1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.stream.Collectors;
  30 
  31 import com.sun.source.tree.LambdaExpressionTree.BodyKind;
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Kinds.KindSelector;
  34 import com.sun.tools.javac.code.Scope.WriteableScope;
  35 import com.sun.tools.javac.jvm.*;
  36 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  37 import com.sun.tools.javac.main.Option.PkgInfo;
  38 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  39 import com.sun.tools.javac.resources.CompilerProperties.Notes;
  40 import com.sun.tools.javac.tree.*;
  41 import com.sun.tools.javac.util.*;
  42 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  43 import com.sun.tools.javac.util.List;
  44 
  45 import com.sun.tools.javac.code.Symbol.*;
  46 import com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.JCTree.*;
  49 import com.sun.tools.javac.code.Type.*;
  50 
  51 import com.sun.tools.javac.jvm.Target;
  52 import com.sun.tools.javac.tree.EndPosTable;
  53 
  54 import static com.sun.tools.javac.code.Flags.*;
  55 import static com.sun.tools.javac.code.Flags.BLOCK;
  56 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  57 import static com.sun.tools.javac.code.TypeTag.*;
  58 import static com.sun.tools.javac.code.Kinds.Kind.*;
  59 import com.sun.tools.javac.code.Source.Feature;
  60 import static com.sun.tools.javac.jvm.ByteCodes.*;
  61 import com.sun.tools.javac.tree.JCTree.JCBreak;
  62 import com.sun.tools.javac.tree.JCTree.JCCase;
  63 import com.sun.tools.javac.tree.JCTree.JCExpression;
  64 import com.sun.tools.javac.tree.JCTree.JCExpressionStatement;
  65 
  66 import static com.sun.tools.javac.tree.JCTree.JCOperatorExpression.OperandPos.LEFT;
  67 import com.sun.tools.javac.tree.JCTree.JCSwitchExpression;
  68 
  69 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  70 
  71 /** This pass translates away some syntactic sugar: inner classes,
  72  *  class literals, assertions, foreach loops, etc.
  73  *
  74  *  <p><b>This is NOT part of any supported API.
  75  *  If you write code that depends on this, you do so at your own risk.
  76  *  This code and its internal interfaces are subject to change or
  77  *  deletion without notice.</b>
  78  */
  79 public class Lower extends TreeTranslator {
  80     protected static final Context.Key<Lower> lowerKey = new Context.Key<>();
  81 
  82     public static Lower instance(Context context) {
  83         Lower instance = context.get(lowerKey);
  84         if (instance == null)
  85             instance = new Lower(context);
  86         return instance;
  87     }
  88 
  89     private final Names names;
  90     private final Log log;
  91     private final Symtab syms;
  92     private final Resolve rs;
  93     private final Operators operators;
  94     private final Check chk;
  95     private final Attr attr;
  96     private TreeMaker make;
  97     private DiagnosticPosition make_pos;
  98     private final ConstFold cfolder;
  99     private final Target target;
 100     private final TypeEnvs typeEnvs;
 101     private final Name dollarAssertionsDisabled;
 102     private final Types types;
 103     private final TransTypes transTypes;
 104     private final boolean debugLower;
 105     private final boolean disableProtectedAccessors; // experimental
 106     private final PkgInfo pkginfoOpt;
 107     private final boolean optimizeOuterThis;
 108     private final boolean useMatchException;
 109     private final HashMap<TypePairs, String> typePairToName;
 110     private final boolean allowValueClasses;
 111     private int variableIndex = 0;
 112 
 113     @SuppressWarnings("this-escape")
 114     protected Lower(Context context) {
 115         context.put(lowerKey, this);
 116         names = Names.instance(context);
 117         log = Log.instance(context);
 118         syms = Symtab.instance(context);
 119         rs = Resolve.instance(context);
 120         operators = Operators.instance(context);
 121         chk = Check.instance(context);
 122         attr = Attr.instance(context);
 123         make = TreeMaker.instance(context);
 124         cfolder = ConstFold.instance(context);
 125         target = Target.instance(context);
 126         typeEnvs = TypeEnvs.instance(context);
 127         dollarAssertionsDisabled = names.
 128             fromString(target.syntheticNameChar() + "assertionsDisabled");
 129 
 130         types = Types.instance(context);
 131         transTypes = TransTypes.instance(context);
 132         Options options = Options.instance(context);
 133         debugLower = options.isSet("debuglower");
 134         pkginfoOpt = PkgInfo.get(options);
 135         optimizeOuterThis =
 136             target.optimizeOuterThis() ||
 137             options.getBoolean("optimizeOuterThis", false);
 138         disableProtectedAccessors = options.isSet("disableProtectedAccessors");
 139         Source source = Source.instance(context);
 140         Preview preview = Preview.instance(context);
 141         useMatchException = Feature.PATTERN_SWITCH.allowedInSource(source) &&
 142                             (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH));
 143         typePairToName = TypePairs.initialize(syms);
 144         this.allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 145                 Feature.VALUE_CLASSES.allowedInSource(source);
 146     }
 147 
 148     /** The currently enclosing class.
 149      */
 150     ClassSymbol currentClass;
 151 
 152     /** A queue of all translated classes.
 153      */
 154     ListBuffer<JCTree> translated;
 155 
 156     /** Environment for symbol lookup, set by translateTopLevelClass.
 157      */
 158     Env<AttrContext> attrEnv;
 159 
 160     /** A hash table mapping syntax trees to their ending source positions.
 161      */
 162     EndPosTable endPosTable;
 163 
 164 /* ************************************************************************
 165  * Global mappings
 166  *************************************************************************/
 167 
 168     /** A hash table mapping local classes to their definitions.
 169      */
 170     Map<ClassSymbol, JCClassDecl> classdefs;
 171 
 172     /** A hash table mapping local classes to a list of pruned trees.
 173      */
 174     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<>();
 175 
 176     /** A hash table mapping virtual accessed symbols in outer subclasses
 177      *  to the actually referred symbol in superclasses.
 178      */
 179     Map<Symbol,Symbol> actualSymbols;
 180 
 181     /**
 182      * The current expected return type.
 183      */
 184     Type currentRestype;
 185 
 186     /** The current method definition.
 187      */
 188     JCMethodDecl currentMethodDef;
 189 
 190     /** The current method symbol.
 191      */
 192     MethodSymbol currentMethodSym;
 193 
 194     /** The currently enclosing outermost class definition.
 195      */
 196     JCClassDecl outermostClassDef;
 197 
 198     /** The currently enclosing outermost member definition.
 199      */
 200     JCTree outermostMemberDef;
 201 
 202     /** A hash table mapping local classes to a set of outer this fields
 203      */
 204     public Map<ClassSymbol, Set<JCExpression>> initializerOuterThis = new WeakHashMap<>();
 205 
 206     /** A navigator class for assembling a mapping from local class symbols
 207      *  to class definition trees.
 208      *  There is only one case; all other cases simply traverse down the tree.
 209      */
 210     class ClassMap extends TreeScanner {
 211 
 212         /** All encountered class defs are entered into classdefs table.
 213          */
 214         public void visitClassDef(JCClassDecl tree) {
 215             classdefs.put(tree.sym, tree);
 216             super.visitClassDef(tree);
 217         }
 218     }
 219     ClassMap classMap = new ClassMap();
 220 
 221     /** Map a class symbol to its definition.
 222      *  @param c    The class symbol of which we want to determine the definition.
 223      */
 224     JCClassDecl classDef(ClassSymbol c) {
 225         // First lookup the class in the classdefs table.
 226         JCClassDecl def = classdefs.get(c);
 227         if (def == null && outermostMemberDef != null) {
 228             // If this fails, traverse outermost member definition, entering all
 229             // local classes into classdefs, and try again.
 230             classMap.scan(outermostMemberDef);
 231             def = classdefs.get(c);
 232         }
 233         if (def == null) {
 234             // If this fails, traverse outermost class definition, entering all
 235             // local classes into classdefs, and try again.
 236             classMap.scan(outermostClassDef);
 237             def = classdefs.get(c);
 238         }
 239         return def;
 240     }
 241 
 242     /**
 243      * Get the enum constants for the given enum class symbol, if known.
 244      * They will only be found if they are defined within the same top-level
 245      * class as the class being compiled, so it's safe to assume that they
 246      * can't change at runtime due to a recompilation.
 247      */
 248     List<Name> enumNamesFor(ClassSymbol c) {
 249 
 250         // Find the class definition and verify it is an enum class
 251         final JCClassDecl classDef = classDef(c);
 252         if (classDef == null ||
 253             (classDef.mods.flags & ENUM) == 0 ||
 254             (types.supertype(currentClass.type).tsym.flags() & ENUM) != 0) {
 255             return null;
 256         }
 257 
 258         // Gather the enum identifiers
 259         ListBuffer<Name> idents = new ListBuffer<>();
 260         for (List<JCTree> defs = classDef.defs; defs.nonEmpty(); defs=defs.tail) {
 261             if (defs.head.hasTag(VARDEF) &&
 262                 (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
 263                 JCVariableDecl var = (JCVariableDecl)defs.head;
 264                 idents.append(var.name);
 265             }
 266         }
 267         return idents.toList();
 268     }
 269 
 270     /** A hash table mapping class symbols to lists of free variables.
 271      *  accessed by them. Only free variables of the method immediately containing
 272      *  a class are associated with that class.
 273      */
 274     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 275 
 276     /** A navigator class for collecting the free variables accessed
 277      *  from a local class.
 278      */
 279     class FreeVarCollector extends CaptureScanner {
 280 
 281         FreeVarCollector(JCTree ownerTree) {
 282             super(ownerTree);
 283         }
 284 
 285         void addFreeVars(ClassSymbol c) {
 286             List<VarSymbol> fvs = freevarCache.get(c);
 287             if (fvs != null) {
 288                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 289                     addFreeVar(l.head);
 290                 }
 291             }
 292         }
 293 
 294         /** If tree refers to a class instance creation expression
 295          *  add all free variables of the freshly created class.
 296          */
 297         public void visitNewClass(JCNewClass tree) {
 298             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 299             addFreeVars(c);
 300             super.visitNewClass(tree);
 301         }
 302 
 303         /** If tree refers to a superclass constructor call,
 304          *  add all free variables of the superclass.
 305          */
 306         public void visitApply(JCMethodInvocation tree) {
 307             if (TreeInfo.name(tree.meth) == names._super) {
 308                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 309             }
 310             super.visitApply(tree);
 311         }
 312     }
 313 
 314     /** Return the variables accessed from within a local class, which
 315      *  are declared in the local class' owner.
 316      *  (in reverse order of first access).
 317      */
 318     List<VarSymbol> freevars(ClassSymbol c)  {
 319         List<VarSymbol> fvs = freevarCache.get(c);
 320         if (fvs != null) {
 321             return fvs;
 322         }
 323         FreeVarCollector collector = new FreeVarCollector(classDef(c));
 324         fvs = collector.analyzeCaptures().reverse();
 325         freevarCache.put(c, fvs);
 326         return fvs;
 327     }
 328 
 329     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<>();
 330 
 331     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 332 
 333         // If enum class is part of this compilation, just switch on ordinal value
 334         if (enumClass.kind == TYP) {
 335             final List<Name> idents = enumNamesFor((ClassSymbol)enumClass);
 336             if (idents != null)
 337                 return new CompileTimeEnumMapping(idents);
 338         }
 339 
 340         // Map identifiers to ordinal values at runtime, and then switch on that
 341         return enumSwitchMap.computeIfAbsent(enumClass, ec -> new RuntimeEnumMapping(pos, ec));
 342     }
 343 
 344     /** Generates a test value and corresponding cases for a switch on an enum type.
 345      */
 346     interface EnumMapping {
 347 
 348         /** Given an expression for the enum value's ordinal, generate an expression for the switch statement.
 349          */
 350         JCExpression switchValue(JCExpression ordinalExpr);
 351 
 352         /** Generate the switch statement case value corresponding to the given enum value.
 353          */
 354         JCLiteral caseValue(VarSymbol v);
 355 
 356         default void translate() {
 357         }
 358     }
 359 
 360     /** EnumMapping using compile-time constants. Only valid when compiling the enum class itself,
 361      *  because otherwise the ordinals we use could become obsolete if/when the enum class is recompiled.
 362      */
 363     class CompileTimeEnumMapping implements EnumMapping {
 364 
 365         final List<Name> enumNames;
 366 
 367         CompileTimeEnumMapping(List<Name> enumNames) {
 368             Assert.check(enumNames != null);
 369             this.enumNames = enumNames;
 370         }
 371 
 372         @Override
 373         public JCExpression switchValue(JCExpression ordinalExpr) {
 374             return ordinalExpr;
 375         }
 376 
 377         @Override
 378         public JCLiteral caseValue(VarSymbol v) {
 379             final int ordinal = enumNames.indexOf(v.name);
 380             Assert.check(ordinal != -1);
 381             return make.Literal(ordinal);
 382         }
 383     }
 384 
 385     /** EnumMapping using run-time ordinal lookup.
 386      *
 387      *  This builds a translation table to be used for enum switches.
 388      *
 389      *  <p>For each enum that appears as the type of a switch
 390      *  expression, we maintain an EnumMapping to assist in the
 391      *  translation, as exemplified by the following example:
 392      *
 393      *  <p>we translate
 394      *  <pre>
 395      *          switch(colorExpression) {
 396      *          case red: stmt1;
 397      *          case green: stmt2;
 398      *          }
 399      *  </pre>
 400      *  into
 401      *  <pre>
 402      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 403      *          case 1: stmt1;
 404      *          case 2: stmt2
 405      *          }
 406      *  </pre>
 407      *  with the auxiliary table initialized as follows:
 408      *  <pre>
 409      *          class Outer$0 {
 410      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 411      *              static {
 412      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 413      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 414      *              }
 415      *          }
 416      *  </pre>
 417      *  class EnumMapping provides mapping data and support methods for this translation.
 418      */
 419     class RuntimeEnumMapping implements EnumMapping {
 420         RuntimeEnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 421             this.forEnum = forEnum;
 422             this.values = new LinkedHashMap<>();
 423             this.pos = pos;
 424             Name varName = names
 425                 .fromString(target.syntheticNameChar() +
 426                             "SwitchMap" +
 427                             target.syntheticNameChar() +
 428                             ClassWriter.externalize(forEnum.type.tsym.flatName().toString())
 429                             .replace('/', '.')
 430                             .replace('.', target.syntheticNameChar()));
 431             ClassSymbol outerCacheClass = outerCacheClass();
 432             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 433                                         varName,
 434                                         new ArrayType(syms.intType, syms.arrayClass),
 435                                         outerCacheClass);
 436             enterSynthetic(pos, mapVar, outerCacheClass.members());
 437         }
 438 
 439         DiagnosticPosition pos = null;
 440 
 441         // the next value to use
 442         int next = 1; // 0 (unused map elements) go to the default label
 443 
 444         // the enum for which this is a map
 445         final TypeSymbol forEnum;
 446 
 447         // the field containing the map
 448         final VarSymbol mapVar;
 449 
 450         // the mapped values
 451         final Map<VarSymbol,Integer> values;
 452 
 453         @Override
 454         public JCExpression switchValue(JCExpression ordinalExpr) {
 455             return make.Indexed(mapVar, ordinalExpr);
 456         }
 457 
 458         @Override
 459         public JCLiteral caseValue(VarSymbol v) {
 460             Integer result = values.get(v);
 461             if (result == null)
 462                 values.put(v, result = next++);
 463             return make.Literal(result);
 464         }
 465 
 466         // generate the field initializer for the map
 467         @Override
 468         public void translate() {
 469             boolean prevAllowProtectedAccess = attrEnv.info.allowProtectedAccess;
 470             try {
 471                 make.at(pos.getStartPosition());
 472                 attrEnv.info.allowProtectedAccess = true;
 473                 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 474 
 475                 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 476                 MethodSymbol valuesMethod = lookupMethod(pos,
 477                                                          names.values,
 478                                                          forEnum.type,
 479                                                          List.nil());
 480                 JCExpression size = make // Color.values().length
 481                     .Select(make.App(make.QualIdent(valuesMethod)),
 482                             syms.lengthVar);
 483                 JCExpression mapVarInit = make
 484                     .NewArray(make.Type(syms.intType), List.of(size), null)
 485                     .setType(new ArrayType(syms.intType, syms.arrayClass));
 486 
 487                 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 488                 ListBuffer<JCStatement> stmts = new ListBuffer<>();
 489                 Symbol ordinalMethod = lookupMethod(pos,
 490                                                     names.ordinal,
 491                                                     forEnum.type,
 492                                                     List.nil());
 493                 List<JCCatch> catcher = List.<JCCatch>nil()
 494                     .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 495                                                                   syms.noSuchFieldErrorType,
 496                                                                   syms.noSymbol),
 497                                                     null),
 498                                         make.Block(0, List.nil())));
 499                 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 500                     VarSymbol enumerator = e.getKey();
 501                     Integer mappedValue = e.getValue();
 502                     JCExpression assign = make
 503                         .Assign(make.Indexed(mapVar,
 504                                              make.App(make.Select(make.QualIdent(enumerator),
 505                                                                   ordinalMethod))),
 506                                 make.Literal(mappedValue))
 507                         .setType(syms.intType);
 508                     JCStatement exec = make.Exec(assign);
 509                     JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 510                     stmts.append(_try);
 511                 }
 512 
 513                 owner.defs = owner.defs
 514                     .prepend(make.Block(STATIC, stmts.toList()))
 515                     .prepend(make.VarDef(mapVar, mapVarInit));
 516             } finally {
 517                 attrEnv.info.allowProtectedAccess = prevAllowProtectedAccess;
 518             }
 519         }
 520     }
 521 
 522 
 523 /* ************************************************************************
 524  * Tree building blocks
 525  *************************************************************************/
 526 
 527     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 528      *  pos as make_pos, for use in diagnostics.
 529      **/
 530     TreeMaker make_at(DiagnosticPosition pos) {
 531         make_pos = pos;
 532         return make.at(pos);
 533     }
 534 
 535     /** Make an attributed tree representing a literal. This will be an
 536      *  Ident node in the case of boolean literals, a Literal node in all
 537      *  other cases.
 538      *  @param type       The literal's type.
 539      *  @param value      The literal's value.
 540      */
 541     JCExpression makeLit(Type type, Object value) {
 542         return make.Literal(type.getTag(), value).setType(type.constType(value));
 543     }
 544 
 545     /** Make an attributed tree representing null.
 546      */
 547     JCExpression makeNull() {
 548         return makeLit(syms.botType, null);
 549     }
 550 
 551     /** Make an attributed class instance creation expression.
 552      *  @param ctype    The class type.
 553      *  @param args     The constructor arguments.
 554      */
 555     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 556         JCNewClass tree = make.NewClass(null,
 557             null, make.QualIdent(ctype.tsym), args, null);
 558         tree.constructor = rs.resolveConstructor(
 559             make_pos, attrEnv, ctype, TreeInfo.types(args), List.nil());
 560         tree.type = ctype;
 561         return tree;
 562     }
 563 
 564     /** Make an attributed unary expression.
 565      *  @param optag    The operators tree tag.
 566      *  @param arg      The operator's argument.
 567      */
 568     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
 569         JCUnary tree = make.Unary(optag, arg);
 570         tree.operator = operators.resolveUnary(tree, optag, arg.type);
 571         tree.type = tree.operator.type.getReturnType();
 572         return tree;
 573     }
 574 
 575     /** Make an attributed binary expression.
 576      *  @param optag    The operators tree tag.
 577      *  @param lhs      The operator's left argument.
 578      *  @param rhs      The operator's right argument.
 579      */
 580     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
 581         JCBinary tree = make.Binary(optag, lhs, rhs);
 582         tree.operator = operators.resolveBinary(tree, optag, lhs.type, rhs.type);
 583         tree.type = tree.operator.type.getReturnType();
 584         return tree;
 585     }
 586 
 587     /** Make an attributed assignop expression.
 588      *  @param optag    The operators tree tag.
 589      *  @param lhs      The operator's left argument.
 590      *  @param rhs      The operator's right argument.
 591      */
 592     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
 593         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 594         tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), lhs.type, rhs.type);
 595         tree.type = lhs.type;
 596         return tree;
 597     }
 598 
 599     /** Convert tree into string object, unless it has already a
 600      *  reference type..
 601      */
 602     JCExpression makeString(JCExpression tree) {
 603         if (!tree.type.isPrimitiveOrVoid()) {
 604             return tree;
 605         } else {
 606             Symbol valueOfSym = lookupMethod(tree.pos(),
 607                                              names.valueOf,
 608                                              syms.stringType,
 609                                              List.of(tree.type));
 610             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 611         }
 612     }
 613 
 614     /** Create an empty anonymous class definition and enter and complete
 615      *  its symbol. Return the class definition's symbol.
