1 /*
   2  * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.stream.Collectors;
  30 
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.code.Kinds.KindSelector;
  33 import com.sun.tools.javac.code.Scope.WriteableScope;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  36 import com.sun.tools.javac.main.Option.PkgInfo;
  37 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  38 import com.sun.tools.javac.tree.*;
  39 import com.sun.tools.javac.util.*;
  40 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  41 import com.sun.tools.javac.util.List;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Symbol.OperatorSymbol.AccessCode;
  45 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  46 import com.sun.tools.javac.tree.JCTree.*;
  47 import com.sun.tools.javac.code.Type.*;
  48 
  49 import com.sun.tools.javac.jvm.Target;
  50 import com.sun.tools.javac.tree.EndPosTable;
  51 
  52 import static com.sun.tools.javac.code.Flags.*;
  53 import static com.sun.tools.javac.code.Flags.BLOCK;
  54 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  55 import static com.sun.tools.javac.code.TypeTag.*;
  56 import static com.sun.tools.javac.code.Kinds.Kind.*;
  57 import com.sun.tools.javac.code.Source.Feature;
  58 import static com.sun.tools.javac.jvm.ByteCodes.*;
  59 import com.sun.tools.javac.tree.JCTree.JCBreak;
  60 import com.sun.tools.javac.tree.JCTree.JCCase;
  61 import com.sun.tools.javac.tree.JCTree.JCExpression;
  62 import com.sun.tools.javac.tree.JCTree.JCExpressionStatement;
  63 import static com.sun.tools.javac.tree.JCTree.JCOperatorExpression.OperandPos.LEFT;
  64 import com.sun.tools.javac.tree.JCTree.JCSwitchExpression;
  65 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  66 
  67 /** This pass translates away some syntactic sugar: inner classes,
  68  *  class literals, assertions, foreach loops, etc.
  69  *
  70  *  <p><b>This is NOT part of any supported API.
  71  *  If you write code that depends on this, you do so at your own risk.
  72  *  This code and its internal interfaces are subject to change or
  73  *  deletion without notice.</b>
  74  */
  75 public class Lower extends TreeTranslator {
  76     protected static final Context.Key<Lower> lowerKey = new Context.Key<>();
  77 
  78     public static Lower instance(Context context) {
  79         Lower instance = context.get(lowerKey);
  80         if (instance == null)
  81             instance = new Lower(context);
  82         return instance;
  83     }
  84 
  85     private final Names names;
  86     private final Log log;
  87     private final Symtab syms;
  88     private final Resolve rs;
  89     private final Operators operators;
  90     private final Check chk;
  91     private final Attr attr;
  92     private TreeMaker make;
  93     private DiagnosticPosition make_pos;
  94     private final ConstFold cfolder;
  95     private final Target target;
  96     private final TypeEnvs typeEnvs;
  97     private final Name dollarAssertionsDisabled;
  98     private final Types types;
  99     private final TransTypes transTypes;
 100     private final boolean debugLower;
 101     private final boolean disableProtectedAccessors; // experimental
 102     private final PkgInfo pkginfoOpt;
 103     private final boolean optimizeOuterThis;
 104     private final boolean useMatchException;
 105     private final HashMap<TypePairs, String> typePairToName;
 106     private final boolean allowValueClasses;
 107 
 108     @SuppressWarnings("this-escape")
 109     protected Lower(Context context) {
 110         context.put(lowerKey, this);
 111         names = Names.instance(context);
 112         log = Log.instance(context);
 113         syms = Symtab.instance(context);
 114         rs = Resolve.instance(context);
 115         operators = Operators.instance(context);
 116         chk = Check.instance(context);
 117         attr = Attr.instance(context);
 118         make = TreeMaker.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         typeEnvs = TypeEnvs.instance(context);
 122         dollarAssertionsDisabled = names.
 123             fromString(target.syntheticNameChar() + "assertionsDisabled");
 124 
 125         types = Types.instance(context);
 126         transTypes = TransTypes.instance(context);
 127         Options options = Options.instance(context);
 128         debugLower = options.isSet("debuglower");
 129         pkginfoOpt = PkgInfo.get(options);
 130         optimizeOuterThis =
 131             target.optimizeOuterThis() ||
 132             options.getBoolean("optimizeOuterThis", false);
 133         disableProtectedAccessors = options.isSet("disableProtectedAccessors");
 134         Source source = Source.instance(context);
 135         Preview preview = Preview.instance(context);
 136         useMatchException = Feature.PATTERN_SWITCH.allowedInSource(source) &&
 137                             (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH));
 138         typePairToName = TypePairs.initialize(syms);
 139         this.allowValueClasses = (!preview.isPreview(Feature.VALUE_CLASSES) || preview.isEnabled()) &&
 140                 Feature.VALUE_CLASSES.allowedInSource(source);
 141     }
 142 
 143     /** The currently enclosing class.
 144      */
 145     ClassSymbol currentClass;
 146 
 147     /** A queue of all translated classes.
 148      */
 149     ListBuffer<JCTree> translated;
 150 
 151     /** Environment for symbol lookup, set by translateTopLevelClass.
 152      */
 153     Env<AttrContext> attrEnv;
 154 
 155     /** A hash table mapping syntax trees to their ending source positions.
 156      */
 157     EndPosTable endPosTable;
 158 
 159 /**************************************************************************
 160  * Global mappings
 161  *************************************************************************/
 162 
 163     /** A hash table mapping local classes to their definitions.
 164      */
 165     Map<ClassSymbol, JCClassDecl> classdefs;
 166 
 167     /** A hash table mapping local classes to a list of pruned trees.
 168      */
 169     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<>();
 170 
 171     /** A hash table mapping virtual accessed symbols in outer subclasses
 172      *  to the actually referred symbol in superclasses.
 173      */
 174     Map<Symbol,Symbol> actualSymbols;
 175 
 176     /** The current method definition.
 177      */
 178     JCMethodDecl currentMethodDef;
 179 
 180     /** The current method symbol.
 181      */
 182     MethodSymbol currentMethodSym;
 183 
 184     /** The currently enclosing outermost class definition.
 185      */
 186     JCClassDecl outermostClassDef;
 187 
 188     /** The currently enclosing outermost member definition.
 189      */
 190     JCTree outermostMemberDef;
 191 
 192     /** A map from local variable symbols to their translation (as per LambdaToMethod).
 193      * This is required when a capturing local class is created from a lambda (in which
 194      * case the captured symbols should be replaced with the translated lambda symbols).
 195      */
 196     Map<Symbol, Symbol> lambdaTranslationMap = null;
 197 
 198     /** A hash table mapping local classes to a set of outer this fields
 199      */
 200     public Map<ClassSymbol, Set<JCExpression>> initializerOuterThis = new WeakHashMap<>();
 201 
 202     /** A navigator class for assembling a mapping from local class symbols
 203      *  to class definition trees.
 204      *  There is only one case; all other cases simply traverse down the tree.
 205      */
 206     class ClassMap extends TreeScanner {
 207 
 208         /** All encountered class defs are entered into classdefs table.
 209          */
 210         public void visitClassDef(JCClassDecl tree) {
 211             classdefs.put(tree.sym, tree);
 212             super.visitClassDef(tree);
 213         }
 214     }
 215     ClassMap classMap = new ClassMap();
 216 
 217     /** Map a class symbol to its definition.
 218      *  @param c    The class symbol of which we want to determine the definition.
 219      */
 220     JCClassDecl classDef(ClassSymbol c) {
 221         // First lookup the class in the classdefs table.
 222         JCClassDecl def = classdefs.get(c);
 223         if (def == null && outermostMemberDef != null) {
 224             // If this fails, traverse outermost member definition, entering all
 225             // local classes into classdefs, and try again.
 226             classMap.scan(outermostMemberDef);
 227             def = classdefs.get(c);
 228         }
 229         if (def == null) {
 230             // If this fails, traverse outermost class definition, entering all
 231             // local classes into classdefs, and try again.
 232             classMap.scan(outermostClassDef);
 233             def = classdefs.get(c);
 234         }
 235         return def;
 236     }
 237 
 238     /**
 239      * Get the enum constants for the given enum class symbol, if known.
 240      * They will only be found if they are defined within the same top-level
 241      * class as the class being compiled, so it's safe to assume that they
 242      * can't change at runtime due to a recompilation.
 243      */
 244     List<Name> enumNamesFor(ClassSymbol c) {
 245 
 246         // Find the class definition and verify it is an enum class
 247         final JCClassDecl classDef = classDef(c);
 248         if (classDef == null ||
 249             (classDef.mods.flags & ENUM) == 0 ||
 250             (types.supertype(currentClass.type).tsym.flags() & ENUM) != 0) {
 251             return null;
 252         }
 253 
 254         // Gather the enum identifiers
 255         ListBuffer<Name> idents = new ListBuffer<>();
 256         for (List<JCTree> defs = classDef.defs; defs.nonEmpty(); defs=defs.tail) {
 257             if (defs.head.hasTag(VARDEF) &&
 258                 (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
 259                 JCVariableDecl var = (JCVariableDecl)defs.head;
 260                 idents.append(var.name);
 261             }
 262         }
 263         return idents.toList();
 264     }
 265 
 266     /** A hash table mapping class symbols to lists of free variables.
 267      *  accessed by them. Only free variables of the method immediately containing
 268      *  a class are associated with that class.
 269      */
 270     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 271 
 272     /** A navigator class for collecting the free variables accessed
 273      *  from a local class. There is only one case; all other cases simply
 274      *  traverse down the tree. This class doesn't deal with the specific
 275      *  of Lower - it's an abstract visitor that is meant to be reused in
 276      *  order to share the local variable capture logic.
 277      */
 278     abstract class BasicFreeVarCollector extends TreeScanner {
 279 
 280         /** Add all free variables of class c to fvs list
 281          *  unless they are already there.
 282          */
 283         abstract void addFreeVars(ClassSymbol c);
 284 
 285         /** If tree refers to a variable in owner of local class, add it to
 286          *  free variables list.
 287          */
 288         public void visitIdent(JCIdent tree) {
 289             visitSymbol(tree.sym);
 290         }
 291         // where
 292         abstract void visitSymbol(Symbol _sym);
 293 
 294         /** If tree refers to a class instance creation expression
 295          *  add all free variables of the freshly created class.
 296          */
 297         public void visitNewClass(JCNewClass tree) {
 298             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 299             addFreeVars(c);
 300             super.visitNewClass(tree);
 301         }
 302 
 303         /** If tree refers to a superclass constructor call,
 304          *  add all free variables of the superclass.
 305          */
 306         public void visitApply(JCMethodInvocation tree) {
 307             if (TreeInfo.name(tree.meth) == names._super) {
 308                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 309             }
 310             super.visitApply(tree);
 311         }
 312 
 313         @Override
 314         public void visitYield(JCYield tree) {
 315             scan(tree.value);
 316         }
 317 
 318     }
 319 
 320     /**
 321      * Lower-specific subclass of {@code BasicFreeVarCollector}.
 322      */
 323     class FreeVarCollector extends BasicFreeVarCollector {
 324 
 325         /** The owner of the local class.
 326          */
 327         Symbol owner;
 328 
 329         /** The local class.
 330          */
 331         ClassSymbol clazz;
 332 
 333         /** The list of owner's variables accessed from within the local class,
 334          *  without any duplicates.
 335          */
 336         List<VarSymbol> fvs;
 337 
 338         FreeVarCollector(ClassSymbol clazz) {
 339             this.clazz = clazz;
 340             this.owner = clazz.owner;
 341             this.fvs = List.nil();
 342         }
 343 
 344         /** Add free variable to fvs list unless it is already there.
 345          */
 346         private void addFreeVar(VarSymbol v) {
 347             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 348                 if (l.head == v) return;
 349             fvs = fvs.prepend(v);
 350         }
 351 
 352         @Override
 353         void addFreeVars(ClassSymbol c) {
 354             List<VarSymbol> fvs = freevarCache.get(c);
 355             if (fvs != null) {
 356                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 357                     addFreeVar(l.head);
 358                 }
 359             }
 360         }
 361 
 362         @Override
 363         void visitSymbol(Symbol _sym) {
 364             Symbol sym = _sym;
 365             if (sym.kind == VAR || sym.kind == MTH) {
 366                 if (sym != null && sym.owner != owner)
 367                     sym = proxies.get(sym);
 368                 if (sym != null && sym.owner == owner) {
 369                     VarSymbol v = (VarSymbol)sym;
 370                     if (v.getConstValue() == null) {
 371                         addFreeVar(v);
 372                     }
 373                 } else {
 374                     if (outerThisStack.head != null &&
 375                         outerThisStack.head != _sym)
 376                         visitSymbol(outerThisStack.head);
 377                 }
 378             }
 379         }
 380 
 381         /** If tree refers to a class instance creation expression
 382          *  add all free variables of the freshly created class.
 383          */
 384         public void visitNewClass(JCNewClass tree) {
 385             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 386             if (tree.encl == null &&
 387                 c.hasOuterInstance() &&
 388                 outerThisStack.head != null)
 389                 visitSymbol(outerThisStack.head);
 390             super.visitNewClass(tree);
 391         }
 392 
 393         /** If tree refers to a qualified this or super expression
 394          *  for anything but the current class, add the outer this
 395          *  stack as a free variable.
 396          */
 397         public void visitSelect(JCFieldAccess tree) {
 398             if ((tree.name == names._this || tree.name == names._super) &&
 399                 tree.selected.type.tsym != clazz &&
 400                 outerThisStack.head != null)
 401                 visitSymbol(outerThisStack.head);
 402             super.visitSelect(tree);
 403         }
 404 
 405         /** If tree refers to a superclass constructor call,
 406          *  add all free variables of the superclass.
 407          */
 408         public void visitApply(JCMethodInvocation tree) {
 409             if (TreeInfo.name(tree.meth) == names._super) {
 410                 Symbol constructor = TreeInfo.symbol(tree.meth);
 411                 ClassSymbol c = (ClassSymbol)constructor.owner;
 412                 if (c.hasOuterInstance() &&
 413                     !tree.meth.hasTag(SELECT) &&
 414                     outerThisStack.head != null)
 415                     visitSymbol(outerThisStack.head);
 416             }
 417             super.visitApply(tree);
 418         }
 419 
 420     }
 421 
 422     ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
 423         if (!c.isDirectlyOrIndirectlyLocal()) {
 424             return null;
 425         }
 426         Symbol currentOwner = c.owner;
 427         while (currentOwner.owner.kind.matches(KindSelector.TYP) && currentOwner.isDirectlyOrIndirectlyLocal()) {
 428             currentOwner = currentOwner.owner;
 429         }
 430         if (currentOwner.owner.kind.matches(KindSelector.VAL_MTH) && c.isSubClass(currentOwner, types)) {
 431             return (ClassSymbol)currentOwner;
 432         }
 433         return null;
 434     }
 435 
 436     /** Return the variables accessed from within a local class, which
 437      *  are declared in the local class' owner.
 438      *  (in reverse order of first access).
 439      */
 440     List<VarSymbol> freevars(ClassSymbol c)  {
 441         List<VarSymbol> fvs = freevarCache.get(c);
 442         if (fvs != null) {
 443             return fvs;
 444         }
 445         if (c.owner.kind.matches(KindSelector.VAL_MTH) && !c.isStatic()) {
 446             FreeVarCollector collector = new FreeVarCollector(c);
 447             collector.scan(classDef(c));
 448             fvs = collector.fvs;
 449             freevarCache.put(c, fvs);
 450             return fvs;
 451         } else {
 452             ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
 453             if (owner != null) {
 454                 fvs = freevarCache.get(owner);
 455                 freevarCache.put(c, fvs);
 456                 return fvs;
 457             } else {
 458                 return List.nil();
 459             }
 460         }
 461     }
 462 
 463     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<>();
 464 
 465     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 466 
 467         // If enum class is part of this compilation, just switch on ordinal value
 468         if (enumClass.kind == TYP) {
 469             final List<Name> idents = enumNamesFor((ClassSymbol)enumClass);
 470             if (idents != null)
 471                 return new CompileTimeEnumMapping(idents);
 472         }
 473 
 474         // Map identifiers to ordinal values at runtime, and then switch on that
 475         return enumSwitchMap.computeIfAbsent(enumClass, ec -> new RuntimeEnumMapping(pos, ec));
 476     }
 477 
 478     /** Generates a test value and corresponding cases for a switch on an enum type.
 479      */
 480     interface EnumMapping {
 481 
 482         /** Given an expression for the enum value's ordinal, generate an expression for the switch statement.
 483          */
 484         JCExpression switchValue(JCExpression ordinalExpr);
 485 
 486         /** Generate the switch statement case value corresponding to the given enum value.
 487          */
 488         JCLiteral caseValue(VarSymbol v);
 489 
 490         default void translate() {
 491         }
 492     }
 493 
 494     /** EnumMapping using compile-time constants. Only valid when compiling the enum class itself,
 495      *  because otherwise the ordinals we use could become obsolete if/when the enum class is recompiled.
 496      */
 497     class CompileTimeEnumMapping implements EnumMapping {
 498 
 499         final List<Name> enumNames;
 500 
 501         CompileTimeEnumMapping(List<Name> enumNames) {
 502             Assert.check(enumNames != null);
 503             this.enumNames = enumNames;
 504         }
 505 
 506         @Override
 507         public JCExpression switchValue(JCExpression ordinalExpr) {
 508             return ordinalExpr;
 509         }
 510 
 511         @Override
 512         public JCLiteral caseValue(VarSymbol v) {
 513             final int ordinal = enumNames.indexOf(v.name);
 514             Assert.check(ordinal != -1);
 515             return make.Literal(ordinal);
 516         }
 517     }
 518 
 519     /** EnumMapping using run-time ordinal lookup.
 520      *
 521      *  This builds a translation table to be used for enum switches.
 522      *
 523      *  <p>For each enum that appears as the type of a switch
 524      *  expression, we maintain an EnumMapping to assist in the
 525      *  translation, as exemplified by the following example:
 526      *
 527      *  <p>we translate
 528      *  <pre>
 529      *          switch(colorExpression) {
 530      *          case red: stmt1;
 531      *          case green: stmt2;
 532      *          }
 533      *  </pre>
 534      *  into
 535      *  <pre>
 536      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 537      *          case 1: stmt1;
 538      *          case 2: stmt2
 539      *          }
 540      *  </pre>
 541      *  with the auxiliary table initialized as follows:
 542      *  <pre>
 543      *          class Outer$0 {
 544      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 545      *              static {
 546      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 547      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 548      *              }
 549      *          }
 550      *  </pre>
 551      *  class EnumMapping provides mapping data and support methods for this translation.
 552      */
 553     class RuntimeEnumMapping implements EnumMapping {
 554         RuntimeEnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 555             this.forEnum = forEnum;
 556             this.values = new LinkedHashMap<>();
 557             this.pos = pos;
 558             Name varName = names
 559                 .fromString(target.syntheticNameChar() +
 560                             "SwitchMap" +
 561                             target.syntheticNameChar() +
 562                             ClassWriter.externalize(forEnum.type.tsym.flatName().toString())
 563                             .replace('/', '.')
 564                             .replace('.', target.syntheticNameChar()));
 565             ClassSymbol outerCacheClass = outerCacheClass();
 566             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 567                                         varName,
 568                                         new ArrayType(syms.intType, syms.arrayClass),
 569                                         outerCacheClass);
 570             enterSynthetic(pos, mapVar, outerCacheClass.members());
 571         }
 572 
 573         DiagnosticPosition pos = null;
 574 
 575         // the next value to use
 576         int next = 1; // 0 (unused map elements) go to the default label
 577 
 578         // the enum for which this is a map
 579         final TypeSymbol forEnum;
 580 
 581         // the field containing the map
 582         final VarSymbol mapVar;
 583 
 584         // the mapped values
 585         final Map<VarSymbol,Integer> values;
 586 
 587         @Override
 588         public JCExpression switchValue(JCExpression ordinalExpr) {
 589             return make.Indexed(mapVar, ordinalExpr);
 590         }
 591 
 592         @Override
 593         public JCLiteral caseValue(VarSymbol v) {
 594             Integer result = values.get(v);
 595             if (result == null)
 596                 values.put(v, result = next++);
 597             return make.Literal(result);
 598         }
 599 
 600         // generate the field initializer for the map
 601         @Override
 602         public void translate() {
 603             boolean prevAllowProtectedAccess = attrEnv.info.allowProtectedAccess;
 604             try {
 605                 make.at(pos.getStartPosition());
 606                 attrEnv.info.allowProtectedAccess = true;
 607                 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 608 
 609                 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 610                 MethodSymbol valuesMethod = lookupMethod(pos,
 611                                                          names.values,
 612                                                          forEnum.type,
 613                                                          List.nil());
 614                 JCExpression size = make // Color.values().length
 615                     .Select(make.App(make.QualIdent(valuesMethod)),
 616                             syms.lengthVar);
 617                 JCExpression mapVarInit = make
 618                     .NewArray(make.Type(syms.intType), List.of(size), null)
 619                     .setType(new ArrayType(syms.intType, syms.arrayClass));
 620 
 621                 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 622                 ListBuffer<JCStatement> stmts = new ListBuffer<>();
 623                 Symbol ordinalMethod = lookupMethod(pos,
 624                                                     names.ordinal,
 625                                                     forEnum.type,
 626                                                     List.nil());
 627                 List<JCCatch> catcher = List.<JCCatch>nil()
 628                     .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 629                                                                   syms.noSuchFieldErrorType,
 630                                                                   syms.noSymbol),
 631                                                     null),
 632                                         make.Block(0, List.nil())));
 633                 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 634                     VarSymbol enumerator = e.getKey();
 635                     Integer mappedValue = e.getValue();
 636                     JCExpression assign = make
 637                         .Assign(make.Indexed(mapVar,
 638                                              make.App(make.Select(make.QualIdent(enumerator),
 639                                                                   ordinalMethod))),
 640                                 make.Literal(mappedValue))
 641                         .setType(syms.intType);
 642                     JCStatement exec = make.Exec(assign);
 643                     JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 644                     stmts.append(_try);
 645                 }
 646 
 647                 owner.defs = owner.defs
 648                     .prepend(make.Block(STATIC, stmts.toList()))
 649                     .prepend(make.VarDef(mapVar, mapVarInit));
 650             } finally {
 651                 attrEnv.info.allowProtectedAccess = prevAllowProtectedAccess;
 652             }
 653         }
 654     }
 655 
 656 
 657 /**************************************************************************
 658  * Tree building blocks
 659  *************************************************************************/
 660 
 661     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 662      *  pos as make_pos, for use in diagnostics.
