1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.stream.Collectors;
  30 
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.code.Kinds.KindSelector;
  33 import com.sun.tools.javac.code.Scope.WriteableScope;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  36 import com.sun.tools.javac.main.Option.PkgInfo;
  37 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  38 import com.sun.tools.javac.tree.*;
  39 import com.sun.tools.javac.util.*;
  40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  41 import com.sun.tools.javac.util.List;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode;
  45 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  46 import com.sun.tools.javac.tree.JCTree.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 
  49 import com.sun.tools.javac.jvm.Target;
  50 import com.sun.tools.javac.tree.EndPosTable;
  51 
  52 import static com.sun.tools.javac.code.Flags.*;
  53 import static com.sun.tools.javac.code.Flags.BLOCK;
  54 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  55 import static com.sun.tools.javac.code.TypeTag.*;
  56 import static com.sun.tools.javac.code.Kinds.Kind.*;
  57 import com.sun.tools.javac.code.Source.Feature;
  58 import static com.sun.tools.javac.jvm.ByteCodes.*;
  59 import com.sun.tools.javac.tree.JCTree.JCBreak;
  60 import com.sun.tools.javac.tree.JCTree.JCCase;
  61 import com.sun.tools.javac.tree.JCTree.JCExpression;
  62 import com.sun.tools.javac.tree.JCTree.JCExpressionStatement;
  63 import static com.sun.tools.javac.tree.JCTree.JCOperatorExpression.OperandPos.LEFT;
  64 import com.sun.tools.javac.tree.JCTree.JCSwitchExpression;
  65 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  66 
  67 /** This pass translates away some syntactic sugar: inner classes,
  68  *  class literals, assertions, foreach loops, etc.
  69  *
  70  *  <p><b>This is NOT part of any supported API.
  71  *  If you write code that depends on this, you do so at your own risk.
  72  *  This code and its internal interfaces are subject to change or
  73  *  deletion without notice.</b>
  74  */
  75 public class Lower extends TreeTranslator {
  76     protected static final Context.Key<Lower> lowerKey = new Context.Key<>();
  77 
  78     public static Lower instance(Context context) {
  79         Lower instance = context.get(lowerKey);
  80         if (instance == null)
  81             instance = new Lower(context);
  82         return instance;
  83     }
  84 
  85     private final Names names;
  86     private final Log log;
  87     private final Symtab syms;
  88     private final Resolve rs;
  89     private final Operators operators;
  90     private final Check chk;
  91     private final Attr attr;
  92     private TreeMaker make;
  93     private DiagnosticPosition make_pos;
  94     private final ConstFold cfolder;
  95     private final Target target;
  96     private final TypeEnvs typeEnvs;
  97     private final Name dollarAssertionsDisabled;
  98     private final Types types;
  99     private final TransTypes transTypes;
 100     private final boolean debugLower;
 101     private final boolean disableProtectedAccessors; // experimental
 102     private final PkgInfo pkginfoOpt;
 103     private final boolean optimizeOuterThis;
 104     private final boolean useMatchException;
 105 
 106     @SuppressWarnings("this-escape")
 107     protected Lower(Context context) {
 108         context.put(lowerKey, this);
 109         names = Names.instance(context);
 110         log = Log.instance(context);
 111         syms = Symtab.instance(context);
 112         rs = Resolve.instance(context);
 113         operators = Operators.instance(context);
 114         chk = Check.instance(context);
 115         attr = Attr.instance(context);
 116         make = TreeMaker.instance(context);
 117         cfolder = ConstFold.instance(context);
 118         target = Target.instance(context);
 119         typeEnvs = TypeEnvs.instance(context);
 120         dollarAssertionsDisabled = names.
 121             fromString(target.syntheticNameChar() + "assertionsDisabled");
 122 
 123         types = Types.instance(context);
 124         transTypes = TransTypes.instance(context);
 125         Options options = Options.instance(context);
 126         debugLower = options.isSet("debuglower");
 127         pkginfoOpt = PkgInfo.get(options);
 128         optimizeOuterThis =
 129             target.optimizeOuterThis() ||
 130             options.getBoolean("optimizeOuterThis", false);
 131         disableProtectedAccessors = options.isSet("disableProtectedAccessors");
 132         Source source = Source.instance(context);
 133         Preview preview = Preview.instance(context);
 134         useMatchException = Feature.PATTERN_SWITCH.allowedInSource(source) &&
 135                             (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH));
 136     }
 137 
 138     /** The currently enclosing class.
 139      */
 140     ClassSymbol currentClass;
 141 
 142     /** A queue of all translated classes.
 143      */
 144     ListBuffer<JCTree> translated;
 145 
 146     /** Environment for symbol lookup, set by translateTopLevelClass.
 147      */
 148     Env<AttrContext> attrEnv;
 149 
 150     /** A hash table mapping syntax trees to their ending source positions.
 151      */
 152     EndPosTable endPosTable;
 153 
 154 /**************************************************************************
 155  * Global mappings
 156  *************************************************************************/
 157 
 158     /** A hash table mapping local classes to their definitions.
 159      */
 160     Map<ClassSymbol, JCClassDecl> classdefs;
 161 
 162     /** A hash table mapping local classes to a list of pruned trees.
 163      */
 164     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<>();
 165 
 166     /** A hash table mapping virtual accessed symbols in outer subclasses
 167      *  to the actually referred symbol in superclasses.
 168      */
 169     Map<Symbol,Symbol> actualSymbols;
 170 
 171     /** The current method definition.
 172      */
 173     JCMethodDecl currentMethodDef;
 174 
 175     /** The current method symbol.
 176      */
 177     MethodSymbol currentMethodSym;
 178 
 179     /** The currently enclosing outermost class definition.
 180      */
 181     JCClassDecl outermostClassDef;
 182 
 183     /** The currently enclosing outermost member definition.
 184      */
 185     JCTree outermostMemberDef;
 186 
 187     /** A map from local variable symbols to their translation (as per LambdaToMethod).
 188      * This is required when a capturing local class is created from a lambda (in which
 189      * case the captured symbols should be replaced with the translated lambda symbols).
 190      */
 191     Map<Symbol, Symbol> lambdaTranslationMap = null;
 192 
 193     /** A navigator class for assembling a mapping from local class symbols
 194      *  to class definition trees.
 195      *  There is only one case; all other cases simply traverse down the tree.
 196      */
 197     class ClassMap extends TreeScanner {
 198 
 199         /** All encountered class defs are entered into classdefs table.
 200          */
 201         public void visitClassDef(JCClassDecl tree) {
 202             classdefs.put(tree.sym, tree);
 203             super.visitClassDef(tree);
 204         }
 205     }
 206     ClassMap classMap = new ClassMap();
 207 
 208     /** Map a class symbol to its definition.
 209      *  @param c    The class symbol of which we want to determine the definition.
 210      */
 211     JCClassDecl classDef(ClassSymbol c) {
 212         // First lookup the class in the classdefs table.
 213         JCClassDecl def = classdefs.get(c);
 214         if (def == null && outermostMemberDef != null) {
 215             // If this fails, traverse outermost member definition, entering all
 216             // local classes into classdefs, and try again.
 217             classMap.scan(outermostMemberDef);
 218             def = classdefs.get(c);
 219         }
 220         if (def == null) {
 221             // If this fails, traverse outermost class definition, entering all
 222             // local classes into classdefs, and try again.
 223             classMap.scan(outermostClassDef);
 224             def = classdefs.get(c);
 225         }
 226         return def;
 227     }
 228 
 229     /**
 230      * Get the enum constants for the given enum class symbol, if known.
 231      * They will only be found if they are defined within the same top-level
 232      * class as the class being compiled, so it's safe to assume that they
 233      * can't change at runtime due to a recompilation.
 234      */
 235     List<Name> enumNamesFor(ClassSymbol c) {
 236 
 237         // Find the class definition and verify it is an enum class
 238         final JCClassDecl classDef = classDef(c);
 239         if (classDef == null ||
 240             (classDef.mods.flags & ENUM) == 0 ||
 241             (types.supertype(currentClass.type).tsym.flags() & ENUM) != 0) {
 242             return null;
 243         }
 244 
 245         // Gather the enum identifiers
 246         ListBuffer<Name> idents = new ListBuffer<>();
 247         for (List<JCTree> defs = classDef.defs; defs.nonEmpty(); defs=defs.tail) {
 248             if (defs.head.hasTag(VARDEF) &&
 249                 (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
 250                 JCVariableDecl var = (JCVariableDecl)defs.head;
 251                 idents.append(var.name);
 252             }
 253         }
 254         return idents.toList();
 255     }
 256 
 257     /** A hash table mapping class symbols to lists of free variables.
 258      *  accessed by them. Only free variables of the method immediately containing
 259      *  a class are associated with that class.
 260      */
 261     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 262 
 263     /** A navigator class for collecting the free variables accessed
 264      *  from a local class. There is only one case; all other cases simply
 265      *  traverse down the tree. This class doesn't deal with the specific
 266      *  of Lower - it's an abstract visitor that is meant to be reused in
 267      *  order to share the local variable capture logic.
 268      */
 269     abstract class BasicFreeVarCollector extends TreeScanner {
 270 
 271         /** Add all free variables of class c to fvs list
 272          *  unless they are already there.
 273          */
 274         abstract void addFreeVars(ClassSymbol c);
 275 
 276         /** If tree refers to a variable in owner of local class, add it to
 277          *  free variables list.
 278          */
 279         public void visitIdent(JCIdent tree) {
 280             visitSymbol(tree.sym);
 281         }
 282         // where
 283         abstract void visitSymbol(Symbol _sym);
 284 
 285         /** If tree refers to a class instance creation expression
 286          *  add all free variables of the freshly created class.
 287          */
 288         public void visitNewClass(JCNewClass tree) {
 289             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 290             addFreeVars(c);
 291             super.visitNewClass(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300             }
 301             super.visitApply(tree);
 302         }
 303 
 304         @Override
 305         public void visitYield(JCYield tree) {
 306             scan(tree.value);
 307         }
 308 
 309     }
 310 
 311     /**
 312      * Lower-specific subclass of {@code BasicFreeVarCollector}.
 313      */
 314     class FreeVarCollector extends BasicFreeVarCollector {
 315 
 316         /** The owner of the local class.
 317          */
 318         Symbol owner;
 319 
 320         /** The local class.
 321          */
 322         ClassSymbol clazz;
 323 
 324         /** The list of owner's variables accessed from within the local class,
 325          *  without any duplicates.
 326          */
 327         List<VarSymbol> fvs;
 328 
 329         FreeVarCollector(ClassSymbol clazz) {
 330             this.clazz = clazz;
 331             this.owner = clazz.owner;
 332             this.fvs = List.nil();
 333         }
 334 
 335         /** Add free variable to fvs list unless it is already there.
 336          */
 337         private void addFreeVar(VarSymbol v) {
 338             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 339                 if (l.head == v) return;
 340             fvs = fvs.prepend(v);
 341         }
 342 
 343         @Override
 344         void addFreeVars(ClassSymbol c) {
 345             List<VarSymbol> fvs = freevarCache.get(c);
 346             if (fvs != null) {
 347                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 348                     addFreeVar(l.head);
 349                 }
 350             }
 351         }
 352 
 353         @Override
 354         void visitSymbol(Symbol _sym) {
 355             Symbol sym = _sym;
 356             if (sym.kind == VAR || sym.kind == MTH) {
 357                 if (sym != null && sym.owner != owner)
 358                     sym = proxies.get(sym);
 359                 if (sym != null && sym.owner == owner) {
 360                     VarSymbol v = (VarSymbol)sym;
 361                     if (v.getConstValue() == null) {
 362                         addFreeVar(v);
 363                     }
 364                 } else {
 365                     if (outerThisStack.head != null &&
 366                         outerThisStack.head != _sym)
 367                         visitSymbol(outerThisStack.head);
 368                 }
 369             }
 370         }
 371 
 372         /** If tree refers to a class instance creation expression
 373          *  add all free variables of the freshly created class.
 374          */
 375         public void visitNewClass(JCNewClass tree) {
 376             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 377             if (tree.encl == null &&
 378                 c.hasOuterInstance() &&
 379                 outerThisStack.head != null)
 380                 visitSymbol(outerThisStack.head);
 381             super.visitNewClass(tree);
 382         }
 383 
 384         /** If tree refers to a qualified this or super expression
 385          *  for anything but the current class, add the outer this
 386          *  stack as a free variable.
 387          */
 388         public void visitSelect(JCFieldAccess tree) {
 389             if ((tree.name == names._this || tree.name == names._super) &&
 390                 tree.selected.type.tsym != clazz &&
 391                 outerThisStack.head != null)
 392                 visitSymbol(outerThisStack.head);
 393             super.visitSelect(tree);
 394         }
 395 
 396         /** If tree refers to a superclass constructor call,
 397          *  add all free variables of the superclass.
 398          */
 399         public void visitApply(JCMethodInvocation tree) {
 400             if (TreeInfo.name(tree.meth) == names._super) {
 401                 Symbol constructor = TreeInfo.symbol(tree.meth);
 402                 ClassSymbol c = (ClassSymbol)constructor.owner;
 403                 if (c.hasOuterInstance() &&
 404                     !tree.meth.hasTag(SELECT) &&
 405                     outerThisStack.head != null)
 406                     visitSymbol(outerThisStack.head);
 407             }
 408             super.visitApply(tree);
 409         }
 410 
 411     }
 412 
 413     ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
 414         if (!c.isDirectlyOrIndirectlyLocal()) {
 415             return null;
 416         }
 417         Symbol currentOwner = c.owner;
 418         while (currentOwner.owner.kind.matches(KindSelector.TYP) && currentOwner.isDirectlyOrIndirectlyLocal()) {
 419             currentOwner = currentOwner.owner;
 420         }
 421         if (currentOwner.owner.kind.matches(KindSelector.VAL_MTH) && c.isSubClass(currentOwner, types)) {
 422             return (ClassSymbol)currentOwner;
 423         }
 424         return null;
 425     }
 426 
 427     /** Return the variables accessed from within a local class, which
 428      *  are declared in the local class' owner.
 429      *  (in reverse order of first access).
 430      */
 431     List<VarSymbol> freevars(ClassSymbol c)  {
 432         List<VarSymbol> fvs = freevarCache.get(c);
 433         if (fvs != null) {
 434             return fvs;
 435         }
 436         if (c.owner.kind.matches(KindSelector.VAL_MTH) && !c.isStatic()) {
 437             FreeVarCollector collector = new FreeVarCollector(c);
 438             collector.scan(classDef(c));
 439             fvs = collector.fvs;
 440             freevarCache.put(c, fvs);
 441             return fvs;
 442         } else {
 443             ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
 444             if (owner != null) {
 445                 fvs = freevarCache.get(owner);
 446                 freevarCache.put(c, fvs);
 447                 return fvs;
 448             } else {
 449                 return List.nil();
 450             }
 451         }
 452     }
 453 
 454     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<>();
 455 
 456     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 457 
 458         // If enum class is part of this compilation, just switch on ordinal value
 459         if (enumClass.kind == TYP) {
 460             final List<Name> idents = enumNamesFor((ClassSymbol)enumClass);
 461             if (idents != null)
 462                 return new CompileTimeEnumMapping(idents);
 463         }
 464 
 465         // Map identifiers to ordinal values at runtime, and then switch on that
 466         return enumSwitchMap.computeIfAbsent(enumClass, ec -> new RuntimeEnumMapping(pos, ec));
 467     }
 468 
 469     /** Generates a test value and corresponding cases for a switch on an enum type.
 470      */
 471     interface EnumMapping {
 472 
 473         /** Given an expression for the enum value's ordinal, generate an expression for the switch statement.
 474          */
 475         JCExpression switchValue(JCExpression ordinalExpr);
 476 
 477         /** Generate the switch statement case value corresponding to the given enum value.
 478          */
 479         JCLiteral caseValue(VarSymbol v);
 480 
 481         default void translate() {
 482         }
 483     }
 484 
 485     /** EnumMapping using compile-time constants. Only valid when compiling the enum class itself,
 486      *  because otherwise the ordinals we use could become obsolete if/when the enum class is recompiled.
 487      */
 488     class CompileTimeEnumMapping implements EnumMapping {
 489 
 490         final List<Name> enumNames;
 491 
 492         CompileTimeEnumMapping(List<Name> enumNames) {
 493             Assert.check(enumNames != null);
 494             this.enumNames = enumNames;
 495         }
 496 
 497         @Override
 498         public JCExpression switchValue(JCExpression ordinalExpr) {
 499             return ordinalExpr;
 500         }
 501 
 502         @Override
 503         public JCLiteral caseValue(VarSymbol v) {
 504             final int ordinal = enumNames.indexOf(v.name);
 505             Assert.check(ordinal != -1);
 506             return make.Literal(ordinal);
 507         }
 508     }
 509 
 510     /** EnumMapping using run-time ordinal lookup.
 511      *
 512      *  This builds a translation table to be used for enum switches.
 513      *
 514      *  <p>For each enum that appears as the type of a switch
 515      *  expression, we maintain an EnumMapping to assist in the
 516      *  translation, as exemplified by the following example:
 517      *
 518      *  <p>we translate
 519      *  <pre>
 520      *          switch(colorExpression) {
 521      *          case red: stmt1;
 522      *          case green: stmt2;
 523      *          }
 524      *  </pre>
 525      *  into
 526      *  <pre>
 527      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 528      *          case 1: stmt1;
 529      *          case 2: stmt2
 530      *          }
 531      *  </pre>
 532      *  with the auxiliary table initialized as follows:
 533      *  <pre>
 534      *          class Outer$0 {
 535      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 536      *              static {
 537      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 538      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 539      *              }
 540      *          }
 541      *  </pre>
 542      *  class EnumMapping provides mapping data and support methods for this translation.
 543      */
 544     class RuntimeEnumMapping implements EnumMapping {
 545         RuntimeEnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 546             this.forEnum = forEnum;
 547             this.values = new LinkedHashMap<>();
 548             this.pos = pos;
 549             Name varName = names
 550                 .fromString(target.syntheticNameChar() +
 551                             "SwitchMap" +
 552                             target.syntheticNameChar() +
 553                             ClassWriter.externalize(forEnum.type.tsym.flatName().toString())
 554                             .replace('/', '.')
