1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.function.BiPredicate;

  31 import java.util.function.Predicate;
  32 import java.util.function.Supplier;
  33 import java.util.function.ToIntBiFunction;
  34 import java.util.stream.Collectors;
  35 import java.util.stream.StreamSupport;
  36 
  37 import javax.lang.model.element.ElementKind;
  38 import javax.lang.model.element.NestingKind;
  39 import javax.tools.JavaFileManager;
  40 
  41 import com.sun.source.tree.CaseTree;
  42 import com.sun.tools.javac.code.*;
  43 import com.sun.tools.javac.code.Attribute.Compound;
  44 import com.sun.tools.javac.code.Directive.ExportsDirective;
  45 import com.sun.tools.javac.code.Directive.RequiresDirective;
  46 import com.sun.tools.javac.code.Source.Feature;
  47 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  48 import com.sun.tools.javac.jvm.*;
  49 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  50 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  51 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  52 import com.sun.tools.javac.tree.*;
  53 import com.sun.tools.javac.util.*;
  54 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  56 import com.sun.tools.javac.util.JCDiagnostic.Error;
  57 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  58 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  59 import com.sun.tools.javac.util.List;
  60 
  61 import com.sun.tools.javac.code.Lint;
  62 import com.sun.tools.javac.code.Lint.LintCategory;
  63 import com.sun.tools.javac.code.Scope.WriteableScope;
  64 import com.sun.tools.javac.code.Type.*;
  65 import com.sun.tools.javac.code.Symbol.*;
  66 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  67 import com.sun.tools.javac.tree.JCTree.*;
  68 
  69 import static com.sun.tools.javac.code.Flags.*;
  70 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  71 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  72 import static com.sun.tools.javac.code.Kinds.*;
  73 import static com.sun.tools.javac.code.Kinds.Kind.*;
  74 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  75 import static com.sun.tools.javac.code.Scope.LookupKind.RECURSIVE;
  76 import static com.sun.tools.javac.code.TypeTag.*;
  77 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  78 
  79 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  80 import javax.lang.model.element.Element;

  81 import javax.lang.model.element.TypeElement;
  82 import javax.lang.model.type.DeclaredType;


  83 import javax.lang.model.util.ElementKindVisitor14;
  84 
  85 /** Type checking helper class for the attribution phase.
  86  *
  87  *  <p><b>This is NOT part of any supported API.
  88  *  If you write code that depends on this, you do so at your own risk.
  89  *  This code and its internal interfaces are subject to change or
  90  *  deletion without notice.</b>
  91  */
  92 public class Check {
  93     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  94 
  95     // Flag bits indicating which item(s) chosen from a pair of items
  96     private static final int FIRST = 0x01;
  97     private static final int SECOND = 0x02;
  98 
  99     private final Names names;
 100     private final Log log;
 101     private final Resolve rs;
 102     private final Symtab syms;
 103     private final Enter enter;
 104     private final DeferredAttr deferredAttr;
 105     private final Infer infer;
 106     private final Types types;
 107     private final TypeAnnotations typeAnnotations;
 108     private final JCDiagnostic.Factory diags;
 109     private final JavaFileManager fileManager;
 110     private final Source source;
 111     private final Target target;
 112     private final Profile profile;
 113     private final Preview preview;
 114     private final boolean warnOnAnyAccessToMembers;
 115 
 116     public boolean disablePreviewCheck;
 117 
 118     // The set of lint options currently in effect. It is initialized
 119     // from the context, and then is set/reset as needed by Attr as it
 120     // visits all the various parts of the trees during attribution.
 121     private Lint lint;
 122 
 123     // The method being analyzed in Attr - it is set/reset as needed by
 124     // Attr as it visits new method declarations.
 125     private MethodSymbol method;
 126 
 127     public static Check instance(Context context) {
 128         Check instance = context.get(checkKey);
 129         if (instance == null)
 130             instance = new Check(context);
 131         return instance;
 132     }
 133 
 134     @SuppressWarnings("this-escape")
 135     protected Check(Context context) {
 136         context.put(checkKey, this);
 137 
 138         names = Names.instance(context);
 139         log = Log.instance(context);
 140         rs = Resolve.instance(context);
 141         syms = Symtab.instance(context);
 142         enter = Enter.instance(context);
 143         deferredAttr = DeferredAttr.instance(context);
 144         infer = Infer.instance(context);
 145         types = Types.instance(context);
 146         typeAnnotations = TypeAnnotations.instance(context);
 147         diags = JCDiagnostic.Factory.instance(context);
 148         Options options = Options.instance(context);
 149         lint = Lint.instance(context);
 150         fileManager = context.get(JavaFileManager.class);
 151 
 152         source = Source.instance(context);
 153         target = Target.instance(context);
 154         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 155 
 156         disablePreviewCheck = false;
 157 
 158         Target target = Target.instance(context);
 159         syntheticNameChar = target.syntheticNameChar();
 160 
 161         profile = Profile.instance(context);
 162         preview = Preview.instance(context);
 163 
 164         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 165         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 166         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 167         boolean enforceMandatoryWarnings = true;
 168 
 169         deprecationHandler = new MandatoryWarningHandler(log, null, verboseDeprecated,
 170                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 171         removalHandler = new MandatoryWarningHandler(log, null, verboseRemoval,
 172                 enforceMandatoryWarnings, "removal", LintCategory.REMOVAL);
 173         uncheckedHandler = new MandatoryWarningHandler(log, null, verboseUnchecked,
 174                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 175         sunApiHandler = new MandatoryWarningHandler(log, null, false,
 176                 enforceMandatoryWarnings, "sunapi", null);
 177 
 178         deferredLintHandler = DeferredLintHandler.instance(context);
 179 
 180         allowModules = Feature.MODULES.allowedInSource(source);
 181         allowRecords = Feature.RECORDS.allowedInSource(source);
 182         allowSealed = Feature.SEALED_CLASSES.allowedInSource(source);
 183         allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 184                 Feature.VALUE_CLASSES.allowedInSource(source);
 185     }
 186 
 187     /** Character for synthetic names
 188      */
 189     char syntheticNameChar;
 190 
 191     /** A table mapping flat names of all compiled classes for each module in this run
 192      *  to their symbols; maintained from outside.
 193      */
 194     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 195 
 196     /** A handler for messages about deprecated usage.
 197      */
 198     private MandatoryWarningHandler deprecationHandler;
 199 
 200     /** A handler for messages about deprecated-for-removal usage.
 201      */
 202     private MandatoryWarningHandler removalHandler;
 203 
 204     /** A handler for messages about unchecked or unsafe usage.
 205      */
 206     private MandatoryWarningHandler uncheckedHandler;
 207 
 208     /** A handler for messages about using proprietary API.
 209      */
 210     private MandatoryWarningHandler sunApiHandler;
 211 
 212     /** A handler for deferred lint warnings.
 213      */
 214     private DeferredLintHandler deferredLintHandler;
 215 
 216     /** Are modules allowed
 217      */
 218     private final boolean allowModules;
 219 
 220     /** Are records allowed
 221      */
 222     private final boolean allowRecords;
 223 
 224     /** Are sealed classes allowed
 225      */
 226     private final boolean allowSealed;
 227 
 228     /** Are value classes allowed
 229      */
 230     private final boolean allowValueClasses;
 231 
 232 /* *************************************************************************
 233  * Errors and Warnings
 234  **************************************************************************/
 235 
 236     Lint setLint(Lint newLint) {
 237         Lint prev = lint;
 238         lint = newLint;
 239         return prev;
 240     }
 241 
 242     MethodSymbol setMethod(MethodSymbol newMethod) {
 243         MethodSymbol prev = method;
 244         method = newMethod;
 245         return prev;
 246     }
 247 
 248     /** Warn about deprecated symbol.
 249      *  @param pos        Position to be used for error reporting.
 250      *  @param sym        The deprecated symbol.
 251      */
 252     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 253         if (sym.isDeprecatedForRemoval()) {
 254             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 255                 if (sym.kind == MDL) {
 256                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemovalModule(sym));
 257                 } else {
 258                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 259                 }
 260             }
 261         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 262             if (sym.kind == MDL) {
 263                 deprecationHandler.report(pos, Warnings.HasBeenDeprecatedModule(sym));
 264             } else {
 265                 deprecationHandler.report(pos, Warnings.HasBeenDeprecated(sym, sym.location()));
 266             }
 267         }
 268     }
 269 
 270     /** Log a preview warning.
 271      *  @param pos        Position to be used for error reporting.
 272      *  @param msg        A Warning describing the problem.
 273      */
 274     public void warnPreviewAPI(DiagnosticPosition pos, Warning warnKey) {
 275         if (!lint.isSuppressed(LintCategory.PREVIEW))
 276             preview.reportPreviewWarning(pos, warnKey);
 277     }
 278 
 279     /** Log a preview warning.
 280      *  @param pos        Position to be used for error reporting.
 281      *  @param msg        A Warning describing the problem.
 282      */
 283     public void warnDeclaredUsingPreview(DiagnosticPosition pos, Symbol sym) {
 284         if (!lint.isSuppressed(LintCategory.PREVIEW))
 285             preview.reportPreviewWarning(pos, Warnings.DeclaredUsingPreview(kindName(sym), sym));
 286     }
 287 
 288     /** Log a preview warning.
 289      *  @param pos        Position to be used for error reporting.
 290      *  @param msg        A Warning describing the problem.
 291      */
 292     public void warnRestrictedAPI(DiagnosticPosition pos, Symbol sym) {
 293         if (lint.isEnabled(LintCategory.RESTRICTED))
 294             log.warning(LintCategory.RESTRICTED, pos, Warnings.RestrictedMethod(sym.enclClass(), sym));
 295     }
 296 
 297     /** Warn about unchecked operation.
 298      *  @param pos        Position to be used for error reporting.
 299      *  @param msg        A string describing the problem.
 300      */
 301     public void warnUnchecked(DiagnosticPosition pos, Warning warnKey) {
 302         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 303             uncheckedHandler.report(pos, warnKey);
 304     }
 305 
 306     /** Warn about unsafe vararg method decl.
 307      *  @param pos        Position to be used for error reporting.
 308      */
 309     void warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey) {
 310         if (lint.isEnabled(LintCategory.VARARGS))
 311             log.warning(LintCategory.VARARGS, pos, warnKey);
 312     }
 313 
 314     public void warnStatic(DiagnosticPosition pos, Warning warnKey) {
 315         if (lint.isEnabled(LintCategory.STATIC))
 316             log.warning(LintCategory.STATIC, pos, warnKey);
 317     }
 318 
 319     /** Warn about division by integer constant zero.
 320      *  @param pos        Position to be used for error reporting.
 321      */
 322     void warnDivZero(DiagnosticPosition pos) {
 323         if (lint.isEnabled(LintCategory.DIVZERO))
 324             log.warning(LintCategory.DIVZERO, pos, Warnings.DivZero);
 325     }
 326 
 327     /**
 328      * Report any deferred diagnostics.
 329      */
 330     public void reportDeferredDiagnostics() {
 331         deprecationHandler.reportDeferredDiagnostic();
 332         removalHandler.reportDeferredDiagnostic();
 333         uncheckedHandler.reportDeferredDiagnostic();
 334         sunApiHandler.reportDeferredDiagnostic();
 335     }
 336 
 337 
 338     /** Report a failure to complete a class.
 339      *  @param pos        Position to be used for error reporting.
 340      *  @param ex         The failure to report.
 341      */
 342     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 343         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 344         return syms.errType;
 345     }
 346 
 347     /** Report an error that wrong type tag was found.
 348      *  @param pos        Position to be used for error reporting.
 349      *  @param required   An internationalized string describing the type tag
 350      *                    required.
 351      *  @param found      The type that was found.
 352      */
 353     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 354         // this error used to be raised by the parser,
 355         // but has been delayed to this point:
 356         if (found instanceof Type type && type.hasTag(VOID)) {
 357             log.error(pos, Errors.IllegalStartOfType);
 358             return syms.errType;
 359         }
 360         log.error(pos, Errors.TypeFoundReq(found, required));
 361         return types.createErrorType(found instanceof Type type ? type : syms.errType);
 362     }
 363 
 364     /** Report duplicate declaration error.
 365      */
 366     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 367         if (!sym.type.isErroneous()) {
 368             Symbol location = sym.location();
 369             if (location.kind == MTH &&
 370                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 371                 log.error(pos,
 372                           Errors.AlreadyDefinedInClinit(kindName(sym),
 373                                                         sym,
 374                                                         kindName(sym.location()),
 375                                                         kindName(sym.location().enclClass()),
 376                                                         sym.location().enclClass()));
 377             } else {
 378                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 379                  * as we should have issued an error for the duplicated fields
 380                  */
 381                 if (location.kind != MTH ||
 382                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 383                         ((sym.owner.flags_field & RECORD) == 0)) {
 384                     log.error(pos,
 385                             Errors.AlreadyDefined(kindName(sym),
 386                                     sym,
 387                                     kindName(sym.location()),
 388                                     sym.location()));
 389                 }
 390             }
 391         }
 392     }
 393 
 394     /** Report array/varargs duplicate declaration
 395      */
 396     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 397         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 398             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 399         }
 400     }
 401 
 402 /* ************************************************************************
 403  * duplicate declaration checking
 404  *************************************************************************/
 405 
 406     /** Check that variable does not hide variable with same name in
 407      *  immediately enclosing local scope.
 408      *  @param pos           Position for error reporting.
 409      *  @param v             The symbol.
 410      *  @param s             The scope.
 411      */
 412     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 413         for (Symbol sym : s.getSymbolsByName(v.name)) {
 414             if (sym.owner != v.owner) break;
 415             if (sym.kind == VAR &&
 416                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 417                 v.name != names.error) {
 418                 duplicateError(pos, sym);
 419                 return;
 420             }
 421         }
 422     }
 423 
 424     /** Check that a class or interface does not hide a class or
 425      *  interface with same name in immediately enclosing local scope.
 426      *  @param pos           Position for error reporting.
 427      *  @param c             The symbol.
 428      *  @param s             The scope.
 429      */
 430     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 431         for (Symbol sym : s.getSymbolsByName(c.name)) {
 432             if (sym.owner != c.owner) break;
 433             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 434                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 435                 c.name != names.error) {
 436                 duplicateError(pos, sym);
 437                 return;
 438             }
 439         }
 440     }
 441 
 442     /** Check that class does not have the same name as one of
 443      *  its enclosing classes, or as a class defined in its enclosing scope.
 444      *  return true if class is unique in its enclosing scope.
 445      *  @param pos           Position for error reporting.
 446      *  @param name          The class name.
 447      *  @param s             The enclosing scope.
 448      */
 449     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 450         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 451             if (sym.kind == TYP && sym.name != names.error) {
 452                 duplicateError(pos, sym);
 453                 return false;
 454             }
 455         }
 456         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 457             if (sym.kind == TYP && sym.name == name && sym.name != names.error &&
 458                     !sym.isImplicit()) {
 459                 duplicateError(pos, sym);
 460                 return true;
 461             }
 462         }
 463         return true;
 464     }
 465 
 466 /* *************************************************************************
 467  * Class name generation
 468  **************************************************************************/
 469 
 470 
 471     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 472 
 473     /** Return name of local class.
 474      *  This is of the form   {@code <enclClass> $ n <classname> }
 475      *  where
 476      *    enclClass is the flat name of the enclosing class,
 477      *    classname is the simple name of the local class
 478      */
 479     public Name localClassName(ClassSymbol c) {
 480         Name enclFlatname = c.owner.enclClass().flatname;
 481         String enclFlatnameStr = enclFlatname.toString();
 482         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 483         Integer index = localClassNameIndexes.get(key);
 484         for (int i = (index == null) ? 1 : index; ; i++) {
 485             Name flatname = names.fromString(enclFlatnameStr
 486                     + syntheticNameChar + i + c.name);
 487             if (getCompiled(c.packge().modle, flatname) == null) {
 488                 localClassNameIndexes.put(key, i + 1);
 489                 return flatname;
 490             }
 491         }
 492     }
 493 
 494     public void clearLocalClassNameIndexes(ClassSymbol c) {
 495         if (c.owner != null && c.owner.kind != NIL) {
 496             localClassNameIndexes.remove(new Pair<>(
 497                     c.owner.enclClass().flatname, c.name));
 498         }
 499     }
 500 
 501     public void newRound() {
 502         compiled.clear();
 503         localClassNameIndexes.clear();
 504     }
 505 
 506     public void clear() {
 507         deprecationHandler.clear();
 508         removalHandler.clear();
 509         uncheckedHandler.clear();
 510         sunApiHandler.clear();
 511     }
 512 
 513     public void putCompiled(ClassSymbol csym) {
 514         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 515     }
 516 
 517     public ClassSymbol getCompiled(ClassSymbol csym) {
 518         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 519     }
 520 
 521     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 522         return compiled.get(Pair.of(msym, flatname));
 523     }
 524 
 525     public void removeCompiled(ClassSymbol csym) {
 526         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 527     }
 528 
 529 /* *************************************************************************
 530  * Type Checking
 531  **************************************************************************/
 532 
 533     /**
 534      * A check context is an object that can be used to perform compatibility
 535      * checks - depending on the check context, meaning of 'compatibility' might
 536      * vary significantly.
 537      */
 538     public interface CheckContext {
 539         /**
 540          * Is type 'found' compatible with type 'req' in given context
 541          */
 542         boolean compatible(Type found, Type req, Warner warn);
 543         /**
 544          * Report a check error
 545          */
 546         void report(DiagnosticPosition pos, JCDiagnostic details);
 547         /**
 548          * Obtain a warner for this check context
 549          */
 550         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 551 
 552         public InferenceContext inferenceContext();
 553 
 554         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 555     }
 556 
 557     /**
 558      * This class represent a check context that is nested within another check
 559      * context - useful to check sub-expressions. The default behavior simply
 560      * redirects all method calls to the enclosing check context leveraging
 561      * the forwarding pattern.
 562      */
 563     static class NestedCheckContext implements CheckContext {
 564         CheckContext enclosingContext;
 565 
 566         NestedCheckContext(CheckContext enclosingContext) {
 567             this.enclosingContext = enclosingContext;
 568         }
 569 
 570         public boolean compatible(Type found, Type req, Warner warn) {
 571             return enclosingContext.compatible(found, req, warn);
 572         }
 573 
 574         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 575             enclosingContext.report(pos, details);
 576         }
 577 
 578         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 579             return enclosingContext.checkWarner(pos, found, req);
 580         }
 581 
 582         public InferenceContext inferenceContext() {
 583             return enclosingContext.inferenceContext();
 584         }
 585 
 586         public DeferredAttrContext deferredAttrContext() {
 587             return enclosingContext.deferredAttrContext();
 588         }
 589     }
 590 
 591     /**
 592      * Check context to be used when evaluating assignment/return statements
 593      */
 594     CheckContext basicHandler = new CheckContext() {
 595         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 596             log.error(pos, Errors.ProbFoundReq(details));
 597         }
 598         public boolean compatible(Type found, Type req, Warner warn) {
 599             return types.isAssignable(found, req, warn);
 600         }
 601 
 602         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 603             return convertWarner(pos, found, req);
 604         }
 605 
 606         public InferenceContext inferenceContext() {
 607             return infer.emptyContext;
 608         }
 609 
 610         public DeferredAttrContext deferredAttrContext() {
 611             return deferredAttr.emptyDeferredAttrContext;
 612         }
 613 
 614         @Override
 615         public String toString() {
 616             return "CheckContext: basicHandler";
 617         }
 618     };
 619 
 620     /** Check that a given type is assignable to a given proto-type.
 621      *  If it is, return the type, otherwise return errType.
 622      *  @param pos        Position to be used for error reporting.
 623      *  @param found      The type that was found.
 624      *  @param req        The type that was required.
 625      */
 626     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 627         return checkType(pos, found, req, basicHandler);
 628     }
 629 
 630     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 631         final InferenceContext inferenceContext = checkContext.inferenceContext();
 632         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 633             inferenceContext.addFreeTypeListener(List.of(req, found),
 634                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 635         }
 636         if (req.hasTag(ERROR))
 637             return req;
 638         if (req.hasTag(NONE))
 639             return found;
 640         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 641             return found;
 642         } else {
 643             if (found.isNumeric() && req.isNumeric()) {
 644                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 645                 return types.createErrorType(found);
 646             }
 647             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 648             return types.createErrorType(found);
 649         }
 650     }
 651 
 652     /** Check that a given type can be cast to a given target type.
 653      *  Return the result of the cast.
 654      *  @param pos        Position to be used for error reporting.
 655      *  @param found      The type that is being cast.
 656      *  @param req        The target type of the cast.
 657      */
 658     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 659         return checkCastable(pos, found, req, basicHandler);
 660     }
 661     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 662         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 663             return req;
 664         } else {
 665             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 666             return types.createErrorType(found);
 667         }
 668     }
 669 
 670     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 671      * The problem should only be reported for non-292 cast
 672      */
 673     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 674         if (!tree.type.isErroneous()
 675                 && types.isSameType(tree.expr.type, tree.clazz.type)
 676                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 677                 && !is292targetTypeCast(tree)) {
 678             deferredLintHandler.report(() -> {
 679                 if (lint.isEnabled(LintCategory.CAST))
 680                     log.warning(LintCategory.CAST,
 681                             tree.pos(), Warnings.RedundantCast(tree.clazz.type));
 682             });
 683         }
 684     }
 685     //where
 686         private boolean is292targetTypeCast(JCTypeCast tree) {
 687             boolean is292targetTypeCast = false;
 688             JCExpression expr = TreeInfo.skipParens(tree.expr);
 689             if (expr.hasTag(APPLY)) {
 690                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 691                 Symbol sym = TreeInfo.symbol(apply.meth);
 692                 is292targetTypeCast = sym != null &&
 693                     sym.kind == MTH &&
 694                     (sym.flags() & HYPOTHETICAL) != 0;
 695             }
 696             return is292targetTypeCast;
 697         }
 698 
 699         private static final boolean ignoreAnnotatedCasts = true;
 700 
 701     /** Check that a type is within some bounds.
 702      *
 703      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 704      *  type argument.
 705      *  @param a             The type that should be bounded by bs.
 706      *  @param bound         The bound.
 707      */
 708     private boolean checkExtends(Type a, Type bound) {
 709          if (a.isUnbound()) {
 710              return true;
 711          } else if (!a.hasTag(WILDCARD)) {
 712              a = types.cvarUpperBound(a);
 713              return types.isSubtype(a, bound);
 714          } else if (a.isExtendsBound()) {
 715              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 716          } else if (a.isSuperBound()) {
 717              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 718          }
 719          return true;
 720      }
 721 
 722     /** Check that type is different from 'void'.
 723      *  @param pos           Position to be used for error reporting.
 724      *  @param t             The type to be checked.
 725      */
 726     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 727         if (t.hasTag(VOID)) {
 728             log.error(pos, Errors.VoidNotAllowedHere);
 729             return types.createErrorType(t);
 730         } else {
 731             return t;
 732         }
 733     }
 734 
 735     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 736         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 737             return typeTagError(pos,
 738                                 diags.fragment(Fragments.TypeReqClassArray),
 739                                 asTypeParam(t));
 740         } else {
 741             return t;
 742         }
 743     }
 744 
 745     /** Check that type is a class or interface type.
 746      *  @param pos           Position to be used for error reporting.
 747      *  @param t             The type to be checked.
 748      */
 749     Type checkClassType(DiagnosticPosition pos, Type t) {
 750         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 751             return typeTagError(pos,
 752                                 diags.fragment(Fragments.TypeReqClass),
 753                                 asTypeParam(t));
 754         } else {
 755             return t;
 756         }
 757     }
 758     //where
 759         private Object asTypeParam(Type t) {
 760             return (t.hasTag(TYPEVAR))
 761                                     ? diags.fragment(Fragments.TypeParameter(t))
 762                                     : t;
 763         }
 764 
 765     void checkConstraintsOfValueClass(JCClassDecl tree, ClassSymbol c) {
 766         DiagnosticPosition pos = tree.pos();
 767         for (Type st : types.closure(c.type)) {
 768             if (st == null || st.tsym == null || st.tsym.kind == ERR)
 769                 continue;
 770             if  (st.tsym == syms.objectType.tsym || st.tsym == syms.recordType.tsym || st.isInterface())
 771                 continue;
 772             if (!st.tsym.isAbstract()) {
 773                 if (c != st.tsym) {
 774                     log.error(pos, Errors.ConcreteSupertypeForValueClass(c, st));
 775                 }
 776                 continue;
 777             }
 778             // dealing with an abstract value or value super class below.
 779             for (Symbol s : st.tsym.members().getSymbols(NON_RECURSIVE)) {
 780                 if (s.kind == MTH) {
 781                     if ((s.flags() & (SYNCHRONIZED | STATIC)) == SYNCHRONIZED) {
 782                         log.error(pos, Errors.SuperClassMethodCannotBeSynchronized(s, c, st));
 783                     }
 784                     break;
 785                 }
 786             }
 787         }
 788     }
 789 
 790     /** Check that type is a valid qualifier for a constructor reference expression
 791      */
 792     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 793         t = checkClassOrArrayType(pos, t);
 794         if (t.hasTag(CLASS)) {
 795             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 796                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 797                 t = types.createErrorType(t);
 798             } else if ((t.tsym.flags() & ENUM) != 0) {
 799                 log.error(pos, Errors.EnumCantBeInstantiated);
 800                 t = types.createErrorType(t);
 801             } else {
 802                 t = checkClassType(pos, t, true);
 803             }
 804         } else if (t.hasTag(ARRAY)) {
 805             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 806                 log.error(pos, Errors.GenericArrayCreation);
 807                 t = types.createErrorType(t);
 808             }
 809         }
 810         return t;
 811     }
 812 
 813     /** Check that type is a class or interface type.