 663      **/
 664     TreeMaker make_at(DiagnosticPosition pos) {
 665         make_pos = pos;
 666         return make.at(pos);
 667     }
 668 
 669     /** Make an attributed tree representing a literal. This will be an
 670      *  Ident node in the case of boolean literals, a Literal node in all
 671      *  other cases.
 672      *  @param type       The literal's type.
 673      *  @param value      The literal's value.
 674      */
 675     JCExpression makeLit(Type type, Object value) {
 676         return make.Literal(type.getTag(), value).setType(type.constType(value));
 677     }
 678 
 679     /** Make an attributed tree representing null.
 680      */
 681     JCExpression makeNull() {
 682         return makeLit(syms.botType, null);
 683     }
 684 
 685     /** Make an attributed class instance creation expression.
 686      *  @param ctype    The class type.
 687      *  @param args     The constructor arguments.
 688      */
 689     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 690         JCNewClass tree = make.NewClass(null,
 691             null, make.QualIdent(ctype.tsym), args, null);
 692         tree.constructor = rs.resolveConstructor(
 693             make_pos, attrEnv, ctype, TreeInfo.types(args), List.nil());
 694         tree.type = ctype;
 695         return tree;
 696     }
 697 
 698     /** Make an attributed unary expression.
 699      *  @param optag    The operators tree tag.
 700      *  @param arg      The operator's argument.
 701      */
 702     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
 703         JCUnary tree = make.Unary(optag, arg);
 704         tree.operator = operators.resolveUnary(tree, optag, arg.type);
 705         tree.type = tree.operator.type.getReturnType();
 706         return tree;
 707     }
 708 
 709     /** Make an attributed binary expression.
 710      *  @param optag    The operators tree tag.
 711      *  @param lhs      The operator's left argument.
 712      *  @param rhs      The operator's right argument.
 713      */
 714     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
 715         JCBinary tree = make.Binary(optag, lhs, rhs);
 716         tree.operator = operators.resolveBinary(tree, optag, lhs.type, rhs.type);
 717         tree.type = tree.operator.type.getReturnType();
 718         return tree;
 719     }
 720 
 721     /** Make an attributed assignop expression.
 722      *  @param optag    The operators tree tag.
 723      *  @param lhs      The operator's left argument.
 724      *  @param rhs      The operator's right argument.
 725      */
 726     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
 727         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 728         tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), lhs.type, rhs.type);
 729         tree.type = lhs.type;
 730         return tree;
 731     }
 732 
 733     /** Convert tree into string object, unless it has already a
 734      *  reference type..
 735      */
 736     JCExpression makeString(JCExpression tree) {
 737         if (!tree.type.isPrimitiveOrVoid()) {
 738             return tree;
 739         } else {
 740             Symbol valueOfSym = lookupMethod(tree.pos(),
 741                                              names.valueOf,
 742                                              syms.stringType,
 743                                              List.of(tree.type));
 744             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 745         }
 746     }
 747 
 748     /** Create an empty anonymous class definition and enter and complete
 749      *  its symbol. Return the class definition's symbol.
 750      *  and create
 751      *  @param flags    The class symbol's flags
 752      *  @param owner    The class symbol's owner
 753      */
 754     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
 755         return makeEmptyClass(flags, owner, null, true);
 756     }
 757 
 758     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
 759             boolean addToDefs) {
 760         // Create class symbol.
 761         ClassSymbol c = syms.defineClass(names.empty, owner);
 762         if (flatname != null) {
 763             c.flatname = flatname;
 764         } else {
 765             c.flatname = chk.localClassName(c);
 766         }
 767         c.sourcefile = owner.sourcefile;
 768         c.completer = Completer.NULL_COMPLETER;
 769         c.members_field = WriteableScope.create(c);
 770         c.flags_field = flags;
 771         ClassType ctype = (ClassType) c.type;
 772         ctype.supertype_field = syms.objectType;
 773         ctype.interfaces_field = List.nil();
 774 
 775         JCClassDecl odef = classDef(owner);
 776 
 777         // Enter class symbol in owner scope and compiled table.
 778         enterSynthetic(odef.pos(), c, owner.members());
 779         chk.putCompiled(c);
 780 
 781         // Create class definition tree.
 782         JCClassDecl cdef = make.ClassDef(
 783             make.Modifiers(flags), names.empty,
 784             List.nil(),
 785             null, List.nil(), List.nil());
 786         cdef.sym = c;
 787         cdef.type = c.type;
 788 
 789         // Append class definition tree to owner's definitions.
 790         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
 791         return cdef;
 792     }
 793 
 794 /**************************************************************************
 795  * Symbol manipulation utilities
 796  *************************************************************************/
 797 
 798     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 799      *  @param pos           Position for error reporting.
 800      *  @param sym           The symbol.
 801      *  @param s             The scope.
 802      */
 803     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, WriteableScope s) {
 804         s.enter(sym);
 805     }
 806 
 807     /** Create a fresh synthetic name within a given scope - the unique name is
 808      *  obtained by appending '$' chars at the end of the name until no match
 809      *  is found.
 810      *
 811      * @param name base name
 812      * @param s scope in which the name has to be unique
 813      * @return fresh synthetic name
 814      */
 815     private Name makeSyntheticName(Name name, Scope s) {
 816         do {
 817             name = name.append(
 818                     target.syntheticNameChar(),
 819                     names.empty);
 820         } while (lookupSynthetic(name, s) != null);
 821         return name;
 822     }
 823 
 824     /** Check whether synthetic symbols generated during lowering conflict
 825      *  with user-defined symbols.
 826      *
 827      *  @param translatedTrees lowered class trees
 828      */
 829     void checkConflicts(List<JCTree> translatedTrees) {
 830         for (JCTree t : translatedTrees) {
 831             t.accept(conflictsChecker);
 832         }
 833     }
 834 
 835     JCTree.Visitor conflictsChecker = new TreeScanner() {
 836 
 837         TypeSymbol currentClass;
 838 
 839         @Override
 840         public void visitMethodDef(JCMethodDecl that) {
 841             checkConflicts(that.pos(), that.sym, currentClass);
 842             super.visitMethodDef(that);
 843         }
 844 
 845         @Override
 846         public void visitVarDef(JCVariableDecl that) {
 847             if (that.sym.owner.kind == TYP) {
 848                 checkConflicts(that.pos(), that.sym, currentClass);
 849             }
 850             super.visitVarDef(that);
 851         }
 852 
 853         @Override
 854         public void visitClassDef(JCClassDecl that) {
 855             TypeSymbol prevCurrentClass = currentClass;
 856             currentClass = that.sym;
 857             try {
 858                 super.visitClassDef(that);
 859             }
 860             finally {
 861                 currentClass = prevCurrentClass;
 862             }
 863         }
 864 
 865         void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
 866             for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
 867                 for (Symbol sym2 : ct.tsym.members().getSymbolsByName(sym.name, NON_RECURSIVE)) {
 868                     // VM allows methods and variables with differing types
 869                     if (sym.kind == sym2.kind &&
 870                         types.isSameType(types.erasure(sym.type), types.erasure(sym2.type)) &&
 871                         sym != sym2 &&
 872                         (sym.flags() & Flags.SYNTHETIC) != (sym2.flags() & Flags.SYNTHETIC) &&
 873                         (sym.flags() & BRIDGE) == 0 && (sym2.flags() & BRIDGE) == 0) {
 874                         syntheticError(pos, (sym2.flags() & SYNTHETIC) == 0 ? sym2 : sym);
 875                         return;
 876                     }
 877                 }
 878             }
 879         }
 880 
 881         /** Report a conflict between a user symbol and a synthetic symbol.
 882          */
 883         private void syntheticError(DiagnosticPosition pos, Symbol sym) {
 884             if (!sym.type.isErroneous()) {
 885                 log.error(pos, Errors.CannotGenerateClass(sym.location(), Fragments.SyntheticNameConflict(sym, sym.location())));
 886             }
 887         }
 888     };
 889 
 890     /** Look up a synthetic name in a given scope.
 891      *  @param s            The scope.
 892      *  @param name         The name.
 893      */
 894     private Symbol lookupSynthetic(Name name, Scope s) {
 895         Symbol sym = s.findFirst(name);
 896         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 897     }
 898 
 899     /** Look up a method in a given scope.
 900      */
 901     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 902         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.nil());
 903     }
 904 
 905     /** Anon inner classes are used as access constructor tags.
 906      * accessConstructorTag will use an existing anon class if one is available,
 907      * and synthesize a class (with makeEmptyClass) if one is not available.
 908      * However, there is a small possibility that an existing class will not
 909      * be generated as expected if it is inside a conditional with a constant
 910      * expression. If that is found to be the case, create an empty class tree here.
 911      */
 912     private void checkAccessConstructorTags() {
 913         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
 914             ClassSymbol c = l.head;
 915             if (isTranslatedClassAvailable(c))
 916                 continue;
 917             // Create class definition tree.
 918             // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
 919             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE,
 920                     c.outermostClass(), c.flatname, false);
 921             swapAccessConstructorTag(c, cdec.sym);
 922             translated.append(cdec);
 923         }
 924     }
 925     // where
 926     private boolean isTranslatedClassAvailable(ClassSymbol c) {
 927         for (JCTree tree: translated) {
 928             if (tree.hasTag(CLASSDEF)
 929                     && ((JCClassDecl) tree).sym == c) {
 930                 return true;
 931             }
 932         }
 933         return false;
 934     }
 935 
 936     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
 937         for (MethodSymbol methodSymbol : accessConstrs.values()) {
 938             Assert.check(methodSymbol.type.hasTag(METHOD));
 939             MethodType oldMethodType =
 940                     (MethodType)methodSymbol.type;
 941             if (oldMethodType.argtypes.head.tsym == oldCTag)
 942                 methodSymbol.type =
 943                     types.createMethodTypeWithParameters(oldMethodType,
 944                         oldMethodType.getParameterTypes().tail
 945                             .prepend(newCTag.erasure(types)));
 946         }
 947     }
 948 
 949 /**************************************************************************
 950  * Access methods
 951  *************************************************************************/
 952 
 953     /** A mapping from symbols to their access numbers.
 954      */
 955     private Map<Symbol,Integer> accessNums;
 956 
 957     /** A mapping from symbols to an array of access symbols, indexed by
 958      *  access code.
 959      */
 960     private Map<Symbol,MethodSymbol[]> accessSyms;
 961 
 962     /** A mapping from (constructor) symbols to access constructor symbols.
 963      */
 964     private Map<Symbol,MethodSymbol> accessConstrs;
 965 
 966     /** A list of all class symbols used for access constructor tags.
 967      */
 968     private List<ClassSymbol> accessConstrTags;
 969 
 970     /** A queue for all accessed symbols.
 971      */
 972     private ListBuffer<Symbol> accessed;
 973 
 974     /** return access code for identifier,
 975      *  @param tree     The tree representing the identifier use.
 976      *  @param enclOp   The closest enclosing operation node of tree,
 977      *                  null if tree is not a subtree of an operation.
 978      */
 979     private static int accessCode(JCTree tree, JCTree enclOp) {
 980         if (enclOp == null)
 981             return AccessCode.DEREF.code;
 982         else if (enclOp.hasTag(ASSIGN) &&
 983                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 984             return AccessCode.ASSIGN.code;
 985         else if ((enclOp.getTag().isIncOrDecUnaryOp() || enclOp.getTag().isAssignop()) &&
 986                 tree == TreeInfo.skipParens(((JCOperatorExpression) enclOp).getOperand(LEFT)))
 987             return (((JCOperatorExpression) enclOp).operator).getAccessCode(enclOp.getTag());
 988         else
 989             return AccessCode.DEREF.code;
 990     }
 991 
 992     /** Return binary operator that corresponds to given access code.
 993      */
 994     private OperatorSymbol binaryAccessOperator(int acode, Tag tag) {
 995         return operators.lookupBinaryOp(op -> op.getAccessCode(tag) == acode);
 996     }
 997 
 998     /** Return tree tag for assignment operation corresponding
 999      *  to given binary operator.
1000      */
1001     private static JCTree.Tag treeTag(OperatorSymbol operator) {
1002         switch (operator.opcode) {
1003         case ByteCodes.ior: case ByteCodes.lor:
1004             return BITOR_ASG;
1005         case ByteCodes.ixor: case ByteCodes.lxor:
1006             return BITXOR_ASG;
1007         case ByteCodes.iand: case ByteCodes.land:
1008             return BITAND_ASG;
1009         case ByteCodes.ishl: case ByteCodes.lshl:
1010         case ByteCodes.ishll: case ByteCodes.lshll:
1011             return SL_ASG;
1012         case ByteCodes.ishr: case ByteCodes.lshr:
1013         case ByteCodes.ishrl: case ByteCodes.lshrl:
1014             return SR_ASG;
1015         case ByteCodes.iushr: case ByteCodes.lushr:
1016         case ByteCodes.iushrl: case ByteCodes.lushrl:
1017             return USR_ASG;
1018         case ByteCodes.iadd: case ByteCodes.ladd:
1019         case ByteCodes.fadd: case ByteCodes.dadd:
1020         case ByteCodes.string_add:
1021             return PLUS_ASG;
1022         case ByteCodes.isub: case ByteCodes.lsub:
1023         case ByteCodes.fsub: case ByteCodes.dsub:
1024             return MINUS_ASG;
1025         case ByteCodes.imul: case ByteCodes.lmul:
1026         case ByteCodes.fmul: case ByteCodes.dmul:
1027             return MUL_ASG;
1028         case ByteCodes.idiv: case ByteCodes.ldiv:
1029         case ByteCodes.fdiv: case ByteCodes.ddiv:
1030             return DIV_ASG;
1031         case ByteCodes.imod: case ByteCodes.lmod:
1032         case ByteCodes.fmod: case ByteCodes.dmod:
1033             return MOD_ASG;
1034         default:
1035             throw new AssertionError();
1036         }
1037     }
1038 
1039     /** The name of the access method with number `anum' and access code `acode'.
1040      */
1041     Name accessName(int anum, int acode) {
1042         return names.fromString(
1043             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
1044     }
1045 
1046     /** Return access symbol for a private or protected symbol from an inner class.
1047      *  @param sym        The accessed private symbol.
1048      *  @param tree       The accessing tree.
1049      *  @param enclOp     The closest enclosing operation node of tree,
1050      *                    null if tree is not a subtree of an operation.
1051      *  @param protAccess Is access to a protected symbol in another
1052      *                    package?
1053      *  @param refSuper   Is access via a (qualified) C.super?
1054      */
1055     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
1056                               boolean protAccess, boolean refSuper) {
1057         ClassSymbol accOwner = refSuper && protAccess
1058             // For access via qualified super (T.super.x), place the
1059             // access symbol on T.
1060             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
1061             // Otherwise pretend that the owner of an accessed
1062             // protected symbol is the enclosing class of the current
1063             // class which is a subclass of the symbol's owner.
1064             : accessClass(sym, protAccess, tree);
1065 
1066         Symbol vsym = sym;
1067         if (sym.owner != accOwner) {
1068             vsym = sym.clone(accOwner);
1069             actualSymbols.put(vsym, sym);
1070         }
1071 
1072         Integer anum              // The access number of the access method.
1073             = accessNums.get(vsym);
1074         if (anum == null) {
1075             anum = accessed.length();
1076             accessNums.put(vsym, anum);
1077             accessSyms.put(vsym, new MethodSymbol[AccessCode.numberOfAccessCodes]);
1078             accessed.append(vsym);
1079             // System.out.println("accessing " + vsym + " in " + vsym.location());
1080         }
1081 
1082         int acode;                // The access code of the access method.
1083         List<Type> argtypes;      // The argument types of the access method.
1084         Type restype;             // The result type of the access method.
1085         List<Type> thrown;        // The thrown exceptions of the access method.
1086         switch (vsym.kind) {
1087         case VAR:
1088             acode = accessCode(tree, enclOp);
1089             if (acode >= AccessCode.FIRSTASGOP.code) {
1090                 OperatorSymbol operator = binaryAccessOperator(acode, enclOp.getTag());
1091                 if (operator.opcode == string_add)
1092                     argtypes = List.of(syms.objectType);
1093                 else
1094                     argtypes = operator.type.getParameterTypes().tail;
1095             } else if (acode == AccessCode.ASSIGN.code)
1096                 argtypes = List.of(vsym.erasure(types));
1097             else
1098                 argtypes = List.nil();
1099             restype = vsym.erasure(types);
1100             thrown = List.nil();
1101             break;
1102         case MTH:
1103             acode = AccessCode.DEREF.code;
1104             argtypes = vsym.erasure(types).getParameterTypes();
1105             restype = vsym.erasure(types).getReturnType();
1106             thrown = vsym.type.getThrownTypes();
1107             break;
1108         default:
1109             throw new AssertionError();
1110         }
1111 
1112         // For references via qualified super, increment acode by one,
1113         // making it odd.
1114         if (protAccess && refSuper) acode++;
1115 
1116         // Instance access methods get instance as first parameter.
1117         // For protected symbols this needs to be the instance as a member
1118         // of the type containing the accessed symbol, not the class
1119         // containing the access method.
1120         if ((vsym.flags() & STATIC) == 0) {
1121             argtypes = argtypes.prepend(vsym.owner.erasure(types));
1122         }
1123         MethodSymbol[] accessors = accessSyms.get(vsym);
1124         MethodSymbol accessor = accessors[acode];
1125         if (accessor == null) {
1126             accessor = new MethodSymbol(
1127                 STATIC | SYNTHETIC | (accOwner.isInterface() ? PUBLIC : 0),
1128                 accessName(anum.intValue(), acode),
1129                 new MethodType(argtypes, restype, thrown, syms.methodClass),
1130                 accOwner);
1131             enterSynthetic(tree.pos(), accessor, accOwner.members());
1132             accessors[acode] = accessor;
1133         }
1134         return accessor;
1135     }
1136 
1137     /** The qualifier to be used for accessing a symbol in an outer class.
1138      *  This is either C.sym or C.this.sym, depending on whether or not
1139      *  sym is static.
1140      *  @param sym   The accessed symbol.
1141      */
1142     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
1143         return (sym.flags() & STATIC) != 0
1144             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
1145             : makeOwnerThis(pos, sym, true);
1146     }
1147 
1148     /** Do we need an access method to reference private symbol?
1149      */
1150     boolean needsPrivateAccess(Symbol sym) {
1151         if (target.hasNestmateAccess()) {
1152             return false;
1153         }
1154         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
1155             return false;
1156         } else if (sym.name == names.init && sym.owner.isDirectlyOrIndirectlyLocal()) {
1157             // private constructor in local class: relax protection
1158             sym.flags_field &= ~PRIVATE;
1159             return false;
1160         } else {
1161             return true;
1162         }
1163     }
1164 
1165     /** Do we need an access method to reference symbol in other package?
1166      */
1167     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
1168         if (disableProtectedAccessors) return false;
1169         if ((sym.flags() & PROTECTED) == 0 ||
1170             sym.owner.owner == currentClass.owner || // fast special case
1171             sym.packge() == currentClass.packge())
1172             return false;
1173         if (!currentClass.isSubClass(sym.owner, types))
1174             return true;
1175         if ((sym.flags() & STATIC) != 0 ||
1176             !tree.hasTag(SELECT) ||
1177             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
1178             return false;
1179         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
1180     }
1181 
1182     /** The class in which an access method for given symbol goes.
1183      *  @param sym        The access symbol
1184      *  @param protAccess Is access to a protected symbol in another
1185      *                    package?
1186      */
1187     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
1188         if (protAccess) {
1189             Symbol qualifier = null;
1190             ClassSymbol c = currentClass;
1191             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
1192                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
1193                 while (!qualifier.isSubClass(c, types)) {
1194                     c = c.owner.enclClass();
1195                 }
1196                 return c;
1197             } else {
1198                 while (!c.isSubClass(sym.owner, types)) {
1199                     c = c.owner.enclClass();
1200                 }
1201             }
1202             return c;
1203         } else {
1204             // the symbol is private
1205             return sym.owner.enclClass();
1206         }
1207     }
1208 
1209     private boolean noClassDefIn(JCTree tree) {
1210         var scanner = new TreeScanner() {
1211             boolean noClassDef = true;
1212             @Override
1213             public void visitClassDef(JCClassDecl tree) {
1214                 noClassDef = false;
1215             }
1216         };
1217         scanner.scan(tree);
1218         return scanner.noClassDef;
1219     }
1220 
1221     private void addPrunedInfo(JCTree tree) {
1222         List<JCTree> infoList = prunedTree.get(currentClass);
1223         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
1224         prunedTree.put(currentClass, infoList);
1225     }
1226 
1227     /** Ensure that identifier is accessible, return tree accessing the identifier.
