAR && s.owner.kind == MTH &&
3735                       (s.flags() & PARAMETER) == 0) {
3736                     applicableTargets.add(names.LOCAL_VARIABLE);
3737                 }
3738             } else if (target == names.ANNOTATION_TYPE) {
3739                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3740                     applicableTargets.add(names.ANNOTATION_TYPE);
3741                 }
3742             } else if (target == names.PACKAGE) {
3743                 if (s.kind == PCK)
3744                     applicableTargets.add(names.PACKAGE);
3745             } else if (target == names.TYPE_USE) {
3746                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3747                     //cannot type annotate implicitly typed locals
3748                     continue;
3749                 } else if (s.kind == TYP || s.kind == VAR ||
3750                         (s.kind == MTH && !s.isConstructor() &&
3751                                 !s.type.getReturnType().hasTag(VOID)) ||
3752                         (s.kind == MTH && s.isConstructor())) {
3753                     applicableTargets.add(names.TYPE_USE);
3754                 }
3755             } else if (target == names.TYPE_PARAMETER) {
3756                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3757                     applicableTargets.add(names.TYPE_PARAMETER);
3758             } else if (target == names.MODULE) {
3759                 if (s.kind == MDL)
3760                     applicableTargets.add(names.MODULE);
3761             } else {
3762                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3763                 return Optional.empty(); // Unknown ElementType
3764             }
3765         }
3766         return Optional.of(applicableTargets);
3767     }
3768 
3769     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3770         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3771         if (atTarget == null) return null; // ok, is applicable
3772         Attribute atValue = atTarget.member(names.value);
3773         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3774     }
3775 
3776     private Name[] dfltTargetMeta;
3777     private Name[] defaultTargetMetaInfo() {
3778         if (dfltTargetMeta == null) {
3779             ArrayList<Name> defaultTargets = new ArrayList<>();
3780             defaultTargets.add(names.PACKAGE);
3781             defaultTargets.add(names.TYPE);
3782             defaultTargets.add(names.FIELD);
3783             defaultTargets.add(names.METHOD);
3784             defaultTargets.add(names.CONSTRUCTOR);
3785             defaultTargets.add(names.ANNOTATION_TYPE);
3786             defaultTargets.add(names.LOCAL_VARIABLE);
3787             defaultTargets.add(names.PARAMETER);
3788             if (allowRecords) {
3789               defaultTargets.add(names.RECORD_COMPONENT);
3790             }
3791             if (allowModules) {
3792               defaultTargets.add(names.MODULE);
3793             }
3794             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3795         }
3796         return dfltTargetMeta;
3797     }
3798 
3799     /** Check an annotation value.
3800      *
3801      * @param a The annotation tree to check
3802      * @return true if this annotation tree is valid, otherwise false
3803      */
3804     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3805         boolean res = false;
3806         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3807         try {
3808             res = validateAnnotation(a);
3809         } finally {
3810             log.popDiagnosticHandler(diagHandler);
3811         }
3812         return res;
3813     }
3814 
3815     private boolean validateAnnotation(JCAnnotation a) {
3816         boolean isValid = true;
3817         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3818 
3819         // collect an inventory of the annotation elements
3820         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3821 
3822         // remove the ones that are assigned values
3823         for (JCTree arg : a.args) {
3824             if (!arg.hasTag(ASSIGN)) continue; // recovery
3825             JCAssign assign = (JCAssign)arg;
3826             Symbol m = TreeInfo.symbol(assign.lhs);
3827             if (m == null || m.type.isErroneous()) continue;
3828             if (!elements.remove(m)) {
3829                 isValid = false;
3830                 log.error(assign.lhs.pos(),
3831                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3832             }
3833         }
3834 
3835         // all the remaining ones better have default values
3836         List<Name> missingDefaults = List.nil();
3837         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3838         for (MethodSymbol m : elements) {
3839             if (m.type.isErroneous())
3840                 continue;
3841 
3842             if (!membersWithDefault.contains(m))
3843                 missingDefaults = missingDefaults.append(m.name);
3844         }
3845         missingDefaults = missingDefaults.reverse();
3846         if (missingDefaults.nonEmpty()) {
3847             isValid = false;
3848             Error errorKey = (missingDefaults.size() > 1)
3849                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3850                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3851             log.error(a.pos(), errorKey);
3852         }
3853 
3854         return isValid && validateTargetAnnotationValue(a);
3855     }
3856 
3857     /* Validate the special java.lang.annotation.Target annotation */
3858     boolean validateTargetAnnotationValue(JCAnnotation a) {
3859         // special case: java.lang.annotation.Target must not have
3860         // repeated values in its value member
3861         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3862                 a.args.tail == null)
3863             return true;
3864 
3865         boolean isValid = true;
3866         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3867         JCAssign assign = (JCAssign) a.args.head;
3868         Symbol m = TreeInfo.symbol(assign.lhs);
3869         if (m.name != names.value) return false;
3870         JCTree rhs = assign.rhs;
3871         if (!rhs.hasTag(NEWARRAY)) return false;
3872         JCNewArray na = (JCNewArray) rhs;
3873         Set<Symbol> targets = new HashSet<>();
3874         for (JCTree elem : na.elems) {
3875             if (!targets.add(TreeInfo.symbol(elem))) {
3876                 isValid = false;
3877                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3878             }
3879         }
3880         return isValid;
3881     }
3882 
3883     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3884         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3885             (s.flags() & DEPRECATED) != 0 &&
3886             !syms.deprecatedType.isErroneous() &&
3887             s.attribute(syms.deprecatedType.tsym) == null) {
3888             log.warning(LintCategory.DEP_ANN,
3889                     pos, Warnings.MissingDeprecatedAnnotation);
3890         }
3891         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3892         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3893             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3894                 log.warning(LintCategory.DEPRECATION, pos,
3895                             Warnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3896             }
3897         }
3898     }
3899 
3900     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3901         checkDeprecated(() -> pos, other, s);
3902     }
3903 
3904     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3905         if ( (s.isDeprecatedForRemoval()
3906                 || s.isDeprecated() && !other.isDeprecated())
3907                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3908                 && s.kind != Kind.PCK) {
3909             deferredLintHandler.report(_l -> warnDeprecated(pos.get(), s));
3910         }
3911     }
3912 
3913     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3914         if ((s.flags() & PROPRIETARY) != 0) {
3915             deferredLintHandler.report(_l -> {
3916                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3917             });
3918         }
3919     }
3920 
3921     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3922         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3923             log.error(pos, Errors.NotInProfile(s, profile));
3924         }
3925     }
3926 
3927     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3928         if ((s.flags() & PREVIEW_API) != 0 && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3929             if ((s.flags() & PREVIEW_REFLECTIVE) == 0) {
3930                 if (!preview.isEnabled()) {
3931                     log.error(pos, Errors.IsPreview(s));
3932                 } else {
3933                     preview.markUsesPreview(pos);
3934                     deferredLintHandler.report(_l -> warnPreviewAPI(pos, Warnings.IsPreview(s)));
3935                 }
3936             } else {
3937                     deferredLintHandler.report(_l -> warnPreviewAPI(pos, Warnings.IsPreviewReflective(s)));
3938             }
3939         }
3940         if (preview.declaredUsingPreviewFeature(s)) {
3941             if (preview.isEnabled()) {
3942                 //for preview disabled do presumably so not need to do anything?
3943                 //If "s" is compiled from source, then there was an error for it already;
3944                 //if "s" is from classfile, there already was an error for the classfile.
3945                 preview.markUsesPreview(pos);
3946                 deferredLintHandler.report(_l -> warnDeclaredUsingPreview(pos, s));
3947             }
3948         }
3949     }
3950 
3951     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3952         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3953             deferredLintHandler.report(_l -> warnRestrictedAPI(pos, s));
3954         }
3955     }
3956 
3957 /* *************************************************************************
3958  * Check for recursive annotation elements.
3959  **************************************************************************/
3960 
3961     /** Check for cycles in the graph of annotation elements.
