1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import com.sun.tools.javac.api.Formattable.LocalizedString;
  29 import com.sun.tools.javac.code.*;
  30 import com.sun.tools.javac.code.Scope.WriteableScope;
  31 import com.sun.tools.javac.code.Source.Feature;
  32 import com.sun.tools.javac.code.Symbol.*;
  33 import com.sun.tools.javac.code.Type.*;
  34 import com.sun.tools.javac.comp.Attr.ResultInfo;
  35 import com.sun.tools.javac.comp.Check.CheckContext;
  36 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  37 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  38 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
  39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
  40 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
  41 import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
  42 import com.sun.tools.javac.jvm.*;
  43 import com.sun.tools.javac.main.Option;
  44 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  45 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  46 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  47 import com.sun.tools.javac.tree.*;
  48 import com.sun.tools.javac.tree.JCTree.*;
  49 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
  50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.DefinedBy.Api;
  53 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  54 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
  56 
  57 import java.util.Arrays;
  58 import java.util.Collection;
  59 import java.util.EnumSet;
  60 import java.util.HashSet;
  61 import java.util.Iterator;
  62 import java.util.LinkedHashMap;
  63 import java.util.Map;
  64 import java.util.Set;
  65 import java.util.function.BiFunction;
  66 import java.util.function.BiPredicate;
  67 import java.util.function.Function;
  68 import java.util.function.Predicate;
  69 import java.util.function.UnaryOperator;
  70 import java.util.stream.Stream;
  71 import java.util.stream.StreamSupport;
  72 
  73 import javax.lang.model.element.ElementVisitor;
  74 
  75 import static com.sun.tools.javac.code.Flags.*;
  76 import static com.sun.tools.javac.code.Flags.BLOCK;
  77 import static com.sun.tools.javac.code.Flags.STATIC;
  78 import static com.sun.tools.javac.code.Kinds.*;
  79 import static com.sun.tools.javac.code.Kinds.Kind.*;
  80 import static com.sun.tools.javac.code.TypeTag.*;
  81 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
  82 import static com.sun.tools.javac.main.Option.DOE;
  83 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  84 import static com.sun.tools.javac.util.Iterators.createCompoundIterator;
  85 
  86 /** Helper class for name resolution, used mostly by the attribution phase.
  87  *
  88  *  <p><b>This is NOT part of any supported API.
  89  *  If you write code that depends on this, you do so at your own risk.
  90  *  This code and its internal interfaces are subject to change or
  91  *  deletion without notice.</b>
  92  */
  93 public class Resolve {
  94     protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
  95 
  96     Names names;
  97     Log log;
  98     Symtab syms;
  99     Attr attr;
 100     AttrRecover attrRecover;
 101     DeferredAttr deferredAttr;
 102     Check chk;
 103     Infer infer;
 104     Preview preview;
 105     ClassFinder finder;
 106     ModuleFinder moduleFinder;
 107     Types types;
 108     JCDiagnostic.Factory diags;
 109     public final boolean allowModules;
 110     public final boolean allowRecords;
 111     private final boolean compactMethodDiags;
 112     private final boolean allowLocalVariableTypeInference;
 113     private final boolean allowYieldStatement;
 114     private final boolean allowPrivateMembersInPermitsClause;
 115     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
 116     final boolean dumpMethodReferenceSearchResults;
 117     final boolean dumpStacktraceOnError;
 118 
 119     WriteableScope polymorphicSignatureScope;
 120 
 121     @SuppressWarnings("this-escape")
 122     protected Resolve(Context context) {
 123         context.put(resolveKey, this);
 124         syms = Symtab.instance(context);
 125 
 126         varNotFound = new SymbolNotFoundError(ABSENT_VAR);
 127         methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
 128         typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
 129         referenceNotFound = ReferenceLookupResult.error(methodNotFound);
 130 
 131         names = Names.instance(context);
 132         log = Log.instance(context);
 133         attr = Attr.instance(context);
 134         attrRecover = AttrRecover.instance(context);
 135         deferredAttr = DeferredAttr.instance(context);
 136         chk = Check.instance(context);
 137         infer = Infer.instance(context);
 138         finder = ClassFinder.instance(context);
 139         moduleFinder = ModuleFinder.instance(context);
 140         types = Types.instance(context);
 141         diags = JCDiagnostic.Factory.instance(context);
 142         preview = Preview.instance(context);
 143         Source source = Source.instance(context);
 144         Options options = Options.instance(context);
 145         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
 146                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
 147         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
 148         Target target = Target.instance(context);
 149         allowLocalVariableTypeInference = Feature.LOCAL_VARIABLE_TYPE_INFERENCE.allowedInSource(source);
 150         allowYieldStatement = Feature.SWITCH_EXPRESSION.allowedInSource(source);
 151         allowPrivateMembersInPermitsClause = Feature.PRIVATE_MEMBERS_IN_PERMITS_CLAUSE.allowedInSource(source);
 152         polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
 153         allowModules = Feature.MODULES.allowedInSource(source);
 154         allowRecords = Feature.RECORDS.allowedInSource(source);
 155         dumpMethodReferenceSearchResults = options.isSet("debug.dumpMethodReferenceSearchResults");
 156         dumpStacktraceOnError = options.isSet("dev") || options.isSet(DOE);
 157     }
 158 
 159     /** error symbols, which are returned when resolution fails
 160      */
 161     private final SymbolNotFoundError varNotFound;
 162     private final SymbolNotFoundError methodNotFound;
 163     private final SymbolNotFoundError typeNotFound;
 164 
 165     /** empty reference lookup result */
 166     private final ReferenceLookupResult referenceNotFound;
 167 
 168     public static Resolve instance(Context context) {
 169         Resolve instance = context.get(resolveKey);
 170         if (instance == null)
 171             instance = new Resolve(context);
 172         return instance;
 173     }
 174 
 175     private static Symbol bestOf(Symbol s1,
 176                                  Symbol s2) {
 177         return s1.kind.betterThan(s2.kind) ? s1 : s2;
 178     }
 179 
 180     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
 181     enum VerboseResolutionMode {
 182         SUCCESS("success"),
 183         FAILURE("failure"),
 184         APPLICABLE("applicable"),
 185         INAPPLICABLE("inapplicable"),
 186         DEFERRED_INST("deferred-inference"),
 187         PREDEF("predef"),
 188         OBJECT_INIT("object-init"),
 189         INTERNAL("internal");
 190 
 191         final String opt;
 192 
 193         private VerboseResolutionMode(String opt) {
 194             this.opt = opt;
 195         }
 196 
 197         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
 198             String s = opts.get("debug.verboseResolution");
 199             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
 200             if (s == null) return res;
 201             if (s.contains("all")) {
 202                 res = EnumSet.allOf(VerboseResolutionMode.class);
 203             }
 204             Collection<String> args = Arrays.asList(s.split(","));
 205             for (VerboseResolutionMode mode : values()) {
 206                 if (args.contains(mode.opt)) {
 207                     res.add(mode);
 208                 } else if (args.contains("-" + mode.opt)) {
 209                     res.remove(mode);
 210                 }
 211             }
 212             return res;
 213         }
 214     }
 215 
 216     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
 217             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
 218         boolean success = !bestSoFar.kind.isResolutionError();
 219 
 220         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
 221             return;
 222         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
 223             return;
 224         }
 225 
 226         if (bestSoFar.name == names.init &&
 227                 bestSoFar.owner == syms.objectType.tsym &&
 228                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
 229             return; //skip diags for Object constructor resolution
 230         } else if (site == syms.predefClass.type &&
 231                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
 232             return; //skip spurious diags for predef symbols (i.e. operators)
 233         } else if (currentResolutionContext.internalResolution &&
 234                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
 235             return;
 236         }
 237 
 238         int pos = 0;
 239         int mostSpecificPos = -1;
 240         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
 241         for (Candidate c : currentResolutionContext.candidates) {
 242             if (currentResolutionContext.step != c.step ||
 243                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
 244                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
 245                 continue;
 246             } else {
 247                 subDiags.append(c.isApplicable() ?