 814      *  @param pos           Position to be used for error reporting.
 815      *  @param t             The type to be checked.
 816      *  @param noBounds    True if type bounds are illegal here.
 817      */
 818     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 819         t = checkClassType(pos, t);
 820         if (noBounds && t.isParameterized()) {
 821             List<Type> args = t.getTypeArguments();
 822             while (args.nonEmpty()) {
 823                 if (args.head.hasTag(WILDCARD))
 824                     return typeTagError(pos,
 825                                         diags.fragment(Fragments.TypeReqExact),
 826                                         args.head);
 827                 args = args.tail;
 828             }
 829         }
 830         return t;
 831     }
 832 
 833     /** Check that type is a reference type, i.e. a class, interface or array type
 834      *  or a type variable.
 835      *  @param pos           Position to be used for error reporting.
 836      *  @param t             The type to be checked.
 837      */
 838     Type checkRefType(DiagnosticPosition pos, Type t) {
 839         if (t.isReference())
 840             return t;
 841         else
 842             return typeTagError(pos,
 843                                 diags.fragment(Fragments.TypeReqRef),
 844                                 t);
 845     }
 846 
 847     /** Check that type is an identity type, i.e. not a value type.
 848      *  When not discernible statically, give it the benefit of doubt
 849      *  and defer to runtime.
 850      *
 851      *  @param pos           Position to be used for error reporting.
 852      *  @param t             The type to be checked.
 853      */
 854     boolean checkIdentityType(DiagnosticPosition pos, Type t) {
 855         if (t.hasTag(TYPEVAR)) {
 856             t = types.skipTypeVars(t, false);
 857         }
 858         if (t.isIntersection()) {
 859             IntersectionClassType ict = (IntersectionClassType)t;
 860             boolean result = true;
 861             for (Type component : ict.getExplicitComponents()) {
 862                 result &= checkIdentityType(pos, component);
 863             }
 864             return result;
 865         }
 866         if (t.isPrimitive() || (t.isValueClass() && !t.tsym.isAbstract())) {
 867             typeTagError(pos, diags.fragment(Fragments.TypeReqIdentity), t);
 868             return false;
 869         }
 870         return true;
 871     }
 872 
 873     /** Check that each type is a reference type, i.e. a class, interface or array type
 874      *  or a type variable.
 875      *  @param trees         Original trees, used for error reporting.
 876      *  @param types         The types to be checked.
 877      */
 878     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 879         List<JCExpression> tl = trees;
 880         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 881             l.head = checkRefType(tl.head.pos(), l.head);
 882             tl = tl.tail;
 883         }
 884         return types;
 885     }
 886 
 887     /** Check that type is a null or reference type.
 888      *  @param pos           Position to be used for error reporting.
 889      *  @param t             The type to be checked.
 890      */
 891     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 892         if (t.isReference() || t.hasTag(BOT))
 893             return t;
 894         else
 895             return typeTagError(pos,
 896                                 diags.fragment(Fragments.TypeReqRef),
 897                                 t);
 898     }
 899 
 900     /** Check that flag set does not contain elements of two conflicting sets. s
 901      *  Return true if it doesn't.
 902      *  @param pos           Position to be used for error reporting.
 903      *  @param flags         The set of flags to be checked.
 904      *  @param set1          Conflicting flags set #1.
 905      *  @param set2          Conflicting flags set #2.
 906      */
 907     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 908         if ((flags & set1) != 0 && (flags & set2) != 0) {
 909             log.error(pos,
 910                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 911                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 912             return false;
 913         } else
 914             return true;
 915     }
 916 
 917     /** Check that usage of diamond operator is correct (i.e. diamond should not
 918      * be used with non-generic classes or in anonymous class creation expressions)
 919      */
 920     Type checkDiamond(JCNewClass tree, Type t) {
 921         if (!TreeInfo.isDiamond(tree) ||
 922                 t.isErroneous()) {
 923             return checkClassType(tree.clazz.pos(), t, true);
 924         } else {
 925             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 926                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 927                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 928             }
 929             if (t.tsym.type.getTypeArguments().isEmpty()) {
 930                 log.error(tree.clazz.pos(),
 931                           Errors.CantApplyDiamond1(t,
 932                                                    Fragments.DiamondNonGeneric(t)));
 933                 return types.createErrorType(t);
 934             } else if (tree.typeargs != null &&
 935                     tree.typeargs.nonEmpty()) {
 936                 log.error(tree.clazz.pos(),
 937                           Errors.CantApplyDiamond1(t,
 938                                                    Fragments.DiamondAndExplicitParams(t)));
 939                 return types.createErrorType(t);
 940             } else {
 941                 return t;
 942             }
 943         }
 944     }
 945 
 946     /** Check that the type inferred using the diamond operator does not contain
 947      *  non-denotable types such as captured types or intersection types.
 948      *  @param t the type inferred using the diamond operator
 949      *  @return  the (possibly empty) list of non-denotable types.
 950      */
 951     List<Type> checkDiamondDenotable(ClassType t) {
 952         ListBuffer<Type> buf = new ListBuffer<>();
 953         for (Type arg : t.allparams()) {
 954             if (!checkDenotable(arg)) {
 955                 buf.append(arg);
 956             }
 957         }
 958         return buf.toList();
 959     }
 960 
 961     public boolean checkDenotable(Type t) {
 962         return denotableChecker.visit(t, null);
 963     }
 964         // where
 965 
 966         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 967          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 968          *  otherwise.
 969          */
 970         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 971             @Override
 972             public Boolean visitType(Type t, Void s) {
 973                 return true;
 974             }
 975             @Override
 976             public Boolean visitClassType(ClassType t, Void s) {
 977                 if (t.isUnion() || t.isIntersection()) {
 978                     return false;
 979                 }
 980                 for (Type targ : t.allparams()) {
 981                     if (!visit(targ, s)) {
 982                         return false;
 983                     }
 984                 }
 985                 return true;
 986             }
 987 
 988             @Override
 989             public Boolean visitTypeVar(TypeVar t, Void s) {
 990                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 991                   (i.e cannot have been produced by inference (18.4))
 992                 */
 993                 return (t.tsym.flags() & SYNTHETIC) == 0;
 994             }
 995 
 996             @Override
 997             public Boolean visitCapturedType(CapturedType t, Void s) {
 998                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 999                   (i.e cannot have been produced by capture conversion (5.1.10))
1000                 */
1001                 return false;
1002             }
1003 
1004             @Override
1005             public Boolean visitArrayType(ArrayType t, Void s) {
1006                 return visit(t.elemtype, s);
1007             }
1008 
1009             @Override
1010             public Boolean visitWildcardType(WildcardType t, Void s) {
1011                 return visit(t.type, s);
1012             }
1013         };
1014 
1015     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
1016         MethodSymbol m = tree.sym;
1017         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
1018         Type varargElemType = null;
1019         if (m.isVarArgs()) {
1020             varargElemType = types.elemtype(tree.params.last().type);
1021         }
1022         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
1023             if (varargElemType != null) {
1024                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
1025                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
1026                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
1027                 log.error(tree,
1028                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1029                                                            msg));
1030             } else {
1031                 log.error(tree,
1032                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
1033                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
1034             }
1035         } else if (hasTrustMeAnno && varargElemType != null &&
1036                             types.isReifiable(varargElemType)) {
1037             warnUnsafeVararg(tree, Warnings.VarargsRedundantTrustmeAnno(
1038                                 syms.trustMeType.tsym,
1039                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
1040         }
1041         else if (!hasTrustMeAnno && varargElemType != null &&
1042                 !types.isReifiable(varargElemType)) {
1043             warnUnchecked(tree.params.head.pos(), Warnings.UncheckedVarargsNonReifiableType(varargElemType));
1044         }
1045     }
1046     //where
1047         private boolean isTrustMeAllowedOnMethod(Symbol s) {
1048             return (s.flags() & VARARGS) != 0 &&
1049                 (s.isConstructor() ||
1050                     (s.flags() & (STATIC | FINAL |
1051                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
1052         }
1053 
1054     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
1055         //check that resulting type is not the null type
1056         if (t.hasTag(BOT)) {
1057             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
1058             return types.createErrorType(t);
1059         } else if (t.hasTag(VOID)) {
1060             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
1061             return types.createErrorType(t);
1062         }
1063 
1064         //upward project the initializer type
1065         return types.upward(t, types.captures(t)).baseType();
1066     }
1067 
1068     Type checkMethod(final Type mtype,
1069             final Symbol sym,
1070             final Env<AttrContext> env,
1071             final List<JCExpression> argtrees,
1072             final List<Type> argtypes,
1073             final boolean useVarargs,
1074             InferenceContext inferenceContext) {
1075         // System.out.println("call   : " + env.tree);
1076         // System.out.println("method : " + owntype);
1077         // System.out.println("actuals: " + argtypes);
1078         if (inferenceContext.free(mtype)) {
1079             inferenceContext.addFreeTypeListener(List.of(mtype),
1080                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
1081             return mtype;
1082         }
1083         Type owntype = mtype;
1084         List<Type> formals = owntype.getParameterTypes();
1085         List<Type> nonInferred = sym.type.getParameterTypes();
1086         if (nonInferred.length() != formals.length()) nonInferred = formals;
1087         Type last = useVarargs ? formals.last() : null;
1088         if (sym.name == names.init && sym.owner == syms.enumSym) {
1089             formals = formals.tail.tail;
1090             nonInferred = nonInferred.tail.tail;
1091         }
1092         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
1093             formals = formals.tail;
1094             nonInferred = nonInferred.tail;
1095         }
1096         List<JCExpression> args = argtrees;
1097         if (args != null) {
1098             //this is null when type-checking a method reference
1099             while (formals.head != last) {
1100                 JCTree arg = args.head;
1101                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1102                 assertConvertible(arg, arg.type, formals.head, warn);
1103                 args = args.tail;
1104                 formals = formals.tail;
1105                 nonInferred = nonInferred.tail;
1106             }
1107             if (useVarargs) {
1108                 Type varArg = types.elemtype(last);
1109                 while (args.tail != null) {
1110                     JCTree arg = args.head;
1111                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1112                     assertConvertible(arg, arg.type, varArg, warn);
1113                     args = args.tail;
1114                 }
1115             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1116                 // non-varargs call to varargs method
1117                 Type varParam = owntype.getParameterTypes().last();
1118                 Type lastArg = argtypes.last();
1119                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1120                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1121                     log.warning(argtrees.last().pos(),
1122                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1123             }
1124         }
1125         if (useVarargs) {
1126             Type argtype = owntype.getParameterTypes().last();
1127             if (!types.isReifiable(argtype) &&
1128                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1129                  !isTrustMeAllowedOnMethod(sym))) {
1130                 warnUnchecked(env.tree.pos(), Warnings.UncheckedGenericArrayCreation(argtype));
1131             }
1132             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1133          }
1134          return owntype;
1135     }
1136     //where
1137     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1138         if (types.isConvertible(actual, formal, warn))
1139             return;
1140 
1141         if (formal.isCompound()
1142             && types.isSubtype(actual, types.supertype(formal))
1143             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1144             return;
1145     }
1146 
1147     /**
1148      * Check that type 't' is a valid instantiation of a generic class
1149      * (see JLS 4.5)
1150      *
1151      * @param t class type to be checked
1152      * @return true if 't' is well-formed
1153      */
1154     public boolean checkValidGenericType(Type t) {
1155         return firstIncompatibleTypeArg(t) == null;
1156     }
1157     //WHERE
1158         private Type firstIncompatibleTypeArg(Type type) {
1159             List<Type> formals = type.tsym.type.allparams();
1160             List<Type> actuals = type.allparams();
1161             List<Type> args = type.getTypeArguments();
1162             List<Type> forms = type.tsym.type.getTypeArguments();
1163             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1164 
1165             // For matching pairs of actual argument types `a' and
1166             // formal type parameters with declared bound `b' ...
1167             while (args.nonEmpty() && forms.nonEmpty()) {
1168                 // exact type arguments needs to know their
1169                 // bounds (for upper and lower bound
1170                 // calculations).  So we create new bounds where
1171                 // type-parameters are replaced with actuals argument types.
1172                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1173                 args = args.tail;
1174                 forms = forms.tail;
1175             }
1176 
1177             args = type.getTypeArguments();
1178             List<Type> tvars_cap = types.substBounds(formals,
1179                                       formals,
1180                                       types.capture(type).allparams());
1181             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1182                 // Let the actual arguments know their bound
1183                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1184                 args = args.tail;
1185                 tvars_cap = tvars_cap.tail;
1186             }
1187 
1188             args = type.getTypeArguments();
1189             List<Type> bounds = bounds_buf.toList();
1190 
1191             while (args.nonEmpty() && bounds.nonEmpty()) {
1192                 Type actual = args.head;
1193                 if (!isTypeArgErroneous(actual) &&
1194                         !bounds.head.isErroneous() &&
1195                         !checkExtends(actual, bounds.head)) {
1196                     return args.head;
1197                 }
1198                 args = args.tail;
1199                 bounds = bounds.tail;
1200             }
1201 
1202             args = type.getTypeArguments();
1203             bounds = bounds_buf.toList();
1204 
1205             for (Type arg : types.capture(type).getTypeArguments()) {
1206                 if (arg.hasTag(TYPEVAR) &&
1207                         arg.getUpperBound().isErroneous() &&
1208                         !bounds.head.isErroneous() &&
1209                         !isTypeArgErroneous(args.head)) {
1210                     return args.head;
1211                 }
1212                 bounds = bounds.tail;
1213                 args = args.tail;
1214             }
1215 
1216             return null;
1217         }
1218         //where
1219         boolean isTypeArgErroneous(Type t) {
1220             return isTypeArgErroneous.visit(t);
1221         }
1222 
1223         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1224             public Boolean visitType(Type t, Void s) {
1225                 return t.isErroneous();
1226             }
1227             @Override
1228             public Boolean visitTypeVar(TypeVar t, Void s) {
1229                 return visit(t.getUpperBound());
1230             }
1231             @Override
1232             public Boolean visitCapturedType(CapturedType t, Void s) {
1233                 return visit(t.getUpperBound()) ||
1234                         visit(t.getLowerBound());
1235             }
1236             @Override
1237             public Boolean visitWildcardType(WildcardType t, Void s) {
1238                 return visit(t.type);
1239             }
1240         };
1241 
1242     /** Check that given modifiers are legal for given symbol and
1243      *  return modifiers together with any implicit modifiers for that symbol.
1244      *  Warning: we can't use flags() here since this method
1245      *  is called during class enter, when flags() would cause a premature
1246      *  completion.
1247      *  @param pos           Position to be used for error reporting.
1248      *  @param flags         The set of modifiers given in a definition.
1249      *  @param sym           The defined symbol.
1250      */
1251     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1252         long mask;
1253         long implicit = 0;
1254 
1255         switch (sym.kind) {
1256         case VAR:
1257             if (TreeInfo.isReceiverParam(tree))
1258                 mask = ReceiverParamFlags;
1259             else if (sym.owner.kind != TYP)
1260                 mask = LocalVarFlags;
1261             else if ((sym.owner.flags_field & INTERFACE) != 0)
1262                 mask = implicit = InterfaceVarFlags;
1263             else {
1264                 boolean isInstanceFieldOfValueClass = sym.owner.type.isValueClass() && (flags & STATIC) == 0;
1265                 mask = !isInstanceFieldOfValueClass ? VarFlags : ExtendedVarFlags;
1266                 if (isInstanceFieldOfValueClass) {
1267                     implicit |= FINAL | STRICT;
1268                 }
1269             }
1270             break;
1271         case MTH:
1272             if (sym.name == names.init) {
1273                 if ((sym.owner.flags_field & ENUM) != 0) {
1274                     // enum constructors cannot be declared public or
1275                     // protected and must be implicitly or explicitly
1276                     // private
1277                     implicit = PRIVATE;
1278                     mask = PRIVATE;
1279                 } else
1280                     mask = ConstructorFlags;
1281             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1282                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1283                     mask = AnnotationTypeElementMask;
1284                     implicit = PUBLIC | ABSTRACT;
1285                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1286                     mask = InterfaceMethodMask;
1287                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1288                     if ((flags & DEFAULT) != 0) {
1289                         implicit |= ABSTRACT;
1290                     }
1291                 } else {
1292                     mask = implicit = InterfaceMethodFlags;
1293                 }
1294             } else if ((sym.owner.flags_field & RECORD) != 0) {
1295                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1296                         RecordMethodFlags & ~SYNCHRONIZED : RecordMethodFlags;
1297             } else {
1298                 // value objects do not have an associated monitor/lock
1299                 mask = ((sym.owner.flags_field & VALUE_CLASS) != 0 && (flags & Flags.STATIC) == 0) ?
1300                         MethodFlags & ~SYNCHRONIZED : MethodFlags;
1301             }
1302             if ((flags & STRICTFP) != 0) {
1303                 warnOnExplicitStrictfp(pos);
1304             }
1305             // Imply STRICTFP if owner has STRICTFP set.
1306             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1307                 ((flags) & Flags.DEFAULT) != 0)
1308                 implicit |= sym.owner.flags_field & STRICTFP;
1309             break;
1310         case TYP:
1311             if (sym.owner.kind.matches(KindSelector.VAL_MTH) ||
1312                     (sym.isDirectlyOrIndirectlyLocal() && (flags & ANNOTATION) != 0)) {
1313                 boolean implicitlyStatic = !sym.isAnonymous() &&
1314                         ((flags & RECORD) != 0 || (flags & ENUM) != 0 || (flags & INTERFACE) != 0);
1315                 boolean staticOrImplicitlyStatic = (flags & STATIC) != 0 || implicitlyStatic;
1316                 // local statics are allowed only if records are allowed too
1317                 mask = staticOrImplicitlyStatic && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedStaticLocalClassFlags : ExtendedLocalClassFlags;
1318                 implicit = implicitlyStatic ? STATIC : implicit;
1319             } else if (sym.owner.kind == TYP) {
1320                 // statics in inner classes are allowed only if records are allowed too
1321                 mask = ((flags & STATIC) != 0) && allowRecords && (flags & ANNOTATION) == 0 ? ExtendedMemberStaticClassFlags : ExtendedMemberClassFlags;
1322                 if (sym.owner.owner.kind == PCK ||
1323                     (sym.owner.flags_field & STATIC) != 0) {
1324                     mask |= STATIC;
1325                 } else if (!allowRecords && ((flags & ENUM) != 0 || (flags & RECORD) != 0)) {
1326                     log.error(pos, Errors.StaticDeclarationNotAllowedInInnerClasses);
1327                 }
1328                 // Nested interfaces and enums are always STATIC (Spec ???)
1329                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1330             } else {
1331                 mask = ExtendedClassFlags;
1332             }
1333             // Interfaces are always ABSTRACT
1334             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1335 
1336             if ((flags & (INTERFACE | VALUE_CLASS)) == 0) {
1337                 implicit |= IDENTITY_TYPE;
1338             }
1339 
1340             if ((flags & ENUM) != 0) {
1341                 // enums can't be declared abstract, final, sealed or non-sealed or value
1342                 mask &= ~(ABSTRACT | FINAL | SEALED | NON_SEALED | VALUE_CLASS);
1343                 implicit |= implicitEnumFinalFlag(tree);
1344             }
1345             if ((flags & RECORD) != 0) {
1346                 // records can't be declared abstract
1347                 mask &= ~ABSTRACT;
1348                 implicit |= FINAL;
1349             }
1350             if ((flags & STRICTFP) != 0) {
1351                 warnOnExplicitStrictfp(pos);
1352             }
1353             // Imply STRICTFP if owner has STRICTFP set.
1354             implicit |= sym.owner.flags_field & STRICTFP;
1355 
1356             // concrete value classes are implicitly final
1357             if ((flags & (ABSTRACT | INTERFACE | VALUE_CLASS)) == VALUE_CLASS) {
1358                 implicit |= FINAL;
1359             }
1360             break;
1361         default:
1362             throw new AssertionError();
1363         }
1364         long illegal = flags & ExtendedStandardFlags & ~mask;
1365         if (illegal != 0) {
1366             if ((illegal & INTERFACE) != 0) {
1367                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1368                 mask |= INTERFACE;
1369             }
1370             else {
1371                 log.error(pos,
1372                         Errors.ModNotAllowedHere(asFlagSet(illegal)));
1373             }
1374         }
1375         else if ((sym.kind == TYP ||
1376                   // ISSUE: Disallowing abstract&private is no longer appropriate
1377                   // in the presence of inner classes. Should it be deleted here?
1378                   checkDisjoint(pos, flags,
1379                                 ABSTRACT,
1380                                 PRIVATE | STATIC | DEFAULT))
1381                  &&
1382                  checkDisjoint(pos, flags,
1383                                 STATIC | PRIVATE,
1384                                 DEFAULT)
1385                  &&
1386                  checkDisjoint(pos, flags,
1387                                ABSTRACT | INTERFACE,
1388                                FINAL | NATIVE | SYNCHRONIZED)
1389                  &&
1390                  checkDisjoint(pos, flags,
1391                                PUBLIC,
1392                                PRIVATE | PROTECTED)
1393                  &&
1394                  checkDisjoint(pos, flags,
1395                                PRIVATE,
1396                                PUBLIC | PROTECTED)
1397                  &&
1398                  checkDisjoint(pos, flags,
1399                                FINAL,
1400                                VOLATILE)
1401                  &&
1402                  (sym.kind == TYP ||
1403                   checkDisjoint(pos, flags,
1404                                 ABSTRACT | NATIVE,
1405                                 STRICTFP))
1406                  && checkDisjoint(pos, flags,
1407                                 FINAL,
1408                            SEALED | NON_SEALED)
1409                  && checkDisjoint(pos, flags,
1410                                 SEALED,
1411                            FINAL | NON_SEALED)
1412                  && checkDisjoint(pos, flags,
1413                                 SEALED,
1414                                 ANNOTATION)
1415                 && checkDisjoint(pos, flags,
1416                                 VALUE_CLASS,
1417                                 ANNOTATION)
1418                 && checkDisjoint(pos, flags,
1419                                 VALUE_CLASS,
1420                                 NON_SEALED)
1421                 && checkDisjoint(pos, flags,
1422                                 VALUE_CLASS,
1423                                 INTERFACE) ) {
1424             // skip
1425         }
1426         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1427     }
1428 
1429     private void warnOnExplicitStrictfp(DiagnosticPosition pos) {
1430         DiagnosticPosition prevLintPos = deferredLintHandler.setPos(pos);
1431         try {
1432             deferredLintHandler.report(() -> {
1433                                            if (lint.isEnabled(LintCategory.STRICTFP)) {
1434                                                log.warning(LintCategory.STRICTFP,
1435                                                            pos, Warnings.Strictfp); }
1436                                        });
1437         } finally {
1438             deferredLintHandler.setPos(prevLintPos);
1439         }
1440     }
1441 
1442 
1443     /** Determine if this enum should be implicitly final.
1444      *
1445      *  If the enum has no specialized enum constants, it is final.
1446      *
1447      *  If the enum does have specialized enum constants, it is
1448      *  <i>not</i> final.
1449      */
1450     private long implicitEnumFinalFlag(JCTree tree) {
1451         if (!tree.hasTag(CLASSDEF)) return 0;
1452         class SpecialTreeVisitor extends JCTree.Visitor {
1453             boolean specialized;
1454             SpecialTreeVisitor() {
1455                 this.specialized = false;
1456             }
1457 
1458             @Override
1459             public void visitTree(JCTree tree) { /* no-op */ }
1460 
1461             @Override
1462             public void visitVarDef(JCVariableDecl tree) {
1463                 if ((tree.mods.flags & ENUM) != 0) {
1464                     if (tree.init instanceof JCNewClass newClass && newClass.def != null) {
1465                         specialized = true;
1466                     }
1467                 }
1468             }
1469         }
1470 
1471         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1472         JCClassDecl cdef = (JCClassDecl) tree;
1473         for (JCTree defs: cdef.defs) {
1474             defs.accept(sts);
1475             if (sts.specialized) return allowSealed ? SEALED : 0;
1476         }
1477         return FINAL;
1478     }
1479 
1480 /* *************************************************************************
1481  * Type Validation
1482  **************************************************************************/
1483 
1484     /** Validate a type expression. That is,
1485      *  check that all type arguments of a parametric type are within
1486      *  their bounds. This must be done in a second phase after type attribution
1487      *  since a class might have a subclass as type parameter bound. E.g:
1488      *
1489      *  <pre>{@code
1490      *  class B<A extends C> { ... }
1491      *  class C extends B<C> { ... }
1492      *  }</pre>
1493      *
1494      *  and we can't make sure that the bound is already attributed because
1495      *  of possible cycles.
1496      *
1497      * Visitor method: Validate a type expression, if it is not null, catching
1498      *  and reporting any completion failures.
1499      */
1500     void validate(JCTree tree, Env<AttrContext> env) {
1501         validate(tree, env, true);
1502     }
1503     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1504         new Validator(env).validateTree(tree, checkRaw, true);
1505     }
1506 
1507     /** Visitor method: Validate a list of type expressions.
1508      */
1509     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1510         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1511             validate(l.head, env);
1512     }
1513 
1514     /** A visitor class for type validation.