1228      *  @param sym      The accessed symbol.
1229      *  @param tree     The tree referring to the symbol.
1230      *  @param enclOp   The closest enclosing operation node of tree,
1231      *                  null if tree is not a subtree of an operation.
1232      *  @param refSuper Is access via a (qualified) C.super?
1233      */
1234     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1235         // Access a free variable via its proxy, or its proxy's proxy
1236         while (sym.kind == VAR && sym.owner.kind == MTH &&
1237             sym.owner.enclClass() != currentClass) {
1238             // A constant is replaced by its constant value.
1239             Object cv = ((VarSymbol)sym).getConstValue();
1240             if (cv != null) {
1241                 make.at(tree.pos);
1242                 return makeLit(sym.type, cv);
1243             }
1244             if (lambdaTranslationMap != null && lambdaTranslationMap.get(sym) != null) {
1245                 return make.at(tree.pos).Ident(lambdaTranslationMap.get(sym));
1246             } else {
1247                 // Otherwise replace the variable by its proxy.
1248                 sym = proxies.get(sym);
1249                 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
1250                 tree = make.at(tree.pos).Ident(sym);
1251             }
1252         }
1253         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
1254         switch (sym.kind) {
1255         case TYP:
1256             if (sym.owner.kind != PCK) {
1257                 // Convert type idents to
1258                 // <flat name> or <package name> . <flat name>
1259                 Name flatname = Convert.shortName(sym.flatName());
1260                 while (base != null &&
1261                        TreeInfo.symbol(base) != null &&
1262                        TreeInfo.symbol(base).kind != PCK) {
1263                     base = (base.hasTag(SELECT))
1264                         ? ((JCFieldAccess) base).selected
1265                         : null;
1266                 }
1267                 if (tree.hasTag(IDENT)) {
1268                     ((JCIdent) tree).name = flatname;
1269                 } else if (base == null) {
1270                     tree = make.at(tree.pos).Ident(sym);
1271                     ((JCIdent) tree).name = flatname;
1272                 } else {
1273                     ((JCFieldAccess) tree).selected = base;
1274                     ((JCFieldAccess) tree).name = flatname;
1275                 }
1276             }
1277             break;
1278         case MTH: case VAR:
1279             if (sym.owner.kind == TYP) {
1280 
1281                 // Access methods are required for
1282                 //  - private members,
1283                 //  - protected members in a superclass of an
1284                 //    enclosing class contained in another package.
1285                 //  - all non-private members accessed via a qualified super.
1286                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1287                     || needsProtectedAccess(sym, tree);
1288                 boolean accReq = protAccess || needsPrivateAccess(sym);
1289 
1290                 // A base has to be supplied for
1291                 //  - simple identifiers accessing variables in outer classes.
1292                 boolean baseReq =
1293                     base == null &&
1294                     sym.owner != syms.predefClass &&
1295                     !sym.isMemberOf(currentClass, types);
1296 
1297                 if (accReq || baseReq) {
1298                     make.at(tree.pos);
1299 
1300                     // Constants are replaced by their constant value.
1301                     if (sym.kind == VAR) {
1302                         Object cv = ((VarSymbol)sym).getConstValue();
1303                         if (cv != null) {
1304                             addPrunedInfo(tree);
1305                             return makeLit(sym.type, cv);
1306                         }
1307                     }
1308 
1309                     // Private variables and methods are replaced by calls
1310                     // to their access methods.
1311                     if (accReq) {
1312                         List<JCExpression> args = List.nil();
1313                         if ((sym.flags() & STATIC) == 0) {
1314                             // Instance access methods get instance
1315                             // as first parameter.
1316                             if (base == null)
1317                                 base = makeOwnerThis(tree.pos(), sym, true);
1318                             args = args.prepend(base);
1319                             base = null;   // so we don't duplicate code
1320                         }
1321                         Symbol access = accessSymbol(sym, tree,
1322                                                      enclOp, protAccess,
1323                                                      refSuper);
1324                         JCExpression receiver = make.Select(
1325                             base != null ? base : make.QualIdent(access.owner),
1326                             access);
1327                         return make.App(receiver, args);
1328 
1329                     // Other accesses to members of outer classes get a
1330                     // qualifier.
1331                     } else if (baseReq) {
1332                         return make.at(tree.pos).Select(
1333                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1334                     }
1335                 }
1336             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
1337                 //sym is a local variable - check the lambda translation map to
1338                 //see if sym has been translated to something else in the current
1339                 //scope (by LambdaToMethod)
1340                 Symbol translatedSym = lambdaTranslationMap.get(sym.baseSymbol());
1341                 if (translatedSym != null) {
1342                     tree = make.at(tree.pos).Ident(translatedSym);
1343                 }
1344             }
1345         }
1346         return tree;
1347     }
1348 
1349     /** Ensure that identifier is accessible, return tree accessing the identifier.
1350      *  @param tree     The identifier tree.
1351      */
1352     JCExpression access(JCExpression tree) {
1353         Symbol sym = TreeInfo.symbol(tree);
1354         return sym == null ? tree : access(sym, tree, null, false);
1355     }
1356 
1357     /** Return access constructor for a private constructor,
1358      *  or the constructor itself, if no access constructor is needed.
1359      *  @param pos       The position to report diagnostics, if any.
1360      *  @param constr    The private constructor.
1361      */
1362     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1363         if (needsPrivateAccess(constr)) {
1364             ClassSymbol accOwner = constr.owner.enclClass();
1365             MethodSymbol aconstr = accessConstrs.get(constr);
1366             if (aconstr == null) {
1367                 List<Type> argtypes = constr.type.getParameterTypes();
1368                 if ((accOwner.flags_field & ENUM) != 0)
1369                     argtypes = argtypes
1370                         .prepend(syms.intType)
1371                         .prepend(syms.stringType);
1372                 aconstr = new MethodSymbol(
1373                     SYNTHETIC,
1374                     names.init,
1375                     new MethodType(
1376                         argtypes.append(
1377                             accessConstructorTag().erasure(types)),
1378                         constr.type.getReturnType(),
1379                         constr.type.getThrownTypes(),
1380                         syms.methodClass),
1381                     accOwner);
1382                 enterSynthetic(pos, aconstr, accOwner.members());
1383                 accessConstrs.put(constr, aconstr);
1384                 accessed.append(constr);
1385             }
1386             return aconstr;
1387         } else {
1388             return constr;
1389         }
1390     }
1391 
1392     /** Return an anonymous class nested in this toplevel class.
1393      */
1394     ClassSymbol accessConstructorTag() {
1395         ClassSymbol topClass = currentClass.outermostClass();
1396         ModuleSymbol topModle = topClass.packge().modle;
1397         for (int i = 1; ; i++) {
1398             Name flatname = names.fromString("" + topClass.getQualifiedName() +
1399                                             target.syntheticNameChar() +
1400                                             i);
1401             ClassSymbol ctag = chk.getCompiled(topModle, flatname);
1402             if (ctag == null)
1403                 // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
1404                 ctag = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, topClass).sym;
1405             else if (!ctag.isAnonymous())
1406                 continue;
1407             // keep a record of all tags, to verify that all are generated as required
1408             accessConstrTags = accessConstrTags.prepend(ctag);
1409             return ctag;
1410         }
1411     }
1412 
1413     /** Add all required access methods for a private symbol to enclosing class.
1414      *  @param sym       The symbol.
1415      */
1416     void makeAccessible(Symbol sym) {
1417         JCClassDecl cdef = classDef(sym.owner.enclClass());
1418         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
1419         if (sym.name == names.init) {
1420             cdef.defs = cdef.defs.prepend(
1421                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1422         } else {
1423             MethodSymbol[] accessors = accessSyms.get(sym);
1424             for (int i = 0; i < AccessCode.numberOfAccessCodes; i++) {
1425                 if (accessors[i] != null)
1426                     cdef.defs = cdef.defs.prepend(
1427                         accessDef(cdef.pos, sym, accessors[i], i));
1428             }
1429         }
1430     }
1431 
1432     /** Construct definition of an access method.
1433      *  @param pos        The source code position of the definition.
1434      *  @param vsym       The private or protected symbol.
1435      *  @param accessor   The access method for the symbol.
1436      *  @param acode      The access code.
1437      */
1438     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1439 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1440         currentClass = vsym.owner.enclClass();
1441         make.at(pos);
1442         JCMethodDecl md = make.MethodDef(accessor, null);
1443 
1444         // Find actual symbol
1445         Symbol sym = actualSymbols.get(vsym);
1446         if (sym == null) sym = vsym;
1447 
1448         JCExpression ref;           // The tree referencing the private symbol.
1449         List<JCExpression> args;    // Any additional arguments to be passed along.
1450         if ((sym.flags() & STATIC) != 0) {
1451             ref = make.Ident(sym);
1452             args = make.Idents(md.params);
1453         } else {
1454             JCExpression site = make.Ident(md.params.head);
1455             if (acode % 2 != 0) {
1456                 //odd access codes represent qualified super accesses - need to
1457                 //emit reference to the direct superclass, even if the referred
1458                 //member is from an indirect superclass (JLS 13.1)
1459                 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
1460             }
1461             ref = make.Select(site, sym);
1462             args = make.Idents(md.params.tail);
1463         }
1464         JCStatement stat;          // The statement accessing the private symbol.
1465         if (sym.kind == VAR) {
1466             // Normalize out all odd access codes by taking floor modulo 2:
1467             int acode1 = acode - (acode & 1);
1468 
1469             JCExpression expr;      // The access method's return value.
1470             AccessCode aCode = AccessCode.getFromCode(acode1);
1471             switch (aCode) {
1472             case DEREF:
1473                 expr = ref;
1474                 break;
1475             case ASSIGN:
1476                 expr = make.Assign(ref, args.head);
1477                 break;
1478             case PREINC: case POSTINC: case PREDEC: case POSTDEC:
1479                 expr = makeUnary(aCode.tag, ref);
1480                 break;
1481             default:
1482                 expr = make.Assignop(
1483                     treeTag(binaryAccessOperator(acode1, JCTree.Tag.NO_TAG)), ref, args.head);
1484                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1, JCTree.Tag.NO_TAG);
1485             }
1486             stat = make.Return(expr.setType(sym.type));
1487         } else {
1488             stat = make.Call(make.App(ref, args));
1489         }
1490         md.body = make.Block(0, List.of(stat));
1491 
1492         // Make sure all parameters, result types and thrown exceptions
1493         // are accessible.
1494         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1495             l.head.vartype = access(l.head.vartype);
1496         md.restype = access(md.restype);
1497         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1498             l.head = access(l.head);
1499 
1500         return md;
1501     }
1502 
1503     /** Construct definition of an access constructor.
1504      *  @param pos        The source code position of the definition.
1505      *  @param constr     The private constructor.
1506      *  @param accessor   The access method for the constructor.
1507      */
1508     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1509         make.at(pos);
1510         JCMethodDecl md = make.MethodDef(accessor,
1511                                       accessor.externalType(types),
1512                                       null);
1513         JCIdent callee = make.Ident(names._this);
1514         callee.sym = constr;
1515         callee.type = constr.type;
1516         md.body =
1517             make.Block(0, List.of(
1518                 make.Call(
1519                     make.App(
1520                         callee,
1521                         make.Idents(md.params.reverse().tail.reverse())))));
1522         return md;
1523     }
1524 
1525 /**************************************************************************
1526  * Free variables proxies and this$n
1527  *************************************************************************/
1528 
1529     /** A map which allows to retrieve the translated proxy variable for any given symbol of an
1530      *  enclosing scope that is accessed (the accessed symbol could be the synthetic 'this$n' symbol).
1531      *  Inside a constructor, the map temporarily overrides entries corresponding to proxies and any
1532      *  'this$n' symbols, where they represent the constructor parameters.
1533      */
1534     Map<Symbol, Symbol> proxies;
1535 
1536     /** A scope containing all unnamed resource variables/saved
1537      *  exception variables for translated TWR blocks
1538      */
1539     WriteableScope twrVars;
1540 
1541     /** A stack containing the this$n field of the currently translated
1542      *  classes (if needed) in innermost first order.
1543      *  Inside a constructor, proxies and any this$n symbol are duplicated
1544      *  in an additional innermost scope, where they represent the constructor
1545      *  parameters.
1546      */
1547     List<VarSymbol> outerThisStack;
1548 
1549     /** The name of a free variable proxy.
1550      */
1551     Name proxyName(Name name, int index) {
1552         Name proxyName = names.fromString("val" + target.syntheticNameChar() + name);
1553         if (index > 0) {
1554             proxyName = proxyName.append(names.fromString("" + target.syntheticNameChar() + index));
1555         }
1556         return proxyName;
1557     }
1558 
1559     /** Proxy definitions for all free variables in given list, in reverse order.
1560      *  @param pos               The source code position of the definition.
1561      *  @param freevars          The free variables.
1562      *  @param owner             The class in which the definitions go.
1563      *  @param additionalFlags   Any additional flags
1564      */
1565     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
1566             long additionalFlags) {
1567         long flags = FINAL | SYNTHETIC | additionalFlags;
1568         List<JCVariableDecl> defs = List.nil();
1569         Set<Name> proxyNames = new HashSet<>();
1570         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1571             VarSymbol v = l.head;
1572             int index = 0;
1573             Name proxyName;
1574             do {
1575                 proxyName = proxyName(v.name, index++);
1576             } while (!proxyNames.add(proxyName));
1577             VarSymbol proxy = new VarSymbol(
1578                 flags, proxyName, v.erasure(types), owner);
1579             proxies.put(v, proxy);
1580             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1581             vd.vartype = access(vd.vartype);
1582             defs = defs.prepend(vd);
1583         }
1584         return defs;
1585     }
1586 
1587     /** The name of a this$n field
1588      *  @param type   The class referenced by the this$n field
1589      */
1590     Name outerThisName(Type type, Symbol owner) {
1591         Type t = type.getEnclosingType();
1592         int nestingLevel = 0;
1593         while (t.hasTag(CLASS)) {
1594             t = t.getEnclosingType();
1595             nestingLevel++;
1596         }
1597         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1598         while (owner.kind == TYP && ((ClassSymbol)owner).members().findFirst(result) != null)
1599             result = names.fromString(result.toString() + target.syntheticNameChar());
1600         return result;
1601     }
1602 
1603     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
1604         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1605         // Set NOOUTERTHIS for all synthetic outer instance variables, and unset
1606         // it when the variable is accessed. If the variable is never accessed,
1607         // we skip creating an outer instance field and saving the constructor
1608         // parameter to it.
1609         VarSymbol outerThis =
1610             new VarSymbol(flags | NOOUTERTHIS, outerThisName(target, owner), target, owner);
1611         outerThisStack = outerThisStack.prepend(outerThis);
1612         return outerThis;
1613     }
1614 
1615     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
1616         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
1617         vd.vartype = access(vd.vartype);
1618         return vd;
1619     }
1620 
1621     /** Definition for this$n field.
1622      *  @param pos        The source code position of the definition.
1623      *  @param owner      The method in which the definition goes.
1624      */
1625     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
1626         ClassSymbol c = owner.enclClass();
1627         boolean isMandated =
1628             // Anonymous constructors
1629             (owner.isConstructor() && owner.isAnonymous()) ||
1630             // Constructors of non-private inner member classes
1631             (owner.isConstructor() && c.isInner() &&
1632              !c.isPrivate() && !c.isStatic());
1633         long flags =
1634             FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
1635         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
1636         owner.extraParams = owner.extraParams.prepend(outerThis);
1637         return makeOuterThisVarDecl(pos, outerThis);
1638     }
1639 
1640     /** Definition for this$n field.
1641      *  @param pos        The source code position of the definition.
1642      *  @param owner      The class in which the definition goes.
1643      */
1644     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
1645         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC | (allowValueClasses && owner.isValueClass() ? STRICT : 0));
1646         return makeOuterThisVarDecl(pos, outerThis);
1647     }
1648 
1649     /** Return a list of trees that load the free variables in given list,
1650      *  in reverse order.
1651      *  @param pos          The source code position to be used for the trees.
1652      *  @param freevars     The list of free variables.
1653      */
1654     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1655         List<JCExpression> args = List.nil();
1656         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1657             args = args.prepend(loadFreevar(pos, l.head));
1658         return args;
1659     }
1660 //where
1661         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1662             return access(v, make.at(pos).Ident(v), null, false);
1663         }
1664 
1665     /** Construct a tree simulating the expression {@code C.this}.
1666      *  @param pos           The source code position to be used for the tree.
1667      *  @param c             The qualifier class.
1668      */
1669     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1670         if (currentClass == c) {
1671             // in this case, `this' works fine
1672             return make.at(pos).This(c.erasure(types));
1673         } else {
1674             // need to go via this$n
1675             return makeOuterThis(pos, c);
1676         }
1677     }
1678 
1679     /**
1680      * Optionally replace a try statement with the desugaring of a
1681      * try-with-resources statement.  The canonical desugaring of
1682      *
1683      * try ResourceSpecification
1684      *   Block
1685      *
1686      * is
1687      *
1688      * {
1689      *   final VariableModifiers_minus_final R #resource = Expression;
1690      *
1691      *   try ResourceSpecificationtail
1692      *     Block
1693      *   } body-only-finally {
1694      *     if (#resource != null) //nullcheck skipped if Expression is provably non-null
1695      *         #resource.close();
1696      *   } catch (Throwable #primaryException) {
1697      *       if (#resource != null) //nullcheck skipped if Expression is provably non-null
1698      *           try {
1699      *               #resource.close();
1700      *           } catch (Throwable #suppressedException) {
1701      *              #primaryException.addSuppressed(#suppressedException);
1702      *           }
1703      *       throw #primaryException;
1704      *   }
1705      * }
1706      *
1707      * @param tree  The try statement to inspect.
1708      * @return a desugared try-with-resources tree, or the original
1709      * try block if there are no resources to manage.
1710      */
1711     JCTree makeTwrTry(JCTry tree) {
1712         make_at(tree.pos());
1713         twrVars = twrVars.dup();
1714         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
1715         if (tree.catchers.isEmpty() && tree.finalizer == null)
1716             result = translate(twrBlock);
1717         else
1718             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
1719         twrVars = twrVars.leave();
1720         return result;
1721     }
1722 
1723     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
1724         if (resources.isEmpty())
1725             return block;
1726 
1727         // Add resource declaration or expression to block statements
1728         ListBuffer<JCStatement> stats = new ListBuffer<>();
1729         JCTree resource = resources.head;
1730         JCExpression resourceUse;
1731         boolean resourceNonNull;
1732         if (resource instanceof JCVariableDecl variableDecl) {
1733             resourceUse = make.Ident(variableDecl.sym).setType(resource.type);
1734             resourceNonNull = variableDecl.init != null && TreeInfo.skipParens(variableDecl.init).hasTag(NEWCLASS);
1735             stats.add(variableDecl);
1736         } else {
1737             Assert.check(resource instanceof JCExpression);
1738             VarSymbol syntheticTwrVar =
1739             new VarSymbol(SYNTHETIC | FINAL,
1740                           makeSyntheticName(names.fromString("twrVar" +
1741                                            depth), twrVars),
1742                           (resource.type.hasTag(BOT)) ?