 616      *  and create
 617      *  @param flags    The class symbol's flags
 618      *  @param owner    The class symbol's owner
 619      */
 620     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
 621         return makeEmptyClass(flags, owner, null, true);
 622     }
 623 
 624     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
 625             boolean addToDefs) {
 626         // Create class symbol.
 627         ClassSymbol c = syms.defineClass(names.empty, owner);
 628         if (flatname != null) {
 629             c.flatname = flatname;
 630         } else {
 631             c.flatname = chk.localClassName(c);
 632         }
 633         c.sourcefile = owner.sourcefile;
 634         c.completer = Completer.NULL_COMPLETER;
 635         c.members_field = WriteableScope.create(c);
 636         c.flags_field = flags;
 637         ClassType ctype = (ClassType) c.type;
 638         ctype.supertype_field = syms.objectType;
 639         ctype.interfaces_field = List.nil();
 640 
 641         JCClassDecl odef = classDef(owner);
 642 
 643         // Enter class symbol in owner scope and compiled table.
 644         enterSynthetic(odef.pos(), c, owner.members());
 645         chk.putCompiled(c);
 646 
 647         // Create class definition tree.
 648         JCClassDecl cdef = make.ClassDef(
 649             make.Modifiers(flags), names.empty,
 650             List.nil(),
 651             null, List.nil(), List.nil());
 652         cdef.sym = c;
 653         cdef.type = c.type;
 654 
 655         // Append class definition tree to owner's definitions.
 656         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
 657         return cdef;
 658     }
 659 
 660 /* ************************************************************************
 661  * Symbol manipulation utilities
 662  *************************************************************************/
 663 
 664     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 665      *  @param pos           Position for error reporting.
 666      *  @param sym           The symbol.
 667      *  @param s             The scope.
 668      */
 669     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, WriteableScope s) {
 670         s.enter(sym);
 671     }
 672 
 673     /** Create a fresh synthetic name within a given scope - the unique name is
 674      *  obtained by appending '$' chars at the end of the name until no match
 675      *  is found.
 676      *
 677      * @param name base name
 678      * @param s scope in which the name has to be unique
 679      * @return fresh synthetic name
 680      */
 681     private Name makeSyntheticName(Name name, Scope s) {
 682         do {
 683             name = name.append(
 684                     target.syntheticNameChar(),
 685                     names.empty);
 686         } while (lookupSynthetic(name, s) != null);
 687         return name;
 688     }
 689 
 690     /** Check whether synthetic symbols generated during lowering conflict
 691      *  with user-defined symbols.
 692      *
 693      *  @param translatedTrees lowered class trees
 694      */
 695     void checkConflicts(List<JCTree> translatedTrees) {
 696         for (JCTree t : translatedTrees) {
 697             t.accept(conflictsChecker);
 698         }
 699     }
 700 
 701     JCTree.Visitor conflictsChecker = new TreeScanner() {
 702 
 703         TypeSymbol currentClass;
 704 
 705         @Override
 706         public void visitMethodDef(JCMethodDecl that) {
 707             checkConflicts(that.pos(), that.sym, currentClass);
 708             super.visitMethodDef(that);
 709         }
 710 
 711         @Override
 712         public void visitVarDef(JCVariableDecl that) {
 713             if (that.sym.owner.kind == TYP) {
 714                 checkConflicts(that.pos(), that.sym, currentClass);
 715             }
 716             super.visitVarDef(that);
 717         }
 718 
 719         @Override
 720         public void visitClassDef(JCClassDecl that) {
 721             TypeSymbol prevCurrentClass = currentClass;
 722             currentClass = that.sym;
 723             try {
 724                 super.visitClassDef(that);
 725             }
 726             finally {
 727                 currentClass = prevCurrentClass;
 728             }
 729         }
 730 
 731         void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
 732             for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
 733                 for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
 734                     // VM allows methods and variables with differing types
 735                     if (sym.kind == sym2.kind &&
 736                         types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
 737                         sym != sym2 &&
 738                         (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
 739                         (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
 740                         syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
 741                         return;
 742                     }
 743                 }
 744             }
 745         }
 746 
 747         /** Report a conflict between a user symbol and a synthetic symbol.
 748          */
 749         private void syntheticError(DiagnosticPosition pos, Symbol sym) {
 750             if (!sym.type.isErroneous()) {
 751                 log.error(pos, Errors.CannotGenerateClass(sym.location(), Fragments.SyntheticNameConflict(sym, sym.location())));
 752             }
 753         }
 754     };
 755 
 756     /** Look up a synthetic name in a given scope.
 757      *  @param s            The scope.
 758      *  @param name         The name.
 759      */
 760     private Symbol lookupSynthetic(Name name, Scope s) {
 761         Symbol sym = s.findFirst(name);
 762         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 763     }
 764 
 765     /** Look up a method in a given scope.
 766      */
 767     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 768         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.nil());
 769     }
 770 
 771     /** Anon inner classes are used as access constructor tags.
 772      * accessConstructorTag will use an existing anon class if one is available,
 773      * and synthesize a class (with makeEmptyClass) if one is not available.
 774      * However, there is a small possibility that an existing class will not
 775      * be generated as expected if it is inside a conditional with a constant
 776      * expression. If that is found to be the case, create an empty class tree here.
 777      */
 778     private void checkAccessConstructorTags() {
 779         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 780             ClassSymbol c = l.head;
 781             if (isTranslatedClassAvailable(c))
 782                 continue;
 783             // Create class definition tree.
 784             // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
 785             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE,
 786                     c.outermostClass(), c.flatname, false);
 787             swapAccessConstructorTag(c, cdec.sym);
 788             translated.append(cdec);
 789         }
 790     }
 791     // where
 792     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 793         for (JCTree tree: translated) {
 794             if (tree.hasTag(CLASSDEF)
 795                     && ((JCClassDecl) tree).sym == c) {
 796                 return true;
 797             }
 798         }
 799         return false;
 800     }
 801 
 802     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
 803         for (MethodSymbol methodSymbol : accessConstrs.values()) {
 804             Assert.check(methodSymbol.type.hasTag(METHOD));
 805             MethodType oldMethodType =
 806                     (MethodType)methodSymbol.type;
 807             if (oldMethodType.argtypes.head.tsym == oldCTag)
 808                 methodSymbol.type =
 809                     types.createMethodTypeWithParameters(oldMethodType,
 810                         oldMethodType.getParameterTypes().tail
 811                             .prepend(newCTag.erasure(types)));
 812         }
 813     }
 814 
 815 /* ************************************************************************
 816  * Access methods
 817  *************************************************************************/
 818 
 819     /** A mapping from symbols to their access numbers.
 820      */
 821     private Map<Symbol,Integer> accessNums;
 822 
 823     /** A mapping from symbols to an array of access symbols, indexed by
 824      *  access code.
 825      */
 826     private Map<Symbol,MethodSymbol[]> accessSyms;
 827 
 828     /** A mapping from (constructor) symbols to access constructor symbols.
 829      */
 830     private Map<Symbol,MethodSymbol> accessConstrs;
 831 
 832     /** A list of all class symbols used for access constructor tags.
 833      */
 834     private List<ClassSymbol> accessConstrTags;
 835 
 836     /** A queue for all accessed symbols.
 837      */
 838     private ListBuffer<Symbol> accessed;
 839 
 840     /** return access code for identifier,
 841      *  @param tree     The tree representing the identifier use.
 842      *  @param enclOp   The closest enclosing operation node of tree,
 843      *                  null if tree is not a subtree of an operation.
 844      */
 845     private static int accessCode(JCTree tree, JCTree enclOp) {
 846         if (enclOp == null)
 847             return AccessCode.DEREF.code;
 848         else if (enclOp.hasTag(ASSIGN) &&
 849                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 850             return AccessCode.ASSIGN.code;
 851         else if ((enclOp.getTag().isIncOrDecUnaryOp() || enclOp.getTag().isAssignop()) &&
 852                 tree == TreeInfo.skipParens(((JCOperatorExpression) enclOp).getOperand(LEFT)))
 853             return (((JCOperatorExpression) enclOp).operator).getAccessCode(enclOp.getTag());
 854         else
 855             return AccessCode.DEREF.code;
 856     }
 857 
 858     /** Return binary operator that corresponds to given access code.
 859      */
 860     private OperatorSymbol binaryAccessOperator(int acode, Tag tag) {
 861         return operators.lookupBinaryOp(op -> op.getAccessCode(tag) == acode);
 862     }
 863 
 864     /** Return tree tag for assignment operation corresponding
 865      *  to given binary operator.
 866      */
 867     private static JCTree.Tag treeTag(OperatorSymbol operator) {
 868         switch (operator.opcode) {
 869         case ByteCodes.ior: case ByteCodes.lor:
 870             return BITOR_ASG;
 871         case ByteCodes.ixor: case ByteCodes.lxor:
 872             return BITXOR_ASG;
 873         case ByteCodes.iand: case ByteCodes.land:
 874             return BITAND_ASG;
 875         case ByteCodes.ishl: case ByteCodes.lshl:
 876         case ByteCodes.ishll: case ByteCodes.lshll:
 877             return SL_ASG;
 878         case ByteCodes.ishr: case ByteCodes.lshr:
 879         case ByteCodes.ishrl: case ByteCodes.lshrl:
 880             return SR_ASG;
 881         case ByteCodes.iushr: case ByteCodes.lushr:
 882         case ByteCodes.iushrl: case ByteCodes.lushrl:
 883             return USR_ASG;
 884         case ByteCodes.iadd: case ByteCodes.ladd:
 885         case ByteCodes.fadd: case ByteCodes.dadd:
 886         case ByteCodes.string_add:
 887             return PLUS_ASG;
 888         case ByteCodes.isub: case ByteCodes.lsub:
 889         case ByteCodes.fsub: case ByteCodes.dsub:
 890             return MINUS_ASG;
 891         case ByteCodes.imul: case ByteCodes.lmul:
 892         case ByteCodes.fmul: case ByteCodes.dmul:
 893             return MUL_ASG;
 894         case ByteCodes.idiv: case ByteCodes.ldiv:
 895         case ByteCodes.fdiv: case ByteCodes.ddiv:
 896             return DIV_ASG;
 897         case ByteCodes.imod: case ByteCodes.lmod:
 898         case ByteCodes.fmod: case ByteCodes.dmod:
 899             return MOD_ASG;
 900         default:
 901             throw new AssertionError();
 902         }
 903     }
 904 
 905     /** The name of the access method with number `anum' and access code `acode'.
 906      */
 907     Name accessName(int anum, int acode) {
 908         return names.fromString(
 909             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 910     }
 911 
 912     /** Return access symbol for a private or protected symbol from an inner class.
 913      *  @param sym        The accessed private symbol.
 914      *  @param tree       The accessing tree.
 915      *  @param enclOp     The closest enclosing operation node of tree,
 916      *                    null if tree is not a subtree of an operation.
 917      *  @param protAccess Is access to a protected symbol in another
 918      *                    package?
 919      *  @param refSuper   Is access via a (qualified) C.super?
 920      */
 921     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 922                               boolean protAccess, boolean refSuper) {
 923         ClassSymbol accOwner = refSuper && protAccess
 924             // For access via qualified super (T.super.x), place the
 925             // access symbol on T.
 926             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 927             // Otherwise pretend that the owner of an accessed
 928             // protected symbol is the enclosing class of the current
 929             // class which is a subclass of the symbol's owner.
 930             : accessClass(sym, protAccess, tree);
 931 
 932         Symbol vsym = sym;
 933         if (sym.owner != accOwner) {
 934             vsym = sym.clone(accOwner);
 935             actualSymbols.put(vsym, sym);
 936         }
 937 
 938         Integer anum              // The access number of the access method.
 939             = accessNums.get(vsym);
 940         if (anum == null) {
 941             anum = accessed.length();
 942             accessNums.put(vsym, anum);
 943             accessSyms.put(vsym, new MethodSymbol[AccessCode.numberOfAccessCodes]);
 944             accessed.append(vsym);
 945             // System.out.println("accessing " + vsym + " in " + vsym.location());
 946         }
 947 
 948         int acode;                // The access code of the access method.
 949         List<Type> argtypes;      // The argument types of the access method.
 950         Type restype;             // The result type of the access method.
 951         List<Type> thrown;        // The thrown exceptions of the access method.
 952         switch (vsym.kind) {
 953         case VAR:
 954             acode = accessCode(tree, enclOp);
 955             if (acode >= AccessCode.FIRSTASGOP.code) {
 956                 OperatorSymbol operator = binaryAccessOperator(acode, enclOp.getTag());
 957                 if (operator.opcode == string_add)
 958                     argtypes = List.of(syms.objectType);
 959                 else
 960                     argtypes = operator.type.getParameterTypes().tail;
 961             } else if (acode == AccessCode.ASSIGN.code)
 962                 argtypes = List.of(vsym.erasure(types));
 963             else
 964                 argtypes = List.nil();
 965             restype = vsym.erasure(types);
 966             thrown = List.nil();
 967             break;
 968         case MTH:
 969             acode = AccessCode.DEREF.code;
 970             argtypes = vsym.erasure(types).getParameterTypes();
 971             restype = vsym.erasure(types).getReturnType();
 972             thrown = vsym.type.getThrownTypes();
 973             break;
 974         default:
 975             throw new AssertionError();
 976         }
 977 
 978         // For references via qualified super, increment acode by one,
 979         // making it odd.
 980         if (protAccess && refSuper) acode++;
 981 
 982         // Instance access methods get instance as first parameter.
 983         // For protected symbols this needs to be the instance as a member
 984         // of the type containing the accessed symbol, not the class
 985         // containing the access method.
 986         if ((vsym.flags() & STATIC) == 0) {
 987             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 988         }
 989         MethodSymbol[] accessors = accessSyms.get(vsym);
 990         MethodSymbol accessor = accessors[acode];
 991         if (accessor == null) {
 992             accessor = new MethodSymbol(
 993                 STATIC | SYNTHETIC | (accOwner.isInterface() ? PUBLIC : 0),
 994                 accessName(anum.intValue(), acode),
 995                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 996                 accOwner);
 997             enterSynthetic(tree.pos(), accessor, accOwner.members());
 998             accessors[acode] = accessor;
 999         }
1000         return accessor;
1001     }
1002 
1003     /** The qualifier to be used for accessing a symbol in an outer class.
1004      *  This is either C.sym or C.this.sym, depending on whether or not
1005      *  sym is static.
1006      *  @param sym   The accessed symbol.
1007      */
1008     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
1009         return (sym.flags() & STATIC) != 0
1010             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
1011             : makeOwnerThis(pos, sym, true);
1012     }
1013 
1014     /** Do we need an access method to reference private symbol?
1015      */
1016     boolean needsPrivateAccess(Symbol sym) {
1017         if (target.hasNestmateAccess()) {
1018             return false;
1019         }
1020         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
1021             return false;
1022         } else if (sym.name == names.init && sym.owner.isDirectlyOrIndirectlyLocal()) {
1023             // private constructor in local class: relax protection
1024             sym.flags_field &= ~PRIVATE;
1025             return false;
1026         } else {
1027             return true;
1028         }
1029     }
1030 
1031     /** Do we need an access method to reference symbol in other package?
1032      */
1033     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
1034         if (disableProtectedAccessors) return false;
1035         if ((sym.flags() & PROTECTED) == 0 ||
1036             sym.owner.owner == currentClass.owner || // fast special case
1037             sym.packge() == currentClass.packge())
1038             return false;
1039         if (!currentClass.isSubClass(sym.owner, types))
1040             return true;
1041         if ((sym.flags() & STATIC) != 0 ||
1042             !tree.hasTag(SELECT) ||
1043             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1044             return false;
1045         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1046     }
1047 
1048     /** The class in which an access method for given symbol goes.
1049      *  @param sym        The access symbol
1050      *  @param protAccess Is access to a protected symbol in another
1051      *                    package?
1052      */
1053     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1054         if (protAccess) {
1055             Symbol qualifier = null;
1056             ClassSymbol c = currentClass;
1057             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
1058                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1059                 while (!qualifier.isSubClass(c, types)) {
1060                     c = c.owner.enclClass();
1061                 }
1062                 return c;
1063             } else {
1064                 while (!c.isSubClass(sym.owner, types)) {
1065                     c = c.owner.enclClass();
1066                 }
1067             }
1068             return c;
1069         } else {
1070             // the symbol is private
1071             return sym.owner.enclClass();
1072         }
1073     }
1074 
1075     private boolean noClassDefIn(JCTree tree) {
1076         var scanner = new TreeScanner() {
1077             boolean noClassDef = true;
1078             @Override
1079             public void visitClassDef(JCClassDecl tree) {
1080                 noClassDef = false;
1081             }
1082         };
1083         scanner.scan(tree);
1084         return scanner.noClassDef;
1085     }
1086 
1087     private void addPrunedInfo(JCTree tree) {
1088         List<JCTree> infoList = prunedTree.get(currentClass);
1089         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
1090         prunedTree.put(currentClass, infoList);
1091     }
1092 
1093     /** Ensure that identifier is accessible, return tree accessing the identifier.
1094      *  @param sym      The accessed symbol.
1095      *  @param tree     The tree referring to the symbol.
1096      *  @param enclOp   The closest enclosing operation node of tree,
1097      *                  null if tree is not a subtree of an operation.
1098      *  @param refSuper Is access via a (qualified) C.super?
1099      */
1100     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1101         // Access a free variable via its proxy, or its proxy's proxy
1102         while (sym.kind == VAR && sym.owner.kind == MTH &&
1103             sym.owner.enclClass() != currentClass) {
1104             // A constant is replaced by its constant value.
1105             Object cv = ((VarSymbol)sym).getConstValue();
1106             if (cv != null) {
1107                 make.at(tree.pos);
1108                 return makeLit(sym.type, cv);
1109             }
1110             // Otherwise replace the variable by its proxy.
1111             sym = proxies.get(sym);
1112             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
1113             tree = make.at(tree.pos).Ident(sym);
1114         }
1115         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
1116         switch (sym.kind) {
1117         case TYP:
1118             if (sym.owner.kind != PCK) {
1119                 // Convert type idents to
1120                 // <flat name> or <package name> . <flat name>
1121                 Name flatname = Convert.shortName(sym.flatName());
1122                 while (base != null &&
1123                        TreeInfo.symbol(base) != null &&
1124                        TreeInfo.symbol(base).kind != PCK) {
1125                     base = (base.hasTag(SELECT))
1126                         ? ((JCFieldAccess) base).selected
1127                         : null;
1128                 }
1129                 if (tree.hasTag(IDENT)) {
1130                     ((JCIdent) tree).name = flatname;
1131                 } else if (base == null) {
1132                     tree = make.at(tree.pos).Ident(sym);
1133                     ((JCIdent) tree).name = flatname;
1134                 } else {
1135                     ((JCFieldAccess) tree).selected = base;
1136                     ((JCFieldAccess) tree).name = flatname;
1137                 }
1138             }
1139             break;
1140         case MTH: case VAR:
1141             if (sym.owner.kind == TYP) {
1142 
1143                 // Access methods are required for
1144                 //  - private members,
1145                 //  - protected members in a superclass of an
1146                 //    enclosing class contained in another package.
1147                 //  - all non-private members accessed via a qualified super.
1148                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1149                     || needsProtectedAccess(sym, tree);
1150                 boolean accReq = protAccess || needsPrivateAccess(sym);
1151 
1152                 // A base has to be supplied for
1153                 //  - simple identifiers accessing variables in outer classes.
1154                 boolean baseReq =
1155                     base == null &&
1156                     sym.owner != syms.predefClass &&
1157                     !sym.isMemberOf(currentClass, types);
1158 
1159                 if (accReq || baseReq) {
1160                     make.at(tree.pos);
1161 
1162                     // Constants are replaced by their constant value.
1163                     if (sym.kind == VAR) {
1164                         Object cv = ((VarSymbol)sym).getConstValue();
1165                         if (cv != null) {
1166                             addPrunedInfo(tree);
1167                             return makeLit(sym.type, cv);
1168                         }
1169                     }
1170 
1171                     // Private variables and methods are replaced by calls
1172                     // to their access methods.
1173                     if (accReq) {
1174                         List<JCExpression> args = List.nil();
1175                         if ((sym.flags() & STATIC) == 0) {
1176                             // Instance access methods get instance
1177                             // as first parameter.
1178                             if (base == null)
1179                                 base = makeOwnerThis(tree.pos(), sym, true);
1180                             args = args.prepend(base);
1181                             base = null;   // so we don't duplicate code
1182                         }
1183                         Symbol access = accessSymbol(sym, tree,
1184                                                      enclOp, protAccess,
1185                                                      refSuper);
1186                         JCExpression receiver = make.Select(
1187                             base != null ? base : make.QualIdent(access.owner),
1188                             access);
1189                         return make.App(receiver, args);
1190 
1191                     // Other accesses to members of outer classes get a
1192                     // qualifier.