3962      */
3963     void checkNonCyclicElements(JCClassDecl tree) {
3964         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3965         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3966         try {
3967             tree.sym.flags_field |= LOCKED;
3968             for (JCTree def : tree.defs) {
3969                 if (!def.hasTag(METHODDEF)) continue;
3970                 JCMethodDecl meth = (JCMethodDecl)def;
3971                 checkAnnotationResType(meth.pos(), meth.restype.type);
3972             }
3973         } finally {
3974             tree.sym.flags_field &= ~LOCKED;
3975             tree.sym.flags_field |= ACYCLIC_ANN;
3976         }
3977     }
3978 
3979     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3980         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3981             return;
3982         if ((tsym.flags_field & LOCKED) != 0) {
3983             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3984             return;
3985         }
3986         try {
3987             tsym.flags_field |= LOCKED;
3988             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3989                 if (s.kind != MTH)
3990                     continue;
3991                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3992             }
3993         } finally {
3994             tsym.flags_field &= ~LOCKED;
3995             tsym.flags_field |= ACYCLIC_ANN;
3996         }
3997     }
3998 
3999     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
4000         switch (type.getTag()) {
4001         case CLASS:
4002             if ((type.tsym.flags() & ANNOTATION) != 0)
4003                 checkNonCyclicElementsInternal(pos, type.tsym);
4004             break;
4005         case ARRAY:
4006             checkAnnotationResType(pos, types.elemtype(type));
4007             break;
4008         default:
4009             break; // int etc
4010         }
4011     }
4012 
4013 /* *************************************************************************
4014  * Check for cycles in the constructor call graph.
4015  **************************************************************************/
4016 
4017     /** Check for cycles in the graph of constructors calling other
4018      *  constructors.
4019      */
4020     void checkCyclicConstructors(JCClassDecl tree) {
4021         // use LinkedHashMap so we generate errors deterministically
4022         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
4023 
4024         // enter each constructor this-call into the map
4025         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4026             if (!TreeInfo.isConstructor(l.head))
4027                 continue;
4028             JCMethodDecl meth = (JCMethodDecl)l.head;
4029             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
4030             if (app != null && TreeInfo.name(app.meth) == names._this) {
4031                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
4032             } else {
4033                 meth.sym.flags_field |= ACYCLIC;
4034             }
4035         }
4036 
4037         // Check for cycles in the map
4038         Symbol[] ctors = new Symbol[0];
4039         ctors = callMap.keySet().toArray(ctors);
4040         for (Symbol caller : ctors) {
4041             checkCyclicConstructor(tree, caller, callMap);
4042         }
4043     }
4044 
4045     /** Look in the map to see if the given constructor is part of a
4046      *  call cycle.
4047      */
4048     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
4049                                         Map<Symbol,Symbol> callMap) {
4050         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
4051             if ((ctor.flags_field & LOCKED) != 0) {
4052                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
4053                           Errors.RecursiveCtorInvocation);
4054             } else {
4055                 ctor.flags_field |= LOCKED;
4056                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
4057                 ctor.flags_field &= ~LOCKED;
4058             }
4059             ctor.flags_field |= ACYCLIC;
4060         }
4061     }
4062 
4063 /* *************************************************************************
4064  * Verify the proper placement of super()/this() calls.
4065  *
4066  *    - super()/this() may only appear in constructors
4067  *    - There must be at most one super()/this() call per constructor
4068  *    - The super()/this() call, if any, must be a top-level statement in the
4069  *      constructor, i.e., not nested inside any other statement or block
4070  *    - There must be no return statements prior to the super()/this() call
4071  **************************************************************************/
4072 
4073     void checkSuperInitCalls(JCClassDecl tree) {
4074         new SuperThisChecker().check(tree);
4075     }
4076 
4077     private class SuperThisChecker extends TreeScanner {
4078 
4079         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
4080         private static final int MATCH_SCAN_DEPTH = 3;
4081 
4082         private boolean constructor;        // is this method a constructor?
4083         private boolean firstStatement;     // at the first statement in method?
4084         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
4085         private Name initCall;              // whichever of "super" or "init" we've seen already
4086         private int scanDepth;              // current scan recursion depth in method body
4087 
4088         public void check(JCClassDecl classDef) {
4089             scan(classDef.defs);
4090         }
4091 
4092         @Override
4093         public void visitMethodDef(JCMethodDecl tree) {
4094             Assert.check(!constructor);
4095             Assert.check(earlyReturn == null);
4096             Assert.check(initCall == null);
4097             Assert.check(scanDepth == 1);
4098 
4099             // Initialize state for this method
4100             constructor = TreeInfo.isConstructor(tree);
4101             try {
4102 
4103                 // Scan method body
4104                 if (tree.body != null) {
4105                     firstStatement = true;
4106                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
4107                         scan(l.head);
4108                         firstStatement = false;
4109                     }
4110                 }
4111 
4112                 // Verify no 'return' seen prior to an explicit super()/this() call
4113                 if (constructor && earlyReturn != null && initCall != null)
4114                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
4115             } finally {
4116                 firstStatement = false;
4117                 constructor = false;
4118                 earlyReturn = null;
4119                 initCall = null;
4120             }
4121         }
4122 
4123         @Override
4124         public void scan(JCTree tree) {
4125             scanDepth++;
4126             try {
4127                 super.scan(tree);
4128             } finally {
4129                 scanDepth--;
4130             }
4131         }
4132 
4133         @Override
4134         public void visitApply(JCMethodInvocation apply) {
4135             do {
4136 
4137                 // Is this a super() or this() call?
4138                 Name methodName = TreeInfo.name(apply.meth);
4139                 if (methodName != names._super && methodName != names._this)
4140                     break;
4141 
4142                 // super()/this() calls must only appear in a constructor
4143                 if (!constructor) {
4144                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
4145                     break;
4146                 }
4147 
4148                 // super()/this() calls must be a top level statement
4149                 if (scanDepth != MATCH_SCAN_DEPTH) {
4150                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
4151                     break;
4152                 }
4153 
4154                 // super()/this() calls must not appear more than once
4155                 if (initCall != null) {
4156                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
4157                     break;
4158                 }
4159 
4160                 // If super()/this() isn't first, require flexible constructors feature
4161                 if (!firstStatement)
4162                     preview.checkSourceLevel(apply.pos(), Feature.FLEXIBLE_CONSTRUCTORS);
4163 
4164                 // We found a legitimate super()/this() call; remember it
4165                 initCall = methodName;
4166             } while (false);
4167 
4168             // Proceed
4169             super.visitApply(apply);
4170         }
4171 
4172         @Override
4173         public void visitReturn(JCReturn tree) {
4174             if (constructor && initCall == null && earlyReturn == null)
4175                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
4176             super.visitReturn(tree);
4177         }
4178 
4179         @Override
4180         public void visitClassDef(JCClassDecl tree) {
4181             // don't descend any further
4182         }
4183     }
4184 
4185 /* *************************************************************************
4186  * Miscellaneous
4187  **************************************************************************/
4188 
4189     /**
4190      *  Check for division by integer constant zero
4191      *  @param pos           Position for error reporting.
4192      *  @param operator      The operator for the expression
4193      *  @param operand       The right hand operand for the expression
4194      */
4195     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4196         if (operand.constValue() != null
4197             && operand.getTag().isSubRangeOf(LONG)
4198             && ((Number) (operand.constValue())).longValue() == 0) {
4199             int opc = ((OperatorSymbol)operator).opcode;
4200             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4201                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4202                 deferredLintHandler.report(_l -> warnDivZero(pos));
4203             }
4204         }
4205     }
4206 
4207     /**
4208      *  Check for possible loss of precission
4209      *  @param pos           Position for error reporting.
4210      *  @param found    The computed type of the tree
4211      *  @param req  The computed type of the tree
4212      */
4213     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4214         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4215             deferredLintHandler.report(_l -> {
4216                 if (lint.isEnabled(LintCategory.LOSSY_CONVERSIONS))
4217                     log.warning(LintCategory.LOSSY_CONVERSIONS,
4218                             pos, Warnings.PossibleLossOfPrecision(found, req));
4219             });
4220         }
4221     }
4222 
4223     /**
4224      * Check for empty statements after if
4225      */
4226     void checkEmptyIf(JCIf tree) {
4227         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
4228                 lint.isEnabled(LintCategory.EMPTY))
4229             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), Warnings.EmptyIf);
4230     }
4231 
4232     /** Check that symbol is unique in given scope.
4233      *  @param pos           Position for error reporting.
4234      *  @param sym           The symbol.
4235      *  @param s             The scope.