 555                             .replace('.', target.syntheticNameChar()));
 556             ClassSymbol outerCacheClass = outerCacheClass();
 557             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 558                                         varName,
 559                                         new ArrayType(syms.intType, syms.arrayClass),
 560                                         outerCacheClass);
 561             enterSynthetic(pos, mapVar, outerCacheClass.members());
 562         }
 563 
 564         DiagnosticPosition pos = null;
 565 
 566         // the next value to use
 567         int next = 1; // 0 (unused map elements) go to the default label
 568 
 569         // the enum for which this is a map
 570         final TypeSymbol forEnum;
 571 
 572         // the field containing the map
 573         final VarSymbol mapVar;
 574 
 575         // the mapped values
 576         final Map<VarSymbol,Integer> values;
 577 
 578         @Override
 579         public JCExpression switchValue(JCExpression ordinalExpr) {
 580             return make.Indexed(mapVar, ordinalExpr);
 581         }
 582 
 583         @Override
 584         public JCLiteral caseValue(VarSymbol v) {
 585             Integer result = values.get(v);
 586             if (result == null)
 587                 values.put(v, result = next++);
 588             return make.Literal(result);
 589         }
 590 
 591         // generate the field initializer for the map
 592         @Override
 593         public void translate() {
 594             boolean prevAllowProtectedAccess = attrEnv.info.allowProtectedAccess;
 595             try {
 596                 make.at(pos.getStartPosition());
 597                 attrEnv.info.allowProtectedAccess = true;
 598                 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 599 
 600                 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 601                 MethodSymbol valuesMethod = lookupMethod(pos,
 602                                                          names.values,
 603                                                          forEnum.type,
 604                                                          List.nil());
 605                 JCExpression size = make // Color.values().length
 606                     .Select(make.App(make.QualIdent(valuesMethod)),
 607                             syms.lengthVar);
 608                 JCExpression mapVarInit = make
 609                     .NewArray(make.Type(syms.intType), List.of(size), null)
 610                     .setType(new ArrayType(syms.intType, syms.arrayClass));
 611 
 612                 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 613                 ListBuffer<JCStatement> stmts = new ListBuffer<>();
 614                 Symbol ordinalMethod = lookupMethod(pos,
 615                                                     names.ordinal,
 616                                                     forEnum.type,
 617                                                     List.nil());
 618                 List<JCCatch> catcher = List.<JCCatch>nil()
 619                     .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 620                                                                   syms.noSuchFieldErrorType,
 621                                                                   syms.noSymbol),
 622                                                     null),
 623                                         make.Block(0, List.nil())));
 624                 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 625                     VarSymbol enumerator = e.getKey();
 626                     Integer mappedValue = e.getValue();
 627                     JCExpression assign = make
 628                         .Assign(make.Indexed(mapVar,
 629                                              make.App(make.Select(make.QualIdent(enumerator),
 630                                                                   ordinalMethod))),
 631                                 make.Literal(mappedValue))
 632                         .setType(syms.intType);
 633                     JCStatement exec = make.Exec(assign);
 634                     JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 635                     stmts.append(_try);
 636                 }
 637 
 638                 owner.defs = owner.defs
 639                     .prepend(make.Block(STATIC, stmts.toList()))
 640                     .prepend(make.VarDef(mapVar, mapVarInit));
 641             } finally {
 642                 attrEnv.info.allowProtectedAccess = prevAllowProtectedAccess;
 643             }
 644         }
 645     }
 646 
 647 
 648 /**************************************************************************
 649  * Tree building blocks
 650  *************************************************************************/
 651 
 652     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 653      *  pos as make_pos, for use in diagnostics.
 654      **/
 655     TreeMaker make_at(DiagnosticPosition pos) {
 656         make_pos = pos;
 657         return make.at(pos);
 658     }
 659 
 660     /** Make an attributed tree representing a literal. This will be an
 661      *  Ident node in the case of boolean literals, a Literal node in all
 662      *  other cases.
 663      *  @param type       The literal's type.
 664      *  @param value      The literal's value.
 665      */
 666     JCExpression makeLit(Type type, Object value) {
 667         return make.Literal(type.getTag(), value).setType(type.constType(value));
 668     }
 669 
 670     /** Make an attributed tree representing null.
 671      */
 672     JCExpression makeNull() {
 673         return makeLit(syms.botType, null);
 674     }
 675 
 676     /** Make an attributed class instance creation expression.
 677      *  @param ctype    The class type.
 678      *  @param args     The constructor arguments.
 679      */
 680     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 681         JCNewClass tree = make.NewClass(null,
 682             null, make.QualIdent(ctype.tsym), args, null);
 683         tree.constructor = rs.resolveConstructor(
 684             make_pos, attrEnv, ctype, TreeInfo.types(args), List.nil());
 685         tree.type = ctype;
 686         return tree;
 687     }
 688 
 689     /** Make an attributed unary expression.
 690      *  @param optag    The operators tree tag.
 691      *  @param arg      The operator's argument.
 692      */
 693     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
 694         JCUnary tree = make.Unary(optag, arg);
 695         tree.operator = operators.resolveUnary(tree, optag, arg.type);
 696         tree.type = tree.operator.type.getReturnType();
 697         return tree;
 698     }
 699 
 700     /** Make an attributed binary expression.
 701      *  @param optag    The operators tree tag.
 702      *  @param lhs      The operator's left argument.
 703      *  @param rhs      The operator's right argument.
 704      */
 705     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
 706         JCBinary tree = make.Binary(optag, lhs, rhs);
 707         tree.operator = operators.resolveBinary(tree, optag, lhs.type, rhs.type);
 708         tree.type = tree.operator.type.getReturnType();
 709         return tree;
 710     }
 711 
 712     /** Make an attributed assignop expression.
 713      *  @param optag    The operators tree tag.
 714      *  @param lhs      The operator's left argument.
 715      *  @param rhs      The operator's right argument.
 716      */
 717     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
 718         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 719         tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), lhs.type, rhs.type);
 720         tree.type = lhs.type;
 721         return tree;
 722     }
 723 
 724     /** Convert tree into string object, unless it has already a
 725      *  reference type..
 726      */
 727     JCExpression makeString(JCExpression tree) {
 728         if (!tree.type.isPrimitiveOrVoid()) {
 729             return tree;
 730         } else {
 731             Symbol valueOfSym = lookupMethod(tree.pos(),
 732                                              names.valueOf,
 733                                              syms.stringType,
 734                                              List.of(tree.type));
 735             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 736         }
 737     }
 738 
 739     /** Create an empty anonymous class definition and enter and complete
 740      *  its symbol. Return the class definition's symbol.
 741      *  and create
 742      *  @param flags    The class symbol's flags
 743      *  @param owner    The class symbol's owner
 744      */
 745     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
 746         return makeEmptyClass(flags, owner, null, true);
 747     }
 748 
 749     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
 750             boolean addToDefs) {
 751         // Create class symbol.
 752         ClassSymbol c = syms.defineClass(names.empty, owner);
 753         if (flatname != null) {
 754             c.flatname = flatname;
 755         } else {
 756             c.flatname = chk.localClassName(c);
 757         }
 758         c.sourcefile = owner.sourcefile;
 759         c.completer = Completer.NULL_COMPLETER;
 760         c.members_field = WriteableScope.create(c);
 761         c.flags_field = flags;
 762         ClassType ctype = (ClassType) c.type;
 763         ctype.supertype_field = syms.objectType;
 764         ctype.interfaces_field = List.nil();
 765 
 766         JCClassDecl odef = classDef(owner);
 767 
 768         // Enter class symbol in owner scope and compiled table.
 769         enterSynthetic(odef.pos(), c, owner.members());
 770         chk.putCompiled(c);
 771 
 772         // Create class definition tree.
 773         JCClassDecl cdef = make.ClassDef(
 774             make.Modifiers(flags), names.empty,
 775             List.nil(),
 776             null, List.nil(), List.nil());
 777         cdef.sym = c;
 778         cdef.type = c.type;
 779 
 780         // Append class definition tree to owner's definitions.
 781         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
 782         return cdef;
 783     }
 784 
 785 /**************************************************************************
 786  * Symbol manipulation utilities
 787  *************************************************************************/
 788 
 789     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 790      *  @param pos           Position for error reporting.
 791      *  @param sym           The symbol.
 792      *  @param s             The scope.
 793      */
 794     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, WriteableScope s) {
 795         s.enter(sym);
 796     }
 797 
 798     /** Create a fresh synthetic name within a given scope - the unique name is
 799      *  obtained by appending '$' chars at the end of the name until no match
 800      *  is found.
 801      *
 802      * @param name base name
 803      * @param s scope in which the name has to be unique
 804      * @return fresh synthetic name
 805      */
 806     private Name makeSyntheticName(Name name, Scope s) {
 807         do {
 808             name = name.append(
 809                     target.syntheticNameChar(),
 810                     names.empty);
 811         } while (lookupSynthetic(name, s) != null);
 812         return name;
 813     }
 814 
 815     /** Check whether synthetic symbols generated during lowering conflict
 816      *  with user-defined symbols.
 817      *
 818      *  @param translatedTrees lowered class trees
 819      */
 820     void checkConflicts(List<JCTree> translatedTrees) {
 821         for (JCTree t : translatedTrees) {
 822             t.accept(conflictsChecker);
 823         }
 824     }
 825 
 826     JCTree.Visitor conflictsChecker = new TreeScanner() {
 827 
 828         TypeSymbol currentClass;
 829 
 830         @Override
 831         public void visitMethodDef(JCMethodDecl that) {
 832             checkConflicts(that.pos(), that.sym, currentClass);
 833             super.visitMethodDef(that);
 834         }
 835 
 836         @Override
 837         public void visitVarDef(JCVariableDecl that) {
 838             if (that.sym.owner.kind == TYP) {
 839                 checkConflicts(that.pos(), that.sym, currentClass);
 840             }
 841             super.visitVarDef(that);
 842         }
 843 
 844         @Override
 845         public void visitClassDef(JCClassDecl that) {
 846             TypeSymbol prevCurrentClass = currentClass;
 847             currentClass = that.sym;
 848             try {
 849                 super.visitClassDef(that);
 850             }
 851             finally {
 852                 currentClass = prevCurrentClass;
 853             }
 854         }
 855 
 856         void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
 857             for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
 858                 for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
 859                     // VM allows methods and variables with differing types
 860                     if (sym.kind == sym2.kind &&
 861                         types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
 862                         sym != sym2 &&
 863                         (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
 864                         (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
 865                         syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
 866                         return;
 867                     }
 868                 }
 869             }
 870         }
 871 
 872         /** Report a conflict between a user symbol and a synthetic symbol.
 873          */
 874         private void syntheticError(DiagnosticPosition pos, Symbol sym) {
 875             if (!sym.type.isErroneous()) {
 876                 log.error(pos, Errors.CannotGenerateClass(sym.location(), Fragments.SyntheticNameConflict(sym, sym.location())));
 877             }
 878         }
 879     };
 880 
 881     /** Look up a synthetic name in a given scope.
 882      *  @param s            The scope.
 883      *  @param name         The name.
 884      */
 885     private Symbol lookupSynthetic(Name name, Scope s) {
 886         Symbol sym = s.findFirst(name);
 887         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 888     }
 889 
 890     /** Look up a method in a given scope.
 891      */
 892     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 893         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.nil());
 894     }
 895 
 896     /** Anon inner classes are used as access constructor tags.
 897      * accessConstructorTag will use an existing anon class if one is available,
 898      * and synthesize a class (with makeEmptyClass) if one is not available.
 899      * However, there is a small possibility that an existing class will not
 900      * be generated as expected if it is inside a conditional with a constant
 901      * expression. If that is found to be the case, create an empty class tree here.
 902      */
 903     private void checkAccessConstructorTags() {
 904         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 905             ClassSymbol c = l.head;
 906             if (isTranslatedClassAvailable(c))
 907                 continue;
 908             // Create class definition tree.
 909             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
 910                     c.outermostClass(), c.flatname, false);
 911             swapAccessConstructorTag(c, cdec.sym);
 912             translated.append(cdec);
 913         }
 914     }
 915     // where
 916     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 917         for (JCTree tree: translated) {
 918             if (tree.hasTag(CLASSDEF)
 919                     && ((JCClassDecl) tree).sym == c) {
 920                 return true;
 921             }
 922         }
 923         return false;
 924     }
 925 
 926     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
 927         for (MethodSymbol methodSymbol : accessConstrs.values()) {
 928             Assert.check(methodSymbol.type.hasTag(METHOD));
 929             MethodType oldMethodType =
 930                     (MethodType)methodSymbol.type;
 931             if (oldMethodType.argtypes.head.tsym == oldCTag)
 932                 methodSymbol.type =
 933                     types.createMethodTypeWithParameters(oldMethodType,
 934                         oldMethodType.getParameterTypes().tail
 935                             .prepend(newCTag.erasure(types)));
 936         }
 937     }
 938 
 939 /**************************************************************************
 940  * Access methods
 941  *************************************************************************/
 942 
 943     /** A mapping from symbols to their access numbers.
 944      */
 945     private Map<Symbol,Integer> accessNums;
 946 
 947     /** A mapping from symbols to an array of access symbols, indexed by
 948      *  access code.
 949      */
 950     private Map<Symbol,MethodSymbol[]> accessSyms;
 951 
 952     /** A mapping from (constructor) symbols to access constructor symbols.
 953      */
 954     private Map<Symbol,MethodSymbol> accessConstrs;
 955 
 956     /** A list of all class symbols used for access constructor tags.
 957      */
 958     private List<ClassSymbol> accessConstrTags;
 959 
 960     /** A queue for all accessed symbols.
 961      */
 962     private ListBuffer<Symbol> accessed;
 963 
 964     /** return access code for identifier,
 965      *  @param tree     The tree representing the identifier use.
 966      *  @param enclOp   The closest enclosing operation node of tree,
 967      *                  null if tree is not a subtree of an operation.
 968      */
 969     private static int accessCode(JCTree tree, JCTree enclOp) {
 970         if (enclOp == null)
 971             return AccessCode.DEREF.code;
 972         else if (enclOp.hasTag(ASSIGN) &&
 973                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 974             return AccessCode.ASSIGN.code;
 975         else if ((enclOp.getTag().isIncOrDecUnaryOp() || enclOp.getTag().isAssignop()) &&
 976                 tree == TreeInfo.skipParens(((JCOperatorExpression) enclOp).getOperand(LEFT)))
 977             return (((JCOperatorExpression) enclOp).operator).getAccessCode(enclOp.getTag());
 978         else
 979             return AccessCode.DEREF.code;
 980     }
 981 
 982     /** Return binary operator that corresponds to given access code.
 983      */
 984     private OperatorSymbol binaryAccessOperator(int acode, Tag tag) {
 985         return operators.lookupBinaryOp(op -> op.getAccessCode(tag) == acode);
 986     }
 987 
 988     /** Return tree tag for assignment operation corresponding
 989      *  to given binary operator.
 990      */
 991     private static JCTree.Tag treeTag(OperatorSymbol operator) {
 992         switch (operator.opcode) {
 993         case ByteCodes.ior: case ByteCodes.lor:
 994             return BITOR_ASG;
 995         case ByteCodes.ixor: case ByteCodes.lxor:
 996             return BITXOR_ASG;
 997         case ByteCodes.iand: case ByteCodes.land:
 998             return BITAND_ASG;
 999         case ByteCodes.ishl: case ByteCodes.lshl:
1000         case ByteCodes.ishll: case ByteCodes.lshll:
1001             return SL_ASG;
1002         case ByteCodes.ishr: case ByteCodes.lshr:
1003         case ByteCodes.ishrl: case ByteCodes.lshrl:
1004             return SR_ASG;
1005         case ByteCodes.iushr: case ByteCodes.lushr:
1006         case ByteCodes.iushrl: case ByteCodes.lushrl:
1007             return USR_ASG;
1008         case ByteCodes.iadd: case ByteCodes.ladd:
1009         case ByteCodes.fadd: case ByteCodes.dadd:
1010         case ByteCodes.string_add:
1011             return PLUS_ASG;
1012         case ByteCodes.isub: case ByteCodes.lsub:
1013         case ByteCodes.fsub: case ByteCodes.dsub:
1014             return MINUS_ASG;
1015         case ByteCodes.imul: case ByteCodes.lmul:
1016         case ByteCodes.fmul: case ByteCodes.dmul:
1017             return MUL_ASG;
1018         case ByteCodes.idiv: case ByteCodes.ldiv:
1019         case ByteCodes.fdiv: case ByteCodes.ddiv:
1020             return DIV_ASG;
1021         case ByteCodes.imod: case ByteCodes.lmod:
1022         case ByteCodes.fmod: case ByteCodes.dmod:
1023             return MOD_ASG;
1024         default:
1025             throw new AssertionError();
1026         }
1027     }
1028 
1029     /** The name of the access method with number `anum' and access code `acode'.
1030      */
1031     Name accessName(int anum, int acode) {
1032         return names.fromString(
1033             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
1034     }
1035 
1036     /** Return access symbol for a private or protected symbol from an inner class.
1037      *  @param sym        The accessed private symbol.
1038      *  @param tree       The accessing tree.
1039      *  @param enclOp     The closest enclosing operation node of tree,
1040      *                    null if tree is not a subtree of an operation.
1041      *  @param protAccess Is access to a protected symbol in another
1042      *                    package?
1043      *  @param refSuper   Is access via a (qualified) C.super?
1044      */
1045     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
1046                               boolean protAccess, boolean refSuper) {
1047         ClassSymbol accOwner = refSuper && protAccess
1048             // For access via qualified super (T.super.x), place the
1049             // access symbol on T.
1050             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
1051             // Otherwise pretend that the owner of an accessed
1052             // protected symbol is the enclosing class of the current
1053             // class which is a subclass of the symbol's owner.
1054             : accessClass(sym, protAccess, tree);
1055 
1056         Symbol vsym = sym;
1057         if (sym.owner != accOwner) {
1058             vsym = sym.clone(accOwner);
1059             actualSymbols.put(vsym, sym);
1060         }
1061 
1062         Integer anum              // The access number of the access method.
1063             = accessNums.get(vsym);
1064         if (anum == null) {
1065             anum = accessed.length();
1066             accessNums.put(vsym, anum);
1067             accessSyms.put(vsym, new MethodSymbol[AccessCode.numberOfAccessCodes]);
1068             accessed.append(vsym);
1069             // System.out.println("accessing " + vsym + " in " + vsym.location());
1070         }
1071 
1072         int acode;                // The access code of the access method.
1073         List<Type> argtypes;      // The argument types of the access method.
1074         Type restype;             // The result type of the access method.
1075         List<Type> thrown;        // The thrown exceptions of the access method.
1076         switch (vsym.kind) {
1077         case VAR:
1078             acode = accessCode(tree, enclOp);
1079             if (acode >= AccessCode.FIRSTASGOP.code) {
1080                 OperatorSymbol operator = binaryAccessOperator(acode, enclOp.getTag());
1081                 if (operator.opcode == string_add)
1082                     argtypes = List.of(syms.objectType);
1083                 else
1084                     argtypes = operator.type.getParameterTypes().tail;
1085             } else if (acode == AccessCode.ASSIGN.code)
1086                 argtypes = List.of(vsym.erasure(types));
1087             else
1088                 argtypes = List.nil();
1089             restype = vsym.erasure(types);
1090             thrown = List.nil();
1091             break;
1092         case MTH:
1093             acode = AccessCode.DEREF.code;
1094             argtypes = vsym.erasure(types).getParameterTypes();
1095             restype = vsym.erasure(types).getReturnType();
1096             thrown = vsym.type.getThrownTypes();
1097             break;
1098         default:
1099             throw new AssertionError();
1100         }
1101 
1102         // For references via qualified super, increment acode by one,
1103         // making it odd.
1104         if (protAccess && refSuper) acode++;
1105 
1106         // Instance access methods get instance as first parameter.
1107         // For protected symbols this needs to be the instance as a member
1108         // of the type containing the accessed symbol, not the class
1109         // containing the access method.
1110         if ((vsym.flags() & STATIC) == 0) {
1111             argtypes = argtypes.prepend(vsym.owner.erasure(types));
1112         }
1113         MethodSymbol[] accessors = accessSyms.get(vsym);
1114         MethodSymbol accessor = accessors[acode];
1115         if (accessor == null) {
1116             accessor = new MethodSymbol(
1117                 STATIC | SYNTHETIC | (accOwner.isInterface() ? PUBLIC : 0),
1118                 accessName(anum.intValue(), acode),
1119                 new MethodType(argtypes, restype, thrown, syms.methodClass),
1120                 accOwner);
1121             enterSynthetic(tree.pos(), accessor, accOwner.members());
1122             accessors[acode] = accessor;
1123         }
1124         return accessor;
1125     }
1126 
1127     /** The qualifier to be used for accessing a symbol in an outer class.
1128      *  This is either C.sym or C.this.sym, depending on whether or not
1129      *  sym is static.
1130      *  @param sym   The accessed symbol.
1131      */
1132     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
1133         return (sym.flags() & STATIC) != 0
1134             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
1135             : makeOwnerThis(pos, sym, true);
1136     }
1137 
1138     /** Do we need an access method to reference private symbol?