1515      */
1516     class Validator extends JCTree.Visitor {
1517 
1518         boolean checkRaw;
1519         boolean isOuter;
1520         Env<AttrContext> env;
1521 
1522         Validator(Env<AttrContext> env) {
1523             this.env = env;
1524         }
1525 
1526         @Override
1527         public void visitTypeArray(JCArrayTypeTree tree) {
1528             validateTree(tree.elemtype, checkRaw, isOuter);
1529         }
1530 
1531         @Override
1532         public void visitTypeApply(JCTypeApply tree) {
1533             if (tree.type.hasTag(CLASS)) {
1534                 List<JCExpression> args = tree.arguments;
1535                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1536 
1537                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1538                 if (incompatibleArg != null) {
1539                     for (JCTree arg : tree.arguments) {
1540                         if (arg.type == incompatibleArg) {
1541                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1542                         }
1543                         forms = forms.tail;
1544                      }
1545                  }
1546 
1547                 forms = tree.type.tsym.type.getTypeArguments();
1548 
1549                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1550 
1551                 // For matching pairs of actual argument types `a' and
1552                 // formal type parameters with declared bound `b' ...
1553                 while (args.nonEmpty() && forms.nonEmpty()) {
1554                     validateTree(args.head,
1555                             !(isOuter && is_java_lang_Class),
1556                             false);
1557                     args = args.tail;
1558                     forms = forms.tail;
1559                 }
1560 
1561                 // Check that this type is either fully parameterized, or
1562                 // not parameterized at all.
1563                 if (tree.type.getEnclosingType().isRaw())
1564                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1565                 if (tree.clazz.hasTag(SELECT))
1566                     visitSelectInternal((JCFieldAccess)tree.clazz);
1567             }
1568         }
1569 
1570         @Override
1571         public void visitTypeParameter(JCTypeParameter tree) {
1572             validateTrees(tree.bounds, true, isOuter);
1573             checkClassBounds(tree.pos(), tree.type);
1574         }
1575 
1576         @Override
1577         public void visitWildcard(JCWildcard tree) {
1578             if (tree.inner != null)
1579                 validateTree(tree.inner, true, isOuter);
1580         }
1581 
1582         @Override
1583         public void visitSelect(JCFieldAccess tree) {
1584             if (tree.type.hasTag(CLASS)) {
1585                 visitSelectInternal(tree);
1586 
1587                 // Check that this type is either fully parameterized, or
1588                 // not parameterized at all.
1589                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1590                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1591             }
1592         }
1593 
1594         public void visitSelectInternal(JCFieldAccess tree) {
1595             if (tree.type.tsym.isStatic() &&
1596                 tree.selected.type.isParameterized()) {
1597                 // The enclosing type is not a class, so we are
1598                 // looking at a static member type.  However, the
1599                 // qualifying expression is parameterized.
1600                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1601             } else {
1602                 // otherwise validate the rest of the expression
1603                 tree.selected.accept(this);
1604             }
1605         }
1606 
1607         @Override
1608         public void visitAnnotatedType(JCAnnotatedType tree) {
1609             tree.underlyingType.accept(this);
1610         }
1611 
1612         @Override
1613         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1614             if (that.type.hasTag(TypeTag.VOID)) {
1615                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1616             }
1617             super.visitTypeIdent(that);
1618         }
1619 
1620         /** Default visitor method: do nothing.
1621          */
1622         @Override
1623         public void visitTree(JCTree tree) {
1624         }
1625 
1626         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1627             if (tree != null) {
1628                 boolean prevCheckRaw = this.checkRaw;
1629                 this.checkRaw = checkRaw;
1630                 this.isOuter = isOuter;
1631 
1632                 try {
1633                     tree.accept(this);
1634                     if (checkRaw)
1635                         checkRaw(tree, env);
1636                 } catch (CompletionFailure ex) {
1637                     completionError(tree.pos(), ex);
1638                 } finally {
1639                     this.checkRaw = prevCheckRaw;
1640                 }
1641             }
1642         }
1643 
1644         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1645             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1646                 validateTree(l.head, checkRaw, isOuter);
1647         }
1648     }
1649 
1650     void checkRaw(JCTree tree, Env<AttrContext> env) {
1651         if (lint.isEnabled(LintCategory.RAW) &&
1652             tree.type.hasTag(CLASS) &&
1653             !TreeInfo.isDiamond(tree) &&
1654             !withinAnonConstr(env) &&
1655             tree.type.isRaw()) {
1656             log.warning(LintCategory.RAW,
1657                     tree.pos(), Warnings.RawClassUse(tree.type, tree.type.tsym.type));
1658         }
1659     }
1660     //where
1661         private boolean withinAnonConstr(Env<AttrContext> env) {
1662             return env.enclClass.name.isEmpty() &&
1663                     env.enclMethod != null && env.enclMethod.name == names.init;
1664         }
1665 
1666 /* *************************************************************************
1667  * Exception checking
1668  **************************************************************************/
1669 
1670     /* The following methods treat classes as sets that contain
1671      * the class itself and all their subclasses
1672      */
1673 
1674     /** Is given type a subtype of some of the types in given list?
1675      */
1676     boolean subset(Type t, List<Type> ts) {
1677         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1678             if (types.isSubtype(t, l.head)) return true;
1679         return false;
1680     }
1681 
1682     /** Is given type a subtype or supertype of
1683      *  some of the types in given list?
1684      */
1685     boolean intersects(Type t, List<Type> ts) {
1686         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1687             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1688         return false;
1689     }
1690 
1691     /** Add type set to given type list, unless it is a subclass of some class
1692      *  in the list.
1693      */
1694     List<Type> incl(Type t, List<Type> ts) {
1695         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1696     }
1697 
1698     /** Remove type set from type set list.
1699      */
1700     List<Type> excl(Type t, List<Type> ts) {
1701         if (ts.isEmpty()) {
1702             return ts;
1703         } else {
1704             List<Type> ts1 = excl(t, ts.tail);
1705             if (types.isSubtype(ts.head, t)) return ts1;
1706             else if (ts1 == ts.tail) return ts;
1707             else return ts1.prepend(ts.head);
1708         }
1709     }
1710 
1711     /** Form the union of two type set lists.
1712      */
1713     List<Type> union(List<Type> ts1, List<Type> ts2) {
1714         List<Type> ts = ts1;
1715         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1716             ts = incl(l.head, ts);
1717         return ts;
1718     }
1719 
1720     /** Form the difference of two type lists.
1721      */
1722     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1723         List<Type> ts = ts1;
1724         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1725             ts = excl(l.head, ts);
1726         return ts;
1727     }
1728 
1729     /** Form the intersection of two type lists.
1730      */
1731     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1732         List<Type> ts = List.nil();
1733         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1734             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1735         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1736             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1737         return ts;
1738     }
1739 
1740     /** Is exc an exception symbol that need not be declared?
1741      */
1742     boolean isUnchecked(ClassSymbol exc) {
1743         return
1744             exc.kind == ERR ||
1745             exc.isSubClass(syms.errorType.tsym, types) ||
1746             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1747     }
1748 
1749     /** Is exc an exception type that need not be declared?
1750      */
1751     boolean isUnchecked(Type exc) {
1752         return
1753             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1754             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1755             exc.hasTag(BOT);
1756     }
1757 
1758     boolean isChecked(Type exc) {
1759         return !isUnchecked(exc);
1760     }
1761 
1762     /** Same, but handling completion failures.
1763      */
1764     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1765         try {
1766             return isUnchecked(exc);
1767         } catch (CompletionFailure ex) {
1768             completionError(pos, ex);
1769             return true;
1770         }
1771     }
1772 
1773     /** Is exc handled by given exception list?
1774      */
1775     boolean isHandled(Type exc, List<Type> handled) {
1776         return isUnchecked(exc) || subset(exc, handled);
1777     }
1778 
1779     /** Return all exceptions in thrown list that are not in handled list.
1780      *  @param thrown     The list of thrown exceptions.
1781      *  @param handled    The list of handled exceptions.
1782      */
1783     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1784         List<Type> unhandled = List.nil();
1785         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1786             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1787         return unhandled;
1788     }
1789 
1790 /* *************************************************************************
1791  * Overriding/Implementation checking
1792  **************************************************************************/
1793 
1794     /** The level of access protection given by a flag set,
1795      *  where PRIVATE is highest and PUBLIC is lowest.
1796      */
1797     static int protection(long flags) {
1798         switch ((short)(flags & AccessFlags)) {
1799         case PRIVATE: return 3;
1800         case PROTECTED: return 1;
1801         default:
1802         case PUBLIC: return 0;
1803         case 0: return 2;
1804         }
1805     }
1806 
1807     /** A customized "cannot override" error message.
1808      *  @param m      The overriding method.
1809      *  @param other  The overridden method.
1810      *  @return       An internationalized string.
1811      */
1812     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1813         Symbol mloc = m.location();
1814         Symbol oloc = other.location();
1815 
1816         if ((other.owner.flags() & INTERFACE) == 0)
1817             return Fragments.CantOverride(m, mloc, other, oloc);
1818         else if ((m.owner.flags() & INTERFACE) == 0)
1819             return Fragments.CantImplement(m, mloc, other, oloc);
1820         else
1821             return Fragments.ClashesWith(m, mloc, other, oloc);
1822     }
1823 
1824     /** A customized "override" warning message.
1825      *  @param m      The overriding method.
1826      *  @param other  The overridden method.
1827      *  @return       An internationalized string.
1828      */
1829     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1830         Symbol mloc = m.location();
1831         Symbol oloc = other.location();
1832 
1833         if ((other.owner.flags() & INTERFACE) == 0)
1834             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1835         else if ((m.owner.flags() & INTERFACE) == 0)
1836             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1837         else
1838             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1839     }
1840 
1841     /** A customized "override" warning message.
1842      *  @param m      The overriding method.
1843      *  @param other  The overridden method.
1844      *  @return       An internationalized string.
1845      */
1846     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1847         Symbol mloc = m.location();
1848         Symbol oloc = other.location();
1849 
1850         if ((other.owner.flags() & INTERFACE) == 0)
1851             return Fragments.VarargsOverride(m, mloc, other, oloc);
1852         else  if ((m.owner.flags() & INTERFACE) == 0)
1853             return Fragments.VarargsImplement(m, mloc, other, oloc);
1854         else
1855             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1856     }
1857 
1858     /** Check that this method conforms with overridden method 'other'.
1859      *  where `origin' is the class where checking started.
1860      *  Complications:
1861      *  (1) Do not check overriding of synthetic methods
1862      *      (reason: they might be final).
1863      *      todo: check whether this is still necessary.
1864      *  (2) Admit the case where an interface proxy throws fewer exceptions
1865      *      than the method it implements. Augment the proxy methods with the
1866      *      undeclared exceptions in this case.
1867      *  (3) When generics are enabled, admit the case where an interface proxy
1868      *      has a result type
1869      *      extended by the result type of the method it implements.
1870      *      Change the proxies result type to the smaller type in this case.
1871      *
1872      *  @param tree         The tree from which positions
1873      *                      are extracted for errors.
1874      *  @param m            The overriding method.
1875      *  @param other        The overridden method.
1876      *  @param origin       The class of which the overriding method
1877      *                      is a member.
1878      */
1879     void checkOverride(JCTree tree,
1880                        MethodSymbol m,
1881                        MethodSymbol other,
1882                        ClassSymbol origin) {
1883         // Don't check overriding of synthetic methods or by bridge methods.
1884         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1885             return;
1886         }
1887 
1888         // Error if static method overrides instance method (JLS 8.4.8.2).
1889         if ((m.flags() & STATIC) != 0 &&
1890                    (other.flags() & STATIC) == 0) {
1891             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1892                       Errors.OverrideStatic(cannotOverride(m, other)));
1893             m.flags_field |= BAD_OVERRIDE;
1894             return;
1895         }
1896 
1897         // Error if instance method overrides static or final
1898         // method (JLS 8.4.8.1).
1899         if ((other.flags() & FINAL) != 0 ||
1900                  (m.flags() & STATIC) == 0 &&
1901                  (other.flags() & STATIC) != 0) {
1902             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1903                       Errors.OverrideMeth(cannotOverride(m, other),
1904                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1905             m.flags_field |= BAD_OVERRIDE;
1906             return;
1907         }
1908 
1909         if ((m.owner.flags() & ANNOTATION) != 0) {
1910             // handled in validateAnnotationMethod
1911             return;
1912         }
1913 
1914         // Error if overriding method has weaker access (JLS 8.4.8.3).
1915         if (protection(m.flags()) > protection(other.flags())) {
1916             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1917                       (other.flags() & AccessFlags) == 0 ?
1918                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1919                                                           "package") :
1920                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1921                                                           asFlagSet(other.flags() & AccessFlags)));
1922             m.flags_field |= BAD_OVERRIDE;
1923             return;
1924         }
1925 
1926         if (shouldCheckPreview(m, other, origin)) {
1927             checkPreview(tree.pos(), m, other);
1928         }
1929 
1930         Type mt = types.memberType(origin.type, m);
1931         Type ot = types.memberType(origin.type, other);
1932         // Error if overriding result type is different
1933         // (or, in the case of generics mode, not a subtype) of
1934         // overridden result type. We have to rename any type parameters
1935         // before comparing types.
1936         List<Type> mtvars = mt.getTypeArguments();
1937         List<Type> otvars = ot.getTypeArguments();
1938         Type mtres = mt.getReturnType();
1939         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1940 
1941         overrideWarner.clear();
1942         boolean resultTypesOK =
1943             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1944         if (!resultTypesOK) {
1945             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1946                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1947                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1948                                         other.location()), mtres, otres));
1949                 m.flags_field |= BAD_OVERRIDE;
1950             } else {
1951                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1952                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1953                 m.flags_field |= BAD_OVERRIDE;
1954             }
1955             return;
1956         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1957             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1958                     Warnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1959         }
1960 
1961         // Error if overriding method throws an exception not reported
1962         // by overridden method.
1963         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1964         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1965         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1966         if (unhandledErased.nonEmpty()) {
1967             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1968                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1969             m.flags_field |= BAD_OVERRIDE;
1970             return;
1971         }
1972         else if (unhandledUnerased.nonEmpty()) {
1973             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1974                           Warnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1975             return;
1976         }
1977 
1978         // Optional warning if varargs don't agree
1979         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1980             && lint.isEnabled(LintCategory.OVERRIDES)) {
1981             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1982                         ((m.flags() & Flags.VARARGS) != 0)
1983                         ? Warnings.OverrideVarargsMissing(varargsOverrides(m, other))
1984                         : Warnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1985         }
1986 
1987         // Warn if instance method overrides bridge method (compiler spec ??)
1988         if ((other.flags() & BRIDGE) != 0) {
1989             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1990                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1991         }
1992 
1993         // Warn if a deprecated method overridden by a non-deprecated one.
1994         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1995             Lint prevLint = setLint(lint.augment(m));
1996             try {
1997                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1998             } finally {
1999                 setLint(prevLint);
2000             }
2001         }
2002     }
2003     // where
2004         private boolean shouldCheckPreview(MethodSymbol m, MethodSymbol other, ClassSymbol origin) {
2005             if (m.owner != origin ||
2006                 //performance - only do the expensive checks when the overridden method is a Preview API:
2007                 (other.flags() & PREVIEW_API) == 0) {
2008                 return false;
2009             }
2010 
2011             for (Symbol s : types.membersClosure(origin.type, false).getSymbolsByName(m.name)) {
2012                 if (m != s && m.overrides(s, origin, types, false)) {
2013                     //only produce preview warnings or errors if "m" immediatelly overrides "other"
2014                     //without intermediate overriding methods:
2015                     return s == other;
2016                 }
2017             }
2018 
2019             return false;
2020         }
2021         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
2022             // If the method, m, is defined in an interface, then ignore the issue if the method
2023             // is only inherited via a supertype and also implemented in the supertype,
2024             // because in that case, we will rediscover the issue when examining the method
2025             // in the supertype.
2026             // If the method, m, is not defined in an interface, then the only time we need to
2027             // address the issue is when the method is the supertype implementation: any other
2028             // case, we will have dealt with when examining the supertype classes
2029             ClassSymbol mc = m.enclClass();
2030             Type st = types.supertype(origin.type);
2031             if (!st.hasTag(CLASS))
2032                 return true;
2033             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
2034 
2035             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
2036                 List<Type> intfs = types.interfaces(origin.type);
2037                 return (intfs.contains(mc.type) ? false : (stimpl != null));
2038             }
2039             else
2040                 return (stimpl != m);
2041         }
2042 
2043 
2044     // used to check if there were any unchecked conversions
2045     Warner overrideWarner = new Warner();
2046 
2047     /** Check that a class does not inherit two concrete methods
2048      *  with the same signature.
2049      *  @param pos          Position to be used for error reporting.
2050      *  @param site         The class type to be checked.
2051      */
2052     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
2053         Type sup = types.supertype(site);
2054         if (!sup.hasTag(CLASS)) return;
2055 
2056         for (Type t1 = sup;
2057              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
2058              t1 = types.supertype(t1)) {
2059             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2060                 if (s1.kind != MTH ||
2061                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2062                     !s1.isInheritedIn(site.tsym, types) ||
2063                     ((MethodSymbol)s1).implementation(site.tsym,
2064                                                       types,
2065                                                       true) != s1)
2066                     continue;
2067                 Type st1 = types.memberType(t1, s1);
2068                 int s1ArgsLength = st1.getParameterTypes().length();
2069                 if (st1 == s1.type) continue;
2070 
2071                 for (Type t2 = sup;
2072                      t2.hasTag(CLASS);
2073                      t2 = types.supertype(t2)) {
2074                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2075                         if (s2 == s1 ||
2076                             s2.kind != MTH ||
2077                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
2078                             s2.type.getParameterTypes().length() != s1ArgsLength ||
2079                             !s2.isInheritedIn(site.tsym, types) ||
2080                             ((MethodSymbol)s2).implementation(site.tsym,
2081                                                               types,
2082                                                               true) != s2)
2083                             continue;
2084                         Type st2 = types.memberType(t2, s2);
2085                         if (types.overrideEquivalent(st1, st2))
2086                             log.error(pos,
2087                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
2088                     }
2089                 }
2090             }
2091         }
2092     }
2093 
2094     /** Check that classes (or interfaces) do not each define an abstract
2095      *  method with same name and arguments but incompatible return types.
2096      *  @param pos          Position to be used for error reporting.
2097      *  @param t1           The first argument type.
2098      *  @param t2           The second argument type.
2099      */
2100     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
2101                                             Type t1,
2102                                             Type t2,
2103                                             Type site) {
2104         if ((site.tsym.flags() & COMPOUND) != 0) {
2105             // special case for intersections: need to eliminate wildcards in supertypes
2106             t1 = types.capture(t1);
2107             t2 = types.capture(t2);
2108         }
2109         return firstIncompatibility(pos, t1, t2, site) == null;
2110     }
2111 
2112     /** Return the first method which is defined with same args
2113      *  but different return types in two given interfaces, or null if none
2114      *  exists.
2115      *  @param t1     The first type.
2116      *  @param t2     The second type.
2117      *  @param site   The most derived type.
2118      *  @return symbol from t2 that conflicts with one in t1.
2119      */
2120     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2121         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
2122         closure(t1, interfaces1);
2123         Map<TypeSymbol,Type> interfaces2;
2124         if (t1 == t2)
2125             interfaces2 = interfaces1;
2126         else
2127             closure(t2, interfaces1, interfaces2 = new HashMap<>());
2128 
2129         for (Type t3 : interfaces1.values()) {
2130             for (Type t4 : interfaces2.values()) {
2131                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
2132                 if (s != null) return s;
2133             }
2134         }
2135         return null;
2136     }
2137 
2138     /** Compute all the supertypes of t, indexed by type symbol. */
2139     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
2140         if (!t.hasTag(CLASS)) return;
2141         if (typeMap.put(t.tsym, t) == null) {
2142             closure(types.supertype(t), typeMap);
2143             for (Type i : types.interfaces(t))
2144                 closure(i, typeMap);
2145         }
2146     }
2147 
2148     /** Compute all the supertypes of t, indexed by type symbol (except those in typesSkip). */
2149     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
2150         if (!t.hasTag(CLASS)) return;
2151         if (typesSkip.get(t.tsym) != null) return;
2152         if (typeMap.put(t.tsym, t) == null) {
2153             closure(types.supertype(t), typesSkip, typeMap);
2154             for (Type i : types.interfaces(t))
2155                 closure(i, typesSkip, typeMap);
2156         }
2157     }
2158 
2159     /** Return the first method in t2 that conflicts with a method from t1. */
2160     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
2161         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
2162             Type st1 = null;
2163             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2164                     (s1.flags() & SYNTHETIC) != 0) continue;
2165             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2166             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2167             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2168                 if (s1 == s2) continue;
2169                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2170                         (s2.flags() & SYNTHETIC) != 0) continue;
2171                 if (st1 == null) st1 = types.memberType(t1, s1);
2172                 Type st2 = types.memberType(t2, s2);
2173                 if (types.overrideEquivalent(st1, st2)) {
2174                     List<Type> tvars1 = st1.getTypeArguments();
2175                     List<Type> tvars2 = st2.getTypeArguments();
2176                     Type rt1 = st1.getReturnType();
2177                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2178                     boolean compat =
2179                         types.isSameType(rt1, rt2) ||
2180                         !rt1.isPrimitiveOrVoid() &&
2181                         !rt2.isPrimitiveOrVoid() &&
2182                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2183                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2184                          checkCommonOverriderIn(s1,s2,site);
2185                     if (!compat) {
2186                         if (types.isSameType(t1, t2)) {
2187                             log.error(pos, Errors.IncompatibleDiffRetSameType(t1,
2188                                     s2.name, types.memberType(t2, s2).getParameterTypes()));
2189                         } else {
2190                             log.error(pos, Errors.TypesIncompatible(t1, t2,
2191                                     Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2192                         }
2193                         return s2;
2194                     }
2195                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2196                         !checkCommonOverriderIn(s1, s2, site)) {
2197                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2198                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2199                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2200                     return s2;
2201                 }
2202             }
2203         }
2204         return null;
2205     }
2206     //WHERE
2207     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2208         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2209         Type st1 = types.memberType(site, s1);
2210         Type st2 = types.memberType(site, s2);
2211         closure(site, supertypes);
2212         for (Type t : supertypes.values()) {
2213             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2214                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2215                 Type st3 = types.memberType(site,s3);
2216                 if (types.overrideEquivalent(st3, st1) &&
2217                         types.overrideEquivalent(st3, st2) &&
2218                         types.returnTypeSubstitutable(st3, st1) &&
2219                         types.returnTypeSubstitutable(st3, st2)) {
2220                     return true;
2221                 }
2222             }
2223         }
2224         return false;
2225     }
2226 
2227     /** Check that a given method conforms with any method it overrides.
2228      *  @param tree         The tree from which positions are extracted
2229      *                      for errors.
2230      *  @param m            The overriding method.
2231      */
2232     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2233         ClassSymbol origin = (ClassSymbol)m.owner;
2234         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name)) {
2235             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2236                 log.error(tree.pos(), Errors.EnumNoFinalize);
2237                 return;
2238             }
2239         }
2240         if (allowValueClasses && origin.isValueClass() && names.finalize.equals(m.name)) {
2241             if (m.overrides(syms.objectFinalize, origin, types, false)) {
2242                 log.warning(tree.pos(), Warnings.ValueFinalize);
2243             }
2244         }
2245         if (allowRecords && origin.isRecord()) {
2246             // let's find out if this is a user defined accessor in which case the @Override annotation is acceptable
2247             Optional<? extends RecordComponent> recordComponent = origin.getRecordComponents().stream()
2248                     .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
2249             if (recordComponent.isPresent()) {
2250                 return;
2251             }
2252         }
2253 
2254         for (Type t = origin.type; t.hasTag(CLASS);
2255              t = types.supertype(t)) {
2256             if (t != origin.type) {
2257                 checkOverride(tree, t, origin, m);
2258             }
2259             for (Type t2 : types.interfaces(t)) {
2260                 checkOverride(tree, t2, origin, m);
2261             }
2262         }
2263 
2264         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2265         // Check if this method must override a super method due to being annotated with @Override
2266         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2267         // be treated "as if as they were annotated" with @Override.
2268         boolean mustOverride = explicitOverride ||
2269                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2270         if (mustOverride && !isOverrider(m)) {
2271             DiagnosticPosition pos = tree.pos();
2272             for (JCAnnotation a : tree.getModifiers().annotations) {
2273                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2274                     pos = a.pos();
2275                     break;
2276                 }
2277             }
2278             log.error(pos,
2279                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2280                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2281         }
2282     }
2283 
2284     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2285         TypeSymbol c = site.tsym;
2286         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2287             if (m.overrides(sym, origin, types, false)) {
2288                 if ((sym.flags() & ABSTRACT) == 0) {
2289                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2290                 }
2291             }
2292         }
2293     }
2294 
2295     private Predicate<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.test(s) &&
2296             (s.flags() & BAD_OVERRIDE) == 0;
2297 
2298     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2299             ClassSymbol someClass) {
2300         /* At present, annotations cannot possibly have a method that is override
2301          * equivalent with Object.equals(Object) but in any case the condition is
2302          * fine for completeness.