4236      */
4237     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4238         if (sym.type.isErroneous())
4239             return true;
4240         if (sym.owner.name == names.any) return false;
4241         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4242             if (sym != byName &&
4243                     (byName.flags() & CLASH) == 0 &&
4244                     sym.kind == byName.kind &&
4245                     sym.name != names.error &&
4246                     (sym.kind != MTH ||
4247                      types.hasSameArgs(sym.type, byName.type) ||
4248                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4249                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4250                     sym.flags_field |= CLASH;
4251                     varargsDuplicateError(pos, sym, byName);
4252                     return true;
4253                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4254                     duplicateErasureError(pos, sym, byName);
4255                     sym.flags_field |= CLASH;
4256                     return true;
4257                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4258                            (byName.flags() & MATCH_BINDING) != 0 &&
4259                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4260                     if (!sym.type.isErroneous()) {
4261                         log.error(pos, Errors.MatchBindingExists);
4262                         sym.flags_field |= CLASH;
4263                     }
4264                     return false;
4265                 } else {
4266                     duplicateError(pos, byName);
4267                     return false;
4268                 }
4269             }
4270         }
4271         return true;
4272     }
4273 
4274     /** Report duplicate declaration error.
4275      */
4276     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4277         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4278             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4279         }
4280     }
4281 
4282     /**Check that types imported through the ordinary imports don't clash with types imported
4283      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4284      * types without an error on the imports.
4285      * @param toplevel       The toplevel tree for which the test should be performed.
4286      */
4287     void checkImportsUnique(JCCompilationUnit toplevel) {
4288         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4289         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4290         WriteableScope topLevelScope = toplevel.toplevelScope;
4291 
4292         for (JCTree def : toplevel.defs) {
4293             if (!def.hasTag(IMPORT))
4294                 continue;
4295 
4296             JCImport imp = (JCImport) def;
4297 
4298             if (imp.importScope == null)
4299                 continue;
4300 
4301             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4302                 if (imp.isStatic()) {
4303                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4304                     staticallyImportedSoFar.enter(sym);
4305                 } else {
4306                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4307                     ordinallyImportedSoFar.enter(sym);
4308                 }
4309             }
4310 
4311             imp.importScope = null;
4312         }
4313     }
4314 
4315     /** Check that single-type import is not already imported or top-level defined,
4316      *  but make an exception for two single-type imports which denote the same type.
4317      *  @param pos                     Position for error reporting.
4318      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4319      *                                 ordinary imports.
4320      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4321      *                                 static imports.
4322      *  @param topLevelScope           The current file's top-level Scope
4323      *  @param sym                     The symbol.
4324      *  @param staticImport            Whether or not this was a static import
4325      */
4326     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4327                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4328                                       Symbol sym, boolean staticImport) {
4329         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4330         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4331         Symbol staticClashing = null;
4332         if (ordinaryClashing == null && !staticImport) {
4333             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4334         }
4335         if (ordinaryClashing != null || staticClashing != null) {
4336             if (ordinaryClashing != null)
4337                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4338             else
4339                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4340             return false;
4341         }
4342         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4343         if (clashing != null) {
4344             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4345             return false;
4346         }
4347         return true;
4348     }
4349 
4350     /** Check that a qualified name is in canonical form (for import decls).
4351      */
4352     public void checkCanonical(JCTree tree) {
4353         if (!isCanonical(tree))
4354             log.error(tree.pos(),
4355                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4356     }
4357         // where
4358         private boolean isCanonical(JCTree tree) {
4359             while (tree.hasTag(SELECT)) {
4360                 JCFieldAccess s = (JCFieldAccess) tree;
4361                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4362                     return false;
4363                 tree = s.selected;
4364             }
4365             return true;
4366         }
4367 
4368     /** Check that an auxiliary class is not accessed from any other file than its own.
4369      */
4370     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4371         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
4372             (c.flags() & AUXILIARY) != 0 &&
4373             rs.isAccessible(env, c) &&
4374             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4375         {
4376             log.warning(pos,
4377                         Warnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4378         }
4379     }
4380 
4381     /**
4382      * Check for a default constructor in an exported package.
4383      */
4384     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4385         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4386             ((c.flags() & (ENUM | RECORD)) == 0) &&
4387             !c.isAnonymous() &&
4388             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4389             Feature.MODULES.allowedInSource(source)) {
4390             NestingKind nestingKind = c.getNestingKind();
4391             switch (nestingKind) {
4392                 case ANONYMOUS,
4393                      LOCAL -> {return;}
4394                 case TOP_LEVEL -> {;} // No additional checks needed
4395                 case MEMBER -> {
4396                     // For nested member classes, all the enclosing
4397                     // classes must be public or protected.
4398                     Symbol owner = c.owner;
4399                     while (owner != null && owner.kind == TYP) {
4400                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4401                             return;
4402                         owner = owner.owner;
4403                     }
4404                 }
4405             }
4406 
4407             // Only check classes in named packages exported by its module
4408             PackageSymbol pkg = c.packge();
4409             if (!pkg.isUnnamed()) {
4410                 ModuleSymbol modle = pkg.modle;
4411                 for (ExportsDirective exportDir : modle.exports) {
4412                     // Report warning only if the containing
4413                     // package is unconditionally exported
4414                     if (exportDir.packge.equals(pkg)) {
4415                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4416                             // Warning may be suppressed by
4417                             // annotations; check again for being
4418                             // enabled in the deferred context.
4419                             deferredLintHandler.report(_l -> {
4420                                 if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR))
4421                                    log.warning(LintCategory.MISSING_EXPLICIT_CTOR,
4422                                                pos, Warnings.MissingExplicitCtor(c, pkg, modle));
4423                                                        });
4424                         } else {
4425                             return;
4426                         }
4427                     }
4428                 }
4429             }
4430         }
4431         return;
4432     }
4433 
4434     private class ConversionWarner extends Warner {
4435         final String uncheckedKey;
4436         final Type found;
4437         final Type expected;
4438         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4439             super(pos);
4440             this.uncheckedKey = uncheckedKey;
4441             this.found = found;
4442             this.expected = expected;
4443         }
4444 
4445         @Override
4446         public void warn(LintCategory lint) {
4447             boolean warned = this.warned;
4448             super.warn(lint);
4449             if (warned) return; // suppress redundant diagnostics
4450             switch (lint) {
4451                 case UNCHECKED:
4452                     Check.this.warnUnchecked(pos(), Warnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4453                     break;
4454                 case VARARGS:
4455                     if (method != null &&
4456                             method.attribute(syms.trustMeType.tsym) != null &&
4457                             isTrustMeAllowedOnMethod(method) &&
4458                             !types.isReifiable(method.type.getParameterTypes().last())) {
4459                         Check.this.warnUnsafeVararg(pos(), Warnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4460                     }
4461                     break;
4462                 default:
4463                     throw new AssertionError("Unexpected lint: " + lint);
4464             }
4465         }
4466     }
4467 
4468     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4469         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4470     }
4471 
4472     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4473         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4474     }
4475 
4476     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4477         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4478 
4479         if (functionalType != null) {
4480             try {
4481                 types.findDescriptorSymbol((TypeSymbol)cs);
4482             } catch (Types.FunctionDescriptorLookupError ex) {
4483                 DiagnosticPosition pos = tree.pos();
4484                 for (JCAnnotation a : tree.getModifiers().annotations) {
4485                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4486                         pos = a.pos();
4487                         break;
4488                     }
4489                 }
4490                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4491             }
4492         }
4493     }
4494 
4495     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4496         for (final JCImportBase impBase : toplevel.getImports()) {
4497             if (!(impBase instanceof JCImport imp))
4498                 continue;
4499             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4500                 continue;
4501             final JCFieldAccess select = imp.qualid;
4502             final Symbol origin;
4503             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4504                 continue;
4505 
4506             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4507             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4508                 log.error(imp.pos(),
4509                           Errors.CantResolveLocation(KindName.STATIC,
4510                                                      select.name,
4511                                                      null,
4512                                                      null,
4513                                                      Fragments.Location(kindName(site),
4514                                                                         site,
4515                                                                         null)));
4516             }
4517         }
4518     }
4519 
4520     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4521     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4522         OUTER: for (JCImportBase impBase : toplevel.getImports()) {
4523             if (impBase instanceof JCImport imp && !imp.staticImport &&
4524                 TreeInfo.name(imp.qualid) == names.asterisk) {
4525                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4526                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4527                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4528                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.qualid.selected.pos(), Errors.DoesntExist(tsym));
4529                 }
4530             }
4531         }
4532     }
4533 
4534     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4535         if (tsym == null || !processed.add(tsym))
4536             return false;
4537 
4538             // also search through inherited names
4539         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4540             return true;
4541 
4542         for (Type t : types.interfaces(tsym.type))
4543             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4544                 return true;
4545 
4546         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4547             if (sym.isStatic() &&
4548                 importAccessible(sym, packge) &&
4549                 sym.isMemberOf(origin, types)) {
4550                 return true;
4551             }
4552         }
4553 
4554         return false;
4555     }
4556 
4557     // is the sym accessible everywhere in packge?