1193                     } else if (baseReq) {
1194                         return make.at(tree.pos).Select(
1195                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1196                     }
1197                 }
1198             }
1199         }
1200         return tree;
1201     }
1202 
1203     /** Ensure that identifier is accessible, return tree accessing the identifier.
1204      *  @param tree     The identifier tree.
1205      */
1206     JCExpression access(JCExpression tree) {
1207         Symbol sym = TreeInfo.symbol(tree);
1208         return sym == null ? tree : access(sym, tree, null, false);
1209     }
1210 
1211     /** Return access constructor for a private constructor,
1212      *  or the constructor itself, if no access constructor is needed.
1213      *  @param pos       The position to report diagnostics, if any.
1214      *  @param constr    The private constructor.
1215      */
1216     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1217         if (needsPrivateAccess(constr)) {
1218             ClassSymbol accOwner = constr.owner.enclClass();
1219             MethodSymbol aconstr = accessConstrs.get(constr);
1220             if (aconstr == null) {
1221                 List<Type> argtypes = constr.type.getParameterTypes();
1222                 if ((accOwner.flags_field & ENUM) != 0)
1223                     argtypes = argtypes
1224                         .prepend(syms.intType)
1225                         .prepend(syms.stringType);
1226                 aconstr = new MethodSymbol(
1227                     SYNTHETIC,
1228                     names.init,
1229                     new MethodType(
1230                         argtypes.append(
1231                             accessConstructorTag().erasure(types)),
1232                         constr.type.getReturnType(),
1233                         constr.type.getThrownTypes(),
1234                         syms.methodClass),
1235                     accOwner);
1236                 enterSynthetic(pos, aconstr, accOwner.members());
1237                 accessConstrs.put(constr, aconstr);
1238                 accessed.append(constr);
1239             }
1240             return aconstr;
1241         } else {
1242             return constr;
1243         }
1244     }
1245 
1246     /** Return an anonymous class nested in this toplevel class.
1247      */
1248     ClassSymbol accessConstructorTag() {
1249         ClassSymbol topClass = currentClass.outermostClass();
1250         ModuleSymbol topModle = topClass.packge().modle;
1251         for (int i = 1; ; i++) {
1252             Name flatname = names.fromString("" + topClass.getQualifiedName() +
1253                                             target.syntheticNameChar() +
1254                                             i);
1255             ClassSymbol ctag = chk.getCompiled(topModle, flatname);
1256             if (ctag == null)
1257                 // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
1258                 ctag = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, topClass).sym;
1259             else if (!ctag.isAnonymous())
1260                 continue;
1261             // keep a record of all tags, to verify that all are generated as required
1262             accessConstrTags = accessConstrTags.prepend(ctag);
1263             return ctag;
1264         }
1265     }
1266 
1267     /** Add all required access methods for a private symbol to enclosing class.
1268      *  @param sym       The symbol.
1269      */
1270     void makeAccessible(Symbol sym) {
1271         JCClassDecl cdef = classDef(sym.owner.enclClass());
1272         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
1273         if (sym.name == names.init) {
1274             cdef.defs = cdef.defs.prepend(
1275                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1276         } else {
1277             MethodSymbol[] accessors = accessSyms.get(sym);
1278             for (int i = 0; i < AccessCode.numberOfAccessCodes; i++) {
1279                 if (accessors[i] != null)
1280                     cdef.defs = cdef.defs.prepend(
1281                         accessDef(cdef.pos, sym, accessors[i], i));
1282             }
1283         }
1284     }
1285 
1286     /** Construct definition of an access method.
1287      *  @param pos        The source code position of the definition.
1288      *  @param vsym       The private or protected symbol.
1289      *  @param accessor   The access method for the symbol.
1290      *  @param acode      The access code.
1291      */
1292     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1293 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1294         currentClass = vsym.owner.enclClass();
1295         make.at(pos);
1296         JCMethodDecl md = make.MethodDef(accessor, null);
1297 
1298         // Find actual symbol
1299         Symbol sym = actualSymbols.get(vsym);
1300         if (sym == null) sym = vsym;
1301 
1302         JCExpression ref;           // The tree referencing the private symbol.
1303         List<JCExpression> args;    // Any additional arguments to be passed along.
1304         if ((sym.flags() & STATIC) != 0) {
1305             ref = make.Ident(sym);
1306             args = make.Idents(md.params);
1307         } else {
1308             JCExpression site = make.Ident(md.params.head);
1309             if (acode % 2 != 0) {
1310                 //odd access codes represent qualified super accesses - need to
1311                 //emit reference to the direct superclass, even if the referred
1312                 //member is from an indirect superclass (JLS 13.1)
1313                 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
1314             }
1315             ref = make.Select(site, sym);
1316             args = make.Idents(md.params.tail);
1317         }
1318         JCStatement stat;          // The statement accessing the private symbol.
1319         if (sym.kind == VAR) {
1320             // Normalize out all odd access codes by taking floor modulo 2:
1321             int acode1 = acode - (acode & 1);
1322 
1323             JCExpression expr;      // The access method's return value.
1324             AccessCode aCode = AccessCode.getFromCode(acode1);
1325             switch (aCode) {
1326             case DEREF:
1327                 expr = ref;
1328                 break;
1329             case ASSIGN:
1330                 expr = make.Assign(ref, args.head);
1331                 break;
1332             case PREINC: case POSTINC: case PREDEC: case POSTDEC:
1333                 expr = makeUnary(aCode.tag, ref);
1334                 break;
1335             default:
1336                 expr = make.Assignop(
1337                     treeTag(binaryAccessOperator(acode1, JCTree.Tag.NO_TAG)), ref, args.head);
1338                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1, JCTree.Tag.NO_TAG);
1339             }
1340             stat = make.Return(expr.setType(sym.type));
1341         } else {
1342             stat = make.Call(make.App(ref, args));
1343         }
1344         md.body = make.Block(0, List.of(stat));
1345 
1346         // Make sure all parameters, result types and thrown exceptions
1347         // are accessible.
1348         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1349             l.head.vartype = access(l.head.vartype);
1350         md.restype = access(md.restype);
1351         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1352             l.head = access(l.head);
1353 
1354         return md;
1355     }
1356 
1357     /** Construct definition of an access constructor.
1358      *  @param pos        The source code position of the definition.
1359      *  @param constr     The private constructor.
1360      *  @param accessor   The access method for the constructor.
1361      */
1362     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1363         make.at(pos);
1364         JCMethodDecl md = make.MethodDef(accessor,
1365                                       accessor.externalType(types),
1366                                       null);
1367         JCIdent callee = make.Ident(names._this);
1368         callee.sym = constr;
1369         callee.type = constr.type;
1370         md.body =
1371             make.Block(0, List.of(
1372                 make.Call(
1373                     make.App(
1374                         callee,
1375                         make.Idents(md.params.reverse().tail.reverse())))));
1376         return md;
1377     }
1378 
1379 /* ************************************************************************
1380  * Free variables proxies and this$n
1381  *************************************************************************/
1382 
1383     /** A map which allows to retrieve the translated proxy variable for any given symbol of an
1384      *  enclosing scope that is accessed (the accessed symbol could be the synthetic 'this$n' symbol).
1385      *  Inside a constructor, the map temporarily overrides entries corresponding to proxies and any
1386      *  'this$n' symbols, where they represent the constructor parameters.
1387      */
1388     Map<Symbol, Symbol> proxies;
1389 
1390     /** A scope containing all unnamed resource variables/saved
1391      *  exception variables for translated TWR blocks
1392      */
1393     WriteableScope twrVars;
1394 
1395     /** A stack containing the this$n field of the currently translated
1396      *  classes (if needed) in innermost first order.
1397      *  Inside a constructor, proxies and any this$n symbol are duplicated
1398      *  in an additional innermost scope, where they represent the constructor
1399      *  parameters.
1400      */
1401     List<VarSymbol> outerThisStack;
1402 
1403     /** The name of a free variable proxy.
1404      */
1405     Name proxyName(Name name, int index) {
1406         Name proxyName = names.fromString("val" + target.syntheticNameChar() + name);
1407         if (index > 0) {
1408             proxyName = proxyName.append(names.fromString("" + target.syntheticNameChar() + index));
1409         }
1410         return proxyName;
1411     }
1412 
1413     /** Proxy definitions for all free variables in given list, in reverse order.
1414      *  @param pos               The source code position of the definition.
1415      *  @param freevars          The free variables.
1416      *  @param owner             The class in which the definitions go.
1417      *  @param additionalFlags   Any additional flags
1418      */
1419     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1420         return freevarDefs(pos, freevars, owner, LOCAL_CAPTURE_FIELD);
1421     }
1422 
1423     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
1424             long additionalFlags) {
1425         long flags = FINAL | SYNTHETIC | additionalFlags;
1426         List<JCVariableDecl> defs = List.nil();
1427         Set<Name> proxyNames = new HashSet<>();
1428         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1429             VarSymbol v = l.head;
1430             int index = 0;
1431             Name proxyName;
1432             do {
1433                 proxyName = proxyName(v.name, index++);
1434             } while (!proxyNames.add(proxyName));
1435             VarSymbol proxy = new VarSymbol(
1436                 flags, proxyName, v.erasure(types), owner) {
1437                 @Override
1438                 public Symbol baseSymbol() {
1439                     return v;
1440                 }
1441             };
1442             proxies.put(v, proxy);
1443             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1444             vd.vartype = access(vd.vartype);
1445             defs = defs.prepend(vd);
1446         }
1447         return defs;
1448     }
1449 
1450     /** The name of a this$n field
1451      *  @param type   The class referenced by the this$n field
1452      */
1453     Name outerThisName(Type type, Symbol owner) {
1454         Type t = type.getEnclosingType();
1455         int nestingLevel = 0;
1456         while (t.hasTag(CLASS)) {
1457             t = t.getEnclosingType();
1458             nestingLevel++;
1459         }
1460         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1461         while (owner.kind == TYP && ((ClassSymbol)owner).members().findFirst(result) != null)
1462             result = names.fromString(result.toString() + target.syntheticNameChar());
1463         return result;
1464     }
1465 
1466     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
1467         Type target = owner.innermostAccessibleEnclosingClass().erasure(types);
1468         // Set NOOUTERTHIS for all synthetic outer instance variables, and unset
1469         // it when the variable is accessed. If the variable is never accessed,
1470         // we skip creating an outer instance field and saving the constructor
1471         // parameter to it.
1472         VarSymbol outerThis =
1473             new VarSymbol(flags | NOOUTERTHIS, outerThisName(target, owner), target, owner);
1474         outerThisStack = outerThisStack.prepend(outerThis);
1475         return outerThis;
1476     }
1477 
1478     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
1479         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
1480         vd.vartype = access(vd.vartype);
1481         return vd;
1482     }
1483 
1484     /** Definition for this$n field.
1485      *  @param pos        The source code position of the definition.
1486      *  @param owner      The method in which the definition goes.
1487      */
1488     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
1489         ClassSymbol c = owner.enclClass();
1490         boolean isMandated =
1491             // Anonymous constructors
1492             (owner.isConstructor() && owner.isAnonymous()) ||
1493             // Constructors of non-private inner member classes
1494             (owner.isConstructor() && c.isInner() &&
1495              !c.isPrivate() && !c.isStatic());
1496         long flags =
1497             FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
1498         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
1499         owner.extraParams = owner.extraParams.prepend(outerThis);
1500         return makeOuterThisVarDecl(pos, outerThis);
1501     }
1502 
1503     /** Definition for this$n field.
1504      *  @param pos        The source code position of the definition.
1505      *  @param owner      The class in which the definition goes.
1506      */
1507     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
1508         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC | (allowValueClasses && owner.isValueClass() ? STRICT : 0));
1509         return makeOuterThisVarDecl(pos, outerThis);
1510     }
1511 
1512     /** Return a list of trees that load the free variables in given list,
1513      *  in reverse order.
1514      *  @param pos          The source code position to be used for the trees.
1515      *  @param freevars     The list of free variables.
1516      */
1517     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1518         List<JCExpression> args = List.nil();
1519         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1520             args = args.prepend(loadFreevar(pos, l.head));
1521         return args;
1522     }
1523 //where
1524         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1525             return access(v, make.at(pos).Ident(v), null, false);
1526         }
1527 
1528     /** Construct a tree simulating the expression {@code C.this}.
1529      *  @param pos           The source code position to be used for the tree.
1530      *  @param c             The qualifier class.
1531      */
1532     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1533         if (currentClass == c) {
1534             // in this case, `this' works fine
1535             return make.at(pos).This(c.erasure(types));
1536         } else {
1537             // need to go via this$n
1538             return makeOuterThis(pos, c);
1539         }
1540     }
1541 
1542     /**
1543      * Optionally replace a try statement with the desugaring of a
1544      * try-with-resources statement.  The canonical desugaring of
1545      *
1546      * try ResourceSpecification
1547      *   Block
1548      *
1549      * is
1550      *
1551      * {
1552      *   final VariableModifiers_minus_final R #resource = Expression;
1553      *
1554      *   try ResourceSpecificationtail
1555      *     Block
1556      *   } body-only-finally {
1557      *     if (#resource != null) //nullcheck skipped if Expression is provably non-null
1558      *         #resource.close();
1559      *   } catch (Throwable #primaryException) {
1560      *       if (#resource != null) //nullcheck skipped if Expression is provably non-null
1561      *           try {
1562      *               #resource.close();
1563      *           } catch (Throwable #suppressedException) {
1564      *              #primaryException.addSuppressed(#suppressedException);
1565      *           }
1566      *       throw #primaryException;
1567      *   }
1568      * }
1569      *
1570      * @param tree  The try statement to inspect.
1571      * @return a desugared try-with-resources tree, or the original
1572      * try block if there are no resources to manage.
1573      */
1574     JCTree makeTwrTry(JCTry tree) {
1575         make_at(tree.pos());
1576         twrVars = twrVars.dup();
1577         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
1578         if (tree.catchers.isEmpty() && tree.finalizer == null)
1579             result = translate(twrBlock);
1580         else
1581             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
1582         twrVars = twrVars.leave();
1583         return result;
1584     }
1585 
1586     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
1587         if (resources.isEmpty())
1588             return block;
1589 
1590         // Add resource declaration or expression to block statements
1591         ListBuffer<JCStatement> stats = new ListBuffer<>();
1592         JCTree resource = resources.head;
1593         JCExpression resourceUse;
1594         boolean resourceNonNull;
1595         if (resource instanceof JCVariableDecl variableDecl) {
1596             resourceUse = make.Ident(variableDecl.sym).setType(resource.type);
1597             resourceNonNull = variableDecl.init != null && TreeInfo.skipParens(variableDecl.init).hasTag(NEWCLASS);
1598             stats.add(variableDecl);
1599         } else {
1600             Assert.check(resource instanceof JCExpression);
1601             VarSymbol syntheticTwrVar =
1602             new VarSymbol(SYNTHETIC | FINAL,
1603                           makeSyntheticName(names.fromString("twrVar" +
1604                                            depth), twrVars),
1605                           (resource.type.hasTag(BOT)) ?
1606                           syms.autoCloseableType : resource.type,
1607                           currentMethodSym);
1608             twrVars.enter(syntheticTwrVar);
1609             JCVariableDecl syntheticTwrVarDecl =
1610                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
1611             resourceUse = (JCExpression)make.Ident(syntheticTwrVar);
1612             resourceNonNull = false;
1613             stats.add(syntheticTwrVarDecl);
1614         }
1615 
1616         //create (semi-) finally block that will be copied into the main try body:
1617         int oldPos = make.pos;
1618         make.at(TreeInfo.endPos(block));
1619 
1620         // if (#resource != null) { #resource.close(); }
1621         JCStatement bodyCloseStatement = makeResourceCloseInvocation(resourceUse);
1622 
1623         if (!resourceNonNull) {
1624             bodyCloseStatement = make.If(makeNonNullCheck(resourceUse),
1625                                          bodyCloseStatement,
1626                                          null);
1627         }
1628 
1629         JCBlock finallyClause = make.Block(BODY_ONLY_FINALIZE, List.of(bodyCloseStatement));
1630         make.at(oldPos);
1631 
1632         // Create catch clause that saves exception, closes the resource and then rethrows the exception:
1633         VarSymbol primaryException =
1634             new VarSymbol(FINAL|SYNTHETIC,
1635                           names.fromString("t" +
1636                                            target.syntheticNameChar()),
1637                           syms.throwableType,
1638                           currentMethodSym);
1639         JCVariableDecl primaryExceptionDecl = make.VarDef(primaryException, null);
1640 
1641         // close resource:
1642         // try {
1643         //     #resource.close();
1644         // } catch (Throwable #suppressedException) {
1645         //     #primaryException.addSuppressed(#suppressedException);
1646         // }
1647         VarSymbol suppressedException =
1648             new VarSymbol(SYNTHETIC, make.paramName(2),
1649                           syms.throwableType,
1650                           currentMethodSym);
1651         JCStatement addSuppressedStatement =
1652             make.Exec(makeCall(make.Ident(primaryException),
1653                                names.addSuppressed,
1654                                List.of(make.Ident(suppressedException))));
1655         JCBlock closeResourceTryBlock =
1656             make.Block(0L, List.of(makeResourceCloseInvocation(resourceUse)));
1657         JCVariableDecl catchSuppressedDecl = make.VarDef(suppressedException, null);
1658         JCBlock catchSuppressedBlock = make.Block(0L, List.of(addSuppressedStatement));
1659         List<JCCatch> catchSuppressedClauses =
1660                 List.of(make.Catch(catchSuppressedDecl, catchSuppressedBlock));
1661         JCTry closeResourceTry = make.Try(closeResourceTryBlock, catchSuppressedClauses, null);
1662         closeResourceTry.finallyCanCompleteNormally = true;
1663 
1664         JCStatement exceptionalCloseStatement = closeResourceTry;
1665 
1666         if (!resourceNonNull) {
1667             // if (#resource != null) {  }
1668             exceptionalCloseStatement = make.If(makeNonNullCheck(resourceUse),
1669                                                 exceptionalCloseStatement,
1670                                                 null);
1671         }
1672 
1673         JCStatement exceptionalRethrow = make.Throw(make.Ident(primaryException));
1674         JCBlock exceptionalCloseBlock = make.Block(0L, List.of(exceptionalCloseStatement, exceptionalRethrow));
1675         JCCatch exceptionalCatchClause = make.Catch(primaryExceptionDecl, exceptionalCloseBlock);
1676 
1677         //create the main try statement with the close:
1678         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
1679                                   List.of(exceptionalCatchClause),
1680                                   finallyClause);
1681 
1682         outerTry.finallyCanCompleteNormally = true;
1683         stats.add(outerTry);
1684 
1685         JCBlock newBlock = make.Block(0L, stats.toList());
1686         return newBlock;
1687     }
1688 
1689     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1690         // convert to AutoCloseable if needed
1691         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
1692             resource = convert(resource, syms.autoCloseableType);
1693         }
1694 
1695         // create resource.close() method invocation
1696         JCExpression resourceClose = makeCall(resource,
1697                                               names.close,
1698                                               List.nil());
1699         return make.Exec(resourceClose);
1700     }
1701 
1702     private JCExpression makeNonNullCheck(JCExpression expression) {
1703         return makeBinary(NE, expression, makeNull());
1704     }
1705 
1706     /** Construct a tree that represents the outer instance
1707      *  {@code C.this}. Never pick the current `this'.
1708      *  @param pos           The source code position to be used for the tree.
1709      *  @param c             The qualifier class.
1710      */
1711     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1712         List<VarSymbol> ots = outerThisStack;
1713         if (ots.isEmpty()) {
1714             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1715             return makeNull();
1716         }
1717         VarSymbol ot = ots.head;
1718         JCExpression tree = access(make.at(pos).Ident(ot));
1719         ot.flags_field &= ~NOOUTERTHIS;
1720         TypeSymbol otc = ot.type.tsym;
1721         while (otc != c) {
1722             do {
1723                 ots = ots.tail;
1724                 if (ots.isEmpty()) {
1725                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1726                     Assert.error(); // should have been caught in Attr
1727                     return tree;
1728                 }
1729                 ot = ots.head;
1730             } while (ot.owner != otc);
1731             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1732                 log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1733                 Assert.error(); // should have been caught in Attr
1734                 return makeNull();
1735             }
1736             tree = access(make.at(pos).Select(tree, ot));
1737             ot.flags_field &= ~NOOUTERTHIS;
1738             otc = ot.type.tsym;
1739         }
1740         return tree;
1741     }
1742 
1743     /** Construct a tree that represents the closest outer instance
1744      *  {@code C.this} such that the given symbol is a member of C.