2303          */
2304         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2305             someClass.isInterface() || someClass.isEnum() ||
2306             (someClass.flags() & ANNOTATION) != 0 ||
2307             (someClass.flags() & ABSTRACT) != 0) return;
2308         //anonymous inner classes implementing interfaces need especial treatment
2309         if (someClass.isAnonymous()) {
2310             List<Type> interfaces =  types.interfaces(someClass.type);
2311             if (interfaces != null && !interfaces.isEmpty() &&
2312                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2313         }
2314         checkClassOverrideEqualsAndHash(pos, someClass);
2315     }
2316 
2317     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2318             ClassSymbol someClass) {
2319         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2320             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2321                     .tsym.members().findFirst(names.equals);
2322             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2323                     .tsym.members().findFirst(names.hashCode);
2324             MethodSymbol equalsImpl = types.implementation(equalsAtObject,
2325                     someClass, false, equalsHasCodeFilter);
2326             boolean overridesEquals = equalsImpl != null &&
2327                                       equalsImpl.owner == someClass;
2328             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2329                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2330 
2331             if (overridesEquals && !overridesHashCode) {
2332                 log.warning(LintCategory.OVERRIDES, pos,
2333                             Warnings.OverrideEqualsButNotHashcode(someClass));
2334             }
2335         }
2336     }
2337 
2338     public void checkHasMain(DiagnosticPosition pos, ClassSymbol c) {
2339         boolean found = false;
2340 
2341         for (Symbol sym : c.members().getSymbolsByName(names.main)) {
2342             if (sym.kind == MTH && (sym.flags() & PRIVATE) == 0) {
2343                 MethodSymbol meth = (MethodSymbol)sym;
2344                 if (!types.isSameType(meth.getReturnType(), syms.voidType)) {
2345                     continue;
2346                 }
2347                 if (meth.params.isEmpty()) {
2348                     found = true;
2349                     break;
2350                 }
2351                 if (meth.params.size() != 1) {
2352                     continue;
2353                 }
2354                 if (!types.isSameType(meth.params.head.type, types.makeArrayType(syms.stringType))) {
2355                     continue;
2356                 }
2357 
2358                 found = true;
2359                 break;
2360             }
2361         }
2362 
2363         if (!found) {
2364             log.error(pos, Errors.ImplicitClassDoesNotHaveMainMethod);
2365         }
2366     }
2367 
2368     public void checkModuleName (JCModuleDecl tree) {
2369         Name moduleName = tree.sym.name;
2370         Assert.checkNonNull(moduleName);
2371         if (lint.isEnabled(LintCategory.MODULE)) {
2372             JCExpression qualId = tree.qualId;
2373             while (qualId != null) {
2374                 Name componentName;
2375                 DiagnosticPosition pos;
2376                 switch (qualId.getTag()) {
2377                     case SELECT:
2378                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2379                         componentName = selectNode.name;
2380                         pos = selectNode.pos();
2381                         qualId = selectNode.selected;
2382                         break;
2383                     case IDENT:
2384                         componentName = ((JCIdent) qualId).name;
2385                         pos = qualId.pos();
2386                         qualId = null;
2387                         break;
2388                     default:
2389                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2390                 }
2391                 if (componentName != null) {
2392                     String moduleNameComponentString = componentName.toString();
2393                     int nameLength = moduleNameComponentString.length();
2394                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2395                         log.warning(Lint.LintCategory.MODULE, pos, Warnings.PoorChoiceForModuleName(componentName));
2396                     }
2397                 }
2398             }
2399         }
2400     }
2401 
2402     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2403         ClashFilter cf = new ClashFilter(origin.type);
2404         return (cf.test(s1) &&
2405                 cf.test(s2) &&
2406                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2407     }
2408 
2409 
2410     /** Check that all abstract members of given class have definitions.
2411      *  @param pos          Position to be used for error reporting.
2412      *  @param c            The class.
2413      */
2414     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2415         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2416         if (undef != null) {
2417             MethodSymbol undef1 =
2418                 new MethodSymbol(undef.flags(), undef.name,
2419                                  types.memberType(c.type, undef), undef.owner);
2420             log.error(pos,
2421                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2422         }
2423     }
2424 
2425     void checkNonCyclicDecl(JCClassDecl tree) {
2426         CycleChecker cc = new CycleChecker();
2427         cc.scan(tree);
2428         if (!cc.errorFound && !cc.partialCheck) {
2429             tree.sym.flags_field |= ACYCLIC;
2430         }
2431     }
2432 
2433     class CycleChecker extends TreeScanner {
2434 
2435         Set<Symbol> seenClasses = new HashSet<>();
2436         boolean errorFound = false;
2437         boolean partialCheck = false;
2438 
2439         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2440             if (sym != null && sym.kind == TYP) {
2441                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2442                 if (classEnv != null) {
2443                     DiagnosticSource prevSource = log.currentSource();
2444                     try {
2445                         log.useSource(classEnv.toplevel.sourcefile);
2446                         scan(classEnv.tree);
2447                     }
2448                     finally {
2449                         log.useSource(prevSource.getFile());
2450                     }
2451                 } else if (sym.kind == TYP) {
2452                     checkClass(pos, sym, List.nil());
2453                 }
2454             } else if (sym == null || sym.kind != PCK) {
2455                 //not completed yet
2456                 partialCheck = true;
2457             }
2458         }
2459 
2460         @Override
2461         public void visitSelect(JCFieldAccess tree) {
2462             super.visitSelect(tree);
2463             checkSymbol(tree.pos(), tree.sym);
2464         }
2465 
2466         @Override
2467         public void visitIdent(JCIdent tree) {
2468             checkSymbol(tree.pos(), tree.sym);
2469         }
2470 
2471         @Override
2472         public void visitTypeApply(JCTypeApply tree) {
2473             scan(tree.clazz);
2474         }
2475 
2476         @Override
2477         public void visitTypeArray(JCArrayTypeTree tree) {
2478             scan(tree.elemtype);
2479         }
2480 
2481         @Override
2482         public void visitClassDef(JCClassDecl tree) {
2483             List<JCTree> supertypes = List.nil();
2484             if (tree.getExtendsClause() != null) {
2485                 supertypes = supertypes.prepend(tree.getExtendsClause());
2486             }
2487             if (tree.getImplementsClause() != null) {
2488                 for (JCTree intf : tree.getImplementsClause()) {
2489                     supertypes = supertypes.prepend(intf);
2490                 }
2491             }
2492             checkClass(tree.pos(), tree.sym, supertypes);
2493         }
2494 
2495         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2496             if ((c.flags_field & ACYCLIC) != 0)
2497                 return;
2498             if (seenClasses.contains(c)) {
2499                 errorFound = true;
2500                 noteCyclic(pos, (ClassSymbol)c);
2501             } else if (!c.type.isErroneous()) {
2502                 try {
2503                     seenClasses.add(c);
2504                     if (c.type.hasTag(CLASS)) {
2505                         if (supertypes.nonEmpty()) {
2506                             scan(supertypes);
2507                         }
2508                         else {
2509                             ClassType ct = (ClassType)c.type;
2510                             if (ct.supertype_field == null ||
2511                                     ct.interfaces_field == null) {
2512                                 //not completed yet
2513                                 partialCheck = true;
2514                                 return;
2515                             }
2516                             checkSymbol(pos, ct.supertype_field.tsym);
2517                             for (Type intf : ct.interfaces_field) {
2518                                 checkSymbol(pos, intf.tsym);
2519                             }
2520                         }
2521                         if (c.owner.kind == TYP) {
2522                             checkSymbol(pos, c.owner);
2523                         }
2524                     }
2525                 } finally {
2526                     seenClasses.remove(c);
2527                 }
2528             }
2529         }
2530     }
2531 
2532     /** Check for cyclic references. Issue an error if the
2533      *  symbol of the type referred to has a LOCKED flag set.
2534      *
2535      *  @param pos      Position to be used for error reporting.
2536      *  @param t        The type referred to.
2537      */
2538     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2539         checkNonCyclicInternal(pos, t);
2540     }
2541 
2542 
2543     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2544         checkNonCyclic1(pos, t, List.nil());
2545     }
2546 
2547     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2548         final TypeVar tv;
2549         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2550             return;
2551         if (seen.contains(t)) {
2552             tv = (TypeVar)t;
2553             tv.setUpperBound(types.createErrorType(t));
2554             log.error(pos, Errors.CyclicInheritance(t));
2555         } else if (t.hasTag(TYPEVAR)) {
2556             tv = (TypeVar)t;
2557             seen = seen.prepend(tv);
2558             for (Type b : types.getBounds(tv))
2559                 checkNonCyclic1(pos, b, seen);
2560         }
2561     }
2562 
2563     /** Check for cyclic references. Issue an error if the
2564      *  symbol of the type referred to has a LOCKED flag set.
2565      *
2566      *  @param pos      Position to be used for error reporting.
2567      *  @param t        The type referred to.
2568      *  @return        True if the check completed on all attributed classes
2569      */
2570     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2571         boolean complete = true; // was the check complete?
2572         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2573         Symbol c = t.tsym;
2574         if ((c.flags_field & ACYCLIC) != 0) return true;
2575 
2576         if ((c.flags_field & LOCKED) != 0) {
2577             noteCyclic(pos, (ClassSymbol)c);
2578         } else if (!c.type.isErroneous()) {
2579             try {
2580                 c.flags_field |= LOCKED;
2581                 if (c.type.hasTag(CLASS)) {
2582                     ClassType clazz = (ClassType)c.type;
2583                     if (clazz.interfaces_field != null)
2584                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2585                             complete &= checkNonCyclicInternal(pos, l.head);
2586                     if (clazz.supertype_field != null) {
2587                         Type st = clazz.supertype_field;
2588                         if (st != null && st.hasTag(CLASS))
2589                             complete &= checkNonCyclicInternal(pos, st);
2590                     }
2591                     if (c.owner.kind == TYP)
2592                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2593                 }
2594             } finally {
2595                 c.flags_field &= ~LOCKED;
2596             }
2597         }
2598         if (complete)
2599             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2600         if (complete) c.flags_field |= ACYCLIC;
2601         return complete;
2602     }
2603 
2604     /** Note that we found an inheritance cycle. */
2605     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2606         log.error(pos, Errors.CyclicInheritance(c));
2607         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2608             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2609         Type st = types.supertype(c.type);
2610         if (st.hasTag(CLASS))
2611             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2612         c.type = types.createErrorType(c, c.type);
2613         c.flags_field |= ACYCLIC;
2614     }
2615 
2616     /** Check that all methods which implement some
2617      *  method conform to the method they implement.
2618      *  @param tree         The class definition whose members are checked.
2619      */
2620     void checkImplementations(JCClassDecl tree) {
2621         checkImplementations(tree, tree.sym, tree.sym);
2622     }
2623     //where
2624         /** Check that all methods which implement some
2625          *  method in `ic' conform to the method they implement.
2626          */
2627         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2628             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2629                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2630                 if ((lc.flags() & ABSTRACT) != 0) {
2631                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2632                         if (sym.kind == MTH &&
2633                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2634                             MethodSymbol absmeth = (MethodSymbol)sym;
2635                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2636                             if (implmeth != null && implmeth != absmeth &&
2637                                 (implmeth.owner.flags() & INTERFACE) ==
2638                                 (origin.flags() & INTERFACE)) {
2639                                 // don't check if implmeth is in a class, yet
2640                                 // origin is an interface. This case arises only
2641                                 // if implmeth is declared in Object. The reason is
2642                                 // that interfaces really don't inherit from
2643                                 // Object it's just that the compiler represents
2644                                 // things that way.
2645                                 checkOverride(tree, implmeth, absmeth, origin);
2646                             }
2647                         }
2648                     }
2649                 }
2650             }
2651         }
2652 
2653     /** Check that all abstract methods implemented by a class are
2654      *  mutually compatible.
2655      *  @param pos          Position to be used for error reporting.
2656      *  @param c            The class whose interfaces are checked.
2657      */
2658     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2659         List<Type> supertypes = types.interfaces(c);
2660         Type supertype = types.supertype(c);
2661         if (supertype.hasTag(CLASS) &&
2662             (supertype.tsym.flags() & ABSTRACT) != 0)
2663             supertypes = supertypes.prepend(supertype);
2664         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2665             if (!l.head.getTypeArguments().isEmpty() &&
2666                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2667                 return;
2668             for (List<Type> m = supertypes; m != l; m = m.tail)
2669                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2670                     return;
2671         }
2672         checkCompatibleConcretes(pos, c);
2673 
2674         Type identitySuper = null;
2675         for (Type t : types.closure(c)) {
2676             if (t != c) {
2677                 if (t.isIdentityClass() && (t.tsym.flags() & VALUE_BASED) == 0)
2678                     identitySuper = t;
2679                 if (c.isValueClass() && identitySuper != null && identitySuper.tsym != syms.objectType.tsym) { // Object is special
2680                     log.error(pos, Errors.ValueTypeHasIdentitySuperType(c, identitySuper));
2681                     break;
2682                 }
2683             }
2684         }
2685     }
2686 
2687     /** Check that all non-override equivalent methods accessible from 'site'
2688      *  are mutually compatible (JLS 8.4.8/9.4.1).
2689      *
2690      *  @param pos  Position to be used for error reporting.
2691      *  @param site The class whose methods are checked.
2692      *  @param sym  The method symbol to be checked.
2693      */
2694     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2695          ClashFilter cf = new ClashFilter(site);
2696         //for each method m1 that is overridden (directly or indirectly)
2697         //by method 'sym' in 'site'...
2698 
2699         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2700         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2701         for (Symbol m1 : symbolsByName) {
2702             if (!sym.overrides(m1, site.tsym, types, false)) {
2703                 continue;
2704             }
2705 
2706             //...check each method m2 that is a member of 'site'
2707             for (Symbol m2 : symbolsByName) {
2708                 if (m2 == m1) continue;
2709                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2710                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2711                 if (!types.isSubSignature(sym.type, types.memberType(site, m2)) &&
2712                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2713                     sym.flags_field |= CLASH;
2714                     if (m1 == sym) {
2715                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2716                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2717                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2718                     } else {
2719                         ClassType ct = (ClassType)site;
2720                         String kind = ct.isInterface() ? "interface" : "class";
2721                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2722                             kind,
2723                             ct.tsym.name,
2724                             m1.name,
2725                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2726                             m1.location(),
2727                             m2.name,
2728                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2729                             m2.location()));
2730                     }
2731                     return;
2732                 }
2733             }
2734         }
2735     }
2736 
2737     /** Check that all static methods accessible from 'site' are
2738      *  mutually compatible (JLS 8.4.8).
2739      *
2740      *  @param pos  Position to be used for error reporting.
2741      *  @param site The class whose methods are checked.
2742      *  @param sym  The method symbol to be checked.
2743      */
2744     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2745         ClashFilter cf = new ClashFilter(site);
2746         //for each method m1 that is a member of 'site'...
2747         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2748             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2749             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2750             if (!types.isSubSignature(sym.type, types.memberType(site, s))) {
2751                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2752                     log.error(pos,
2753                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2754                     return;
2755                 }
2756             }
2757          }
2758      }
2759 
2760      //where
2761      private class ClashFilter implements Predicate<Symbol> {
2762 
2763          Type site;
2764 
2765          ClashFilter(Type site) {
2766              this.site = site;
2767          }
2768 
2769          boolean shouldSkip(Symbol s) {
2770              return (s.flags() & CLASH) != 0 &&
2771                 s.owner == site.tsym;
2772          }
2773 
2774          @Override
2775          public boolean test(Symbol s) {
2776              return s.kind == MTH &&
2777                      (s.flags() & SYNTHETIC) == 0 &&
2778                      !shouldSkip(s) &&
2779                      s.isInheritedIn(site.tsym, types) &&
2780                      !s.isConstructor();
2781          }
2782      }
2783 
2784     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2785         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2786         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2787             Assert.check(m.kind == MTH);
2788             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2789             if (prov.size() > 1) {
2790                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2791                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2792                 for (MethodSymbol provSym : prov) {
2793                     if ((provSym.flags() & DEFAULT) != 0) {
2794                         defaults = defaults.append(provSym);
2795                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2796                         abstracts = abstracts.append(provSym);
2797                     }
2798                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2799                         //strong semantics - issue an error if two sibling interfaces
2800                         //have two override-equivalent defaults - or if one is abstract
2801                         //and the other is default
2802                         Fragment diagKey;
2803                         Symbol s1 = defaults.first();
2804                         Symbol s2;
2805                         if (defaults.size() > 1) {
2806                             s2 = defaults.toList().tail.head;
2807                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2808                                     m.name, types.memberType(site, m).getParameterTypes(),
2809                                     s1.location(), s2.location());
2810 
2811                         } else {
2812                             s2 = abstracts.first();
2813                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2814                                     m.name, types.memberType(site, m).getParameterTypes(),
2815                                     s1.location(), s2.location());
2816                         }
2817                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2818                         break;
2819                     }
2820                 }
2821             }
2822         }
2823     }
2824 
2825     //where
2826      private class DefaultMethodClashFilter implements Predicate<Symbol> {
2827 
2828          Type site;
2829 
2830          DefaultMethodClashFilter(Type site) {
2831              this.site = site;
2832          }
2833 
2834          @Override
2835          public boolean test(Symbol s) {
2836              return s.kind == MTH &&
2837                      (s.flags() & DEFAULT) != 0 &&
2838                      s.isInheritedIn(site.tsym, types) &&
2839                      !s.isConstructor();
2840          }
2841      }
2842 
2843     /** Report warnings for potentially ambiguous method declarations in the given site. */
2844     void checkPotentiallyAmbiguousOverloads(JCClassDecl tree, Type site) {
2845 
2846         // Skip if warning not enabled
2847         if (!lint.isEnabled(LintCategory.OVERLOADS))
2848             return;
2849 
2850         // Gather all of site's methods, including overridden methods, grouped by name (except Object methods)
2851         List<java.util.List<MethodSymbol>> methodGroups = methodsGroupedByName(site,
2852             new PotentiallyAmbiguousFilter(site), ArrayList::new);
2853 
2854         // Build the predicate that determines if site is responsible for an ambiguity
2855         BiPredicate<MethodSymbol, MethodSymbol> responsible = buildResponsiblePredicate(site, methodGroups);
2856 
2857         // Now remove overridden methods from each group, leaving only site's actual members
2858         methodGroups.forEach(list -> removePreempted(list, (m1, m2) -> m1.overrides(m2, site.tsym, types, false)));
2859 
2860         // Allow site's own declared methods (only) to apply @SuppressWarnings("overloads")
2861         methodGroups.forEach(list -> list.removeIf(
2862             m -> m.owner == site.tsym && !lint.augment(m).isEnabled(LintCategory.OVERLOADS)));
2863 
2864         // Warn about ambiguous overload method pairs for which site is responsible
2865         methodGroups.forEach(list -> compareAndRemove(list, (m1, m2) -> {
2866 
2867             // See if this is an ambiguous overload for which "site" is responsible
2868             if (!potentiallyAmbiguousOverload(site, m1, m2) || !responsible.test(m1, m2))
2869                 return 0;
2870 
2871             // Locate the warning at one of the methods, if possible
2872             DiagnosticPosition pos =
2873                 m1.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m1, tree) :
2874                 m2.owner == site.tsym ? TreeInfo.diagnosticPositionFor(m2, tree) :
2875                 tree.pos();
2876 
2877             // Log the warning
2878             log.warning(LintCategory.OVERLOADS, pos,
2879                 Warnings.PotentiallyAmbiguousOverload(
2880                     m1.asMemberOf(site, types), m1.location(),
2881                     m2.asMemberOf(site, types), m2.location()));
2882 
2883             // Don't warn again for either of these two methods
2884             return FIRST | SECOND;
2885         }));
2886     }
2887 
2888     /** Build a predicate that determines, given two methods that are members of the given class,
2889      *  whether the class should be held "responsible" if the methods are potentially ambiguous.
2890      *
2891      *  Sometimes ambiguous methods are unavoidable because they're inherited from a supertype.
2892      *  For example, any subtype of Spliterator.OfInt will have ambiguities for both
2893      *  forEachRemaining() and tryAdvance() (in both cases the overloads are IntConsumer and
2894      *  Consumer&lt;? super Integer&gt;). So we only want to "blame" a class when that class is
2895      *  itself responsible for creating the ambiguity. We declare that a class C is "responsible"
2896      *  for the ambiguity between two methods m1 and m2 if there is no direct supertype T of C
2897      *  such that m1 and m2, or some overrides thereof, both exist in T and are ambiguous in T.
2898      *  As an optimization, we first check if either method is declared in C and does not override
2899      *  any other methods; in this case the class is definitely responsible.
2900      */
2901     BiPredicate<MethodSymbol, MethodSymbol> buildResponsiblePredicate(Type site,
2902         List<? extends Collection<MethodSymbol>> methodGroups) {
2903 
2904         // Define the "overrides" predicate
2905         BiPredicate<MethodSymbol, MethodSymbol> overrides = (m1, m2) -> m1.overrides(m2, site.tsym, types, false);
2906 
2907         // Map each method declared in site to a list of the supertype method(s) it directly overrides
2908         HashMap<MethodSymbol, ArrayList<MethodSymbol>> overriddenMethodsMap = new HashMap<>();
2909         methodGroups.forEach(list -> {
2910             for (MethodSymbol m : list) {
2911 
2912                 // Skip methods not declared in site
2913                 if (m.owner != site.tsym)
2914                     continue;
2915 
2916                 // Gather all supertype methods overridden by m, directly or indirectly
2917                 ArrayList<MethodSymbol> overriddenMethods = list.stream()
2918                   .filter(m2 -> m2 != m && overrides.test(m, m2))
2919                   .collect(Collectors.toCollection(ArrayList::new));
2920 
2921                 // Eliminate non-direct overrides
2922                 removePreempted(overriddenMethods, overrides);
2923 
2924                 // Add to map
2925                 overriddenMethodsMap.put(m, overriddenMethods);
2926             }
2927         });
2928 
2929         // Build the predicate
2930         return (m1, m2) -> {
2931 
2932             // Get corresponding supertype methods (if declared in site)
2933             java.util.List<MethodSymbol> overriddenMethods1 = overriddenMethodsMap.get(m1);
2934             java.util.List<MethodSymbol> overriddenMethods2 = overriddenMethodsMap.get(m2);
2935 
2936             // Quick check for the case where a method was added by site itself
2937             if (overriddenMethods1 != null && overriddenMethods1.isEmpty())
2938                 return true;
2939             if (overriddenMethods2 != null && overriddenMethods2.isEmpty())
2940                 return true;
2941 
2942             // Get each method's corresponding method(s) from supertypes of site
2943             java.util.List<MethodSymbol> supertypeMethods1 = overriddenMethods1 != null ?
2944               overriddenMethods1 : Collections.singletonList(m1);
2945             java.util.List<MethodSymbol> supertypeMethods2 = overriddenMethods2 != null ?
2946               overriddenMethods2 : Collections.singletonList(m2);
2947 
2948             // See if we can blame some direct supertype instead
2949             return types.directSupertypes(site).stream()
2950               .filter(stype -> stype != syms.objectType)
2951               .map(stype -> stype.tsym.type)                // view supertype in its original form
2952               .noneMatch(stype -> {
2953                 for (MethodSymbol sm1 : supertypeMethods1) {
2954                     if (!types.isSubtype(types.erasure(stype), types.erasure(sm1.owner.type)))
2955                         continue;
2956                     for (MethodSymbol sm2 : supertypeMethods2) {
2957                         if (!types.isSubtype(types.erasure(stype), types.erasure(sm2.owner.type)))
2958                             continue;
2959                         if (potentiallyAmbiguousOverload(stype, sm1, sm2))
2960                             return true;
2961                     }
2962                 }
2963                 return false;
2964             });
2965         };
2966     }
2967 
2968     /** Gather all of site's methods, including overridden methods, grouped and sorted by name,
2969      *  after applying the given filter.
2970      */
2971     <C extends Collection<MethodSymbol>> List<C> methodsGroupedByName(Type site,
2972             Predicate<Symbol> filter, Supplier<? extends C> groupMaker) {
2973         Iterable<Symbol> symbols = types.membersClosure(site, false).getSymbols(filter, RECURSIVE);
2974         return StreamSupport.stream(symbols.spliterator(), false)
2975           .map(MethodSymbol.class::cast)
2976           .collect(Collectors.groupingBy(m -> m.name, Collectors.toCollection(groupMaker)))
2977           .entrySet()
2978           .stream()
2979           .sorted(Comparator.comparing(e -> e.getKey().toString()))
2980           .map(Map.Entry::getValue)
2981           .collect(List.collector());
2982     }
2983 
2984     /** Compare elements in a list pair-wise in order to remove some of them.
2985      *  @param list mutable list of items
2986      *  @param comparer returns flag bit(s) to remove FIRST and/or SECOND
2987      */
2988     <T> void compareAndRemove(java.util.List<T> list, ToIntBiFunction<? super T, ? super T> comparer) {
2989         for (int index1 = 0; index1 < list.size() - 1; index1++) {
2990             T item1 = list.get(index1);
2991             for (int index2 = index1 + 1; index2 < list.size(); index2++) {
2992                 T item2 = list.get(index2);
2993                 int flags = comparer.applyAsInt(item1, item2);
2994                 if ((flags & SECOND) != 0)
2995                     list.remove(index2--);          // remove item2
2996                 if ((flags & FIRST) != 0) {
2997                     list.remove(index1--);          // remove item1
2998                     break;
2999                 }
3000             }
3001         }
3002     }
3003 
3004     /** Remove elements in a list that are preempted by some other element in the list.
3005      *  @param list mutable list of items
3006      *  @param preempts decides if one item preempts another, causing the second one to be removed
3007      */
3008     <T> void removePreempted(java.util.List<T> list, BiPredicate<? super T, ? super T> preempts) {
3009         compareAndRemove(list, (item1, item2) -> {
3010             int flags = 0;
3011             if (preempts.test(item1, item2))
3012                 flags |= SECOND;
3013             if (preempts.test(item2, item1))
3014                 flags |= FIRST;
3015             return flags;
3016         });
3017     }
3018 
3019     /** Filters method candidates for the "potentially ambiguous method" check */
3020     class PotentiallyAmbiguousFilter extends ClashFilter {
3021 
3022         PotentiallyAmbiguousFilter(Type site) {
3023             super(site);
3024         }
3025 
3026         @Override
3027         boolean shouldSkip(Symbol s) {
3028             return s.owner.type.tsym == syms.objectType.tsym || super.shouldSkip(s);
3029         }
3030     }
3031 
3032     /**
3033       * Report warnings for potentially ambiguous method declarations. Two declarations
3034       * are potentially ambiguous if they feature two unrelated functional interface
3035       * in same argument position (in which case, a call site passing an implicit
3036       * lambda would be ambiguous). This assumes they already have the same name.