4558     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4559         try {
4560             int flags = (int)(sym.flags() & AccessFlags);
4561             switch (flags) {
4562             default:
4563             case PUBLIC:
4564                 return true;
4565             case PRIVATE:
4566                 return false;
4567             case 0:
4568             case PROTECTED:
4569                 return sym.packge() == packge;
4570             }
4571         } catch (ClassFinder.BadClassFile err) {
4572             throw err;
4573         } catch (CompletionFailure ex) {
4574             return false;
4575         }
4576     }
4577 
4578     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4579         JCCompilationUnit toplevel = env.toplevel;
4580 
4581         if (   toplevel.modle == syms.unnamedModule
4582             || toplevel.modle == syms.noModule
4583             || (check.sym.flags() & COMPOUND) != 0) {
4584             return ;
4585         }
4586 
4587         ExportsDirective currentExport = findExport(toplevel.packge);
4588 
4589         if (   currentExport == null //not exported
4590             || currentExport.modules != null) //don't check classes in qualified export
4591             return ;
4592 
4593         new TreeScanner() {
4594             Lint lint = env.info.lint;
4595             boolean inSuperType;
4596 
4597             @Override
4598             public void visitBlock(JCBlock tree) {
4599             }
4600             @Override
4601             public void visitMethodDef(JCMethodDecl tree) {
4602                 if (!isAPISymbol(tree.sym))
4603                     return;
4604                 Lint prevLint = lint;
4605                 try {
4606                     lint = lint.augment(tree.sym);
4607                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4608                         super.visitMethodDef(tree);
4609                     }
4610                 } finally {
4611                     lint = prevLint;
4612                 }
4613             }
4614             @Override
4615             public void visitVarDef(JCVariableDecl tree) {
4616                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4617                     return;
4618                 Lint prevLint = lint;
4619                 try {
4620                     lint = lint.augment(tree.sym);
4621                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4622                         scan(tree.mods);
4623                         scan(tree.vartype);
4624                     }
4625                 } finally {
4626                     lint = prevLint;
4627                 }
4628             }
4629             @Override
4630             public void visitClassDef(JCClassDecl tree) {
4631                 if (tree != check)
4632                     return ;
4633 
4634                 if (!isAPISymbol(tree.sym))
4635                     return ;
4636 
4637                 Lint prevLint = lint;
4638                 try {
4639                     lint = lint.augment(tree.sym);
4640                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4641                         scan(tree.mods);
4642                         scan(tree.typarams);
4643                         try {
4644                             inSuperType = true;
4645                             scan(tree.extending);
4646                             scan(tree.implementing);
4647                         } finally {
4648                             inSuperType = false;
4649                         }
4650                         scan(tree.defs);
4651                     }
4652                 } finally {
4653                     lint = prevLint;
4654                 }
4655             }
4656             @Override
4657             public void visitTypeApply(JCTypeApply tree) {
4658                 scan(tree.clazz);
4659                 boolean oldInSuperType = inSuperType;
4660                 try {
4661                     inSuperType = false;
4662                     scan(tree.arguments);
4663                 } finally {
4664                     inSuperType = oldInSuperType;
4665                 }
4666             }
4667             @Override
4668             public void visitIdent(JCIdent tree) {
4669                 Symbol sym = TreeInfo.symbol(tree);
4670                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4671                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4672                 }
4673             }
4674 
4675             @Override
4676             public void visitSelect(JCFieldAccess tree) {
4677                 Symbol sym = TreeInfo.symbol(tree);
4678                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4679                 if (sym.kind == TYP && sitesym.kind == PCK) {
4680                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4681                 } else {
4682                     super.visitSelect(tree);
4683                 }
4684             }
4685 
4686             @Override
4687             public void visitAnnotation(JCAnnotation tree) {
4688                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4689                     super.visitAnnotation(tree);
4690             }
4691 
4692         }.scan(check);
4693     }
4694         //where:
4695         private ExportsDirective findExport(PackageSymbol pack) {
4696             for (ExportsDirective d : pack.modle.exports) {
4697                 if (d.packge == pack)
4698                     return d;
4699             }
4700 
4701             return null;
4702         }
4703         private boolean isAPISymbol(Symbol sym) {
4704             while (sym.kind != PCK) {
4705                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4706                     return false;
4707                 }
4708                 sym = sym.owner;
4709             }
4710             return true;
4711         }
4712         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4713             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4714                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4715                 return ;
4716             }
4717 
4718             PackageSymbol whatPackage = what.packge();
4719             ExportsDirective whatExport = findExport(whatPackage);
4720             ExportsDirective inExport = findExport(inPackage);
4721 
4722             if (whatExport == null) { //package not exported:
4723                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4724                 return ;
4725             }
4726 
4727             if (whatExport.modules != null) {
4728                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4729                     log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4730                 }
4731             }
4732 
4733             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4734                 //check that relativeTo.modle requires transitive what.modle, somehow:
4735                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4736 
4737                 while (todo.nonEmpty()) {
4738                     ModuleSymbol current = todo.head;
4739                     todo = todo.tail;
4740                     if (current == whatPackage.modle)
4741                         return ; //OK
4742                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4743                         continue; //for automatic modules, don't look into their dependencies
4744                     for (RequiresDirective req : current.requires) {
4745                         if (req.isTransitive()) {
4746                             todo = todo.prepend(req.module);
4747                         }
4748                     }
4749                 }
4750 
4751                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4752             }
4753         }
4754 
4755     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4756         if (msym.kind != MDL) {
4757             deferredLintHandler.report(_l -> {
4758                 if (lint.isEnabled(LintCategory.MODULE))
4759                     log.warning(LintCategory.MODULE, pos, Warnings.ModuleNotFound(msym));
4760             });
4761         }
4762     }
4763 
4764     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4765         if (packge.members().isEmpty() &&
4766             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4767             deferredLintHandler.report(_l -> {
4768                 if (lint.isEnabled(LintCategory.OPENS))
4769                     log.warning(pos, Warnings.PackageEmptyOrNotFound(packge));
4770             });
4771         }
4772     }
4773 
4774     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4775         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4776             deferredLintHandler.report(_l -> {
4777                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4778                     log.warning(pos, Warnings.RequiresTransitiveAutomatic);
4779                 } else if (lint.isEnabled(LintCategory.REQUIRES_AUTOMATIC)) {
4780                     log.warning(pos, Warnings.RequiresAutomatic);
4781                 }
4782             });
4783         }
4784     }
4785 
4786     /**
4787      * Verify the case labels conform to the constraints. Checks constraints related
4788      * combinations of patterns and other labels.
4789      *
4790      * @param cases the cases that should be checked.