1743                           syms.autoCloseableType : resource.type,
1744                           currentMethodSym);
1745             twrVars.enter(syntheticTwrVar);
1746             JCVariableDecl syntheticTwrVarDecl =
1747                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
1748             resourceUse = (JCExpression)make.Ident(syntheticTwrVar);
1749             resourceNonNull = false;
1750             stats.add(syntheticTwrVarDecl);
1751         }
1752 
1753         //create (semi-) finally block that will be copied into the main try body:
1754         int oldPos = make.pos;
1755         make.at(TreeInfo.endPos(block));
1756 
1757         // if (#resource != null) { #resource.close(); }
1758         JCStatement bodyCloseStatement = makeResourceCloseInvocation(resourceUse);
1759 
1760         if (!resourceNonNull) {
1761             bodyCloseStatement = make.If(makeNonNullCheck(resourceUse),
1762                                          bodyCloseStatement,
1763                                          null);
1764         }
1765 
1766         JCBlock finallyClause = make.Block(BODY_ONLY_FINALIZE, List.of(bodyCloseStatement));
1767         make.at(oldPos);
1768 
1769         // Create catch clause that saves exception, closes the resource and then rethrows the exception:
1770         VarSymbol primaryException =
1771             new VarSymbol(FINAL|SYNTHETIC,
1772                           names.fromString("t" +
1773                                            target.syntheticNameChar()),
1774                           syms.throwableType,
1775                           currentMethodSym);
1776         JCVariableDecl primaryExceptionDecl = make.VarDef(primaryException, null);
1777 
1778         // close resource:
1779         // try {
1780         //     #resource.close();
1781         // } catch (Throwable #suppressedException) {
1782         //     #primaryException.addSuppressed(#suppressedException);
1783         // }
1784         VarSymbol suppressedException =
1785             new VarSymbol(SYNTHETIC, make.paramName(2),
1786                           syms.throwableType,
1787                           currentMethodSym);
1788         JCStatement addSuppressedStatement =
1789             make.Exec(makeCall(make.Ident(primaryException),
1790                                names.addSuppressed,
1791                                List.of(make.Ident(suppressedException))));
1792         JCBlock closeResourceTryBlock =
1793             make.Block(0L, List.of(makeResourceCloseInvocation(resourceUse)));
1794         JCVariableDecl catchSuppressedDecl = make.VarDef(suppressedException, null);
1795         JCBlock catchSuppressedBlock = make.Block(0L, List.of(addSuppressedStatement));
1796         List<JCCatch> catchSuppressedClauses =
1797                 List.of(make.Catch(catchSuppressedDecl, catchSuppressedBlock));
1798         JCTry closeResourceTry = make.Try(closeResourceTryBlock, catchSuppressedClauses, null);
1799         closeResourceTry.finallyCanCompleteNormally = true;
1800 
1801         JCStatement exceptionalCloseStatement = closeResourceTry;
1802 
1803         if (!resourceNonNull) {
1804             // if (#resource != null) {  }
1805             exceptionalCloseStatement = make.If(makeNonNullCheck(resourceUse),
1806                                                 exceptionalCloseStatement,
1807                                                 null);
1808         }
1809 
1810         JCStatement exceptionalRethrow = make.Throw(make.Ident(primaryException));
1811         JCBlock exceptionalCloseBlock = make.Block(0L, List.of(exceptionalCloseStatement, exceptionalRethrow));
1812         JCCatch exceptionalCatchClause = make.Catch(primaryExceptionDecl, exceptionalCloseBlock);
1813 
1814         //create the main try statement with the close:
1815         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
1816                                   List.of(exceptionalCatchClause),
1817                                   finallyClause);
1818 
1819         outerTry.finallyCanCompleteNormally = true;
1820         stats.add(outerTry);
1821 
1822         JCBlock newBlock = make.Block(0L, stats.toList());
1823         return newBlock;
1824     }
1825 
1826     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
1827         // convert to AutoCloseable if needed
1828         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
1829             resource = convert(resource, syms.autoCloseableType);
1830         }
1831 
1832         // create resource.close() method invocation
1833         JCExpression resourceClose = makeCall(resource,
1834                                               names.close,
1835                                               List.nil());
1836         return make.Exec(resourceClose);
1837     }
1838 
1839     private JCExpression makeNonNullCheck(JCExpression expression) {
1840         return makeBinary(NE, expression, makeNull());
1841     }
1842 
1843     /** Construct a tree that represents the outer instance
1844      *  {@code C.this}. Never pick the current `this'.
1845      *  @param pos           The source code position to be used for the tree.
1846      *  @param c             The qualifier class.
1847      */
1848     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1849         List<VarSymbol> ots = outerThisStack;
1850         if (ots.isEmpty()) {
1851             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1852             return makeNull();
1853         }
1854         VarSymbol ot = ots.head;
1855         JCExpression tree = access(make.at(pos).Ident(ot));
1856         ot.flags_field &= ~NOOUTERTHIS;
1857         TypeSymbol otc = ot.type.tsym;
1858         while (otc != c) {
1859             do {
1860                 ots = ots.tail;
1861                 if (ots.isEmpty()) {
1862                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1863                     Assert.error(); // should have been caught in Attr
1864                     return tree;
1865                 }
1866                 ot = ots.head;
1867             } while (ot.owner != otc);
1868             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1869                 log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1870                 Assert.error(); // should have been caught in Attr
1871                 return makeNull();
1872             }
1873             tree = access(make.at(pos).Select(tree, ot));
1874             ot.flags_field &= ~NOOUTERTHIS;
1875             otc = ot.type.tsym;
1876         }
1877         return tree;
1878     }
1879 
1880     /** Construct a tree that represents the closest outer instance
1881      *  {@code C.this} such that the given symbol is a member of C.
1882      *  @param pos           The source code position to be used for the tree.
1883      *  @param sym           The accessed symbol.
1884      *  @param preciseMatch  should we accept a type that is a subtype of
1885      *                       sym's owner, even if it doesn't contain sym
1886      *                       due to hiding, overriding, or non-inheritance
1887      *                       due to protection?
1888      */
1889     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1890         Symbol c = sym.owner;
1891         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1892                          : currentClass.isSubClass(sym.owner, types)) {
1893             // in this case, `this' works fine
1894             return make.at(pos).This(c.erasure(types));
1895         } else {
1896             // need to go via this$n
1897             return makeOwnerThisN(pos, sym, preciseMatch);
1898         }
1899     }
1900 
1901     /**
1902      * Similar to makeOwnerThis but will never pick "this".
1903      */
1904     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1905         Symbol c = sym.owner;
1906         List<VarSymbol> ots = outerThisStack;
1907         if (ots.isEmpty()) {
1908             log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1909             return makeNull();
1910         }
1911         VarSymbol ot = ots.head;
1912         JCExpression tree = access(make.at(pos).Ident(ot));
1913         ot.flags_field &= ~NOOUTERTHIS;
1914         TypeSymbol otc = ot.type.tsym;
1915         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1916             do {
1917                 ots = ots.tail;
1918                 if (ots.isEmpty()) {
1919                     log.error(pos, Errors.NoEnclInstanceOfTypeInScope(c));
1920                     return tree;
1921                 }
1922                 ot = ots.head;
1923             } while (ot.owner != otc);
1924             tree = access(make.at(pos).Select(tree, ot));
1925             ot.flags_field &= ~NOOUTERTHIS;
1926             otc = ot.type.tsym;
1927         }
1928         return tree;
1929     }
1930 
1931     /** Return tree simulating the assignment {@code this.name = name}, where
1932      *  name is the name of a free variable.
1933      */
1934     JCStatement initField(int pos, Symbol rhs, Symbol lhs) {
1935         Assert.check(rhs.owner.kind == MTH);
1936         Assert.check(rhs.owner.owner == lhs.owner);
1937         make.at(pos);
1938         return
1939             make.Exec(
1940                 make.Assign(
1941                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1942                     make.Ident(rhs)).setType(lhs.erasure(types)));
1943     }
1944 
1945     /** Return tree simulating the assignment {@code this.this$n = this$n}.
1946      */
1947     JCStatement initOuterThis(int pos, VarSymbol rhs) {
1948         Assert.check(rhs.owner.kind == MTH);
1949         VarSymbol lhs = outerThisStack.head;
1950         Assert.check(rhs.owner.owner == lhs.owner);
1951         make.at(pos);
1952         return
1953             make.Exec(
1954                 make.Assign(
1955                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1956                     make.Ident(rhs)).setType(lhs.erasure(types)));
1957     }
1958 
1959 /**************************************************************************
1960  * Code for .class
1961  *************************************************************************/
1962 
1963     /** Return the symbol of a class to contain a cache of
1964      *  compiler-generated statics such as class$ and the
1965      *  $assertionsDisabled flag.  We create an anonymous nested class
1966      *  (unless one already exists) and return its symbol.  However,
1967      *  for backward compatibility in 1.4 and earlier we use the
1968      *  top-level class itself.
1969      */
1970     private ClassSymbol outerCacheClass() {
1971         ClassSymbol clazz = outermostClassDef.sym;
1972         Scope s = clazz.members();
1973         for (Symbol sym : s.getSymbols(NON_RECURSIVE))
1974             if (sym.kind == TYP &&
1975                 sym.name == names.empty &&
1976                 (sym.flags() & INTERFACE) == 0) return (ClassSymbol) sym;
1977         // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
1978         return makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, clazz).sym;
1979     }
1980 
1981     /** Create an attributed tree of the form left.name(). */
1982     private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1983         Assert.checkNonNull(left.type);
1984         Symbol funcsym = lookupMethod(make_pos, name, left.type,
1985                                       TreeInfo.types(args));
1986         return make.App(make.Select(left, funcsym), args);
1987     }
1988 
1989     /** The tree simulating a T.class expression.
1990      *  @param clazz      The tree identifying type T.
1991      */
1992     private JCExpression classOf(JCTree clazz) {
1993         return classOfType(clazz.type, clazz.pos());
1994     }
1995 
1996     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1997         switch (type.getTag()) {
1998         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1999         case DOUBLE: case BOOLEAN: case VOID:
2000             // replace with <BoxedClass>.TYPE
2001             ClassSymbol c = types.boxedClass(type);
2002             Symbol typeSym =
2003                 rs.accessBase(
2004                     rs.findIdentInType(pos, attrEnv, c.type, names.TYPE, KindSelector.VAR),
2005                     pos, c.type, names.TYPE, true);
2006             if (typeSym.kind == VAR)
2007                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
2008             return make.QualIdent(typeSym);
2009         case CLASS: case ARRAY:
2010                 VarSymbol sym = new VarSymbol(
2011                         STATIC | PUBLIC | FINAL, names._class,
2012                         syms.classType, type.tsym);
2013                 return make_at(pos).Select(make.Type(type), sym);
2014         default:
2015             throw new AssertionError();
2016         }
2017     }
2018 
2019 /**************************************************************************
2020  * Code for enabling/disabling assertions.
2021  *************************************************************************/
2022 
2023     private ClassSymbol assertionsDisabledClassCache;
2024 
2025     /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
2026      */
2027     private ClassSymbol assertionsDisabledClass() {
2028         if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
2029 
2030         // IDENTITY_TYPE will be interpreted as ACC_SUPER for older class files so we are fine
2031         assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC | IDENTITY_TYPE, outermostClassDef.sym).sym;
2032 
2033         return assertionsDisabledClassCache;
2034     }
2035 
2036     // This code is not particularly robust if the user has
2037     // previously declared a member named '$assertionsDisabled'.
2038     // The same faulty idiom also appears in the translation of
2039     // class literals above.  We should report an error if a
2040     // previous declaration is not synthetic.
2041 
2042     private JCExpression assertFlagTest(DiagnosticPosition pos) {
2043         // Outermost class may be either true class or an interface.
2044         ClassSymbol outermostClass = outermostClassDef.sym;
2045 
2046         //only classes can hold a non-public field, look for a usable one:
2047         ClassSymbol container = !currentClass.isInterface() ? currentClass :
2048                 assertionsDisabledClass();
2049 
2050         VarSymbol assertDisabledSym =
2051             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
2052                                        container.members());
2053         if (assertDisabledSym == null) {
2054             assertDisabledSym =
2055                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
2056                               dollarAssertionsDisabled,
2057                               syms.booleanType,
2058                               container);
2059             enterSynthetic(pos, assertDisabledSym, container.members());
2060             Symbol desiredAssertionStatusSym = lookupMethod(pos,
2061                                                             names.desiredAssertionStatus,
2062                                                             types.erasure(syms.classType),
2063                                                             List.nil());
2064             JCClassDecl containerDef = classDef(container);
2065             make_at(containerDef.pos());
2066             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
2067                     classOfType(types.erasure(outermostClass.type),
2068                                 containerDef.pos()),
2069                     desiredAssertionStatusSym)));
2070             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
2071                                                    notStatus);
2072             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
2073 
2074             if (currentClass.isInterface()) {
2075                 //need to load the assertions enabled/disabled state while
2076                 //initializing the interface:
2077                 JCClassDecl currentClassDef = classDef(currentClass);
2078                 make_at(currentClassDef.pos());
2079                 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
2080                 JCBlock clinit = make.Block(STATIC, List.of(dummy));
2081                 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
2082             }
2083         }
2084         make_at(pos);
2085         return makeUnary(NOT, make.Ident(assertDisabledSym));
2086     }
2087 
2088 
2089 /**************************************************************************
2090  * Building blocks for let expressions
2091  *************************************************************************/
2092 
2093     interface TreeBuilder {
2094         JCExpression build(JCExpression arg);
2095     }
2096 
2097     /** Construct an expression using the builder, with the given rval
2098      *  expression as an argument to the builder.  However, the rval
2099      *  expression must be computed only once, even if used multiple
2100      *  times in the result of the builder.  We do that by
2101      *  constructing a "let" expression that saves the rvalue into a
2102      *  temporary variable and then uses the temporary variable in
2103      *  place of the expression built by the builder.  The complete
2104      *  resulting expression is of the form
2105      *  <pre>
2106      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
2107      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
2108      *  </pre>
2109      *  where <code><b>TEMP</b></code> is a newly declared variable
2110      *  in the let expression.
2111      */
2112     JCExpression abstractRval(JCExpression rval, Type type, TreeBuilder builder) {
2113         rval = TreeInfo.skipParens(rval);
2114         switch (rval.getTag()) {
2115         case LITERAL:
2116             return builder.build(rval);
2117         case IDENT:
2118             JCIdent id = (JCIdent) rval;
2119             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
2120                 return builder.build(rval);
2121         }
2122         Name name = TreeInfo.name(rval);
2123         if (name == names._super || name == names._this)
2124             return builder.build(rval);
2125         VarSymbol var =
2126             new VarSymbol(FINAL|SYNTHETIC,
2127                           names.fromString(
2128                                           target.syntheticNameChar()
2129                                           + "" + rval.hashCode()),
2130                                       type,
2131                                       currentMethodSym);
2132         rval = convert(rval,type);
2133         JCVariableDecl def = make.VarDef(var, rval); // XXX cast
2134         JCExpression built = builder.build(make.Ident(var));
2135         JCExpression res = make.LetExpr(def, built);
2136         res.type = built.type;
2137         return res;
2138     }
2139 
2140     // same as above, with the type of the temporary variable computed
2141     JCExpression abstractRval(JCExpression rval, TreeBuilder builder) {
2142         return abstractRval(rval, rval.type, builder);
2143     }
2144 
2145     // same as above, but for an expression that may be used as either
2146     // an rvalue or an lvalue.  This requires special handling for
2147     // Select expressions, where we place the left-hand-side of the
2148     // select in a temporary, and for Indexed expressions, where we
2149     // place both the indexed expression and the index value in temps.
2150     JCExpression abstractLval(JCExpression lval, final TreeBuilder builder) {
2151         lval = TreeInfo.skipParens(lval);
2152         switch (lval.getTag()) {
2153         case IDENT:
2154             return builder.build(lval);
2155         case SELECT: {
2156             final JCFieldAccess s = (JCFieldAccess)lval;
2157             Symbol lid = TreeInfo.symbol(s.selected);
2158             if (lid != null && lid.kind == TYP) return builder.build(lval);
2159             return abstractRval(s.selected, selected -> builder.build(make.Select(selected, s.sym)));
2160         }
2161         case INDEXED: {
2162             final JCArrayAccess i = (JCArrayAccess)lval;
2163             return abstractRval(i.indexed, indexed -> abstractRval(i.index, syms.intType, index -> {
2164                 JCExpression newLval = make.Indexed(indexed, index);
2165                 newLval.setType(i.type);
2166                 return builder.build(newLval);
2167             }));
2168         }
2169         case TYPECAST: {
2170             return abstractLval(((JCTypeCast)lval).expr, builder);
2171         }
2172         }
2173         throw new AssertionError(lval);
2174     }
2175 
2176     // evaluate and discard the first expression, then evaluate the second.
2177     JCExpression makeComma(final JCExpression expr1, final JCExpression expr2) {
2178         JCExpression res = make.LetExpr(List.of(make.Exec(expr1)), expr2);
2179         res.type = expr2.type;
2180         return res;
2181     }
2182 
2183 /**************************************************************************
2184  * Translation methods
2185  *************************************************************************/
2186 
2187     /** Visitor argument: enclosing operator node.
2188      */
2189     private JCExpression enclOp;
2190 
2191     /** Visitor method: Translate a single node.
2192      *  Attach the source position from the old tree to its replacement tree.
2193      */
2194     @Override
2195     public <T extends JCTree> T translate(T tree) {
2196         if (tree == null) {
2197             return null;
2198         } else {
2199             make_at(tree.pos());
2200             T result = super.translate(tree);
2201             if (endPosTable != null && result != tree) {
2202                 endPosTable.replaceTree(tree, result);
2203             }
2204             return result;
2205         }
2206     }
2207 
2208     /** Visitor method: Translate a single node, boxing or unboxing if needed.
2209      */
2210     public <T extends JCExpression> T translate(T tree, Type type) {
2211         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
2212     }
2213 
2214     /** Visitor method: Translate tree.
2215      */
2216     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
2217         JCExpression prevEnclOp = this.enclOp;
2218         this.enclOp = enclOp;
2219         T res = translate(tree);
2220         this.enclOp = prevEnclOp;
2221         return res;
2222     }
2223 
2224     /** Visitor method: Translate list of trees.
2225      */
2226     public <T extends JCExpression> List<T> translate(List<T> trees, Type type) {
2227         if (trees == null) return null;
2228         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2229             l.head = translate(l.head, type);
2230         return trees;
2231     }
2232 
2233     public void visitPackageDef(JCPackageDecl tree) {
2234         if (!needPackageInfoClass(tree))
2235                         return;
2236 
2237         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2238         // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2239         flags = flags | Flags.SYNTHETIC;
2240         ClassSymbol c = tree.packge.package_info;
2241         c.setAttributes(tree.packge);
2242         c.flags_field |= flags;
2243         ClassType ctype = (ClassType) c.type;
2244         ctype.supertype_field = syms.objectType;
2245         ctype.interfaces_field = List.nil();
2246         createInfoClass(tree.annotations, c);
2247     }
2248     // where
2249     private boolean needPackageInfoClass(JCPackageDecl pd) {
2250         switch (pkginfoOpt) {
2251             case ALWAYS:
2252                 return true;
2253             case LEGACY:
2254                 return pd.getAnnotations().nonEmpty();
2255             case NONEMPTY:
2256                 for (Attribute.Compound a :
2257                          pd.packge.getDeclarationAttributes()) {
2258                     Attribute.RetentionPolicy p = types.getRetention(a);
2259                     if (p != Attribute.RetentionPolicy.SOURCE)
2260                         return true;
2261                 }
2262                 return false;
2263         }
2264         throw new AssertionError();
2265     }
2266 
2267     public void visitModuleDef(JCModuleDecl tree) {
2268         ModuleSymbol msym = tree.sym;
2269         ClassSymbol c = msym.module_info;
2270         c.setAttributes(msym);
2271         c.flags_field |= Flags.MODULE;
2272         createInfoClass(List.nil(), tree.sym.module_info);
2273     }
2274 
2275     private void createInfoClass(List<JCAnnotation> annots, ClassSymbol c) {
2276         long flags = Flags.ABSTRACT | Flags.INTERFACE;
2277         JCClassDecl infoClass =
2278                 make.ClassDef(make.Modifiers(flags, annots),
2279                     c.name, List.nil(),
2280                     null, List.nil(), List.nil());
2281         infoClass.sym = c;
2282         translated.append(infoClass);
2283     }
2284 
2285     public void visitClassDef(JCClassDecl tree) {
2286         Env<AttrContext> prevEnv = attrEnv;
2287         ClassSymbol currentClassPrev = currentClass;
2288         MethodSymbol currentMethodSymPrev = currentMethodSym;
2289 
2290         currentClass = tree.sym;
2291         currentMethodSym = null;
2292         attrEnv = typeEnvs.remove(currentClass);
2293         if (attrEnv == null)
2294             attrEnv = prevEnv;
2295 
2296         classdefs.put(currentClass, tree);
2297 
2298         Map<Symbol, Symbol> prevProxies = proxies;
2299         proxies = new HashMap<>(proxies);
2300         List<VarSymbol> prevOuterThisStack = outerThisStack;
2301 
2302         // If this is an enum definition
2303         if ((tree.mods.flags & ENUM) != 0 &&
2304             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2305             visitEnumDef(tree);
2306 
2307         if ((tree.mods.flags & RECORD) != 0) {
2308             visitRecordDef(tree);
2309         }
2310 
2311         // If this is a nested class, define a this$n field for
2312         // it and add to proxies.
2313         JCVariableDecl otdef = null;
2314         if (currentClass.hasOuterInstance())
2315             otdef = outerThisDef(tree.pos, currentClass);
2316 
2317         // If this is a local class, define proxies for all its free variables.
2318         List<JCVariableDecl> fvdefs = freevarDefs(
2319             tree.pos, freevars(currentClass), currentClass, allowValueClasses && currentClass.isValueClass() ? STRICT : 0);
2320 
2321         // Recursively translate superclass, interfaces.
2322         tree.extending = translate(tree.extending);
2323         tree.implementing = translate(tree.implementing);
2324 
2325         if (currentClass.isDirectlyOrIndirectlyLocal()) {
2326             ClassSymbol encl = currentClass.owner.enclClass();
2327             if (encl.trans_local == null) {
2328                 encl.trans_local = List.nil();
2329             }
2330             encl.trans_local = encl.trans_local.prepend(currentClass);
2331         }
2332 
2333         // Recursively translate members, taking into account that new members
2334         // might be created during the translation and prepended to the member
2335         // list `tree.defs'.
2336         List<JCTree> seen = List.nil();
2337         while (tree.defs != seen) {
2338             List<JCTree> unseen = tree.defs;
2339             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2340                 JCTree outermostMemberDefPrev = outermostMemberDef;
2341                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2342                 l.head = translate(l.head);
2343                 outermostMemberDef = outermostMemberDefPrev;
2344             }
2345             seen = unseen;
2346         }
2347 
2348         // Convert a protected modifier to public, mask static modifier.
2349         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2350         tree.mods.flags &= ClassFlags;
2351 
2352         // Convert name to flat representation, replacing '.' by '$'.
2353         tree.name = Convert.shortName(currentClass.flatName());
2354 
2355         // Add free variables proxy definitions to class.