 248                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
 249                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
 250                 if (c.sym == bestSoFar)
 251                     mostSpecificPos = pos;
 252                 pos++;
 253             }
 254         }
 255         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
 256         List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
 257         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
 258                 site.tsym, mostSpecificPos, currentResolutionContext.step,
 259                 methodArguments(argtypes2),
 260                 methodArguments(typeargtypes));
 261         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
 262         log.report(d);
 263     }
 264 
 265     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
 266         JCDiagnostic subDiag = null;
 267         if (sym.type.hasTag(FORALL)) {
 268             subDiag = diags.fragment(Fragments.PartialInstSig(inst));
 269         }
 270 
 271         String key = subDiag == null ?
 272                 "applicable.method.found" :
 273                 "applicable.method.found.1";
 274 
 275         return diags.fragment(key, pos, sym, subDiag);
 276     }
 277 
 278     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
 279         return diags.fragment(Fragments.NotApplicableMethodFound(pos, sym, subDiag));
 280     }
 281     // </editor-fold>
 282 
 283 /* ************************************************************************
 284  * Identifier resolution
 285  *************************************************************************/
 286 
 287     /** An environment is "static" if its static level is greater than
 288      *  the one of its outer environment
 289      */
 290     protected static boolean isStatic(Env<AttrContext> env) {
 291         return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
 292     }
 293 
 294     /** An environment is an "initializer" if it is a constructor or
 295      *  an instance initializer.
 296      */
 297     static boolean isInitializer(Env<AttrContext> env) {
 298         Symbol owner = env.info.scope.owner;
 299         return owner.isConstructor() ||
 300             owner.owner.kind == TYP &&
 301             (owner.kind == VAR ||
 302              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
 303             (owner.flags() & STATIC) == 0;
 304     }
 305 
 306     /** Is class accessible in given environment?
 307      *  @param env    The current environment.
 308      *  @param c      The class whose accessibility is checked.
 309      */
 310     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
 311         return isAccessible(env, c, false);
 312     }
 313 
 314     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
 315 
 316         /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
 317            to refer to an inaccessible type
 318         */
 319         if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
 320             return true;
 321 
 322         if (env.info.visitingServiceImplementation &&
 323             env.toplevel.modle == c.packge().modle) {
 324             return true;
 325         }
 326 
 327         boolean isAccessible = false;
 328         switch ((short)(c.flags() & AccessFlags)) {
 329             case PRIVATE:
 330                 isAccessible =
 331                     env.enclClass.sym.outermostClass() ==
 332                     c.owner.outermostClass();
 333                 break;
 334             case 0:
 335                 isAccessible =
 336                     env.toplevel.packge == c.owner // fast special case
 337                     ||
 338                     env.toplevel.packge == c.packge();
 339                 break;
 340             default: // error recovery
 341                 isAccessible = true;
 342                 break;
 343             case PUBLIC:
 344                 if (allowModules) {
 345                     ModuleSymbol currModule = env.toplevel.modle;
 346                     currModule.complete();
 347                     PackageSymbol p = c.packge();
 348                     isAccessible =
 349                         currModule == p.modle ||
 350                         currModule.visiblePackages.get(p.fullname) == p ||
 351                         p == syms.rootPackage ||
 352                         (p.modle == syms.unnamedModule && currModule.readModules.contains(p.modle));
 353                 } else {
 354                     isAccessible = true;
 355                 }
 356                 break;
 357             case PROTECTED:
 358                 isAccessible =
 359                     env.toplevel.packge == c.owner // fast special case
 360                     ||
 361                     env.toplevel.packge == c.packge()
 362                     ||
 363                     isInnerSubClass(env.enclClass.sym, c.owner)
 364                     ||
 365                     env.info.allowProtectedAccess;
 366                 break;
 367         }
 368         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
 369             isAccessible :
 370             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
 371     }
 372     //where
 373         /** Is given class a subclass of given base class, or an inner class
 374          *  of a subclass?
 375          *  Return null if no such class exists.
 376          *  @param c     The class which is the subclass or is contained in it.
 377          *  @param base  The base class
 378          */
 379         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
 380             while (c != null && !c.isSubClass(base, types)) {
 381                 c = c.owner.enclClass();
 382             }
 383             return c != null;
 384         }
 385 
 386     boolean isAccessible(Env<AttrContext> env, Type t) {
 387         return isAccessible(env, t, false);
 388     }
 389 
 390     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
 391         if (t.hasTag(ARRAY)) {
 392             return isAccessible(env, types.cvarUpperBound(types.elemtype(t)));
 393         } else if (t.isUnion()) {
 394             return StreamSupport.stream(((UnionClassType) t).getAlternativeTypes().spliterator(), false)
 395                     .allMatch(alternative -> isAccessible(env, alternative.tsym, checkInner));
 396         } else {
 397             return isAccessible(env, t.tsym, checkInner);
 398         }
 399     }
 400 
 401     /** Is symbol accessible as a member of given type in given environment?
 402      *  @param env    The current environment.
 403      *  @param site   The type of which the tested symbol is regarded
 404      *                as a member.
 405      *  @param sym    The symbol.
 406      */
 407     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
 408         return isAccessible(env, site, sym, false);
 409     }
 410     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
 411         if (sym.name == names.init && sym.owner != site.tsym) return false;
 412 
 413         /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
 414            to refer to an inaccessible type
 415         */
 416         if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
 417             return true;
 418 
 419         if (env.info.visitingServiceImplementation &&
 420             env.toplevel.modle == sym.packge().modle) {
 421             return true;
 422         }
 423 
 424         switch ((short)(sym.flags() & AccessFlags)) {
 425         case PRIVATE:
 426             return
 427                 (env.enclClass.sym == sym.owner // fast special case
 428                  ||
 429                  env.enclClass.sym.outermostClass() ==
 430                  sym.owner.outermostClass()
 431                  ||
 432                  privateMemberInPermitsClauseIfAllowed(env, sym))
 433                 &&
 434                 sym.isInheritedIn(site.tsym, types);
 435         case 0:
 436             return
 437                 (env.toplevel.packge == sym.owner.owner // fast special case
 438                  ||
 439                  env.toplevel.packge == sym.packge())
 440                 &&
 441                 isAccessible(env, site, checkInner)
 442                 &&
 443                 sym.isInheritedIn(site.tsym, types)
 444                 &&
 445                 notOverriddenIn(site, sym);
 446         case PROTECTED:
 447             return
 448                 (env.toplevel.packge == sym.owner.owner // fast special case
 449                  ||
 450                  env.toplevel.packge == sym.packge()
 451                  ||
 452                  isProtectedAccessible(sym, env.enclClass.sym, site)
 453                  ||
 454                  // OK to select instance method or field from 'super' or type name
 455                  // (but type names should be disallowed elsewhere!)
 456                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
 457                 &&
 458                 isAccessible(env, site, checkInner)
 459                 &&
 460                 notOverriddenIn(site, sym);
 461         default: // this case includes erroneous combinations as well
 462             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
 463         }
 464     }
 465 
 466     private boolean privateMemberInPermitsClauseIfAllowed(Env<AttrContext> env, Symbol sym) {
 467         return allowPrivateMembersInPermitsClause &&
 468             env.info.isPermitsClause &&
 469             ((JCClassDecl) env.tree).sym.outermostClass() == sym.owner.outermostClass();
 470     }
 471 
 472     //where
 473     /* `sym' is accessible only if not overridden by
 474      * another symbol which is a member of `site'
 475      * (because, if it is overridden, `sym' is not strictly
 476      * speaking a member of `site'). A polymorphic signature method
 477      * cannot be overridden (e.g. MH.invokeExact(Object[])).