4791      */
4792     void checkSwitchCaseStructure(List<JCCase> cases) {
4793         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4794             JCCase c = l.head;
4795             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4796                 if (TreeInfo.isNull(constLabel.expr)) {
4797                     if (c.labels.tail.nonEmpty()) {
4798                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4799                             if (c.labels.tail.tail.nonEmpty()) {
4800                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4801                             }
4802                         } else {
4803                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4804                         }
4805                     }
4806                 } else {
4807                     for (JCCaseLabel label : c.labels.tail) {
4808                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4809                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4810                             break;
4811                         }
4812                     }
4813                 }
4814             } else if (c.labels.tail.nonEmpty()) {
4815                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4816                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4817 
4818                 if (!allUnderscore) {
4819                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4820                 }
4821 
4822                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4823 
4824                 if (allPatternCaseLabels) {
4825                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4826                 }
4827 
4828                 for (JCCaseLabel label : c.labels.tail) {
4829                     if (label instanceof JCConstantCaseLabel) {
4830                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4831                         break;
4832                     }
4833                 }
4834             }
4835         }
4836 
4837         boolean isCaseStatementGroup = cases.nonEmpty() &&
4838                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4839 
4840         if (isCaseStatementGroup) {
4841             boolean previousCompletessNormally = false;
4842             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4843                 JCCase c = l.head;
4844                 if (previousCompletessNormally &&
4845                     c.stats.nonEmpty() &&
4846                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4847                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4848                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4849                 } else if (c.stats.isEmpty() &&
4850                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4851                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4852                            hasStatements(l.tail)) {
4853                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4854                 }
4855                 previousCompletessNormally = c.completesNormally;
4856             }
4857         }
4858     }
4859 
4860     boolean hasBindings(JCTree p) {
4861         boolean[] bindings = new boolean[1];
4862 
4863         new TreeScanner() {
4864             @Override
4865             public void visitBindingPattern(JCBindingPattern tree) {
4866                 bindings[0] = !tree.var.sym.isUnnamedVariable();
4867                 super.visitBindingPattern(tree);
4868             }
4869         }.scan(p);
4870 
4871         return bindings[0];
4872     }
4873 
4874     boolean hasStatements(List<JCCase> cases) {
4875         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4876             if (l.head.stats.nonEmpty()) {
4877                 return true;
4878             }
4879         }
4880 
4881         return false;
4882     }
4883     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4884         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4885         boolean seenDefault = false;
4886         boolean seenDefaultLabel = false;
4887         boolean warnDominatedByDefault = false;
4888         boolean unconditionalFound = false;
4889 
4890         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4891             JCCase c = l.head;
4892             for (JCCaseLabel label : c.labels) {
4893                 if (label.hasTag(DEFAULTCASELABEL)) {
4894                     seenDefault = true;
4895                     seenDefaultLabel |=
4896                             TreeInfo.isNullCaseLabel(c.labels.head);
4897                     continue;
4898                 }
4899                 if (TreeInfo.isNullCaseLabel(label)) {
4900                     if (seenDefault) {
4901                         log.error(label.pos(), Errors.PatternDominated);
4902                     }
4903                     continue;
4904                 }
4905                 if (seenDefault && !warnDominatedByDefault) {
4906                     if (label.hasTag(PATTERNCASELABEL) ||
4907                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4908                         log.error(label.pos(), Errors.PatternDominated);
4909                         warnDominatedByDefault = true;
4910                     }
4911                 }
4912                 Type currentType = labelType(label);
4913                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4914                     JCCase testCase = caseAndLabel.fst;
4915                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4916                     Type testType = labelType(testCaseLabel);
4917                     boolean dominated = false;
4918                     if (types.isUnconditionallyExact(currentType, testType) &&
4919                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4920                         //the current label is potentially dominated by the existing (test) label, check:
4921                         if (label instanceof JCConstantCaseLabel) {
4922                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4923                                          TreeInfo.unguardedCase(testCase);
4924                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4925                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4926                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4927                             dominated = patternDominated(testPatternCaseLabel.pat,
4928                                                          patternCL.pat);
4929                         }
4930                     }
4931 
4932                     if (dominated) {
4933                         log.error(label.pos(), Errors.PatternDominated);
4934                     }
4935                 }
4936                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4937             }
4938         }
4939     }
4940         //where:
4941         private Type labelType(JCCaseLabel label) {
4942             return types.erasure(switch (label.getTag()) {
4943                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4944                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4945                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4946             });
4947         }
4948         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4949             Type existingPatternType = types.erasure(existingPattern.type);
4950             Type currentPatternType = types.erasure(currentPattern.type);
4951             if (!types.isUnconditionallyExact(currentPatternType, existingPatternType)) {
4952                 return false;
4953             }
4954             if (currentPattern instanceof JCBindingPattern ||
4955                 currentPattern instanceof JCAnyPattern) {
4956                 return existingPattern instanceof JCBindingPattern ||
4957                        existingPattern instanceof JCAnyPattern;
4958             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4959                 if (existingPattern instanceof JCBindingPattern ||
4960                     existingPattern instanceof JCAnyPattern) {
4961                     return true;
4962                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4963                     List<JCPattern> existingNested = existingRecordPattern.nested;
4964                     List<JCPattern> currentNested = currentRecordPattern.nested;
4965                     if (existingNested.size() != currentNested.size()) {
4966                         return false;
4967                     }
4968                     while (existingNested.nonEmpty()) {
4969                         if (!patternDominated(existingNested.head, currentNested.head)) {
4970                             return false;
4971                         }
4972                         existingNested = existingNested.tail;
4973                         currentNested = currentNested.tail;
4974                     }
4975                     return true;
4976                 } else {
4977                     Assert.error("Unknown pattern: " + existingPattern.getTag());
4978                 }
4979             } else {
4980                 Assert.error("Unknown pattern: " + currentPattern.getTag());
4981             }
4982             return false;
4983         }
4984 
4985     /** check if a type is a subtype of Externalizable, if that is available. */
4986     boolean isExternalizable(Type t) {
4987         try {
4988             syms.externalizableType.complete();
4989         } catch (CompletionFailure e) {
4990             return false;
4991         }
4992         return types.isSubtype(t, syms.externalizableType);
4993     }
4994 
4995     /**
4996      * Check structure of serialization declarations.
4997      */
4998     public void checkSerialStructure(Env<AttrContext> env, JCClassDecl tree, ClassSymbol c) {
4999         (new SerialTypeVisitor(env)).visit(c, tree);
5000     }
5001 
5002     /**
5003      * This visitor will warn if a serialization-related field or
5004      * method is declared in a suspicious or incorrect way. In
5005      * particular, it will warn for cases where the runtime
5006      * serialization mechanism will silently ignore a mis-declared
5007      * entity.
5008      *
5009      * Distinguished serialization-related fields and methods:
5010      *
5011      * Methods:
5012      *
5013      * private void writeObject(ObjectOutputStream stream) throws IOException
5014      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
5015      *
5016      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
5017      * private void readObjectNoData() throws ObjectStreamException
5018      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
5019      *
5020      * Fields:
5021      *
5022      * private static final long serialVersionUID
5023      * private static final ObjectStreamField[] serialPersistentFields
5024      *
5025      * Externalizable: methods defined on the interface
5026      * public void writeExternal(ObjectOutput) throws IOException
5027      * public void readExternal(ObjectInput) throws IOException
5028      */
5029     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
5030         Env<AttrContext> env;
5031         SerialTypeVisitor(Env<AttrContext> env) {
5032             this.lint = Check.this.lint;
5033             this.env = env;
5034         }
5035 
5036         private static final Set<String> serialMethodNames =
5037             Set.of("writeObject", "writeReplace",
5038                    "readObject",  "readObjectNoData",
5039                    "readResolve");
5040 
5041         private static final Set<String> serialFieldNames =
5042             Set.of("serialVersionUID", "serialPersistentFields");
5043 
5044         // Type of serialPersistentFields
5045         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
5046 
5047         Lint lint;
5048 
5049         @Override
5050         public Void defaultAction(Element e, JCClassDecl p) {
5051             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
5052         }
5053 
5054         @Override
5055         public Void visitType(TypeElement e, JCClassDecl p) {
5056             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
5057             return null;
5058         }
5059 
5060         @Override
5061         public Void visitTypeAsClass(TypeElement e,
5062                                      JCClassDecl p) {
5063             // Anonymous classes filtered out by caller.
5064 
5065             ClassSymbol c = (ClassSymbol)e;
5066 
5067             checkCtorAccess(p, c);
5068 
5069             // Check for missing serialVersionUID; check *not* done
5070             // for enums or records.
5071             VarSymbol svuidSym = null;
5072             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5073                 if (sym.kind == VAR) {
5074                     svuidSym = (VarSymbol)sym;
5075                     break;
5076                 }
5077             }
5078 
5079             if (svuidSym == null) {
5080                 log.warning(LintCategory.SERIAL, p.pos(), Warnings.MissingSVUID(c));
5081             }
5082 
5083             // Check for serialPersistentFields to gate checks for
5084             // non-serializable non-transient instance fields
5085             boolean serialPersistentFieldsPresent =
5086                     c.members()
5087                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
5088                      .iterator()
5089                      .hasNext();
5090 
5091             // Check declarations of serialization-related methods and
5092             // fields
5093             final boolean[] hasWriteReplace = {false};
5094             for(Symbol el : c.getEnclosedElements()) {
5095                 runUnderLint(el, p, (enclosed, tree) -> {
5096                     String name = null;
5097                     switch(enclosed.getKind()) {
5098                     case FIELD -> {
5099                         if (!serialPersistentFieldsPresent) {
5100                             var flags = enclosed.flags();
5101                             if ( ((flags & TRANSIENT) == 0) &&
5102                                  ((flags & STATIC) == 0)) {
5103                                 Type varType = enclosed.asType();
5104                                 if (!canBeSerialized(varType)) {
5105                                     // Note per JLS arrays are
5106                                     // serializable even if the
5107                                     // component type is not.