2356 
2357         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2358             tree.defs = tree.defs.prepend(l.head);
2359             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2360         }
2361         // If this$n was accessed, add the field definition and prepend
2362         // initializer code to any super() invocation to initialize it
2363         if (currentClass.hasOuterInstance() && shouldEmitOuterThis(currentClass)) {
2364             tree.defs = tree.defs.prepend(otdef);
2365             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2366 
2367             for (JCTree def : tree.defs) {
2368                 if (TreeInfo.isConstructor(def)) {
2369                     JCMethodDecl mdef = (JCMethodDecl)def;
2370                     if (TreeInfo.hasConstructorCall(mdef, names._super)) {
2371                         List<JCStatement> initializer = List.of(initOuterThis(mdef.body.pos, mdef.params.head.sym));
2372                         TreeInfo.mapSuperCalls(mdef.body, supercall -> make.Block(0, initializer.append(supercall)));
2373                     }
2374                 }
2375             }
2376         }
2377 
2378         proxies = prevProxies;
2379         outerThisStack = prevOuterThisStack;
2380 
2381         // Append translated tree to `translated' queue.
2382         translated.append(tree);
2383 
2384         attrEnv = prevEnv;
2385         currentClass = currentClassPrev;
2386         currentMethodSym = currentMethodSymPrev;
2387 
2388         // Return empty block {} as a placeholder for an inner class.
2389         result = make_at(tree.pos()).Block(SYNTHETIC, List.nil());
2390     }
2391 
2392     private boolean shouldEmitOuterThis(ClassSymbol sym) {
2393       if (!optimizeOuterThis) {
2394         // Optimization is disabled
2395         return true;
2396       }
2397       if ((outerThisStack.head.flags_field & NOOUTERTHIS) == 0)  {
2398         // Enclosing instance field is used
2399         return true;
2400       }
2401       if (rs.isSerializable(sym.type)) {
2402         // Class is serializable
2403         return true;
2404       }
2405       return false;
2406     }
2407 
2408     List<JCTree> generateMandatedAccessors(JCClassDecl tree) {
2409         List<JCVariableDecl> fields = TreeInfo.recordFields(tree);
2410         return tree.sym.getRecordComponents().stream()
2411                 .filter(rc -> (rc.accessor.flags() & Flags.GENERATED_MEMBER) != 0)
2412                 .map(rc -> {
2413                     // we need to return the field not the record component
2414                     JCVariableDecl field = fields.stream().filter(f -> f.name == rc.name).findAny().get();
2415                     make_at(tree.pos());
2416                     return make.MethodDef(rc.accessor, make.Block(0,
2417                             List.of(make.Return(make.Ident(field)))));
2418                 }).collect(List.collector());
2419     }
2420 
2421     /** Translate an enum class. */
2422     private void visitEnumDef(JCClassDecl tree) {
2423         make_at(tree.pos());
2424 
2425         // add the supertype, if needed
2426         if (tree.extending == null)
2427             tree.extending = make.Type(types.supertype(tree.type));
2428 
2429         // classOfType adds a cache field to tree.defs
2430         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2431             setType(types.erasure(syms.classType));
2432 
2433         // process each enumeration constant, adding implicit constructor parameters
2434         int nextOrdinal = 0;
2435         ListBuffer<JCExpression> values = new ListBuffer<>();
2436         ListBuffer<JCTree> enumDefs = new ListBuffer<>();
2437         ListBuffer<JCTree> otherDefs = new ListBuffer<>();
2438         for (List<JCTree> defs = tree.defs;
2439              defs.nonEmpty();
2440              defs=defs.tail) {
2441             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2442                 JCVariableDecl var = (JCVariableDecl)defs.head;
2443                 visitEnumConstantDef(var, nextOrdinal++);
2444                 values.append(make.QualIdent(var.sym));
2445                 enumDefs.append(var);
2446             } else {
2447                 otherDefs.append(defs.head);
2448             }
2449         }
2450 
2451         // synthetic private static T[] $values() { return new T[] { a, b, c }; }
2452         // synthetic private static final T[] $VALUES = $values();
2453         Name valuesName = syntheticName(tree, "VALUES");
2454         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2455         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2456                                             valuesName,
2457                                             arrayType,
2458                                             tree.type.tsym);
2459         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2460                                           List.nil(),
2461                                           values.toList());
2462         newArray.type = arrayType;
2463 
2464         MethodSymbol valuesMethod = new MethodSymbol(PRIVATE|STATIC|SYNTHETIC,
2465                 syntheticName(tree, "values"),
2466                 new MethodType(List.nil(), arrayType, List.nil(), tree.type.tsym),
2467                 tree.type.tsym);
2468         enumDefs.append(make.MethodDef(valuesMethod, make.Block(0, List.of(make.Return(newArray)))));
2469         tree.sym.members().enter(valuesMethod);
2470 
2471         enumDefs.append(make.VarDef(valuesVar, make.App(make.QualIdent(valuesMethod))));
2472         tree.sym.members().enter(valuesVar);
2473 
2474         MethodSymbol valuesSym = lookupMethod(tree.pos(), names.values,
2475                                         tree.type, List.nil());
2476         List<JCStatement> valuesBody;
2477         if (useClone()) {
2478             // return (T[]) $VALUES.clone();
2479             JCTypeCast valuesResult =
2480                 make.TypeCast(valuesSym.type.getReturnType(),
2481                               make.App(make.Select(make.Ident(valuesVar),
2482                                                    syms.arrayCloneMethod)));
2483             valuesBody = List.of(make.Return(valuesResult));
2484         } else {
2485             // template: T[] $result = new T[$values.length];
2486             Name resultName = syntheticName(tree, "result");
2487             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2488                                                 resultName,
2489                                                 arrayType,
2490                                                 valuesSym);
2491             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2492                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2493                                   null);
2494             resultArray.type = arrayType;
2495             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2496 
2497             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2498             if (systemArraycopyMethod == null) {
2499                 systemArraycopyMethod =
2500                     new MethodSymbol(PUBLIC | STATIC,
2501                                      names.fromString("arraycopy"),
2502                                      new MethodType(List.of(syms.objectType,
2503                                                             syms.intType,
2504                                                             syms.objectType,
2505                                                             syms.intType,
2506                                                             syms.intType),
2507                                                     syms.voidType,
2508                                                     List.nil(),
2509                                                     syms.methodClass),
2510                                      syms.systemType.tsym);
2511             }
2512             JCStatement copy =
2513                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2514                                                systemArraycopyMethod),
2515                           List.of(make.Ident(valuesVar), make.Literal(0),
2516                                   make.Ident(resultVar), make.Literal(0),
2517                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2518 
2519             // template: return $result;
2520             JCStatement ret = make.Return(make.Ident(resultVar));
2521             valuesBody = List.of(decl, copy, ret);
2522         }
2523 
2524         JCMethodDecl valuesDef =
2525              make.MethodDef(valuesSym, make.Block(0, valuesBody));
2526 
2527         enumDefs.append(valuesDef);
2528 
2529         if (debugLower)
2530             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2531 
2532         /** The template for the following code is:
2533          *
2534          *     public static E valueOf(String name) {
2535          *         return (E)Enum.valueOf(E.class, name);
2536          *     }
2537          *
2538          *  where E is tree.sym
2539          */
2540         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2541                          names.valueOf,
2542                          tree.sym.type,
2543                          List.of(syms.stringType));
2544         Assert.check((valueOfSym.flags() & STATIC) != 0);
2545         VarSymbol nameArgSym = valueOfSym.params.head;
2546         JCIdent nameVal = make.Ident(nameArgSym);
2547         JCStatement enum_ValueOf =
2548             make.Return(make.TypeCast(tree.sym.type,
2549                                       makeCall(make.Ident(syms.enumSym),
2550                                                names.valueOf,
2551                                                List.of(e_class, nameVal))));
2552         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2553                                            make.Block(0, List.of(enum_ValueOf)));
2554         nameVal.sym = valueOf.params.head.sym;
2555         if (debugLower)
2556             System.err.println(tree.sym + ".valueOf = " + valueOf);
2557         enumDefs.append(valueOf);
2558 
2559         enumDefs.appendList(otherDefs.toList());
2560         tree.defs = enumDefs.toList();
2561     }
2562         // where
2563         private MethodSymbol systemArraycopyMethod;
2564         private boolean useClone() {
2565             try {
2566                 return syms.objectType.tsym.members().findFirst(names.clone) != null;
2567             }
2568             catch (CompletionFailure e) {
2569                 return false;
2570             }
2571         }
2572 
2573         private Name syntheticName(JCClassDecl tree, String baseName) {
2574             Name valuesName = names.fromString(target.syntheticNameChar() + baseName);
2575             while (tree.sym.members().findFirst(valuesName) != null) // avoid name clash
2576                 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2577             return valuesName;
2578         }
2579 
2580     /** Translate an enumeration constant and its initializer. */
2581     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2582         JCNewClass varDef = (JCNewClass)var.init;
2583         varDef.args = varDef.args.
2584             prepend(makeLit(syms.intType, ordinal)).
2585             prepend(makeLit(syms.stringType, var.name.toString()));
2586     }
2587 
2588     private List<VarSymbol> recordVars(Type t) {
2589         List<VarSymbol> vars = List.nil();
2590         while (!t.hasTag(NONE)) {
2591             if (t.hasTag(CLASS)) {
2592                 for (Symbol s : t.tsym.members().getSymbols(s -> s.kind == VAR && (s.flags() & RECORD) != 0)) {
2593                     vars = vars.prepend((VarSymbol)s);
2594                 }
2595             }
2596             t = types.supertype(t);
2597         }
2598         return vars;
2599     }
2600 
2601     /** Translate a record. */
2602     private void visitRecordDef(JCClassDecl tree) {
2603         make_at(tree.pos());
2604         List<VarSymbol> vars = recordVars(tree.type);
2605         MethodHandleSymbol[] getterMethHandles = new MethodHandleSymbol[vars.size()];
2606         int index = 0;
2607         for (VarSymbol var : vars) {
2608             if (var.owner != tree.sym) {
2609                 var = new VarSymbol(var.flags_field, var.name, var.type, tree.sym);
2610             }
2611             getterMethHandles[index] = var.asMethodHandle(true);
2612             index++;
2613         }
2614 
2615         tree.defs = tree.defs.appendList(generateMandatedAccessors(tree));
2616         tree.defs = tree.defs.appendList(List.of(
2617                 generateRecordMethod(tree, names.toString, vars, getterMethHandles),
2618                 generateRecordMethod(tree, names.hashCode, vars, getterMethHandles),
2619                 generateRecordMethod(tree, names.equals, vars, getterMethHandles)
2620         ));
2621     }
2622 
2623     JCTree generateRecordMethod(JCClassDecl tree, Name name, List<VarSymbol> vars, MethodHandleSymbol[] getterMethHandles) {
2624         make_at(tree.pos());
2625         boolean isEquals = name == names.equals;
2626         MethodSymbol msym = lookupMethod(tree.pos(),
2627                 name,
2628                 tree.sym.type,
2629                 isEquals ? List.of(syms.objectType) : List.nil());
2630         // compiler generated methods have the record flag set, user defined ones dont
2631         if ((msym.flags() & RECORD) != 0) {
2632             /* class java.lang.runtime.ObjectMethods provides a common bootstrap that provides a customized implementation
2633              * for methods: toString, hashCode and equals. Here we just need to generate and indy call to:
2634              * java.lang.runtime.ObjectMethods::bootstrap and provide: the record class, the record component names and
2635              * the accessors.
2636              */
2637             Name bootstrapName = names.bootstrap;
2638             LoadableConstant[] staticArgsValues = new LoadableConstant[2 + getterMethHandles.length];
2639             staticArgsValues[0] = (ClassType)tree.sym.type;
2640             String concatNames = vars.stream()
2641                     .map(v -> v.name)
2642                     .collect(Collectors.joining(";", "", ""));
2643             staticArgsValues[1] = LoadableConstant.String(concatNames);
2644             int index = 2;
2645             for (MethodHandleSymbol mho : getterMethHandles) {
2646                 staticArgsValues[index] = mho;
2647                 index++;
2648             }
2649 
2650             List<Type> staticArgTypes = List.of(syms.classType,
2651                     syms.stringType,
2652                     new ArrayType(syms.methodHandleType, syms.arrayClass));
2653 
2654             JCFieldAccess qualifier = makeIndyQualifier(syms.objectMethodsType, tree, msym,
2655                     List.of(syms.methodHandleLookupType,
2656                             syms.stringType,
2657                             syms.typeDescriptorType).appendList(staticArgTypes),
2658                     staticArgsValues, bootstrapName, name, false);
2659 
2660             VarSymbol _this = new VarSymbol(SYNTHETIC, names._this, tree.sym.type, tree.sym);
2661 
2662             JCMethodInvocation proxyCall;
2663             if (!isEquals) {
2664                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this)));
2665             } else {
2666                 VarSymbol o = msym.params.head;
2667                 o.adr = 0;
2668                 proxyCall = make.Apply(List.nil(), qualifier, List.of(make.Ident(_this), make.Ident(o)));
2669             }
2670             proxyCall.type = qualifier.type;
2671             return make.MethodDef(msym, make.Block(0, List.of(make.Return(proxyCall))));
2672         } else {
2673             return make.Block(SYNTHETIC, List.nil());
2674         }
2675     }
2676 
2677     private String argsTypeSig(List<Type> typeList) {
2678         LowerSignatureGenerator sg = new LowerSignatureGenerator();
2679         sg.assembleSig(typeList);
2680         return sg.toString();
2681     }
2682 
2683     /**
2684      * Signature Generation
2685      */
2686     private class LowerSignatureGenerator extends Types.SignatureGenerator {
2687 
2688         /**
2689          * An output buffer for type signatures.
2690          */
2691         StringBuilder sb = new StringBuilder();
2692 
2693         LowerSignatureGenerator() {
2694             super(types);
2695         }
2696 
2697         @Override
2698         protected void append(char ch) {
2699             sb.append(ch);
2700         }
2701 
2702         @Override
2703         protected void append(byte[] ba) {
2704             sb.append(new String(ba));
2705         }
2706 
2707         @Override
2708         protected void append(Name name) {
2709             sb.append(name.toString());
2710         }
2711 
2712         @Override
2713         public String toString() {
2714             return sb.toString();
2715         }
2716     }
2717 
2718     /**
2719      * Creates an indy qualifier, helpful to be part of an indy invocation
2720      * @param site                the site
2721      * @param tree                a class declaration tree
2722      * @param msym                the method symbol
2723      * @param staticArgTypes      the static argument types
2724      * @param staticArgValues     the static argument values
2725      * @param bootstrapName       the bootstrap name to look for
2726      * @param argName             normally bootstraps receives a method name as second argument, if you want that name
2727      *                            to be different to that of the bootstrap name pass a different name here
2728      * @param isStatic            is it static or not
2729      * @return                    a field access tree
2730      */
2731     JCFieldAccess makeIndyQualifier(
2732             Type site,
2733             JCClassDecl tree,
2734             MethodSymbol msym,
2735             List<Type> staticArgTypes,
2736             LoadableConstant[] staticArgValues,
2737             Name bootstrapName,
2738             Name argName,
2739             boolean isStatic) {
2740         MethodSymbol bsm = rs.resolveInternalMethod(tree.pos(), attrEnv, site,
2741                 bootstrapName, staticArgTypes, List.nil());
2742 
2743         MethodType indyType = msym.type.asMethodType();
2744         indyType = new MethodType(
2745                 isStatic ? List.nil() : indyType.argtypes.prepend(tree.sym.type),
2746                 indyType.restype,
2747                 indyType.thrown,
2748                 syms.methodClass
2749         );
2750         DynamicMethodSymbol dynSym = new DynamicMethodSymbol(argName,
2751                 syms.noSymbol,
2752                 bsm.asHandle(),
2753                 indyType,
2754                 staticArgValues);
2755         JCFieldAccess qualifier = make.Select(make.QualIdent(site.tsym), argName);
2756         qualifier.sym = dynSym;
2757         qualifier.type = msym.type.asMethodType().restype;
2758         return qualifier;
2759     }
2760 
2761     public void visitMethodDef(JCMethodDecl tree) {
2762         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2763             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2764             // argument list for each constructor of an enum.
2765             JCVariableDecl nameParam = make_at(tree.pos()).
2766                 Param(names.fromString(target.syntheticNameChar() +
2767                                        "enum" + target.syntheticNameChar() + "name"),
2768                       syms.stringType, tree.sym);
2769             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2770             JCVariableDecl ordParam = make.
2771                 Param(names.fromString(target.syntheticNameChar() +
2772                                        "enum" + target.syntheticNameChar() +
2773                                        "ordinal"),
2774                       syms.intType, tree.sym);
2775             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2776 
2777             MethodSymbol m = tree.sym;
2778             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2779 
2780             m.extraParams = m.extraParams.prepend(ordParam.sym);
2781             m.extraParams = m.extraParams.prepend(nameParam.sym);
2782             Type olderasure = m.erasure(types);
2783             m.erasure_field = new MethodType(
2784                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2785                 olderasure.getReturnType(),
2786                 olderasure.getThrownTypes(),
2787                 syms.methodClass);
2788         }
2789 
2790         JCMethodDecl prevMethodDef = currentMethodDef;
2791         MethodSymbol prevMethodSym = currentMethodSym;
2792         try {
2793             currentMethodDef = tree;
2794             currentMethodSym = tree.sym;
2795             visitMethodDefInternal(tree);
2796         } finally {
2797             currentMethodDef = prevMethodDef;
2798             currentMethodSym = prevMethodSym;
2799         }
2800     }
2801 
2802     private void visitMethodDefInternal(JCMethodDecl tree) {
2803         if (tree.name == names.init &&
2804             !currentClass.isStatic() &&
2805             (currentClass.isInner() || currentClass.isDirectlyOrIndirectlyLocal())) {
2806             // We are seeing a constructor of an inner class.
2807             MethodSymbol m = tree.sym;
2808 
2809             // Push a new proxy scope for constructor parameters.
2810             // and create definitions for any this$n and proxy parameters.
2811             Map<Symbol, Symbol> prevProxies = proxies;
2812             proxies = new HashMap<>(proxies);
2813             List<VarSymbol> prevOuterThisStack = outerThisStack;
2814             List<VarSymbol> fvs = freevars(currentClass);
2815             JCVariableDecl otdef = null;
2816             if (currentClass.hasOuterInstance())
2817                 otdef = outerThisDef(tree.pos, m);
2818             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
2819 
2820             // Recursively translate result type, parameters and thrown list.
2821             tree.restype = translate(tree.restype);
2822             tree.params = translateVarDefs(tree.params);
2823             tree.thrown = translate(tree.thrown);
2824 
2825             // when compiling stubs, don't process body
2826             if (tree.body == null) {
2827                 result = tree;
2828                 return;
2829             }
2830 
2831             // Add this$n (if needed) in front of and free variables behind
2832             // constructor parameter list.
2833             tree.params = tree.params.appendList(fvdefs);
2834             if (currentClass.hasOuterInstance()) {
2835                 tree.params = tree.params.prepend(otdef);
2836             }
2837 
2838             // Determine whether this constructor has a super() invocation
2839             boolean invokesSuper = TreeInfo.hasConstructorCall(tree, names._super);
2840 
2841             // Create initializers for this$n and proxies
2842             ListBuffer<JCStatement> added = new ListBuffer<>();
2843             if (fvs.nonEmpty()) {
2844                 List<Type> addedargtypes = List.nil();
2845                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2846                     m.capturedLocals =
2847                         m.capturedLocals.prepend((VarSymbol)
2848                                                 (proxies.get(l.head)));
2849                     if (invokesSuper) {
2850                         added = added.prepend(
2851                           initField(tree.body.pos, proxies.get(l.head), prevProxies.get(l.head)));
2852                     }
2853                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2854                 }
2855                 Type olderasure = m.erasure(types);
2856                 m.erasure_field = new MethodType(
2857                     olderasure.getParameterTypes().appendList(addedargtypes),
2858                     olderasure.getReturnType(),
2859                     olderasure.getThrownTypes(),
2860                     syms.methodClass);
2861             }
2862 
2863             // Recursively translate existing local statements
2864             tree.body.stats = translate(tree.body.stats);
2865 
2866             // Prepend initializers in front of super() call
2867             if (added.nonEmpty()) {
2868                 List<JCStatement> initializers = added.toList();
2869                 TreeInfo.mapSuperCalls(tree.body, supercall -> make.Block(0, initializers.append(supercall)));
2870             }
2871 
2872             // pop local variables from proxy stack
2873             proxies = prevProxies;
2874 
2875             outerThisStack = prevOuterThisStack;
2876         } else {
2877             Map<Symbol, Symbol> prevLambdaTranslationMap =
2878                     lambdaTranslationMap;
2879             try {
2880                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
2881                         tree.sym.name.startsWith(names.lambda) ?