1745      *  @param pos           The source code position to be used for the tree.
1746      *  @param sym           The accessed symbol.
1747      *  @param preciseMatch  should we accept a type that is a subtype of
1748      *                       sym's owner, even if it doesn't contain sym
1749      *                       due to hiding, overriding, or non-inheritance
1750      *                       due to protection?
1751      */
1752     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1753         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1754                          : currentClass.isSubClass(sym.owner, types)) {
1755             // in this case, `this' works fine
1756             return make.at(pos).This(currentClass.erasure(types));
1757         } else {
1758             // need to go via this$n
1759             return makeOwnerThisN(pos, sym, preciseMatch);
1760         }
1761     }
1762 
1763     /**
1764      * Similar to makeOwnerThis but will never pick "this".
1765      */
1766     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1767         Symbol c = sym.owner;
1768         List<VarSymbol> ots = outerThisStack;
1769         if (ots.isEmpty()) {
1770             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1771             return makeNull();
1772         }
1773         VarSymbol ot = ots.head;
1774         JCExpression tree = access(make.at(pos).Ident(ot));
1775         ot.flags_field &= ~NOOUTERTHIS;
1776         TypeSymbol otc = ot.type.tsym;
1777         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1778             do {
1779                 ots = ots.tail;
1780                 if (ots.isEmpty()) {
1781                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1782                     return tree;
1783                 }
1784                 ot = ots.head;
1785             } while (ot.owner != otc);
1786             tree = access(make.at(pos).Select(tree, ot));
1787             ot.flags_field &= ~NOOUTERTHIS;
1788             otc = ot.type.tsym;
1789         }
1790         return tree;
1791     }
1792 
1793     /** Return tree simulating the assignment {@code this.name = name}, where
1794      *  name is the name of a free variable.
1795      */
1796     JCStatement initField(int pos, Symbol rhs, Symbol lhs) {
1797         Assert.check(rhs.owner.kind == MTH);
1798         Assert.check(rhs.owner.owner == lhs.owner);
1799         make.at(pos);
1800         return
1801             make.Exec(
1802                 make.Assign(
1803                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1804                     make.Ident(rhs)).setType(lhs.erasure(types)));
1805     }
1806 
1807     /** Return tree simulating the assignment {@code this.this$n = this$n}.
1808      */
1809     JCStatement initOuterThis(int pos, VarSymbol rhs) {
1810         Assert.check(rhs.owner.kind == MTH);
1811         VarSymbol lhs = outerThisStack.head;
1812         Assert.check(rhs.owner.owner == lhs.owner);
1813         make.at(pos);
1814         return
1815             make.Exec(
1816                 make.Assign(
1817                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1818                     make.Ident(rhs)).setType(lhs.erasure(types)));
1819     }
1820 
1821 /* ************************************************************************
1822  * Code for .class
1823  *************************************************************************/
1824 
1825     /** Return the symbol of a class to contain a cache of
1826      *  compiler-generated statics such as class$ and the
1827      *  $assertionsDisabled flag.  We create an anonymous nested class
1828      *  (unless one already exists) and return its symbol.  However,
1829      *  for backward compatibility in 1.4 and earlier we use the
1830      *  top-level class itself.
1831      */
1832     private ClassSymbol outerCacheClass() {
1833         ClassSymbol clazz = outermostClassDef.sym;
1834         Scope s = clazz.members();
1835         for (Symbol sym : s.getSymbols(NON_RECURSIVE))
1836             if (sym.kind == TYP &&
1837                 sym.name == names.empty &&
1838                 (sym.flags() & INTERFACE) == 0) return (ClassSymbol) sym;
1839         // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
1840         return makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, clazz).sym;
1841     }
1842 
1843     /** Create an attributed tree of the form left.name(). */
1844     private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1845         Assert.checkNonNull(left.type);
1846         Symbol funcsym = lookupMethod(make_pos, name, left.type,
1847                                       TreeInfo.types(args));
1848         return make.App(make.Select(left, funcsym), args);
1849     }
1850 
1851     /** The tree simulating a T.class expression.
1852      *  @param clazz      The tree identifying type T.
1853      */
1854     private JCExpression classOf(JCTree clazz) {
1855         return classOfType(clazz.type, clazz.pos());
1856     }
1857 
1858     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1859         switch (type.getTag()) {
1860         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1861         case DOUBLE: case BOOLEAN: case VOID:
1862             // replace with <BoxedClass>.TYPE
1863             ClassSymbol c = types.boxedClass(type);
1864             Symbol typeSym =
1865                 rs.accessBase(
1866                     rs.findIdentInType(pos, attrEnv, c.type, names.TYPE, KindSelector.VAR),
1867                     pos, c.type, names.TYPE, true);
1868             if (typeSym.kind == VAR)
1869                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1870             return make.QualIdent(typeSym);
1871         case CLASS: case ARRAY:
1872                 VarSymbol sym = new VarSymbol(
1873                         STATIC | PUBLIC | FINAL, names._class,
1874                         syms.classType, type.tsym);
1875                 return make_at(pos).Select(make.Type(type), sym);
1876         default:
1877             throw new AssertionError();
1878         }
1879     }
1880 
1881 /* ************************************************************************
1882  * Code for enabling/disabling assertions.
1883  *************************************************************************/
1884 
1885     private ClassSymbol assertionsDisabledClassCache;
1886 
1887     /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
1888      */
1889     private ClassSymbol assertionsDisabledClass() {
1890         if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
1891 
1892         // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
1893         assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, outermostClassDef.sym).sym;
1894 
1895         return assertionsDisabledClassCache;
1896     }
1897 
1898     // This code is not particularly robust if the user has
1899     // previously declared a member named '$assertionsDisabled'.
1900     // The same faulty idiom also appears in the translation of
1901     // class literals above.  We should report an error if a
1902     // previous declaration is not synthetic.
1903 
1904     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1905         // Outermost class may be either true class or an interface.
1906         ClassSymbol outermostClass = outermostClassDef.sym;
1907 
1908         //only classes can hold a non-public field, look for a usable one:
1909         ClassSymbol container = !currentClass.isInterface() ? currentClass :
1910                 assertionsDisabledClass();
1911 
1912         VarSymbol assertDisabledSym =
1913             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1914                                        container.members());
1915         if (assertDisabledSym == null) {
1916             assertDisabledSym =
1917                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1918                               dollarAssertionsDisabled,
1919                               syms.booleanType,
1920                               container);
1921             enterSynthetic(pos, assertDisabledSym, container.members());
1922             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1923                                                             names.desiredAssertionStatus,
1924                                                             types.erasure(syms.classType),
1925                                                             List.nil());
1926             JCClassDecl containerDef = classDef(container);
1927             make_at(containerDef.pos());
1928             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
1929                     classOfType(types.erasure(outermostClass.type),
1930                                 containerDef.pos()),
1931                     desiredAssertionStatusSym)));
1932             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1933                                                    notStatus);
1934             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1935 
1936             if (currentClass.isInterface()) {
1937                 //need to load the assertions enabled/disabled state while
1938                 //initializing the interface:
1939                 JCClassDecl currentClassDef = classDef(currentClass);
1940                 make_at(currentClassDef.pos());
1941                 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
1942                 JCBlock clinit = make.Block(STATIC, List.of(dummy));
1943                 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
1944             }
1945         }
1946         make_at(pos);
1947         return makeUnary(NOT, make.Ident(assertDisabledSym));
1948     }
1949 
1950 
1951 /* ************************************************************************
1952  * Building blocks for let expressions
1953  *************************************************************************/
1954 
1955     interface TreeBuilder {
1956         JCExpression build(JCExpression arg);
1957     }
1958 
1959     /** Construct an expression using the builder, with the given rval
1960      *  expression as an argument to the builder.  However, the rval
1961      *  expression must be computed only once, even if used multiple
1962      *  times in the result of the builder.  We do that by
1963      *  constructing a "let" expression that saves the rvalue into a
1964      *  temporary variable and then uses the temporary variable in
1965      *  place of the expression built by the builder.  The complete
1966      *  resulting expression is of the form
1967      *  <pre>
1968      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1969      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1970      *  </pre>
1971      *  where <code><b>TEMP</b></code> is a newly declared variable
1972      *  in the let expression.
1973      */
1974     JCExpression abstractRval(JCExpression rval, Type type, TreeBuilder builder) {
1975         rval = TreeInfo.skipParens(rval);
1976         switch (rval.getTag()) {
1977         case LITERAL:
1978             return builder.build(rval);
1979         case IDENT:
1980             JCIdent id = (JCIdent) rval;
1981             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
1982                 return builder.build(rval);
1983         }
1984         Name name = TreeInfo.name(rval);
1985         if (name == names._super || name == names._this)
1986             return builder.build(rval);
1987         VarSymbol var =
1988             new VarSymbol(FINAL|SYNTHETIC,
1989                           names.fromString(
1990                                           target.syntheticNameChar()
1991                                           + "" + rval.hashCode()),
1992                                       type,
1993                                       currentMethodSym);
1994         rval = convert(rval,type);
1995         JCVariableDecl def = make.VarDef(var, rval); // XXX cast
1996         JCExpression built = builder.build(make.Ident(var));
1997         JCExpression res = make.LetExpr(def, built);
1998         res.type = built.type;
1999         return res;
2000     }
2001 
2002     // same as above, with the type of the temporary variable computed
2003     JCExpression abstractRval(JCExpression rval, TreeBuilder builder) {
2004         return abstractRval(rval, rval.type, builder);
2005     }
2006 
2007     // same as above, but for an expression that may be used as either
2008     // an rvalue or an lvalue.  This requires special handling for
2009     // Select expressions, where we place the left-hand-side of the
2010     // select in a temporary, and for Indexed expressions, where we
2011     // place both the indexed expression and the index value in temps.
2012     JCExpression abstractLval(JCExpression lval, final TreeBuilder builder) {
2013         lval = TreeInfo.skipParens(lval);
2014         switch (lval.getTag()) {
2015         case IDENT:
2016             return builder.build(lval);
2017         case SELECT: {
2018             final JCFieldAccess s = (JCFieldAccess)lval;
2019             Symbol lid = TreeInfo.symbol(s.selected);
2020             if (lid != null && lid.kind == TYP) return builder.build(lval);
2021             return abstractRval(s.selected, selected -> builder.build(make.Select(selected, s.sym)));
2022         }
2023         case INDEXED: {
2024             final JCArrayAccess i = (JCArrayAccess)lval;
2025             return abstractRval(i.indexed, indexed -> abstractRval(i.index, syms.intType, index -> {
2026                 JCExpression newLval = make.Indexed(indexed, index);
2027                 newLval.setType(i.type);
2028                 return builder.build(newLval);
2029             }));
2030         }
2031         case TYPECAST: {
2032             return abstractLval(((JCTypeCast)lval).expr, builder);
2033         }
2034         }
2035         throw new AssertionError(lval);
2036     }
2037 
2038     // evaluate and discard the first expression, then evaluate the second.
2039     JCExpression makeComma(final JCExpression expr1, final JCExpression expr2) {
2040         JCExpression res = make.LetExpr(List.of(make.Exec(expr1)), expr2);
2041         res.type = expr2.type;
2042         return res;
2043     }
2044 
2045 /* ************************************************************************
2046  * Translation methods
2047  *************************************************************************/
2048 
2049     /** Visitor argument: enclosing operator node.
2050      */
2051     private JCExpression enclOp;
2052 
2053     /** Visitor method: Translate a single node.
2054      *  Attach the source position from the old tree to its replacement tree.
2055      */
2056     @Override
2057     public <T extends JCTree> T translate(T tree) {
2058         if (tree == null) {
2059             return null;
2060         } else {
2061             make_at(tree.pos());
2062             T result = super.translate(tree);
2063             if (endPosTable != null && result != tree) {
2064                 endPosTable.replaceTree(tree, result);
2065             }
2066             return result;
2067         }
2068     }
2069 
2070     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2071      */
2072     public <T extends JCExpression> T translate(T tree, Type type) {
2073         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2074     }
2075 
2076     /** Visitor method: Translate tree.
2077      */
2078     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2079         JCExpression prevEnclOp = this.enclOp;
2080         this.enclOp = enclOp;
2081         T res = translate(tree);
2082         this.enclOp = prevEnclOp;
2083         return res;
2084     }
2085 
2086     /** Visitor method: Translate list of trees.
2087      */
2088     public <T extends JCExpression> List<T> translate(List<T> trees, Type type) {
2089         if (trees == null) return null;
2090         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2091             l.head = translate(l.head, type);
2092         return trees;
2093     }
2094 
2095     public void visitPackageDef(JCPackageDecl tree) {
2096         if (!needPackageInfoClass(tree))
2097                         return;
2098 
2099         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2100         // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2101         flags = flags | Flags.SYNTHETIC;
2102         ClassSymbol c = tree.packge.package_info;
2103         c.setAttributes(tree.packge);
2104         c.flags_field |= flags;
2105         ClassType ctype = (ClassType) c.type;
2106         ctype.supertype_field = syms.objectType;
2107         ctype.interfaces_field = List.nil();
2108         createInfoClass(tree.annotations, c);
2109     }
2110     // where
2111     private boolean needPackageInfoClass(JCPackageDecl pd) {
2112         switch (pkginfoOpt) {
2113             case ALWAYS:
2114                 return true;
2115             case LEGACY:
2116                 return pd.getAnnotations().nonEmpty();
2117             case NONEMPTY:
2118                 for (Attribute.Compound a :
2119                          pd.packge.getDeclarationAttributes()) {
2120                     Attribute.RetentionPolicy p = types.getRetention(a);
2121                     if (p != Attribute.RetentionPolicy.SOURCE)
2122                         return true;
2123                 }
2124                 return false;
2125         }
2126         throw new AssertionError();
2127     }
2128 
2129     public void visitModuleDef(JCModuleDecl tree) {
2130         ModuleSymbol msym = tree.sym;
2131         ClassSymbol c = msym.module_info;
2132         c.setAttributes(msym);
2133         c.flags_field |= Flags.MODULE;
2134         createInfoClass(List.nil(), tree.sym.module_info);
2135     }
2136 
2137     private void createInfoClass(List<JCAnnotation> annots, ClassSymbol c) {
2138         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2139         JCClassDecl infoClass =
2140                 make.ClassDef(make.Modifiers(flags, annots),
2141                     c.name, List.nil(),
2142                     null, List.nil(), List.nil());
2143         infoClass.sym = c;
2144         translated.append(infoClass);
2145     }
2146 
2147     public void visitClassDef(JCClassDecl tree) {
2148         Env<AttrContext> prevEnv = attrEnv;
2149         ClassSymbol currentClassPrev = currentClass;
2150         MethodSymbol currentMethodSymPrev = currentMethodSym;
2151 
2152         currentClass = tree.sym;
2153         currentMethodSym = null;
2154         attrEnv = typeEnvs.remove(currentClass);
2155         if (attrEnv == null)
2156             attrEnv = prevEnv;
2157 
2158         classdefs.put(currentClass, tree);
2159 
2160         Map<Symbol, Symbol> prevProxies = proxies;
2161         proxies = new HashMap<>(proxies);
2162         List<VarSymbol> prevOuterThisStack = outerThisStack;
2163 
2164         // If this is an enum definition
2165         if ((tree.mods.flags & ENUM) != 0 &&
2166             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2167             visitEnumDef(tree);
2168 
2169         if ((tree.mods.flags & RECORD) != 0) {
2170             visitRecordDef(tree);
2171         }
2172 
2173         // If this is a nested class, define a this$n field for
2174         // it and add to proxies.
2175         JCVariableDecl otdef = null;
2176         if (currentClass.hasOuterInstance())
2177             otdef = outerThisDef(tree.pos, currentClass);
2178 
2179         // If this is a local class, define proxies for all its free variables.
2180         List<JCVariableDecl> fvdefs = freevarDefs(
2181             tree.pos, freevars(currentClass), currentClass, allowValueClasses && currentClass.isValueClass() ? STRICT : LOCAL_CAPTURE_FIELD);
2182 
2183         // Recursively translate superclass, interfaces.
2184         tree.extending = translate(tree.extending);
2185         tree.implementing = translate(tree.implementing);
2186 
2187         if (currentClass.isDirectlyOrIndirectlyLocal()) {
2188             ClassSymbol encl = currentClass.owner.enclClass();
2189             if (encl.trans_local == null) {
2190                 encl.trans_local = List.nil();
2191             }
2192             encl.trans_local = encl.trans_local.prepend(currentClass);
2193         }
2194 
2195         // Recursively translate members, taking into account that new members
2196         // might be created during the translation and prepended to the member
2197         // list `tree.defs'.
2198         List<JCTree> seen = List.nil();
2199         while (tree.defs != seen) {
2200             List<JCTree> unseen = tree.defs;
2201             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2202                 JCTree outermostMemberDefPrev = outermostMemberDef;
2203                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2204                 l.head = translate(l.head);
2205                 outermostMemberDef = outermostMemberDefPrev;
2206             }
2207             seen = unseen;
2208         }
2209 
2210         // Convert a protected modifier to public, mask static modifier.
2211         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2212         tree.mods.flags &= ClassFlags;
2213 
2214         // Convert name to flat representation, replacing '.' by '$'.
2215         tree.name = Convert.shortName(currentClass.flatName());
2216 
2217         // Add free variables proxy definitions to class.
2218 
2219         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2220             tree.defs = tree.defs.prepend(l.head);
2221             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2222         }
2223         // If this$n was accessed, add the field definition and prepend
2224         // initializer code to any super() invocation to initialize it
2225         if (currentClass.hasOuterInstance() && shouldEmitOuterThis(currentClass)) {
2226             tree.defs = tree.defs.prepend(otdef);
2227             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2228 
2229             for (JCTree def : tree.defs) {
2230                 if (TreeInfo.isConstructor(def)) {
2231                     JCMethodDecl mdef = (JCMethodDecl)def;
2232                     if (TreeInfo.hasConstructorCall(mdef, names._super)) {
2233                         List<JCStatement> initializer = List.of(initOuterThis(mdef.body.pos, mdef.params.head.sym));
2234                         TreeInfo.mapSuperCalls(mdef.body, supercall -> make.Block(0, initializer.append(supercall)));
2235                     }
2236                 }
2237             }
2238         }
2239 
2240         proxies = prevProxies;
2241         outerThisStack = prevOuterThisStack;
2242 
2243         // Append translated tree to `translated' queue.
2244         translated.append(tree);
2245 
2246         attrEnv = prevEnv;
2247         currentClass = currentClassPrev;
2248         currentMethodSym = currentMethodSymPrev;
2249 
2250         // Return empty block {} as a placeholder for an inner class.