1139      */
1140     boolean needsPrivateAccess(Symbol sym) {
1141         if (target.hasNestmateAccess()) {
1142             return false;
1143         }
1144         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
1145             return false;
1146         } else if (sym.name == names.init && sym.owner.isDirectlyOrIndirectlyLocal()) {
1147             // private constructor in local class: relax protection
1148             sym.flags_field &= ~PRIVATE;
1149             return false;
1150         } else {
1151             return true;
1152         }
1153     }
1154 
1155     /** Do we need an access method to reference symbol in other package?
1156      */
1157     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
1158         if (disableProtectedAccessors) return false;
1159         if ((sym.flags() & PROTECTED) == 0 ||
1160             sym.owner.owner == currentClass.owner || // fast special case
1161             sym.packge() == currentClass.packge())
1162             return false;
1163         if (!currentClass.isSubClass(sym.owner, types))
1164             return true;
1165         if ((sym.flags() & STATIC) != 0 ||
1166             !tree.hasTag(SELECT) ||
1167             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1168             return false;
1169         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1170     }
1171 
1172     /** The class in which an access method for given symbol goes.
1173      *  @param sym        The access symbol
1174      *  @param protAccess Is access to a protected symbol in another
1175      *                    package?
1176      */
1177     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1178         if (protAccess) {
1179             Symbol qualifier = null;
1180             ClassSymbol c = currentClass;
1181             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
1182                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1183                 while (!qualifier.isSubClass(c, types)) {
1184                     c = c.owner.enclClass();
1185                 }
1186                 return c;
1187             } else {
1188                 while (!c.isSubClass(sym.owner, types)) {
1189                     c = c.owner.enclClass();
1190                 }
1191             }
1192             return c;
1193         } else {
1194             // the symbol is private
1195             return sym.owner.enclClass();
1196         }
1197     }
1198 
1199     private boolean noClassDefIn(JCTree tree) {
1200         var scanner = new TreeScanner() {
1201             boolean noClassDef = true;
1202             @Override
1203             public void visitClassDef(JCClassDecl tree) {
1204                 noClassDef = false;
1205             }
1206         };
1207         scanner.scan(tree);
1208         return scanner.noClassDef;
1209     }
1210 
1211     private void addPrunedInfo(JCTree tree) {
1212         List<JCTree> infoList = prunedTree.get(currentClass);
1213         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
1214         prunedTree.put(currentClass, infoList);
1215     }
1216 
1217     /** Ensure that identifier is accessible, return tree accessing the identifier.
1218      *  @param sym      The accessed symbol.
1219      *  @param tree     The tree referring to the symbol.
1220      *  @param enclOp   The closest enclosing operation node of tree,
1221      *                  null if tree is not a subtree of an operation.
1222      *  @param refSuper Is access via a (qualified) C.super?
1223      */
1224     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1225         // Access a free variable via its proxy, or its proxy's proxy
1226         while (sym.kind == VAR && sym.owner.kind == MTH &&
1227             sym.owner.enclClass() != currentClass) {
1228             // A constant is replaced by its constant value.
1229             Object cv = ((VarSymbol)sym).getConstValue();
1230             if (cv != null) {
1231                 make.at(tree.pos);
1232                 return makeLit(sym.type, cv);
1233             }
1234             if (lambdaTranslationMap != null && lambdaTranslationMap.get(sym) != null) {
1235                 return make.at(tree.pos).Ident(lambdaTranslationMap.get(sym));
1236             } else {
1237                 // Otherwise replace the variable by its proxy.
1238                 sym = proxies.get(sym);
1239                 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
1240                 tree = make.at(tree.pos).Ident(sym);
1241             }
1242         }
1243         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
1244         switch (sym.kind) {
1245         case TYP:
1246             if (sym.owner.kind != PCK) {
1247                 // Convert type idents to
1248                 // <flat name> or <package name> . <flat name>
1249                 Name flatname = Convert.shortName(sym.flatName());
1250                 while (base != null &&
1251                        TreeInfo.symbol(base) != null &&
1252                        TreeInfo.symbol(base).kind != PCK) {
1253                     base = (base.hasTag(SELECT))
1254                         ? ((JCFieldAccess) base).selected
1255                         : null;
1256                 }
1257                 if (tree.hasTag(IDENT)) {
1258                     ((JCIdent) tree).name = flatname;
1259                 } else if (base == null) {
1260                     tree = make.at(tree.pos).Ident(sym);
1261                     ((JCIdent) tree).name = flatname;
1262                 } else {
1263                     ((JCFieldAccess) tree).selected = base;
1264                     ((JCFieldAccess) tree).name = flatname;
1265                 }
1266             }
1267             break;
1268         case MTH: case VAR:
1269             if (sym.owner.kind == TYP) {
1270 
1271                 // Access methods are required for
1272                 //  - private members,
1273                 //  - protected members in a superclass of an
1274                 //    enclosing class contained in another package.
1275                 //  - all non-private members accessed via a qualified super.
1276                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1277                     || needsProtectedAccess(sym, tree);
1278                 boolean accReq = protAccess || needsPrivateAccess(sym);
1279 
1280                 // A base has to be supplied for
1281                 //  - simple identifiers accessing variables in outer classes.
1282                 boolean baseReq =
1283                     base == null &&
1284                     sym.owner != syms.predefClass &&
1285                     !sym.isMemberOf(currentClass, types);
1286 
1287                 if (accReq || baseReq) {
1288                     make.at(tree.pos);
1289 
1290                     // Constants are replaced by their constant value.
1291                     if (sym.kind == VAR) {
1292                         Object cv = ((VarSymbol)sym).getConstValue();
1293                         if (cv != null) {
1294                             addPrunedInfo(tree);
1295                             return makeLit(sym.type, cv);
1296                         }
1297                     }
1298 
1299                     // Private variables and methods are replaced by calls
1300                     // to their access methods.
1301                     if (accReq) {
1302                         List<JCExpression> args = List.nil();
1303                         if ((sym.flags() & STATIC) == 0) {
1304                             // Instance access methods get instance
1305                             // as first parameter.
1306                             if (base == null)
1307                                 base = makeOwnerThis(tree.pos(), sym, true);
1308                             args = args.prepend(base);
1309                             base = null;   // so we don't duplicate code
1310                         }
1311                         Symbol access = accessSymbol(sym, tree,
1312                                                      enclOp, protAccess,
1313                                                      refSuper);
1314                         JCExpression receiver = make.Select(
1315                             base != null ? base : make.QualIdent(access.owner),
1316                             access);
1317                         return make.App(receiver, args);
1318 
1319                     // Other accesses to members of outer classes get a
1320                     // qualifier.
1321                     } else if (baseReq) {
1322                         return make.at(tree.pos).Select(
1323                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1324                     }
1325                 }
1326             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
1327                 //sym is a local variable - check the lambda translation map to
1328                 //see if sym has been translated to something else in the current
1329                 //scope (by LambdaToMethod)
1330                 Symbol translatedSym = lambdaTranslationMap.get(sym.baseSymbol());
1331                 if (translatedSym != null) {
1332                     tree = make.at(tree.pos).Ident(translatedSym);
1333                 }
1334             }
1335         }
1336         return tree;
1337     }
1338 
1339     /** Ensure that identifier is accessible, return tree accessing the identifier.
1340      *  @param tree     The identifier tree.
1341      */
1342     JCExpression access(JCExpression tree) {
1343         Symbol sym = TreeInfo.symbol(tree);
1344         return sym == null ? tree : access(sym, tree, null, false);
1345     }
1346 
1347     /** Return access constructor for a private constructor,
1348      *  or the constructor itself, if no access constructor is needed.
1349      *  @param pos       The position to report diagnostics, if any.
1350      *  @param constr    The private constructor.
1351      */
1352     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1353         if (needsPrivateAccess(constr)) {
1354             ClassSymbol accOwner = constr.owner.enclClass();
1355             MethodSymbol aconstr = accessConstrs.get(constr);
1356             if (aconstr == null) {
1357                 List<Type> argtypes = constr.type.getParameterTypes();
1358                 if ((accOwner.flags_field & ENUM) != 0)
1359                     argtypes = argtypes
1360                         .prepend(syms.intType)
1361                         .prepend(syms.stringType);
1362                 aconstr = new MethodSymbol(
1363                     SYNTHETIC,
1364                     names.init,
1365                     new MethodType(
1366                         argtypes.append(
1367                             accessConstructorTag().erasure(types)),
1368                         constr.type.getReturnType(),
1369                         constr.type.getThrownTypes(),
1370                         syms.methodClass),
1371                     accOwner);
1372                 enterSynthetic(pos, aconstr, accOwner.members());
1373                 accessConstrs.put(constr, aconstr);
1374                 accessed.append(constr);
1375             }
1376             return aconstr;
1377         } else {
1378             return constr;
1379         }
1380     }
1381 
1382     /** Return an anonymous class nested in this toplevel class.
1383      */
1384     ClassSymbol accessConstructorTag() {
1385         ClassSymbol topClass = currentClass.outermostClass();
1386         ModuleSymbol topModle = topClass.packge().modle;
1387         for (int i = 1; ; i++) {
1388             Name flatname = names.fromString("" + topClass.getQualifiedName() +
1389                                             target.syntheticNameChar() +
1390                                             i);
1391             ClassSymbol ctag = chk.getCompiled(topModle, flatname);
1392             if (ctag == null)
1393                 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
1394             else if (!ctag.isAnonymous())
1395                 continue;
1396             // keep a record of all tags, to verify that all are generated as required
1397             accessConstrTags = accessConstrTags.prepend(ctag);
1398             return ctag;
1399         }
1400     }
1401 
1402     /** Add all required access methods for a private symbol to enclosing class.
1403      *  @param sym       The symbol.
1404      */
1405     void makeAccessible(Symbol sym) {
1406         JCClassDecl cdef = classDef(sym.owner.enclClass());
1407         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
1408         if (sym.name == names.init) {
1409             cdef.defs = cdef.defs.prepend(
1410                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1411         } else {
1412             MethodSymbol[] accessors = accessSyms.get(sym);
1413             for (int i = 0; i < AccessCode.numberOfAccessCodes; i++) {
1414                 if (accessors[i] != null)
1415                     cdef.defs = cdef.defs.prepend(
1416                         accessDef(cdef.pos, sym, accessors[i], i));
1417             }
1418         }
1419     }
1420 
1421     /** Construct definition of an access method.
1422      *  @param pos        The source code position of the definition.
1423      *  @param vsym       The private or protected symbol.
1424      *  @param accessor   The access method for the symbol.
1425      *  @param acode      The access code.
1426      */
1427     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1428 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1429         currentClass = vsym.owner.enclClass();
1430         make.at(pos);
1431         JCMethodDecl md = make.MethodDef(accessor, null);
1432 
1433         // Find actual symbol
1434         Symbol sym = actualSymbols.get(vsym);
1435         if (sym == null) sym = vsym;
1436 
1437         JCExpression ref;           // The tree referencing the private symbol.
1438         List<JCExpression> args;    // Any additional arguments to be passed along.
1439         if ((sym.flags() & STATIC) != 0) {
1440             ref = make.Ident(sym);
1441             args = make.Idents(md.params);
1442         } else {
1443             JCExpression site = make.Ident(md.params.head);
1444             if (acode % 2 != 0) {
1445                 //odd access codes represent qualified super accesses - need to
1446                 //emit reference to the direct superclass, even if the referred
1447                 //member is from an indirect superclass (JLS 13.1)
1448                 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
1449             }
1450             ref = make.Select(site, sym);
1451             args = make.Idents(md.params.tail);
1452         }
1453         JCStatement stat;          // The statement accessing the private symbol.
1454         if (sym.kind == VAR) {
1455             // Normalize out all odd access codes by taking floor modulo 2:
1456             int acode1 = acode - (acode & 1);
1457 
1458             JCExpression expr;      // The access method's return value.
1459             AccessCode aCode = AccessCode.getFromCode(acode1);
1460             switch (aCode) {
1461             case DEREF:
1462                 expr = ref;
1463                 break;
1464             case ASSIGN:
1465                 expr = make.Assign(ref, args.head);
1466                 break;
1467             case PREINC: case POSTINC: case PREDEC: case POSTDEC:
1468                 expr = makeUnary(aCode.tag, ref);
1469                 break;
1470             default:
1471                 expr = make.Assignop(
1472                     treeTag(binaryAccessOperator(acode1, JCTree.Tag.NO_TAG)), ref, args.head);
1473                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1, JCTree.Tag.NO_TAG);
1474             }
1475             stat = make.Return(expr.setType(sym.type));
1476         } else {
1477             stat = make.Call(make.App(ref, args));
1478         }
1479         md.body = make.Block(0, List.of(stat));
1480 
1481         // Make sure all parameters, result types and thrown exceptions
1482         // are accessible.
1483         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1484             l.head.vartype = access(l.head.vartype);
1485         md.restype = access(md.restype);
1486         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1487             l.head = access(l.head);
1488 
1489         return md;
1490     }
1491 
1492     /** Construct definition of an access constructor.
1493      *  @param pos        The source code position of the definition.
1494      *  @param constr     The private constructor.
1495      *  @param accessor   The access method for the constructor.
1496      */
1497     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1498         make.at(pos);
1499         JCMethodDecl md = make.MethodDef(accessor,
1500                                       accessor.externalType(types),
1501                                       null);
1502         JCIdent callee = make.Ident(names._this);
1503         callee.sym = constr;
1504         callee.type = constr.type;
1505         md.body =
1506             make.Block(0, List.of(
1507                 make.Call(
1508                     make.App(
1509                         callee,
1510                         make.Idents(md.params.reverse().tail.reverse())))));
1511         return md;
1512     }
1513 
1514 /**************************************************************************
1515  * Free variables proxies and this$n
1516  *************************************************************************/
1517 
1518     /** A map which allows to retrieve the translated proxy variable for any given symbol of an
1519      *  enclosing scope that is accessed (the accessed symbol could be the synthetic 'this$n' symbol).
1520      *  Inside a constructor, the map temporarily overrides entries corresponding to proxies and any
1521      *  'this$n' symbols, where they represent the constructor parameters.
1522      */
1523     Map<Symbol, Symbol> proxies;
1524 
1525     /** A scope containing all unnamed resource variables/saved
1526      *  exception variables for translated TWR blocks
1527      */
1528     WriteableScope twrVars;
1529 
1530     /** A stack containing the this$n field of the currently translated
1531      *  classes (if needed) in innermost first order.
1532      *  Inside a constructor, proxies and any this$n symbol are duplicated
1533      *  in an additional innermost scope, where they represent the constructor
1534      *  parameters.
1535      */
1536     List<VarSymbol> outerThisStack;
1537 
1538     /** The name of a free variable proxy.
1539      */
1540     Name proxyName(Name name, int index) {
1541         Name proxyName = names.fromString("val" + target.syntheticNameChar() + name);
1542         if (index > 0) {
1543             proxyName = proxyName.append(names.fromString("" + target.syntheticNameChar() + index));
1544         }
1545         return proxyName;
1546     }
1547 
1548     /** Proxy definitions for all free variables in given list, in reverse order.
1549      *  @param pos        The source code position of the definition.
1550      *  @param freevars   The free variables.
1551      *  @param owner      The class in which the definitions go.
1552      */
1553     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1554         return freevarDefs(pos, freevars, owner, 0);
1555     }
1556 
1557     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
1558             long additionalFlags) {
1559         long flags = FINAL | SYNTHETIC | additionalFlags;
1560         List<JCVariableDecl> defs = List.nil();
1561         Set<Name> proxyNames = new HashSet<>();
1562         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1563             VarSymbol v = l.head;
1564             int index = 0;
1565             Name proxyName;
1566             do {
1567                 proxyName = proxyName(v.name, index++);
1568             } while (!proxyNames.add(proxyName));
1569             VarSymbol proxy = new VarSymbol(
1570                 flags, proxyName, v.erasure(types), owner);
1571             proxies.put(v, proxy);
1572             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1573             vd.vartype = access(vd.vartype);
1574             defs = defs.prepend(vd);
1575         }
1576         return defs;
1577     }
1578 
1579     /** The name of a this$n field
1580      *  @param type   The class referenced by the this$n field
1581      */
1582     Name outerThisName(Type type, Symbol owner) {
1583         Type t = type.getEnclosingType();
1584         int nestingLevel = 0;
1585         while (t.hasTag(CLASS)) {
1586             t = t.getEnclosingType();
1587             nestingLevel++;
1588         }
1589         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1590         while (owner.kind == TYP && ((ClassSymbol)owner).members().findFirst(result) != null)
1591             result = names.fromString(result.toString() + target.syntheticNameChar());
1592         return result;
1593     }
1594 
1595     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
1596         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1597         // Set NOOUTERTHIS for all synthetic outer instance variables, and unset
1598         // it when the variable is accessed. If the variable is never accessed,
1599         // we skip creating an outer instance field and saving the constructor
1600         // parameter to it.
1601         VarSymbol outerThis =
1602             new VarSymbol(flags | NOOUTERTHIS, outerThisName(target, owner), target, owner);
1603         outerThisStack = outerThisStack.prepend(outerThis);
1604         return outerThis;
1605     }
1606 
1607     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
1608         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
1609         vd.vartype = access(vd.vartype);
1610         return vd;
1611     }
1612 
1613     /** Definition for this$n field.
1614      *  @param pos        The source code position of the definition.
1615      *  @param owner      The method in which the definition goes.
1616      */
1617     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
1618         ClassSymbol c = owner.enclClass();
1619         boolean isMandated =
1620             // Anonymous constructors
1621             (owner.isConstructor() && owner.isAnonymous()) ||
1622             // Constructors of non-private inner member classes
1623             (owner.isConstructor() && c.isInner() &&
1624              !c.isPrivate() && !c.isStatic());
1625         long flags =
1626             FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
1627         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
1628         owner.extraParams = owner.extraParams.prepend(outerThis);
1629         return makeOuterThisVarDecl(pos, outerThis);
1630     }
1631 
1632     /** Definition for this$n field.
1633      *  @param pos        The source code position of the definition.
1634      *  @param owner      The class in which the definition goes.
1635      */
1636     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
1637         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
1638         return makeOuterThisVarDecl(pos, outerThis);
1639     }
1640 
1641     /** Return a list of trees that load the free variables in given list,
1642      *  in reverse order.
1643      *  @param pos          The source code position to be used for the trees.
1644      *  @param freevars     The list of free variables.
1645      */
1646     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1647         List<JCExpression> args = List.nil();
1648         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1649             args = args.prepend(loadFreevar(pos, l.head));
1650         return args;
1651     }
1652 //where
1653         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1654             return access(v, make.at(pos).Ident(v), null, false);
1655         }
1656 
1657     /** Construct a tree simulating the expression {@code C.this}.
1658      *  @param pos           The source code position to be used for the tree.
1659      *  @param c             The qualifier class.
1660      */
1661     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1662         if (currentClass == c) {
1663             // in this case, `this' works fine
1664             return make.at(pos).This(c.erasure(types));
1665         } else {
1666             // need to go via this$n
1667             return makeOuterThis(pos, c);
1668         }
1669     }
1670 
1671     /**
1672      * Optionally replace a try statement with the desugaring of a
1673      * try-with-resources statement.  The canonical desugaring of
1674      *
1675      * try ResourceSpecification
1676      *   Block
1677      *
1678      * is
1679      *
1680      * {
1681      *   final VariableModifiers_minus_final R #resource = Expression;
1682      *
1683      *   try ResourceSpecificationtail
1684      *     Block
1685      *   } body-only-finally {
1686      *     if (#resource != null) //nullcheck skipped if Expression is provably non-null
1687      *         #resource.close();
1688      *   } catch (Throwable #primaryException) {
1689      *       if (#resource != null) //nullcheck skipped if Expression is provably non-null
1690      *           try {
1691      *               #resource.close();
1692      *           } catch (Throwable #suppressedException) {
1693      *              #primaryException.addSuppressed(#suppressedException);
1694      *           }
1695      *       throw #primaryException;
1696      *   }
1697      * }
1698      *
1699      * @param tree  The try statement to inspect.