2882                         makeTranslationMap(tree) : null;
2883                 super.visitMethodDef(tree);
2884             } finally {
2885                 lambdaTranslationMap = prevLambdaTranslationMap;
2886             }
2887         }
2888         if (tree.name == names.init && ((tree.sym.flags_field & Flags.COMPACT_RECORD_CONSTRUCTOR) != 0 ||
2889                 (tree.sym.flags_field & (GENERATEDCONSTR | RECORD)) == (GENERATEDCONSTR | RECORD))) {
2890             // lets find out if there is any field waiting to be initialized
2891             ListBuffer<VarSymbol> fields = new ListBuffer<>();
2892             for (Symbol sym : currentClass.getEnclosedElements()) {
2893                 if (sym.kind == Kinds.Kind.VAR && ((sym.flags() & RECORD) != 0))
2894                     fields.append((VarSymbol) sym);
2895             }
2896             ListBuffer<JCStatement> initializers = new ListBuffer<>();
2897             for (VarSymbol field: fields) {
2898                 if ((field.flags_field & Flags.UNINITIALIZED_FIELD) != 0) {
2899                     VarSymbol param = tree.params.stream().filter(p -> p.name == field.name).findFirst().get().sym;
2900                     make.at(tree.pos);
2901                     initializers.add(make.Exec(
2902                             make.Assign(
2903                                     make.Select(make.This(field.owner.erasure(types)), field),
2904                                     make.Ident(param)).setType(field.erasure(types))));
2905                     field.flags_field &= ~Flags.UNINITIALIZED_FIELD;
2906                 }
2907             }
2908             if (initializers.nonEmpty()) {
2909                 if (tree.sym.owner.isValueClass()) {
2910                     TreeInfo.mapSuperCalls(tree.body, supercall -> make.Block(0, initializers.toList().append(supercall)));
2911                 } else {
2912                     tree.body.stats = tree.body.stats.appendList(initializers);
2913                 }
2914             }
2915         }
2916         result = tree;
2917     }
2918     //where
2919         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
2920             Map<Symbol, Symbol> translationMap = new HashMap<>();
2921             for (JCVariableDecl vd : tree.params) {
2922                 Symbol p = vd.sym;
2923                 if (p != p.baseSymbol()) {
2924                     translationMap.put(p.baseSymbol(), p);
2925                 }
2926             }
2927             return translationMap;
2928         }
2929 
2930     public void visitTypeCast(JCTypeCast tree) {
2931         tree.clazz = translate(tree.clazz);
2932         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2933             tree.expr = translate(tree.expr, tree.type);
2934         else
2935             tree.expr = translate(tree.expr);
2936         result = tree;
2937     }
2938 
2939     /**
2940      * All the exactness checks between primitive types that require a run-time
2941      * check are in {@code java.lang.runtime.ExactConversionsSupport}. Those methods
2942      * are in the form {@code ExactConversionsSupport.is<S>To<T>Exact} where both
2943      * {@code S} and {@code T} are primitive types and correspond to the runtime
2944      * action that will be executed to check whether a certain value (that is passed
2945      * as a parameter) can be converted to {@code T} without loss of information.
2946      *
2947      * Rewrite {@code instanceof if expr : Object} and Type is primitive type:
2948      *
2949      * {@snippet :
2950      *   Object v = ...
2951      *   if (v instanceof float)
2952      *   =>
2953      *   if (let tmp$123 = v; tmp$123 instanceof Float)
2954      * }
2955      *
2956      * Rewrite {@code instanceof if expr : wrapper reference type}
2957      *
2958      * {@snippet :
2959      *   Integer v = ...
2960      *   if (v instanceof float)
2961      *   =>
2962      *   if (let tmp$123 = v; tmp$123 != null && ExactConversionsSupport.intToFloatExact(tmp$123.intValue()))
2963      * }
2964      *
2965      * Rewrite {@code instanceof if expr : primitive}
2966      *
2967      * {@snippet :
2968      *   int v = ...
2969      *   if (v instanceof float)
2970      *   =>
2971      *   if (let tmp$123 = v; ExactConversionsSupport.intToFloatExact(tmp$123))
2972      * }
2973      *
2974      * More rewritings:
2975      * <ul>
2976      * <li>If the {@code instanceof} check is unconditionally exact rewrite to true.</li>
2977      * <li>If expression type is {@code Byte}, {@code Short}, {@code Integer}, ..., an
2978      *     unboxing conversion followed by a widening primitive conversion.</li>
2979      * <li>If expression type is a supertype: {@code Number}, a narrowing reference
2980      *     conversion followed by an unboxing conversion.</li>
2981      * </ul>
2982      */
2983     public void visitTypeTest(JCInstanceOf tree) {
2984         if (tree.expr.type.isPrimitive() || tree.pattern.type.isPrimitive()) {
2985             JCExpression exactnessCheck = null;
2986             JCExpression instanceOfExpr = translate(tree.expr);
2987 
2988             // preserving the side effects of the value
2989             VarSymbol dollar_s = new VarSymbol(FINAL | SYNTHETIC,
2990                     names.fromString("tmp" + tree.pos + this.target.syntheticNameChar()),
2991                     tree.expr.type,
2992                     currentMethodSym);
2993             JCStatement var = make.at(tree.pos())
2994                     .VarDef(dollar_s, instanceOfExpr).setType(dollar_s.type);
2995 
2996             if (types.isUnconditionallyExact(tree.expr.type, tree.pattern.type)) {
2997                 exactnessCheck = make
2998                         .LetExpr(List.of(var), make.Literal(BOOLEAN, 1).setType(syms.booleanType.constType(1)))
2999                         .setType(syms.booleanType);
3000             }
3001             else if (tree.expr.type.isReference()) {
3002                 JCExpression nullCheck = makeBinary(NE,
3003                         make.Ident(dollar_s),
3004                         makeNull());
3005                 if (types.isUnconditionallyExact(types.unboxedType(tree.expr.type), tree.pattern.type)) {
3006                     exactnessCheck = make
3007                             .LetExpr(List.of(var), nullCheck)
3008                             .setType(syms.booleanType);
3009                 } else if (types.unboxedType(tree.expr.type).isPrimitive()) {
3010                     exactnessCheck = getExactnessCheck(tree,
3011                             boxIfNeeded(make.Ident(dollar_s), types.unboxedType(tree.expr.type)));
3012                 } else {
3013                     exactnessCheck = make.at(tree.pos())
3014                             .TypeTest(make.Ident(dollar_s), make.Type(types.boxedClass(tree.pattern.type).type))
3015                             .setType(syms.booleanType);
3016                 }
3017 
3018                 exactnessCheck = make.LetExpr(List.of(var), makeBinary(AND,
3019                         nullCheck,
3020                         exactnessCheck))
3021                         .setType(syms.booleanType);
3022             }
3023             else if (tree.expr.type.isPrimitive()) {
3024                 JCIdent argument = make.Ident(dollar_s);
3025 
3026                 JCExpression exactnessCheckCall =
3027                         getExactnessCheck(tree, argument);
3028 
3029                 exactnessCheck = make.LetExpr(List.of(var), exactnessCheckCall)
3030                         .setType(syms.booleanType);
3031             }
3032 
3033             result = exactnessCheck;
3034         } else {
3035             tree.expr = translate(tree.expr);
3036             tree.pattern = translate(tree.pattern);
3037             result = tree;
3038         }
3039     }
3040 
3041     // TypePairs should be in sync with the corresponding record in SwitchBootstraps
3042     record TypePairs(TypeSymbol from, TypeSymbol to) {
3043         public static TypePairs of(Symtab syms, Type from, Type to) {
3044             if (from == syms.byteType || from == syms.shortType || from == syms.charType) {
3045                 from = syms.intType;
3046             }
3047             return new TypePairs(from, to);
3048         }
3049 
3050         public TypePairs(Type from, Type to) {
3051             this(from.tsym, to.tsym);
3052         }
3053 
3054         public static HashMap<TypePairs, String> initialize(Symtab syms) {
3055             HashMap<TypePairs, String> typePairToName = new HashMap<>();
3056             typePairToName.put(new TypePairs(syms.byteType,   syms.charType),   "isIntToCharExact");      // redirected
3057             typePairToName.put(new TypePairs(syms.shortType,  syms.byteType),   "isIntToByteExact");      // redirected
3058             typePairToName.put(new TypePairs(syms.shortType,  syms.charType),   "isIntToCharExact");      // redirected
3059             typePairToName.put(new TypePairs(syms.charType,   syms.byteType),   "isIntToByteExact");      // redirected
3060             typePairToName.put(new TypePairs(syms.charType,   syms.shortType),  "isIntToShortExact");     // redirected
3061             typePairToName.put(new TypePairs(syms.intType,    syms.byteType),   "isIntToByteExact");
3062             typePairToName.put(new TypePairs(syms.intType,    syms.shortType),  "isIntToShortExact");
3063             typePairToName.put(new TypePairs(syms.intType,    syms.charType),   "isIntToCharExact");
3064             typePairToName.put(new TypePairs(syms.intType,    syms.floatType),  "isIntToFloatExact");
3065             typePairToName.put(new TypePairs(syms.longType,   syms.byteType),   "isLongToByteExact");
3066             typePairToName.put(new TypePairs(syms.longType,   syms.shortType),  "isLongToShortExact");
3067             typePairToName.put(new TypePairs(syms.longType,   syms.charType),   "isLongToCharExact");
3068             typePairToName.put(new TypePairs(syms.longType,   syms.intType),    "isLongToIntExact");
3069             typePairToName.put(new TypePairs(syms.longType,   syms.floatType),  "isLongToFloatExact");
3070             typePairToName.put(new TypePairs(syms.longType,   syms.doubleType), "isLongToDoubleExact");
3071             typePairToName.put(new TypePairs(syms.floatType,  syms.byteType),   "isFloatToByteExact");
3072             typePairToName.put(new TypePairs(syms.floatType,  syms.shortType),  "isFloatToShortExact");
3073             typePairToName.put(new TypePairs(syms.floatType,  syms.charType),   "isFloatToCharExact");
3074             typePairToName.put(new TypePairs(syms.floatType,  syms.intType),    "isFloatToIntExact");
3075             typePairToName.put(new TypePairs(syms.floatType,  syms.longType),   "isFloatToLongExact");
3076             typePairToName.put(new TypePairs(syms.doubleType, syms.byteType),   "isDoubleToByteExact");
3077             typePairToName.put(new TypePairs(syms.doubleType, syms.shortType),  "isDoubleToShortExact");
3078             typePairToName.put(new TypePairs(syms.doubleType, syms.charType),   "isDoubleToCharExact");
3079             typePairToName.put(new TypePairs(syms.doubleType, syms.intType),    "isDoubleToIntExact");
3080             typePairToName.put(new TypePairs(syms.doubleType, syms.longType),   "isDoubleToLongExact");
3081             typePairToName.put(new TypePairs(syms.doubleType, syms.floatType),  "isDoubleToFloatExact");
3082             return typePairToName;
3083         }
3084     }
3085 
3086     private JCExpression getExactnessCheck(JCInstanceOf tree, JCExpression argument) {
3087         TypePairs pair = TypePairs.of(syms, types.unboxedTypeOrType(tree.expr.type), tree.pattern.type);
3088 
3089         Name exactnessFunction = names.fromString(typePairToName.get(pair));
3090 
3091         // Resolve the exactness method
3092         Symbol ecsym = lookupMethod(tree.pos(),
3093                 exactnessFunction,
3094                 syms.exactConversionsSupportType,
3095                 List.of(pair.from.type));
3096 
3097         // Generate the method call ExactnessChecks.<exactness method>(<argument>);
3098         JCFieldAccess select = make.Select(
3099                 make.QualIdent(syms.exactConversionsSupportType.tsym),
3100                 exactnessFunction);
3101         select.sym = ecsym;
3102         select.setType(syms.booleanType);
3103 
3104         JCExpression exactnessCheck = make.Apply(List.nil(),
3105                 select,
3106                 List.of(argument));
3107         exactnessCheck.setType(syms.booleanType);
3108         return exactnessCheck;
3109     }
3110 
3111     public void visitNewClass(JCNewClass tree) {
3112         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
3113 
3114         // Box arguments, if necessary
3115         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
3116         List<Type> argTypes = tree.constructor.type.getParameterTypes();
3117         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
3118         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
3119         tree.varargsElement = null;
3120 
3121         // If created class is local, add free variables after
3122         // explicit constructor arguments.
3123         if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
3124             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
3125         }
3126 
3127         // If an access constructor is used, append null as a last argument.
3128         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
3129         if (constructor != tree.constructor) {
3130             tree.args = tree.args.append(makeNull());
3131             tree.constructor = constructor;
3132         }
3133 
3134         // If created class has an outer instance, and new is qualified, pass
3135         // qualifier as first argument. If new is not qualified, pass the
3136         // correct outer instance as first argument.
3137         if (c.hasOuterInstance()) {
3138             JCExpression thisArg;
3139             if (tree.encl != null) {
3140                 thisArg = attr.makeNullCheck(translate(tree.encl));
3141                 thisArg.type = tree.encl.type;
3142             } else if (c.isDirectlyOrIndirectlyLocal()) {
3143                 // local class
3144                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
3145             } else {
3146                 // nested class
3147                 thisArg = makeOwnerThis(tree.pos(), c, false);
3148                 if (currentMethodSym != null &&
3149                         ((currentMethodSym.flags_field & (STATIC | BLOCK)) == BLOCK) &&
3150                         currentMethodSym.owner.isValueClass()) {
3151                     // instance initializer in a value class
3152                     Set<JCExpression> outerThisSet = initializerOuterThis.get(currentClass);
3153                     if (outerThisSet == null) {
3154                         outerThisSet = new HashSet<>();
3155                     }
3156                     outerThisSet.add(thisArg);
3157                     initializerOuterThis.put(currentClass, outerThisSet);
3158                 }
3159             }
3160             tree.args = tree.args.prepend(thisArg);
3161         }
3162         tree.encl = null;
3163 
3164         // If we have an anonymous class, create its flat version, rather
3165         // than the class or interface following new.
3166         if (tree.def != null) {
3167             Map<Symbol, Symbol> prevLambdaTranslationMap = lambdaTranslationMap;
3168             try {
3169                 lambdaTranslationMap = null;
3170                 translate(tree.def);
3171             } finally {
3172                 lambdaTranslationMap = prevLambdaTranslationMap;
3173             }
3174 
3175             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
3176             tree.def = null;
3177         } else {
3178             tree.clazz = access(c, tree.clazz, enclOp, false);
3179         }
3180         result = tree;
3181     }
3182 
3183     // Simplify conditionals with known constant controlling expressions.
3184     // This allows us to avoid generating supporting declarations for
3185     // the dead code, which will not be eliminated during code generation.
3186     // Note that Flow.isFalse and Flow.isTrue only return true
3187     // for constant expressions in the sense of JLS 15.27, which
3188     // are guaranteed to have no side-effects.  More aggressive
3189     // constant propagation would require that we take care to
3190     // preserve possible side-effects in the condition expression.
3191 
3192     // One common case is equality expressions involving a constant and null.
3193     // Since null is not a constant expression (because null cannot be
3194     // represented in the constant pool), equality checks involving null are
3195     // not captured by Flow.isTrue/isFalse.
3196     // Equality checks involving a constant and null, e.g.
3197     //     "" == null
3198     // are safe to simplify as no side-effects can occur.
3199 
3200     private boolean isTrue(JCTree exp) {
3201         if (exp.type.isTrue())
3202             return true;
3203         Boolean b = expValue(exp);
3204         return b == null ? false : b;
3205     }
3206     private boolean isFalse(JCTree exp) {
3207         if (exp.type.isFalse())
3208             return true;
3209         Boolean b = expValue(exp);
3210         return b == null ? false : !b;
3211     }
3212     /* look for (in)equality relations involving null.
3213      * return true - if expression is always true
3214      *       false - if expression is always false
3215      *        null - if expression cannot be eliminated
3216      */
3217     private Boolean expValue(JCTree exp) {
3218         while (exp.hasTag(PARENS))
3219             exp = ((JCParens)exp).expr;
3220 
3221         boolean eq;
3222         switch (exp.getTag()) {
3223         case EQ: eq = true;  break;
3224         case NE: eq = false; break;
3225         default:
3226             return null;
3227         }
3228 
3229         // we have a JCBinary(EQ|NE)
3230         // check if we have two literals (constants or null)
3231         JCBinary b = (JCBinary)exp;
3232         if (b.lhs.type.hasTag(BOT)) return expValueIsNull(eq, b.rhs);
3233         if (b.rhs.type.hasTag(BOT)) return expValueIsNull(eq, b.lhs);
3234         return null;
3235     }
3236     private Boolean expValueIsNull(boolean eq, JCTree t) {
3237         if (t.type.hasTag(BOT)) return Boolean.valueOf(eq);
3238         if (t.hasTag(LITERAL))  return Boolean.valueOf(!eq);
3239         return null;
3240     }
3241 
3242     /** Visitor method for conditional expressions.
3243      */
3244     @Override
3245     public void visitConditional(JCConditional tree) {
3246         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3247         if (isTrue(cond) && noClassDefIn(tree.falsepart)) {
3248             result = convert(translate(tree.truepart, tree.type), tree.type);
3249             addPrunedInfo(cond);
3250         } else if (isFalse(cond) && noClassDefIn(tree.truepart)) {
3251             result = convert(translate(tree.falsepart, tree.type), tree.type);
3252             addPrunedInfo(cond);
3253         } else {
3254             // Condition is not a compile-time constant.
3255             tree.truepart = translate(tree.truepart, tree.type);
3256             tree.falsepart = translate(tree.falsepart, tree.type);
3257             result = tree;
3258         }
3259     }
3260 //where
3261     private JCExpression convert(JCExpression tree, Type pt) {
3262         if (tree.type == pt || tree.type.hasTag(BOT))
3263             return tree;
3264         JCExpression result = make_at(tree.pos()).TypeCast(make.Type(pt), tree);
3265         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
3266                                                        : pt;
3267         return result;
3268     }
3269 
3270     /** Visitor method for if statements.
3271      */
3272     public void visitIf(JCIf tree) {
3273         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
3274         if (isTrue(cond) && noClassDefIn(tree.elsepart)) {
3275             result = translate(tree.thenpart);
3276             addPrunedInfo(cond);
3277         } else if (isFalse(cond) && noClassDefIn(tree.thenpart)) {
3278             if (tree.elsepart != null) {
3279                 result = translate(tree.elsepart);
3280             } else {
3281                 result = make.Skip();
3282             }
3283             addPrunedInfo(cond);
3284         } else {
3285             // Condition is not a compile-time constant.
3286             tree.thenpart = translate(tree.thenpart);
3287             tree.elsepart = translate(tree.elsepart);
3288             result = tree;
3289         }
3290     }
3291 
3292     /** Visitor method for assert statements. Translate them away.
3293      */
3294     public void visitAssert(JCAssert tree) {
3295         tree.cond = translate(tree.cond, syms.booleanType);
3296         if (!tree.cond.type.isTrue()) {
3297             JCExpression cond = assertFlagTest(tree.pos());
3298             List<JCExpression> exnArgs = (tree.detail == null) ?
3299                 List.nil() : List.of(translate(tree.detail));
3300             if (!tree.cond.type.isFalse()) {
3301                 cond = makeBinary
3302                     (AND,
3303                      cond,
3304                      makeUnary(NOT, tree.cond));
3305             }
3306             result =
3307                 make.If(cond,
3308                         make_at(tree).
3309                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
3310                         null);
3311         } else {
3312             result = make.Skip();
3313         }
3314     }
3315 
3316     public void visitApply(JCMethodInvocation tree) {
3317         Symbol meth = TreeInfo.symbol(tree.meth);
3318         List<Type> argtypes = meth.type.getParameterTypes();
3319         if (meth.name == names.init && meth.owner == syms.enumSym)
3320             argtypes = argtypes.tail.tail;
3321         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
3322         tree.varargsElement = null;
3323         Name methName = TreeInfo.name(tree.meth);
3324         if (meth.name==names.init) {
3325             // We are seeing a this(...) or super(...) constructor call.
3326             // If an access constructor is used, append null as a last argument.
3327             Symbol constructor = accessConstructor(tree.pos(), meth);
3328             if (constructor != meth) {
3329                 tree.args = tree.args.append(makeNull());
3330                 TreeInfo.setSymbol(tree.meth, constructor);
3331             }
3332 
3333             // If we are calling a constructor of a local class, add
3334             // free variables after explicit constructor arguments.
3335             ClassSymbol c = (ClassSymbol)constructor.owner;
3336             if (c.isDirectlyOrIndirectlyLocal() && !c.isStatic()) {
3337                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
3338             }
3339 
3340             // If we are calling a constructor of an enum class, pass
3341             // along the name and ordinal arguments
3342             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
3343                 List<JCVariableDecl> params = currentMethodDef.params;
3344                 if (currentMethodSym.owner.hasOuterInstance())
3345                     params = params.tail; // drop this$n
3346                 tree.args = tree.args
3347                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
3348                     .prepend(make.Ident(params.head.sym)); // name
3349             }
3350 
3351             // If we are calling a constructor of a class with an outer
3352             // instance, and the call
3353             // is qualified, pass qualifier as first argument in front of
3354             // the explicit constructor arguments. If the call
3355             // is not qualified, pass the correct outer instance as
3356             // first argument. If we are a static class, there is no
3357             // such outer instance, so generate an error.
3358             if (c.hasOuterInstance()) {
3359                 JCExpression thisArg;
3360                 if (tree.meth.hasTag(SELECT)) {
3361                     thisArg = attr.
3362                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
3363                     tree.meth = make.Ident(constructor);
3364                     ((JCIdent) tree.meth).name = methName;
3365                 } else if (c.isDirectlyOrIndirectlyLocal() || methName == names._this){
3366                     // local class or this() call
3367                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
3368                 } else if (currentClass.isStatic()) {
3369                     // super() call from static nested class - invalid
3370                     log.error(tree.pos(),
3371                         Errors.NoEnclInstanceOfTypeInScope(c.type.getEnclosingType().tsym));
3372                     thisArg = make.Literal(BOT, null).setType(syms.botType);
3373                 } else {
3374                     // super() call of nested class - never pick 'this'
3375                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
3376                 }
3377                 tree.args = tree.args.prepend(thisArg);
3378             }
3379         } else {
3380             // We are seeing a normal method invocation; translate this as usual.