 478      */
 479     private boolean notOverriddenIn(Type site, Symbol sym) {
 480         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
 481             return true;
 482         else {
 483             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
 484             return (s2 == null || s2 == sym || sym.owner == s2.owner || (sym.owner.isInterface() && s2.owner == syms.objectType.tsym) ||
 485                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
 486         }
 487     }
 488     //where
 489         /** Is given protected symbol accessible if it is selected from given site
 490          *  and the selection takes place in given class?
 491          *  @param sym     The symbol with protected access
 492          *  @param c       The class where the access takes place
 493          *  @param site    The type of the qualifier
 494          */
 495         private
 496         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
 497             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
 498             while (c != null &&
 499                    !(c.isSubClass(sym.owner, types) &&
 500                      (c.flags() & INTERFACE) == 0 &&
 501                      // In JLS 2e 6.6.2.1, the subclass restriction applies
 502                      // only to instance fields and methods -- types are excluded
 503                      // regardless of whether they are declared 'static' or not.
 504                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
 505                 c = c.owner.enclClass();
 506             return c != null;
 507         }
 508 
 509     /**
 510      * Performs a recursive scan of a type looking for accessibility problems
 511      * from current attribution environment
 512      */
 513     void checkAccessibleType(Env<AttrContext> env, Type t) {
 514         accessibilityChecker.visit(t, env);
 515     }
 516 
 517     /**
 518      * Accessibility type-visitor
 519      */
 520     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
 521             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
 522 
 523         void visit(List<Type> ts, Env<AttrContext> env) {
 524             for (Type t : ts) {
 525                 visit(t, env);
 526             }
 527         }
 528 
 529         public Void visitType(Type t, Env<AttrContext> env) {
 530             return null;
 531         }
 532 
 533         @Override
 534         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
 535             visit(t.elemtype, env);
 536             return null;
 537         }
 538 
 539         @Override
 540         public Void visitClassType(ClassType t, Env<AttrContext> env) {
 541             visit(t.getTypeArguments(), env);
 542             if (!isAccessible(env, t, true)) {
 543                 accessBase(new AccessError(env, null, t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
 544             }
 545             return null;
 546         }
 547 
 548         @Override
 549         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
 550             visit(t.type, env);
 551             return null;
 552         }
 553 
 554         @Override
 555         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
 556             visit(t.getParameterTypes(), env);
 557             visit(t.getReturnType(), env);
 558             visit(t.getThrownTypes(), env);
 559             return null;
 560         }
 561     };
 562 
 563     /** Try to instantiate the type of a method so that it fits
 564      *  given type arguments and argument types. If successful, return
 565      *  the method's instantiated type, else return null.
 566      *  The instantiation will take into account an additional leading
 567      *  formal parameter if the method is an instance method seen as a member
 568      *  of an under determined site. In this case, we treat site as an additional
 569      *  parameter and the parameters of the class containing the method as
 570      *  additional type variables that get instantiated.
 571      *
 572      *  @param env         The current environment
 573      *  @param site        The type of which the method is a member.
 574      *  @param m           The method symbol.
 575      *  @param argtypes    The invocation's given value arguments.
 576      *  @param typeargtypes    The invocation's given type arguments.
 577      *  @param allowBoxing Allow boxing conversions of arguments.
 578      *  @param useVarargs Box trailing arguments into an array for varargs.
 579      */
 580     Type rawInstantiate(Env<AttrContext> env,
 581                         Type site,
 582                         Symbol m,
 583                         ResultInfo resultInfo,
 584                         List<Type> argtypes,
 585                         List<Type> typeargtypes,
 586                         boolean allowBoxing,
 587                         boolean useVarargs,
 588                         Warner warn) throws Infer.InferenceException {
 589         Type mt = types.memberType(site, m);
 590         // tvars is the list of formal type variables for which type arguments
 591         // need to inferred.
 592         List<Type> tvars = List.nil();
 593         if (typeargtypes == null) typeargtypes = List.nil();
 594         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
 595             // This is not a polymorphic method, but typeargs are supplied
 596             // which is fine, see JLS 15.12.2.1
 597         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
 598             ForAll pmt = (ForAll) mt;
 599             if (typeargtypes.length() != pmt.tvars.length())
 600                  // not enough args
 601                 throw new InapplicableMethodException(diags.fragment(Fragments.WrongNumberTypeArgs(Integer.toString(pmt.tvars.length()))), dumpStacktraceOnError);
 602             // Check type arguments are within bounds
 603             List<Type> formals = pmt.tvars;
 604             List<Type> actuals = typeargtypes;
 605             while (formals.nonEmpty() && actuals.nonEmpty()) {
 606                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
 607                                                 pmt.tvars, typeargtypes);
 608                 for (; bounds.nonEmpty(); bounds = bounds.tail) {
 609                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn)) {
 610                         throw new InapplicableMethodException(diags.fragment(Fragments.ExplicitParamDoNotConformToBounds(actuals.head, bounds)), dumpStacktraceOnError);
 611                     }
 612                 }
 613                 formals = formals.tail;
 614                 actuals = actuals.tail;
 615             }
 616             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
 617         } else if (mt.hasTag(FORALL)) {
 618             ForAll pmt = (ForAll) mt;
 619             List<Type> tvars1 = types.newInstances(pmt.tvars);
 620             tvars = tvars.appendList(tvars1);
 621             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
 622         }
 623 
 624         // find out whether we need to go the slow route via infer
 625         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
 626         for (List<Type> l = argtypes;
 627              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
 628              l = l.tail) {
 629             if (l.head.hasTag(FORALL)) instNeeded = true;
 630         }
 631 
 632         if (instNeeded) {
 633             return infer.instantiateMethod(env,
 634                                     tvars,
 635                                     (MethodType)mt,
 636                                     resultInfo,
 637                                     (MethodSymbol)m,
 638                                     argtypes,
 639                                     allowBoxing,
 640                                     useVarargs,
 641                                     currentResolutionContext,
 642                                     warn);
 643         }
 644 
 645         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
 646         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
 647                                 argtypes, mt.getParameterTypes(), warn);
 648         dc.complete();
 649         return mt;
 650     }
 651 
 652     Type checkMethod(Env<AttrContext> env,
 653                      Type site,
 654                      Symbol m,
 655                      ResultInfo resultInfo,
 656                      List<Type> argtypes,
 657                      List<Type> typeargtypes,
 658                      Warner warn) {
 659         MethodResolutionContext prevContext = currentResolutionContext;
 660         try {
 661             currentResolutionContext = new MethodResolutionContext();
 662             currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
 663                     AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
 664             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
 665                 //method/constructor references need special check class
 666                 //to handle inference variables in 'argtypes' (might happen
 667                 //during an unsticking round)
 668                 currentResolutionContext.methodCheck =
 669                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
 670             }
 671             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
 672             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
 673                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
 674         }
 675         finally {
 676             currentResolutionContext = prevContext;
 677         }
 678     }
 679 
 680     /** Same but returns null instead throwing a NoInstanceException
 681      */
 682     Type instantiate(Env<AttrContext> env,
 683                      Type site,
 684                      Symbol m,
 685                      ResultInfo resultInfo,
 686                      List<Type> argtypes,
 687                      List<Type> typeargtypes,
 688                      boolean allowBoxing,
 689                      boolean useVarargs,
 690                      Warner warn) {
 691         try {
 692             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
 693                                   allowBoxing, useVarargs, warn);
 694         } catch (InapplicableMethodException ex) {
 695             return null;
 696         }
 697     }
 698 
 699     /**
 700      * This interface defines an entry point that should be used to perform a
 701      * method check. A method check usually consist in determining as to whether
 702      * a set of types (actuals) is compatible with another set of types (formals).
 703      * Since the notion of compatibility can vary depending on the circumstances,
 704      * this interfaces allows to easily add new pluggable method check routines.
 705      */
 706     interface MethodCheck {
 707         /**
 708          * Main method check routine. A method check usually consist in determining
 709          * as to whether a set of types (actuals) is compatible with another set of
 710          * types (formals). If an incompatibility is found, an unchecked exception
 711          * is assumed to be thrown.