1700      * @return a desugared try-with-resources tree, or the original
1701      * try block if there are no resources to manage.
1702      */
1703     JCTree makeTwrTry(JCTry tree) {
1704         make_at(tree.pos());
1705         twrVars = twrVars.dup();
1706         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
1707         if (tree.catchers.isEmpty() && tree.finalizer == null)
1708             result = translate(twrBlock);
1709         else
1710             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
1711         twrVars = twrVars.leave();
1712         return result;
1713     }
1714 
1715     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
1716         if (resources.isEmpty())
1717             return block;
1718 
1719         // Add resource declaration or expression to block statements
1720         ListBuffer<JCStatement> stats = new ListBuffer<>();
1721         JCTree resource = resources.head;
1722         JCExpression resourceUse;
1723         boolean resourceNonNull;
1724         if (resource instanceof JCVariableDecl variableDecl) {
1725             resourceUse = make.Ident(variableDecl.sym).setType(resource.type);
1726             resourceNonNull = variableDecl.init != null && TreeInfo.skipParens(variableDecl.init).hasTag(NEWCLASS);
1727             stats.add(variableDecl);
1728         } else {
1729             Assert.check(resource instanceof JCExpression);
1730             VarSymbol syntheticTwrVar =
1731             new VarSymbol(SYNTHETIC | FINAL,
1732                           makeSyntheticName(names.fromString("twrVar" +
1733                                            depth), twrVars),
1734                           (resource.type.hasTag(BOT)) ?
1735                           syms.autoCloseableType : resource.type,
1736                           currentMethodSym);
1737             twrVars.enter(syntheticTwrVar);
1738             JCVariableDecl syntheticTwrVarDecl =
1739                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
1740             resourceUse = (JCExpression)make.Ident(syntheticTwrVar);
1741             resourceNonNull = false;
1742             stats.add(syntheticTwrVarDecl);
1743         }
1744 
1745         //create (semi-) finally block that will be copied into the main try body:
1746         int oldPos = make.pos;
1747         make.at(TreeInfo.endPos(block));
1748 
1749         // if (#resource != null) { #resource.close(); }
1750         JCStatement bodyCloseStatement = makeResourceCloseInvocation(resourceUse);
1751 
1752         if (!resourceNonNull) {
1753             bodyCloseStatement = make.If(makeNonNullCheck(resourceUse),
1754                                          bodyCloseStatement,
1755                                          null);
1756         }
1757 
1758         JCBlock finallyClause = make.Block(BODY_ONLY_FINALIZE, List.of(bodyCloseStatement));
1759         make.at(oldPos);
1760 
1761         // Create catch clause that saves exception, closes the resource and then rethrows the exception:
1762         VarSymbol primaryException =
1763             new VarSymbol(FINAL|SYNTHETIC,
1764                           names.fromString("t" +
1765                                            target.syntheticNameChar()),
1766                           syms.throwableType,
1767                           currentMethodSym);
1768         JCVariableDecl primaryExceptionDecl = make.VarDef(primaryException, null);
1769 
1770         // close resource:
1771         // try {
1772         //     #resource.close();
1773         // } catch (Throwable #suppressedException) {
1774         //     #primaryException.addSuppressed(#suppressedException);
1775         // }
1776         VarSymbol suppressedException =
1777             new VarSymbol(SYNTHETIC, make.paramName(2),
1778                           syms.throwableType,
1779                           currentMethodSym);
1780         JCStatement addSuppressedStatement =
1781             make.Exec(makeCall(make.Ident(primaryException),
1782                                names.addSuppressed,
1783                                List.of(make.Ident(suppressedException))));
1784         JCBlock closeResourceTryBlock =
1785             make.Block(0L, List.of(makeResourceCloseInvocation(resourceUse)));
1786         JCVariableDecl catchSuppressedDecl = make.VarDef(suppressedException, null);
1787         JCBlock catchSuppressedBlock = make.Block(0L, List.of(addSuppressedStatement));
1788         List<JCCatch> catchSuppressedClauses =
1789                 List.of(make.Catch(catchSuppressedDecl, catchSuppressedBlock));
1790         JCTry closeResourceTry = make.Try(closeResourceTryBlock, catchSuppressedClauses, null);
1791         closeResourceTry.finallyCanCompleteNormally = true;
1792 
1793         JCStatement exceptionalCloseStatement = closeResourceTry;
1794 
1795         if (!resourceNonNull) {
1796             // if (#resource != null) {  }
1797             exceptionalCloseStatement = make.If(makeNonNullCheck(resourceUse),
1798                                                 exceptionalCloseStatement,
1799                                                 null);
1800         }
1801 
1802         JCStatement exceptionalRethrow = make.Throw(make.Ident(primaryException));
1803         JCBlock exceptionalCloseBlock = make.Block(0L, List.of(exceptionalCloseStatement, exceptionalRethrow));
1804         JCCatch exceptionalCatchClause = make.Catch(primaryExceptionDecl, exceptionalCloseBlock);
1805 
1806         //create the main try statement with the close:
1807         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
1808                                   List.of(exceptionalCatchClause),
1809                                   finallyClause);
1810 
1811         outerTry.finallyCanCompleteNormally = true;
1812         stats.add(outerTry);
1813 
1814         JCBlock newBlock = make.Block(0L, stats.toList());
1815         return newBlock;
1816     }
1817 
1818     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1819         // convert to AutoCloseable if needed
1820         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
1821             resource = convert(resource, syms.autoCloseableType);
1822         }
1823 
1824         // create resource.close() method invocation
1825         JCExpression resourceClose = makeCall(resource,
1826                                               names.close,
1827                                               List.nil());
1828         return make.Exec(resourceClose);
1829     }
1830 
1831     private JCExpression makeNonNullCheck(JCExpression expression) {
1832         return makeBinary(NE, expression, makeNull());
1833     }
1834 
1835     /** Construct a tree that represents the outer instance
1836      *  {@code C.this}. Never pick the current `this'.
1837      *  @param pos           The source code position to be used for the tree.
1838      *  @param c             The qualifier class.
1839      */
1840     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1841         List<VarSymbol> ots = outerThisStack;
1842         if (ots.isEmpty()) {
1843             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1844             Assert.error();
1845             return makeNull();
1846         }
1847         VarSymbol ot = ots.head;
1848         JCExpression tree = access(make.at(pos).Ident(ot));
1849         ot.flags_field &= ~NOOUTERTHIS;
1850         TypeSymbol otc = ot.type.tsym;
1851         while (otc != c) {
1852             do {
1853                 ots = ots.tail;
1854                 if (ots.isEmpty()) {
1855                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1856                     Assert.error(); // should have been caught in Attr
1857                     return tree;
1858                 }
1859                 ot = ots.head;
1860             } while (ot.owner != otc);
1861             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1862                 log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1863                 Assert.error(); // should have been caught in Attr
1864                 return makeNull();
1865             }
1866             tree = access(make.at(pos).Select(tree, ot));
1867             ot.flags_field &= ~NOOUTERTHIS;
1868             otc = ot.type.tsym;
1869         }
1870         return tree;
1871     }
1872 
1873     /** Construct a tree that represents the closest outer instance
1874      *  {@code C.this} such that the given symbol is a member of C.
1875      *  @param pos           The source code position to be used for the tree.
1876      *  @param sym           The accessed symbol.
1877      *  @param preciseMatch  should we accept a type that is a subtype of
1878      *                       sym's owner, even if it doesn't contain sym
1879      *                       due to hiding, overriding, or non-inheritance
1880      *                       due to protection?
1881      */
1882     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1883         Symbol c = sym.owner;
1884         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1885                          : currentClass.isSubClass(sym.owner, types)) {
1886             // in this case, `this' works fine
1887             return make.at(pos).This(c.erasure(types));
1888         } else {
1889             // need to go via this$n
1890             return makeOwnerThisN(pos, sym, preciseMatch);
1891         }
1892     }
1893 
1894     /**
1895      * Similar to makeOwnerThis but will never pick "this".
1896      */
1897     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1898         Symbol c = sym.owner;
1899         List<VarSymbol> ots = outerThisStack;
1900         if (ots.isEmpty()) {
1901             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1902             return makeNull();
1903         }
1904         VarSymbol ot = ots.head;
1905         JCExpression tree = access(make.at(pos).Ident(ot));
1906         ot.flags_field &= ~NOOUTERTHIS;
1907         TypeSymbol otc = ot.type.tsym;
1908         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1909             do {
1910                 ots = ots.tail;
1911                 if (ots.isEmpty()) {
1912                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1913                     return tree;
1914                 }
1915                 ot = ots.head;
1916             } while (ot.owner != otc);
1917             tree = access(make.at(pos).Select(tree, ot));
1918             ot.flags_field &= ~NOOUTERTHIS;
1919             otc = ot.type.tsym;
1920         }
1921         return tree;
1922     }
1923 
1924     /** Return tree simulating the assignment {@code this.name = name}, where
1925      *  name is the name of a free variable.
1926      */
1927     JCStatement initField(int pos, Symbol rhs, Symbol lhs) {
1928         Assert.check(rhs.owner.kind == MTH);
1929         Assert.check(rhs.owner.owner == lhs.owner);
1930         make.at(pos);
1931         return
1932             make.Exec(
1933                 make.Assign(
1934                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1935                     make.Ident(rhs)).setType(lhs.erasure(types)));
1936     }
1937 
1938     /** Return tree simulating the assignment {@code this.this$n = this$n}.
1939      */
1940     JCStatement initOuterThis(int pos, VarSymbol rhs) {
1941         Assert.check(rhs.owner.kind == MTH);
1942         VarSymbol lhs = outerThisStack.head;
1943         Assert.check(rhs.owner.owner == lhs.owner);
1944         make.at(pos);
1945         return
1946             make.Exec(
1947                 make.Assign(
1948                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1949                     make.Ident(rhs)).setType(lhs.erasure(types)));
1950     }
1951 
1952 /**************************************************************************
1953  * Code for .class
1954  *************************************************************************/
1955 
1956     /** Return the symbol of a class to contain a cache of
1957      *  compiler-generated statics such as class$ and the
1958      *  $assertionsDisabled flag.  We create an anonymous nested class
1959      *  (unless one already exists) and return its symbol.  However,
1960      *  for backward compatibility in 1.4 and earlier we use the
1961      *  top-level class itself.
1962      */
1963     private ClassSymbol outerCacheClass() {
1964         ClassSymbol clazz = outermostClassDef.sym;
1965         Scope s = clazz.members();
1966         for (Symbol sym : s.getSymbols(NON_RECURSIVE))
1967             if (sym.kind == TYP &&
1968                 sym.name == names.empty &&
1969                 (sym.flags() & INTERFACE) == 0) return (ClassSymbol) sym;
1970         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
1971     }
1972 
1973     /** Create an attributed tree of the form left.name(). */
1974     private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1975         Assert.checkNonNull(left.type);
1976         Symbol funcsym = lookupMethod(make_pos, name, left.type,
1977                                       TreeInfo.types(args));
1978         return make.App(make.Select(left, funcsym), args);
1979     }
1980 
1981     /** The tree simulating a T.class expression.
1982      *  @param clazz      The tree identifying type T.
1983      */
1984     private JCExpression classOf(JCTree clazz) {
1985         return classOfType(clazz.type, clazz.pos());
1986     }
1987 
1988     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1989         switch (type.getTag()) {
1990         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1991         case DOUBLE: case BOOLEAN: case VOID:
1992             // replace with <BoxedClass>.TYPE
1993             ClassSymbol c = types.boxedClass(type);
1994             Symbol typeSym =
1995                 rs.accessBase(
1996                     rs.findIdentInType(pos, attrEnv, c.type, names.TYPE, KindSelector.VAR),
1997                     pos, c.type, names.TYPE, true);
1998             if (typeSym.kind == VAR)
1999                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
2000             return make.QualIdent(typeSym);
2001         case CLASS: case ARRAY:
2002                 VarSymbol sym = new VarSymbol(
2003                         STATIC | PUBLIC | FINAL, names._class,
2004                         syms.classType, type.tsym);
2005                 return make_at(pos).Select(make.Type(type), sym);
2006         default:
2007             throw new AssertionError();
2008         }
2009     }
2010 
2011 /**************************************************************************
2012  * Code for enabling/disabling assertions.
2013  *************************************************************************/
2014 
2015     private ClassSymbol assertionsDisabledClassCache;
2016 
2017     /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
2018      */
2019     private ClassSymbol assertionsDisabledClass() {
2020         if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
2021 
2022         assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
2023 
2024         return assertionsDisabledClassCache;
2025     }
2026 
2027     // This code is not particularly robust if the user has
2028     // previously declared a member named '$assertionsDisabled'.
2029     // The same faulty idiom also appears in the translation of
2030     // class literals above.  We should report an error if a
2031     // previous declaration is not synthetic.
2032 
2033     private JCExpression assertFlagTest(DiagnosticPosition pos) {
2034         // Outermost class may be either true class or an interface.
2035         ClassSymbol outermostClass = outermostClassDef.sym;
2036 
2037         //only classes can hold a non-public field, look for a usable one:
2038         ClassSymbol container = !currentClass.isInterface() ? currentClass :
2039                 assertionsDisabledClass();
2040 
2041         VarSymbol assertDisabledSym =
2042             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
2043                                        container.members());
2044         if (assertDisabledSym == null) {
2045             assertDisabledSym =
2046                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
2047                               dollarAssertionsDisabled,
2048                               syms.booleanType,
2049                               container);
2050             enterSynthetic(pos, assertDisabledSym, container.members());
2051             Symbol desiredAssertionStatusSym = lookupMethod(pos,
2052                                                             names.desiredAssertionStatus,
2053                                                             types.erasure(syms.classType),
2054                                                             List.nil());
2055             JCClassDecl containerDef = classDef(container);
2056             make_at(containerDef.pos());
2057             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
2058                     classOfType(types.erasure(outermostClass.type),
2059                                 containerDef.pos()),
2060                     desiredAssertionStatusSym)));
2061             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
2062                                                    notStatus);
2063             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
2064 
2065             if (currentClass.isInterface()) {
2066                 //need to load the assertions enabled/disabled state while
2067                 //initializing the interface:
2068                 JCClassDecl currentClassDef = classDef(currentClass);
2069                 make_at(currentClassDef.pos());
2070                 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
2071                 JCBlock clinit = make.Block(STATIC, List.of(dummy));
2072                 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
2073             }
2074         }
2075         make_at(pos);
2076         return makeUnary(NOT, make.Ident(assertDisabledSym));
2077     }
2078 
2079 
2080 /**************************************************************************
2081  * Building blocks for let expressions
2082  *************************************************************************/
2083 
2084     interface TreeBuilder {
2085         JCExpression build(JCExpression arg);
2086     }
2087 
2088     /** Construct an expression using the builder, with the given rval
2089      *  expression as an argument to the builder.  However, the rval
2090      *  expression must be computed only once, even if used multiple
2091      *  times in the result of the builder.  We do that by
2092      *  constructing a "let" expression that saves the rvalue into a
2093      *  temporary variable and then uses the temporary variable in
2094      *  place of the expression built by the builder.  The complete
2095      *  resulting expression is of the form
2096      *  <pre>
2097      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
2098      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
2099      *  </pre>
2100      *  where <code><b>TEMP</b></code> is a newly declared variable
2101      *  in the let expression.
2102      */
2103     JCExpression abstractRval(JCExpression rval, Type type, TreeBuilder builder) {
2104         rval = TreeInfo.skipParens(rval);
2105         switch (rval.getTag()) {
2106         case LITERAL:
2107             return builder.build(rval);
2108         case IDENT:
2109             JCIdent id = (JCIdent) rval;
2110             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
2111                 return builder.build(rval);
2112         }
2113         Name name = TreeInfo.name(rval);
2114         if (name == names._super || name == names._this)
2115             return builder.build(rval);
2116         VarSymbol var =
2117             new VarSymbol(FINAL|SYNTHETIC,
2118                           names.fromString(
2119                                           target.syntheticNameChar()
2120                                           + "" + rval.hashCode()),
2121                                       type,
2122                                       currentMethodSym);
2123         rval = convert(rval,type);
2124         JCVariableDecl def = make.VarDef(var, rval); // XXX cast
2125         JCExpression built = builder.build(make.Ident(var));
2126         JCExpression res = make.LetExpr(def, built);
2127         res.type = built.type;
2128         return res;
2129     }
2130 
2131     // same as above, with the type of the temporary variable computed
2132     JCExpression abstractRval(JCExpression rval, TreeBuilder builder) {
2133         return abstractRval(rval, rval.type, builder);
2134     }
2135 
2136     // same as above, but for an expression that may be used as either
2137     // an rvalue or an lvalue.  This requires special handling for
2138     // Select expressions, where we place the left-hand-side of the
2139     // select in a temporary, and for Indexed expressions, where we
2140     // place both the indexed expression and the index value in temps.
2141     JCExpression abstractLval(JCExpression lval, final TreeBuilder builder) {
2142         lval = TreeInfo.skipParens(lval);
2143         switch (lval.getTag()) {
2144         case IDENT:
2145             return builder.build(lval);
2146         case SELECT: {
2147             final JCFieldAccess s = (JCFieldAccess)lval;
2148             Symbol lid = TreeInfo.symbol(s.selected);
2149             if (lid != null && lid.kind == TYP) return builder.build(lval);
2150             return abstractRval(s.selected, selected -> builder.build(make.Select(selected, s.sym)));
2151         }
2152         case INDEXED: {
2153             final JCArrayAccess i = (JCArrayAccess)lval;
2154             return abstractRval(i.indexed, indexed -> abstractRval(i.index, syms.intType, index -> {
2155                 JCExpression newLval = make.Indexed(indexed, index);
2156                 newLval.setType(i.type);
2157                 return builder.build(newLval);
2158             }));
2159         }
2160         case TYPECAST: {
2161             return abstractLval(((JCTypeCast)lval).expr, builder);
2162         }
2163         }
2164         throw new AssertionError(lval);
2165     }
2166 
2167     // evaluate and discard the first expression, then evaluate the second.
2168     JCExpression makeComma(final JCExpression expr1, final JCExpression expr2) {
2169         JCExpression res = make.LetExpr(List.of(make.Exec(expr1)), expr2);
2170         res.type = expr2.type;
2171         return res;
2172     }
2173 
2174 /**************************************************************************
2175  * Translation methods
2176  *************************************************************************/
2177 
2178     /** Visitor argument: enclosing operator node.
2179      */
2180     private JCExpression enclOp;
2181 
2182     /** Visitor method: Translate a single node.
2183      *  Attach the source position from the old tree to its replacement tree.
2184      */
2185     @Override
2186     public <T extends JCTree> T translate(T tree) {
2187         if (tree == null) {
2188             return null;
2189         } else {
2190             make_at(tree.pos());
2191             T result = super.translate(tree);
2192             if (endPosTable != null && result != tree) {
2193                 endPosTable.replaceTree(tree, result);
2194             }
2195             return result;
2196         }
2197     }
2198 
2199     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2200      */
2201     public <T extends JCExpression> T translate(T tree, Type type) {
2202         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2203     }
2204 
2205     /** Visitor method: Translate tree.
2206      */
2207     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2208         JCExpression prevEnclOp = this.enclOp;
2209         this.enclOp = enclOp;
2210         T res = translate(tree);
2211         this.enclOp = prevEnclOp;
2212         return res;
2213     }
2214 
2215     /** Visitor method: Translate list of trees.