3037       */
3038     boolean potentiallyAmbiguousOverload(Type site, MethodSymbol msym1, MethodSymbol msym2) {
3039         Assert.check(msym1.name == msym2.name);
3040         if (msym1 == msym2)
3041             return false;
3042         Type mt1 = types.memberType(site, msym1);
3043         Type mt2 = types.memberType(site, msym2);
3044         //if both generic methods, adjust type variables
3045         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
3046                 types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
3047             mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
3048         }
3049         //expand varargs methods if needed
3050         int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
3051         List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
3052         List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
3053         //if arities don't match, exit
3054         if (args1.length() != args2.length())
3055             return false;
3056         boolean potentiallyAmbiguous = false;
3057         while (args1.nonEmpty() && args2.nonEmpty()) {
3058             Type s = args1.head;
3059             Type t = args2.head;
3060             if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
3061                 if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
3062                         types.findDescriptorType(s).getParameterTypes().length() > 0 &&
3063                         types.findDescriptorType(s).getParameterTypes().length() ==
3064                         types.findDescriptorType(t).getParameterTypes().length()) {
3065                     potentiallyAmbiguous = true;
3066                 } else {
3067                     return false;
3068                 }
3069             }
3070             args1 = args1.tail;
3071             args2 = args2.tail;
3072         }
3073         return potentiallyAmbiguous;
3074     }
3075 
3076     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
3077         if (warnOnAnyAccessToMembers ||
3078             (lint.isEnabled(LintCategory.SERIAL) &&
3079             !lint.isSuppressed(LintCategory.SERIAL) &&
3080             isLambda)) {
3081             Symbol sym = TreeInfo.symbol(tree);
3082             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
3083                 return;
3084             }
3085 
3086             if (sym.kind == VAR) {
3087                 if ((sym.flags() & PARAMETER) != 0 ||
3088                     sym.isDirectlyOrIndirectlyLocal() ||
3089                     sym.name == names._this ||
3090                     sym.name == names._super) {
3091                     return;
3092                 }
3093             }
3094 
3095             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
3096                 isEffectivelyNonPublic(sym)) {
3097                 if (isLambda) {
3098                     if (belongsToRestrictedPackage(sym)) {
3099                         log.warning(LintCategory.SERIAL, tree.pos(),
3100                                     Warnings.AccessToMemberFromSerializableLambda(sym));
3101                     }
3102                 } else {
3103                     log.warning(tree.pos(),
3104                                 Warnings.AccessToMemberFromSerializableElement(sym));
3105                 }
3106             }
3107         }
3108     }
3109 
3110     private boolean isEffectivelyNonPublic(Symbol sym) {
3111         if (sym.packge() == syms.rootPackage) {
3112             return false;
3113         }
3114 
3115         while (sym.kind != PCK) {
3116             if ((sym.flags() & PUBLIC) == 0) {
3117                 return true;
3118             }
3119             sym = sym.owner;
3120         }
3121         return false;
3122     }
3123 
3124     private boolean belongsToRestrictedPackage(Symbol sym) {
3125         String fullName = sym.packge().fullname.toString();
3126         return fullName.startsWith("java.") ||
3127                 fullName.startsWith("javax.") ||
3128                 fullName.startsWith("sun.") ||
3129                 fullName.contains(".internal.");
3130     }
3131 
3132     /** Check that class c does not implement directly or indirectly
3133      *  the same parameterized interface with two different argument lists.
3134      *  @param pos          Position to be used for error reporting.
3135      *  @param type         The type whose interfaces are checked.
3136      */
3137     void checkClassBounds(DiagnosticPosition pos, Type type) {
3138         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
3139     }
3140 //where
3141         /** Enter all interfaces of type `type' into the hash table `seensofar'
3142          *  with their class symbol as key and their type as value. Make
3143          *  sure no class is entered with two different types.
3144          */
3145         void checkClassBounds(DiagnosticPosition pos,
3146                               Map<TypeSymbol,Type> seensofar,
3147                               Type type) {
3148             if (type.isErroneous()) return;
3149             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
3150                 Type it = l.head;
3151                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
3152 
3153                 Type oldit = seensofar.put(it.tsym, it);
3154                 if (oldit != null) {
3155                     List<Type> oldparams = oldit.allparams();
3156                     List<Type> newparams = it.allparams();
3157                     if (!types.containsTypeEquivalent(oldparams, newparams))
3158                         log.error(pos,
3159                                   Errors.CantInheritDiffArg(it.tsym,
3160                                                             Type.toString(oldparams),
3161                                                             Type.toString(newparams)));
3162                 }
3163                 checkClassBounds(pos, seensofar, it);
3164             }
3165             Type st = types.supertype(type);
3166             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
3167             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
3168         }
3169 
3170     /** Enter interface into into set.
3171      *  If it existed already, issue a "repeated interface" error.
3172      */
3173     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Symbol> its) {
3174         if (its.contains(it.tsym))
3175             log.error(pos, Errors.RepeatedInterface);
3176         else {
3177             its.add(it.tsym);
3178         }
3179     }
3180 
3181 /* *************************************************************************
3182  * Check annotations
3183  **************************************************************************/
3184 
3185     /**
3186      * Recursively validate annotations values
3187      */
3188     void validateAnnotationTree(JCTree tree) {
3189         class AnnotationValidator extends TreeScanner {
3190             @Override
3191             public void visitAnnotation(JCAnnotation tree) {
3192                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
3193                     super.visitAnnotation(tree);
3194                     validateAnnotation(tree);
3195                 }
3196             }
3197         }
3198         tree.accept(new AnnotationValidator());
3199     }
3200 
3201     /**
3202      *  {@literal
3203      *  Annotation types are restricted to primitives, String, an
3204      *  enum, an annotation, Class, Class<?>, Class<? extends
3205      *  Anything>, arrays of the preceding.
3206      *  }
3207      */
3208     void validateAnnotationType(JCTree restype) {
3209         // restype may be null if an error occurred, so don't bother validating it
3210         if (restype != null) {
3211             validateAnnotationType(restype.pos(), restype.type);
3212         }
3213     }
3214 
3215     void validateAnnotationType(DiagnosticPosition pos, Type type) {
3216         if (type.isPrimitive()) return;
3217         if (types.isSameType(type, syms.stringType)) return;
3218         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
3219         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
3220         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
3221         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
3222             validateAnnotationType(pos, types.elemtype(type));
3223             return;
3224         }
3225         log.error(pos, Errors.InvalidAnnotationMemberType);
3226     }
3227 
3228     /**
3229      * "It is also a compile-time error if any method declared in an
3230      * annotation type has a signature that is override-equivalent to
3231      * that of any public or protected method declared in class Object
3232      * or in the interface annotation.Annotation."
3233      *
3234      * @jls 9.6 Annotation Types
3235      */
3236     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
3237         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
3238             Scope s = sup.tsym.members();
3239             for (Symbol sym : s.getSymbolsByName(m.name)) {
3240                 if (sym.kind == MTH &&
3241                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
3242                     types.overrideEquivalent(m.type, sym.type))
3243                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
3244             }
3245         }
3246     }
3247 
3248     /** Check the annotations of a symbol.
3249      */
3250     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
3251         for (JCAnnotation a : annotations)
3252             validateAnnotation(a, declarationTree, s);
3253     }
3254 
3255     /** Check the type annotations.
3256      */
3257     public void validateTypeAnnotations(List<JCAnnotation> annotations, Symbol s, boolean isTypeParameter) {
3258         for (JCAnnotation a : annotations)
3259             validateTypeAnnotation(a, s, isTypeParameter);
3260     }
3261 
3262     /** Check an annotation of a symbol.
3263      */
3264     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
3265         /** NOTE: if annotation processors are present, annotation processing rounds can happen after this method,
3266          *  this can impact in particular records for which annotations are forcibly propagated.
3267          */
3268         validateAnnotationTree(a);
3269         boolean isRecordMember = ((s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord());
3270 
3271         boolean isRecordField = (s.flags_field & RECORD) != 0 &&
3272                 declarationTree.hasTag(VARDEF) &&
3273                 s.owner.kind == TYP;
3274 
3275         if (isRecordField) {
3276             // first we need to check if the annotation is applicable to records
3277             Name[] targets = getTargetNames(a);
3278             boolean appliesToRecords = false;
3279             for (Name target : targets) {
3280                 appliesToRecords =
3281                                 target == names.FIELD ||
3282                                 target == names.PARAMETER ||
3283                                 target == names.METHOD ||
3284                                 target == names.TYPE_USE ||
3285                                 target == names.RECORD_COMPONENT;
3286                 if (appliesToRecords) {
3287                     break;
3288                 }
3289             }
3290             if (!appliesToRecords) {
3291                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3292             } else {
3293                 /* lets now find the annotations in the field that are targeted to record components and append them to
3294                  * the corresponding record component
3295                  */
3296                 ClassSymbol recordClass = (ClassSymbol) s.owner;
3297                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s);
3298                 SymbolMetadata metadata = rc.getMetadata();
3299                 if (metadata == null || metadata.isEmpty()) {
3300                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
3301                      * to the record component declaration
3302                      */
3303                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
3304                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
3305                     ).collect(List.collector()));
3306 
3307                     JCVariableDecl fieldAST = (JCVariableDecl) declarationTree;
3308                     for (JCAnnotation fieldAnnot : fieldAST.mods.annotations) {
3309                         for (JCAnnotation rcAnnot : rc.declarationFor().mods.annotations) {
3310                             if (rcAnnot.pos == fieldAnnot.pos) {
3311                                 rcAnnot.setType(fieldAnnot.type);
3312                                 break;
3313                             }
3314                         }
3315                     }
3316 
3317                     /* At this point, we used to carry over any type annotations from the VARDEF to the record component, but
3318                      * that is problematic, since we get here only when *some* annotation is applied to the SE5 (declaration)
3319                      * annotation location, inadvertently failing to carry over the type annotations when the VarDef has no
3320                      * annotations in the SE5 annotation location.
3321                      *
3322                      * Now type annotations are assigned to record components in a method that would execute irrespective of
3323                      * whether there are SE5 annotations on a VarDef viz com.sun.tools.javac.code.TypeAnnotations.TypeAnnotationPositions.visitVarDef
3324                      */
3325                 }
3326             }
3327         }
3328 
3329         /* the section below is tricky. Annotations applied to record components are propagated to the corresponding
3330          * record member so if an annotation has target: FIELD, it is propagated to the corresponding FIELD, if it has
3331          * target METHOD, it is propagated to the accessor and so on. But at the moment when method members are generated
3332          * there is no enough information to propagate only the right annotations. So all the annotations are propagated
3333          * to all the possible locations.
3334          *
3335          * At this point we need to remove all the annotations that are not in place before going on with the annotation
3336          * party. On top of the above there is the issue that there is no AST representing record components, just symbols
3337          * so the corresponding field has been holding all the annotations and it's metadata has been modified as if it
3338          * was both a field and a record component.
3339          *
3340          * So there are two places where we need to trim annotations from: the metadata of the symbol and / or the modifiers
3341          * in the AST. Whatever is in the metadata will be written to the class file, whatever is in the modifiers could
3342          * be see by annotation processors.
3343          *
3344          * The metadata contains both type annotations and declaration annotations. At this point of the game we don't
3345          * need to care about type annotations, they are all in the right place. But we could need to remove declaration
3346          * annotations. So for declaration annotations if they are not applicable to the record member, excluding type
3347          * annotations which are already correct, then we will remove it. For the AST modifiers if the annotation is not
3348          * applicable either as type annotation and or declaration annotation, only in that case it will be removed.
3349          *
3350          * So it could be that annotation is removed as a declaration annotation but it is kept in the AST modifier for
3351          * further inspection by annotation processors.
3352          *
3353          * For example:
3354          *
3355          *     import java.lang.annotation.*;
3356          *
3357          *     @Target({ElementType.TYPE_USE, ElementType.RECORD_COMPONENT})
3358          *     @Retention(RetentionPolicy.RUNTIME)
3359          *     @interface Anno { }
3360          *
3361          *     record R(@Anno String s) {}
3362          *
3363          * at this point we will have for the case of the generated field:
3364          *   - @Anno in the modifier
3365          *   - @Anno as a type annotation
3366          *   - @Anno as a declaration annotation
3367          *
3368          * the last one should be removed because the annotation has not FIELD as target but it was applied as a
3369          * declaration annotation because the field was being treated both as a field and as a record component
3370          * as we have already copied the annotations to the record component, now the field doesn't need to hold
3371          * annotations that are not intended for it anymore. Still @Anno has to be kept in the AST's modifiers as it
3372          * is applicable as a type annotation to the type of the field.
3373          */
3374 
3375         if (a.type.tsym.isAnnotationType()) {
3376             Optional<Set<Name>> applicableTargetsOp = getApplicableTargets(a, s);
3377             if (!applicableTargetsOp.isEmpty()) {
3378                 Set<Name> applicableTargets = applicableTargetsOp.get();
3379                 boolean notApplicableOrIsTypeUseOnly = applicableTargets.isEmpty() ||
3380                         applicableTargets.size() == 1 && applicableTargets.contains(names.TYPE_USE);
3381                 boolean isCompGeneratedRecordElement = isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0;
3382                 boolean isCompRecordElementWithNonApplicableDeclAnno = isCompGeneratedRecordElement && notApplicableOrIsTypeUseOnly;
3383 
3384                 if (applicableTargets.isEmpty() || isCompRecordElementWithNonApplicableDeclAnno) {
3385                     if (isCompRecordElementWithNonApplicableDeclAnno) {
3386                             /* so we have found an annotation that is not applicable to a record member that was generated by the
3387                              * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
3388                              * that are not applicable to the given record member
3389                              */
3390                         JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
3391                             /* lets first remove the annotation from the modifier if it is not applicable, we have to check again as
3392                              * it could be a type annotation
3393                              */
3394                         if (modifiers != null && applicableTargets.isEmpty()) {
3395                             ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
3396                             for (JCAnnotation anno : modifiers.annotations) {
3397                                 if (anno != a) {
3398                                     newAnnotations.add(anno);
3399                                 }
3400                             }
3401                             modifiers.annotations = newAnnotations.toList();
3402                         }
3403                         // now lets remove it from the symbol
3404                         s.getMetadata().removeDeclarationMetadata(a.attribute);
3405                     } else {
3406                         log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
3407                     }
3408                 }
3409                 /* if we are seeing the @SafeVarargs annotation applied to a compiler generated accessor,
3410                  * then this is an error as we know that no compiler generated accessor will be a varargs
3411                  * method, better to fail asap
3412                  */
3413                 if (isCompGeneratedRecordElement && !isRecordField && a.type.tsym == syms.trustMeType.tsym && declarationTree.hasTag(METHODDEF)) {
3414                     log.error(a.pos(), Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym, Fragments.VarargsTrustmeOnNonVarargsAccessor(s)));
3415                 }
3416             }
3417         }
3418 
3419         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3420             if (s.kind != TYP) {
3421                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
3422             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
3423                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
3424             }
3425         }
3426     }
3427 
3428     public void validateTypeAnnotation(JCAnnotation a, Symbol s, boolean isTypeParameter) {
3429         Assert.checkNonNull(a.type);
3430         // we just want to validate that the anotation doesn't have any wrong target
3431         if (s != null) getApplicableTargets(a, s);
3432         validateAnnotationTree(a);
3433 
3434         if (a.hasTag(TYPE_ANNOTATION) &&
3435                 !a.annotationType.type.isErroneous() &&
3436                 !isTypeAnnotation(a, isTypeParameter)) {
3437             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
3438         }
3439     }
3440 
3441     /**
3442      * Validate the proposed container 'repeatable' on the
3443      * annotation type symbol 's'. Report errors at position
3444      * 'pos'.
3445      *
3446      * @param s The (annotation)type declaration annotated with a @Repeatable
3447      * @param repeatable the @Repeatable on 's'
3448      * @param pos where to report errors
3449      */
3450     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
3451         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
3452 
3453         Type t = null;
3454         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
3455         if (!l.isEmpty()) {
3456             Assert.check(l.head.fst.name == names.value);
3457             if (l.head.snd instanceof Attribute.Class) {
3458                 t = ((Attribute.Class)l.head.snd).getValue();
3459             }
3460         }
3461 
3462         if (t == null) {
3463             // errors should already have been reported during Annotate
3464             return;
3465         }
3466 
3467         validateValue(t.tsym, s, pos);
3468         validateRetention(t.tsym, s, pos);
3469         validateDocumented(t.tsym, s, pos);
3470         validateInherited(t.tsym, s, pos);
3471         validateTarget(t.tsym, s, pos);
3472         validateDefault(t.tsym, pos);
3473     }
3474 
3475     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3476         Symbol sym = container.members().findFirst(names.value);
3477         if (sym != null && sym.kind == MTH) {
3478             MethodSymbol m = (MethodSymbol) sym;
3479             Type ret = m.getReturnType();
3480             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3481                 log.error(pos,
3482                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3483                                                                         ret,
3484                                                                         types.makeArrayType(contained.type)));
3485             }
3486         } else {
3487             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3488         }
3489     }
3490 
3491     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3492         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3493         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3494 
3495         boolean error = false;
3496         switch (containedRetention) {
3497         case RUNTIME:
3498             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3499                 error = true;
3500             }
3501             break;
3502         case CLASS:
3503             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3504                 error = true;
3505             }
3506         }
3507         if (error ) {
3508             log.error(pos,
3509                       Errors.InvalidRepeatableAnnotationRetention(container,
3510                                                                   containerRetention.name(),
3511                                                                   contained,
3512                                                                   containedRetention.name()));
3513         }
3514     }
3515 
3516     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3517         if (contained.attribute(syms.documentedType.tsym) != null) {
3518             if (container.attribute(syms.documentedType.tsym) == null) {
3519                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3520             }
3521         }
3522     }
3523 
3524     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3525         if (contained.attribute(syms.inheritedType.tsym) != null) {
3526             if (container.attribute(syms.inheritedType.tsym) == null) {
3527                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3528             }
3529         }
3530     }
3531 
3532     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3533         // The set of targets the container is applicable to must be a subset
3534         // (with respect to annotation target semantics) of the set of targets
3535         // the contained is applicable to. The target sets may be implicit or
3536         // explicit.
3537 
3538         Set<Name> containerTargets;
3539         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3540         if (containerTarget == null) {
3541             containerTargets = getDefaultTargetSet();
3542         } else {
3543             containerTargets = new HashSet<>();
3544             for (Attribute app : containerTarget.values) {
3545                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3546                     continue; // recovery
3547                 }
3548                 containerTargets.add(attributeEnum.value.name);
3549             }
3550         }
3551 
3552         Set<Name> containedTargets;
3553         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3554         if (containedTarget == null) {
3555             containedTargets = getDefaultTargetSet();
3556         } else {
3557             containedTargets = new HashSet<>();
3558             for (Attribute app : containedTarget.values) {
3559                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3560                     continue; // recovery
3561                 }
3562                 containedTargets.add(attributeEnum.value.name);
3563             }
3564         }
3565 
3566         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3567             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3568         }
3569     }
3570 
3571     /* get a set of names for the default target */
3572     private Set<Name> getDefaultTargetSet() {
3573         if (defaultTargets == null) {
3574             defaultTargets = Set.of(defaultTargetMetaInfo());
3575         }
3576 
3577         return defaultTargets;
3578     }
3579     private Set<Name> defaultTargets;
3580 
3581 
3582     /** Checks that s is a subset of t, with respect to ElementType
3583      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3584      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3585      * TYPE_PARAMETER}.
3586      */
3587     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3588         // Check that all elements in s are present in t
3589         for (Name n2 : s) {
3590             boolean currentElementOk = false;
3591             for (Name n1 : t) {
3592                 if (n1 == n2) {
3593                     currentElementOk = true;
3594                     break;
3595                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3596                     currentElementOk = true;
3597                     break;
3598                 } else if (n1 == names.TYPE_USE &&
3599                         (n2 == names.TYPE ||
3600                          n2 == names.ANNOTATION_TYPE ||
3601                          n2 == names.TYPE_PARAMETER)) {
3602                     currentElementOk = true;
3603                     break;
3604                 }
3605             }
3606             if (!currentElementOk)
3607                 return false;
3608         }
3609         return true;
3610     }
3611 
3612     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3613         // validate that all other elements of containing type has defaults
3614         Scope scope = container.members();
3615         for(Symbol elm : scope.getSymbols()) {
3616             if (elm.name != names.value &&
3617                 elm.kind == MTH &&
3618                 ((MethodSymbol)elm).defaultValue == null) {
3619                 log.error(pos,
3620                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3621             }
3622         }
3623     }
3624 
3625     /** Is s a method symbol that overrides a method in a superclass? */
3626     boolean isOverrider(Symbol s) {
3627         if (s.kind != MTH || s.isStatic())
3628             return false;
3629         MethodSymbol m = (MethodSymbol)s;
3630         TypeSymbol owner = (TypeSymbol)m.owner;
3631         for (Type sup : types.closure(owner.type)) {
3632             if (sup == owner.type)
3633                 continue; // skip "this"
3634             Scope scope = sup.tsym.members();
3635             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3636                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3637                     return true;
3638             }
3639         }
3640         return false;
3641     }
3642 
3643     /** Is the annotation applicable to types? */
3644     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3645         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3646         return (targets == null) ?
3647                 (Feature.NO_TARGET_ANNOTATION_APPLICABILITY.allowedInSource(source) && isTypeParameter) :
3648                 targets.stream()
3649                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3650     }
3651     //where
3652         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3653             Attribute.Enum e = (Attribute.Enum)a;
3654             return (e.value.name == names.TYPE_USE ||
3655                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3656         }
3657 
3658     /** Is the annotation applicable to the symbol? */
3659     Name[] getTargetNames(JCAnnotation a) {
3660         return getTargetNames(a.annotationType.type.tsym);
3661     }
3662 
3663     public Name[] getTargetNames(TypeSymbol annoSym) {
3664         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3665         Name[] targets;
3666         if (arr == null) {
3667             targets = defaultTargetMetaInfo();
3668         } else {
3669             // TODO: can we optimize this?
3670             targets = new Name[arr.values.length];
3671             for (int i=0; i<arr.values.length; ++i) {
3672                 Attribute app = arr.values[i];
3673                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3674                     return new Name[0];
3675                 }
3676                 targets[i] = attributeEnum.value.name;
3677             }
3678         }
3679         return targets;
3680     }
3681 
3682     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3683         Optional<Set<Name>> targets = getApplicableTargets(a, s);
3684         /* the optional could be empty if the annotation is unknown in that case
3685          * we return that it is applicable and if it is erroneous that should imply
3686          * an error at the declaration site
3687          */
3688         return targets.isEmpty() || targets.isPresent() && !targets.get().isEmpty();
3689     }
3690 
3691     Optional<Set<Name>> getApplicableTargets(JCAnnotation a, Symbol s) {
3692         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3693         Name[] targets;
3694         Set<Name> applicableTargets = new HashSet<>();
3695 
3696         if (arr == null) {
3697             targets = defaultTargetMetaInfo();
3698         } else {
3699             // TODO: can we optimize this?
3700             targets = new Name[arr.values.length];
3701             for (int i=0; i<arr.values.length; ++i) {
3702                 Attribute app = arr.values[i];
3703                 if (!(app instanceof Attribute.Enum attributeEnum)) {
3704                     // recovery
3705                     return Optional.empty();
3706                 }
3707                 targets[i] = attributeEnum.value.name;
3708             }
3709         }
3710         for (Name target : targets) {
3711             if (target == names.TYPE) {
3712                 if (s.kind == TYP)
3713                     applicableTargets.add(names.TYPE);
3714             } else if (target == names.FIELD) {
3715                 if (s.kind == VAR && s.owner.kind != MTH)
3716                     applicableTargets.add(names.FIELD);
3717             } else if (target == names.RECORD_COMPONENT) {
3718                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3719                     applicableTargets.add(names.RECORD_COMPONENT);
3720                 }
3721             } else if (target == names.METHOD) {
3722                 if (s.kind == MTH && !s.isConstructor())
3723                     applicableTargets.add(names.METHOD);
3724             } else if (target == names.PARAMETER) {
3725                 if (s.kind == VAR &&
3726                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3727                     applicableTargets.add(names.PARAMETER);
3728                 }
3729             } else if (target == names.CONSTRUCTOR) {
3730                 if (s.kind == MTH && s.isConstructor())
3731                     applicableTargets.add(names.CONSTRUCTOR);
3732             } else if (target == names.LOCAL_VARIABLE) {
3733                 if (s.kind == VAR && s.owner.kind == MTH &&
3734                       (s.flags() & PARAMETER) == 0) {
3735                     applicableTargets.add(names.LOCAL_VARIABLE);
3736                 }
3737             } else if (target == names.ANNOTATION_TYPE) {
3738                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3739                     applicableTargets.add(names.ANNOTATION_TYPE);
3740                 }
3741             } else if (target == names.PACKAGE) {
3742                 if (s.kind == PCK)
3743                     applicableTargets.add(names.PACKAGE);
3744             } else if (target == names.TYPE_USE) {
3745                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3746                     //cannot type annotate implicitly typed locals
3747                     continue;
3748                 } else if (s.kind == TYP || s.kind == VAR ||
3749                         (s.kind == MTH && !s.isConstructor() &&
3750                                 !s.type.getReturnType().hasTag(VOID)) ||
3751                         (s.kind == MTH && s.isConstructor())) {
3752                     applicableTargets.add(names.TYPE_USE);
3753                 }
3754             } else if (target == names.TYPE_PARAMETER) {
3755                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3756                     applicableTargets.add(names.TYPE_PARAMETER);
3757             } else if (target == names.MODULE) {
3758                 if (s.kind == MDL)
3759                     applicableTargets.add(names.MODULE);
3760             } else {
3761                 log.error(a, Errors.AnnotationUnrecognizedAttributeName(a.type, target));
3762                 return Optional.empty(); // Unknown ElementType
3763             }
3764         }
3765         return Optional.of(applicableTargets);
3766     }
3767 
3768     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3769         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3770         if (atTarget == null) return null; // ok, is applicable
3771         Attribute atValue = atTarget.member(names.value);
3772         return (atValue instanceof Attribute.Array attributeArray) ? attributeArray : null;
3773     }
3774 
3775     private Name[] dfltTargetMeta;
3776     private Name[] defaultTargetMetaInfo() {
3777         if (dfltTargetMeta == null) {
3778             ArrayList<Name> defaultTargets = new ArrayList<>();
3779             defaultTargets.add(names.PACKAGE);
3780             defaultTargets.add(names.TYPE);
3781             defaultTargets.add(names.FIELD);
3782             defaultTargets.add(names.METHOD);
3783             defaultTargets.add(names.CONSTRUCTOR);
3784             defaultTargets.add(names.ANNOTATION_TYPE);
3785             defaultTargets.add(names.LOCAL_VARIABLE);
3786             defaultTargets.add(names.PARAMETER);
3787             if (allowRecords) {
3788               defaultTargets.add(names.RECORD_COMPONENT);
3789             }
3790             if (allowModules) {
3791               defaultTargets.add(names.MODULE);
3792             }
3793             dfltTargetMeta = defaultTargets.toArray(new Name[0]);
3794         }
3795         return dfltTargetMeta;
3796     }
3797 
3798     /** Check an annotation value.