2251         result = make_at(tree.pos()).Block(SYNTHETIC, List.nil());
2252     }
2253 
2254     private boolean shouldEmitOuterThis(ClassSymbol sym) {
2255       if (!optimizeOuterThis) {
2256         // Optimization is disabled
2257         return true;
2258       }
2259       if ((outerThisStack.head.flags_field & NOOUTERTHIS) == 0)  {
2260         // Enclosing instance field is used
2261         return true;
2262       }
2263       if (rs.isSerializable(sym.type)) {
2264         // Class is serializable
2265         return true;
2266       }
2267       return false;
2268     }
2269 
2270     List<JCTree> generateMandatedAccessors(JCClassDecl tree) {
2271         List<JCVariableDecl> fields = TreeInfo.recordFields(tree);
2272         return tree.sym.getRecordComponents().stream()
2273                 .filter(rc -> (rc.accessor.flags() & Flags.GENERATED_MEMBER) != 0)
2274                 .map(rc -> {
2275                     // we need to return the field not the record component
2276                     JCVariableDecl field = fields.stream().filter(f -> f.name == rc.name).findAny().get();
2277                     make_at(tree.pos());
2278                     return make.MethodDef(rc.accessor, make.Block(0,
2279                             List.of(make.Return(make.Ident(field)))));
2280                 }).collect(List.collector());
2281     }
2282 
2283     /** Translate an enum class. */
2284     private void visitEnumDef(JCClassDecl tree) {
2285         make_at(tree.pos());
2286 
2287         // add the supertype, if needed
2288         if (tree.extending == null)
2289             tree.extending = make.Type(types.supertype(tree.type));
2290 
2291         // classOfType adds a cache field to tree.defs
2292         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2293             setType(types.erasure(syms.classType));
2294 
2295         // process each enumeration constant, adding implicit constructor parameters
2296         int nextOrdinal = 0;
2297         ListBuffer<JCExpression> values = new ListBuffer<>();
2298         ListBuffer<JCTree> enumDefs = new ListBuffer<>();
2299         ListBuffer<JCTree> otherDefs = new ListBuffer<>();
2300         for (List<JCTree> defs = tree.defs;
2301              defs.nonEmpty();
2302              defs=defs.tail) {
2303             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2304                 JCVariableDecl var = (JCVariableDecl)defs.head;
2305                 visitEnumConstantDef(var, nextOrdinal++);
2306                 values.append(make.QualIdent(var.sym));
2307                 enumDefs.append(var);
2308             } else {
2309                 otherDefs.append(defs.head);
2310             }
2311         }
2312 
2313         // synthetic private static T[] $values() { return new T[] { a, b, c }; }
2314         // synthetic private static final T[] $VALUES = $values();
2315         Name valuesName = syntheticName(tree, "VALUES");
2316         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2317         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2318                                             valuesName,
2319                                             arrayType,
2320                                             tree.type.tsym);
2321         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2322                                           List.nil(),
2323                                           values.toList());
2324         newArray.type = arrayType;
2325 
2326         MethodSymbol valuesMethod = new MethodSymbol(PRIVATE|STATIC|SYNTHETIC,
2327                 syntheticName(tree, "values"),
2328                 new MethodType(List.nil(), arrayType, List.nil(), tree.type.tsym),
2329                 tree.type.tsym);
2330         enumDefs.append(make.MethodDef(valuesMethod, make.Block(0, List.of(make.Return(newArray)))));
2331         tree.sym.members().enter(valuesMethod);
2332 
2333         enumDefs.append(make.VarDef(valuesVar, make.App(make.QualIdent(valuesMethod))));
2334         tree.sym.members().enter(valuesVar);
2335 
2336         MethodSymbol valuesSym = lookupMethod(tree.pos(), names.values,
2337                                         tree.type, List.nil());
2338         List<JCStatement> valuesBody;
2339         if (useClone()) {
2340             // return (T[]) $VALUES.clone();
2341             JCTypeCast valuesResult =
2342                 make.TypeCast(valuesSym.type.getReturnType(),
2343                               make.App(make.Select(make.Ident(valuesVar),
2344                                                    syms.arrayCloneMethod)));
2345             valuesBody = List.of(make.Return(valuesResult));
2346         } else {
2347             // template: T[] $result = new T[$values.length];
2348             Name resultName = syntheticName(tree, "result");
2349             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2350                                                 resultName,
2351                                                 arrayType,
2352                                                 valuesSym);
2353             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2354                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2355                                   null);
2356             resultArray.type = arrayType;
2357             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2358 
2359             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2360             if (systemArraycopyMethod == null) {
2361                 systemArraycopyMethod =
2362                     new MethodSymbol(PUBLIC | STATIC,
2363                                      names.fromString("arraycopy"),
2364                                      new MethodType(List.of(syms.objectType,
2365                                                             syms.intType,
2366                                                             syms.objectType,
2367                                                             syms.intType,
2368                                                             syms.intType),
2369                                                     syms.voidType,
2370                                                     List.nil(),
2371                                                     syms.methodClass),
2372                                      syms.systemType.tsym);
2373             }
2374             JCStatement copy =
2375                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2376                                                systemArraycopyMethod),
2377                           List.of(make.Ident(valuesVar), make.Literal(0),
2378                                   make.Ident(resultVar), make.Literal(0),
2379                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2380 
2381             // template: return $result;
2382             JCStatement ret = make.Return(make.Ident(resultVar));
2383             valuesBody = List.of(decl, copy, ret);
2384         }
2385 
2386         JCMethodDecl valuesDef =
2387              make.MethodDef(valuesSym, make.Block(0, valuesBody));
2388 
2389         enumDefs.append(valuesDef);
2390 
2391         if (debugLower)
2392             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2393 
2394         /** The template for the following code is:
2395          *
2396          *     public static E valueOf(String name) {
2397          *         return (E)Enum.valueOf(E.class, name);
2398          *     }
2399          *
2400          *  where E is tree.sym
2401          */
2402         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2403                          names.valueOf,
2404                          tree.sym.type,
2405                          List.of(syms.stringType));
2406         Assert.check((valueOfSym.flags() & STATIC) != 0);
2407         VarSymbol nameArgSym = valueOfSym.params.head;
2408         JCIdent nameVal = make.Ident(nameArgSym);
2409         JCStatement enum_ValueOf =
2410             make.Return(make.TypeCast(tree.sym.type,
2411                                       makeCall(make.Ident(syms.enumSym),
2412                                                names.valueOf,
2413                                                List.of(e_class, nameVal))));
2414         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2415                                            make.Block(0, List.of(enum_ValueOf)));
2416         nameVal.sym = valueOf.params.head.sym;
2417         if (debugLower)
2418             System.err.println(tree.sym + ".valueOf = " + valueOf);
2419         enumDefs.append(valueOf);
2420 
2421         enumDefs.appendList(otherDefs.toList());
2422         tree.defs = enumDefs.toList();
2423     }
2424         // where
2425         private MethodSymbol systemArraycopyMethod;
2426         private boolean useClone() {
2427             try {
2428                 return syms.objectType.tsym.members().findFirst(names.clone) != null;
2429             }
2430             catch (CompletionFailure e) {
2431                 return false;
2432             }
2433         }
2434 
2435         private Name syntheticName(JCClassDecl tree, String baseName) {
2436             Name valuesName = names.fromString(target.syntheticNameChar() + baseName);
2437             while (tree.sym.members().findFirst(valuesName) != null) // avoid name clash
2438                 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2439             return valuesName;
2440         }
2441 
2442     /** Translate an enumeration constant and its initializer. */
2443     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2444         JCNewClass varDef = (JCNewClass)var.init;
2445         varDef.args = varDef.args.
2446             prepend(makeLit(syms.intType, ordinal)).
2447             prepend(makeLit(syms.stringType, var.name.toString()));
2448     }
2449 
2450     private List<VarSymbol> recordVars(Type t) {
2451         List<VarSymbol> vars = List.nil();
2452         while (!t.hasTag(NONE)) {
2453             if (t.hasTag(CLASS)) {
2454                 for (Symbol s : t.tsym.members().getSymbols(s -> s.kind == VAR && (s.flags() & RECORD) != 0)) {
2455                     vars = vars.prepend((VarSymbol)s);
2456                 }
2457             }
2458             t = types.supertype(t);
2459         }
2460         return vars;
2461     }
2462 
2463     /** Translate a record. */
2464     private void visitRecordDef(JCClassDecl tree) {
2465         make_at(tree.pos());
2466         List<VarSymbol> vars = recordVars(tree.type);
2467         MethodHandleSymbol[] getterMethHandles = new MethodHandleSymbol[vars.size()];
2468         int index = 0;
2469         for (VarSymbol var : vars) {
2470             if (var.owner != tree.sym) {
2471                 var = new VarSymbol(var.flags_field, var.name, var.type, tree.sym);
2472             }
2473             getterMethHandles[index] = var.asMethodHandle(true);
2474             index++;
2475         }
2476 
2477         tree.defs = tree.defs.appendList(generateMandatedAccessors(tree));
2478         tree.defs = tree.defs.appendList(List.of(
2479                 generateRecordMethod(tree, names.toString, vars, getterMethHandles),
2480                 generateRecordMethod(tree, names.hashCode, vars, getterMethHandles),
2481                 generateRecordMethod(tree, names.equals, vars, getterMethHandles)
2482         ));
2483     }
2484 
2485     JCTree generateRecordMethod(JCClassDecl tree, Name name, List<VarSymbol> vars, MethodHandleSymbol[] getterMethHandles) {
2486         make_at(tree.pos());
2487         boolean isEquals = name == names.equals;
2488         MethodSymbol msym = lookupMethod(tree.pos(),
2489                 name,
2490                 tree.sym.type,
2491                 isEquals ? List.of(syms.objectType) : List.nil());
2492         // compiler generated methods have the record flag set, user defined ones dont
2493         if ((msym.flags() & RECORD) != 0) {
2494             /* class java.lang.runtime.ObjectMethods provides a common bootstrap that provides a customized implementation
2495              * for methods: toString, hashCode and equals. Here we just need to generate and indy call to:
2496              * java.lang.runtime.ObjectMethods::bootstrap and provide: the record class, the record component names and
2497              * the accessors.
2498              */
2499             Name bootstrapName = names.bootstrap;
2500             LoadableConstant[] staticArgsValues = new LoadableConstant[2 + getterMethHandles.length];
2501             staticArgsValues[0] = (ClassType)tree.sym.type;
2502             String concatNames = vars.stream()
2503                     .map(v -> v.name)
2504                     .collect(Collectors.joining(";", "", ""));
2505             staticArgsValues[1] = LoadableConstant.String(concatNames);
2506             int index = 2;
2507             for (MethodHandleSymbol mho : getterMethHandles) {
2508                 staticArgsValues[index] = mho;
2509                 index++;
2510             }
2511 
2512             List<Type> staticArgTypes = List.of(syms.classType,
2513                     syms.stringType,
2514                     new ArrayType(syms.methodHandleType, syms.arrayClass));
2515 
2516             JCFieldAccess qualifier = makeIndyQualifier(syms.objectMethodsType, tree, msym,
2517                     List.of(syms.methodHandleLookupType,
2518                             syms.stringType,
2519                             syms.typeDescriptorType).appendList(staticArgTypes),
2520                     staticArgsValues, bootstrapName, name, false);
2521 
2522             VarSymbol _this = new VarSymbol(SYNTHETIC, names._this, tree.sym.type, tree.sym);
2523 
2524             JCMethodInvocation proxyCall;
2525             if (!isEquals) {
2526                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this)));
2527             } else {
2528                 VarSymbol o = msym.params.head;
2529                 o.adr = 0;
2530                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this), make.Ident(o)));
2531             }
2532             proxyCall.type = qualifier.type;
2533             return make.MethodDef(msym, make.Block(0, List.of(make.Return(proxyCall))));
2534         } else {
2535             return make.Block(SYNTHETIC, List.nil());
2536         }
2537     }
2538 
2539     private String argsTypeSig(List<Type> typeList) {
2540         LowerSignatureGenerator sg = new LowerSignatureGenerator();
2541         sg.assembleSig(typeList);
2542         return sg.toString();
2543     }
2544 
2545     /**
2546      * Signature Generation
2547      */
2548     private class LowerSignatureGenerator extends Types.SignatureGenerator {
2549 
2550         /**
2551          * An output buffer for type signatures.
2552          */
2553         StringBuilder sb = new StringBuilder();
2554 
2555         LowerSignatureGenerator() {
2556             types.super();
2557         }
2558 
2559         @Override
2560         protected void append(char ch) {
2561             sb.append(ch);
2562         }
2563 
2564         @Override
2565         protected void append(byte[] ba) {
2566             sb.append(new String(ba));
2567         }
2568 
2569         @Override
2570         protected void append(Name name) {
2571             sb.append(name.toString());
2572         }
2573 
2574         @Override
2575         public String toString() {
2576             return sb.toString();
2577         }
2578     }
2579 
2580     /**
2581      * Creates an indy qualifier, helpful to be part of an indy invocation
2582      * @param site                the site
2583      * @param tree                a class declaration tree
2584      * @param msym                the method symbol
2585      * @param staticArgTypes      the static argument types
2586      * @param staticArgValues     the static argument values
2587      * @param bootstrapName       the bootstrap name to look for
2588      * @param argName             normally bootstraps receives a method name as second argument, if you want that name
2589      *                            to be different to that of the bootstrap name pass a different name here
2590      * @param isStatic            is it static or not
2591      * @return                    a field access tree
2592      */
2593     JCFieldAccess makeIndyQualifier(
2594             Type site,
2595             JCClassDecl tree,
2596             MethodSymbol msym,
2597             List<Type> staticArgTypes,
2598             LoadableConstant[] staticArgValues,
2599             Name bootstrapName,
2600             Name argName,
2601             boolean isStatic) {
2602         MethodSymbol bsm = rs.resolveInternalMethod(tree.pos(), attrEnv, site,
2603                 bootstrapName, staticArgTypes, List.nil());
2604 
2605         MethodType indyType = msym.type.asMethodType();
2606         indyType = new MethodType(
2607                 isStatic ? List.nil() : indyType.argtypes.prepend(tree.sym.type),
2608                 indyType.restype,
2609                 indyType.thrown,
2610                 syms.methodClass
2611         );
2612         DynamicMethodSymbol dynSym = new DynamicMethodSymbol(argName,
2613                 syms.noSymbol,
2614                 bsm.asHandle(),
2615                 indyType,
2616                 staticArgValues);
2617         JCFieldAccess qualifier = make.Select(make.QualIdent(site.tsym), argName);
2618         qualifier.sym = dynSym;
2619         qualifier.type = msym.type.asMethodType().restype;
2620         return qualifier;
2621     }
2622 
2623     public void visitMethodDef(JCMethodDecl tree) {
2624         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2625             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2626             // argument list for each constructor of an enum.
2627             JCVariableDecl nameParam = make_at(tree.pos()).
2628                 Param(names.fromString(target.syntheticNameChar() +
2629                                        "enum" + target.syntheticNameChar() + "name"),
2630                       syms.stringType, tree.sym);
2631             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2632             JCVariableDecl ordParam = make.
2633                 Param(names.fromString(target.syntheticNameChar() +
2634                                        "enum" + target.syntheticNameChar() +
2635                                        "ordinal"),
2636                       syms.intType, tree.sym);
2637             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2638 
2639             MethodSymbol m = tree.sym;
2640             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2641 
2642             m.extraParams = m.extraParams.prepend(ordParam.sym);
2643             m.extraParams = m.extraParams.prepend(nameParam.sym);
2644             Type olderasure = m.erasure(types);
2645             m.erasure_field = new MethodType(
2646                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2647                 olderasure.getReturnType(),
2648                 olderasure.getThrownTypes(),
2649                 syms.methodClass);
2650         }
2651 
2652         Type prevRestype = currentRestype;
2653         JCMethodDecl prevMethodDef = currentMethodDef;
2654         MethodSymbol prevMethodSym = currentMethodSym;
2655         int prevVariableIndex = variableIndex;
2656         try {
2657             currentRestype = types.erasure(tree.type.getReturnType());
2658             currentMethodDef = tree;
2659             currentMethodSym = tree.sym;
2660             variableIndex = 0;
2661             visitMethodDefInternal(tree);
2662         } finally {
2663             currentRestype = prevRestype;
2664             currentMethodDef = prevMethodDef;
2665             currentMethodSym = prevMethodSym;
2666             variableIndex = prevVariableIndex;
2667         }
2668     }
2669 
2670     private void visitMethodDefInternal(JCMethodDecl tree) {
2671         if (tree.name == names.init &&
2672             !currentClass.isStatic() &&
2673             (currentClass.isInner() || currentClass.isDirectlyOrIndirectlyLocal())) {
2674             // We are seeing a constructor of an inner class.
2675             MethodSymbol m = tree.sym;
2676 
2677             // Push a new proxy scope for constructor parameters.
2678             // and create definitions for any this$n and proxy parameters.
2679             Map<Symbol, Symbol> prevProxies = proxies;
2680             proxies = new HashMap<>(proxies);
2681             List<VarSymbol> prevOuterThisStack = outerThisStack;
2682             List<VarSymbol> fvs = freevars(currentClass);
2683             JCVariableDecl otdef = null;
2684             if (currentClass.hasOuterInstance())
2685                 otdef = outerThisDef(tree.pos, m);
2686             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
2687 
2688             // Recursively translate result type, parameters and thrown list.
2689             tree.restype = translate(tree.restype);
2690             tree.params = translateVarDefs(tree.params);
2691             tree.thrown = translate(tree.thrown);
2692 
2693             // when compiling stubs, don't process body
2694             if (tree.body == null) {
2695                 result = tree;
2696                 return;
2697             }
2698 
2699             // Add this$n (if needed) in front of and free variables behind
2700             // constructor parameter list.
2701             tree.params = tree.params.appendList(fvdefs);
2702             if (currentClass.hasOuterInstance()) {
2703                 tree.params = tree.params.prepend(otdef);
2704             }
2705 
2706             // Determine whether this constructor has a super() invocation
2707             boolean invokesSuper = TreeInfo.hasConstructorCall(tree, names._super);
2708 
2709             // Create initializers for this$n and proxies
2710             ListBuffer<JCStatement> added = new ListBuffer<>();
2711             if (fvs.nonEmpty()) {
2712                 List<Type> addedargtypes = List.nil();
2713                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2714                     m.capturedLocals =
2715                         m.capturedLocals.prepend((VarSymbol)
2716                                                 (proxies.get(l.head)));
2717                     if (invokesSuper) {
2718                         added = added.prepend(
2719                           initField(tree.body.pos, proxies.get(l.head), prevProxies.get(l.head)));
2720                     }
2721                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2722                 }
2723                 Type olderasure = m.erasure(types);
2724                 m.erasure_field = new MethodType(
2725                     olderasure.getParameterTypes().appendList(addedargtypes),
2726                     olderasure.getReturnType(),
2727                     olderasure.getThrownTypes(),
2728                     syms.methodClass);
2729             }
2730 
2731             // Recursively translate existing local statements
2732             tree.body.stats = translate(tree.body.stats);
2733 
2734             // Prepend initializers in front of super() call
2735             if (added.nonEmpty()) {
2736                 List<JCStatement> initializers = added.toList();
2737                 TreeInfo.mapSuperCalls(tree.body, supercall -> make.Block(0, initializers.append(supercall)));
2738             }
2739 
2740             // pop local variables from proxy stack
2741             proxies = prevProxies;
2742 
2743             outerThisStack = prevOuterThisStack;
2744         } else {
2745             super.visitMethodDef(tree);
2746         }
2747         if (tree.name == names.init && ((tree.sym.flags_field & Flags.COMPACT_RECORD_CONSTRUCTOR) != 0 ||
2748                 (tree.sym.flags_field & (GENERATEDCONSTR | RECORD)) == (GENERATEDCONSTR | RECORD))) {
2749             // lets find out if there is any field waiting to be initialized
2750             ListBuffer<VarSymbol> fields = new ListBuffer<>();
2751             for (Symbol sym : currentClass.getEnclosedElements()) {
2752                 if (sym.kind == Kinds.Kind.VAR && ((sym.flags() & RECORD) != 0))
2753                     fields.append((VarSymbol) sym);
2754             }
2755             ListBuffer<JCStatement> initializers = new ListBuffer<>();
2756             for (VarSymbol field: fields) {
2757                 if ((field.flags_field & Flags.UNINITIALIZED_FIELD) != 0) {
2758                     VarSymbol param = tree.params.stream().filter(p -> p.name == field.name).findFirst().get().sym;
2759                     make.at(tree.pos);
2760                     initializers.add(make.Exec(
2761                             make.Assign(
2762                                     make.Select(make.This(field.owner.erasure(types)), field),
2763                                     make.Ident(param)).setType(field.erasure(types))));
2764                     field.flags_field &= ~Flags.UNINITIALIZED_FIELD;
2765                 }
2766             }
2767             if (initializers.nonEmpty()) {
2768                 if (tree.sym.owner.isValueClass()) {
2769                     TreeInfo.mapSuperCalls(tree.body, supercall -> make.Block(0, initializers.toList().append(supercall)));
2770                 } else {
2771                     tree.body.stats = tree.body.stats.appendList(initializers);
2772                 }
2773             }
2774         }
2775         result = tree;
2776     }
2777 
2778     public void visitTypeCast(JCTypeCast tree) {
2779         tree.clazz = translate(tree.clazz);
2780         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2781             tree.expr = translate(tree.expr, tree.type);
2782         else
2783             tree.expr = translate(tree.expr);
2784         result = tree;
2785     }
2786 
2787     /**
2788      * All the exactness checks between primitive types that require a run-time
2789      * check are in {@code java.lang.runtime.ExactConversionsSupport}. Those methods
2790      * are in the form {@code ExactConversionsSupport.is<S>To<T>Exact} where both
2791      * {@code S} and {@code T} are primitive types and correspond to the runtime
2792      * action that will be executed to check whether a certain value (that is passed
2793      * as a parameter) can be converted to {@code T} without loss of information.
2794      *
2795      * Rewrite {@code instanceof if expr : Object} and Type is primitive type:
2796      *
2797      * {@snippet :
2798      *   Object v = ...
2799      *   if (v instanceof float)
2800      *   =>
2801      *   if (let tmp$123 = v; tmp$123 instanceof Float)
2802      * }
2803      *
2804      * Rewrite {@code instanceof if expr : wrapper reference type}
2805      *
2806      * {@snippet :
2807      *   Integer v = ...
2808      *   if (v instanceof float)
2809      *   =>
2810      *   if (let tmp$123 = v; tmp$123 != null && ExactConversionsSupport.intToFloatExact(tmp$123.intValue()))
2811      * }
2812      *
2813      * Rewrite {@code instanceof if expr : primitive}
2814      *
2815      * {@snippet :
2816      *   int v = ...