2216      */
2217     public <T extends JCExpression> List<T> translate(List<T> trees, Type type) {
2218         if (trees == null) return null;
2219         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2220             l.head = translate(l.head, type);
2221         return trees;
2222     }
2223 
2224     public void visitPackageDef(JCPackageDecl tree) {
2225         if (!needPackageInfoClass(tree))
2226                         return;
2227 
2228         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2229         // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2230         flags = flags | Flags.SYNTHETIC;
2231         ClassSymbol c = tree.packge.package_info;
2232         c.setAttributes(tree.packge);
2233         c.flags_field |= flags;
2234         ClassType ctype = (ClassType) c.type;
2235         ctype.supertype_field = syms.objectType;
2236         ctype.interfaces_field = List.nil();
2237         createInfoClass(tree.annotations, c);
2238     }
2239     // where
2240     private boolean needPackageInfoClass(JCPackageDecl pd) {
2241         switch (pkginfoOpt) {
2242             case ALWAYS:
2243                 return true;
2244             case LEGACY:
2245                 return pd.getAnnotations().nonEmpty();
2246             case NONEMPTY:
2247                 for (Attribute.Compound a :
2248                          pd.packge.getDeclarationAttributes()) {
2249                     Attribute.RetentionPolicy p = types.getRetention(a);
2250                     if (p != Attribute.RetentionPolicy.SOURCE)
2251                         return true;
2252                 }
2253                 return false;
2254         }
2255         throw new AssertionError();
2256     }
2257 
2258     public void visitModuleDef(JCModuleDecl tree) {
2259         ModuleSymbol msym = tree.sym;
2260         ClassSymbol c = msym.module_info;
2261         c.setAttributes(msym);
2262         c.flags_field |= Flags.MODULE;
2263         createInfoClass(List.nil(), tree.sym.module_info);
2264     }
2265 
2266     private void createInfoClass(List<JCAnnotation> annots, ClassSymbol c) {
2267         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2268         JCClassDecl infoClass =
2269                 make.ClassDef(make.Modifiers(flags, annots),
2270                     c.name, List.nil(),
2271                     null, List.nil(), List.nil());
2272         infoClass.sym = c;
2273         translated.append(infoClass);
2274     }
2275 
2276     public void visitClassDef(JCClassDecl tree) {
2277         Env<AttrContext> prevEnv = attrEnv;
2278         ClassSymbol currentClassPrev = currentClass;
2279         MethodSymbol currentMethodSymPrev = currentMethodSym;
2280 
2281         currentClass = tree.sym;
2282         currentMethodSym = null;
2283         attrEnv = typeEnvs.remove(currentClass);
2284         if (attrEnv == null)
2285             attrEnv = prevEnv;
2286 
2287         classdefs.put(currentClass, tree);
2288 
2289         Map<Symbol, Symbol> prevProxies = proxies;
2290         proxies = new HashMap<>(proxies);
2291         List<VarSymbol> prevOuterThisStack = outerThisStack;
2292 
2293         // If this is an enum definition
2294         if ((tree.mods.flags & ENUM) != 0 &&
2295             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2296             visitEnumDef(tree);
2297 
2298         if ((tree.mods.flags & RECORD) != 0) {
2299             visitRecordDef(tree);
2300         }
2301 
2302         // If this is a nested class, define a this$n field for
2303         // it and add to proxies.
2304         JCVariableDecl otdef = null;
2305         if (currentClass.hasOuterInstance())
2306             otdef = outerThisDef(tree.pos, currentClass);
2307 
2308         // If this is a local class, define proxies for all its free variables.
2309         List<JCVariableDecl> fvdefs = freevarDefs(
2310             tree.pos, freevars(currentClass), currentClass);
2311 
2312         // Recursively translate superclass, interfaces.
2313         tree.extending = translate(tree.extending);
2314         tree.implementing = translate(tree.implementing);
2315 
2316         if (currentClass.isDirectlyOrIndirectlyLocal()) {
2317             ClassSymbol encl = currentClass.owner.enclClass();
2318             if (encl.trans_local == null) {
2319                 encl.trans_local = List.nil();
2320             }
2321             encl.trans_local = encl.trans_local.prepend(currentClass);
2322         }
2323 
2324         // Recursively translate members, taking into account that new members
2325         // might be created during the translation and prepended to the member
2326         // list `tree.defs'.
2327         List<JCTree> seen = List.nil();
2328         while (tree.defs != seen) {
2329             List<JCTree> unseen = tree.defs;
2330             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2331                 JCTree outermostMemberDefPrev = outermostMemberDef;
2332                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2333                 l.head = translate(l.head);
2334                 outermostMemberDef = outermostMemberDefPrev;
2335             }
2336             seen = unseen;
2337         }
2338 
2339         // Convert a protected modifier to public, mask static modifier.
2340         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2341         tree.mods.flags &= ClassFlags;
2342 
2343         // Convert name to flat representation, replacing '.' by '$'.
2344         tree.name = Convert.shortName(currentClass.flatName());
2345 
2346         // Add free variables proxy definitions to class.
2347 
2348         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2349             tree.defs = tree.defs.prepend(l.head);
2350             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2351         }
2352         // If this$n was accessed, add the field definition and prepend
2353         // initializer code to any super() invocation to initialize it
2354         if (currentClass.hasOuterInstance() && shouldEmitOuterThis(currentClass)) {
2355             tree.defs = tree.defs.prepend(otdef);
2356             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2357 
2358             for (JCTree def : tree.defs) {
2359                 if (TreeInfo.isConstructor(def)) {
2360                     JCMethodDecl mdef = (JCMethodDecl)def;
2361                     if (TreeInfo.hasConstructorCall(mdef, names._super)) {
2362                         List<JCStatement> initializer = List.of(initOuterThis(mdef.body.pos, mdef.params.head.sym));
2363                         TreeInfo.mapSuperCalls(mdef.body, supercall -> make.Block(0, initializer.append(supercall)));
2364                     }
2365                 }
2366             }
2367         }
2368 
2369         proxies = prevProxies;
2370         outerThisStack = prevOuterThisStack;
2371 
2372         // Append translated tree to `translated' queue.
2373         translated.append(tree);
2374 
2375         attrEnv = prevEnv;
2376         currentClass = currentClassPrev;
2377         currentMethodSym = currentMethodSymPrev;
2378 
2379         // Return empty block {} as a placeholder for an inner class.
2380         result = make_at(tree.pos()).Block(SYNTHETIC, List.nil());
2381     }
2382 
2383     private boolean shouldEmitOuterThis(ClassSymbol sym) {
2384       if (!optimizeOuterThis) {
2385         // Optimization is disabled
2386         return true;
2387       }
2388       if ((outerThisStack.head.flags_field & NOOUTERTHIS) == 0)  {
2389         // Enclosing instance field is used
2390         return true;
2391       }
2392       if (rs.isSerializable(sym.type)) {
2393         // Class is serializable
2394         return true;
2395       }
2396       return false;
2397     }
2398 
2399     List<JCTree> generateMandatedAccessors(JCClassDecl tree) {
2400         List<JCVariableDecl> fields = TreeInfo.recordFields(tree);
2401         return tree.sym.getRecordComponents().stream()
2402                 .filter(rc -> (rc.accessor.flags() & Flags.GENERATED_MEMBER) != 0)
2403                 .map(rc -> {
2404                     // we need to return the field not the record component
2405                     JCVariableDecl field = fields.stream().filter(f -> f.name == rc.name).findAny().get();
2406                     make_at(tree.pos());
2407                     return make.MethodDef(rc.accessor, make.Block(0,
2408                             List.of(make.Return(make.Ident(field)))));
2409                 }).collect(List.collector());
2410     }
2411 
2412     /** Translate an enum class. */
2413     private void visitEnumDef(JCClassDecl tree) {
2414         make_at(tree.pos());
2415 
2416         // add the supertype, if needed
2417         if (tree.extending == null)
2418             tree.extending = make.Type(types.supertype(tree.type));
2419 
2420         // classOfType adds a cache field to tree.defs
2421         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2422             setType(types.erasure(syms.classType));
2423 
2424         // process each enumeration constant, adding implicit constructor parameters
2425         int nextOrdinal = 0;
2426         ListBuffer<JCExpression> values = new ListBuffer<>();
2427         ListBuffer<JCTree> enumDefs = new ListBuffer<>();
2428         ListBuffer<JCTree> otherDefs = new ListBuffer<>();
2429         for (List<JCTree> defs = tree.defs;
2430              defs.nonEmpty();
2431              defs=defs.tail) {
2432             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2433                 JCVariableDecl var = (JCVariableDecl)defs.head;
2434                 visitEnumConstantDef(var, nextOrdinal++);
2435                 values.append(make.QualIdent(var.sym));
2436                 enumDefs.append(var);
2437             } else {
2438                 otherDefs.append(defs.head);
2439             }
2440         }
2441 
2442         // synthetic private static T[] $values() { return new T[] { a, b, c }; }
2443         // synthetic private static final T[] $VALUES = $values();
2444         Name valuesName = syntheticName(tree, "VALUES");
2445         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2446         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2447                                             valuesName,
2448                                             arrayType,
2449                                             tree.type.tsym);
2450         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2451                                           List.nil(),
2452                                           values.toList());
2453         newArray.type = arrayType;
2454 
2455         MethodSymbol valuesMethod = new MethodSymbol(PRIVATE|STATIC|SYNTHETIC,
2456                 syntheticName(tree, "values"),
2457                 new MethodType(List.nil(), arrayType, List.nil(), tree.type.tsym),
2458                 tree.type.tsym);
2459         enumDefs.append(make.MethodDef(valuesMethod, make.Block(0, List.of(make.Return(newArray)))));
2460         tree.sym.members().enter(valuesMethod);
2461 
2462         enumDefs.append(make.VarDef(valuesVar, make.App(make.QualIdent(valuesMethod))));
2463         tree.sym.members().enter(valuesVar);
2464 
2465         MethodSymbol valuesSym = lookupMethod(tree.pos(), names.values,
2466                                         tree.type, List.nil());
2467         List<JCStatement> valuesBody;
2468         if (useClone()) {
2469             // return (T[]) $VALUES.clone();
2470             JCTypeCast valuesResult =
2471                 make.TypeCast(valuesSym.type.getReturnType(),
2472                               make.App(make.Select(make.Ident(valuesVar),
2473                                                    syms.arrayCloneMethod)));
2474             valuesBody = List.of(make.Return(valuesResult));
2475         } else {
2476             // template: T[] $result = new T[$values.length];
2477             Name resultName = syntheticName(tree, "result");
2478             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2479                                                 resultName,
2480                                                 arrayType,
2481                                                 valuesSym);
2482             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2483                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2484                                   null);
2485             resultArray.type = arrayType;
2486             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2487 
2488             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2489             if (systemArraycopyMethod == null) {
2490                 systemArraycopyMethod =
2491                     new MethodSymbol(PUBLIC | STATIC,
2492                                      names.fromString("arraycopy"),
2493                                      new MethodType(List.of(syms.objectType,
2494                                                             syms.intType,
2495                                                             syms.objectType,
2496                                                             syms.intType,
2497                                                             syms.intType),
2498                                                     syms.voidType,
2499                                                     List.nil(),
2500                                                     syms.methodClass),
2501                                      syms.systemType.tsym);
2502             }
2503             JCStatement copy =
2504                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2505                                                systemArraycopyMethod),
2506                           List.of(make.Ident(valuesVar), make.Literal(0),
2507                                   make.Ident(resultVar), make.Literal(0),
2508                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2509 
2510             // template: return $result;
2511             JCStatement ret = make.Return(make.Ident(resultVar));
2512             valuesBody = List.of(decl, copy, ret);
2513         }
2514 
2515         JCMethodDecl valuesDef =
2516              make.MethodDef(valuesSym, make.Block(0, valuesBody));
2517 
2518         enumDefs.append(valuesDef);
2519 
2520         if (debugLower)
2521             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2522 
2523         /** The template for the following code is:
2524          *
2525          *     public static E valueOf(String name) {
2526          *         return (E)Enum.valueOf(E.class, name);
2527          *     }
2528          *
2529          *  where E is tree.sym
2530          */
2531         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2532                          names.valueOf,
2533                          tree.sym.type,
2534                          List.of(syms.stringType));
2535         Assert.check((valueOfSym.flags() & STATIC) != 0);
2536         VarSymbol nameArgSym = valueOfSym.params.head;
2537         JCIdent nameVal = make.Ident(nameArgSym);
2538         JCStatement enum_ValueOf =
2539             make.Return(make.TypeCast(tree.sym.type,
2540                                       makeCall(make.Ident(syms.enumSym),
2541                                                names.valueOf,
2542                                                List.of(e_class, nameVal))));
2543         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2544                                            make.Block(0, List.of(enum_ValueOf)));
2545         nameVal.sym = valueOf.params.head.sym;
2546         if (debugLower)
2547             System.err.println(tree.sym + ".valueOf = " + valueOf);
2548         enumDefs.append(valueOf);
2549 
2550         enumDefs.appendList(otherDefs.toList());
2551         tree.defs = enumDefs.toList();
2552     }
2553         // where
2554         private MethodSymbol systemArraycopyMethod;
2555         private boolean useClone() {
2556             try {
2557                 return syms.objectType.tsym.members().findFirst(names.clone) != null;
2558             }
2559             catch (CompletionFailure e) {
2560                 return false;
2561             }
2562         }
2563 
2564         private Name syntheticName(JCClassDecl tree, String baseName) {
2565             Name valuesName = names.fromString(target.syntheticNameChar() + baseName);
2566             while (tree.sym.members().findFirst(valuesName) != null) // avoid name clash
2567                 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2568             return valuesName;
2569         }
2570 
2571     /** Translate an enumeration constant and its initializer. */
2572     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2573         JCNewClass varDef = (JCNewClass)var.init;
2574         varDef.args = varDef.args.
2575             prepend(makeLit(syms.intType, ordinal)).
2576             prepend(makeLit(syms.stringType, var.name.toString()));
2577     }
2578 
2579     private List<VarSymbol> recordVars(Type t) {
2580         List<VarSymbol> vars = List.nil();
2581         while (!t.hasTag(NONE)) {
2582             if (t.hasTag(CLASS)) {
2583                 for (Symbol s : t.tsym.members().getSymbols(s -> s.kind == VAR && (s.flags() & RECORD) != 0)) {
2584                     vars = vars.prepend((VarSymbol)s);
2585                 }
2586             }
2587             t = types.supertype(t);
2588         }
2589         return vars;
2590     }
2591 
2592     /** Translate a record. */
2593     private void visitRecordDef(JCClassDecl tree) {
2594         make_at(tree.pos());
2595         List<VarSymbol> vars = recordVars(tree.type);
2596         MethodHandleSymbol[] getterMethHandles = new MethodHandleSymbol[vars.size()];
2597         int index = 0;
2598         for (VarSymbol var : vars) {
2599             if (var.owner != tree.sym) {
2600                 var = new VarSymbol(var.flags_field, var.name, var.type, tree.sym);
2601             }
2602             getterMethHandles[index] = var.asMethodHandle(true);
2603             index++;
2604         }
2605 
2606         tree.defs = tree.defs.appendList(generateMandatedAccessors(tree));
2607         tree.defs = tree.defs.appendList(List.of(
2608                 generateRecordMethod(tree, names.toString, vars, getterMethHandles),
2609                 generateRecordMethod(tree, names.hashCode, vars, getterMethHandles),
2610                 generateRecordMethod(tree, names.equals, vars, getterMethHandles)
2611         ));
2612     }
2613 
2614     JCTree generateRecordMethod(JCClassDecl tree, Name name, List<VarSymbol> vars, MethodHandleSymbol[] getterMethHandles) {
2615         make_at(tree.pos());
2616         boolean isEquals = name == names.equals;
2617         MethodSymbol msym = lookupMethod(tree.pos(),
2618                 name,
2619                 tree.sym.type,
2620                 isEquals ? List.of(syms.objectType) : List.nil());
2621         // compiler generated methods have the record flag set, user defined ones dont
2622         if ((msym.flags() & RECORD) != 0) {
2623             /* class java.lang.runtime.ObjectMethods provides a common bootstrap that provides a customized implementation
2624              * for methods: toString, hashCode and equals. Here we just need to generate and indy call to:
2625              * java.lang.runtime.ObjectMethods::bootstrap and provide: the record class, the record component names and
2626              * the accessors.
2627              */
2628             Name bootstrapName = names.bootstrap;
2629             LoadableConstant[] staticArgsValues = new LoadableConstant[2 + getterMethHandles.length];
2630             staticArgsValues[0] = (ClassType)tree.sym.type;
2631             String concatNames = vars.stream()
2632                     .map(v -> v.name)
2633                     .collect(Collectors.joining(";", "", ""));
2634             staticArgsValues[1] = LoadableConstant.String(concatNames);
2635             int index = 2;
2636             for (MethodHandleSymbol mho : getterMethHandles) {
2637                 staticArgsValues[index] = mho;
2638                 index++;
2639             }
2640 
2641             List<Type> staticArgTypes = List.of(syms.classType,
2642                     syms.stringType,
2643                     new ArrayType(syms.methodHandleType, syms.arrayClass));
2644 
2645             JCFieldAccess qualifier = makeIndyQualifier(syms.objectMethodsType, tree, msym,
2646                     List.of(syms.methodHandleLookupType,
2647                             syms.stringType,
2648                             syms.typeDescriptorType).appendList(staticArgTypes),
2649                     staticArgsValues, bootstrapName, name, false);
2650 
2651             VarSymbol _this = new VarSymbol(SYNTHETIC, names._this, tree.sym.type, tree.sym);
2652 
2653             JCMethodInvocation proxyCall;
2654             if (!isEquals) {
2655                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this)));
2656             } else {
2657                 VarSymbol o = msym.params.head;
2658                 o.adr = 0;
2659                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this), make.Ident(o)));
2660             }
2661             proxyCall.type = qualifier.type;
2662             return make.MethodDef(msym, make.Block(0, List.of(make.Return(proxyCall))));
2663         } else {
2664             return make.Block(SYNTHETIC, List.nil());
2665         }
2666     }
2667 
2668     private String argsTypeSig(List<Type> typeList) {
2669         LowerSignatureGenerator sg = new LowerSignatureGenerator();
2670         sg.assembleSig(typeList);
2671         return sg.toString();
2672     }
2673 
2674     /**
2675      * Signature Generation
2676      */
2677     private class LowerSignatureGenerator extends Types.SignatureGenerator {
2678 
2679         /**
2680          * An output buffer for type signatures.
2681          */
2682         StringBuilder sb = new StringBuilder();
2683 
2684         LowerSignatureGenerator() {
2685             super(types);
2686         }
2687 
2688         @Override
2689         protected void append(char ch) {
2690             sb.append(ch);
2691         }
2692 
2693         @Override
2694         protected void append(byte[] ba) {
2695             sb.append(new String(ba));
2696         }
2697 
2698         @Override
2699         protected void append(Name name) {
2700             sb.append(name.toString());
2701         }
2702 
2703         @Override
2704         public String toString() {
2705             return sb.toString();
2706         }
2707     }
2708 
2709     /**
2710      * Creates an indy qualifier, helpful to be part of an indy invocation
2711      * @param site                the site
2712      * @param tree                a class declaration tree
2713      * @param msym                the method symbol
2714      * @param staticArgTypes      the static argument types
2715      * @param staticArgValues     the static argument values
2716      * @param bootstrapName       the bootstrap name to look for
2717      * @param argName             normally bootstraps receives a method name as second argument, if you want that name
2718      *                            to be different to that of the bootstrap name pass a different name here
2719      * @param isStatic            is it static or not
2720      * @return                    a field access tree
2721      */
2722     JCFieldAccess makeIndyQualifier(
2723             Type site,
2724             JCClassDecl tree,
2725             MethodSymbol msym,
2726             List<Type> staticArgTypes,
2727             LoadableConstant[] staticArgValues,
2728             Name bootstrapName,
2729             Name argName,
2730             boolean isStatic) {
2731         MethodSymbol bsm = rs.resolveInternalMethod(tree.pos(), attrEnv, site,
2732                 bootstrapName, staticArgTypes, List.nil());
2733 
2734         MethodType indyType = msym.type.asMethodType();
2735         indyType = new MethodType(
2736                 isStatic ? List.nil() : indyType.argtypes.prepend(tree.sym.type),
2737                 indyType.restype,
2738                 indyType.thrown,
2739                 syms.methodClass
2740         );
2741         DynamicMethodSymbol dynSym = new DynamicMethodSymbol(argName,
2742                 syms.noSymbol,
2743                 bsm.asHandle(),
2744                 indyType,
2745                 staticArgValues);
2746         JCFieldAccess qualifier = make.Select(make.QualIdent(site.tsym), argName);
2747         qualifier.sym = dynSym;
2748         qualifier.type = msym.type.asMethodType().restype;
2749         return qualifier;
2750     }
2751 
2752     public void visitMethodDef(JCMethodDecl tree) {
2753         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2754             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2755             // argument list for each constructor of an enum.