 712          */
 713         void argumentsAcceptable(Env<AttrContext> env,
 714                                 DeferredAttrContext deferredAttrContext,
 715                                 List<Type> argtypes,
 716                                 List<Type> formals,
 717                                 Warner warn);
 718 
 719         /**
 720          * Retrieve the method check object that will be used during a
 721          * most specific check.
 722          */
 723         MethodCheck mostSpecificCheck(List<Type> actuals);
 724     }
 725 
 726     /**
 727      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
 728      */
 729     enum MethodCheckDiag {
 730         /**
 731          * Actuals and formals differs in length.
 732          */
 733         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
 734         /**
 735          * An actual is incompatible with a formal.
 736          */
 737         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
 738         /**
 739          * An actual is incompatible with the varargs element type.
 740          */
 741         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
 742         /**
 743          * The varargs element type is inaccessible.
 744          */
 745         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
 746 
 747         final String basicKey;
 748         final String inferKey;
 749 
 750         MethodCheckDiag(String basicKey, String inferKey) {
 751             this.basicKey = basicKey;
 752             this.inferKey = inferKey;
 753         }
 754 
 755         String regex() {
 756             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
 757         }
 758     }
 759 
 760     /**
 761      * Dummy method check object. All methods are deemed applicable, regardless
 762      * of their formal parameter types.
 763      */
 764     MethodCheck nilMethodCheck = new MethodCheck() {
 765         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
 766             //do nothing - method always applicable regardless of actuals
 767         }
 768 
 769         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 770             return this;
 771         }
 772     };
 773 
 774     /**
 775      * Base class for 'real' method checks. The class defines the logic for
 776      * iterating through formals and actuals and provides and entry point
 777      * that can be used by subclasses in order to define the actual check logic.
 778      */
 779     abstract class AbstractMethodCheck implements MethodCheck {
 780         @Override
 781         public void argumentsAcceptable(final Env<AttrContext> env,
 782                                     DeferredAttrContext deferredAttrContext,
 783                                     List<Type> argtypes,
 784                                     List<Type> formals,
 785                                     Warner warn) {
 786             //should we expand formals?
 787             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
 788             JCTree callTree = treeForDiagnostics(env);
 789             List<JCExpression> trees = TreeInfo.args(callTree);
 790 
 791             //inference context used during this method check
 792             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
 793 
 794             Type varargsFormal = useVarargs ? formals.last() : null;
 795 
 796             if (varargsFormal == null &&
 797                     argtypes.size() != formals.size()) {
 798                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
 799             }
 800 
 801             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
 802                 DiagnosticPosition pos = trees != null ? trees.head : null;
 803                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
 804                 argtypes = argtypes.tail;
 805                 formals = formals.tail;
 806                 trees = trees != null ? trees.tail : trees;
 807             }
 808 
 809             if (formals.head != varargsFormal) {
 810                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
 811             }
 812 
 813             if (useVarargs) {
 814                 //note: if applicability check is triggered by most specific test,
 815                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
 816                 final Type elt = types.elemtype(varargsFormal);
 817                 while (argtypes.nonEmpty()) {
 818                     DiagnosticPosition pos = trees != null ? trees.head : null;
 819                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
 820                     argtypes = argtypes.tail;
 821                     trees = trees != null ? trees.tail : trees;
 822                 }
 823             }
 824         }
 825 
 826             // where
 827             private JCTree treeForDiagnostics(Env<AttrContext> env) {
 828                 return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
 829             }
 830 
 831         /**
 832          * Does the actual argument conforms to the corresponding formal?
 833          */
 834         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
 835 
 836         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
 837             boolean inferDiag = inferenceContext != infer.emptyContext;
 838             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
 839                 Object[] args2 = new Object[args.length + 1];
 840                 System.arraycopy(args, 0, args2, 1, args.length);
 841                 args2[0] = inferenceContext.inferenceVars();
 842                 args = args2;
 843             }
 844             String key = inferDiag ? diag.inferKey : diag.basicKey;
 845             throw inferDiag ?
 846                 infer.error(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args)) :
 847                 getMethodCheckFailure().setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
 848         }
 849 
 850         /**
 851          * To eliminate the overhead associated with allocating an exception object in such an
 852          * hot execution path, we use flyweight pattern - and share the same exception instance
 853          * across multiple method check failures.
 854          */
 855         class SharedInapplicableMethodException extends InapplicableMethodException {
 856             private static final long serialVersionUID = 0;
 857 
 858             SharedInapplicableMethodException() {
 859                 super(null, Resolve.this.dumpStacktraceOnError);
 860             }
 861 
 862             SharedInapplicableMethodException setMessage(JCDiagnostic details) {
 863                 this.diagnostic = details;
 864                 return this;
 865             }
 866         }
 867 
 868         private SharedInapplicableMethodException methodCheckFailure;
 869 
 870         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 871             return nilMethodCheck;
 872         }
 873 
 874         private SharedInapplicableMethodException getMethodCheckFailure() {
 875             return methodCheckFailure == null ? methodCheckFailure = new SharedInapplicableMethodException() : methodCheckFailure;
 876         }
 877     }
 878 
 879     /**
 880      * Arity-based method check. A method is applicable if the number of actuals
 881      * supplied conforms to the method signature.
 882      */
 883     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
 884         @Override
 885         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 886             //do nothing - actual always compatible to formals
 887         }
 888 
 889         @Override
 890         public String toString() {
 891             return "arityMethodCheck";
 892         }
 893     };
 894 
 895     /**
 896      * Main method applicability routine. Given a list of actual types A,
 897      * a list of formal types F, determines whether the types in A are
 898      * compatible (by method invocation conversion) with the types in F.
 899      *
 900      * Since this routine is shared between overload resolution and method
 901      * type-inference, a (possibly empty) inference context is used to convert
 902      * formal types to the corresponding 'undet' form ahead of a compatibility
 903      * check so that constraints can be propagated and collected.
 904      *
 905      * Moreover, if one or more types in A is a deferred type, this routine uses
 906      * DeferredAttr in order to perform deferred attribution. If one or more actual
 907      * deferred types are stuck, they are placed in a queue and revisited later
 908      * after the remainder of the arguments have been seen. If this is not sufficient
 909      * to 'unstuck' the argument, a cyclic inference error is called out.
 910      *
 911      * A method check handler (see above) is used in order to report errors.
 912      */
 913     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
 914 
 915         @Override
 916         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 917             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
 918             mresult.check(pos, actual);
 919         }
 920 
 921         @Override
 922         public void argumentsAcceptable(final Env<AttrContext> env,
 923                                     DeferredAttrContext deferredAttrContext,
 924                                     List<Type> argtypes,
 925                                     List<Type> formals,
 926                                     Warner warn) {
 927             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
 928             // should we check varargs element type accessibility?
 929             if (deferredAttrContext.phase.isVarargsRequired()) {
 930                 if (deferredAttrContext.mode == AttrMode.CHECK) {
 931                     varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
 932                 }
 933             }
 934         }
 935 
 936         /**
 937          * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
 938          * varargs element type of either the method invocation type signature (after inference completes)
 939          * or the method declaration signature (before inference completes).
 940          */
 941         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
 942             if (inferenceContext.free(t)) {
 943                 inferenceContext.addFreeTypeListener(List.of(t),
 944                         solvedContext -> varargsAccessible(env, solvedContext.asInstType(t), solvedContext));
 945             } else {
 946                 if (!isAccessible(env, types.erasure(t))) {
 947                     Symbol location = env.enclClass.sym;
 948                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
 949                 }
 950             }
 951         }
 952 
 953         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
 954                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
 955             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
 956                 MethodCheckDiag methodDiag = varargsCheck ?
 957                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
 958 
 959                 @Override
 960                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 961                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
 962                 }
 963             };
 964             return new MethodResultInfo(to, checkContext);
 965         }
 966 
 967         @Override
 968         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 969             return new MostSpecificCheck(actuals);
 970         }
 971 
 972         @Override
 973         public String toString() {
 974             return "resolveMethodCheck";
 975         }
 976     };
 977 
 978     /**
 979      * This class handles method reference applicability checks; since during
 980      * these checks it's sometime possible to have inference variables on
 981      * the actual argument types list, the method applicability check must be
 982      * extended so that inference variables are 'opened' as needed.