3799      *
3800      * @param a The annotation tree to check
3801      * @return true if this annotation tree is valid, otherwise false
3802      */
3803     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3804         boolean res = false;
3805         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3806         try {
3807             res = validateAnnotation(a);
3808         } finally {
3809             log.popDiagnosticHandler(diagHandler);
3810         }
3811         return res;
3812     }
3813 
3814     private boolean validateAnnotation(JCAnnotation a) {
3815         boolean isValid = true;
3816         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3817 
3818         // collect an inventory of the annotation elements
3819         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3820 
3821         // remove the ones that are assigned values
3822         for (JCTree arg : a.args) {
3823             if (!arg.hasTag(ASSIGN)) continue; // recovery
3824             JCAssign assign = (JCAssign)arg;
3825             Symbol m = TreeInfo.symbol(assign.lhs);
3826             if (m == null || m.type.isErroneous()) continue;
3827             if (!elements.remove(m)) {
3828                 isValid = false;
3829                 log.error(assign.lhs.pos(),
3830                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3831             }
3832         }
3833 
3834         // all the remaining ones better have default values
3835         List<Name> missingDefaults = List.nil();
3836         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3837         for (MethodSymbol m : elements) {
3838             if (m.type.isErroneous())
3839                 continue;
3840 
3841             if (!membersWithDefault.contains(m))
3842                 missingDefaults = missingDefaults.append(m.name);
3843         }
3844         missingDefaults = missingDefaults.reverse();
3845         if (missingDefaults.nonEmpty()) {
3846             isValid = false;
3847             Error errorKey = (missingDefaults.size() > 1)
3848                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3849                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3850             log.error(a.pos(), errorKey);
3851         }
3852 
3853         return isValid && validateTargetAnnotationValue(a);
3854     }
3855 
3856     /* Validate the special java.lang.annotation.Target annotation */
3857     boolean validateTargetAnnotationValue(JCAnnotation a) {
3858         // special case: java.lang.annotation.Target must not have
3859         // repeated values in its value member
3860         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3861                 a.args.tail == null)
3862             return true;
3863 
3864         boolean isValid = true;
3865         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3866         JCAssign assign = (JCAssign) a.args.head;
3867         Symbol m = TreeInfo.symbol(assign.lhs);
3868         if (m.name != names.value) return false;
3869         JCTree rhs = assign.rhs;
3870         if (!rhs.hasTag(NEWARRAY)) return false;
3871         JCNewArray na = (JCNewArray) rhs;
3872         Set<Symbol> targets = new HashSet<>();
3873         for (JCTree elem : na.elems) {
3874             if (!targets.add(TreeInfo.symbol(elem))) {
3875                 isValid = false;
3876                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3877             }
3878         }
3879         return isValid;
3880     }
3881 
3882     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3883         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3884             (s.flags() & DEPRECATED) != 0 &&
3885             !syms.deprecatedType.isErroneous() &&
3886             s.attribute(syms.deprecatedType.tsym) == null) {
3887             log.warning(LintCategory.DEP_ANN,
3888                     pos, Warnings.MissingDeprecatedAnnotation);
3889         }
3890         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3891         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3892             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3893                 log.warning(LintCategory.DEPRECATION, pos,
3894                             Warnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3895             }
3896         }
3897     }
3898 
3899     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3900         checkDeprecated(() -> pos, other, s);
3901     }
3902 
3903     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3904         if ( (s.isDeprecatedForRemoval()
3905                 || s.isDeprecated() && !other.isDeprecated())
3906                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)
3907                 && s.kind != Kind.PCK) {
3908             deferredLintHandler.report(() -> warnDeprecated(pos.get(), s));
3909         }
3910     }
3911 
3912     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3913         if ((s.flags() & PROPRIETARY) != 0) {
3914             deferredLintHandler.report(() -> {
3915                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3916             });
3917         }
3918     }
3919 
3920     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3921         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3922             log.error(pos, Errors.NotInProfile(s, profile));
3923         }
3924     }
3925 
3926     void checkPreview(DiagnosticPosition pos, Symbol other, Symbol s) {
3927         if ((s.flags() & PREVIEW_API) != 0 && !preview.participatesInPreview(syms, other, s) && !disablePreviewCheck) {
3928             if ((s.flags() & PREVIEW_REFLECTIVE) == 0) {
3929                 if (!preview.isEnabled()) {
3930                     log.error(pos, Errors.IsPreview(s));
3931                 } else {
3932                     preview.markUsesPreview(pos);
3933                     deferredLintHandler.report(() -> warnPreviewAPI(pos, Warnings.IsPreview(s)));
3934                 }
3935             } else {
3936                     deferredLintHandler.report(() -> warnPreviewAPI(pos, Warnings.IsPreviewReflective(s)));
3937             }
3938         }
3939         if (preview.declaredUsingPreviewFeature(s)) {
3940             if (preview.isEnabled()) {
3941                 //for preview disabled do presumably so not need to do anything?
3942                 //If "s" is compiled from source, then there was an error for it already;
3943                 //if "s" is from classfile, there already was an error for the classfile.
3944                 preview.markUsesPreview(pos);
3945                 deferredLintHandler.report(() -> warnDeclaredUsingPreview(pos, s));
3946             }
3947         }
3948     }
3949 
3950     void checkRestricted(DiagnosticPosition pos, Symbol s) {
3951         if (s.kind == MTH && (s.flags() & RESTRICTED) != 0) {
3952             deferredLintHandler.report(() -> warnRestrictedAPI(pos, s));
3953         }
3954     }
3955 
3956 /* *************************************************************************
3957  * Check for recursive annotation elements.
3958  **************************************************************************/
3959 
3960     /** Check for cycles in the graph of annotation elements.
3961      */
3962     void checkNonCyclicElements(JCClassDecl tree) {
3963         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3964         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3965         try {
3966             tree.sym.flags_field |= LOCKED;
3967             for (JCTree def : tree.defs) {
3968                 if (!def.hasTag(METHODDEF)) continue;
3969                 JCMethodDecl meth = (JCMethodDecl)def;
3970                 checkAnnotationResType(meth.pos(), meth.restype.type);
3971             }
3972         } finally {
3973             tree.sym.flags_field &= ~LOCKED;
3974             tree.sym.flags_field |= ACYCLIC_ANN;
3975         }
3976     }
3977 
3978     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3979         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3980             return;
3981         if ((tsym.flags_field & LOCKED) != 0) {
3982             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3983             return;
3984         }
3985         try {
3986             tsym.flags_field |= LOCKED;
3987             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3988                 if (s.kind != MTH)
3989                     continue;
3990                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3991             }
3992         } finally {
3993             tsym.flags_field &= ~LOCKED;
3994             tsym.flags_field |= ACYCLIC_ANN;
3995         }
3996     }
3997 
3998     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3999         switch (type.getTag()) {
4000         case CLASS:
4001             if ((type.tsym.flags() & ANNOTATION) != 0)
4002                 checkNonCyclicElementsInternal(pos, type.tsym);
4003             break;
4004         case ARRAY:
4005             checkAnnotationResType(pos, types.elemtype(type));
4006             break;
4007         default:
4008             break; // int etc
4009         }
4010     }
4011 
4012 /* *************************************************************************
4013  * Check for cycles in the constructor call graph.
4014  **************************************************************************/
4015 
4016     /** Check for cycles in the graph of constructors calling other
4017      *  constructors.
4018      */
4019     void checkCyclicConstructors(JCClassDecl tree) {
4020         // use LinkedHashMap so we generate errors deterministically
4021         Map<Symbol,Symbol> callMap = new LinkedHashMap<>();
4022 
4023         // enter each constructor this-call into the map
4024         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4025             if (!TreeInfo.isConstructor(l.head))
4026                 continue;
4027             JCMethodDecl meth = (JCMethodDecl)l.head;
4028             JCMethodInvocation app = TreeInfo.findConstructorCall(meth);
4029             if (app != null && TreeInfo.name(app.meth) == names._this) {
4030                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
4031             } else {
4032                 meth.sym.flags_field |= ACYCLIC;
4033             }
4034         }
4035 
4036         // Check for cycles in the map
4037         Symbol[] ctors = new Symbol[0];
4038         ctors = callMap.keySet().toArray(ctors);
4039         for (Symbol caller : ctors) {
4040             checkCyclicConstructor(tree, caller, callMap);
4041         }
4042     }
4043 
4044     /** Look in the map to see if the given constructor is part of a
4045      *  call cycle.
4046      */
4047     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
4048                                         Map<Symbol,Symbol> callMap) {
4049         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
4050             if ((ctor.flags_field & LOCKED) != 0) {
4051                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree, false, t -> t.hasTag(IDENT)),
4052                           Errors.RecursiveCtorInvocation);
4053             } else {
4054                 ctor.flags_field |= LOCKED;
4055                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
4056                 ctor.flags_field &= ~LOCKED;
4057             }
4058             ctor.flags_field |= ACYCLIC;
4059         }
4060     }
4061 
4062 /* *************************************************************************
4063  * Verify the proper placement of super()/this() calls.
4064  *
4065  *    - super()/this() may only appear in constructors
4066  *    - There must be at most one super()/this() call per constructor
4067  *    - The super()/this() call, if any, must be a top-level statement in the
4068  *      constructor, i.e., not nested inside any other statement or block
4069  *    - There must be no return statements prior to the super()/this() call
4070  **************************************************************************/
4071 
4072     void checkSuperInitCalls(JCClassDecl tree) {
4073         new SuperThisChecker().check(tree);
4074     }
4075 
4076     private class SuperThisChecker extends TreeScanner {
4077 
4078         // Match this scan stack: 1=JCMethodDecl, 2=JCExpressionStatement, 3=JCMethodInvocation
4079         private static final int MATCH_SCAN_DEPTH = 3;
4080 
4081         private boolean constructor;        // is this method a constructor?
4082         private boolean firstStatement;     // at the first statement in method?
4083         private JCReturn earlyReturn;       // first return prior to the super()/init(), if any
4084         private Name initCall;              // whichever of "super" or "init" we've seen already
4085         private int scanDepth;              // current scan recursion depth in method body
4086 
4087         public void check(JCClassDecl classDef) {
4088             scan(classDef.defs);
4089         }
4090 
4091         @Override
4092         public void visitMethodDef(JCMethodDecl tree) {
4093             Assert.check(!constructor);
4094             Assert.check(earlyReturn == null);
4095             Assert.check(initCall == null);
4096             Assert.check(scanDepth == 1);
4097 
4098             // Initialize state for this method
4099             constructor = TreeInfo.isConstructor(tree);
4100             try {
4101 
4102                 // Scan method body
4103                 if (tree.body != null) {
4104                     firstStatement = true;
4105                     for (List<JCStatement> l = tree.body.stats; l.nonEmpty(); l = l.tail) {
4106                         scan(l.head);
4107                         firstStatement = false;
4108                     }
4109                 }
4110 
4111                 // Verify no 'return' seen prior to an explicit super()/this() call
4112                 if (constructor && earlyReturn != null && initCall != null)
4113                     log.error(earlyReturn.pos(), Errors.ReturnBeforeSuperclassInitialized);
4114             } finally {
4115                 firstStatement = false;
4116                 constructor = false;
4117                 earlyReturn = null;
4118                 initCall = null;
4119             }
4120         }
4121 
4122         @Override
4123         public void scan(JCTree tree) {
4124             scanDepth++;
4125             try {
4126                 super.scan(tree);
4127             } finally {
4128                 scanDepth--;
4129             }
4130         }
4131 
4132         @Override
4133         public void visitApply(JCMethodInvocation apply) {
4134             do {
4135 
4136                 // Is this a super() or this() call?
4137                 Name methodName = TreeInfo.name(apply.meth);
4138                 if (methodName != names._super && methodName != names._this)
4139                     break;
4140 
4141                 // super()/this() calls must only appear in a constructor
4142                 if (!constructor) {
4143                     log.error(apply.pos(), Errors.CallMustOnlyAppearInCtor);
4144                     break;
4145                 }
4146 
4147                 // super()/this() calls must be a top level statement
4148                 if (scanDepth != MATCH_SCAN_DEPTH) {
4149                     log.error(apply.pos(), Errors.CtorCallsNotAllowedHere);
4150                     break;
4151                 }
4152 
4153                 // super()/this() calls must not appear more than once
4154                 if (initCall != null) {
4155                     log.error(apply.pos(), Errors.RedundantSuperclassInit);
4156                     break;
4157                 }
4158 
4159                 // If super()/this() isn't first, require flexible constructors feature
4160                 if (!firstStatement)
4161                     preview.checkSourceLevel(apply.pos(), Feature.SUPER_INIT);
4162 
4163                 // We found a legitimate super()/this() call; remember it
4164                 initCall = methodName;
4165             } while (false);
4166 
4167             // Proceed
4168             super.visitApply(apply);
4169         }
4170 
4171         @Override
4172         public void visitReturn(JCReturn tree) {
4173             if (constructor && initCall == null && earlyReturn == null)
4174                 earlyReturn = tree;             // we have seen a return but not (yet) a super()/this()
4175             super.visitReturn(tree);
4176         }
4177 
4178         @Override
4179         public void visitClassDef(JCClassDecl tree) {
4180             // don't descend any further
4181         }
4182     }
4183 
4184 /* *************************************************************************
4185  * Miscellaneous
4186  **************************************************************************/
4187 
4188     /**
4189      *  Check for division by integer constant zero
4190      *  @param pos           Position for error reporting.
4191      *  @param operator      The operator for the expression
4192      *  @param operand       The right hand operand for the expression
4193      */
4194     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
4195         if (operand.constValue() != null
4196             && operand.getTag().isSubRangeOf(LONG)
4197             && ((Number) (operand.constValue())).longValue() == 0) {
4198             int opc = ((OperatorSymbol)operator).opcode;
4199             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
4200                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
4201                 deferredLintHandler.report(() -> warnDivZero(pos));
4202             }
4203         }
4204     }
4205 
4206     /**
4207      *  Check for possible loss of precission
4208      *  @param pos           Position for error reporting.
4209      *  @param found    The computed type of the tree
4210      *  @param req  The computed type of the tree
4211      */
4212     void checkLossOfPrecision(final DiagnosticPosition pos, Type found, Type req) {
4213         if (found.isNumeric() && req.isNumeric() && !types.isAssignable(found, req)) {
4214             deferredLintHandler.report(() -> {
4215                 if (lint.isEnabled(LintCategory.LOSSY_CONVERSIONS))
4216                     log.warning(LintCategory.LOSSY_CONVERSIONS,
4217                             pos, Warnings.PossibleLossOfPrecision(found, req));
4218             });
4219         }
4220     }
4221 
4222     /**
4223      * Check for empty statements after if
4224      */
4225     void checkEmptyIf(JCIf tree) {
4226         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
4227                 lint.isEnabled(LintCategory.EMPTY))
4228             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), Warnings.EmptyIf);
4229     }
4230 
4231     /** Check that symbol is unique in given scope.
4232      *  @param pos           Position for error reporting.
4233      *  @param sym           The symbol.
4234      *  @param s             The scope.
4235      */
4236     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
4237         if (sym.type.isErroneous())
4238             return true;
4239         if (sym.owner.name == names.any) return false;
4240         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
4241             if (sym != byName &&
4242                     (byName.flags() & CLASH) == 0 &&
4243                     sym.kind == byName.kind &&
4244                     sym.name != names.error &&
4245                     (sym.kind != MTH ||
4246                      types.hasSameArgs(sym.type, byName.type) ||
4247                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
4248                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
4249                     sym.flags_field |= CLASH;
4250                     varargsDuplicateError(pos, sym, byName);
4251                     return true;
4252                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
4253                     duplicateErasureError(pos, sym, byName);
4254                     sym.flags_field |= CLASH;
4255                     return true;
4256                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
4257                            (byName.flags() & MATCH_BINDING) != 0 &&
4258                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
4259                     if (!sym.type.isErroneous()) {
4260                         log.error(pos, Errors.MatchBindingExists);
4261                         sym.flags_field |= CLASH;
4262                     }
4263                     return false;
4264                 } else {
4265                     duplicateError(pos, byName);
4266                     return false;
4267                 }
4268             }
4269         }
4270         return true;
4271     }
4272 
4273     /** Report duplicate declaration error.
4274      */
4275     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
4276         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
4277             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
4278         }
4279     }
4280 
4281     /**Check that types imported through the ordinary imports don't clash with types imported
4282      * by other (static or ordinary) imports. Note that two static imports may import two clashing
4283      * types without an error on the imports.
4284      * @param toplevel       The toplevel tree for which the test should be performed.
4285      */
4286     void checkImportsUnique(JCCompilationUnit toplevel) {
4287         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
4288         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
4289         WriteableScope topLevelScope = toplevel.toplevelScope;
4290 
4291         for (JCTree def : toplevel.defs) {
4292             if (!def.hasTag(IMPORT))
4293                 continue;
4294 
4295             JCImport imp = (JCImport) def;
4296 
4297             if (imp.importScope == null)
4298                 continue;
4299 
4300             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
4301                 if (imp.isStatic()) {
4302                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
4303                     staticallyImportedSoFar.enter(sym);
4304                 } else {
4305                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
4306                     ordinallyImportedSoFar.enter(sym);
4307                 }
4308             }
4309 
4310             imp.importScope = null;
4311         }
4312     }
4313 
4314     /** Check that single-type import is not already imported or top-level defined,
4315      *  but make an exception for two single-type imports which denote the same type.
4316      *  @param pos                     Position for error reporting.
4317      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
4318      *                                 ordinary imports.
4319      *  @param staticallyImportedSoFar A Scope containing types imported so far through
4320      *                                 static imports.
4321      *  @param topLevelScope           The current file's top-level Scope
4322      *  @param sym                     The symbol.
4323      *  @param staticImport            Whether or not this was a static import
4324      */
4325     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
4326                                       Scope staticallyImportedSoFar, Scope topLevelScope,
4327                                       Symbol sym, boolean staticImport) {
4328         Predicate<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
4329         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
4330         Symbol staticClashing = null;
4331         if (ordinaryClashing == null && !staticImport) {
4332             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
4333         }
4334         if (ordinaryClashing != null || staticClashing != null) {
4335             if (ordinaryClashing != null)
4336                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
4337             else
4338                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
4339             return false;
4340         }
4341         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
4342         if (clashing != null) {
4343             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
4344             return false;
4345         }
4346         return true;
4347     }
4348 
4349     /** Check that a qualified name is in canonical form (for import decls).
4350      */
4351     public void checkCanonical(JCTree tree) {
4352         if (!isCanonical(tree))
4353             log.error(tree.pos(),
4354                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
4355     }
4356         // where
4357         private boolean isCanonical(JCTree tree) {
4358             while (tree.hasTag(SELECT)) {
4359                 JCFieldAccess s = (JCFieldAccess) tree;
4360                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
4361                     return false;
4362                 tree = s.selected;
4363             }
4364             return true;
4365         }
4366 
4367     /** Check that an auxiliary class is not accessed from any other file than its own.
4368      */
4369     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
4370         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
4371             (c.flags() & AUXILIARY) != 0 &&
4372             rs.isAccessible(env, c) &&
4373             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
4374         {
4375             log.warning(pos,
4376                         Warnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
4377         }
4378     }
4379 
4380     /**
4381      * Check for a default constructor in an exported package.
4382      */
4383     void checkDefaultConstructor(ClassSymbol c, DiagnosticPosition pos) {
4384         if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR) &&
4385             ((c.flags() & (ENUM | RECORD)) == 0) &&
4386             !c.isAnonymous() &&
4387             ((c.flags() & (PUBLIC | PROTECTED)) != 0) &&
4388             Feature.MODULES.allowedInSource(source)) {
4389             NestingKind nestingKind = c.getNestingKind();
4390             switch (nestingKind) {
4391                 case ANONYMOUS,
4392                      LOCAL -> {return;}
4393                 case TOP_LEVEL -> {;} // No additional checks needed
4394                 case MEMBER -> {
4395                     // For nested member classes, all the enclosing
4396                     // classes must be public or protected.
4397                     Symbol owner = c.owner;
4398                     while (owner != null && owner.kind == TYP) {
4399                         if ((owner.flags() & (PUBLIC | PROTECTED)) == 0)
4400                             return;
4401                         owner = owner.owner;
4402                     }
4403                 }
4404             }
4405 
4406             // Only check classes in named packages exported by its module
4407             PackageSymbol pkg = c.packge();
4408             if (!pkg.isUnnamed()) {
4409                 ModuleSymbol modle = pkg.modle;
4410                 for (ExportsDirective exportDir : modle.exports) {
4411                     // Report warning only if the containing
4412                     // package is unconditionally exported
4413                     if (exportDir.packge.equals(pkg)) {
4414                         if (exportDir.modules == null || exportDir.modules.isEmpty()) {
4415                             // Warning may be suppressed by
4416                             // annotations; check again for being
4417                             // enabled in the deferred context.
4418                             deferredLintHandler.report(() -> {
4419                                 if (lint.isEnabled(LintCategory.MISSING_EXPLICIT_CTOR))
4420                                    log.warning(LintCategory.MISSING_EXPLICIT_CTOR,
4421                                                pos, Warnings.MissingExplicitCtor(c, pkg, modle));
4422                                                        });
4423                         } else {
4424                             return;
4425                         }
4426                     }
4427                 }
4428             }
4429         }
4430         return;
4431     }
4432 
4433     private class ConversionWarner extends Warner {
4434         final String uncheckedKey;
4435         final Type found;
4436         final Type expected;
4437         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
4438             super(pos);
4439             this.uncheckedKey = uncheckedKey;
4440             this.found = found;
4441             this.expected = expected;
4442         }
4443 
4444         @Override
4445         public void warn(LintCategory lint) {
4446             boolean warned = this.warned;
4447             super.warn(lint);
4448             if (warned) return; // suppress redundant diagnostics
4449             switch (lint) {
4450                 case UNCHECKED:
4451                     Check.this.warnUnchecked(pos(), Warnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
4452                     break;
4453                 case VARARGS:
4454                     if (method != null &&
4455                             method.attribute(syms.trustMeType.tsym) != null &&
4456                             isTrustMeAllowedOnMethod(method) &&
4457                             !types.isReifiable(method.type.getParameterTypes().last())) {
4458                         Check.this.warnUnsafeVararg(pos(), Warnings.VarargsUnsafeUseVarargsParam(method.params.last()));
4459                     }
4460                     break;
4461                 default:
4462                     throw new AssertionError("Unexpected lint: " + lint);
4463             }
4464         }
4465     }
4466 
4467     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
4468         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
4469     }
4470 
4471     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
4472         return new ConversionWarner(pos, "unchecked.assign", found, expected);
4473     }
4474 
4475     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
4476         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
4477 
4478         if (functionalType != null) {
4479             try {
4480                 types.findDescriptorSymbol((TypeSymbol)cs);
4481             } catch (Types.FunctionDescriptorLookupError ex) {
4482                 DiagnosticPosition pos = tree.pos();
4483                 for (JCAnnotation a : tree.getModifiers().annotations) {
4484                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
4485                         pos = a.pos();
4486                         break;
4487                     }
4488                 }
4489                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
4490             }
4491         }
4492     }
4493 
4494     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
4495         for (final JCImport imp : toplevel.getImports()) {
4496             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
4497                 continue;
4498             final JCFieldAccess select = imp.qualid;
4499             final Symbol origin;
4500             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
4501                 continue;
4502 
4503             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
4504             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
4505                 log.error(imp.pos(),
4506                           Errors.CantResolveLocation(KindName.STATIC,
4507                                                      select.name,
4508                                                      null,
4509                                                      null,
4510                                                      Fragments.Location(kindName(site),
4511                                                                         site,
4512                                                                         null)));
4513             }
4514         }
4515     }
4516 
4517     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
4518     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
4519         OUTER: for (JCImport imp : toplevel.getImports()) {
4520             if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
4521                 TypeSymbol tsym = imp.qualid.selected.type.tsym;
4522                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
4523                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
4524                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, Errors.DoesntExist(tsym));
4525                 }
4526             }
4527         }
4528     }
4529 
4530     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
4531         if (tsym == null || !processed.add(tsym))
4532             return false;
4533 
4534             // also search through inherited names
4535         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
4536             return true;
4537 
4538         for (Type t : types.interfaces(tsym.type))
4539             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
4540                 return true;
4541 
4542         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
4543             if (sym.isStatic() &&
4544                 importAccessible(sym, packge) &&
4545                 sym.isMemberOf(origin, types)) {
4546                 return true;
4547             }
4548         }
4549 
4550         return false;
4551     }
4552 
4553     // is the sym accessible everywhere in packge?