3381             tree.meth = translate(tree.meth);
3382 
3383             // If the translated method itself is an Apply tree, we are
3384             // seeing an access method invocation. In this case, append
3385             // the method arguments to the arguments of the access method.
3386             if (tree.meth.hasTag(APPLY)) {
3387                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
3388                 app.args = tree.args.prependList(app.args);
3389                 result = app;
3390                 return;
3391             }
3392         }
3393         result = tree;
3394     }
3395 
3396     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
3397         List<JCExpression> args = _args;
3398         if (parameters.isEmpty()) return args;
3399         boolean anyChanges = false;
3400         ListBuffer<JCExpression> result = new ListBuffer<>();
3401         while (parameters.tail.nonEmpty()) {
3402             JCExpression arg = translate(args.head, parameters.head);
3403             anyChanges |= (arg != args.head);
3404             result.append(arg);
3405             args = args.tail;
3406             parameters = parameters.tail;
3407         }
3408         Type parameter = parameters.head;
3409         if (varargsElement != null) {
3410             anyChanges = true;
3411             ListBuffer<JCExpression> elems = new ListBuffer<>();
3412             while (args.nonEmpty()) {
3413                 JCExpression arg = translate(args.head, varargsElement);
3414                 elems.append(arg);
3415                 args = args.tail;
3416             }
3417             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
3418                                                List.nil(),
3419                                                elems.toList());
3420             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
3421             result.append(boxedArgs);
3422         } else {
3423             if (args.length() != 1) throw new AssertionError(args);
3424             JCExpression arg = translate(args.head, parameter);
3425             anyChanges |= (arg != args.head);
3426             result.append(arg);
3427             if (!anyChanges) return _args;
3428         }
3429         return result.toList();
3430     }
3431 
3432     /** Expand a boxing or unboxing conversion if needed. */
3433     @SuppressWarnings("unchecked") // XXX unchecked
3434     <T extends JCExpression> T boxIfNeeded(T tree, Type type) {
3435         boolean havePrimitive = tree.type.isPrimitive();
3436         if (havePrimitive == type.isPrimitive())
3437             return tree;
3438         if (havePrimitive) {
3439             Type unboxedTarget = types.unboxedType(type);
3440             if (!unboxedTarget.hasTag(NONE)) {
3441                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
3442                     tree.type = unboxedTarget.constType(tree.type.constValue());
3443                 return (T)boxPrimitive(tree, types.erasure(type));
3444             } else {
3445                 tree = (T)boxPrimitive(tree);
3446             }
3447         } else {
3448             tree = (T)unbox(tree, type);
3449         }
3450         return tree;
3451     }
3452 
3453     /** Box up a single primitive expression. */
3454     JCExpression boxPrimitive(JCExpression tree) {
3455         return boxPrimitive(tree, types.boxedClass(tree.type).type);
3456     }
3457 
3458     /** Box up a single primitive expression. */
3459     JCExpression boxPrimitive(JCExpression tree, Type box) {
3460         make_at(tree.pos());
3461         Symbol valueOfSym = lookupMethod(tree.pos(),
3462                                          names.valueOf,
3463                                          box,
3464                                          List.<Type>nil()
3465                                          .prepend(tree.type));
3466         return make.App(make.QualIdent(valueOfSym), List.of(tree));
3467     }
3468 
3469     /** Unbox an object to a primitive value. */
3470     JCExpression unbox(JCExpression tree, Type primitive) {
3471         Type unboxedType = types.unboxedType(tree.type);
3472         if (unboxedType.hasTag(NONE)) {
3473             unboxedType = primitive;
3474             if (!unboxedType.isPrimitive())
3475                 throw new AssertionError(unboxedType);
3476             make_at(tree.pos());
3477             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
3478         } else {
3479             // There must be a conversion from unboxedType to primitive.
3480             if (!types.isSubtype(unboxedType, primitive))
3481                 throw new AssertionError(tree);
3482         }
3483         make_at(tree.pos());
3484         Symbol valueSym = lookupMethod(tree.pos(),
3485                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
3486                                        tree.type,
3487                                        List.nil());
3488         return make.App(make.Select(tree, valueSym));
3489     }
3490 
3491     /** Visitor method for parenthesized expressions.
3492      *  If the subexpression has changed, omit the parens.
3493      */
3494     public void visitParens(JCParens tree) {
3495         JCTree expr = translate(tree.expr);
3496         result = ((expr == tree.expr) ? tree : expr);
3497     }
3498 
3499     public void visitIndexed(JCArrayAccess tree) {
3500         tree.indexed = translate(tree.indexed);
3501         tree.index = translate(tree.index, syms.intType);
3502         result = tree;
3503     }
3504 
3505     public void visitAssign(JCAssign tree) {
3506         tree.lhs = translate(tree.lhs, tree);
3507         tree.rhs = translate(tree.rhs, tree.lhs.type);
3508 
3509         // If translated left hand side is an Apply, we are
3510         // seeing an access method invocation. In this case, append
3511         // right hand side as last argument of the access method.
3512         if (tree.lhs.hasTag(APPLY)) {
3513             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3514             app.args = List.of(tree.rhs).prependList(app.args);
3515             result = app;
3516         } else {
3517             result = tree;
3518         }
3519     }
3520 
3521     public void visitAssignop(final JCAssignOp tree) {
3522         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
3523             tree.operator.type.getReturnType().isPrimitive();
3524 
3525         AssignopDependencyScanner depScanner = new AssignopDependencyScanner(tree);
3526         depScanner.scan(tree.rhs);
3527 
3528         if (boxingReq || depScanner.dependencyFound) {
3529             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
3530             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
3531             // (but without recomputing x)
3532             JCTree newTree = abstractLval(tree.lhs, lhs -> {
3533                 Tag newTag = tree.getTag().noAssignOp();
3534                 // Erasure (TransTypes) can change the type of
3535                 // tree.lhs.  However, we can still get the
3536                 // unerased type of tree.lhs as it is stored
3537                 // in tree.type in Attr.
3538                 OperatorSymbol newOperator = operators.resolveBinary(tree,
3539                                                               newTag,
3540                                                               tree.type,
3541                                                               tree.rhs.type);
3542                 //Need to use the "lhs" at two places, once on the future left hand side
3543                 //and once in the future binary operator. But further processing may change
3544                 //the components of the tree in place (see visitSelect for e.g. <Class>.super.<ident>),
3545                 //so cloning the tree to avoid interference between the uses:
3546                 JCExpression expr = (JCExpression) lhs.clone();
3547                 if (expr.type != tree.type)
3548                     expr = make.TypeCast(tree.type, expr);
3549                 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
3550                 opResult.operator = newOperator;
3551                 opResult.type = newOperator.type.getReturnType();
3552                 JCExpression newRhs = boxingReq ?
3553                     make.TypeCast(types.unboxedType(tree.type), opResult) :
3554                     opResult;
3555                 return make.Assign(lhs, newRhs).setType(tree.type);
3556             });
3557             result = translate(newTree);
3558             return;
3559         }
3560         tree.lhs = translate(tree.lhs, tree);
3561         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
3562 
3563         // If translated left hand side is an Apply, we are
3564         // seeing an access method invocation. In this case, append
3565         // right hand side as last argument of the access method.
3566         if (tree.lhs.hasTag(APPLY)) {
3567             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
3568             // if operation is a += on strings,
3569             // make sure to convert argument to string
3570             JCExpression rhs = tree.operator.opcode == string_add
3571               ? makeString(tree.rhs)
3572               : tree.rhs;
3573             app.args = List.of(rhs).prependList(app.args);
3574             result = app;
3575         } else {
3576             result = tree;
3577         }
3578     }
3579 
3580     class AssignopDependencyScanner extends TreeScanner {
3581 
3582         Symbol sym;
3583         boolean dependencyFound = false;
3584 
3585         AssignopDependencyScanner(JCAssignOp tree) {
3586             this.sym = TreeInfo.symbol(tree.lhs);
3587         }
3588 
3589         @Override
3590         public void scan(JCTree tree) {
3591             if (tree != null && sym != null) {
3592                 tree.accept(this);
3593             }
3594         }
3595 
3596         @Override
3597         public void visitAssignop(JCAssignOp tree) {
3598             if (TreeInfo.symbol(tree.lhs) == sym) {
3599                 dependencyFound = true;
3600                 return;
3601             }
3602             super.visitAssignop(tree);
3603         }
3604 
3605         @Override
3606         public void visitUnary(JCUnary tree) {
3607             if (TreeInfo.symbol(tree.arg) == sym) {
3608                 dependencyFound = true;
3609                 return;
3610             }
3611             super.visitUnary(tree);
3612         }
3613     }
3614 
3615     /** Lower a tree of the form e++ or e-- where e is an object type */
3616     JCExpression lowerBoxedPostop(final JCUnary tree) {
3617         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
3618         // or
3619         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
3620         // where OP is += or -=
3621         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
3622         return abstractLval(tree.arg, tmp1 -> abstractRval(tmp1, tree.arg.type, tmp2 -> {
3623             Tag opcode = (tree.hasTag(POSTINC))
3624                 ? PLUS_ASG : MINUS_ASG;
3625             //"tmp1" and "tmp2" may refer to the same instance
3626             //(for e.g. <Class>.super.<ident>). But further processing may
3627             //change the components of the tree in place (see visitSelect),
3628             //so cloning the tree to avoid interference between the two uses:
3629             JCExpression lhs = (JCExpression)tmp1.clone();
3630             lhs = cast
3631                 ? make.TypeCast(tree.arg.type, lhs)
3632                 : lhs;
3633             JCExpression update = makeAssignop(opcode,
3634                                          lhs,
3635                                          make.Literal(1));
3636             return makeComma(update, tmp2);
3637         }));
3638     }
3639 
3640     public void visitUnary(JCUnary tree) {
3641         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
3642         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3643             switch(tree.getTag()) {
3644             case PREINC:            // ++ e
3645                     // translate to e += 1
3646             case PREDEC:            // -- e
3647                     // translate to e -= 1
3648                 {
3649                     JCTree.Tag opcode = (tree.hasTag(PREINC))
3650                         ? PLUS_ASG : MINUS_ASG;
3651                     JCAssignOp newTree = makeAssignop(opcode,
3652                                                     tree.arg,
3653                                                     make.Literal(1));
3654                     result = translate(newTree, tree.type);
3655                     return;
3656                 }
3657             case POSTINC:           // e ++
3658             case POSTDEC:           // e --
3659                 {
3660                     result = translate(lowerBoxedPostop(tree), tree.type);
3661                     return;
3662                 }
3663             }
3664             throw new AssertionError(tree);
3665         }
3666 
3667         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3668 
3669         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
3670             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3671         }
3672 
3673         // If translated left hand side is an Apply, we are
3674         // seeing an access method invocation. In this case, return
3675         // that access method invocation as result.
3676         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
3677             result = tree.arg;
3678         } else {
3679             result = tree;
3680         }
3681     }
3682 
3683     public void visitBinary(JCBinary tree) {
3684         List<Type> formals = tree.operator.type.getParameterTypes();
3685         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3686         switch (tree.getTag()) {
3687         case OR:
3688             if (isTrue(lhs)) {
3689                 result = lhs;
3690                 return;
3691             }
3692             if (isFalse(lhs)) {
3693                 result = translate(tree.rhs, formals.tail.head);
3694                 return;
3695             }
3696             break;
3697         case AND:
3698             if (isFalse(lhs)) {
3699                 result = lhs;
3700                 return;
3701             }
3702             if (isTrue(lhs)) {
3703                 result = translate(tree.rhs, formals.tail.head);
3704                 return;
3705             }
3706             break;
3707         }
3708         tree.rhs = translate(tree.rhs, formals.tail.head);
3709         result = tree;
3710     }
3711 
3712     public void visitIdent(JCIdent tree) {
3713         result = access(tree.sym, tree, enclOp, false);
3714     }
3715 
3716     /** Translate away the foreach loop.  */
3717     public void visitForeachLoop(JCEnhancedForLoop tree) {
3718         if (types.elemtype(tree.expr.type) == null)
3719             visitIterableForeachLoop(tree);
3720         else
3721             visitArrayForeachLoop(tree);
3722     }
3723         // where
3724         /**
3725          * A statement of the form
3726          *
3727          * <pre>
3728          *     for ( T v : arrayexpr ) stmt;
3729          * </pre>
3730          *
3731          * (where arrayexpr is of an array type) gets translated to
3732          *
3733          * <pre>{@code
3734          *     for ( { arraytype #arr = arrayexpr;
3735          *             int #len = array.length;
3736          *             int #i = 0; };
3737          *           #i < #len; i$++ ) {
3738          *         T v = arr$[#i];
3739          *         stmt;
3740          *     }
3741          * }</pre>
3742          *
3743          * where #arr, #len, and #i are freshly named synthetic local variables.
3744          */
3745         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3746             make_at(tree.expr.pos());
3747             VarSymbol arraycache = new VarSymbol(SYNTHETIC,
3748                                                  names.fromString("arr" + target.syntheticNameChar()),
3749                                                  tree.expr.type,
3750                                                  currentMethodSym);
3751             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3752             VarSymbol lencache = new VarSymbol(SYNTHETIC,
3753                                                names.fromString("len" + target.syntheticNameChar()),
3754                                                syms.intType,
3755                                                currentMethodSym);
3756             JCStatement lencachedef = make.
3757                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3758             VarSymbol index = new VarSymbol(SYNTHETIC,
3759                                             names.fromString("i" + target.syntheticNameChar()),
3760                                             syms.intType,
3761                                             currentMethodSym);
3762 
3763             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3764             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3765 
3766             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3767             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
3768 
3769             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
3770 
3771             Type elemtype = types.elemtype(tree.expr.type);
3772             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3773                                                     make.Ident(index)).setType(elemtype);
3774             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3775                                                   tree.var.name,
3776                                                   tree.var.vartype,
3777                                                   loopvarinit).setType(tree.var.type);
3778             loopvardef.sym = tree.var.sym;
3779             JCBlock body = make.
3780                 Block(0, List.of(loopvardef, tree.body));
3781 
3782             result = translate(make.
3783                                ForLoop(loopinit,
3784                                        cond,
3785                                        List.of(step),
3786                                        body));
3787             patchTargets(body, tree, result);
3788         }
3789         /** Patch up break and continue targets. */
3790         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3791             class Patcher extends TreeScanner {
3792                 public void visitBreak(JCBreak tree) {
3793                     if (tree.target == src)
3794                         tree.target = dest;
3795                 }
3796                 public void visitYield(JCYield tree) {
3797                     if (tree.target == src)
3798                         tree.target = dest;
3799                     scan(tree.value);
3800                 }
3801                 public void visitContinue(JCContinue tree) {
3802                     if (tree.target == src)
3803                         tree.target = dest;
3804                 }
3805                 public void visitClassDef(JCClassDecl tree) {}
3806             }
3807             new Patcher().scan(body);
3808         }
3809         /**
3810          * A statement of the form
3811          *
3812          * <pre>
3813          *     for ( T v : coll ) stmt ;
3814          * </pre>
3815          *
3816          * (where coll implements {@code Iterable<? extends T>}) gets translated to
3817          *
3818          * <pre>{@code
3819          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3820          *         T v = (T) #i.next();
3821          *         stmt;
3822          *     }
3823          * }</pre>
3824          *
3825          * where #i is a freshly named synthetic local variable.
3826          */
3827         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3828             make_at(tree.expr.pos());
3829             Type iteratorTarget = syms.objectType;
3830             Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
3831                                               syms.iterableType.tsym);
3832             if (iterableType.getTypeArguments().nonEmpty())
3833                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3834             tree.expr.type = types.erasure(types.skipTypeVars(tree.expr.type, false));
3835             tree.expr = transTypes.coerce(attrEnv, tree.expr, types.erasure(iterableType));
3836             Symbol iterator = lookupMethod(tree.expr.pos(),
3837                                            names.iterator,
3838                                            tree.expr.type,
3839                                            List.nil());
3840             Assert.check(types.isSameType(types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)), types.erasure(syms.iteratorType)));
3841             VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
3842                                             types.erasure(syms.iteratorType),
3843                                             currentMethodSym);
3844 
3845              JCStatement init = make.
3846                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
3847                      .setType(types.erasure(iterator.type))));
3848 
3849             Symbol hasNext = lookupMethod(tree.expr.pos(),
3850                                           names.hasNext,
3851                                           itvar.type,
3852                                           List.nil());
3853             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3854             Symbol next = lookupMethod(tree.expr.pos(),
3855                                        names.next,
3856                                        itvar.type,
3857                                        List.nil());
3858             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3859             if (tree.var.type.isPrimitive())
3860                 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
3861             else
3862                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3863             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3864                                                   tree.var.name,
3865                                                   tree.var.vartype,
3866                                                   vardefinit).setType(tree.var.type);
3867             indexDef.sym = tree.var.sym;
3868             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3869             body.endpos = TreeInfo.endPos(tree.body);
3870             result = translate(make.
3871                 ForLoop(List.of(init),
3872                         cond,
3873                         List.nil(),
3874                         body));
3875             patchTargets(body, tree, result);
3876         }
3877 
3878     public void visitVarDef(JCVariableDecl tree) {
3879         MethodSymbol oldMethodSym = currentMethodSym;
3880         tree.mods = translate(tree.mods);
3881         tree.vartype = translate(tree.vartype);
3882         if (currentMethodSym == null) {
3883             // A class or instance field initializer.
3884             currentMethodSym =
3885                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3886                                  names.empty, null,
3887                                  currentClass);
3888         }
3889         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3890         result = tree;
3891         currentMethodSym = oldMethodSym;
3892     }
3893 
3894     public void visitBlock(JCBlock tree) {
3895         MethodSymbol oldMethodSym = currentMethodSym;
3896         if (currentMethodSym == null) {
3897             // Block is a static or instance initializer.
3898             currentMethodSym =
3899                 new MethodSymbol(tree.flags | BLOCK,
3900                                  names.empty, null,
3901                                  currentClass);
3902         }
3903         super.visitBlock(tree);
3904         currentMethodSym = oldMethodSym;
3905     }
3906 
3907     public void visitDoLoop(JCDoWhileLoop tree) {
3908         tree.body = translate(tree.body);
3909         tree.cond = translate(tree.cond, syms.booleanType);
3910         result = tree;
3911     }
3912 
3913     public void visitWhileLoop(JCWhileLoop tree) {
3914         tree.cond = translate(tree.cond, syms.booleanType);
3915         tree.body = translate(tree.body);
3916         result = tree;
3917     }
3918 
3919     public void visitForLoop(JCForLoop tree) {
3920         tree.init = translate(tree.init);
3921         if (tree.cond != null)
3922             tree.cond = translate(tree.cond, syms.booleanType);
3923         tree.step = translate(tree.step);
3924         tree.body = translate(tree.body);
3925         result = tree;
3926     }
3927 
3928     public void visitReturn(JCReturn tree) {
3929         if (tree.expr != null)
3930             tree.expr = translate(tree.expr,
3931                                   types.erasure(currentMethodDef
3932                                                 .restype.type));
3933         result = tree;
3934     }
3935 
3936     public void visitSwitch(JCSwitch tree) {
3937         List<JCCase> cases = tree.patternSwitch ? addDefaultIfNeeded(tree.patternSwitch,
3938                                                                      tree.wasEnumSelector,
3939                                                                      tree.cases)
3940                                                 : tree.cases;
3941         handleSwitch(tree, tree.selector, cases);
3942     }
3943 
3944     @Override
3945     public void visitSwitchExpression(JCSwitchExpression tree) {
3946         List<JCCase> cases = addDefaultIfNeeded(tree.patternSwitch, tree.wasEnumSelector, tree.cases);
3947         handleSwitch(tree, tree.selector, cases);
3948     }
3949 
3950     private List<JCCase> addDefaultIfNeeded(boolean patternSwitch, boolean wasEnumSelector,
3951                                             List<JCCase> cases) {
3952         if (cases.stream().flatMap(c -> c.labels.stream()).noneMatch(p -> p.hasTag(Tag.DEFAULTCASELABEL))) {
3953             boolean matchException = useMatchException;
3954             matchException |= patternSwitch && !wasEnumSelector;
3955             Type exception = matchException ? syms.matchExceptionType
3956                                             : syms.incompatibleClassChangeErrorType;
3957             List<JCExpression> params = matchException ? List.of(makeNull(), makeNull())
3958                                                        : List.nil();
3959             JCThrow thr = make.Throw(makeNewClass(exception, params));
3960             JCCase c = make.Case(JCCase.STATEMENT, List.of(make.DefaultCaseLabel()), null, List.of(thr), null);
3961             cases = cases.prepend(c);
3962         }
3963 
3964         return cases;
3965     }
3966 
3967     private void handleSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
3968         //expand multiple label cases:
3969         ListBuffer<JCCase> convertedCases = new ListBuffer<>();
3970 
3971         for (JCCase c : cases) {
3972             switch (c.labels.size()) {
3973                 case 0: //default
3974                 case 1: //single label
3975                     convertedCases.append(c);
3976                     break;
3977                 default: //multiple labels, expand:
3978                     //case C1, C2, C3: ...
3979                     //=>
3980                     //case C1:
3981                     //case C2:
3982                     //case C3: ...