2756             JCVariableDecl nameParam = make_at(tree.pos()).
2757                 Param(names.fromString(target.syntheticNameChar() +
2758                                        "enum" + target.syntheticNameChar() + "name"),
2759                       syms.stringType, tree.sym);
2760             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2761             JCVariableDecl ordParam = make.
2762                 Param(names.fromString(target.syntheticNameChar() +
2763                                        "enum" + target.syntheticNameChar() +
2764                                        "ordinal"),
2765                       syms.intType, tree.sym);
2766             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2767 
2768             MethodSymbol m = tree.sym;
2769             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2770 
2771             m.extraParams = m.extraParams.prepend(ordParam.sym);
2772             m.extraParams = m.extraParams.prepend(nameParam.sym);
2773             Type olderasure = m.erasure(types);
2774             m.erasure_field = new MethodType(
2775                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2776                 olderasure.getReturnType(),
2777                 olderasure.getThrownTypes(),
2778                 syms.methodClass);
2779         }
2780 
2781         JCMethodDecl prevMethodDef = currentMethodDef;
2782         MethodSymbol prevMethodSym = currentMethodSym;
2783         try {
2784             currentMethodDef = tree;
2785             currentMethodSym = tree.sym;
2786             visitMethodDefInternal(tree);
2787         } finally {
2788             currentMethodDef = prevMethodDef;
2789             currentMethodSym = prevMethodSym;
2790         }
2791     }
2792 
2793     private void visitMethodDefInternal(JCMethodDecl tree) {
2794         if (tree.name == names.init &&
2795             !currentClass.isStatic() &&
2796             (currentClass.isInner() || currentClass.isDirectlyOrIndirectlyLocal())) {
2797             // We are seeing a constructor of an inner class.
2798             MethodSymbol m = tree.sym;
2799 
2800             // Push a new proxy scope for constructor parameters.
2801             // and create definitions for any this$n and proxy parameters.
2802             Map<Symbol, Symbol> prevProxies = proxies;
2803             proxies = new HashMap<>(proxies);
2804             List<VarSymbol> prevOuterThisStack = outerThisStack;
2805             List<VarSymbol> fvs = freevars(currentClass);
2806             JCVariableDecl otdef = null;
2807             if (currentClass.hasOuterInstance())
2808                 otdef = outerThisDef(tree.pos, m);
2809             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
2810 
2811             // Recursively translate result type, parameters and thrown list.
2812             tree.restype = translate(tree.restype);
2813             tree.params = translateVarDefs(tree.params);
2814             tree.thrown = translate(tree.thrown);
2815 
2816             // when compiling stubs, don't process body
2817             if (tree.body == null) {
2818                 result = tree;
2819                 return;
2820             }
2821 
2822             // Add this$n (if needed) in front of and free variables behind
2823             // constructor parameter list.
2824             tree.params = tree.params.appendList(fvdefs);
2825             if (currentClass.hasOuterInstance()) {
2826                 tree.params = tree.params.prepend(otdef);
2827             }
2828 
2829             // Determine whether this constructor has a super() invocation
2830             boolean invokesSuper = TreeInfo.hasConstructorCall(tree, names._super);
2831 
2832             // Create initializers for this$n and proxies
2833             ListBuffer<JCStatement> added = new ListBuffer<>();
2834             if (fvs.nonEmpty()) {
2835                 List<Type> addedargtypes = List.nil();
2836                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2837                     m.capturedLocals =
2838                         m.capturedLocals.prepend((VarSymbol)
2839                                                 (proxies.get(l.head)));
2840                     if (invokesSuper) {
2841                         added = added.prepend(
2842                           initField(tree.body.pos, proxies.get(l.head), prevProxies.get(l.head)));
2843                     }
2844                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2845                 }
2846                 Type olderasure = m.erasure(types);
2847                 m.erasure_field = new MethodType(
2848                     olderasure.getParameterTypes().appendList(addedargtypes),
2849                     olderasure.getReturnType(),
2850                     olderasure.getThrownTypes(),
2851                     syms.methodClass);
2852             }
2853 
2854             // Recursively translate existing local statements
2855             tree.body.stats = translate(tree.body.stats);
2856 
2857             // Prepend initializers in front of super() call
2858             if (added.nonEmpty()) {
2859                 List<JCStatement> initializers = added.toList();
2860                 TreeInfo.mapSuperCalls(tree.body, supercall -> make.Block(0, initializers.append(supercall)));
2861             }
2862 
2863             // pop local variables from proxy stack
2864             proxies = prevProxies;
2865 
2866             outerThisStack = prevOuterThisStack;
2867         } else {
2868             Map<Symbol, Symbol> prevLambdaTranslationMap =
2869                     lambdaTranslationMap;
2870             try {
2871                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
2872                         tree.sym.name.startsWith(names.lambda) ?
2873                         makeTranslationMap(tree) : null;
2874                 super.visitMethodDef(tree);
2875             } finally {
2876                 lambdaTranslationMap = prevLambdaTranslationMap;
2877             }
2878         }
2879         if (tree.name == names.init && ((tree.sym.flags_field & Flags.COMPACT_RECORD_CONSTRUCTOR) != 0 ||
2880                 (tree.sym.flags_field & (GENERATEDCONSTR | RECORD)) == (GENERATEDCONSTR | RECORD))) {
2881             // lets find out if there is any field waiting to be initialized
2882             ListBuffer<VarSymbol> fields = new ListBuffer<>();
2883             for (Symbol sym : currentClass.getEnclosedElements()) {
2884                 if (sym.kind == Kinds.Kind.VAR && ((sym.flags() & RECORD) != 0))
2885                     fields.append((VarSymbol) sym);
2886             }
2887             for (VarSymbol field: fields) {
2888                 if ((field.flags_field & Flags.UNINITIALIZED_FIELD) != 0) {
2889                     VarSymbol param = tree.params.stream().filter(p -> p.name == field.name).findFirst().get().sym;
2890                     make.at(tree.pos);
2891                     tree.body.stats = tree.body.stats.append(
2892                             make.Exec(
2893                                     make.Assign(
2894                                             make.Select(make.This(field.owner.erasure(types)), field),
2895                                             make.Ident(param)).setType(field.erasure(types))));
2896                     // we don't need the flag at the field anymore
2897                     field.flags_field &= ~Flags.UNINITIALIZED_FIELD;
2898                 }
2899             }
2900         }
2901         result = tree;
2902     }
2903     //where
2904         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
2905             Map<Symbol, Symbol> translationMap = new HashMap<>();
2906             for (JCVariableDecl vd : tree.params) {
2907                 Symbol p = vd.sym;
2908                 if (p != p.baseSymbol()) {
2909                     translationMap.put(p.baseSymbol(), p);
2910                 }
2911             }
2912             return translationMap;
2913         }
2914 
2915     public void visitTypeCast(JCTypeCast tree) {
2916         tree.clazz = translate(tree.clazz);
2917         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2918             tree.expr = translate(tree.expr, tree.type);
2919         else
2920             tree.expr = translate(tree.expr);
2921         result = tree;
2922     }
2923 
2924     public void visitNewClass(JCNewClass tree) {
2925         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2926 
2927         // Box arguments, if necessary
2928         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2929         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2930         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2931         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2932         tree.varargsElement = null;
2933 
2934         // If created class is local, add free variables after
2935         // explicit constructor arguments.
2936         if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
2937             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2938         }
2939 
2940         // If an access constructor is used, append null as a last argument.
2941         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2942         if (constructor != tree.constructor) {
2943             tree.args = tree.args.append(makeNull());
2944             tree.constructor = constructor;
2945         }
2946 
2947         // If created class has an outer instance, and new is qualified, pass
2948         // qualifier as first argument. If new is not qualified, pass the
2949         // correct outer instance as first argument.
2950         if (c.hasOuterInstance()) {
2951             JCExpression thisArg;
2952             if (tree.encl != null) {
2953                 thisArg = attr.makeNullCheck(translate(tree.encl));
2954                 thisArg.type = tree.encl.type;
2955             } else if (c.isDirectlyOrIndirectlyLocal()) {
2956                 // local class
2957                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2958             } else {
2959                 // nested class
2960                 thisArg = makeOwnerThis(tree.pos(), c, false);
2961             }
2962             tree.args = tree.args.prepend(thisArg);
2963         }
2964         tree.encl = null;
2965 
2966         // If we have an anonymous class, create its flat version, rather
2967         // than the class or interface following new.
2968         if (tree.def != null) {
2969             Map<Symbol, Symbol> prevLambdaTranslationMap = lambdaTranslationMap;
2970             try {
2971                 lambdaTranslationMap = null;
2972                 translate(tree.def);
2973             } finally {
2974                 lambdaTranslationMap = prevLambdaTranslationMap;
2975             }
2976 
2977             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2978             tree.def = null;
2979         } else {
2980             tree.clazz = access(c, tree.clazz, enclOp, false);
2981         }
2982         result = tree;
2983     }
2984 
2985     // Simplify conditionals with known constant controlling expressions.
2986     // This allows us to avoid generating supporting declarations for
2987     // the dead code, which will not be eliminated during code generation.
2988     // Note that Flow.isFalse and Flow.isTrue only return true
2989     // for constant expressions in the sense of JLS 15.27, which
2990     // are guaranteed to have no side-effects.  More aggressive
2991     // constant propagation would require that we take care to
2992     // preserve possible side-effects in the condition expression.
2993 
2994     // One common case is equality expressions involving a constant and null.
2995     // Since null is not a constant expression (because null cannot be
2996     // represented in the constant pool), equality checks involving null are
2997     // not captured by Flow.isTrue/isFalse.
2998     // Equality checks involving a constant and null, e.g.
2999     //     "" == null
3000     // are safe to simplify as no side-effects can occur.
3001 
3002     private boolean isTrue(JCTree exp) {
3003         if (exp.type.isTrue())
3004             return true;
3005         Boolean b = expValue(exp);
3006         return b == null ? false : b;
3007     }
3008     private boolean isFalse(JCTree exp) {
3009         if (exp.type.isFalse())
3010             return true;
3011         Boolean b = expValue(exp);
3012         return b == null ? false : !b;
3013     }
3014     /* look for (in)equality relations involving null.
3015      * return true - if expression is always true
3016      *       false - if expression is always false
3017      *        null - if expression cannot be eliminated
3018      */
3019     private Boolean expValue(JCTree exp) {
3020         while (exp.hasTag(PARENS))
3021             exp = ((JCParens)exp).expr;
3022 
3023         boolean eq;
3024         switch (exp.getTag()) {
3025         case EQ: eq = true;  break;
3026         case NE: eq = false; break;
3027         default:
3028             return null;
3029         }
3030 
3031         // we have a JCBinary(EQ|NE)
3032         // check if we have two literals (constants or null)
3033         JCBinary b = (JCBinary)exp;
3034         if (b.lhs.type.hasTag(BOT)) return expValueIsNull(eq, b.rhs);
3035         if (b.rhs.type.hasTag(BOT)) return expValueIsNull(eq, b.lhs);
3036         return null;
3037     }
3038     private Boolean expValueIsNull(boolean eq, JCTree t) {
3039         if (t.type.hasTag(BOT)) return Boolean.valueOf(eq);
3040         if (t.hasTag(LITERAL))  return Boolean.valueOf(!eq);
3041         return null;
3042     }
3043 
3044     /** Visitor method for conditional expressions.
3045      */
3046     @Override
3047     public void visitConditional(JCConditional tree) {
3048         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3049         if (isTrue(cond) && noClassDefIn(tree.falsepart)) {
3050             result = convert(translate(tree.truepart, tree.type), tree.type);
3051             addPrunedInfo(cond);
3052         } else if (isFalse(cond) && noClassDefIn(tree.truepart)) {
3053             result = convert(translate(tree.falsepart, tree.type), tree.type);
3054             addPrunedInfo(cond);
3055         } else {
3056             // Condition is not a compile-time constant.
3057             tree.truepart = translate(tree.truepart, tree.type);
3058             tree.falsepart = translate(tree.falsepart, tree.type);
3059             result = tree;
3060         }
3061     }
3062 //where
3063     private JCExpression convert(JCExpression tree, Type pt) {
3064         if (tree.type == pt || tree.type.hasTag(BOT))
3065             return tree;
3066         JCExpression result = make_at(tree.pos()).TypeCast(make.Type(pt), tree);
3067         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
3068                                                        : pt;
3069         return result;
3070     }
3071 
3072     /** Visitor method for if statements.
3073      */
3074     public void visitIf(JCIf tree) {
3075         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3076         if (isTrue(cond) && noClassDefIn(tree.elsepart)) {
3077             result = translate(tree.thenpart);
3078             addPrunedInfo(cond);
3079         } else if (isFalse(cond) && noClassDefIn(tree.thenpart)) {
3080             if (tree.elsepart != null) {
3081                 result = translate(tree.elsepart);
3082             } else {
3083                 result = make.Skip();
3084             }
3085             addPrunedInfo(cond);
3086         } else {
3087             // Condition is not a compile-time constant.
3088             tree.thenpart = translate(tree.thenpart);
3089             tree.elsepart = translate(tree.elsepart);
3090             result = tree;
3091         }
3092     }
3093 
3094     /** Visitor method for assert statements. Translate them away.
3095      */
3096     public void visitAssert(JCAssert tree) {
3097         tree.cond = translate(tree.cond, syms.booleanType);
3098         if (!tree.cond.type.isTrue()) {
3099             JCExpression cond = assertFlagTest(tree.pos());
3100             List<JCExpression> exnArgs = (tree.detail == null) ?
3101                 List.nil() : List.of(translate(tree.detail));
3102             if (!tree.cond.type.isFalse()) {
3103                 cond = makeBinary
3104                     (AND,
3105                      cond,
3106                      makeUnary(NOT, tree.cond));
3107             }
3108             result =
3109                 make.If(cond,
3110                         make_at(tree).
3111                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
3112                         null);
3113         } else {
3114             result = make.Skip();
3115         }
3116     }
3117 
3118     public void visitApply(JCMethodInvocation tree) {
3119         Symbol meth = TreeInfo.symbol(tree.meth);
3120         List<Type> argtypes = meth.type.getParameterTypes();
3121         if (meth.name == names.init && meth.owner == syms.enumSym)
3122             argtypes = argtypes.tail.tail;
3123         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
3124         tree.varargsElement = null;
3125         Name methName = TreeInfo.name(tree.meth);
3126         if (meth.name==names.init) {
3127             // We are seeing a this(...) or super(...) constructor call.
3128             // If an access constructor is used, append null as a last argument.
3129             Symbol constructor = accessConstructor(tree.pos(), meth);
3130             if (constructor != meth) {
3131                 tree.args = tree.args.append(makeNull());
3132                 TreeInfo.setSymbol(tree.meth, constructor);
3133             }
3134 
3135             // If we are calling a constructor of a local class, add
3136             // free variables after explicit constructor arguments.
3137             ClassSymbol c = (ClassSymbol)constructor.owner;
3138             if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
3139                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
3140             }
3141 
3142             // If we are calling a constructor of an enum class, pass
3143             // along the name and ordinal arguments
3144             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
3145                 List<JCVariableDecl> params = currentMethodDef.params;
3146                 if (currentMethodSym.owner.hasOuterInstance())
3147                     params = params.tail; // drop this$n
3148                 tree.args = tree.args
3149                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
3150                     .prepend(make.Ident(params.head.sym)); // name
3151             }
3152 
3153             // If we are calling a constructor of a class with an outer
3154             // instance, and the call
3155             // is qualified, pass qualifier as first argument in front of
3156             // the explicit constructor arguments. If the call
3157             // is not qualified, pass the correct outer instance as
3158             // first argument. If we are a static class, there is no
3159             // such outer instance, so generate an error.
3160             if (c.hasOuterInstance()) {
3161                 JCExpression thisArg;
3162                 if (tree.meth.hasTag(SELECT)) {
3163                     thisArg = attr.
3164                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
3165                     tree.meth = make.Ident(constructor);
3166                     ((JCIdent) tree.meth).name = methName;
3167                 } else if (c.isDirectlyOrIndirectlyLocal() || methName == names._this){
3168                     // local class or this() call
3169                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
3170                 } else if (currentClass.isStatic()) {
3171                     // super() call from static nested class - invalid
3172                     log.error(tree.pos(),
3173                         Errors.NoEnclInstanceOfTypeInScope(c.type.getEnclosingType().tsym));
3174                     thisArg = make.Literal(BOT, null).setType(syms.botType);
3175                 } else {
3176                     // super() call of nested class - never pick 'this'
3177                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
3178                 }
3179                 tree.args = tree.args.prepend(thisArg);
3180             }
3181         } else {
3182             // We are seeing a normal method invocation; translate this as usual.
3183             tree.meth = translate(tree.meth);
3184 
3185             // If the translated method itself is an Apply tree, we are
3186             // seeing an access method invocation. In this case, append
3187             // the method arguments to the arguments of the access method.
3188             if (tree.meth.hasTag(APPLY)) {
3189                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
3190                 app.args = tree.args.prependList(app.args);
3191                 result = app;
3192                 return;
3193             }
3194         }
3195         result = tree;
3196     }
3197 
3198     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
3199         List<JCExpression> args = _args;
3200         if (parameters.isEmpty()) return args;
3201         boolean anyChanges = false;
3202         ListBuffer<JCExpression> result = new ListBuffer<>();
3203         while (parameters.tail.nonEmpty()) {
3204             JCExpression arg = translate(args.head, parameters.head);
3205             anyChanges |= (arg != args.head);
3206             result.append(arg);
3207             args = args.tail;
3208             parameters = parameters.tail;
3209         }
3210         Type parameter = parameters.head;
3211         if (varargsElement != null) {
3212             anyChanges = true;
3213             ListBuffer<JCExpression> elems = new ListBuffer<>();
3214             while (args.nonEmpty()) {
3215                 JCExpression arg = translate(args.head, varargsElement);
3216                 elems.append(arg);
3217                 args = args.tail;
3218             }
3219             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
3220                                                List.nil(),
3221                                                elems.toList());
3222             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
3223             result.append(boxedArgs);
3224         } else {
3225             if (args.length() != 1) throw new AssertionError(args);
3226             JCExpression arg = translate(args.head, parameter);
3227             anyChanges |= (arg != args.head);
3228             result.append(arg);
3229             if (!anyChanges) return _args;
3230         }
3231         return result.toList();
3232     }
3233 
3234     /** Expand a boxing or unboxing conversion if needed. */
3235     @SuppressWarnings("unchecked") // XXX unchecked
3236     <T extends JCExpression> T boxIfNeeded(T tree, Type type) {
3237         boolean havePrimitive = tree.type.isPrimitive();
3238         if (havePrimitive == type.isPrimitive())
3239             return tree;
3240         if (havePrimitive) {
3241             Type unboxedTarget = types.unboxedType(type);
3242             if (!unboxedTarget.hasTag(NONE)) {
3243                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
3244                     tree.type = unboxedTarget.constType(tree.type.constValue());
3245                 return (T)boxPrimitive(tree, types.erasure(type));
3246             } else {
3247                 tree = (T)boxPrimitive(tree);
3248             }
3249         } else {
3250             tree = (T)unbox(tree, type);
3251         }
3252         return tree;
3253     }
3254 
3255     /** Box up a single primitive expression. */
3256     JCExpression boxPrimitive(JCExpression tree) {
3257         return boxPrimitive(tree, types.boxedClass(tree.type).type);
3258     }
3259 
3260     /** Box up a single primitive expression. */
3261     JCExpression boxPrimitive(JCExpression tree, Type box) {
3262         make_at(tree.pos());
3263         Symbol valueOfSym = lookupMethod(tree.pos(),
3264                                          names.valueOf,
3265                                          box,
3266                                          List.<Type>nil()
3267                                          .prepend(tree.type));
3268         return make.App(make.QualIdent(valueOfSym), List.of(tree));
3269     }
3270 
3271     /** Unbox an object to a primitive value. */
3272     JCExpression unbox(JCExpression tree, Type primitive) {
3273         Type unboxedType = types.unboxedType(tree.type);
3274         if (unboxedType.hasTag(NONE)) {
3275             unboxedType = primitive;
3276             if (!unboxedType.isPrimitive())
3277                 throw new AssertionError(unboxedType);
3278             make_at(tree.pos());
3279             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
3280         } else {
3281             // There must be a conversion from unboxedType to primitive.