 983      */
 984     class MethodReferenceCheck extends AbstractMethodCheck {
 985 
 986         InferenceContext pendingInferenceContext;
 987 
 988         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
 989             this.pendingInferenceContext = pendingInferenceContext;
 990         }
 991 
 992         @Override
 993         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 994             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
 995             mresult.check(pos, actual);
 996         }
 997 
 998         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
 999                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
1000             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
1001                 MethodCheckDiag methodDiag = varargsCheck ?
1002                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
1003 
1004                 @Override
1005                 public boolean compatible(Type found, Type req, Warner warn) {
1006                     found = pendingInferenceContext.asUndetVar(found);
1007                     if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
1008                         req = types.boxedClass(req).type;
1009                     }
1010                     return super.compatible(found, req, warn);
1011                 }
1012 
1013                 @Override
1014                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1015                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
1016                 }
1017             };
1018             return new MethodResultInfo(to, checkContext);
1019         }
1020 
1021         @Override
1022         public MethodCheck mostSpecificCheck(List<Type> actuals) {
1023             return new MostSpecificCheck(actuals);
1024         }
1025 
1026         @Override
1027         public String toString() {
1028             return "MethodReferenceCheck";
1029         }
1030     }
1031 
1032     /**
1033      * Check context to be used during method applicability checks. A method check
1034      * context might contain inference variables.
1035      */
1036     abstract class MethodCheckContext implements CheckContext {
1037 
1038         boolean strict;
1039         DeferredAttrContext deferredAttrContext;
1040         Warner rsWarner;
1041 
1042         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
1043            this.strict = strict;
1044            this.deferredAttrContext = deferredAttrContext;
1045            this.rsWarner = rsWarner;
1046         }
1047 
1048         public boolean compatible(Type found, Type req, Warner warn) {
1049             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
1050             return strict ?
1051                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
1052                     types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
1053         }
1054 
1055         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1056             throw new InapplicableMethodException(details, Resolve.this.dumpStacktraceOnError);
1057         }
1058 
1059         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
1060             return rsWarner;
1061         }
1062 
1063         public InferenceContext inferenceContext() {
1064             return deferredAttrContext.inferenceContext;
1065         }
1066 
1067         public DeferredAttrContext deferredAttrContext() {
1068             return deferredAttrContext;
1069         }
1070 
1071         @Override
1072         public String toString() {
1073             return "MethodCheckContext";
1074         }
1075     }
1076 
1077     /**
1078      * ResultInfo class to be used during method applicability checks. Check
1079      * for deferred types goes through special path.
1080      */
1081     class MethodResultInfo extends ResultInfo {
1082 
1083         public MethodResultInfo(Type pt, CheckContext checkContext) {
1084             attr.super(KindSelector.VAL, pt, checkContext);
1085         }
1086 
1087         @Override
1088         protected Type check(DiagnosticPosition pos, Type found) {
1089             if (found.hasTag(DEFERRED)) {
1090                 DeferredType dt = (DeferredType)found;
1091                 return dt.check(this);
1092             } else {
1093                 Type uResult = U(found);
1094                 Type capturedType = pos == null || pos.getTree() == null ?
1095                         types.capture(uResult) :
1096                         checkContext.inferenceContext()
1097                             .cachedCapture(pos.getTree(), uResult, true);
1098                 return super.check(pos, chk.checkNonVoid(pos, capturedType));
1099             }
1100         }
1101 
1102         /**
1103          * javac has a long-standing 'simplification' (see 6391995):
1104          * given an actual argument type, the method check is performed
1105          * on its upper bound. This leads to inconsistencies when an
1106          * argument type is checked against itself. For example, given
1107          * a type-variable T, it is not true that {@code U(T) <: T},
1108          * so we need to guard against that.
1109          */
1110         private Type U(Type found) {
1111             return found == pt ?
1112                     found : types.cvarUpperBound(found);
1113         }
1114 
1115         @Override
1116         protected MethodResultInfo dup(Type newPt) {
1117             return new MethodResultInfo(newPt, checkContext);
1118         }
1119 
1120         @Override
1121         protected ResultInfo dup(CheckContext newContext) {
1122             return new MethodResultInfo(pt, newContext);
1123         }
1124 
1125         @Override
1126         protected ResultInfo dup(Type newPt, CheckContext newContext) {
1127             return new MethodResultInfo(newPt, newContext);
1128         }
1129     }
1130 
1131     /**
1132      * Most specific method applicability routine. Given a list of actual types A,
1133      * a list of formal types F1, and a list of formal types F2, the routine determines
1134      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1135      * argument types A.
1136      */
1137     class MostSpecificCheck implements MethodCheck {
1138 
1139         List<Type> actuals;
1140 
1141         MostSpecificCheck(List<Type> actuals) {
1142             this.actuals = actuals;
1143         }
1144 
1145         @Override
1146         public void argumentsAcceptable(final Env<AttrContext> env,
1147                                     DeferredAttrContext deferredAttrContext,
1148                                     List<Type> formals1,
1149                                     List<Type> formals2,
1150                                     Warner warn) {
1151             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1152             while (formals2.nonEmpty()) {
1153                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1154                 mresult.check(null, formals1.head);
1155                 formals1 = formals1.tail;
1156                 formals2 = formals2.tail;
1157                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
1158             }
1159         }
1160 
1161        /**
1162         * Create a method check context to be used during the most specific applicability check
1163         */
1164         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1165                Warner rsWarner, Type actual) {
1166             return attr.new ResultInfo(KindSelector.VAL, to,
1167                    new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1168         }
1169 
1170         /**
1171          * Subclass of method check context class that implements most specific
1172          * method conversion. If the actual type under analysis is a deferred type
1173          * a full blown structural analysis is carried out.