3983                     List<JCCaseLabel> patterns = c.labels;
3984                     while (patterns.tail.nonEmpty()) {
3985                         convertedCases.append(make_at(c.pos()).Case(JCCase.STATEMENT,
3986                                                            List.of(patterns.head),
3987                                                            null,
3988                                                            List.nil(),
3989                                                            null));
3990                         patterns = patterns.tail;
3991                     }
3992                     c.labels = patterns;
3993                     convertedCases.append(c);
3994                     break;
3995             }
3996         }
3997 
3998         for (JCCase c : convertedCases) {
3999             if (c.caseKind == JCCase.RULE && c.completesNormally) {
4000                 JCBreak b = make.at(TreeInfo.endPos(c.stats.last())).Break(null);
4001                 b.target = tree;
4002                 c.stats = c.stats.append(b);
4003             }
4004         }
4005 
4006         cases = convertedCases.toList();
4007 
4008         Type selsuper = types.supertype(selector.type);
4009         boolean enumSwitch = selsuper != null &&
4010             (selector.type.tsym.flags() & ENUM) != 0;
4011         boolean stringSwitch = selsuper != null &&
4012             types.isSameType(selector.type, syms.stringType);
4013         boolean boxedSwitch = !enumSwitch && !stringSwitch && !selector.type.isPrimitive();
4014         selector = translate(selector, selector.type);
4015         cases = translateCases(cases);
4016         if (tree.hasTag(SWITCH)) {
4017             ((JCSwitch) tree).selector = selector;
4018             ((JCSwitch) tree).cases = cases;
4019         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
4020             ((JCSwitchExpression) tree).selector = selector;
4021             ((JCSwitchExpression) tree).cases = cases;
4022         } else {
4023             Assert.error();
4024         }
4025         if (enumSwitch) {
4026             result = visitEnumSwitch(tree, selector, cases);
4027         } else if (stringSwitch) {
4028             result = visitStringSwitch(tree, selector, cases);
4029         } else if (boxedSwitch) {
4030             //An switch over boxed primitive. Pattern matching switches are already translated
4031             //by TransPatterns, so all non-primitive types are only boxed primitives:
4032             result = visitBoxedPrimitiveSwitch(tree, selector, cases);
4033         } else {
4034             result = tree;
4035         }
4036     }
4037 
4038     public JCTree visitEnumSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
4039         TypeSymbol enumSym = selector.type.tsym;
4040         EnumMapping map = mapForEnum(tree.pos(), enumSym);
4041         make_at(tree.pos());
4042         Symbol ordinalMethod = lookupMethod(tree.pos(),
4043                                             names.ordinal,
4044                                             selector.type,
4045                                             List.nil());
4046         JCExpression newSelector;
4047 
4048         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
4049             //for enum switches with case null, do:
4050             //switch ($selector != null ? $mapVar[$selector.ordinal()] : -1) {...}
4051             //replacing case null with case -1:
4052             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4053                                                names.fromString("s" + tree.pos + this.target.syntheticNameChar()),
4054                                                selector.type,
4055                                                currentMethodSym);
4056             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
4057             newSelector = map.switchValue(
4058                     make.App(make.Select(make.Ident(dollar_s),
4059                             ordinalMethod)));
4060             newSelector =
4061                     make.LetExpr(List.of(var),
4062                                  make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
4063                                                   newSelector,
4064                                                   makeLit(syms.intType, -1))
4065                                      .setType(newSelector.type))
4066                         .setType(newSelector.type);
4067         } else {
4068             newSelector = map.switchValue(
4069                     make.App(make.Select(selector,
4070                             ordinalMethod)));
4071         }
4072         ListBuffer<JCCase> newCases = new ListBuffer<>();
4073         for (JCCase c : cases) {
4074             if (c.labels.head.hasTag(CONSTANTCASELABEL)) {
4075                 JCExpression pat;
4076                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
4077                     pat = makeLit(syms.intType, -1);
4078                 } else {
4079                     VarSymbol label = (VarSymbol)TreeInfo.symbol(((JCConstantCaseLabel) c.labels.head).expr);
4080                     pat = map.caseValue(label);
4081                 }
4082                 newCases.append(make.Case(JCCase.STATEMENT, List.of(make.ConstantCaseLabel(pat)), null, c.stats, null));
4083             } else {
4084                 newCases.append(c);
4085             }
4086         }
4087         JCTree enumSwitch;
4088         if (tree.hasTag(SWITCH)) {
4089             enumSwitch = make.Switch(newSelector, newCases.toList());
4090         } else if (tree.hasTag(SWITCH_EXPRESSION)) {
4091             enumSwitch = make.SwitchExpression(newSelector, newCases.toList());
4092             enumSwitch.setType(tree.type);
4093         } else {
4094             Assert.error();
4095             throw new AssertionError();
4096         }
4097         patchTargets(enumSwitch, tree, enumSwitch);
4098         return enumSwitch;
4099     }
4100 
4101     public JCTree visitStringSwitch(JCTree tree, JCExpression selector, List<JCCase> caseList) {
4102         int alternatives = caseList.size();
4103 
4104         if (alternatives == 0) { // Strange but legal possibility (only legal for switch statement)
4105             return make.at(tree.pos()).Exec(attr.makeNullCheck(selector));
4106         } else {
4107             /*
4108              * The general approach used is to translate a single
4109              * string switch statement into a series of two chained
4110              * switch statements: the first a synthesized statement
4111              * switching on the argument string's hash value and
4112              * computing a string's position in the list of original
4113              * case labels, if any, followed by a second switch on the
4114              * computed integer value.  The second switch has the same
4115              * code structure as the original string switch statement
4116              * except that the string case labels are replaced with
4117              * positional integer constants starting at 0.
4118              *
4119              * The first switch statement can be thought of as an
4120              * inlined map from strings to their position in the case
4121              * label list.  An alternate implementation would use an
4122              * actual Map for this purpose, as done for enum switches.
4123              *
4124              * With some additional effort, it would be possible to
4125              * use a single switch statement on the hash code of the
4126              * argument, but care would need to be taken to preserve
4127              * the proper control flow in the presence of hash
4128              * collisions and other complications, such as
4129              * fallthroughs.  Switch statements with one or two
4130              * alternatives could also be specially translated into
4131              * if-then statements to omit the computation of the hash
4132              * code.
4133              *
4134              * The generated code assumes that the hashing algorithm
4135              * of String is the same in the compilation environment as
4136              * in the environment the code will run in.  The string
4137              * hashing algorithm in the SE JDK has been unchanged
4138              * since at least JDK 1.2.  Since the algorithm has been
4139              * specified since that release as well, it is very
4140              * unlikely to be changed in the future.
4141              *
4142              * Different hashing algorithms, such as the length of the
4143              * strings or a perfect hashing algorithm over the
4144              * particular set of case labels, could potentially be
4145              * used instead of String.hashCode.
4146              */
4147 
4148             ListBuffer<JCStatement> stmtList = new ListBuffer<>();
4149 
4150             // Map from String case labels to their original position in
4151             // the list of case labels.
4152             Map<String, Integer> caseLabelToPosition = new LinkedHashMap<>(alternatives + 1, 1.0f);
4153 
4154             // Map of hash codes to the string case labels having that hashCode.
4155             Map<Integer, Set<String>> hashToString = new LinkedHashMap<>(alternatives + 1, 1.0f);
4156 
4157             int casePosition = 0;
4158             JCCase nullCase = null;
4159             int nullCaseLabel = -1;
4160 
4161             for(JCCase oneCase : caseList) {
4162                 if (oneCase.labels.head.hasTag(CONSTANTCASELABEL)) {
4163                     if (TreeInfo.isNullCaseLabel(oneCase.labels.head)) {
4164                         nullCase = oneCase;
4165                         nullCaseLabel = casePosition;
4166                     } else {
4167                         JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
4168                         String labelExpr = (String) expression.type.constValue();
4169                         Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
4170                         Assert.checkNull(mapping);
4171                         int hashCode = labelExpr.hashCode();
4172 
4173                         Set<String> stringSet = hashToString.get(hashCode);
4174                         if (stringSet == null) {
4175                             stringSet = new LinkedHashSet<>(1, 1.0f);
4176                             stringSet.add(labelExpr);
4177                             hashToString.put(hashCode, stringSet);
4178                         } else {
4179                             boolean added = stringSet.add(labelExpr);
4180                             Assert.check(added);
4181                         }
4182                     }
4183                 }
4184                 casePosition++;
4185             }
4186 
4187             // Synthesize a switch statement that has the effect of
4188             // mapping from a string to the integer position of that
4189             // string in the list of case labels.  This is done by
4190             // switching on the hashCode of the string followed by an
4191             // if-then-else chain comparing the input for equality
4192             // with all the case labels having that hash value.
4193 
4194             /*
4195              * s$ = top of stack;
4196              * tmp$ = -1;
4197              * switch($s.hashCode()) {
4198              *     case caseLabel.hashCode:
4199              *         if (s$.equals("caseLabel_1")
4200              *           tmp$ = caseLabelToPosition("caseLabel_1");
4201              *         else if (s$.equals("caseLabel_2"))
4202              *           tmp$ = caseLabelToPosition("caseLabel_2");
4203              *         ...
4204              *         break;
4205              * ...
4206              * }
4207              */
4208 
4209             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4210                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
4211                                                syms.stringType,
4212                                                currentMethodSym);
4213             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type));
4214 
4215             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
4216                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
4217                                                  syms.intType,
4218                                                  currentMethodSym);
4219             JCVariableDecl dollar_tmp_def =
4220                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
4221             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
4222             stmtList.append(dollar_tmp_def);
4223             ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
4224             // hashCode will trigger nullcheck on original switch expression
4225             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
4226                                                        names.hashCode,
4227                                                        List.nil()).setType(syms.intType);
4228             JCSwitch switch1 = make.Switch(hashCodeCall,
4229                                         caseBuffer.toList());
4230             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
4231                 int hashCode = entry.getKey();
4232                 Set<String> stringsWithHashCode = entry.getValue();
4233                 Assert.check(stringsWithHashCode.size() >= 1);
4234 
4235                 JCStatement elsepart = null;
4236                 for(String caseLabel : stringsWithHashCode ) {
4237                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
4238                                                                    names.equals,
4239                                                                    List.of(make.Literal(caseLabel)));
4240                     elsepart = make.If(stringEqualsCall,
4241                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
4242                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
4243                                                  setType(dollar_tmp.type)),
4244                                        elsepart);
4245                 }
4246 
4247                 ListBuffer<JCStatement> lb = new ListBuffer<>();
4248                 JCBreak breakStmt = make.Break(null);
4249                 breakStmt.target = switch1;
4250                 lb.append(elsepart).append(breakStmt);
4251 
4252                 caseBuffer.append(make.Case(JCCase.STATEMENT,
4253                                             List.of(make.ConstantCaseLabel(make.Literal(hashCode))),
4254                                             null,
4255                                             lb.toList(),
4256                                             null));
4257             }
4258 
4259             switch1.cases = caseBuffer.toList();
4260 
4261             if (nullCase != null) {
4262                 stmtList.append(make.If(makeBinary(NE, make.Ident(dollar_s), makeNull()), switch1, make.Exec(make.Assign(make.Ident(dollar_tmp),
4263                                                              make.Literal(nullCaseLabel)).
4264                                                  setType(dollar_tmp.type))).setType(syms.intType));
4265             } else {
4266                 stmtList.append(switch1);
4267             }
4268 
4269             // Make isomorphic switch tree replacing string labels
4270             // with corresponding integer ones from the label to
4271             // position map.
4272 
4273             ListBuffer<JCCase> lb = new ListBuffer<>();
4274             for(JCCase oneCase : caseList ) {
4275                 boolean isDefault = !oneCase.labels.head.hasTag(CONSTANTCASELABEL);
4276                 JCExpression caseExpr;
4277                 if (isDefault)
4278                     caseExpr = null;
4279                 else if (oneCase == nullCase) {
4280                     caseExpr = make.Literal(nullCaseLabel);
4281                 } else {
4282                     JCExpression expression = ((JCConstantCaseLabel) oneCase.labels.head).expr;
4283                     String name = (String) TreeInfo.skipParens(expression)
4284                                                    .type.constValue();
4285                     caseExpr = make.Literal(caseLabelToPosition.get(name));
4286                 }
4287 
4288                 lb.append(make.Case(JCCase.STATEMENT, caseExpr == null ? List.of(make.DefaultCaseLabel())
4289                                                                        : List.of(make.ConstantCaseLabel(caseExpr)),
4290                                     null,
4291                                     oneCase.stats, null));
4292             }
4293 
4294             if (tree.hasTag(SWITCH)) {
4295                 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
4296                 // Rewire up old unlabeled break statements to the
4297                 // replacement switch being created.
4298                 patchTargets(switch2, tree, switch2);
4299 
4300                 stmtList.append(switch2);
4301 
4302                 JCBlock res = make.Block(0L, stmtList.toList());
4303                 res.endpos = TreeInfo.endPos(tree);
4304                 return res;
4305             } else {
4306                 JCSwitchExpression switch2 = make.SwitchExpression(make.Ident(dollar_tmp), lb.toList());
4307 
4308                 // Rewire up old unlabeled break statements to the
4309                 // replacement switch being created.
4310                 patchTargets(switch2, tree, switch2);
4311 
4312                 switch2.setType(tree.type);
4313 
4314                 LetExpr res = make.LetExpr(stmtList.toList(), switch2);
4315 
4316                 res.needsCond = true;
4317                 res.setType(tree.type);
4318 
4319                 return res;
4320             }
4321         }
4322     }
4323 
4324     private JCTree visitBoxedPrimitiveSwitch(JCTree tree, JCExpression selector, List<JCCase> cases) {
4325         JCExpression newSelector;
4326 
4327         if (cases.stream().anyMatch(c -> TreeInfo.isNullCaseLabel(c.labels.head))) {
4328             //a switch over a boxed primitive, with a null case. Pick two constants that are
4329             //not used by any branch in the case (c1 and c2), close to other constants that are
4330             //used in the switch. Then do:
4331             //switch ($selector != null ? $selector != c1 ? $selector : c2 : c1) {...}
4332             //replacing case null with case c1
4333             Set<Integer> constants = new LinkedHashSet<>();
4334             JCCase nullCase = null;
4335 
4336             for (JCCase c : cases) {
4337                 if (TreeInfo.isNullCaseLabel(c.labels.head)) {
4338                     nullCase = c;
4339                 } else if (!c.labels.head.hasTag(DEFAULTCASELABEL)) {
4340                     constants.add((int) ((JCConstantCaseLabel) c.labels.head).expr.type.constValue());
4341                 }
4342             }
4343 
4344             Assert.checkNonNull(nullCase);
4345 
4346             int nullValue = constants.isEmpty() ? 0 : constants.iterator().next();
4347 
4348             while (constants.contains(nullValue)) nullValue++;
4349 
4350             constants.add(nullValue);
4351             nullCase.labels.head = make.ConstantCaseLabel(makeLit(syms.intType, nullValue));
4352 
4353             int replacementValue = nullValue;
4354 
4355             while (constants.contains(replacementValue)) replacementValue++;
4356 
4357             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
4358                                                names.fromString("s" + tree.pos + this.target.syntheticNameChar()),
4359                                                selector.type,
4360                                                currentMethodSym);
4361             JCStatement var = make.at(tree.pos()).VarDef(dollar_s, selector).setType(dollar_s.type);
4362             JCExpression nullValueReplacement =
4363                     make.Conditional(makeBinary(NE,
4364                                                  unbox(make.Ident(dollar_s), syms.intType),
4365                                                  makeLit(syms.intType, nullValue)),
4366                                      unbox(make.Ident(dollar_s), syms.intType),
4367                                      makeLit(syms.intType, replacementValue))
4368                         .setType(syms.intType);
4369             JCExpression nullCheck =
4370                     make.Conditional(makeBinary(NE, make.Ident(dollar_s), makeNull()),
4371                                      nullValueReplacement,
4372                                      makeLit(syms.intType, nullValue))
4373                         .setType(syms.intType);
4374             newSelector = make.LetExpr(List.of(var), nullCheck).setType(syms.intType);
4375         } else {
4376             newSelector = unbox(selector, syms.intType);
4377         }
4378 
4379         if (tree.hasTag(SWITCH)) {
4380             ((JCSwitch) tree).selector = newSelector;
4381         } else {
4382             ((JCSwitchExpression) tree).selector = newSelector;
4383         }
4384 
4385         return tree;
4386     }
4387 
4388     @Override
4389     public void visitBreak(JCBreak tree) {
4390         result = tree;
4391     }
4392 
4393     @Override
4394     public void visitYield(JCYield tree) {
4395         tree.value = translate(tree.value, tree.target.type);
4396         result = tree;
4397     }
4398 
4399     public void visitNewArray(JCNewArray tree) {
4400         tree.elemtype = translate(tree.elemtype);
4401         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
4402             if (t.head != null) t.head = translate(t.head, syms.intType);
4403         tree.elems = translate(tree.elems, types.elemtype(tree.type));
4404         result = tree;
4405     }
4406 
4407     public void visitSelect(JCFieldAccess tree) {
4408         // need to special case-access of the form C.super.x
4409         // these will always need an access method, unless C
4410         // is a default interface subclassed by the current class.
4411         boolean qualifiedSuperAccess =
4412             tree.selected.hasTag(SELECT) &&
4413             TreeInfo.name(tree.selected) == names._super &&
4414             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
4415         tree.selected = translate(tree.selected);
4416         if (tree.name == names._class) {
4417             result = classOf(tree.selected);
4418         }
4419         else if (tree.name == names._super &&
4420                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
4421             //default super call!! Not a classic qualified super call
4422             TypeSymbol supSym = tree.selected.type.tsym;
4423             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
4424             result = tree;
4425         }
4426         else if (tree.name == names._this || tree.name == names._super) {
4427             result = makeThis(tree.pos(), tree.selected.type.tsym);
4428         }
4429         else
4430             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
4431     }
4432 
4433     public void visitLetExpr(LetExpr tree) {
4434         tree.defs = translate(tree.defs);
4435         tree.expr = translate(tree.expr, tree.type);
4436         result = tree;
4437     }
4438 
4439     // There ought to be nothing to rewrite here;
4440     // we don't generate code.
4441     public void visitAnnotation(JCAnnotation tree) {
4442         result = tree;
4443     }
4444 
4445     @Override
4446     public void visitTry(JCTry tree) {
4447         if (tree.resources.nonEmpty()) {
4448             result = makeTwrTry(tree);
4449             return;
4450         }
4451 
4452         boolean hasBody = tree.body.getStatements().nonEmpty();
4453         boolean hasCatchers = tree.catchers.nonEmpty();
4454         boolean hasFinally = tree.finalizer != null &&
4455                 tree.finalizer.getStatements().nonEmpty();
4456 
4457         if (!hasCatchers && !hasFinally) {
4458             result = translate(tree.body);
4459             return;
4460         }
4461 
4462         if (!hasBody) {
4463             if (hasFinally) {
4464                 result = translate(tree.finalizer);
4465             } else {
4466                 result = translate(tree.body);
4467             }
4468             return;
4469         }
4470 
4471         // no optimizations possible
4472         super.visitTry(tree);
4473     }
4474 
4475 /**************************************************************************
4476  * main method
4477  *************************************************************************/
4478 
4479     /** Translate a toplevel class and return a list consisting of
4480      *  the translated class and translated versions of all inner classes.
4481      *  @param env   The attribution environment current at the class definition.
4482      *               We need this for resolving some additional symbols.
4483      *  @param cdef  The tree representing the class definition.
4484      */
4485     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
4486         ListBuffer<JCTree> translated = null;
4487         try {
4488             attrEnv = env;
4489             this.make = make;
4490             endPosTable = env.toplevel.endPositions;
4491             currentClass = null;
4492             currentMethodDef = null;
4493             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
4494             outermostMemberDef = null;
4495             this.translated = new ListBuffer<>();
4496             classdefs = new HashMap<>();
4497             actualSymbols = new HashMap<>();
4498             freevarCache = new HashMap<>();
4499             proxies = new HashMap<>();
4500             twrVars = WriteableScope.create(syms.noSymbol);
4501             outerThisStack = List.nil();
4502             accessNums = new HashMap<>();
4503             accessSyms = new HashMap<>();
4504             accessConstrs = new HashMap<>();
4505             accessConstrTags = List.nil();
4506             accessed = new ListBuffer<>();
4507             translate(cdef, (JCExpression)null);
4508             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
4509                 makeAccessible(l.head);
4510             for (EnumMapping map : enumSwitchMap.values())
4511                 map.translate();
4512             checkConflicts(this.translated.toList());
4513             checkAccessConstructorTags();
4514             translated = this.translated;
4515         } finally {
4516             // note that recursive invocations of this method fail hard
4517             attrEnv = null;
4518             this.make = null;
4519             endPosTable = null;
4520             currentClass = null;
4521             currentMethodDef = null;
4522             outermostClassDef = null;
4523             outermostMemberDef = null;
4524             this.translated = null;
4525             classdefs = null;
4526             actualSymbols = null;
4527             freevarCache = null;
4528             proxies = null;
4529             outerThisStack = null;
4530             accessNums = null;
4531             accessSyms = null;
4532             accessConstrs = null;
4533             accessConstrTags = null;
4534             accessed = null;
4535             enumSwitchMap.clear();
4536             assertionsDisabledClassCache = null;
4537         }
4538         return translated.toList();
4539     }
4540 }