4554     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
4555         try {
4556             int flags = (int)(sym.flags() & AccessFlags);
4557             switch (flags) {
4558             default:
4559             case PUBLIC:
4560                 return true;
4561             case PRIVATE:
4562                 return false;
4563             case 0:
4564             case PROTECTED:
4565                 return sym.packge() == packge;
4566             }
4567         } catch (ClassFinder.BadClassFile err) {
4568             throw err;
4569         } catch (CompletionFailure ex) {
4570             return false;
4571         }
4572     }
4573 
4574     public Type checkProcessorType(JCExpression processor, Type resultType, Env<AttrContext> env) {
4575         Type processorType = processor.type;
4576         Type interfaceType = types.asSuper(processorType, syms.processorType.tsym);
4577 
4578         if (interfaceType != null) {
4579             List<Type> typeArguments = interfaceType.getTypeArguments();
4580 
4581             if (typeArguments.size() == 2) {
4582                 resultType = typeArguments.head;
4583             } else {
4584                 resultType = syms.objectType;
4585             }
4586         } else {
4587             log.error(DiagnosticFlag.RESOLVE_ERROR, processor.pos,
4588                     Errors.NotAProcessorType(processorType.tsym));
4589         }
4590 
4591         return resultType;
4592     }
4593 
4594     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
4595         JCCompilationUnit toplevel = env.toplevel;
4596 
4597         if (   toplevel.modle == syms.unnamedModule
4598             || toplevel.modle == syms.noModule
4599             || (check.sym.flags() & COMPOUND) != 0) {
4600             return ;
4601         }
4602 
4603         ExportsDirective currentExport = findExport(toplevel.packge);
4604 
4605         if (   currentExport == null //not exported
4606             || currentExport.modules != null) //don't check classes in qualified export
4607             return ;
4608 
4609         new TreeScanner() {
4610             Lint lint = env.info.lint;
4611             boolean inSuperType;
4612 
4613             @Override
4614             public void visitBlock(JCBlock tree) {
4615             }
4616             @Override
4617             public void visitMethodDef(JCMethodDecl tree) {
4618                 if (!isAPISymbol(tree.sym))
4619                     return;
4620                 Lint prevLint = lint;
4621                 try {
4622                     lint = lint.augment(tree.sym);
4623                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4624                         super.visitMethodDef(tree);
4625                     }
4626                 } finally {
4627                     lint = prevLint;
4628                 }
4629             }
4630             @Override
4631             public void visitVarDef(JCVariableDecl tree) {
4632                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
4633                     return;
4634                 Lint prevLint = lint;
4635                 try {
4636                     lint = lint.augment(tree.sym);
4637                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4638                         scan(tree.mods);
4639                         scan(tree.vartype);
4640                     }
4641                 } finally {
4642                     lint = prevLint;
4643                 }
4644             }
4645             @Override
4646             public void visitClassDef(JCClassDecl tree) {
4647                 if (tree != check)
4648                     return ;
4649 
4650                 if (!isAPISymbol(tree.sym))
4651                     return ;
4652 
4653                 Lint prevLint = lint;
4654                 try {
4655                     lint = lint.augment(tree.sym);
4656                     if (lint.isEnabled(LintCategory.EXPORTS)) {
4657                         scan(tree.mods);
4658                         scan(tree.typarams);
4659                         try {
4660                             inSuperType = true;
4661                             scan(tree.extending);
4662                             scan(tree.implementing);
4663                         } finally {
4664                             inSuperType = false;
4665                         }
4666                         scan(tree.defs);
4667                     }
4668                 } finally {
4669                     lint = prevLint;
4670                 }
4671             }
4672             @Override
4673             public void visitTypeApply(JCTypeApply tree) {
4674                 scan(tree.clazz);
4675                 boolean oldInSuperType = inSuperType;
4676                 try {
4677                     inSuperType = false;
4678                     scan(tree.arguments);
4679                 } finally {
4680                     inSuperType = oldInSuperType;
4681                 }
4682             }
4683             @Override
4684             public void visitIdent(JCIdent tree) {
4685                 Symbol sym = TreeInfo.symbol(tree);
4686                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
4687                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4688                 }
4689             }
4690 
4691             @Override
4692             public void visitSelect(JCFieldAccess tree) {
4693                 Symbol sym = TreeInfo.symbol(tree);
4694                 Symbol sitesym = TreeInfo.symbol(tree.selected);
4695                 if (sym.kind == TYP && sitesym.kind == PCK) {
4696                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
4697                 } else {
4698                     super.visitSelect(tree);
4699                 }
4700             }
4701 
4702             @Override
4703             public void visitAnnotation(JCAnnotation tree) {
4704                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
4705                     super.visitAnnotation(tree);
4706             }
4707 
4708         }.scan(check);
4709     }
4710         //where:
4711         private ExportsDirective findExport(PackageSymbol pack) {
4712             for (ExportsDirective d : pack.modle.exports) {
4713                 if (d.packge == pack)
4714                     return d;
4715             }
4716 
4717             return null;
4718         }
4719         private boolean isAPISymbol(Symbol sym) {
4720             while (sym.kind != PCK) {
4721                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
4722                     return false;
4723                 }
4724                 sym = sym.owner;
4725             }
4726             return true;
4727         }
4728         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4729             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4730                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4731                 return ;
4732             }
4733 
4734             PackageSymbol whatPackage = what.packge();
4735             ExportsDirective whatExport = findExport(whatPackage);
4736             ExportsDirective inExport = findExport(inPackage);
4737 
4738             if (whatExport == null) { //package not exported:
4739                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4740                 return ;
4741             }
4742 
4743             if (whatExport.modules != null) {
4744                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4745                     log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4746                 }
4747             }
4748 
4749             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4750                 //check that relativeTo.modle requires transitive what.modle, somehow:
4751                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4752 
4753                 while (todo.nonEmpty()) {
4754                     ModuleSymbol current = todo.head;
4755                     todo = todo.tail;
4756                     if (current == whatPackage.modle)
4757                         return ; //OK
4758                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4759                         continue; //for automatic modules, don't look into their dependencies
4760                     for (RequiresDirective req : current.requires) {
4761                         if (req.isTransitive()) {
4762                             todo = todo.prepend(req.module);
4763                         }
4764                     }
4765                 }
4766 
4767                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4768             }
4769         }
4770 
4771     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4772         if (msym.kind != MDL) {
4773             deferredLintHandler.report(() -> {
4774                 if (lint.isEnabled(LintCategory.MODULE))
4775                     log.warning(LintCategory.MODULE, pos, Warnings.ModuleNotFound(msym));
4776             });
4777         }
4778     }
4779 
4780     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4781         if (packge.members().isEmpty() &&
4782             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4783             deferredLintHandler.report(() -> {
4784                 if (lint.isEnabled(LintCategory.OPENS))
4785                     log.warning(pos, Warnings.PackageEmptyOrNotFound(packge));
4786             });
4787         }
4788     }
4789 
4790     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4791         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4792             deferredLintHandler.report(() -> {
4793                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4794                     log.warning(pos, Warnings.RequiresTransitiveAutomatic);
4795                 } else if (lint.isEnabled(LintCategory.REQUIRES_AUTOMATIC)) {
4796                     log.warning(pos, Warnings.RequiresAutomatic);
4797                 }
4798             });
4799         }
4800     }
4801 
4802     /**
4803      * Verify the case labels conform to the constraints. Checks constraints related
4804      * combinations of patterns and other labels.
4805      *
4806      * @param cases the cases that should be checked.
4807      */
4808     void checkSwitchCaseStructure(List<JCCase> cases) {
4809         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4810             JCCase c = l.head;
4811             if (c.labels.head instanceof JCConstantCaseLabel constLabel) {
4812                 if (TreeInfo.isNull(constLabel.expr)) {
4813                     if (c.labels.tail.nonEmpty()) {
4814                         if (c.labels.tail.head instanceof JCDefaultCaseLabel defLabel) {
4815                             if (c.labels.tail.tail.nonEmpty()) {
4816                                 log.error(c.labels.tail.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4817                             }
4818                         } else {
4819                             log.error(c.labels.tail.head.pos(), Errors.InvalidCaseLabelCombination);
4820                         }
4821                     }
4822                 } else {
4823                     for (JCCaseLabel label : c.labels.tail) {
4824                         if (!(label instanceof JCConstantCaseLabel) || TreeInfo.isNullCaseLabel(label)) {
4825                             log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4826                             break;
4827                         }
4828                     }
4829                 }
4830             } else if (c.labels.tail.nonEmpty()) {
4831                 var patterCaseLabels = c.labels.stream().filter(ll -> ll instanceof JCPatternCaseLabel).map(cl -> (JCPatternCaseLabel)cl);
4832                 var allUnderscore = patterCaseLabels.allMatch(pcl -> !hasBindings(pcl.getPattern()));
4833 
4834                 if (!allUnderscore) {
4835                     log.error(c.labels.tail.head.pos(), Errors.FlowsThroughFromPattern);
4836                 }
4837 
4838                 boolean allPatternCaseLabels = c.labels.stream().allMatch(p -> p instanceof JCPatternCaseLabel);
4839 
4840                 if (allPatternCaseLabels) {
4841                     preview.checkSourceLevel(c.labels.tail.head.pos(), Feature.UNNAMED_VARIABLES);
4842                 }
4843 
4844                 for (JCCaseLabel label : c.labels.tail) {
4845                     if (label instanceof JCConstantCaseLabel) {
4846                         log.error(label.pos(), Errors.InvalidCaseLabelCombination);
4847                         break;
4848                     }
4849                 }
4850             }
4851         }
4852 
4853         boolean isCaseStatementGroup = cases.nonEmpty() &&
4854                                        cases.head.caseKind == CaseTree.CaseKind.STATEMENT;
4855 
4856         if (isCaseStatementGroup) {
4857             boolean previousCompletessNormally = false;
4858             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4859                 JCCase c = l.head;
4860                 if (previousCompletessNormally &&
4861                     c.stats.nonEmpty() &&
4862                     c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4863                     (hasBindings(patternLabel.pat) || hasBindings(c.guard))) {
4864                     log.error(c.labels.head.pos(), Errors.FlowsThroughToPattern);
4865                 } else if (c.stats.isEmpty() &&
4866                            c.labels.head instanceof JCPatternCaseLabel patternLabel &&
4867                            (hasBindings(patternLabel.pat) || hasBindings(c.guard)) &&
4868                            hasStatements(l.tail)) {
4869                     log.error(c.labels.head.pos(), Errors.FlowsThroughFromPattern);
4870                 }
4871                 previousCompletessNormally = c.completesNormally;
4872             }
4873         }
4874     }
4875 
4876     boolean hasBindings(JCTree p) {
4877         boolean[] bindings = new boolean[1];
4878 
4879         new TreeScanner() {
4880             @Override
4881             public void visitBindingPattern(JCBindingPattern tree) {
4882                 bindings[0] = !tree.var.sym.isUnnamedVariable();
4883                 super.visitBindingPattern(tree);
4884             }
4885         }.scan(p);
4886 
4887         return bindings[0];
4888     }
4889 
4890     boolean hasStatements(List<JCCase> cases) {
4891         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4892             if (l.head.stats.nonEmpty()) {
4893                 return true;
4894             }
4895         }
4896 
4897         return false;
4898     }
4899     void checkSwitchCaseLabelDominated(JCCaseLabel unconditionalCaseLabel, List<JCCase> cases) {
4900         List<Pair<JCCase, JCCaseLabel>> caseLabels = List.nil();
4901         boolean seenDefault = false;
4902         boolean seenDefaultLabel = false;
4903         boolean warnDominatedByDefault = false;
4904         boolean unconditionalFound = false;
4905 
4906         for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
4907             JCCase c = l.head;
4908             for (JCCaseLabel label : c.labels) {
4909                 if (label.hasTag(DEFAULTCASELABEL)) {
4910                     seenDefault = true;
4911                     seenDefaultLabel |=
4912                             TreeInfo.isNullCaseLabel(c.labels.head);
4913                     continue;
4914                 }
4915                 if (TreeInfo.isNullCaseLabel(label)) {
4916                     if (seenDefault) {
4917                         log.error(label.pos(), Errors.PatternDominated);
4918                     }
4919                     continue;
4920                 }
4921                 if (seenDefault && !warnDominatedByDefault) {
4922                     if (label.hasTag(PATTERNCASELABEL) ||
4923                         (label instanceof JCConstantCaseLabel && seenDefaultLabel)) {
4924                         log.error(label.pos(), Errors.PatternDominated);
4925                         warnDominatedByDefault = true;
4926                     }
4927                 }
4928                 Type currentType = labelType(label);
4929                 for (Pair<JCCase, JCCaseLabel> caseAndLabel : caseLabels) {
4930                     JCCase testCase = caseAndLabel.fst;
4931                     JCCaseLabel testCaseLabel = caseAndLabel.snd;
4932                     Type testType = labelType(testCaseLabel);
4933                     boolean dominated = false;
4934                     if (unconditionalCaseLabel == testCaseLabel) unconditionalFound = true;
4935                     if (types.isUnconditionallyExact(currentType, testType) &&
4936                         !currentType.hasTag(ERROR) && !testType.hasTag(ERROR)) {
4937                         //the current label is potentially dominated by the existing (test) label, check:
4938                         if (label instanceof JCConstantCaseLabel) {
4939                             dominated |= !(testCaseLabel instanceof JCConstantCaseLabel) &&
4940                                          TreeInfo.unguardedCase(testCase);
4941                         } else if (label instanceof JCPatternCaseLabel patternCL &&
4942                                    testCaseLabel instanceof JCPatternCaseLabel testPatternCaseLabel &&
4943                                    (testCase.equals(c) || TreeInfo.unguardedCase(testCase))) {
4944                             dominated = patternDominated(testPatternCaseLabel.pat,
4945                                                          patternCL.pat);
4946                         }
4947                     }
4948 
4949                     // Domination can occur even when we have not an unconditional pair between case labels.
4950                     if (unconditionalFound && unconditionalCaseLabel != label) {
4951                         dominated = true;
4952                     }
4953 
4954                     if (dominated) {
4955                         log.error(label.pos(), Errors.PatternDominated);
4956                     }
4957                 }
4958                 caseLabels = caseLabels.prepend(Pair.of(c, label));
4959             }
4960         }
4961     }
4962         //where:
4963         private Type labelType(JCCaseLabel label) {
4964             return types.erasure(switch (label.getTag()) {
4965                 case PATTERNCASELABEL -> ((JCPatternCaseLabel) label).pat.type;
4966                 case CONSTANTCASELABEL -> ((JCConstantCaseLabel) label).expr.type;
4967                 default -> throw Assert.error("Unexpected tree kind: " + label.getTag());
4968             });
4969         }
4970         private boolean patternDominated(JCPattern existingPattern, JCPattern currentPattern) {
4971             Type existingPatternType = types.erasure(existingPattern.type);
4972             Type currentPatternType = types.erasure(currentPattern.type);
4973             if (!types.isUnconditionallyExact(currentPatternType, existingPatternType)) {
4974                 return false;
4975             }
4976             if (currentPattern instanceof JCBindingPattern ||
4977                 currentPattern instanceof JCAnyPattern) {
4978                 return existingPattern instanceof JCBindingPattern ||
4979                        existingPattern instanceof JCAnyPattern;
4980             } else if (currentPattern instanceof JCRecordPattern currentRecordPattern) {
4981                 if (existingPattern instanceof JCBindingPattern ||
4982                     existingPattern instanceof JCAnyPattern) {
4983                     return true;
4984                 } else if (existingPattern instanceof JCRecordPattern existingRecordPattern) {
4985                     List<JCPattern> existingNested = existingRecordPattern.nested;
4986                     List<JCPattern> currentNested = currentRecordPattern.nested;
4987                     if (existingNested.size() != currentNested.size()) {
4988                         return false;
4989                     }
4990                     while (existingNested.nonEmpty()) {
4991                         if (!patternDominated(existingNested.head, currentNested.head)) {
4992                             return false;
4993                         }
4994                         existingNested = existingNested.tail;
4995                         currentNested = currentNested.tail;
4996                     }
4997                     return true;
4998                 } else {
4999                     Assert.error("Unknown pattern: " + existingPattern.getTag());
5000                 }
5001             } else {
5002                 Assert.error("Unknown pattern: " + currentPattern.getTag());
5003             }
5004             return false;
5005         }
5006 
5007     /** check if a type is a subtype of Externalizable, if that is available. */
5008     boolean isExternalizable(Type t) {
5009         try {
5010             syms.externalizableType.complete();
5011         } catch (CompletionFailure e) {
5012             return false;
5013         }
5014         return types.isSubtype(t, syms.externalizableType);
5015     }
5016 
5017     /**
5018      * Check structure of serialization declarations.
5019      */
5020     public void checkSerialStructure(Env<AttrContext> env, JCClassDecl tree, ClassSymbol c) {
5021         (new SerialTypeVisitor(env)).visit(c, tree);
5022     }
5023 
5024     /**
5025      * This visitor will warn if a serialization-related field or
5026      * method is declared in a suspicious or incorrect way. In
5027      * particular, it will warn for cases where the runtime
5028      * serialization mechanism will silently ignore a mis-declared
5029      * entity.
5030      *
5031      * Distinguished serialization-related fields and methods:
5032      *
5033      * Methods:
5034      *
5035      * private void writeObject(ObjectOutputStream stream) throws IOException
5036      * ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException
5037      *
5038      * private void readObject(ObjectInputStream stream) throws IOException, ClassNotFoundException
5039      * private void readObjectNoData() throws ObjectStreamException
5040      * ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException
5041      *
5042      * Fields:
5043      *
5044      * private static final long serialVersionUID
5045      * private static final ObjectStreamField[] serialPersistentFields
5046      *
5047      * Externalizable: methods defined on the interface
5048      * public void writeExternal(ObjectOutput) throws IOException
5049      * public void readExternal(ObjectInput) throws IOException
5050      */
5051     private class SerialTypeVisitor extends ElementKindVisitor14<Void, JCClassDecl> {
5052         Env<AttrContext> env;
5053         SerialTypeVisitor(Env<AttrContext> env) {
5054             this.lint = Check.this.lint;
5055             this.env = env;
5056         }
5057 
5058         private static final Set<String> serialMethodNames =
5059             Set.of("writeObject", "writeReplace",
5060                    "readObject",  "readObjectNoData",
5061                    "readResolve");
5062 
5063         private static final Set<String> serialFieldNames =
5064             Set.of("serialVersionUID", "serialPersistentFields");
5065 
5066         // Type of serialPersistentFields
5067         private final Type OSF_TYPE = new Type.ArrayType(syms.objectStreamFieldType, syms.arrayClass);
5068 
5069         Lint lint;
5070 
5071         @Override
5072         public Void defaultAction(Element e, JCClassDecl p) {
5073             throw new IllegalArgumentException(Objects.requireNonNullElse(e.toString(), ""));
5074         }
5075 
5076         @Override
5077         public Void visitType(TypeElement e, JCClassDecl p) {
5078             runUnderLint(e, p, (symbol, param) -> super.visitType(symbol, param));
5079             return null;
5080         }
5081 
5082         @Override
5083         public Void visitTypeAsClass(TypeElement e,
5084                                      JCClassDecl p) {
5085             // Anonymous classes filtered out by caller.
5086 
5087             ClassSymbol c = (ClassSymbol)e;
5088 
5089             checkCtorAccess(p, c);
5090 
5091             // Check for missing serialVersionUID; check *not* done
5092             // for enums or records.
5093             VarSymbol svuidSym = null;
5094             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5095                 if (sym.kind == VAR) {
5096                     svuidSym = (VarSymbol)sym;
5097                     break;
5098                 }
5099             }
5100 
5101             if (svuidSym == null) {
5102                 log.warning(LintCategory.SERIAL, p.pos(), Warnings.MissingSVUID(c));
5103             }
5104 
5105             // Check for serialPersistentFields to gate checks for
5106             // non-serializable non-transient instance fields
5107             boolean serialPersistentFieldsPresent =
5108                     c.members()
5109                      .getSymbolsByName(names.serialPersistentFields, sym -> sym.kind == VAR)
5110                      .iterator()
5111                      .hasNext();
5112 
5113             // Check declarations of serialization-related methods and
5114             // fields
5115             final boolean[] hasWriteReplace = {false};
5116             for(Symbol el : c.getEnclosedElements()) {
5117                 runUnderLint(el, p, (enclosed, tree) -> {
5118                     String name = null;
5119                     switch(enclosed.getKind()) {
5120                     case FIELD -> {
5121                         if (!serialPersistentFieldsPresent) {
5122                             var flags = enclosed.flags();
5123                             if ( ((flags & TRANSIENT) == 0) &&
5124                                  ((flags & STATIC) == 0)) {
5125                                 Type varType = enclosed.asType();
5126                                 if (!canBeSerialized(varType)) {
5127                                     // Note per JLS arrays are
5128                                     // serializable even if the
5129                                     // component type is not.
5130                                     log.warning(LintCategory.SERIAL,
5131                                                 TreeInfo.diagnosticPositionFor(enclosed, tree),
5132                                                 Warnings.NonSerializableInstanceField);
5133                                 } else if (varType.hasTag(ARRAY)) {
5134                                     ArrayType arrayType = (ArrayType)varType;
5135                                     Type elementType = arrayType.elemtype;
5136                                     while (elementType.hasTag(ARRAY)) {
5137                                         arrayType = (ArrayType)elementType;
5138                                         elementType = arrayType.elemtype;
5139                                     }
5140                                     if (!canBeSerialized(elementType)) {
5141                                         log.warning(LintCategory.SERIAL,
5142                                                     TreeInfo.diagnosticPositionFor(enclosed, tree),
5143                                                     Warnings.NonSerializableInstanceFieldArray(elementType));
5144                                     }
5145                                 }
5146                             }
5147                         }
5148 
5149                         name = enclosed.getSimpleName().toString();
5150                         if (serialFieldNames.contains(name)) {
5151                             VarSymbol field = (VarSymbol)enclosed;
5152                             switch (name) {
5153                             case "serialVersionUID"       ->  checkSerialVersionUID(tree, e, field);
5154                             case "serialPersistentFields" ->  checkSerialPersistentFields(tree, e, field);
5155                             default -> throw new AssertionError();
5156                             }
5157                         }
5158                     }
5159 
5160                     // Correctly checking the serialization-related
5161                     // methods is subtle. For the methods declared to be
5162                     // private or directly declared in the class, the
5163                     // enclosed elements of the class can be checked in
5164                     // turn. However, writeReplace and readResolve can be
5165                     // declared in a superclass and inherited. Note that
5166                     // the runtime lookup walks the superclass chain
5167                     // looking for writeReplace/readResolve via
5168                     // Class.getDeclaredMethod. This differs from calling
5169                     // Elements.getAllMembers(TypeElement) as the latter
5170                     // will also pull in default methods from
5171                     // superinterfaces. In other words, the runtime checks
5172                     // (which long predate default methods on interfaces)
5173                     // do not admit the possibility of inheriting methods
5174                     // this way, a difference from general inheritance.
5175 
5176                     // The current implementation just checks the enclosed
5177                     // elements and does not directly check the inherited
5178                     // methods. If all the types are being checked this is
5179                     // less of a concern; however, there are cases that
5180                     // could be missed. In particular, readResolve and
5181                     // writeReplace could, in principle, by inherited from
5182                     // a non-serializable superclass and thus not checked
5183                     // even if compiled with a serializable child class.
5184                     case METHOD -> {
5185                         var method = (MethodSymbol)enclosed;
5186                         name = method.getSimpleName().toString();
5187                         if (serialMethodNames.contains(name)) {
5188                             switch (name) {
5189                             case "writeObject"      -> checkWriteObject(tree, e, method);
5190                             case "writeReplace"     -> {hasWriteReplace[0] = true; hasAppropriateWriteReplace(tree, method, true);}
5191                             case "readObject"       -> checkReadObject(tree,e, method);
5192                             case "readObjectNoData" -> checkReadObjectNoData(tree, e, method);
5193                             case "readResolve"      -> checkReadResolve(tree, e, method);
5194                             default ->  throw new AssertionError();
5195                             }
5196                         }
5197                     }
5198                     }
5199                 });
5200             }
5201             if (!hasWriteReplace[0] &&
5202                     (c.isValueClass() || hasAbstractValueSuperClass(c, Set.of(syms.numberType.tsym))) &&
5203                     !c.isAbstract() && !c.isRecord() &&
5204                     types.unboxedType(c.type) == Type.noType) {
5205                 // we need to check if the class is inheriting an appropriate writeReplace method
5206                 MethodSymbol ms = null;
5207                 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
5208                 try {
5209                     ms = rs.resolveInternalMethod(env.tree, env, c.type, names.writeReplace, List.nil(), List.nil());
5210                 } catch (FatalError fe) {
5211                     // ignore no method was found
5212                 } finally {
5213                     log.popDiagnosticHandler(discardHandler);
5214                 }
5215                 if (ms == null || !hasAppropriateWriteReplace(p, ms, false)) {
5216                     log.warning(LintCategory.SERIAL, p,
5217                             c.isValueClass() ? Warnings.SerializableValueClassWithoutWriteReplace1 :
5218                                     Warnings.SerializableValueClassWithoutWriteReplace2);
5219                 }
5220             }
5221             return null;
5222         }
5223 
5224         boolean canBeSerialized(Type type) {
5225             return type.isPrimitive() || rs.isSerializable(type);
5226         }
5227 
5228         private boolean hasAbstractValueSuperClass(Symbol c, Set<Symbol> excluding) {
5229             while (c.getKind() == ElementKind.CLASS) {
5230                 Type sup = ((ClassSymbol)c).getSuperclass();
5231                 if (!sup.hasTag(CLASS) || sup.isErroneous() ||
5232                         sup.tsym == syms.objectType.tsym) {
5233                     return false;
5234                 }
5235                 // if it is a value super class it has to be abstract
5236                 if (sup.isValueClass() && !excluding.contains(sup.tsym)) {
5237                     return true;
5238                 }
5239                 c = sup.tsym;
5240             }
5241             return false;
5242         }
5243 
5244         /**
5245          * Check that Externalizable class needs a public no-arg
5246          * constructor.