1174          */
1175         class MostSpecificCheckContext extends MethodCheckContext {
1176 
1177             Type actual;
1178 
1179             public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1180                 super(true, deferredAttrContext, rsWarner);
1181                 this.actual = actual;
1182             }
1183 
1184             public boolean compatible(Type found, Type req, Warner warn) {
1185                 if (unrelatedFunctionalInterfaces(found, req) &&
1186                     (actual != null && actual.getTag() == DEFERRED)) {
1187                     DeferredType dt = (DeferredType) actual;
1188                     JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
1189                     if (speculativeTree != deferredAttr.stuckTree) {
1190                         return functionalInterfaceMostSpecific(found, req, speculativeTree);
1191                     }
1192                 }
1193                 return compatibleBySubtyping(found, req);
1194             }
1195 
1196             private boolean compatibleBySubtyping(Type found, Type req) {
1197                 if (!strict && found.isPrimitive() != req.isPrimitive()) {
1198                     found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1199                 }
1200                 return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1201             }
1202 
1203             /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1204             private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1205                 return types.isFunctionalInterface(t.tsym) &&
1206                        types.isFunctionalInterface(s.tsym) &&
1207                        unrelatedInterfaces(t, s);
1208             }
1209 
1210             /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/
1211             private boolean unrelatedInterfaces(Type t, Type s) {
1212                 if (t.isCompound()) {
1213                     for (Type ti : types.interfaces(t)) {
1214                         if (!unrelatedInterfaces(ti, s)) {
1215                             return false;
1216                         }
1217                     }
1218                     return true;
1219                 } else if (s.isCompound()) {
1220                     for (Type si : types.interfaces(s)) {
1221                         if (!unrelatedInterfaces(t, si)) {
1222                             return false;
1223                         }
1224                     }
1225                     return true;
1226                 } else {
1227                     return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null;
1228                 }
1229             }
1230 
1231             /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1232             private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1233                 Type tDesc;
1234                 Type tDescNoCapture;
1235                 Type sDesc;
1236                 try {
1237                     tDesc = types.findDescriptorType(types.capture(t));
1238                     tDescNoCapture = types.findDescriptorType(t);
1239                     sDesc = types.findDescriptorType(s);
1240                 } catch (Types.FunctionDescriptorLookupError ex) {
1241                     // don't report, a more meaningful error should be reported upstream
1242                     return false;
1243                 }
1244                 final List<Type> tTypeParams = tDesc.getTypeArguments();
1245                 final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments();
1246                 final List<Type> sTypeParams = sDesc.getTypeArguments();
1247 
1248                 // compare type parameters
1249                 if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) {
1250                     return false;
1251                 }
1252                 // can't use Types.hasSameBounds on sDesc because bounds may have ivars
1253                 List<Type> tIter = tTypeParams;
1254                 List<Type> sIter = sTypeParams;
1255                 while (tIter.nonEmpty() && sIter.nonEmpty()) {
1256                     Type tBound = tIter.head.getUpperBound();
1257                     Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
1258                     if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
1259                         return false;
1260                     }
1261                     if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
1262                         return false;
1263                     }
1264                     tIter = tIter.tail;
1265                     sIter = sIter.tail;
1266                 }
1267                 if (!tIter.isEmpty() || !sIter.isEmpty()) {
1268                     return false;
1269                 }
1270 
1271                 // compare parameters
1272                 List<Type> tParams = tDesc.getParameterTypes();
1273                 List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes();
1274                 List<Type> sParams = sDesc.getParameterTypes();
1275                 while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) {
1276                     Type tParam = tParams.head;
1277                     Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams);
1278                     Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
1279                     if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
1280                         return false;
1281                     }
1282                     if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) {
1283                         return false;
1284                     }
1285                     if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) {
1286                         return false;
1287                     }
1288                     tParams = tParams.tail;
1289                     tParamsNoCapture = tParamsNoCapture.tail;
1290                     sParams = sParams.tail;
1291                 }
1292                 if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) {
1293                     return false;
1294                 }
1295 
1296                 // compare returns
1297                 Type tRet = tDesc.getReturnType();
1298                 Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
1299                 if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
1300                     return false;
1301                 }
1302                 MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
1303                 msc.scan(tree);
1304                 return msc.result;
1305             }
1306 
1307             /**
1308              * Tests whether one functional interface type can be considered more specific
1309              * than another unrelated functional interface type for the scanned expression.
1310              */
1311             class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
1312 
1313                 final Type tRet;
1314                 final Type sRet;
1315                 boolean result;
1316 
1317                 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1318                 MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
1319                     this.tRet = tRet;
1320                     this.sRet = sRet;
1321                     result = true;
1322                 }
1323 
1324                 @Override
1325                 void skip(JCTree tree) {
1326                     result = false;
1327                 }
1328 
1329                 @Override
1330                 public void visitConditional(JCConditional tree) {
1331                     scan(asExpr(tree.truepart));
1332                     scan(asExpr(tree.falsepart));
1333                 }
1334 
1335                 @Override
1336                 public void visitReference(JCMemberReference tree) {
1337                     if (sRet.hasTag(VOID)) {
1338                         // do nothing
1339                     } else if (tRet.hasTag(VOID)) {
1340                         result = false;
1341                     } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
1342                         boolean retValIsPrimitive =
1343                                 tree.refPolyKind == PolyKind.STANDALONE &&
1344                                 tree.sym.type.getReturnType().isPrimitive();
1345                         result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1346                                   (retValIsPrimitive != sRet.isPrimitive());
1347                     } else {
1348                         result &= compatibleBySubtyping(tRet, sRet);
1349                     }
1350                 }
1351 
1352                 @Override
1353                 public void visitParens(JCParens tree) {
1354                     scan(asExpr(tree.expr));
1355                 }
1356 
1357                 @Override
1358                 public void visitLambda(JCLambda tree) {
1359                     if (sRet.hasTag(VOID)) {
1360                         // do nothing
1361                     } else if (tRet.hasTag(VOID)) {
1362                         result = false;
1363                     } else {
1364                         List<JCExpression> lambdaResults = lambdaResults(tree);
1365                         if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
1366                             for (JCExpression expr : lambdaResults) {
1367                                 result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
1368                             }
1369                         } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
1370                             for (JCExpression expr : lambdaResults) {
1371                                 boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1372                                 result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1373                                         (retValIsPrimitive != sRet.isPrimitive());
1374                             }
1375                         } else {
1376                             result &= compatibleBySubtyping(tRet, sRet);
1377                         }
1378                     }
1379                 }
1380                 //where
1381 
1382                 private List<JCExpression> lambdaResults(JCLambda lambda) {
1383                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1384                         return List.of(asExpr((JCExpression) lambda.body));
1385                     } else {
1386                         final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1387                         DeferredAttr.LambdaReturnScanner lambdaScanner =
1388                                 new DeferredAttr.LambdaReturnScanner() {
1389                                     @Override
1390                                     public void visitReturn(JCReturn tree) {
1391                                         if (tree.expr != null) {
1392                                             buffer.append(asExpr(tree.expr));
1393                                         }
1394                                     }
1395                                 };
1396                         lambdaScanner.scan(lambda.body);
1397                         return buffer.toList();
1398                     }
1399                 }
1400 
1401                 private JCExpression asExpr(JCExpression expr) {
1402                     if (expr.type.hasTag(DEFERRED)) {
1403                         JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
1404                         if (speculativeTree != deferredAttr.stuckTree) {
1405                             expr = (JCExpression)speculativeTree;
1406                         }
1407                     }
1408                     return expr;
1409                 }
1410             }
1411 
1412         }
1413 
1414         public MethodCheck mostSpecificCheck(List<Type> actuals) {
1415             Assert.error("Cannot get here!");
1416             return null;
1417         }
1418     }
1419 
1420     public static class InapplicableMethodException extends CompilerInternalException {
1421         private static final long serialVersionUID = 0;
1422 
1423         transient JCDiagnostic diagnostic;
1424 
1425         InapplicableMethodException(JCDiagnostic diag, boolean dumpStackTraceOnError) {
1426             super(dumpStackTraceOnError);
1427             this.diagnostic = diag;
1428         }
1429 
1430         public JCDiagnostic getDiagnostic() {
1431             return diagnostic;
1432         }
1433     }
1434 
1435 /* ***************************************************************************
1436  *  Symbol lookup
1437  *  the following naming conventions for arguments are used
1438  *
1439  *       env      is the environment where the symbol was mentioned
1440  *       site     is the type of which the symbol is a member
1441  *       name     is the symbol's name
1442  *                if no arguments are given
1443  *       argtypes are the value arguments, if we search for a method
1444  *
1445  *  If no symbol was found, a ResolveError detailing the problem is returned.
1446  ****************************************************************************/
1447 
1448     /** Find field. Synthetic fields are always skipped.
1449      *  @param env     The current environment.
1450      *  @param site    The original type from where the selection takes place.
1451      *  @param name    The name of the field.
1452      *  @param c       The class to search for the field. This is always
1453      *                 a superclass or implemented interface of site's class.
1454      */
1455     Symbol findField(Env<AttrContext> env,
1456                      Type site,
1457                      Name name,
1458                      TypeSymbol c) {
1459         while (c.type.hasTag(TYPEVAR))
1460             c = c.type.getUpperBound().tsym;
1461         Symbol bestSoFar = varNotFound;
1462         Symbol sym;
1463         for (Symbol s : c.members().getSymbolsByName(name)) {
1464             if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1465                 return isAccessible(env, site, s)
1466                     ? s : new AccessError(env, site, s);
1467             }
1468         }
1469         Type st = types.supertype(c.type);
1470         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1471             sym = findField(env, site, name, st.tsym);
1472             bestSoFar = bestOf(bestSoFar, sym);
1473         }
1474         for (List<Type> l = types.interfaces(c.type);
1475              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1476              l = l.tail) {
1477             sym = findField(env, site, name, l.head.tsym);
1478             if (bestSoFar.exists() && sym.exists() &&
1479                 sym.owner != bestSoFar.owner)
1480                 bestSoFar = new AmbiguityError(bestSoFar, sym);
1481             else
1482                 bestSoFar = bestOf(bestSoFar, sym);
1483         }
1484         return bestSoFar;
1485     }
1486 
1487     /** Resolve a field identifier, throw a fatal error if not found.