2817      *   if (v instanceof float)
2818      *   =>
2819      *   if (let tmp$123 = v; ExactConversionsSupport.intToFloatExact(tmp$123))
2820      * }
2821      *
2822      * More rewritings:
2823      * <ul>
2824      * <li>If the {@code instanceof} check is unconditionally exact rewrite to true.</li>
2825      * <li>If expression type is {@code Byte}, {@code Short}, {@code Integer}, ..., an
2826      *     unboxing conversion followed by a widening primitive conversion.</li>
2827      * <li>If expression type is a supertype: {@code Number}, a narrowing reference
2828      *     conversion followed by an unboxing conversion.</li>
2829      * </ul>
2830      */
2831     public void visitTypeTest(JCInstanceOf tree) {
2832         if (tree.expr.type.isPrimitive() || tree.pattern.type.isPrimitive()) {
2833             JCExpression exactnessCheck = null;
2834             JCExpression instanceOfExpr = translate(tree.expr);
2835 
2836             // preserving the side effects of the value
2837             VarSymbol dollar_s = new VarSymbol(FINAL | SYNTHETIC,
2838                     names.fromString("tmp" + variableIndex++ + this.target.syntheticNameChar()),
2839                     types.erasure(tree.expr.type),
2840                     currentMethodSym);
2841             JCStatement var = make.at(tree.pos())
2842                     .VarDef(dollar_s, instanceOfExpr);
2843 
2844             if (types.isUnconditionallyExact(tree.expr.type, tree.pattern.type)) {
2845                 exactnessCheck = make.Literal(BOOLEAN, 1).setType(syms.booleanType.constType(1));
2846             }
2847             else if (tree.expr.type.isReference()) {
2848                 JCExpression nullCheck =
2849                         makeBinary(NE,
2850                             make.Ident(dollar_s),
2851                             makeNull());
2852 
2853                 if (types.isUnconditionallyExact(types.unboxedType(tree.expr.type), tree.pattern.type)) {
2854                     exactnessCheck = nullCheck;
2855                 } else if (types.unboxedType(tree.expr.type).isPrimitive()) {
2856                     exactnessCheck =
2857                         makeBinary(AND,
2858                             nullCheck,
2859                             getExactnessCheck(tree, boxIfNeeded(make.Ident(dollar_s), types.unboxedType(tree.expr.type))));
2860                 } else {
2861                     exactnessCheck =
2862                         makeBinary(AND,
2863                             nullCheck,
2864                             make.at(tree.pos())
2865                                 .TypeTest(make.Ident(dollar_s), make.Type(types.boxedClass(tree.pattern.type).type))
2866                                 .setType(syms.booleanType));
2867                 }
2868             }
2869             else if (tree.expr.type.isPrimitive()) {
2870                 exactnessCheck = getExactnessCheck(tree, make.Ident(dollar_s));
2871             }
2872 
2873             result = make.LetExpr(List.of(var), exactnessCheck)
2874                     .setType(syms.booleanType);
2875         } else {
2876             tree.expr = translate(tree.expr);
2877             tree.pattern = translate(tree.pattern);
2878             result = tree;
2879         }
2880     }
2881 
2882     // TypePairs should be in sync with the corresponding record in SwitchBootstraps
2883     record TypePairs(TypeSymbol from, TypeSymbol to) {
2884         public static TypePairs of(Symtab syms, Type from, Type to) {
2885             if (from == syms.byteType || from == syms.shortType || from == syms.charType) {
2886                 from = syms.intType;
2887             }
2888             return new TypePairs(from, to);
2889         }
2890 
2891         public TypePairs(Type from, Type to) {
2892             this(from.tsym, to.tsym);
2893         }
2894 
2895         public static HashMap<TypePairs, String> initialize(Symtab syms) {
2896             HashMap<TypePairs, String> typePairToName = new HashMap<>();
2897             typePairToName.put(new TypePairs(syms.byteType,   syms.charType),   "isIntToCharExact");      // redirected
2898             typePairToName.put(new TypePairs(syms.shortType,  syms.byteType),   "isIntToByteExact");      // redirected
2899             typePairToName.put(new TypePairs(syms.shortType,  syms.charType),   "isIntToCharExact");      // redirected
2900             typePairToName.put(new TypePairs(syms.charType,   syms.byteType),   "isIntToByteExact");      // redirected
2901             typePairToName.put(new TypePairs(syms.charType,   syms.shortType),  "isIntToShortExact");     // redirected
2902             typePairToName.put(new TypePairs(syms.intType,    syms.byteType),   "isIntToByteExact");
2903             typePairToName.put(new TypePairs(syms.intType,    syms.shortType),  "isIntToShortExact");
2904             typePairToName.put(new TypePairs(syms.intType,    syms.charType),   "isIntToCharExact");
2905             typePairToName.put(new TypePairs(syms.intType,    syms.floatType),  "isIntToFloatExact");
2906             typePairToName.put(new TypePairs(syms.longType,   syms.byteType),   "isLongToByteExact");
2907             typePairToName.put(new TypePairs(syms.longType,   syms.shortType),  "isLongToShortExact");
2908             typePairToName.put(new TypePairs(syms.longType,   syms.charType),   "isLongToCharExact");
2909             typePairToName.put(new TypePairs(syms.longType,   syms.intType),    "isLongToIntExact");
2910             typePairToName.put(new TypePairs(syms.longType,   syms.floatType),  "isLongToFloatExact");
2911             typePairToName.put(new TypePairs(syms.longType,   syms.doubleType), "isLongToDoubleExact");
2912             typePairToName.put(new TypePairs(syms.floatType,  syms.byteType),   "isFloatToByteExact");
2913             typePairToName.put(new TypePairs(syms.floatType,  syms.shortType),  "isFloatToShortExact");
2914             typePairToName.put(new TypePairs(syms.floatType,  syms.charType),   "isFloatToCharExact");
2915             typePairToName.put(new TypePairs(syms.floatType,  syms.intType),    "isFloatToIntExact");
2916             typePairToName.put(new TypePairs(syms.floatType,  syms.longType),   "isFloatToLongExact");
2917             typePairToName.put(new TypePairs(syms.doubleType, syms.byteType),   "isDoubleToByteExact");
2918             typePairToName.put(new TypePairs(syms.doubleType, syms.shortType),  "isDoubleToShortExact");
2919             typePairToName.put(new TypePairs(syms.doubleType, syms.charType),   "isDoubleToCharExact");
2920             typePairToName.put(new TypePairs(syms.doubleType, syms.intType),    "isDoubleToIntExact");
2921             typePairToName.put(new TypePairs(syms.doubleType, syms.longType),   "isDoubleToLongExact");
2922             typePairToName.put(new TypePairs(syms.doubleType, syms.floatType),  "isDoubleToFloatExact");
2923             return typePairToName;
2924         }
2925     }
2926 
2927     private JCExpression getExactnessCheck(JCInstanceOf tree, JCExpression argument) {
2928         TypePairs pair = TypePairs.of(syms, types.unboxedTypeOrType(tree.expr.type), tree.pattern.type);
2929 
2930         Name exactnessFunction = names.fromString(typePairToName.get(pair));
2931 
2932         // Resolve the exactness method
2933         Symbol ecsym = lookupMethod(tree.pos(),
2934                 exactnessFunction,
2935                 syms.exactConversionsSupportType,
2936                 List.of(pair.from.type));
2937 
2938         // Generate the method call ExactnessChecks.<exactness method>(<argument>);
2939         JCFieldAccess select = make.Select(
2940                 make.QualIdent(syms.exactConversionsSupportType.tsym),
2941                 exactnessFunction);
2942         select.sym = ecsym;
2943         select.setType(syms.booleanType);
2944 
2945         JCExpression exactnessCheck = make.Apply(List.nil(),
2946                 select,
2947                 List.of(argument));
2948         exactnessCheck.setType(syms.booleanType);
2949         return exactnessCheck;
2950     }
2951 
2952     public void visitNewClass(JCNewClass tree) {
2953         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2954 
2955         // Box arguments, if necessary
2956         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2957         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2958         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2959         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2960         tree.varargsElement = null;
2961 
2962         // If created class is local, add free variables after
2963         // explicit constructor arguments.
2964         if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
2965             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2966         }
2967 
2968         // If an access constructor is used, append null as a last argument.
2969         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2970         if (constructor != tree.constructor) {
2971             tree.args = tree.args.append(makeNull());
2972             tree.constructor = constructor;
2973         }
2974 
2975         // If created class has an outer instance, and new is qualified, pass
2976         // qualifier as first argument. If new is not qualified, pass the
2977         // correct outer instance as first argument.
2978         if (c.hasOuterInstance()) {
2979             JCExpression thisArg;
2980             if (tree.encl != null) {
2981                 thisArg = attr.makeNullCheck(translate(tree.encl));
2982                 thisArg.type = tree.encl.type;
2983             } else if (c.isDirectlyOrIndirectlyLocal()) {
2984                 // local class
2985                 thisArg = makeThis(tree.pos(), c.innermostAccessibleEnclosingClass());
2986             } else {
2987                 // nested class
2988                 thisArg = makeOwnerThis(tree.pos(), c, false);
2989                 if (currentMethodSym != null &&
2990                         ((currentMethodSym.flags_field & (STATIC | BLOCK)) == BLOCK) &&
2991                         currentMethodSym.owner.isValueClass()) {
2992                     // instance initializer in a value class
2993                     Set<JCExpression> outerThisSet = initializerOuterThis.get(currentClass);
2994                     if (outerThisSet == null) {
2995                         outerThisSet = new HashSet<>();
2996                     }
2997                     outerThisSet.add(thisArg);
2998                     initializerOuterThis.put(currentClass, outerThisSet);
2999                 }
3000             }
3001             tree.args = tree.args.prepend(thisArg);
3002         }
3003         tree.encl = null;
3004 
3005         // If we have an anonymous class, create its flat version, rather
3006         // than the class or interface following new.
3007         if (tree.def != null) {
3008             translate(tree.def);
3009 
3010             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
3011             tree.def = null;
3012         } else {
3013             tree.clazz = access(c, tree.clazz, enclOp, false);
3014         }
3015         result = tree;
3016     }
3017 
3018     // Simplify conditionals with known constant controlling expressions.
3019     // This allows us to avoid generating supporting declarations for
3020     // the dead code, which will not be eliminated during code generation.
3021     // Note that Flow.isFalse and Flow.isTrue only return true
3022     // for constant expressions in the sense of JLS 15.27, which
3023     // are guaranteed to have no side-effects.  More aggressive
3024     // constant propagation would require that we take care to
3025     // preserve possible side-effects in the condition expression.
3026 
3027     // One common case is equality expressions involving a constant and null.
3028     // Since null is not a constant expression (because null cannot be
3029     // represented in the constant pool), equality checks involving null are
3030     // not captured by Flow.isTrue/isFalse.
3031     // Equality checks involving a constant and null, e.g.
3032     //     "" == null
3033     // are safe to simplify as no side-effects can occur.
3034 
3035     private boolean isTrue(JCTree exp) {
3036         if (exp.type.isTrue())
3037             return true;
3038         Boolean b = expValue(exp);
3039         return b == null ? false : b;
3040     }
3041     private boolean isFalse(JCTree exp) {
3042         if (exp.type.isFalse())
3043             return true;
3044         Boolean b = expValue(exp);
3045         return b == null ? false : !b;
3046     }
3047     /* look for (in)equality relations involving null.
3048      * return true - if expression is always true
3049      *       false - if expression is always false
3050      *        null - if expression cannot be eliminated
3051      */
3052     private Boolean expValue(JCTree exp) {
3053         while (exp.hasTag(PARENS))
3054             exp = ((JCParens)exp).expr;
3055 
3056         boolean eq;
3057         switch (exp.getTag()) {
3058         case EQ: eq = true;  break;
3059         case NE: eq = false; break;
3060         default:
3061             return null;
3062         }
3063 
3064         // we have a JCBinary(EQ|NE)
3065         // check if we have two literals (constants or null)
3066         JCBinary b = (JCBinary)exp;
3067         if (b.lhs.type.hasTag(BOT)) return expValueIsNull(eq, b.rhs);
3068         if (b.rhs.type.hasTag(BOT)) return expValueIsNull(eq, b.lhs);
3069         return null;
3070     }
3071     private Boolean expValueIsNull(boolean eq, JCTree t) {
3072         if (t.type.hasTag(BOT)) return Boolean.valueOf(eq);
3073         if (t.hasTag(LITERAL))  return Boolean.valueOf(!eq);
3074         return null;
3075     }
3076 
3077     /** Visitor method for conditional expressions.
3078      */
3079     @Override
3080     public void visitConditional(JCConditional tree) {
3081         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3082         if (isTrue(cond) && noClassDefIn(tree.falsepart)) {
3083             result = convert(translate(tree.truepart, tree.type), tree.type);
3084             addPrunedInfo(cond);
3085         } else if (isFalse(cond) && noClassDefIn(tree.truepart)) {
3086             result = convert(translate(tree.falsepart, tree.type), tree.type);
3087             addPrunedInfo(cond);
3088         } else {
3089             // Condition is not a compile-time constant.
3090             tree.truepart = translate(tree.truepart, tree.type);
3091             tree.falsepart = translate(tree.falsepart, tree.type);
3092             result = tree;
3093         }
3094     }
3095 //where
3096     private JCExpression convert(JCExpression tree, Type pt) {
3097         if (tree.type == pt || tree.type.hasTag(BOT))
3098             return tree;
3099         JCExpression result = make_at(tree.pos()).TypeCast(make.Type(pt), tree);
3100         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
3101                                                        : pt;
3102         return result;
3103     }
3104 
3105     /** Visitor method for if statements.
3106      */
3107     public void visitIf(JCIf tree) {
3108         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3109         if (isTrue(cond) && noClassDefIn(tree.elsepart)) {
3110             result = translate(tree.thenpart);
3111             addPrunedInfo(cond);
3112         } else if (isFalse(cond) && noClassDefIn(tree.thenpart)) {
3113             if (tree.elsepart != null) {
3114                 result = translate(tree.elsepart);
3115             } else {
3116                 result = make.Skip();
3117             }
3118             addPrunedInfo(cond);
3119         } else {
3120             // Condition is not a compile-time constant.
3121             tree.thenpart = translate(tree.thenpart);
3122             tree.elsepart = translate(tree.elsepart);
3123             result = tree;
3124         }
3125     }
3126 
3127     /** Visitor method for assert statements. Translate them away.
3128      */
3129     public void visitAssert(JCAssert tree) {
3130         tree.cond = translate(tree.cond, syms.booleanType);
3131         if (!tree.cond.type.isTrue()) {
3132             JCExpression cond = assertFlagTest(tree.pos());
3133             List<JCExpression> exnArgs = (tree.detail == null) ?
3134                 List.nil() : List.of(translate(tree.detail));
3135             if (!tree.cond.type.isFalse()) {
3136                 cond = makeBinary
3137                     (AND,
3138                      cond,
3139                      makeUnary(NOT, tree.cond));
3140             }
3141             result =
3142                 make.If(cond,
3143                         make_at(tree).
3144                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
3145                         null);
3146         } else {
3147             result = make.Skip();
3148         }
3149     }
3150 
3151     public void visitApply(JCMethodInvocation tree) {
3152         Symbol meth = TreeInfo.symbol(tree.meth);
3153         List<Type> argtypes = meth.type.getParameterTypes();
3154         if (meth.name == names.init && meth.owner == syms.enumSym)
3155             argtypes = argtypes.tail.tail;
3156         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
3157         tree.varargsElement = null;
3158         Name methName = TreeInfo.name(tree.meth);
3159         if (meth.name==names.init) {
3160             // We are seeing a this(...) or super(...) constructor call.
3161             // If an access constructor is used, append null as a last argument.
3162             Symbol constructor = accessConstructor(tree.pos(), meth);
3163             if (constructor != meth) {
3164                 tree.args = tree.args.append(makeNull());
3165                 TreeInfo.setSymbol(tree.meth, constructor);
3166             }
3167 
3168             // If we are calling a constructor of a local class, add
3169             // free variables after explicit constructor arguments.
3170             ClassSymbol c = (ClassSymbol)constructor.owner;
3171             if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
3172                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
3173             }
3174 
3175             // If we are calling a constructor of an enum class, pass
3176             // along the name and ordinal arguments
3177             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
3178                 List<JCVariableDecl> params = currentMethodDef.params;
3179                 if (currentMethodSym.owner.hasOuterInstance())
3180                     params = params.tail; // drop this$n
3181                 tree.args = tree.args
3182                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
3183                     .prepend(make.Ident(params.head.sym)); // name
3184             }
3185 
3186             // If we are calling a constructor of a class with an outer
3187             // instance, and the call
3188             // is qualified, pass qualifier as first argument in front of
3189             // the explicit constructor arguments. If the call
3190             // is not qualified, pass the correct outer instance as
3191             // first argument. If we are a static class, there is no
3192             // such outer instance, so generate an error.
3193             if (c.hasOuterInstance()) {
3194                 JCExpression thisArg;
3195                 if (tree.meth.hasTag(SELECT)) {
3196                     thisArg = attr.
3197                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
3198                     tree.meth = make.Ident(constructor);
3199                     ((JCIdent) tree.meth).name = methName;
3200                 } else if (c.isDirectlyOrIndirectlyLocal() || methName == names._this){
3201                     // local class or this() call
3202                     thisArg = makeThis(tree.meth.pos(), c.innermostAccessibleEnclosingClass());
3203                 } else if (currentClass.isStatic()) {
3204                     // super() call from static nested class - invalid
3205                     log.error(tree.pos(),
3206                         Errors.NoEnclInstanceOfTypeInScope(c.type.getEnclosingType().tsym));
3207                     thisArg = make.Literal(BOT, null).setType(syms.botType);
3208                 } else {
3209                     // super() call of nested class - never pick 'this'
3210                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
3211                 }
3212                 tree.args = tree.args.prepend(thisArg);
3213             }
3214         } else {
3215             // We are seeing a normal method invocation; translate this as usual.
3216             tree.meth = translate(tree.meth);
3217 
3218             // If the translated method itself is an Apply tree, we are
3219             // seeing an access method invocation. In this case, append
3220             // the method arguments to the arguments of the access method.
3221             if (tree.meth.hasTag(APPLY)) {
3222                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
3223                 app.args = tree.args.prependList(app.args);
3224                 result = app;
3225                 return;
3226             }
3227         }
3228         if (tree.args.stream().anyMatch(c -> c == null)) {
3229             throw new AssertionError("Whooops before: " + tree);
3230         }
3231         result = tree;
3232     }
3233 
3234     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
3235         List<JCExpression> args = _args;
3236         if (parameters.isEmpty()) return args;
3237         boolean anyChanges = false;
3238         ListBuffer<JCExpression> result = new ListBuffer<>();
3239         while (parameters.tail.nonEmpty()) {
3240             JCExpression arg = translate(args.head, parameters.head);
3241             anyChanges |= (arg != args.head);
3242             result.append(arg);
3243             args = args.tail;
3244             parameters = parameters.tail;
3245         }
3246         Type parameter = parameters.head;
3247         if (varargsElement != null) {
3248             anyChanges = true;
3249             ListBuffer<JCExpression> elems = new ListBuffer<>();
3250             while (args.nonEmpty()) {
3251                 JCExpression arg = translate(args.head, varargsElement);
3252                 elems.append(arg);
3253                 args = args.tail;
3254             }
3255             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
3256                                                List.nil(),
3257                                                elems.toList());
3258             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
3259             result.append(boxedArgs);
3260         } else {
3261             if (args.length() != 1) throw new AssertionError(args);
3262             JCExpression arg = translate(args.head, parameter);
3263             anyChanges |= (arg != args.head);
3264             result.append(arg);
3265             if (!anyChanges) return _args;
3266         }
3267         return result.toList();
3268     }
3269 
3270     /** Expand a boxing or unboxing conversion if needed. */
3271     @SuppressWarnings("unchecked") // XXX unchecked
3272     <T extends JCExpression> T boxIfNeeded(T tree, Type type) {
3273         Assert.check(!type.hasTag(VOID));
3274         if (type.hasTag(NONE))
3275             return tree;
3276         boolean havePrimitive = tree.type.isPrimitive();
3277         if (havePrimitive == type.isPrimitive())
3278             return tree;
3279         if (havePrimitive) {
3280             Type unboxedTarget = types.unboxedType(type);
3281             if (!unboxedTarget.hasTag(NONE)) {
3282                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
3283                     tree.type = unboxedTarget.constType(tree.type.constValue());
3284                 return (T)boxPrimitive(tree, types.erasure(type));
3285             } else {
3286                 tree = (T)boxPrimitive(tree);
3287             }
3288         } else {
3289             tree = (T)unbox(tree, type);
3290         }
3291         return tree;
3292     }
3293 
3294     /** Box up a single primitive expression. */
3295     JCExpression boxPrimitive(JCExpression tree) {
3296         return boxPrimitive(tree, types.boxedClass(tree.type).type);
3297     }
3298 
3299     /** Box up a single primitive expression. */
3300     JCExpression boxPrimitive(JCExpression tree, Type box) {
3301         make_at(tree.pos());
3302         Symbol valueOfSym = lookupMethod(tree.pos(),
3303                                          names.valueOf,
3304                                          box,
3305                                          List.<Type>nil()
3306                                          .prepend(tree.type));
3307         return make.App(make.QualIdent(valueOfSym), List.of(tree));
3308     }
3309 
3310     /** Unbox an object to a primitive value. */
3311     JCExpression unbox(JCExpression tree, Type primitive) {
3312         Type unboxedType = types.unboxedType(tree.type);
3313         if (unboxedType.hasTag(NONE)) {
3314             unboxedType = primitive;
3315             if (!unboxedType.isPrimitive())
3316                 throw new AssertionError(unboxedType);
3317             make_at(tree.pos());
3318             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
3319         } else {
3320             // There must be a conversion from unboxedType to primitive.