5247          *
5248          * Check that a Serializable class has access to the no-arg
5249          * constructor of its first nonserializable superclass.
5250          */
5251         private void checkCtorAccess(JCClassDecl tree, ClassSymbol c) {
5252             if (isExternalizable(c.type)) {
5253                 for(var sym : c.getEnclosedElements()) {
5254                     if (sym.isConstructor() &&
5255                         ((sym.flags() & PUBLIC) == PUBLIC)) {
5256                         if (((MethodSymbol)sym).getParameters().isEmpty()) {
5257                             return;
5258                         }
5259                     }
5260                 }
5261                 log.warning(LintCategory.SERIAL, tree.pos(),
5262                             Warnings.ExternalizableMissingPublicNoArgCtor);
5263             } else {
5264                 // Approximate access to the no-arg constructor up in
5265                 // the superclass chain by checking that the
5266                 // constructor is not private. This may not handle
5267                 // some cross-package situations correctly.
5268                 Type superClass = c.getSuperclass();
5269                 // java.lang.Object is *not* Serializable so this loop
5270                 // should terminate.
5271                 while (rs.isSerializable(superClass) ) {
5272                     try {
5273                         superClass = (Type)((TypeElement)(((DeclaredType)superClass)).asElement()).getSuperclass();
5274                     } catch(ClassCastException cce) {
5275                         return ; // Don't try to recover
5276                     }
5277                 }
5278                 // Non-Serializable superclass
5279                 try {
5280                     ClassSymbol supertype = ((ClassSymbol)(((DeclaredType)superClass).asElement()));
5281                     for(var sym : supertype.getEnclosedElements()) {
5282                         if (sym.isConstructor()) {
5283                             MethodSymbol ctor = (MethodSymbol)sym;
5284                             if (ctor.getParameters().isEmpty()) {
5285                                 if (((ctor.flags() & PRIVATE) == PRIVATE) ||
5286                                     // Handle nested classes and implicit this$0
5287                                     (supertype.getNestingKind() == NestingKind.MEMBER &&
5288                                      ((supertype.flags() & STATIC) == 0)))
5289                                     log.warning(LintCategory.SERIAL, tree.pos(),
5290                                                 Warnings.SerializableMissingAccessNoArgCtor(supertype.getQualifiedName()));
5291                             }
5292                         }
5293                     }
5294                 } catch (ClassCastException cce) {
5295                     return ; // Don't try to recover
5296                 }
5297                 return;
5298             }
5299         }
5300 
5301         private void checkSerialVersionUID(JCClassDecl tree, Element e, VarSymbol svuid) {
5302             // To be effective, serialVersionUID must be marked static
5303             // and final, but private is recommended. But alas, in
5304             // practice there are many non-private serialVersionUID
5305             // fields.
5306              if ((svuid.flags() & (STATIC | FINAL)) !=
5307                  (STATIC | FINAL)) {
5308                  log.warning(LintCategory.SERIAL,
5309                              TreeInfo.diagnosticPositionFor(svuid, tree),
5310                              Warnings.ImproperSVUID((Symbol)e));
5311              }
5312 
5313              // check svuid has type long
5314              if (!svuid.type.hasTag(LONG)) {
5315                  log.warning(LintCategory.SERIAL,
5316                              TreeInfo.diagnosticPositionFor(svuid, tree),
5317                              Warnings.LongSVUID((Symbol)e));
5318              }
5319 
5320              if (svuid.getConstValue() == null)
5321                  log.warning(LintCategory.SERIAL,
5322                             TreeInfo.diagnosticPositionFor(svuid, tree),
5323                              Warnings.ConstantSVUID((Symbol)e));
5324         }
5325 
5326         private void checkSerialPersistentFields(JCClassDecl tree, Element e, VarSymbol spf) {
5327             // To be effective, serialPersisentFields must be private, static, and final.
5328              if ((spf.flags() & (PRIVATE | STATIC | FINAL)) !=
5329                  (PRIVATE | STATIC | FINAL)) {
5330                  log.warning(LintCategory.SERIAL,
5331                              TreeInfo.diagnosticPositionFor(spf, tree),
5332                              Warnings.ImproperSPF);
5333              }
5334 
5335              if (!types.isSameType(spf.type, OSF_TYPE)) {
5336                  log.warning(LintCategory.SERIAL,
5337                              TreeInfo.diagnosticPositionFor(spf, tree),
5338                              Warnings.OSFArraySPF);
5339              }
5340 
5341             if (isExternalizable((Type)(e.asType()))) {
5342                 log.warning(LintCategory.SERIAL,
5343                             TreeInfo.diagnosticPositionFor(spf, tree),
5344                             Warnings.IneffectualSerialFieldExternalizable);
5345             }
5346 
5347             // Warn if serialPersistentFields is initialized to a
5348             // literal null.
5349             JCTree spfDecl = TreeInfo.declarationFor(spf, tree);
5350             if (spfDecl != null && spfDecl.getTag() == VARDEF) {
5351                 JCVariableDecl variableDef = (JCVariableDecl) spfDecl;
5352                 JCExpression initExpr = variableDef.init;
5353                  if (initExpr != null && TreeInfo.isNull(initExpr)) {
5354                      log.warning(LintCategory.SERIAL, initExpr.pos(),
5355                                  Warnings.SPFNullInit);
5356                  }
5357             }
5358         }
5359 
5360         private void checkWriteObject(JCClassDecl tree, Element e, MethodSymbol method) {
5361             // The "synchronized" modifier is seen in the wild on
5362             // readObject and writeObject methods and is generally
5363             // innocuous.
5364 
5365             // private void writeObject(ObjectOutputStream stream) throws IOException
5366             checkPrivateNonStaticMethod(tree, method);
5367             isExpectedReturnType(tree, method, syms.voidType, true);
5368             checkOneArg(tree, e, method, syms.objectOutputStreamType);
5369             hasExpectedExceptions(tree, method, true, syms.ioExceptionType);
5370             checkExternalizable(tree, e, method);
5371         }
5372 
5373         private boolean hasAppropriateWriteReplace(JCClassDecl tree, MethodSymbol method, boolean warn) {
5374             // ANY-ACCESS-MODIFIER Object writeReplace() throws
5375             // ObjectStreamException
5376 
5377             // Excluding abstract, could have a more complicated
5378             // rule based on abstract-ness of the class
5379             return isConcreteInstanceMethod(tree, method, warn) &&
5380                     isExpectedReturnType(tree, method, syms.objectType, warn) &&
5381                     hasNoArgs(tree, method, warn) &&
5382                     hasExpectedExceptions(tree, method, warn, syms.objectStreamExceptionType);
5383         }
5384 
5385         private void checkReadObject(JCClassDecl tree, Element e, MethodSymbol method) {
5386             // The "synchronized" modifier is seen in the wild on
5387             // readObject and writeObject methods and is generally
5388             // innocuous.
5389 
5390             // private void readObject(ObjectInputStream stream)
5391             //   throws IOException, ClassNotFoundException
5392             checkPrivateNonStaticMethod(tree, method);
5393             isExpectedReturnType(tree, method, syms.voidType, true);
5394             checkOneArg(tree, e, method, syms.objectInputStreamType);
5395             hasExpectedExceptions(tree, method, true, syms.ioExceptionType, syms.classNotFoundExceptionType);
5396             checkExternalizable(tree, e, method);
5397         }
5398 
5399         private void checkReadObjectNoData(JCClassDecl tree, Element e, MethodSymbol method) {
5400             // private void readObjectNoData() throws ObjectStreamException
5401             checkPrivateNonStaticMethod(tree, method);
5402             isExpectedReturnType(tree, method, syms.voidType, true);
5403             hasNoArgs(tree, method, true);
5404             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5405             checkExternalizable(tree, e, method);
5406         }
5407 
5408         private void checkReadResolve(JCClassDecl tree, Element e, MethodSymbol method) {
5409             // ANY-ACCESS-MODIFIER Object readResolve()
5410             // throws ObjectStreamException
5411 
5412             // Excluding abstract, could have a more complicated
5413             // rule based on abstract-ness of the class
5414             isConcreteInstanceMethod(tree, method, true);
5415             isExpectedReturnType(tree, method, syms.objectType, true);
5416             hasNoArgs(tree, method, true);
5417             hasExpectedExceptions(tree, method, true, syms.objectStreamExceptionType);
5418         }
5419 
5420         private void checkWriteExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5421             //public void writeExternal(ObjectOutput) throws IOException
5422             checkExternMethodRecord(tree, e, method, syms.objectOutputType, isExtern);
5423         }
5424 
5425         private void checkReadExternalRecord(JCClassDecl tree, Element e, MethodSymbol method, boolean isExtern) {
5426             // public void readExternal(ObjectInput) throws IOException
5427             checkExternMethodRecord(tree, e, method, syms.objectInputType, isExtern);
5428          }
5429 
5430         private void checkExternMethodRecord(JCClassDecl tree, Element e, MethodSymbol method, Type argType,
5431                                              boolean isExtern) {
5432             if (isExtern && isExternMethod(tree, e, method, argType)) {
5433                 log.warning(LintCategory.SERIAL,
5434                             TreeInfo.diagnosticPositionFor(method, tree),
5435                             Warnings.IneffectualExternalizableMethodRecord(method.getSimpleName().toString()));
5436             }
5437         }
5438 
5439         void checkPrivateNonStaticMethod(JCClassDecl tree, MethodSymbol method) {
5440             var flags = method.flags();
5441             if ((flags & PRIVATE) == 0) {
5442                 log.warning(LintCategory.SERIAL,
5443                             TreeInfo.diagnosticPositionFor(method, tree),
5444                             Warnings.SerialMethodNotPrivate(method.getSimpleName()));
5445             }
5446 
5447             if ((flags & STATIC) != 0) {
5448                 log.warning(LintCategory.SERIAL,
5449                             TreeInfo.diagnosticPositionFor(method, tree),
5450                             Warnings.SerialMethodStatic(method.getSimpleName()));
5451             }
5452         }
5453 
5454         /**
5455          * Per section 1.12 "Serialization of Enum Constants" of
5456          * the serialization specification, due to the special
5457          * serialization handling of enums, any writeObject,
5458          * readObject, writeReplace, and readResolve methods are
5459          * ignored as are serialPersistentFields and
5460          * serialVersionUID fields.
5461          */
5462         @Override
5463         public Void visitTypeAsEnum(TypeElement e,
5464                                     JCClassDecl p) {
5465             boolean isExtern = isExternalizable((Type)e.asType());
5466             for(Element el : e.getEnclosedElements()) {
5467                 runUnderLint(el, p, (enclosed, tree) -> {
5468                     String name = enclosed.getSimpleName().toString();
5469                     switch(enclosed.getKind()) {
5470                     case FIELD -> {
5471                         var field = (VarSymbol)enclosed;
5472                         if (serialFieldNames.contains(name)) {
5473                             log.warning(LintCategory.SERIAL,
5474                                         TreeInfo.diagnosticPositionFor(field, tree),
5475                                         Warnings.IneffectualSerialFieldEnum(name));
5476                         }
5477                     }
5478 
5479                     case METHOD -> {
5480                         var method = (MethodSymbol)enclosed;
5481                         if (serialMethodNames.contains(name)) {
5482                             log.warning(LintCategory.SERIAL,
5483                                         TreeInfo.diagnosticPositionFor(method, tree),
5484                                         Warnings.IneffectualSerialMethodEnum(name));
5485                         }
5486 
5487                         if (isExtern) {
5488                             switch(name) {
5489                             case "writeExternal" -> checkWriteExternalEnum(tree, e, method);
5490                             case "readExternal"  -> checkReadExternalEnum(tree, e, method);
5491                             }
5492                         }
5493                     }
5494 
5495                     // Also perform checks on any class bodies of enum constants, see JLS 8.9.1.
5496                     case ENUM_CONSTANT -> {
5497                         var field = (VarSymbol)enclosed;
5498                         JCVariableDecl decl = (JCVariableDecl) TreeInfo.declarationFor(field, p);
5499                         if (decl.init instanceof JCNewClass nc && nc.def != null) {
5500                             ClassSymbol enumConstantType = nc.def.sym;
5501                             visitTypeAsEnum(enumConstantType, p);
5502                         }
5503                     }
5504 
5505                     }});
5506             }
5507             return null;
5508         }
5509 
5510         private void checkWriteExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5511             //public void writeExternal(ObjectOutput) throws IOException
5512             checkExternMethodEnum(tree, e, method, syms.objectOutputType);
5513         }
5514 
5515         private void checkReadExternalEnum(JCClassDecl tree, Element e, MethodSymbol method) {
5516              // public void readExternal(ObjectInput) throws IOException
5517             checkExternMethodEnum(tree, e, method, syms.objectInputType);
5518          }
5519 
5520         private void checkExternMethodEnum(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5521             if (isExternMethod(tree, e, method, argType)) {
5522                 log.warning(LintCategory.SERIAL,
5523                             TreeInfo.diagnosticPositionFor(method, tree),
5524                             Warnings.IneffectualExternMethodEnum(method.getSimpleName().toString()));
5525             }
5526         }
5527 
5528         private boolean isExternMethod(JCClassDecl tree, Element e, MethodSymbol method, Type argType) {
5529             long flags = method.flags();
5530             Type rtype = method.getReturnType();
5531 
5532             // Not necessary to check throws clause in this context
5533             return (flags & PUBLIC) != 0 && (flags & STATIC) == 0 &&
5534                 types.isSameType(syms.voidType, rtype) &&
5535                 hasExactlyOneArgWithType(tree, e, method, argType);
5536         }
5537 
5538         /**
5539          * Most serialization-related fields and methods on interfaces
5540          * are ineffectual or problematic.
5541          */
5542         @Override
5543         public Void visitTypeAsInterface(TypeElement e,
5544                                          JCClassDecl p) {
5545             for(Element el : e.getEnclosedElements()) {
5546                 runUnderLint(el, p, (enclosed, tree) -> {
5547                     String name = null;
5548                     switch(enclosed.getKind()) {
5549                     case FIELD -> {
5550                         var field = (VarSymbol)enclosed;
5551                         name = field.getSimpleName().toString();
5552                         switch(name) {
5553                         case "serialPersistentFields" -> {
5554                             log.warning(LintCategory.SERIAL,
5555                                         TreeInfo.diagnosticPositionFor(field, tree),
5556                                         Warnings.IneffectualSerialFieldInterface);
5557                         }
5558 
5559                         case "serialVersionUID" -> {
5560                             checkSerialVersionUID(tree, e, field);
5561                         }
5562                         }
5563                     }
5564 
5565                     case METHOD -> {
5566                         var method = (MethodSymbol)enclosed;
5567                         name = enclosed.getSimpleName().toString();
5568                         if (serialMethodNames.contains(name)) {
5569                             switch (name) {
5570                             case
5571                                 "readObject",
5572                                 "readObjectNoData",
5573                                 "writeObject"      -> checkPrivateMethod(tree, e, method);
5574 
5575                             case
5576                                 "writeReplace",
5577                                 "readResolve"      -> checkDefaultIneffective(tree, e, method);
5578 
5579                             default ->  throw new AssertionError();
5580                             }
5581 
5582                         }
5583                     }}
5584                 });
5585             }
5586 
5587             return null;
5588         }
5589 
5590         private void checkPrivateMethod(JCClassDecl tree,
5591                                         Element e,
5592                                         MethodSymbol method) {
5593             if ((method.flags() & PRIVATE) == 0) {
5594                 log.warning(LintCategory.SERIAL,
5595                             TreeInfo.diagnosticPositionFor(method, tree),
5596                             Warnings.NonPrivateMethodWeakerAccess);
5597             }
5598         }
5599 
5600         private void checkDefaultIneffective(JCClassDecl tree,
5601                                              Element e,
5602                                              MethodSymbol method) {
5603             if ((method.flags() & DEFAULT) == DEFAULT) {
5604                 log.warning(LintCategory.SERIAL,
5605                             TreeInfo.diagnosticPositionFor(method, tree),
5606                             Warnings.DefaultIneffective);
5607 
5608             }
5609         }
5610 
5611         @Override
5612         public Void visitTypeAsAnnotationType(TypeElement e,
5613                                               JCClassDecl p) {
5614             // Per the JLS, annotation types are not serializeable
5615             return null;
5616         }
5617 
5618         /**
5619          * From the Java Object Serialization Specification, 1.13
5620          * Serialization of Records:
5621          *
5622          * "The process by which record objects are serialized or
5623          * externalized cannot be customized; any class-specific
5624          * writeObject, readObject, readObjectNoData, writeExternal,
5625          * and readExternal methods defined by record classes are
5626          * ignored during serialization and deserialization. However,
5627          * a substitute object to be serialized or a designate
5628          * replacement may be specified, by the writeReplace and
5629          * readResolve methods, respectively. Any
5630          * serialPersistentFields field declaration is
5631          * ignored. Documenting serializable fields and data for
5632          * record classes is unnecessary, since there is no variation
5633          * in the serial form, other than whether a substitute or
5634          * replacement object is used. The serialVersionUID of a
5635          * record class is 0L unless explicitly declared. The
5636          * requirement for matching serialVersionUID values is waived
5637          * for record classes."
5638          */
5639         @Override
5640         public Void visitTypeAsRecord(TypeElement e,
5641                                       JCClassDecl p) {
5642             boolean isExtern = isExternalizable((Type)e.asType());
5643             for(Element el : e.getEnclosedElements()) {
5644                 runUnderLint(el, p, (enclosed, tree) -> {
5645                     String name = enclosed.getSimpleName().toString();
5646                     switch(enclosed.getKind()) {
5647                     case FIELD -> {
5648                         var field = (VarSymbol)enclosed;
5649                         switch(name) {
5650                         case "serialPersistentFields" -> {
5651                             log.warning(LintCategory.SERIAL,
5652                                         TreeInfo.diagnosticPositionFor(field, tree),
5653                                         Warnings.IneffectualSerialFieldRecord);
5654                         }
5655 
5656                         case "serialVersionUID" -> {
5657                             // Could generate additional warning that
5658                             // svuid value is not checked to match for
5659                             // records.
5660                             checkSerialVersionUID(tree, e, field);
5661                         }}
5662                     }
5663 
5664                     case METHOD -> {
5665                         var method = (MethodSymbol)enclosed;
5666                         switch(name) {
5667                         case "writeReplace" -> hasAppropriateWriteReplace(tree, method, true);
5668                         case "readResolve"  -> checkReadResolve(tree, e, method);
5669 
5670                         case "writeExternal" -> checkWriteExternalRecord(tree, e, method, isExtern);
5671                         case "readExternal"  -> checkReadExternalRecord(tree, e, method, isExtern);
5672 
5673                         default -> {
5674                             if (serialMethodNames.contains(name)) {
5675                                 log.warning(LintCategory.SERIAL,
5676                                             TreeInfo.diagnosticPositionFor(method, tree),
5677                                             Warnings.IneffectualSerialMethodRecord(name));
5678                             }
5679                         }}
5680                     }}});
5681             }
5682             return null;
5683         }
5684 
5685         boolean isConcreteInstanceMethod(JCClassDecl tree,
5686                                          MethodSymbol method,
5687                                          boolean warn) {
5688             if ((method.flags() & (STATIC | ABSTRACT)) != 0) {
5689                 if (warn) {
5690                     log.warning(LintCategory.SERIAL,
5691                             TreeInfo.diagnosticPositionFor(method, tree),
5692                             Warnings.SerialConcreteInstanceMethod(method.getSimpleName()));
5693                 }
5694                 return false;
5695             }
5696             return true;
5697         }
5698 
5699         private boolean isExpectedReturnType(JCClassDecl tree,
5700                                           MethodSymbol method,
5701                                           Type expectedReturnType,
5702                                           boolean warn) {
5703             // Note: there may be complications checking writeReplace
5704             // and readResolve since they return Object and could, in
5705             // principle, have covariant overrides and any synthetic
5706             // bridge method would not be represented here for
5707             // checking.
5708             Type rtype = method.getReturnType();
5709             if (!types.isSameType(expectedReturnType, rtype)) {
5710                 if (warn) {
5711                     log.warning(LintCategory.SERIAL,
5712                             TreeInfo.diagnosticPositionFor(method, tree),
5713                             Warnings.SerialMethodUnexpectedReturnType(method.getSimpleName(),
5714                                     rtype, expectedReturnType));
5715                 }
5716                 return false;
5717             }
5718             return true;
5719         }
5720 
5721         private void checkOneArg(JCClassDecl tree,
5722                                  Element enclosing,
5723                                  MethodSymbol method,
5724                                  Type expectedType) {
5725             String name = method.getSimpleName().toString();
5726 
5727             var parameters= method.getParameters();
5728 
5729             if (parameters.size() != 1) {
5730                 log.warning(LintCategory.SERIAL,
5731                             TreeInfo.diagnosticPositionFor(method, tree),
5732                             Warnings.SerialMethodOneArg(method.getSimpleName(), parameters.size()));
5733                 return;
5734             }
5735 
5736             Type parameterType = parameters.get(0).asType();
5737             if (!types.isSameType(parameterType, expectedType)) {
5738                 log.warning(LintCategory.SERIAL,
5739                             TreeInfo.diagnosticPositionFor(method, tree),
5740                             Warnings.SerialMethodParameterType(method.getSimpleName(),
5741                                                                expectedType,
5742                                                                parameterType));
5743             }
5744         }
5745 
5746         private boolean hasExactlyOneArgWithType(JCClassDecl tree,
5747                                                  Element enclosing,
5748                                                  MethodSymbol method,
5749                                                  Type expectedType) {
5750             var parameters = method.getParameters();
5751             return (parameters.size() == 1) &&
5752                 types.isSameType(parameters.get(0).asType(), expectedType);
5753         }
5754 
5755 
5756         boolean hasNoArgs(JCClassDecl tree, MethodSymbol method, boolean warn) {
5757             var parameters = method.getParameters();
5758             if (!parameters.isEmpty()) {
5759                 if (warn) {
5760                     log.warning(LintCategory.SERIAL,
5761                             TreeInfo.diagnosticPositionFor(parameters.get(0), tree),
5762                             Warnings.SerialMethodNoArgs(method.getSimpleName()));
5763                 }
5764                 return false;
5765             }
5766             return true;
5767         }
5768 
5769         private void checkExternalizable(JCClassDecl tree, Element enclosing, MethodSymbol method) {
5770             // If the enclosing class is externalizable, warn for the method
5771             if (isExternalizable((Type)enclosing.asType())) {
5772                 log.warning(LintCategory.SERIAL,
5773                             TreeInfo.diagnosticPositionFor(method, tree),
5774                             Warnings.IneffectualSerialMethodExternalizable(method.getSimpleName()));
5775             }
5776             return;
5777         }
5778 
5779         private boolean hasExpectedExceptions(JCClassDecl tree,
5780                                               MethodSymbol method,
5781                                               boolean warn,
5782                                               Type... declaredExceptions) {
5783             for (Type thrownType: method.getThrownTypes()) {
5784                 // For each exception in the throws clause of the
5785                 // method, if not an Error and not a RuntimeException,
5786                 // check if the exception is a subtype of a declared
5787                 // exception from the throws clause of the
5788                 // serialization method in question.
5789                 if (types.isSubtype(thrownType, syms.runtimeExceptionType) ||
5790                     types.isSubtype(thrownType, syms.errorType) ) {
5791                     continue;
5792                 } else {
5793                     boolean declared = false;
5794                     for (Type declaredException : declaredExceptions) {
5795                         if (types.isSubtype(thrownType, declaredException)) {
5796                             declared = true;
5797                             continue;
5798                         }
5799                     }
5800                     if (!declared) {
5801                         if (warn) {
5802                             log.warning(LintCategory.SERIAL,
5803                                     TreeInfo.diagnosticPositionFor(method, tree),
5804                                     Warnings.SerialMethodUnexpectedException(method.getSimpleName(),
5805                                             thrownType));
5806                         }
5807                         return false;
5808                     }
5809                 }
5810             }
5811             return true;
5812         }
5813 
5814         private <E extends Element> Void runUnderLint(E symbol, JCClassDecl p, BiConsumer<E, JCClassDecl> task) {
5815             Lint prevLint = lint;
5816             try {
5817                 lint = lint.augment((Symbol) symbol);
5818 
5819                 if (lint.isEnabled(LintCategory.SERIAL)) {
5820                     task.accept(symbol, p);
5821                 }
5822 
5823                 return null;
5824             } finally {
5825                 lint = prevLint;
5826             }
5827         }
5828 
5829     }
5830 
5831 }
--- EOF ---