3282             if (!types.isSubtype(unboxedType, primitive))
3283                 throw new AssertionError(tree);
3284         }
3285         make_at(tree.pos());
3286         Symbol valueSym = lookupMethod(tree.pos(),
3287                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
3288                                        tree.type,
3289                                        List.nil());
3290         return make.App(make.Select(tree, valueSym));
3291     }
3292 
3293     /** Visitor method for parenthesized expressions.
3294      *  If the subexpression has changed, omit the parens.
3295      */
3296     public void visitParens(JCParens tree) {
3297         JCTree expr = translate(tree.expr);
3298         result = ((expr == tree.expr) ? tree : expr);
3299     }
3300 
3301     public void visitIndexed(JCArrayAccess tree) {
3302         tree.indexed = translate(tree.indexed);
3303         tree.index = translate(tree.index, syms.intType);
3304         result = tree;
3305     }
3306 
3307     public void visitAssign(JCAssign tree) {
3308         tree.lhs = translate(tree.lhs, tree);
3309         tree.rhs = translate(tree.rhs, tree.lhs.type);
3310 
3311         // If translated left hand side is an Apply, we are
3312         // seeing an access method invocation. In this case, append
3313         // right hand side as last argument of the access method.
3314         if (tree.lhs.hasTag(APPLY)) {
3315             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3316             app.args = List.of(tree.rhs).prependList(app.args);
3317             result = app;
3318         } else {
3319             result = tree;
3320         }
3321     }
3322 
3323     public void visitAssignop(final JCAssignOp tree) {
3324         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
3325             tree.operator.type.getReturnType().isPrimitive();
3326 
3327         AssignopDependencyScanner depScanner = new AssignopDependencyScanner(tree);
3328         depScanner.scan(tree.rhs);
3329 
3330         if (boxingReq || depScanner.dependencyFound) {
3331             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
3332             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
3333             // (but without recomputing x)
3334             JCTree newTree = abstractLval(tree.lhs, lhs -> {
3335                 Tag newTag = tree.getTag().noAssignOp();
3336                 // Erasure (TransTypes) can change the type of
3337                 // tree.lhs.  However, we can still get the
3338                 // unerased type of tree.lhs as it is stored
3339                 // in tree.type in Attr.
3340                 OperatorSymbol newOperator = operators.resolveBinary(tree,
3341                                                               newTag,
3342                                                               tree.type,
3343                                                               tree.rhs.type);
3344                 //Need to use the "lhs" at two places, once on the future left hand side
3345                 //and once in the future binary operator. But further processing may change
3346                 //the components of the tree in place (see visitSelect for e.g. <Class>.super.<ident>),
3347                 //so cloning the tree to avoid interference between the uses:
3348                 JCExpression expr = (JCExpression) lhs.clone();
3349                 if (expr.type != tree.type)
3350                     expr = make.TypeCast(tree.type, expr);
3351                 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
3352                 opResult.operator = newOperator;
3353                 opResult.type = newOperator.type.getReturnType();
3354                 JCExpression newRhs = boxingReq ?
3355                     make.TypeCast(types.unboxedType(tree.type), opResult) :
3356                     opResult;
3357                 return make.Assign(lhs, newRhs).setType(tree.type);
3358             });
3359             result = translate(newTree);
3360             return;
3361         }
3362         tree.lhs = translate(tree.lhs, tree);
3363         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
3364 
3365         // If translated left hand side is an Apply, we are
3366         // seeing an access method invocation. In this case, append
3367         // right hand side as last argument of the access method.
3368         if (tree.lhs.hasTag(APPLY)) {
3369             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3370             // if operation is a += on strings,
3371             // make sure to convert argument to string
3372             JCExpression rhs = tree.operator.opcode == string_add
3373               ? makeString(tree.rhs)
3374               : tree.rhs;
3375             app.args = List.of(rhs).prependList(app.args);
3376             result = app;
3377         } else {
3378             result = tree;
3379         }
3380     }
3381 
3382     class AssignopDependencyScanner extends TreeScanner {
3383 
3384         Symbol sym;
3385         boolean dependencyFound = false;
3386 
3387         AssignopDependencyScanner(JCAssignOp tree) {
3388             this.sym = TreeInfo.symbol(tree.lhs);
3389         }
3390 
3391         @Override
3392         public void scan(JCTree tree) {
3393             if (tree != null && sym != null) {
3394                 tree.accept(this);
3395             }
3396         }
3397 
3398         @Override
3399         public void visitAssignop(JCAssignOp tree) {
3400             if (TreeInfo.symbol(tree.lhs) == sym) {
3401                 dependencyFound = true;
3402                 return;
3403             }
3404             super.visitAssignop(tree);
3405         }
3406 
3407         @Override
3408         public void visitUnary(JCUnary tree) {
3409             if (TreeInfo.symbol(tree.arg) == sym) {
3410                 dependencyFound = true;
3411                 return;
3412             }
3413             super.visitUnary(tree);
3414         }
3415     }
3416 
3417     /** Lower a tree of the form e++ or e-- where e is an object type */
3418     JCExpression lowerBoxedPostop(final JCUnary tree) {
3419         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
3420         // or
3421         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
3422         // where OP is += or -=
3423         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
3424         return abstractLval(tree.arg, tmp1 -> abstractRval(tmp1, tree.arg.type, tmp2 -> {
3425             Tag opcode = (tree.hasTag(POSTINC))
3426                 ? PLUS_ASG : MINUS_ASG;
3427             //"tmp1" and "tmp2" may refer to the same instance
3428             //(for e.g. <Class>.super.<ident>). But further processing may
3429             //change the components of the tree in place (see visitSelect),
3430             //so cloning the tree to avoid interference between the two uses:
3431             JCExpression lhs = (JCExpression)tmp1.clone();
3432             lhs = cast
3433                 ? make.TypeCast(tree.arg.type, lhs)
3434                 : lhs;
3435             JCExpression update = makeAssignop(opcode,
3436                                          lhs,
3437                                          make.Literal(1));
3438             return makeComma(update, tmp2);
3439         }));
3440     }
3441 
3442     public void visitUnary(JCUnary tree) {
3443         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
3444         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3445             switch(tree.getTag()) {
3446             case PREINC:            // ++ e
3447                     // translate to e += 1
3448             case PREDEC:            // -- e
3449                     // translate to e -= 1
3450                 {
3451                     JCTree.Tag opcode = (tree.hasTag(PREINC))
3452                         ? PLUS_ASG : MINUS_ASG;
3453                     JCAssignOp newTree = makeAssignop(opcode,
3454                                                     tree.arg,
3455                                                     make.Literal(1));
3456                     result = translate(newTree, tree.type);
3457                     return;
3458                 }
3459             case POSTINC:           // e ++
3460             case POSTDEC:           // e --
3461                 {
3462                     result = translate(lowerBoxedPostop(tree), tree.type);
3463                     return;
3464                 }
3465             }
3466             throw new AssertionError(tree);
3467         }
3468 
3469         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3470 
3471         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
3472             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3473         }
3474 
3475         // If translated left hand side is an Apply, we are
3476         // seeing an access method invocation. In this case, return
3477         // that access method invocation as result.
3478         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
3479             result = tree.arg;
3480         } else {
3481             result = tree;
3482         }
3483     }
3484 
3485     public void visitBinary(JCBinary tree) {
3486         List<Type> formals = tree.operator.type.getParameterTypes();
3487         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3488         switch (tree.getTag()) {
3489         case OR:
3490             if (isTrue(lhs)) {
3491                 result = lhs;
3492                 return;
3493             }
3494             if (isFalse(lhs)) {
3495                 result = translate(tree.rhs, formals.tail.head);
3496                 return;
3497             }
3498             break;
3499         case AND:
3500             if (isFalse(lhs)) {
3501                 result = lhs;
3502                 return;
3503             }
3504             if (isTrue(lhs)) {
3505                 result = translate(tree.rhs, formals.tail.head);
3506                 return;
3507             }
3508             break;
3509         }
3510         tree.rhs = translate(tree.rhs, formals.tail.head);
3511         result = tree;
3512     }
3513 
3514     public void visitIdent(JCIdent tree) {
3515         result = access(tree.sym, tree, enclOp, false);
3516     }
3517 
3518     /** Translate away the foreach loop.  */
3519     public void visitForeachLoop(JCEnhancedForLoop tree) {
3520         if (types.elemtype(tree.expr.type) == null)
3521             visitIterableForeachLoop(tree);
3522         else
3523             visitArrayForeachLoop(tree);
3524     }
3525         // where
3526         /**
3527          * A statement of the form
3528          *
3529          * <pre>
3530          *     for ( T v : arrayexpr ) stmt;
3531          * </pre>
3532          *
3533          * (where arrayexpr is of an array type) gets translated to
3534          *
3535          * <pre>{@code
3536          *     for ( { arraytype #arr = arrayexpr;
3537          *             int #len = array.length;
3538          *             int #i = 0; };
3539          *           #i < #len; i$++ ) {
3540          *         T v = arr$[#i];
3541          *         stmt;
3542          *     }
3543          * }</pre>
3544          *
3545          * where #arr, #len, and #i are freshly named synthetic local variables.
3546          */
3547         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3548             make_at(tree.expr.pos());
3549             VarSymbol arraycache = new VarSymbol(SYNTHETIC,
3550                                                  names.fromString("arr" + target.syntheticNameChar()),
3551                                                  tree.expr.type,
3552                                                  currentMethodSym);
3553             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3554             VarSymbol lencache = new VarSymbol(SYNTHETIC,
3555                                                names.fromString("len" + target.syntheticNameChar()),
3556                                                syms.intType,
3557                                                currentMethodSym);
3558             JCStatement lencachedef = make.
3559                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3560             VarSymbol index = new VarSymbol(SYNTHETIC,
3561                                             names.fromString("i" + target.syntheticNameChar()),
3562                                             syms.intType,
3563                                             currentMethodSym);
3564 
3565             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3566             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3567 
3568             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3569             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
3570 
3571             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
3572 
3573             Type elemtype = types.elemtype(tree.expr.type);
3574             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3575                                                     make.Ident(index)).setType(elemtype);
3576             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3577                                                   tree.var.name,
3578                                                   tree.var.vartype,
3579                                                   loopvarinit).setType(tree.var.type);
3580             loopvardef.sym = tree.var.sym;
3581             JCBlock body = make.
3582                 Block(0, List.of(loopvardef, tree.body));
3583 
3584             result = translate(make.
3585                                ForLoop(loopinit,
3586                                        cond,
3587                                        List.of(step),
3588                                        body));
3589             patchTargets(body, tree, result);
3590         }
3591         /** Patch up break and continue targets. */
3592         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3593             class Patcher extends TreeScanner {
3594                 public void visitBreak(JCBreak tree) {
3595                     if (tree.target == src)
3596                         tree.target = dest;
3597                 }
3598                 public void visitYield(JCYield tree) {
3599                     if (tree.target == src)
3600                         tree.target = dest;
3601                     scan(tree.value);
3602                 }
3603                 public void visitContinue(JCContinue tree) {
3604                     if (tree.target == src)
3605                         tree.target = dest;
3606                 }
3607                 public void visitClassDef(JCClassDecl tree) {}
3608             }
3609             new Patcher().scan(body);
3610         }
3611         /**
3612          * A statement of the form
3613          *
3614          * <pre>
3615          *     for ( T v : coll ) stmt ;
3616          * </pre>
3617          *
3618          * (where coll implements {@code Iterable<? extends T>}) gets translated to
3619          *
3620          * <pre>{@code
3621          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3622          *         T v = (T) #i.next();
3623          *         stmt;
3624          *     }
3625          * }</pre>
3626          *
3627          * where #i is a freshly named synthetic local variable.
3628          */
3629         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3630             make_at(tree.expr.pos());
3631             Type iteratorTarget = syms.objectType;
3632             Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
3633                                               syms.iterableType.tsym);
3634             if (iterableType.getTypeArguments().nonEmpty())
3635                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3636             tree.expr.type = types.erasure(types.skipTypeVars(tree.expr.type, false));
3637             tree.expr = transTypes.coerce(attrEnv, tree.expr, types.erasure(iterableType));
3638             Symbol iterator = lookupMethod(tree.expr.pos(),
3639                                            names.iterator,
3640                                            tree.expr.type,
3641                                            List.nil());
3642             Assert.check(types.isSameType(types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)), types.erasure(syms.iteratorType)));
3643             VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
3644                                             types.erasure(syms.iteratorType),
3645                                             currentMethodSym);
3646 
3647              JCStatement init = make.
3648                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
3649                      .setType(types.erasure(iterator.type))));
3650 
3651             Symbol hasNext = lookupMethod(tree.expr.pos(),
3652                                           names.hasNext,
3653                                           itvar.type,
3654                                           List.nil());
3655             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3656             Symbol next = lookupMethod(tree.expr.pos(),
3657                                        names.next,
3658                                        itvar.type,
3659                                        List.nil());
3660             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3661             if (tree.var.type.isPrimitive())
3662                 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
3663             else
3664                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3665             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3666                                                   tree.var.name,
3667                                                   tree.var.vartype,
3668                                                   vardefinit).setType(tree.var.type);
3669             indexDef.sym = tree.var.sym;
3670             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3671             body.endpos = TreeInfo.endPos(tree.body);
3672             result = translate(make.
3673                 ForLoop(List.of(init),
3674                         cond,
3675                         List.nil(),
3676                         body));
3677             patchTargets(body, tree, result);
3678         }
3679 
3680     public void visitVarDef(JCVariableDecl tree) {
3681         MethodSymbol oldMethodSym = currentMethodSym;
3682         tree.mods = translate(tree.mods);
3683         tree.vartype = translate(tree.vartype);
3684         if (currentMethodSym == null) {
3685             // A class or instance field initializer.
3686             currentMethodSym =
3687                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3688                                  names.empty, null,
3689                                  currentClass);
3690         }
3691         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3692         result = tree;
3693         currentMethodSym = oldMethodSym;
3694     }
3695 
3696     public void visitBlock(JCBlock tree) {
3697         MethodSymbol oldMethodSym = currentMethodSym;
3698         if (currentMethodSym == null) {
3699             // Block is a static or instance initializer.
3700             currentMethodSym =
3701                 new MethodSymbol(tree.flags | BLOCK,
3702                                  names.empty, null,
3703                                  currentClass);
3704         }
3705         super.visitBlock(tree);
3706         currentMethodSym = oldMethodSym;
3707     }
3708 
3709     public void visitDoLoop(JCDoWhileLoop tree) {
3710         tree.body = translate(tree.body);
3711         tree.cond = translate(tree.cond, syms.booleanType);
3712         result = tree;
3713     }
3714 
3715     public void visitWhileLoop(JCWhileLoop tree) {
3716         tree.cond = translate(tree.cond, syms.booleanType);
3717         tree.body = translate(tree.body);
3718         result = tree;
3719     }
3720 
3721     public void visitForLoop(JCForLoop tree) {
3722         tree.init = translate(tree.init);
3723         if (tree.cond != null)
3724             tree.cond = translate(tree.cond, syms.booleanType);
3725         tree.step = translate(tree.step);
3726         tree.body = translate(tree.body);
3727         result = tree;
3728     }
3729 
3730     public void visitReturn(JCReturn tree) {
3731         if (tree.expr != null)
3732             tree.expr = translate(tree.expr,
3733                                   types.erasure(currentMethodDef
3734                                                 .restype.type));
3735         result = tree;
3736     }
3737 
3738     public void visitSwitch(JCSwitch tree) {
3739         List<JCCase> cases = tree.patternSwitch ? addDefaultIfNeeded(tree.patternSwitch,
3740                                                                      tree.wasEnumSelector,
3741                                                                      tree.cases)
3742                                                 : tree.cases;
3743         handleSwitch(tree, tree.selector, cases);
3744     }
3745 
3746     @Override
3747     public void visitSwitchExpression(JCSwitchExpression tree) {
3748         List<JCCase> cases = addDefaultIfNeeded(tree.patternSwitch, tree.wasEnumSelector, tree.cases);
3749         handleSwitch(tree, tree.selector, cases);
3750     }
3751 
3752     private List<JCCase> addDefaultIfNeeded(boolean patternSwitch, boolean wasEnumSelector,
3753                                             List<JCCase> cases) {
3754         if (cases.stream().flatMap(c -> c.labels.stream()).noneMatch(p -> p.hasTag(Tag.DEFAULTCASELABEL))) {
3755             boolean matchException = useMatchException;
3756             matchException |= patternSwitch && !wasEnumSelector;
3757             Type exception = matchException ? syms.matchExceptionType
3758                                             : syms.incompatibleClassChangeErrorType;
3759             List<JCExpression> params = matchException ? List.of(makeNull(), makeNull())
3760                                                        : List.nil();
3761             JCThrow thr = make.Throw(makeNewClass(exception, params));
3762             JCCase c = make.Case(JCCase.STATEMENT, List.of(make.DefaultCaseLabel()), null, List.of(thr), null);
3763             cases = cases.prepend(c);
3764         }
3765 
3766         return cases;
3767     }
3768 
3769     private void handleSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
3770         //expand multiple label cases:
3771         ListBuffer<JCCase> convertedCases = new ListBuffer<>();
3772 
3773         for (JCCase c : cases) {
3774             switch (c.labels.size()) {
3775                 case 0: //default
3776                 case 1: //single label
3777                     convertedCases.append(c);
3778                     break;
3779                 default: //multiple labels, expand:
3780                     //case C1, C2, C3: ...
3781                     //=>
3782                     //case C1:
3783                     //case C2:
3784                     //case C3: ...