3321             if (!types.isSubtype(unboxedType, primitive))
3322                 throw new AssertionError(tree);
3323         }
3324         make_at(tree.pos());
3325         Symbol valueSym = lookupMethod(tree.pos(),
3326                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
3327                                        tree.type,
3328                                        List.nil());
3329         return make.App(make.Select(tree, valueSym));
3330     }
3331 
3332     /** Visitor method for parenthesized expressions.
3333      *  If the subexpression has changed, omit the parens.
3334      */
3335     public void visitParens(JCParens tree) {
3336         JCTree expr = translate(tree.expr);
3337         result = ((expr == tree.expr) ? tree : expr);
3338     }
3339 
3340     public void visitIndexed(JCArrayAccess tree) {
3341         tree.indexed = translate(tree.indexed);
3342         tree.index = translate(tree.index, syms.intType);
3343         result = tree;
3344     }
3345 
3346     public void visitAssign(JCAssign tree) {
3347         tree.lhs = translate(tree.lhs, tree);
3348         tree.rhs = translate(tree.rhs, tree.lhs.type);
3349 
3350         // If translated left hand side is an Apply, we are
3351         // seeing an access method invocation. In this case, append
3352         // right hand side as last argument of the access method.
3353         if (tree.lhs.hasTag(APPLY)) {
3354             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3355             app.args = List.of(tree.rhs).prependList(app.args);
3356             result = app;
3357         } else {
3358             result = tree;
3359         }
3360     }
3361 
3362     public void visitAssignop(final JCAssignOp tree) {
3363         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
3364             tree.operator.type.getReturnType().isPrimitive();
3365 
3366         AssignopDependencyScanner depScanner = new AssignopDependencyScanner(tree);
3367         depScanner.scan(tree.rhs);
3368 
3369         if (boxingReq || depScanner.dependencyFound) {
3370             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
3371             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
3372             // (but without recomputing x)
3373             JCTree newTree = abstractLval(tree.lhs, lhs -> {
3374                 Tag newTag = tree.getTag().noAssignOp();
3375                 // Erasure (TransTypes) can change the type of
3376                 // tree.lhs.  However, we can still get the
3377                 // unerased type of tree.lhs as it is stored
3378                 // in tree.type in Attr.
3379                 OperatorSymbol newOperator = operators.resolveBinary(tree,
3380                                                               newTag,
3381                                                               tree.type,
3382                                                               tree.rhs.type);
3383                 //Need to use the "lhs" at two places, once on the future left hand side
3384                 //and once in the future binary operator. But further processing may change
3385                 //the components of the tree in place (see visitSelect for e.g. <Class>.super.<ident>),
3386                 //so cloning the tree to avoid interference between the uses:
3387                 JCExpression expr = (JCExpression) lhs.clone();
3388                 if (expr.type != tree.type)
3389                     expr = make.TypeCast(tree.type, expr);
3390                 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
3391                 opResult.operator = newOperator;
3392                 opResult.type = newOperator.type.getReturnType();
3393                 JCExpression newRhs = boxingReq ?
3394                     make.TypeCast(types.unboxedType(tree.type), opResult) :
3395                     opResult;
3396                 return make.Assign(lhs, newRhs).setType(tree.type);
3397             });
3398             result = translate(newTree);
3399             return;
3400         }
3401         tree.lhs = translate(tree.lhs, tree);
3402         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
3403 
3404         // If translated left hand side is an Apply, we are
3405         // seeing an access method invocation. In this case, append
3406         // right hand side as last argument of the access method.
3407         if (tree.lhs.hasTag(APPLY)) {
3408             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3409             // if operation is a += on strings,
3410             // make sure to convert argument to string
3411             JCExpression rhs = tree.operator.opcode == string_add
3412               ? makeString(tree.rhs)
3413               : tree.rhs;
3414             app.args = List.of(rhs).prependList(app.args);
3415             result = app;
3416         } else {
3417             result = tree;
3418         }
3419     }
3420 
3421     class AssignopDependencyScanner extends TreeScanner {
3422 
3423         Symbol sym;
3424         boolean dependencyFound = false;
3425 
3426         AssignopDependencyScanner(JCAssignOp tree) {
3427             this.sym = TreeInfo.symbol(tree.lhs);
3428         }
3429 
3430         @Override
3431         public void scan(JCTree tree) {
3432             if (tree != null && sym != null) {
3433                 tree.accept(this);
3434             }
3435         }
3436 
3437         @Override
3438         public void visitAssignop(JCAssignOp tree) {
3439             if (TreeInfo.symbol(tree.lhs) == sym) {
3440                 dependencyFound = true;
3441                 return;
3442             }
3443             super.visitAssignop(tree);
3444         }
3445 
3446         @Override
3447         public void visitUnary(JCUnary tree) {
3448             if (TreeInfo.symbol(tree.arg) == sym) {
3449                 dependencyFound = true;
3450                 return;
3451             }
3452             super.visitUnary(tree);
3453         }
3454     }
3455 
3456     /** Lower a tree of the form e++ or e-- where e is an object type */
3457     JCExpression lowerBoxedPostop(final JCUnary tree) {
3458         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
3459         // or
3460         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
3461         // where OP is += or -=
3462         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
3463         return abstractLval(tree.arg, tmp1 -> abstractRval(tmp1, tree.arg.type, tmp2 -> {
3464             Tag opcode = (tree.hasTag(POSTINC))
3465                 ? PLUS_ASG : MINUS_ASG;
3466             //"tmp1" and "tmp2" may refer to the same instance
3467             //(for e.g. <Class>.super.<ident>). But further processing may
3468             //change the components of the tree in place (see visitSelect),
3469             //so cloning the tree to avoid interference between the two uses:
3470             JCExpression lhs = (JCExpression)tmp1.clone();
3471             lhs = cast
3472                 ? make.TypeCast(tree.arg.type, lhs)
3473                 : lhs;
3474             JCExpression update = makeAssignop(opcode,
3475                                          lhs,
3476                                          make.Literal(1));
3477             return makeComma(update, tmp2);
3478         }));
3479     }
3480 
3481     public void visitUnary(JCUnary tree) {
3482         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
3483         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3484             switch(tree.getTag()) {
3485             case PREINC:            // ++ e
3486                     // translate to e += 1
3487             case PREDEC:            // -- e
3488                     // translate to e -= 1
3489                 {
3490                     JCTree.Tag opcode = (tree.hasTag(PREINC))
3491                         ? PLUS_ASG : MINUS_ASG;
3492                     JCAssignOp newTree = makeAssignop(opcode,
3493                                                     tree.arg,
3494                                                     make.Literal(1));
3495                     result = translate(newTree, tree.type);
3496                     return;
3497                 }
3498             case POSTINC:           // e ++
3499             case POSTDEC:           // e --
3500                 {
3501                     result = translate(lowerBoxedPostop(tree), tree.type);
3502                     return;
3503                 }
3504             }
3505             throw new AssertionError(tree);
3506         }
3507 
3508         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3509 
3510         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
3511             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3512         }
3513 
3514         // If translated left hand side is an Apply, we are
3515         // seeing an access method invocation. In this case, return
3516         // that access method invocation as result.
3517         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
3518             result = tree.arg;
3519         } else {
3520             result = tree;
3521         }
3522     }
3523 
3524     public void visitBinary(JCBinary tree) {
3525         List<Type> formals = tree.operator.type.getParameterTypes();
3526         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3527         switch (tree.getTag()) {
3528         case OR:
3529             if (isTrue(lhs)) {
3530                 result = lhs;
3531                 return;
3532             }
3533             if (isFalse(lhs)) {
3534                 result = translate(tree.rhs, formals.tail.head);
3535                 return;
3536             }
3537             break;
3538         case AND:
3539             if (isFalse(lhs)) {
3540                 result = lhs;
3541                 return;
3542             }
3543             if (isTrue(lhs)) {
3544                 result = translate(tree.rhs, formals.tail.head);
3545                 return;
3546             }
3547             break;
3548         }
3549         tree.rhs = translate(tree.rhs, formals.tail.head);
3550         result = tree;
3551     }
3552 
3553     public void visitIdent(JCIdent tree) {
3554         result = access(tree.sym, tree, enclOp, false);
3555     }
3556 
3557     /** Translate away the foreach loop.  */
3558     public void visitForeachLoop(JCEnhancedForLoop tree) {
3559         if (types.elemtype(tree.expr.type) == null)
3560             visitIterableForeachLoop(tree);
3561         else
3562             visitArrayForeachLoop(tree);
3563     }
3564         // where
3565         /**
3566          * A statement of the form
3567          *
3568          * <pre>
3569          *     for ( T v : arrayexpr ) stmt;
3570          * </pre>
3571          *
3572          * (where arrayexpr is of an array type) gets translated to
3573          *
3574          * <pre>{@code
3575          *     for ( { arraytype #arr = arrayexpr;
3576          *             int #len = array.length;
3577          *             int #i = 0; };
3578          *           #i < #len; i$++ ) {
3579          *         T v = arr$[#i];
3580          *         stmt;
3581          *     }
3582          * }</pre>
3583          *
3584          * where #arr, #len, and #i are freshly named synthetic local variables.
3585          */
3586         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3587             make_at(tree.expr.pos());
3588             VarSymbol arraycache = new VarSymbol(SYNTHETIC,
3589                                                  names.fromString("arr" + target.syntheticNameChar()),
3590                                                  tree.expr.type,
3591                                                  currentMethodSym);
3592             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3593             VarSymbol lencache = new VarSymbol(SYNTHETIC,
3594                                                names.fromString("len" + target.syntheticNameChar()),
3595                                                syms.intType,
3596                                                currentMethodSym);
3597             JCStatement lencachedef = make.
3598                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3599             VarSymbol index = new VarSymbol(SYNTHETIC,
3600                                             names.fromString("i" + target.syntheticNameChar()),
3601                                             syms.intType,
3602                                             currentMethodSym);
3603 
3604             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3605             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3606 
3607             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3608             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
3609 
3610             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
3611 
3612             Type elemtype = types.elemtype(tree.expr.type);
3613             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3614                                                     make.Ident(index)).setType(elemtype);
3615             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3616                                                   tree.var.name,
3617                                                   tree.var.vartype,
3618                                                   loopvarinit).setType(tree.var.type);
3619             loopvardef.sym = tree.var.sym;
3620             JCBlock body = make.
3621                 Block(0, List.of(loopvardef, tree.body));
3622 
3623             result = translate(make.
3624                                ForLoop(loopinit,
3625                                        cond,
3626                                        List.of(step),
3627                                        body));
3628             patchTargets(body, tree, result);
3629         }
3630         /** Patch up break and continue targets. */
3631         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3632             class Patcher extends TreeScanner {
3633                 public void visitBreak(JCBreak tree) {
3634                     if (tree.target == src)
3635                         tree.target = dest;
3636                 }
3637                 public void visitYield(JCYield tree) {
3638                     if (tree.target == src)
3639                         tree.target = dest;
3640                     scan(tree.value);
3641                 }
3642                 public void visitContinue(JCContinue tree) {
3643                     if (tree.target == src)
3644                         tree.target = dest;
3645                 }
3646                 public void visitClassDef(JCClassDecl tree) {}
3647             }
3648             new Patcher().scan(body);
3649         }
3650         /**
3651          * A statement of the form
3652          *
3653          * <pre>
3654          *     for ( T v : coll ) stmt ;
3655          * </pre>
3656          *
3657          * (where coll implements {@code Iterable<? extends T>}) gets translated to
3658          *
3659          * <pre>{@code
3660          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3661          *         T v = (T) #i.next();
3662          *         stmt;
3663          *     }
3664          * }</pre>
3665          *
3666          * where #i is a freshly named synthetic local variable.
3667          */
3668         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3669             make_at(tree.expr.pos());
3670             Type iteratorTarget = syms.objectType;
3671             Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
3672                                               syms.iterableType.tsym);
3673             if (iterableType.getTypeArguments().nonEmpty())
3674                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3675             tree.expr.type = types.erasure(types.skipTypeVars(tree.expr.type, false));
3676             tree.expr = transTypes.coerce(attrEnv, tree.expr, types.erasure(iterableType));
3677             Symbol iterator = lookupMethod(tree.expr.pos(),
3678                                            names.iterator,
3679                                            tree.expr.type,
3680                                            List.nil());
3681             Assert.check(types.isSameType(types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)), types.erasure(syms.iteratorType)));
3682             VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
3683                                             types.erasure(syms.iteratorType),
3684                                             currentMethodSym);
3685 
3686              JCStatement init = make.
3687                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
3688                      .setType(types.erasure(iterator.type))));
3689 
3690             Symbol hasNext = lookupMethod(tree.expr.pos(),
3691                                           names.hasNext,
3692                                           itvar.type,
3693                                           List.nil());
3694             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3695             Symbol next = lookupMethod(tree.expr.pos(),
3696                                        names.next,
3697                                        itvar.type,
3698                                        List.nil());
3699             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3700             if (tree.var.type.isPrimitive())
3701                 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
3702             else
3703                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3704             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3705                                                   tree.var.name,
3706                                                   tree.var.vartype,
3707                                                   vardefinit).setType(tree.var.type);
3708             indexDef.sym = tree.var.sym;
3709             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3710             body.endpos = TreeInfo.endPos(tree.body);
3711             result = translate(make.
3712                 ForLoop(List.of(init),
3713                         cond,
3714                         List.nil(),
3715                         body));
3716             patchTargets(body, tree, result);
3717         }
3718 
3719     public void visitVarDef(JCVariableDecl tree) {
3720         MethodSymbol oldMethodSym = currentMethodSym;
3721         int prevVariableIndex = variableIndex;
3722         tree.mods = translate(tree.mods);
3723         tree.vartype = translate(tree.vartype);
3724         if (currentMethodSym == null) {
3725             // A class or instance field initializer.
3726             currentMethodSym =
3727                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3728                                  names.empty, null,
3729                                  currentClass);
3730         }
3731         try {
3732             if (tree.init != null) tree.init = translate(tree.init, tree.type);
3733             result = tree;
3734         } finally {
3735             currentMethodSym = oldMethodSym;
3736             variableIndex = prevVariableIndex;
3737         }
3738     }
3739 
3740     public void visitBlock(JCBlock tree) {
3741         MethodSymbol oldMethodSym = currentMethodSym;
3742         if (currentMethodSym == null) {
3743             // Block is a static or instance initializer.
3744             currentMethodSym =
3745                 new MethodSymbol(tree.flags | BLOCK,
3746                                  names.empty, null,
3747                                  currentClass);
3748         }
3749         int prevVariableIndex = variableIndex;
3750         try {
3751             variableIndex = 0;
3752             super.visitBlock(tree);
3753         } finally {
3754             currentMethodSym = oldMethodSym;
3755             variableIndex = prevVariableIndex;
3756         }
3757     }
3758 
3759     public void visitDoLoop(JCDoWhileLoop tree) {
3760         tree.body = translate(tree.body);
3761         tree.cond = translate(tree.cond, syms.booleanType);
3762         result = tree;
3763     }
3764 
3765     public void visitWhileLoop(JCWhileLoop tree) {
3766         tree.cond = translate(tree.cond, syms.booleanType);
3767         tree.body = translate(tree.body);
3768         result = tree;
3769     }
3770 
3771     public void visitForLoop(JCForLoop tree) {
3772         tree.init = translate(tree.init);
3773         if (tree.cond != null)
3774             tree.cond = translate(tree.cond, syms.booleanType);
3775         tree.step = translate(tree.step);
3776         tree.body = translate(tree.body);
3777         result = tree;
3778     }
3779 
3780     public void visitReturn(JCReturn tree) {
3781         if (tree.expr != null)
3782             tree.expr = translate(tree.expr,
3783                                   currentRestype);
3784         result = tree;
3785     }
3786 
3787     @Override
3788     public void visitLambda(JCLambda tree) {
3789         Type prevRestype = currentRestype;
3790         try {
3791             currentRestype = types.erasure(tree.getDescriptorType(types)).getReturnType();
3792             // represent void results as NO_TYPE, to avoid unnecessary boxing in boxIfNeeded
3793             if (currentRestype.hasTag(VOID))
3794                 currentRestype = Type.noType;
3795             tree.body = tree.getBodyKind() == BodyKind.EXPRESSION ?
3796                     translate((JCExpression) tree.body, currentRestype) :
3797                     translate(tree.body);
3798         } finally {
3799             currentRestype = prevRestype;
3800         }
3801         result = tree;
3802     }
3803 
3804     public void visitSwitch(JCSwitch tree) {
3805         List<JCCase> cases = tree.patternSwitch ? addDefaultIfNeeded(tree.patternSwitch,
3806                                                                      tree.wasEnumSelector,
3807                                                                      tree.cases)
3808                                                 : tree.cases;
3809         handleSwitch(tree, tree.selector, cases);
3810     }
3811 
3812     @Override
3813     public void visitSwitchExpression(JCSwitchExpression tree) {
3814         List<JCCase> cases = addDefaultIfNeeded(tree.patternSwitch, tree.wasEnumSelector, tree.cases);
3815         handleSwitch(tree, tree.selector, cases);
3816     }
3817 
3818     private List<JCCase> addDefaultIfNeeded(boolean patternSwitch, boolean wasEnumSelector,
3819                                             List<JCCase> cases) {
3820         if (cases.stream().flatMap(c -> c.labels.stream()).noneMatch(p -> p.hasTag(Tag.DEFAULTCASELABEL))) {
3821             boolean matchException = useMatchException;
3822             matchException |= patternSwitch && !wasEnumSelector;
3823             Type exception = matchException ? syms.matchExceptionType
3824                                             : syms.incompatibleClassChangeErrorType;
3825             List<JCExpression> params = matchException ? List.of(makeNull(), makeNull())
3826                                                        : List.nil();
3827             JCThrow thr = make.Throw(makeNewClass(exception, params));
3828             JCCase c = make.Case(JCCase.STATEMENT, List.of(make.DefaultCaseLabel()), null, List.of(thr), null);
3829             cases = cases.prepend(c);
3830         }
3831 
3832         return cases;
3833     }
3834 
3835     private void handleSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
3836         //expand multiple label cases:
3837         ListBuffer<JCCase> convertedCases = new ListBuffer<>();
3838 
3839         for (JCCase c : cases) {
3840             switch (c.labels.size()) {
3841                 case 0: //default
3842                 case 1: //single label
3843                     convertedCases.append(c);
3844                     break;
3845                 default: //multiple labels, expand:
3846                     //case C1, C2, C3: ...
3847                     //=>
3848                     //case C1:
3849                     //case C2:
3850                     //case C3: ...