5108                                     log.warning(LintCategory.SERIAL,
5109                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
5110                                                 Warnings.NonSerializableInstanceField);
5111                                 } else if (varType.hasTag(ARRAY)) {
5112                                     ArrayType arrayType = (ArrayType)varType;
5113                                     Type elementType = arrayType.elemtype;
5114                                     while (elementType.hasTag(ARRAY)) {
5115                                         arrayType = (ArrayType)elementType;
5116                                         elementType = arrayType.elemtype;
5117                                     }
5118                                     if (!canBeSerialized(elementType)) {
5119                                         log.warning(LintCategory.SERIAL,
5120                                                     TreeInfo.diagnosticPositionFor(enclosed, tree),
5121                                                     Warnings.NonSerializableInstanceFieldArray(elementType));
5122                                     }
5123                                 }
5124                             }
5125                         }
5126 
5127                         name = enclosed.getSimpleName().toString();
5128                         if (serialFieldNames.contains(name)) {
5129                             VarSymbol field = (VarSymbol)enclosed;
5130                             switch (name) {
5131                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
5132                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
5133                             default -> throw new AssertionError();
5134                             }
5135                         }
5136                     }
5137 
5138                     // Correctly checking the serialization-related
5139                     // methods is subtle. For the methods declared to be
5140                     // private or directly declared in the class, the
5141                     // enclosed elements of the class can be checked in
5142                     // turn. However, writeReplace and readResolve can be
5143                     // declared in a superclass and inherited. Note that
5144                     // the runtime lookup walks the superclass chain
5145                     // looking for writeReplace/readResolve via
5146                     // Class.getDeclaredMethod. This differs from calling
5147                     // Elements.getAllMembers(TypeElement) as the latter
5148                     // will also pull in default methods from
5149                     // superinterfaces. In other words, the runtime checks
5150                     // (which long predate default methods on interfaces)
5151                     // do not admit the possibility of inheriting methods
5152                     // this way, a difference from general inheritance.
5153 
5154                     // The current implementation just checks the enclosed
5155                     // elements and does not directly check the inherited
5156                     // methods. If all the types are being checked this is
5157                     // less of a concern; however, there are cases that
5158                     // could be missed. In particular, readResolve and
5159                     // writeReplace could, in principle, by inherited from
5160                     // a non-serializable superclass and thus not checked
5161                     // even if compiled with a serializable child class.
5162                     case METHOD -> {
5163                         var method = (MethodSymbol)enclosed;
5164                         name = method.getSimpleName().toString();
5165                         if (serialMethodNames.contains(name)) {
5166                             switch (name) {
5167                             case "writeObject"      -> checkWriteObject(tree, e, method);
5168                             case "writeReplace"     -> {hasWriteReplace[0] = true; hasAppropriateWriteReplace(tree, method, true);}
5169                             case "readObject"       -> checkReadObject(tree,e, method);
5170                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5171                             case "readResolve"      -> checkReadResolve(tree, e, method);
5172                             default ->  throw new AssertionError();
5173                             }
5174                         }
5175                     }
5176                     }
5177                 });
5178             }
5179             if (!hasWriteReplace[0] &&
5180                     (c.isValueClass() || hasAbstractValueSuperClass(c, Set.of(syms.numberType.tsym))) &&
5181                     !c.isAbstract() && !c.isRecord() &&
5182                     types.unboxedType(c.type) == Type.noType) {
5183                 // we need to check if the class is inheriting an appropriate writeReplace method
5184                 MethodSymbol ms = null;
5185                 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
5186                 try {
5187                     ms = rs.resolveInternalMethod(env.tree, env, c.type, names.writeReplace, List.nil(), List.nil());
5188                 } catch (FatalError fe) {
5189                     // ignore no method was found
5190                 } finally {
5191                     log.popDiagnosticHandler(discardHandler);
5192                 }
5193                 if (ms == null || !hasAppropriateWriteReplace(p, ms, false)) {
5194                     log.warning(LintCategory.SERIAL, p,
5195                             c.isValueClass() ? Warnings.SerializableValueClassWithoutWriteReplace1 :
5196                                     Warnings.SerializableValueClassWithoutWriteReplace2);
5197                 }
5198             }
5199             return null;
5200         }
5201 
5202         boolean canBeSerialized(Type type) {
5203             return type.isPrimitive() || rs.isSerializable(type);
5204         }
5205 
5206         private boolean hasAbstractValueSuperClass(Symbol c, Set<Symbol> excluding) {
5207             while (c.getKind() == ElementKind.CLASS) {
5208                 Type sup = ((ClassSymbol)c).getSuperclass();
5209                 if (!sup.hasTag(CLASS) || sup.isErroneous() ||
5210                         sup.tsym == syms.objectType.tsym) {
5211                     return false;
5212                 }
5213                 // if it is a value super class it has to be abstract
5214                 if (sup.isValueClass() && !excluding.contains(sup.tsym)) {
5215                     return true;
5216                 }
5217                 c = sup.tsym;
5218             }
5219             return false;
5220         }
5221 
5222         /**
5223          * Check that Externalizable class needs a public no-arg
5224          * constructor.
5225          *
5226          * Check that a Serializable class has access to the no-arg
5227          * constructor of its first nonserializable superclass.
5228          */
5229         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5230             if (isExternalizable(c.type)) {
5231                 for(var sym : c.getEnclosedElements()) {
5232                     if (sym.isConstructor() &&
5233                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5234                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5235                             return;
5236                         }
5237                     }
5238                 }
5239                 log.warning(LintCategory.SERIAL, tree.pos(),
5240                             Warnings.ExternalizableMissingPublicNoArgCtor);
5241             } else {
5242                 // Approximate access to the no-arg constructor up in
5243                 // the superclass chain by checking that the
5244                 // constructor is not private. This may not handle
5245                 // some cross-package situations correctly.
5246                 Type superClass = c.getSuperclass();
5247                 // java.lang.Object is *not* Serializable so this loop
5248                 // should terminate.
5249                 while (rs.isSerializable(superClass) ) {
5250                     try {
5251                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5252                     } catch(ClassCastException cce) {
5253                         return ; // Don't try to recover
5254                     }
5255                 }
5256                 // Non-Serializable superclass
5257                 try {
5258                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5259                     for(var sym : supertype.getEnclosedElements()) {
5260                         if (sym.isConstructor()) {
5261                             MethodSymbol ctor = (MethodSymbol)sym;
5262                             if (ctor.getParameters().isEmpty()) {
5263                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5264                                     // Handle nested classes and implicit this$0
5265                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5266                                      ((supertype.flags() & STATIC) == 0)))
5267                                     log.warning(LintCategory.SERIAL, tree.pos(),
5268                                                 Warnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5269                             }
5270                         }
5271                     }
5272                 } catch (ClassCastException cce) {
5273                     return ; // Don't try to recover
5274                 }
5275                 return;
5276             }
5277         }
5278 
5279         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5280             // To be effective, serialVersionUID must be marked static
5281             // and final, but private is recommended. But alas, in
5282             // practice there are many non-private serialVersionUID
5283             // fields.
5284              if ((svuid.flags() & (STATIC | FINAL)) !=
5285                  (STATIC | FINAL)) {
5286                  log.warning(LintCategory.SERIAL,
5287                              TreeInfo.diagnosticPositionFor(svuid, tree),
5288                              Warnings.ImproperSVUID((Symbol)e));
5289              }
5290 
5291              // check svuid has type long
5292              if (!svuid.type.hasTag(LONG)) {
5293                  log.warning(LintCategory.SERIAL,
5294                              TreeInfo.diagnosticPositionFor(svuid, tree),
5295                              Warnings.LongSVUID((Symbol)e));
5296              }
5297 
5298              if (svuid.getConstValue() == null)
5299                  log.warning(LintCategory.SERIAL,
5300                             TreeInfo.diagnosticPositionFor(svuid, tree),
5301                              Warnings.ConstantSVUID((Symbol)e));
5302         }
5303 
5304         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5305             // To be effective, serialPersisentFields must be private, static, and final.
5306              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5307                  (PRIVATE | STATIC | FINAL)) {
5308                  log.warning(LintCategory.SERIAL,
5309                              TreeInfo.diagnosticPositionFor(spf, tree),
5310                              Warnings.ImproperSPF);
5311              }
5312 
5313              if (!types.isSameType(spf.type, OSF_TYPE)) {
5314                  log.warning(LintCategory.SERIAL,
5315                              TreeInfo.diagnosticPositionFor(spf, tree),
5316                              Warnings.OSFArraySPF);
5317              }
5318 
5319             if (isExternalizable((Type)(e.asType()))) {
5320                 log.warning(LintCategory.SERIAL,
5321                             TreeInfo.diagnosticPositionFor(spf, tree),
5322                             Warnings.IneffectualSerialFieldExternalizable);
5323             }
5324 
5325             // Warn if serialPersistentFields is initialized to a
5326             // literal null.