1488      *  @param pos       The position to use for error reporting.
1489      *  @param env       The environment current at the method invocation.
1490      *  @param site      The type of the qualifying expression, in which
1491      *                   identifier is searched.
1492      *  @param name      The identifier's name.
1493      */
1494     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1495                                           Type site, Name name) {
1496         Symbol sym = findField(env, site, name, site.tsym);
1497         if (sym.kind == VAR) return (VarSymbol)sym;
1498         else throw new FatalError(
1499                  diags.fragment(Fragments.FatalErrCantLocateField(name)));
1500     }
1501 
1502     /** Find unqualified variable or field with given name.
1503      *  Synthetic fields always skipped.
1504      *  @param pos       The position to use for error reporting.
1505      *  @param env     The current environment.
1506      *  @param name    The name of the variable or field.
1507      */
1508     Symbol findVar(DiagnosticPosition pos, Env<AttrContext> env, Name name) {
1509         Symbol bestSoFar = varNotFound;
1510         Env<AttrContext> env1 = env;
1511         boolean staticOnly = false;
1512         while (env1.outer != null) {
1513             Symbol sym = null;
1514             for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1515                 if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1516                     sym = s;
1517                     if (staticOnly) {
1518                         return new StaticError(sym);
1519                     }
1520                     break;
1521                 }
1522             }
1523             if (isStatic(env1)) staticOnly = true;
1524             if (sym == null) {
1525                 sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1526             }
1527             if (sym.exists()) {
1528                 if (sym.kind == VAR &&
1529                         sym.owner.kind == TYP &&
1530                         (sym.flags() & STATIC) == 0) {
1531                     if (staticOnly)
1532                         return new StaticError(sym);
1533                     if (env1.info.ctorPrologue && !isAllowedEarlyReference(pos, env1, (VarSymbol)sym))
1534                         return new RefBeforeCtorCalledError(sym);
1535                 }
1536                 return sym;
1537             } else {
1538                 bestSoFar = bestOf(bestSoFar, sym);
1539             }
1540 
1541             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1542             env1 = env1.outer;
1543         }
1544 
1545         Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1546         if (sym.exists())
1547             return sym;
1548         if (bestSoFar.exists())
1549             return bestSoFar;
1550 
1551         Symbol origin = null;
1552         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1553             for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1554                 if (currentSymbol.kind != VAR)
1555                     continue;
1556                 // invariant: sym.kind == Symbol.Kind.VAR
1557                 if (!bestSoFar.kind.isResolutionError() &&
1558                     currentSymbol.owner != bestSoFar.owner)
1559                     return new AmbiguityError(bestSoFar, currentSymbol);
1560                 else if (!bestSoFar.kind.betterThan(VAR)) {
1561                     origin = sc.getOrigin(currentSymbol).owner;
1562                     bestSoFar = isAccessible(env, origin.type, currentSymbol)
1563                         ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1564                 }
1565             }
1566             if (bestSoFar.exists()) break;
1567         }
1568         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1569             return bestSoFar.clone(origin);
1570         else
1571             return bestSoFar;
1572     }
1573 
1574     Warner noteWarner = new Warner();
1575 
1576     /** Select the best method for a call site among two choices.
1577      *  @param env              The current environment.
1578      *  @param site             The original type from where the
1579      *                          selection takes place.
1580      *  @param argtypes         The invocation's value arguments,
1581      *  @param typeargtypes     The invocation's type arguments,
1582      *  @param sym              Proposed new best match.
1583      *  @param bestSoFar        Previously found best match.
1584      *  @param allowBoxing Allow boxing conversions of arguments.
1585      *  @param useVarargs Box trailing arguments into an array for varargs.
1586      */
1587     @SuppressWarnings("fallthrough")
1588     Symbol selectBest(Env<AttrContext> env,
1589                       Type site,
1590                       List<Type> argtypes,
1591                       List<Type> typeargtypes,
1592                       Symbol sym,
1593                       Symbol bestSoFar,
1594                       boolean allowBoxing,
1595                       boolean useVarargs) {
1596         if (sym.kind == ERR ||
1597                 (site.tsym != sym.owner && !sym.isInheritedIn(site.tsym, types)) ||
1598                 !notOverriddenIn(site, sym)) {
1599             return bestSoFar;
1600         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1601             return bestSoFar.kind.isResolutionError() ?
1602                     new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1603                     bestSoFar;
1604         }
1605         Assert.check(!sym.kind.isResolutionError());
1606         try {
1607             types.noWarnings.clear();
1608             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1609                                allowBoxing, useVarargs, types.noWarnings);
1610             currentResolutionContext.addApplicableCandidate(sym, mt);
1611         } catch (InapplicableMethodException ex) {
1612             currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1613             // Currently, an InapplicableMethodException occurs.
1614             // If bestSoFar.kind was ABSENT_MTH, return an InapplicableSymbolError(kind is WRONG_MTH).
1615             // If bestSoFar.kind was HIDDEN(AccessError)/WRONG_MTH/WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS).
1616             // See JDK-8255968 for more information.
1617             switch (bestSoFar.kind) {
1618                 case ABSENT_MTH:
1619                     return new InapplicableSymbolError(currentResolutionContext);
1620                 case HIDDEN:
1621                     if (bestSoFar instanceof AccessError accessError) {
1622                         // Add the JCDiagnostic of previous AccessError to the currentResolutionContext
1623                         // and construct InapplicableSymbolsError.
1624                         // Intentionally fallthrough.
1625                         currentResolutionContext.addInapplicableCandidate(accessError.sym,
1626                                 accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes));
1627                     } else {
1628                         return bestSoFar;
1629                     }
1630                 case WRONG_MTH:
1631                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1632                 default:
1633                     return bestSoFar;
1634             }
1635         }
1636         if (!isAccessible(env, site, sym)) {
1637             AccessError curAccessError = new AccessError(env, site, sym);
1638             JCDiagnostic curDiagnostic = curAccessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes);
1639             // Currently, an AccessError occurs.
1640             // If bestSoFar.kind was ABSENT_MTH, return an AccessError(kind is HIDDEN).
1641             // If bestSoFar.kind was HIDDEN(AccessError), WRONG_MTH, WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS).
1642             // See JDK-8255968 for more information.
1643             if (bestSoFar.kind == ABSENT_MTH) {
1644                 bestSoFar = curAccessError;
1645             } else if (bestSoFar.kind == WRONG_MTH) {
1646                 // Add the JCDiagnostic of current AccessError to the currentResolutionContext
1647                 // and construct InapplicableSymbolsError.
1648                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1649                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1650             } else if (bestSoFar.kind == WRONG_MTHS) {
1651                 // Add the JCDiagnostic of current AccessError to the currentResolutionContext
1652                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1653             } else if (bestSoFar.kind == HIDDEN && bestSoFar instanceof AccessError accessError) {
1654                 // Add the JCDiagnostics of previous and current AccessError to the currentResolutionContext
1655                 // and construct InapplicableSymbolsError.
1656                 currentResolutionContext.addInapplicableCandidate(accessError.sym,
1657                         accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes));
1658                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1659                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1660             }
1661             return bestSoFar;
1662         }
1663         return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1664             ? sym
1665             : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1666     }
1667 
1668     /* Return the most specific of the two methods for a call,
1669      *  given that both are accessible and applicable.
1670      *  @param m1               A new candidate for most specific.