3851                     List<JCCaseLabel> patterns = c.labels;
3852                     while (patterns.tail.nonEmpty()) {
3853                         convertedCases.append(make_at(c.pos()).Case(JCCase.STATEMENT,
3854                                                            List.of(patterns.head),
3855                                                            null,
3856                                                            List.nil(),
3857                                                            null));
3858                         patterns = patterns.tail;
3859                     }
3860                     c.labels = patterns;
3861                     convertedCases.append(c);
3862                     break;
3863             }
3864         }
3865 
3866         for (JCCase c : convertedCases) {
3867             if (c.caseKind == JCCase.RULE && c.completesNormally) {
3868                 JCBreak b = make.at(TreeInfo.endPos(c.stats.last())).Break(null);
3869                 b.target = tree;
3870                 c.stats = c.stats.append(b);
3871             }
3872         }
3873 
3874         cases = convertedCases.toList();
3875 
3876         Type selsuper = types.supertype(selector.type);
3877         boolean enumSwitch = selsuper != null &&
3878             (selector.type.tsym.flags() & ENUM) != 0;
3879         boolean stringSwitch = selsuper != null &&
3880             types.isSameType(selector.type, syms.stringType);
3881         boolean boxedSwitch = !enumSwitch && !stringSwitch && !selector.type.isPrimitive();
3882         selector = translate(selector, selector.type);
3883         cases = translateCases(cases);
3884         if (tree.hasTag(SWITCH)) {
3885             ((JCSwitch) tree).selector = selector;
3886             ((JCSwitch) tree).cases = cases;
3887         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
3888             ((JCSwitchExpression) tree).selector = selector;
3889             ((JCSwitchExpression) tree).cases = cases;
3890         } else {
3891             Assert.error();
3892         }
3893         if (enumSwitch) {
3894             result = visitEnumSwitch(tree, selector, cases);
3895         } else if (stringSwitch) {
3896             result = visitStringSwitch(tree, selector, cases);
3897         } else if (boxedSwitch) {
3898             //An switch over boxed primitive. Pattern matching switches are already translated
3899             //by TransPatterns, so all non-primitive types are only boxed primitives:
3900             result = visitBoxedPrimitiveSwitch(tree, selector, cases);
3901         } else {
3902             result = tree;
3903         }
3904     }
3905 
3906     public JCTree visitEnumSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
3907         TypeSymbol enumSym = selector.type.tsym;
3908         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3909         make_at(tree.pos());
3910         Symbol ordinalMethod = lookupMethod(tree.pos(),
3911                                             names.ordinal,
3912                                             selector.type,
3913                                             List.nil());
3914         JCExpression newSelector;
3915 
3916         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
3917             //for enum switches with case null, do:
3918             //switch ($selector != null ? $mapVar[$selector.ordinal()] : -1) {...}
3919             //replacing case null with case -1:
3920             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3921                                                names.fromString("s" + variableIndex++ + this.target.syntheticNameChar()),
3922                                                selector.type,
3923                                                currentMethodSym);
3924             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
3925             newSelector = map.switchValue(
3926                     make.App(make.Select(make.Ident(dollar_s),
3927                             ordinalMethod)));
3928             newSelector =
3929                     make.LetExpr(List.of(var),
3930                                  make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
3931                                                   newSelector,
3932                                                   makeLit(syms.intType, -1))
3933                                      .setType(newSelector.type))
3934                         .setType(newSelector.type);
3935         } else {
3936             newSelector = map.switchValue(
3937                     make.App(make.Select(selector,
3938                             ordinalMethod)));
3939         }
3940         ListBuffer<JCCase> newCases = new ListBuffer<>();
3941         for (JCCase c : cases) {
3942             if (c.labels.head.hasTag(CONSTANTCASELABEL)) {
3943                 JCExpression pat;
3944                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
3945                     pat = makeLit(syms.intType, -1);
3946                 } else {
3947                     VarSymbol label = (VarSymbol)TreeInfo.symbol(((JCConstantCaseLabel) c.labels.head).expr);
3948                     pat = map.caseValue(label);
3949                 }
3950                 newCases.append(make.Case(JCCase.STATEMENT, List.of(make.ConstantCaseLabel(pat)), null, c.stats, null));
3951             } else {
3952                 newCases.append(c);
3953             }
3954         }
3955         JCTree enumSwitch;
3956         if (tree.hasTag(SWITCH)) {
3957             enumSwitch = make.Switch(newSelector, newCases.toList());
3958         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
3959             enumSwitch = make.SwitchExpression(newSelector, newCases.toList());
3960             enumSwitch.setType(tree.type);
3961         } else {
3962             Assert.error();
3963             throw new AssertionError();
3964         }
3965         patchTargets(enumSwitch, tree, enumSwitch);
3966         return enumSwitch;
3967     }
3968 
3969     public JCTree visitStringSwitch(JCTree tree, JCExpression selector, List<JCCase> caseList) {
3970         int alternatives = caseList.size();
3971 
3972         if (alternatives == 0) { // Strange but legal possibility (only legal for switch statement)
3973             return make.at(tree.pos()).Exec(attr.makeNullCheck(selector));
3974         } else {
3975             /*
3976              * The general approach used is to translate a single
3977              * string switch statement into a series of two chained
3978              * switch statements: the first a synthesized statement
3979              * switching on the argument string's hash value and
3980              * computing a string's position in the list of original
3981              * case labels, if any, followed by a second switch on the
3982              * computed integer value.  The second switch has the same
3983              * code structure as the original string switch statement
3984              * except that the string case labels are replaced with
3985              * positional integer constants starting at 0.
3986              *
3987              * The first switch statement can be thought of as an
3988              * inlined map from strings to their position in the case
3989              * label list.  An alternate implementation would use an
3990              * actual Map for this purpose, as done for enum switches.
3991              *
3992              * With some additional effort, it would be possible to
3993              * use a single switch statement on the hash code of the
3994              * argument, but care would need to be taken to preserve
3995              * the proper control flow in the presence of hash
3996              * collisions and other complications, such as
3997              * fallthroughs.  Switch statements with one or two
3998              * alternatives could also be specially translated into
3999              * if-then statements to omit the computation of the hash
4000              * code.
4001              *
4002              * The generated code assumes that the hashing algorithm
4003              * of String is the same in the compilation environment as
4004              * in the environment the code will run in.  The string
4005              * hashing algorithm in the SE JDK has been unchanged
4006              * since at least JDK 1.2.  Since the algorithm has been
4007              * specified since that release as well, it is very
4008              * unlikely to be changed in the future.
4009              *
4010              * Different hashing algorithms, such as the length of the
4011              * strings or a perfect hashing algorithm over the
4012              * particular set of case labels, could potentially be
4013              * used instead of String.hashCode.
4014              */
4015 
4016             ListBuffer<JCStatement> stmtList = new ListBuffer<>();
4017 
4018             // Map from String case labels to their original position in
4019             // the list of case labels.
4020             Map<String, Integer> caseLabelToPosition = new LinkedHashMap<>(alternatives + 1, 1.0f);
4021 
4022             // Map of hash codes to the string case labels having that hashCode.
4023             Map<Integer, Set<String>> hashToString = new LinkedHashMap<>(alternatives + 1, 1.0f);
4024 
4025             int casePosition = 0;
4026             JCCase nullCase = null;
4027             int nullCaseLabel = -1;
4028 
4029             for(JCCase oneCase : caseList) {
4030                 if (oneCase.labels.head.hasTag(CONSTANTCASELABEL)) {
4031                     if (TreeInfo.isNullCaseLabel(oneCase.labels.head)) {
4032                         nullCase = oneCase;
4033                         nullCaseLabel = casePosition;
4034                     } else {
4035                         JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
4036                         String labelExpr = (String) expression.type.constValue();
4037                         Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
4038                         Assert.checkNull(mapping);
4039                         int hashCode = labelExpr.hashCode();
4040 
4041                         Set<String> stringSet = hashToString.get(hashCode);
4042                         if (stringSet == null) {
4043                             stringSet = new LinkedHashSet<>(1, 1.0f);
4044                             stringSet.add(labelExpr);
4045                             hashToString.put(hashCode, stringSet);
4046                         } else {
4047                             boolean added = stringSet.add(labelExpr);
4048                             Assert.check(added);
4049                         }
4050                     }
4051                 }
4052                 casePosition++;
4053             }
4054 
4055             // Synthesize a switch statement that has the effect of
4056             // mapping from a string to the integer position of that
4057             // string in the list of case labels.  This is done by
4058             // switching on the hashCode of the string followed by an
4059             // if-then-else chain comparing the input for equality
4060             // with all the case labels having that hash value.
4061 
4062             /*
4063              * s$ = top of stack;
4064              * tmp$ = -1;
4065              * switch($s.hashCode()) {
4066              *     case caseLabel.hashCode:
4067              *         if (s$.equals("caseLabel_1")
4068              *           tmp$ = caseLabelToPosition("caseLabel_1");
4069              *         else if (s$.equals("caseLabel_2"))
4070              *           tmp$ = caseLabelToPosition("caseLabel_2");
4071              *         ...
4072              *         break;
4073              * ...
4074              * }
4075              */
4076 
4077             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4078                                                names.fromString("s" + variableIndex++ + target.syntheticNameChar()),
4079                                                syms.stringType,
4080                                                currentMethodSym);
4081             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type));
4082 
4083             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
4084                                                  names.fromString("tmp" + variableIndex++ + target.syntheticNameChar()),
4085                                                  syms.intType,
4086                                                  currentMethodSym);
4087             JCVariableDecl dollar_tmp_def =
4088                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
4089             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
4090             stmtList.append(dollar_tmp_def);
4091             ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
4092             // hashCode will trigger nullcheck on original switch expression
4093             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
4094                                                        names.hashCode,
4095                                                        List.nil()).setType(syms.intType);
4096             JCSwitch switch1 = make.Switch(hashCodeCall,
4097                                         caseBuffer.toList());
4098             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
4099                 int hashCode = entry.getKey();
4100                 Set<String> stringsWithHashCode = entry.getValue();
4101                 Assert.check(stringsWithHashCode.size() >= 1);
4102 
4103                 JCStatement elsepart = null;
4104                 for(String caseLabel : stringsWithHashCode ) {
4105                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
4106                                                                    names.equals,
4107                                                                    List.of(make.Literal(caseLabel)));
4108                     elsepart = make.If(stringEqualsCall,
4109                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
4110                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
4111                                                  setType(dollar_tmp.type)),
4112                                        elsepart);
4113                 }
4114 
4115                 ListBuffer<JCStatement> lb = new ListBuffer<>();
4116                 JCBreak breakStmt = make.Break(null);
4117                 breakStmt.target = switch1;
4118                 lb.append(elsepart).append(breakStmt);
4119 
4120                 caseBuffer.append(make.Case(JCCase.STATEMENT,
4121                                             List.of(make.ConstantCaseLabel(make.Literal(hashCode))),
4122                                             null,
4123                                             lb.toList(),
4124                                             null));
4125             }
4126 
4127             switch1.cases = caseBuffer.toList();
4128 
4129             if (nullCase != null) {
4130                 stmtList.append(make.If(makeBinary(NE, make.Ident(dollar_s), makeNull()), switch1, make.Exec(make.Assign(make.Ident(dollar_tmp),
4131                                                              make.Literal(nullCaseLabel)).
4132                                                  setType(dollar_tmp.type))).setType(syms.intType));
4133             } else {
4134                 stmtList.append(switch1);
4135             }
4136 
4137             // Make isomorphic switch tree replacing string labels
4138             // with corresponding integer ones from the label to
4139             // position map.
4140 
4141             ListBuffer<JCCase> lb = new ListBuffer<>();
4142             for(JCCase oneCase : caseList ) {
4143                 boolean isDefault = !oneCase.labels.head.hasTag(CONSTANTCASELABEL);
4144                 JCExpression caseExpr;
4145                 if (isDefault)
4146                     caseExpr = null;
4147                 else if (oneCase == nullCase) {
4148                     caseExpr = make.Literal(nullCaseLabel);
4149                 } else {
4150                     JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
4151                     String name = (String) TreeInfo.skipParens(expression)
4152                                                    .type.constValue();
4153                     caseExpr = make.Literal(caseLabelToPosition.get(name));
4154                 }
4155 
4156                 lb.append(make.Case(JCCase.STATEMENT, caseExpr == null ? List.of(make.DefaultCaseLabel())
4157                                                                        : List.of(make.ConstantCaseLabel(caseExpr)),
4158                                     null,
4159                                     oneCase.stats, null));
4160             }
4161 
4162             if (tree.hasTag(SWITCH)) {
4163                 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
4164                 // Rewire up old unlabeled break statements to the
4165                 // replacement switch being created.
4166                 patchTargets(switch2, tree, switch2);
4167 
4168                 stmtList.append(switch2);
4169 
4170                 JCBlock res = make.Block(0L, stmtList.toList());
4171                 res.endpos = TreeInfo.endPos(tree);
4172                 return res;
4173             } else {
4174                 JCSwitchExpression switch2 = make.SwitchExpression(make.Ident(dollar_tmp), lb.toList());
4175 
4176                 // Rewire up old unlabeled break statements to the
4177                 // replacement switch being created.
4178                 patchTargets(switch2, tree, switch2);
4179 
4180                 switch2.setType(tree.type);
4181 
4182                 LetExpr res = make.LetExpr(stmtList.toList(), switch2);
4183 
4184                 res.needsCond = true;
4185                 res.setType(tree.type);
4186 
4187                 return res;
4188             }
4189         }
4190     }
4191 
4192     private JCTree visitBoxedPrimitiveSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
4193         JCExpression newSelector;
4194 
4195         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
4196             //a switch over a boxed primitive, with a null case. Pick two constants that are
4197             //not used by any branch in the case (c1 and c2), close to other constants that are
4198             //used in the switch. Then do:
4199             //switch ($selector != null ? $selector != c1 ? $selector : c2 : c1) {...}
4200             //replacing case null with case c1
4201             Set<Integer> constants = new LinkedHashSet<>();
4202             JCCase nullCase = null;
4203 
4204             for (JCCase c : cases) {
4205                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
4206                     nullCase = c;
4207                 } else if (!c.labels.head.hasTag(DEFAULTCASELABEL)) {
4208                     constants.add((int) ((JCConstantCaseLabel) c.labels.head).expr.type.constValue());
4209                 }
4210             }
4211 
4212             Assert.checkNonNull(nullCase);
4213 
4214             int nullValue = constants.isEmpty() ? 0 : constants.iterator().next();
4215 
4216             while (constants.contains(nullValue)) nullValue++;
4217 
4218             constants.add(nullValue);
4219             nullCase.labels.head = make.ConstantCaseLabel(makeLit(syms.intType, nullValue));
4220 
4221             int replacementValue = nullValue;
4222 
4223             while (constants.contains(replacementValue)) replacementValue++;
4224 
4225             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4226                                                names.fromString("s" + variableIndex++ + this.target.syntheticNameChar()),
4227                                                selector.type,
4228                                                currentMethodSym);
4229             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
4230             JCExpression nullValueReplacement =
4231                     make.Conditional(makeBinary(NE,
4232                                                  unbox(make.Ident(dollar_s), syms.intType),
4233                                                  makeLit(syms.intType, nullValue)),
4234                                      unbox(make.Ident(dollar_s), syms.intType),
4235                                      makeLit(syms.intType, replacementValue))
4236                         .setType(syms.intType);
4237             JCExpression nullCheck =
4238                     make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
4239                                      nullValueReplacement,
4240                                      makeLit(syms.intType, nullValue))
4241                         .setType(syms.intType);
4242             newSelector = make.LetExpr(List.of(var), nullCheck).setType(syms.intType);
4243         } else {
4244             newSelector = unbox(selector, syms.intType);
4245         }
4246 
4247         if (tree.hasTag(SWITCH)) {
4248             ((JCSwitch) tree).selector = newSelector;
4249         } else {
4250             ((JCSwitchExpression) tree).selector = newSelector;
4251         }
4252 
4253         return tree;
4254     }
4255 
4256     @Override
4257     public void visitBreak(JCBreak tree) {
4258         result = tree;
4259     }
4260 
4261     @Override
4262     public void visitYield(JCYield tree) {
4263         tree.value = translate(tree.value, tree.target.type);
4264         result = tree;
4265     }
4266 
4267     public void visitNewArray(JCNewArray tree) {
4268         tree.elemtype = translate(tree.elemtype);
4269         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
4270             if (t.head != null) t.head = translate(t.head, syms.intType);
4271         tree.elems = translate(tree.elems, types.elemtype(tree.type));
4272         result = tree;
4273     }
4274 
4275     public void visitSelect(JCFieldAccess tree) {
4276         // need to special case-access of the form C.super.x
4277         // these will always need an access method, unless C
4278         // is a default interface subclassed by the current class.
4279         boolean qualifiedSuperAccess =
4280             tree.selected.hasTag(SELECT) &&
4281             TreeInfo.name(tree.selected) == names._super &&
4282             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
4283         tree.selected = translate(tree.selected);
4284         if (tree.name == names._class && tree.selected.type.isPrimitiveOrVoid()) {
4285             result = classOf(tree.selected);
4286         }
4287         else if (tree.name == names._super &&
4288                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
4289             //default super call!! Not a classic qualified super call
4290             TypeSymbol supSym = tree.selected.type.tsym;
4291             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
4292             result = tree;
4293         }
4294         else if (tree.name == names._this || tree.name == names._super) {
4295             result = makeThis(tree.pos(), tree.selected.type.tsym);
4296         }
4297         else
4298             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
4299     }
4300 
4301     public void visitLetExpr(LetExpr tree) {
4302         tree.defs = translate(tree.defs);
4303         tree.expr = translate(tree.expr, tree.type);
4304         result = tree;
4305     }
4306 
4307     // There ought to be nothing to rewrite here;
4308     // we don't generate code.
4309     public void visitAnnotation(JCAnnotation tree) {
4310         result = tree;
4311     }
4312 
4313     @Override
4314     public void visitTry(JCTry tree) {
4315         if (tree.resources.nonEmpty()) {
4316             result = makeTwrTry(tree);
4317             return;
4318         }
4319 
4320         boolean hasBody = tree.body.getStatements().nonEmpty();
4321         boolean hasCatchers = tree.catchers.nonEmpty();
4322         boolean hasFinally = tree.finalizer != null &&
4323                 tree.finalizer.getStatements().nonEmpty();
4324 
4325         if (!hasCatchers && !hasFinally) {
4326             result = translate(tree.body);
4327             return;
4328         }
4329 
4330         if (!hasBody) {
4331             if (hasFinally) {
4332                 result = translate(tree.finalizer);
4333             } else {
4334                 result = translate(tree.body);
4335             }
4336             return;
4337         }
4338 
4339         // no optimizations possible
4340         super.visitTry(tree);
4341     }
4342 
4343 /* ************************************************************************
4344  * main method
4345  *************************************************************************/
4346 
4347     /** Translate a toplevel class and return a list consisting of
4348      *  the translated class and translated versions of all inner classes.
4349      *  @param env   The attribution environment current at the class definition.
4350      *               We need this for resolving some additional symbols.
4351      *  @param cdef  The tree representing the class definition.
4352      */
4353     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
4354         ListBuffer<JCTree> translated = null;
4355         try {
4356             attrEnv = env;
4357             this.make = make;
4358             endPosTable = env.toplevel.endPositions;
4359             currentClass = null;
4360             currentRestype = null;
4361             currentMethodDef = null;
4362             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
4363             outermostMemberDef = null;
4364             this.translated = new ListBuffer<>();
4365             classdefs = new HashMap<>();
4366             actualSymbols = new HashMap<>();
4367             freevarCache = new HashMap<>();
4368             proxies = new HashMap<>();
4369             twrVars = WriteableScope.create(syms.noSymbol);
4370             outerThisStack = List.nil();
4371             accessNums = new HashMap<>();
4372             accessSyms = new HashMap<>();
4373             accessConstrs = new HashMap<>();
4374             accessConstrTags = List.nil();
4375             accessed = new ListBuffer<>();
4376             translate(cdef, (JCExpression)null);
4377             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
4378                 makeAccessible(l.head);
4379             for (EnumMapping map : enumSwitchMap.values())
4380                 map.translate();
4381             checkConflicts(this.translated.toList());
4382             checkAccessConstructorTags();
4383             translated = this.translated;
4384         } finally {
4385             // note that recursive invocations of this method fail hard
4386             attrEnv = null;
4387             this.make = null;
4388             endPosTable = null;
4389             currentClass = null;
4390             currentRestype = null;
4391             currentMethodDef = null;
4392             outermostClassDef = null;
4393             outermostMemberDef = null;
4394             this.translated = null;
4395             classdefs = null;
4396             actualSymbols = null;
4397             freevarCache = null;
4398             proxies = null;
4399             outerThisStack = null;
4400             accessNums = null;
4401             accessSyms = null;
4402             accessConstrs = null;
4403             accessConstrTags = null;
4404             accessed = null;
4405             enumSwitchMap.clear();
4406             assertionsDisabledClassCache = null;
4407         }
4408         return translated.toList();
4409     }
4410 
4411     // needed for the lambda deserialization method, which is expressed as a big switch on strings
4412     public JCMethodDecl translateMethod(Env<AttrContext> env, JCMethodDecl methodDecl, TreeMaker make) {
4413         try {
4414             this.attrEnv = env;
4415             this.make = make;
4416             this.currentClass = methodDecl.sym.enclClass();
4417             proxies = new HashMap<>();
4418             return translate(methodDecl);
4419         } finally {
4420             this.attrEnv = null;
4421             this.make = null;
4422             this.currentClass = null;
4423             // the two fields below are set when visiting the method
4424             this.currentMethodSym = null;
4425             this.currentMethodDef = null;
4426             this.proxies = null;
4427         }
4428     }
4429 }