5327             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5328             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5329                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5330                 JCExpression initExpr = variableDef.init;
5331                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5332                      log.warning(LintCategory.SERIAL, initExpr.pos(),
5333                                  Warnings.SPFNullInit);
5334                  }
5335             }
5336         }
5337 
5338         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5339             // The "synchronized" modifier is seen in the wild on
5340             // readObject and writeObject methods and is generally
5341             // innocuous.
5342 
5343             // private void writeObject(ObjectOutputStream stream) throws IOException
5344             checkPrivateNonStaticMethod(tree, method);
5345             isExpectedReturnType(tree, method, syms.voidType, true);
5346             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5347             hasExpectedExceptions(tree, method, true, syms.ioExceptionType);
5348             checkExternalizable(tree, e, method);
5349         }
5350 
5351         private boolean hasAppropriateWriteReplace(JCClassDecl tree, MethodSymbol method, boolean warn) {
5352             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5353             // ObjectStreamException
5354 
5355             // Excluding abstract, could have a more complicated
5356             // rule based on abstract-ness of the class
5357             return isConcreteInstanceMethod(tree, method, warn) &&
5358                     isExpectedReturnType(tree, method, syms.objectType, warn) &&
5359                     hasNoArgs(tree, method, warn) &&
5360                     hasExpectedExceptions(tree, method, warn, syms.objectStreamExceptionType);
5361         }
5362 
5363         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5364             // The "synchronized" modifier is seen in the wild on
5365             // readObject and writeObject methods and is generally
5366             // innocuous.
5367 
5368             // private void readObject(ObjectInputStream stream)
5369             //   throws IOException, ClassNotFoundException
5370             checkPrivateNonStaticMethod(tree, method);
5371             isExpectedReturnType(tree, method, syms.voidType, true);
5372             checkOneArg(tree, e, method, syms.objectInputStreamType);
5373             hasExpectedExceptions(tree, method, true, syms.ioExceptionType, syms.classNotFoundExceptionType);
5374             checkExternalizable(tree, e, method);
5375         }
5376 
5377         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5378             // private void readObjectNoData() throws ObjectStreamException
5379             checkPrivateNonStaticMethod(tree, method);
5380             isExpectedReturnType(tree, method, syms.voidType, true);
5381             hasNoArgs(tree, method, true);
5382             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5383             checkExternalizable(tree, e, method);
5384         }
5385 
5386         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5387             // ANY-ACCESS-MODIFIER Object readResolve()
5388             // throws ObjectStreamException
5389 
5390             // Excluding abstract, could have a more complicated
5391             // rule based on abstract-ness of the class
5392             isConcreteInstanceMethod(tree, method, true);
5393             isExpectedReturnType(tree, method, syms.objectType, true);
5394             hasNoArgs(tree, method, true);
5395             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5396         }
5397 
5398         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5399             //public void writeExternal(ObjectOutput) throws IOException
5400             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5401         }
5402 
5403         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5404             // public void readExternal(ObjectInput) throws IOException
5405             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5406          }
5407 
5408         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5409                                              boolean isExtern) {
5410             if (isExtern && isExternMethod(tree, e, method, argType)) {
5411                 log.warning(LintCategory.SERIAL,
5412                             TreeInfo.diagnosticPositionFor(method, tree),
5413                             Warnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5414             }
5415         }
5416 
5417         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5418             var flags = method.flags();
5419             if ((flags & PRIVATE) == 0) {
5420                 log.warning(LintCategory.SERIAL,
5421                             TreeInfo.diagnosticPositionFor(method, tree),
5422                             Warnings.SerialMethodNotPrivate(method.getSimpleName()));
5423             }
5424 
5425             if ((flags & STATIC) != 0) {
5426                 log.warning(LintCategory.SERIAL,
5427                             TreeInfo.diagnosticPositionFor(method, tree),
5428                             Warnings.SerialMethodStatic(method.getSimpleName()));
5429             }
5430         }
5431 
5432         /**
5433          * Per section 1.12 "Serialization of Enum Constants" of
5434          * the serialization specification, due to the special
5435          * serialization handling of enums, any writeObject,
5436          * readObject, writeReplace, and readResolve methods are
5437          * ignored as are serialPersistentFields and
5438          * serialVersionUID fields.
5439          */
5440         @Override
5441         public Void visitTypeAsEnum(TypeElement e,
5442                                     JCClassDecl p) {
5443             boolean isExtern = isExternalizable((Type)e.asType());
5444             for(Element el : e.getEnclosedElements()) {
5445                 runUnderLint(el, p, (enclosed, tree) -> {
5446                     String name = enclosed.getSimpleName().toString();
5447                     switch(enclosed.getKind()) {
5448                     case FIELD -> {
5449                         var field = (VarSymbol)enclosed;
5450                         if (serialFieldNames.contains(name)) {
5451                             log.warning(LintCategory.SERIAL,
5452                                         TreeInfo.diagnosticPositionFor(field, tree),
5453                                         Warnings.IneffectualSerialFieldEnum(name));
5454                         }
5455                     }
5456 
5457                     case METHOD -> {
5458                         var method = (MethodSymbol)enclosed;
5459                         if (serialMethodNames.contains(name)) {
5460                             log.warning(LintCategory.SERIAL,
5461                                         TreeInfo.diagnosticPositionFor(method, tree),
5462                                         Warnings.IneffectualSerialMethodEnum(name));
5463                         }
5464 
5465                         if (isExtern) {
5466                             switch(name) {
5467                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5468                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5469                             }
5470                         }
5471                     }
5472 
5473                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5474                     case ENUM_CONSTANT -> {
5475                         var field = (VarSymbol)enclosed;
5476                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5477                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5478                             ClassSymbol enumConstantType = nc.def.sym;
5479                             visitTypeAsEnum(enumConstantType, p);
5480                         }
5481                     }
5482 
5483                     }});
5484             }
5485             return null;
5486         }
5487 
5488         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5489             //public void writeExternal(ObjectOutput) throws IOException
5490             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5491         }
5492 
5493         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5494              // public void readExternal(ObjectInput) throws IOException
5495             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5496          }
5497 
5498         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5499             if (isExternMethod(tree, e, method, argType)) {
5500                 log.warning(LintCategory.SERIAL,
5501                             TreeInfo.diagnosticPositionFor(method, tree),
5502                             Warnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5503             }
5504         }
5505 
5506         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5507             long flags = method.flags();
5508             Type rtype = method.getReturnType();
5509 
5510             // Not necessary to check throws clause in this context
5511             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5512                 types.isSameType(syms.voidType, rtype) &&
5513                 hasExactlyOneArgWithType(tree, e, method, argType);
5514         }
5515 
5516         /**
5517          * Most serialization-related fields and methods on interfaces
5518          * are ineffectual or problematic.