3785                     List<JCCaseLabel> patterns = c.labels;
3786                     while (patterns.tail.nonEmpty()) {
3787                         convertedCases.append(make_at(c.pos()).Case(JCCase.STATEMENT,
3788                                                            List.of(patterns.head),
3789                                                            null,
3790                                                            List.nil(),
3791                                                            null));
3792                         patterns = patterns.tail;
3793                     }
3794                     c.labels = patterns;
3795                     convertedCases.append(c);
3796                     break;
3797             }
3798         }
3799 
3800         for (JCCase c : convertedCases) {
3801             if (c.caseKind == JCCase.RULE && c.completesNormally) {
3802                 JCBreak b = make.at(TreeInfo.endPos(c.stats.last())).Break(null);
3803                 b.target = tree;
3804                 c.stats = c.stats.append(b);
3805             }
3806         }
3807 
3808         cases = convertedCases.toList();
3809 
3810         Type selsuper = types.supertype(selector.type);
3811         boolean enumSwitch = selsuper != null &&
3812             (selector.type.tsym.flags() & ENUM) != 0;
3813         boolean stringSwitch = selsuper != null &&
3814             types.isSameType(selector.type, syms.stringType);
3815         boolean boxedSwitch = !enumSwitch && !stringSwitch && !selector.type.isPrimitive();
3816         selector = translate(selector, selector.type);
3817         cases = translateCases(cases);
3818         if (tree.hasTag(SWITCH)) {
3819             ((JCSwitch) tree).selector = selector;
3820             ((JCSwitch) tree).cases = cases;
3821         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
3822             ((JCSwitchExpression) tree).selector = selector;
3823             ((JCSwitchExpression) tree).cases = cases;
3824         } else {
3825             Assert.error();
3826         }
3827         if (enumSwitch) {
3828             result = visitEnumSwitch(tree, selector, cases);
3829         } else if (stringSwitch) {
3830             result = visitStringSwitch(tree, selector, cases);
3831         } else if (boxedSwitch) {
3832             //An switch over boxed primitive. Pattern matching switches are already translated
3833             //by TransPatterns, so all non-primitive types are only boxed primitives:
3834             result = visitBoxedPrimitiveSwitch(tree, selector, cases);
3835         } else {
3836             result = tree;
3837         }
3838     }
3839 
3840     public JCTree visitEnumSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
3841         TypeSymbol enumSym = selector.type.tsym;
3842         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3843         make_at(tree.pos());
3844         Symbol ordinalMethod = lookupMethod(tree.pos(),
3845                                             names.ordinal,
3846                                             selector.type,
3847                                             List.nil());
3848         JCExpression newSelector;
3849 
3850         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
3851             //for enum switches with case null, do:
3852             //switch ($selector != null ? $mapVar[$selector.ordinal()] : -1) {...}
3853             //replacing case null with case -1:
3854             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3855                                                names.fromString("s" + tree.pos + this.target.syntheticNameChar()),
3856                                                selector.type,
3857                                                currentMethodSym);
3858             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
3859             newSelector = map.switchValue(
3860                     make.App(make.Select(make.Ident(dollar_s),
3861                             ordinalMethod)));
3862             newSelector =
3863                     make.LetExpr(List.of(var),
3864                                  make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
3865                                                   newSelector,
3866                                                   makeLit(syms.intType, -1))
3867                                      .setType(newSelector.type))
3868                         .setType(newSelector.type);
3869         } else {
3870             newSelector = map.switchValue(
3871                     make.App(make.Select(selector,
3872                             ordinalMethod)));
3873         }
3874         ListBuffer<JCCase> newCases = new ListBuffer<>();
3875         for (JCCase c : cases) {
3876             if (c.labels.head.hasTag(CONSTANTCASELABEL)) {
3877                 JCExpression pat;
3878                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
3879                     pat = makeLit(syms.intType, -1);
3880                 } else {
3881                     VarSymbol label = (VarSymbol)TreeInfo.symbol(((JCConstantCaseLabel) c.labels.head).expr);
3882                     pat = map.caseValue(label);
3883                 }
3884                 newCases.append(make.Case(JCCase.STATEMENT, List.of(make.ConstantCaseLabel(pat)), null, c.stats, null));
3885             } else {
3886                 newCases.append(c);
3887             }
3888         }
3889         JCTree enumSwitch;
3890         if (tree.hasTag(SWITCH)) {
3891             enumSwitch = make.Switch(newSelector, newCases.toList());
3892         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
3893             enumSwitch = make.SwitchExpression(newSelector, newCases.toList());
3894             enumSwitch.setType(tree.type);
3895         } else {
3896             Assert.error();
3897             throw new AssertionError();
3898         }
3899         patchTargets(enumSwitch, tree, enumSwitch);
3900         return enumSwitch;
3901     }
3902 
3903     public JCTree visitStringSwitch(JCTree tree, JCExpression selector, List<JCCase> caseList) {
3904         int alternatives = caseList.size();
3905 
3906         if (alternatives == 0) { // Strange but legal possibility (only legal for switch statement)
3907             return make.at(tree.pos()).Exec(attr.makeNullCheck(selector));
3908         } else {
3909             /*
3910              * The general approach used is to translate a single
3911              * string switch statement into a series of two chained
3912              * switch statements: the first a synthesized statement
3913              * switching on the argument string's hash value and
3914              * computing a string's position in the list of original
3915              * case labels, if any, followed by a second switch on the
3916              * computed integer value.  The second switch has the same
3917              * code structure as the original string switch statement
3918              * except that the string case labels are replaced with
3919              * positional integer constants starting at 0.
3920              *
3921              * The first switch statement can be thought of as an
3922              * inlined map from strings to their position in the case
3923              * label list.  An alternate implementation would use an
3924              * actual Map for this purpose, as done for enum switches.
3925              *
3926              * With some additional effort, it would be possible to
3927              * use a single switch statement on the hash code of the
3928              * argument, but care would need to be taken to preserve
3929              * the proper control flow in the presence of hash
3930              * collisions and other complications, such as
3931              * fallthroughs.  Switch statements with one or two
3932              * alternatives could also be specially translated into
3933              * if-then statements to omit the computation of the hash
3934              * code.
3935              *
3936              * The generated code assumes that the hashing algorithm
3937              * of String is the same in the compilation environment as
3938              * in the environment the code will run in.  The string
3939              * hashing algorithm in the SE JDK has been unchanged
3940              * since at least JDK 1.2.  Since the algorithm has been
3941              * specified since that release as well, it is very
3942              * unlikely to be changed in the future.
3943              *
3944              * Different hashing algorithms, such as the length of the
3945              * strings or a perfect hashing algorithm over the
3946              * particular set of case labels, could potentially be
3947              * used instead of String.hashCode.
3948              */
3949 
3950             ListBuffer<JCStatement> stmtList = new ListBuffer<>();
3951 
3952             // Map from String case labels to their original position in
3953             // the list of case labels.
3954             Map<String, Integer> caseLabelToPosition = new LinkedHashMap<>(alternatives + 1, 1.0f);
3955 
3956             // Map of hash codes to the string case labels having that hashCode.
3957             Map<Integer, Set<String>> hashToString = new LinkedHashMap<>(alternatives + 1, 1.0f);
3958 
3959             int casePosition = 0;
3960             JCCase nullCase = null;
3961             int nullCaseLabel = -1;
3962 
3963             for(JCCase oneCase : caseList) {
3964                 if (oneCase.labels.head.hasTag(CONSTANTCASELABEL)) {
3965                     if (TreeInfo.isNullCaseLabel(oneCase.labels.head)) {
3966                         nullCase = oneCase;
3967                         nullCaseLabel = casePosition;
3968                     } else {
3969                         JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
3970                         String labelExpr = (String) expression.type.constValue();
3971                         Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3972                         Assert.checkNull(mapping);
3973                         int hashCode = labelExpr.hashCode();
3974 
3975                         Set<String> stringSet = hashToString.get(hashCode);
3976                         if (stringSet == null) {
3977                             stringSet = new LinkedHashSet<>(1, 1.0f);
3978                             stringSet.add(labelExpr);
3979                             hashToString.put(hashCode, stringSet);
3980                         } else {
3981                             boolean added = stringSet.add(labelExpr);
3982                             Assert.check(added);
3983                         }
3984                     }
3985                 }
3986                 casePosition++;
3987             }
3988 
3989             // Synthesize a switch statement that has the effect of
3990             // mapping from a string to the integer position of that
3991             // string in the list of case labels.  This is done by
3992             // switching on the hashCode of the string followed by an
3993             // if-then-else chain comparing the input for equality
3994             // with all the case labels having that hash value.
3995 
3996             /*
3997              * s$ = top of stack;
3998              * tmp$ = -1;
3999              * switch($s.hashCode()) {
4000              *     case caseLabel.hashCode:
4001              *         if (s$.equals("caseLabel_1")
4002              *           tmp$ = caseLabelToPosition("caseLabel_1");
4003              *         else if (s$.equals("caseLabel_2"))
4004              *           tmp$ = caseLabelToPosition("caseLabel_2");
4005              *         ...
4006              *         break;
4007              * ...
4008              * }
4009              */
4010 
4011             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4012                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
4013                                                syms.stringType,
4014                                                currentMethodSym);
4015             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type));
4016 
4017             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
4018                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
4019                                                  syms.intType,
4020                                                  currentMethodSym);
4021             JCVariableDecl dollar_tmp_def =
4022                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
4023             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
4024             stmtList.append(dollar_tmp_def);
4025             ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
4026             // hashCode will trigger nullcheck on original switch expression
4027             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
4028                                                        names.hashCode,
4029                                                        List.nil()).setType(syms.intType);
4030             JCSwitch switch1 = make.Switch(hashCodeCall,
4031                                         caseBuffer.toList());
4032             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
4033                 int hashCode = entry.getKey();
4034                 Set<String> stringsWithHashCode = entry.getValue();
4035                 Assert.check(stringsWithHashCode.size() >= 1);
4036 
4037                 JCStatement elsepart = null;
4038                 for(String caseLabel : stringsWithHashCode ) {
4039                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
4040                                                                    names.equals,
4041                                                                    List.of(make.Literal(caseLabel)));
4042                     elsepart = make.If(stringEqualsCall,
4043                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
4044                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
4045                                                  setType(dollar_tmp.type)),
4046                                        elsepart);
4047                 }
4048 
4049                 ListBuffer<JCStatement> lb = new ListBuffer<>();
4050                 JCBreak breakStmt = make.Break(null);
4051                 breakStmt.target = switch1;
4052                 lb.append(elsepart).append(breakStmt);
4053 
4054                 caseBuffer.append(make.Case(JCCase.STATEMENT,
4055                                             List.of(make.ConstantCaseLabel(make.Literal(hashCode))),
4056                                             null,
4057                                             lb.toList(),
4058                                             null));
4059             }
4060 
4061             switch1.cases = caseBuffer.toList();
4062 
4063             if (nullCase != null) {
4064                 stmtList.append(make.If(makeBinary(NE, make.Ident(dollar_s), makeNull()), switch1, make.Exec(make.Assign(make.Ident(dollar_tmp),
4065                                                              make.Literal(nullCaseLabel)).
4066                                                  setType(dollar_tmp.type))).setType(syms.intType));
4067             } else {
4068                 stmtList.append(switch1);
4069             }
4070 
4071             // Make isomorphic switch tree replacing string labels
4072             // with corresponding integer ones from the label to
4073             // position map.
4074 
4075             ListBuffer<JCCase> lb = new ListBuffer<>();
4076             for(JCCase oneCase : caseList ) {
4077                 boolean isDefault = !oneCase.labels.head.hasTag(CONSTANTCASELABEL);
4078                 JCExpression caseExpr;
4079                 if (isDefault)
4080                     caseExpr = null;
4081                 else if (oneCase == nullCase) {
4082                     caseExpr = make.Literal(nullCaseLabel);
4083                 } else {
4084                     JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
4085                     String name = (String) TreeInfo.skipParens(expression)
4086                                                    .type.constValue();
4087                     caseExpr = make.Literal(caseLabelToPosition.get(name));
4088                 }
4089 
4090                 lb.append(make.Case(JCCase.STATEMENT, caseExpr == null ? List.of(make.DefaultCaseLabel())
4091                                                                        : List.of(make.ConstantCaseLabel(caseExpr)),
4092                                     null,
4093                                     oneCase.stats, null));
4094             }
4095 
4096             if (tree.hasTag(SWITCH)) {
4097                 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
4098                 // Rewire up old unlabeled break statements to the
4099                 // replacement switch being created.
4100                 patchTargets(switch2, tree, switch2);
4101 
4102                 stmtList.append(switch2);
4103 
4104                 JCBlock res = make.Block(0L, stmtList.toList());
4105                 res.endpos = TreeInfo.endPos(tree);
4106                 return res;
4107             } else {
4108                 JCSwitchExpression switch2 = make.SwitchExpression(make.Ident(dollar_tmp), lb.toList());
4109 
4110                 // Rewire up old unlabeled break statements to the
4111                 // replacement switch being created.
4112                 patchTargets(switch2, tree, switch2);
4113 
4114                 switch2.setType(tree.type);
4115 
4116                 LetExpr res = make.LetExpr(stmtList.toList(), switch2);
4117 
4118                 res.needsCond = true;
4119                 res.setType(tree.type);
4120 
4121                 return res;
4122             }
4123         }
4124     }
4125 
4126     private JCTree visitBoxedPrimitiveSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
4127         JCExpression newSelector;
4128 
4129         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
4130             //a switch over a boxed primitive, with a null case. Pick two constants that are
4131             //not used by any branch in the case (c1 and c2), close to other constants that are
4132             //used in the switch. Then do:
4133             //switch ($selector != null ? $selector != c1 ? $selector : c2 : c1) {...}
4134             //replacing case null with case c1
4135             Set<Integer> constants = new LinkedHashSet<>();
4136             JCCase nullCase = null;
4137 
4138             for (JCCase c : cases) {
4139                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
4140                     nullCase = c;
4141                 } else if (!c.labels.head.hasTag(DEFAULTCASELABEL)) {
4142                     constants.add((int) ((JCConstantCaseLabel) c.labels.head).expr.type.constValue());
4143                 }
4144             }
4145 
4146             Assert.checkNonNull(nullCase);
4147 
4148             int nullValue = constants.isEmpty() ? 0 : constants.iterator().next();
4149 
4150             while (constants.contains(nullValue)) nullValue++;
4151 
4152             constants.add(nullValue);
4153             nullCase.labels.head = make.ConstantCaseLabel(makeLit(syms.intType, nullValue));
4154 
4155             int replacementValue = nullValue;
4156 
4157             while (constants.contains(replacementValue)) replacementValue++;
4158 
4159             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4160                                                names.fromString("s" + tree.pos + this.target.syntheticNameChar()),
4161                                                selector.type,
4162                                                currentMethodSym);
4163             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
4164             JCExpression nullValueReplacement =
4165                     make.Conditional(makeBinary(NE,
4166                                                  unbox(make.Ident(dollar_s), syms.intType),
4167                                                  makeLit(syms.intType, nullValue)),
4168                                      unbox(make.Ident(dollar_s), syms.intType),
4169                                      makeLit(syms.intType, replacementValue))
4170                         .setType(syms.intType);
4171             JCExpression nullCheck =
4172                     make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
4173                                      nullValueReplacement,
4174                                      makeLit(syms.intType, nullValue))
4175                         .setType(syms.intType);
4176             newSelector = make.LetExpr(List.of(var), nullCheck).setType(syms.intType);
4177         } else {
4178             newSelector = unbox(selector, syms.intType);
4179         }
4180 
4181         if (tree.hasTag(SWITCH)) {
4182             ((JCSwitch) tree).selector = newSelector;
4183         } else {
4184             ((JCSwitchExpression) tree).selector = newSelector;
4185         }
4186 
4187         return tree;
4188     }
4189 
4190     @Override
4191     public void visitBreak(JCBreak tree) {
4192         result = tree;
4193     }
4194 
4195     @Override
4196     public void visitYield(JCYield tree) {
4197         tree.value = translate(tree.value, tree.target.type);
4198         result = tree;
4199     }
4200 
4201     public void visitNewArray(JCNewArray tree) {
4202         tree.elemtype = translate(tree.elemtype);
4203         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
4204             if (t.head != null) t.head = translate(t.head, syms.intType);
4205         tree.elems = translate(tree.elems, types.elemtype(tree.type));
4206         result = tree;
4207     }
4208 
4209     public void visitSelect(JCFieldAccess tree) {
4210         // need to special case-access of the form C.super.x
4211         // these will always need an access method, unless C
4212         // is a default interface subclassed by the current class.
4213         boolean qualifiedSuperAccess =
4214             tree.selected.hasTag(SELECT) &&
4215             TreeInfo.name(tree.selected) == names._super &&
4216             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
4217         tree.selected = translate(tree.selected);
4218         if (tree.name == names._class) {
4219             result = classOf(tree.selected);
4220         }
4221         else if (tree.name == names._super &&
4222                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
4223             //default super call!! Not a classic qualified super call
4224             TypeSymbol supSym = tree.selected.type.tsym;
4225             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
4226             result = tree;
4227         }
4228         else if (tree.name == names._this || tree.name == names._super) {
4229             result = makeThis(tree.pos(), tree.selected.type.tsym);
4230         }
4231         else
4232             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
4233     }
4234 
4235     public void visitLetExpr(LetExpr tree) {
4236         tree.defs = translate(tree.defs);
4237         tree.expr = translate(tree.expr, tree.type);
4238         result = tree;
4239     }
4240 
4241     // There ought to be nothing to rewrite here;
4242     // we don't generate code.
4243     public void visitAnnotation(JCAnnotation tree) {
4244         result = tree;
4245     }
4246 
4247     @Override
4248     public void visitTry(JCTry tree) {
4249         if (tree.resources.nonEmpty()) {
4250             result = makeTwrTry(tree);
4251             return;
4252         }
4253 
4254         boolean hasBody = tree.body.getStatements().nonEmpty();
4255         boolean hasCatchers = tree.catchers.nonEmpty();
4256         boolean hasFinally = tree.finalizer != null &&
4257                 tree.finalizer.getStatements().nonEmpty();
4258 
4259         if (!hasCatchers && !hasFinally) {
4260             result = translate(tree.body);
4261             return;
4262         }
4263 
4264         if (!hasBody) {
4265             if (hasFinally) {
4266                 result = translate(tree.finalizer);
4267             } else {
4268                 result = translate(tree.body);
4269             }
4270             return;
4271         }
4272 
4273         // no optimizations possible
4274         super.visitTry(tree);
4275     }
4276 
4277 /**************************************************************************
4278  * main method
4279  *************************************************************************/
4280 
4281     /** Translate a toplevel class and return a list consisting of
4282      *  the translated class and translated versions of all inner classes.
4283      *  @param env   The attribution environment current at the class definition.
4284      *               We need this for resolving some additional symbols.
4285      *  @param cdef  The tree representing the class definition.
4286      */
4287     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
4288         ListBuffer<JCTree> translated = null;
4289         try {
4290             attrEnv = env;
4291             this.make = make;
4292             endPosTable = env.toplevel.endPositions;
4293             currentClass = null;
4294             currentMethodDef = null;
4295             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
4296             outermostMemberDef = null;
4297             this.translated = new ListBuffer<>();
4298             classdefs = new HashMap<>();
4299             actualSymbols = new HashMap<>();
4300             freevarCache = new HashMap<>();
4301             proxies = new HashMap<>();
4302             twrVars = WriteableScope.create(syms.noSymbol);
4303             outerThisStack = List.nil();
4304             accessNums = new HashMap<>();
4305             accessSyms = new HashMap<>();
4306             accessConstrs = new HashMap<>();
4307             accessConstrTags = List.nil();
4308             accessed = new ListBuffer<>();
4309             translate(cdef, (JCExpression)null);
4310             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
4311                 makeAccessible(l.head);
4312             for (EnumMapping map : enumSwitchMap.values())
4313                 map.translate();
4314             checkConflicts(this.translated.toList());
4315             checkAccessConstructorTags();
4316             translated = this.translated;
4317         } finally {
4318             // note that recursive invocations of this method fail hard
4319             attrEnv = null;
4320             this.make = null;
4321             endPosTable = null;
4322             currentClass = null;
4323             currentMethodDef = null;
4324             outermostClassDef = null;
4325             outermostMemberDef = null;
4326             this.translated = null;
4327             classdefs = null;
4328             actualSymbols = null;
4329             freevarCache = null;
4330             proxies = null;
4331             outerThisStack = null;
4332             accessNums = null;
4333             accessSyms = null;
4334             accessConstrs = null;
4335             accessConstrTags = null;
4336             accessed = null;
4337             enumSwitchMap.clear();
4338             assertionsDisabledClassCache = null;
4339         }
4340         return translated.toList();
4341     }
4342 }