5519          */
5520         @Override
5521         public Void visitTypeAsInterface(TypeElement e,
5522                                          JCClassDecl p) {
5523             for(Element el : e.getEnclosedElements()) {
5524                 runUnderLint(el, p, (enclosed, tree) -> {
5525                     String name = null;
5526                     switch(enclosed.getKind()) {
5527                     case FIELD -> {
5528                         var field = (VarSymbol)enclosed;
5529                         name = field.getSimpleName().toString();
5530                         switch(name) {
5531                         case "serialPersistentFields" -> {
5532                             log.warning(LintCategory.SERIAL,
5533                                         TreeInfo.diagnosticPositionFor(field, tree),
5534                                         Warnings.IneffectualSerialFieldInterface);
5535                         }
5536 
5537                         case "serialVersionUID" -> {
5538                             checkSerialVersionUID(tree, e, field);
5539                         }
5540                         }
5541                     }
5542 
5543                     case METHOD -> {
5544                         var method = (MethodSymbol)enclosed;
5545                         name = enclosed.getSimpleName().toString();
5546                         if (serialMethodNames.contains(name)) {
5547                             switch (name) {
5548                             case
5549                                 "readObject",
5550                                 "readObjectNoData",
5551                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5552 
5553                             case
5554                                 "writeReplace",
5555                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5556 
5557                             default ->  throw new AssertionError();
5558                             }
5559 
5560                         }
5561                     }}
5562                 });
5563             }
5564 
5565             return null;
5566         }
5567 
5568         private void checkPrivateMethod(JCClassDecl tree,
5569                                         Element e,
5570                                         MethodSymbol method) {
5571             if ((method.flags() & PRIVATE) == 0) {
5572                 log.warning(LintCategory.SERIAL,
5573                             TreeInfo.diagnosticPositionFor(method, tree),
5574                             Warnings.NonPrivateMethodWeakerAccess);
5575             }
5576         }
5577 
5578         private void checkDefaultIneffective(JCClassDecl tree,
5579                                              Element e,
5580                                              MethodSymbol method) {
5581             if ((method.flags() & DEFAULT) == DEFAULT) {
5582                 log.warning(LintCategory.SERIAL,
5583                             TreeInfo.diagnosticPositionFor(method, tree),
5584                             Warnings.DefaultIneffective);
5585 
5586             }
5587         }
5588 
5589         @Override
5590         public Void visitTypeAsAnnotationType(TypeElement e,
5591                                               JCClassDecl p) {
5592             // Per the JLS, annotation types are not serializeable
5593             return null;
5594         }
5595 
5596         /**
5597          * From the Java Object Serialization Specification, 1.13
5598          * Serialization of Records:
5599          *
5600          * "The process by which record objects are serialized or
5601          * externalized cannot be customized; any class-specific
5602          * writeObject, readObject, readObjectNoData, writeExternal,
5603          * and readExternal methods defined by record classes are
5604          * ignored during serialization and deserialization. However,
5605          * a substitute object to be serialized or a designate
5606          * replacement may be specified, by the writeReplace and
5607          * readResolve methods, respectively. Any
5608          * serialPersistentFields field declaration is
5609          * ignored. Documenting serializable fields and data for
5610          * record classes is unnecessary, since there is no variation
5611          * in the serial form, other than whether a substitute or
5612          * replacement object is used. The serialVersionUID of a
5613          * record class is 0L unless explicitly declared. The
5614          * requirement for matching serialVersionUID values is waived
5615          * for record classes."
5616          */
5617         @Override
5618         public Void visitTypeAsRecord(TypeElement e,
5619                                       JCClassDecl p) {
5620             boolean isExtern = isExternalizable((Type)e.asType());
5621             for(Element el : e.getEnclosedElements()) {
5622                 runUnderLint(el, p, (enclosed, tree) -> {
5623                     String name = enclosed.getSimpleName().toString();
5624                     switch(enclosed.getKind()) {
5625                     case FIELD -> {
5626                         var field = (VarSymbol)enclosed;
5627                         switch(name) {
5628                         case "serialPersistentFields" -> {
5629                             log.warning(LintCategory.SERIAL,
5630                                         TreeInfo.diagnosticPositionFor(field, tree),
5631                                         Warnings.IneffectualSerialFieldRecord);
5632                         }
5633 
5634                         case "serialVersionUID" -> {
5635                             // Could generate additional warning that
5636                             // svuid value is not checked to match for
5637                             // records.
5638                             checkSerialVersionUID(tree, e, field);
5639                         }}
5640                     }
5641 
5642                     case METHOD -> {
5643                         var method = (MethodSymbol)enclosed;
5644                         switch(name) {
5645                         case "writeReplace" -> hasAppropriateWriteReplace(tree, method, true);
5646                         case "readResolve"  -> checkReadResolve(tree, e, method);
5647 
5648                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5649                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5650 
5651                         default -> {
5652                             if (serialMethodNames.contains(name)) {
5653                                 log.warning(LintCategory.SERIAL,
5654                                             TreeInfo.diagnosticPositionFor(method, tree),
5655                                             Warnings.IneffectualSerialMethodRecord(name));
5656                             }
5657                         }}
5658                     }}});
5659             }
5660             return null;
5661         }
5662 
5663         boolean isConcreteInstanceMethod(JCClassDecl tree,
5664                                          MethodSymbol method,
5665                                          boolean warn) {
5666             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5667                 if (warn) {
5668                     log.warning(LintCategory.SERIAL,
5669                             TreeInfo.diagnosticPositionFor(method, tree),
5670                             Warnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5671                 }
5672                 return false;
5673             }
5674             return true;
5675         }
5676 
5677         private boolean isExpectedReturnType(JCClassDecl tree,
5678                                           MethodSymbol method,
5679                                           Type expectedReturnType,
5680                                           boolean warn) {
5681             // Note: there may be complications checking writeReplace
5682             // and readResolve since they return Object and could, in
5683             // principle, have covariant overrides and any synthetic
5684             // bridge method would not be represented here for
5685             // checking.
5686             Type rtype = method.getReturnType();
5687             if (!types.isSameType(expectedReturnType, rtype)) {
5688                 if (warn) {
5689                     log.warning(LintCategory.SERIAL,
5690                             TreeInfo.diagnosticPositionFor(method, tree),
5691                             Warnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5692                                     rtype, expectedReturnType));
5693                 }
5694                 return false;
5695             }
5696             return true;
5697         }
5698 
5699         private void checkOneArg(JCClassDecl tree,
5700                                  Element enclosing,
5701                                  MethodSymbol method,
5702                                  Type expectedType) {
5703             String name = method.getSimpleName().toString();
5704 
5705             var parameters= method.getParameters();
5706 
5707             if (parameters.size() != 1) {
5708                 log.warning(LintCategory.SERIAL,
5709                             TreeInfo.diagnosticPositionFor(method, tree),
5710                             Warnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5711                 return;
5712             }
5713 
5714             Type parameterType = parameters.get(0).asType();
5715             if (!types.isSameType(parameterType, expectedType)) {
5716                 log.warning(LintCategory.SERIAL,
5717                             TreeInfo.diagnosticPositionFor(method, tree),
5718                             Warnings.SerialMethodParameterType(method.getSimpleName(),
5719                                                                expectedType,
5720                                                                parameterType));
5721             }
5722         }
5723 
5724         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5725                                                  Element enclosing,
5726                                                  MethodSymbol method,
5727                                                  Type expectedType) {
5728             var parameters = method.getParameters();
5729             return (parameters.size() == 1) &&
5730                 types.isSameType(parameters.get(0).asType(), expectedType);
5731         }
5732 
5733 
5734         boolean hasNoArgs(JCClassDecl tree, MethodSymbol method, boolean warn) {
5735             var parameters = method.getParameters();
5736             if (!parameters.isEmpty()) {
5737                 if (warn) {
5738                     log.warning(LintCategory.SERIAL,
5739                             TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5740                             Warnings.SerialMethodNoArgs(method.getSimpleName()));
5741                 }
5742                 return false;
5743             }
5744             return true;
5745         }
5746 
5747         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5748             // If the enclosing class is externalizable, warn for the method
5749             if (isExternalizable((Type)enclosing.asType())) {
5750                 log.warning(LintCategory.SERIAL,
5751                             TreeInfo.diagnosticPositionFor(method, tree),
5752                             Warnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5753             }
5754             return;
5755         }
5756 
5757         private boolean hasExpectedExceptions(JCClassDecl tree,
5758                                               MethodSymbol method,
5759                                               boolean warn,
5760                                               Type... declaredExceptions) {
5761             for (Type thrownType: method.getThrownTypes()) {
5762                 // For each exception in the throws clause of the
5763                 // method, if not an Error and not a RuntimeException,
5764                 // check if the exception is a subtype of a declared
5765                 // exception from the throws clause of the
5766                 // serialization method in question.
5767                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5768                     types.isSubtype(thrownType, syms.errorType) ) {
5769                     continue;
5770                 } else {
5771                     boolean declared = false;
5772                     for (Type declaredException : declaredExceptions) {
5773                         if (types.isSubtype(thrownType, declaredException)) {
5774                             declared = true;
5775                             continue;
5776                         }
5777                     }
5778                     if (!declared) {
5779                         if (warn) {
5780                             log.warning(LintCategory.SERIAL,
5781                                     TreeInfo.diagnosticPositionFor(method, tree),
5782                                     Warnings.SerialMethodUnexpectedException(method.getSimpleName(),
5783                                             thrownType));
5784                         }
5785                         return false;
5786                     }
5787                 }
5788             }
5789             return true;
5790         }
5791 
5792         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5793             Lint prevLint = lint;
5794             try {
5795                 lint = lint.augment((Symbol) symbol);
5796 
5797                 if (lint.isEnabled(LintCategory.SERIAL)) {
5798                     task.accept(symbol, p);
5799                 }
5800 
5801                 return null;
5802             } finally {
5803                 lint = prevLint;
5804             }
5805         }
5806 
5807     }
5808 
5809 }