1671      *  @param m2               The previous most specific candidate.
1672      *  @param env              The current environment.
1673      *  @param site             The original type from where the selection
1674      *                          takes place.
1675      *  @param allowBoxing Allow boxing conversions of arguments.
1676      *  @param useVarargs Box trailing arguments into an array for varargs.
1677      */
1678     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1679                         Symbol m2,
1680                         Env<AttrContext> env,
1681                         final Type site,
1682                         boolean useVarargs) {
1683         switch (m2.kind) {
1684         case MTH:
1685             if (m1 == m2) return m1;
1686             boolean m1SignatureMoreSpecific =
1687                     signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1688             boolean m2SignatureMoreSpecific =
1689                     signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1690             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1691                 Type mt1 = types.memberType(site, m1);
1692                 Type mt2 = types.memberType(site, m2);
1693                 if (!types.overrideEquivalent(mt1, mt2))
1694                     return ambiguityError(m1, m2);
1695 
1696                 // same signature; select (a) the non-bridge method, or
1697                 // (b) the one that overrides the other, or (c) the concrete
1698                 // one, or (d) merge both abstract signatures
1699                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1700                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1701 
1702                 if (m1.baseSymbol() == m2.baseSymbol()) {
1703                     // this is the same imported symbol which has been cloned twice.
1704                     // Return the first one (either will do).
1705                     return m1;
1706                 }
1707 
1708                 // if one overrides or hides the other, use it
1709                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1710                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1711                 // the two owners can never be the same if the target methods are compiled from source,
1712                 // but we need to protect against cases where the methods are defined in some classfile
1713                 // and make sure we issue an ambiguity error accordingly (by skipping the logic below).
1714                 if (m1Owner != m2Owner) {
1715                     if (types.asSuper(m1Owner.type, m2Owner) != null &&
1716                         ((m1.owner.flags_field & INTERFACE) == 0 ||
1717                          (m2.owner.flags_field & INTERFACE) != 0) &&
1718                         m1.overrides(m2, m1Owner, types, false))
1719                         return m1;
1720                     if (types.asSuper(m2Owner.type, m1Owner) != null &&
1721                         ((m2.owner.flags_field & INTERFACE) == 0 ||
1722                          (m1.owner.flags_field & INTERFACE) != 0) &&
1723                         m2.overrides(m1, m2Owner, types, false))
1724                         return m2;
1725                 }
1726                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1727                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1728                 if (m1Abstract && !m2Abstract) return m2;
1729                 if (m2Abstract && !m1Abstract) return m1;
1730                 // both abstract or both concrete
1731                 return ambiguityError(m1, m2);
1732             }
1733             if (m1SignatureMoreSpecific) return m1;
1734             if (m2SignatureMoreSpecific) return m2;
1735             return ambiguityError(m1, m2);
1736         case AMBIGUOUS:
1737             //compare m1 to ambiguous methods in m2
1738             AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1739             boolean m1MoreSpecificThanAnyAmbiguous = true;
1740             boolean allAmbiguousMoreSpecificThanM1 = true;
1741             for (Symbol s : e.ambiguousSyms) {
1742                 Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1743                 m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1744                 allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1745             }
1746             if (m1MoreSpecificThanAnyAmbiguous)
1747                 return m1;
1748             //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1749             //more specific than m1, add it as a new ambiguous method:
1750             if (!allAmbiguousMoreSpecificThanM1)
1751                 e.addAmbiguousSymbol(m1);
1752             return e;
1753         default:
1754             throw new AssertionError();
1755         }
1756     }
1757     //where
1758     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1759         noteWarner.clear();
1760         int maxLength = Math.max(
1761                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1762                             m2.type.getParameterTypes().length());
1763         MethodResolutionContext prevResolutionContext = currentResolutionContext;
1764         try {
1765             currentResolutionContext = new MethodResolutionContext();
1766             currentResolutionContext.step = prevResolutionContext.step;
1767             currentResolutionContext.methodCheck =
1768                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1769             Type mst = instantiate(env, site, m2, null,
1770                     adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1771                     false, useVarargs, noteWarner);
1772             return mst != null &&
1773                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1774         } finally {
1775             currentResolutionContext = prevResolutionContext;
1776         }
1777     }
1778 
1779     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1780         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1781             Type varargsElem = types.elemtype(args.last());
1782             if (varargsElem == null) {
1783                 Assert.error("Bad varargs = " + args.last() + " " + msym);
1784             }
1785             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1786             while (newArgs.length() < length) {
1787                 newArgs = newArgs.append(newArgs.last());
1788             }
1789             return newArgs;
1790         } else {
1791             return args;
1792         }
1793     }
1794     //where
1795     Symbol ambiguityError(Symbol m1, Symbol m2) {
1796         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1797             return (m1.flags() & CLASH) == 0 ? m1 : m2;
1798         } else {
1799             return new AmbiguityError(m1, m2);
1800         }
1801     }
1802 
1803     Symbol findMethodInScope(Env<AttrContext> env,
1804             Type site,
1805             Name name,
1806             List<Type> argtypes,
1807             List<Type> typeargtypes,
1808             Scope sc,
1809             Symbol bestSoFar,
1810             boolean allowBoxing,
1811             boolean useVarargs,
1812             boolean abstractok) {
1813         for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1814             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1815                     bestSoFar, allowBoxing, useVarargs);
1816         }
1817         return bestSoFar;
1818     }
1819     //where
1820         class LookupFilter implements Predicate<Symbol> {
1821 
1822             boolean abstractOk;
1823 
1824             LookupFilter(boolean abstractOk) {
1825                 this.abstractOk = abstractOk;
1826             }
1827 
1828             @Override
1829             public boolean test(Symbol s) {
1830                 long flags = s.flags();
1831                 return s.kind == MTH &&
1832                         (flags & SYNTHETIC) == 0 &&
1833                         (abstractOk ||
1834                         (flags & DEFAULT) != 0 ||
1835                         (flags & ABSTRACT) == 0);
1836             }
1837         }
1838 
1839     /** Find best qualified method matching given name, type and value
1840      *  arguments.
1841      *  @param env       The current environment.
1842      *  @param site      The original type from where the selection
1843      *                   takes place.
1844      *  @param name      The method's name.
1845      *  @param argtypes  The method's value arguments.
1846      *  @param typeargtypes The method's type arguments
1847      *  @param allowBoxing Allow boxing conversions of arguments.
1848      *  @param useVarargs Box trailing arguments into an array for varargs.
1849      */
1850     Symbol findMethod(Env<AttrContext> env,
1851                       Type site,
1852                       Name name,
1853                       List<Type> argtypes,
1854                       List<Type> typeargtypes,
1855                       boolean allowBoxing,
1856                       boolean useVarargs) {
1857         Symbol bestSoFar = methodNotFound;
1858         bestSoFar = findMethod(env,
1859                           site,
1860                           name,
1861                           argtypes,
1862                           typeargtypes,
1863                           site.tsym.type,
1864                           bestSoFar,
1865                           allowBoxing,
1866                           useVarargs);
1867         if (bestSoFar.kind == AMBIGUOUS) {
1868             AmbiguityError a_err = (AmbiguityError)bestSoFar.baseSymbol();
1869             bestSoFar = a_err.mergeAbstracts(site);
1870         }
1871         return bestSoFar;
1872     }
1873     // where
1874     private Symbol findMethod(Env<AttrContext> env,
1875                               Type site,
1876                               Name name,
1877                               List<Type> argtypes,
1878                               List<Type> typeargtypes,
1879                               Type intype,
1880                               Symbol bestSoFar,
1881                               boolean allowBoxing,
1882                               boolean useVarargs) {
1883         @SuppressWarnings({"unchecked","rawtypes"})
1884         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1885 
1886         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1887         boolean isInterface = site.tsym.isInterface();
1888         for (TypeSymbol s : isInterface ? List.of(intype.tsym) : superclasses(intype)) {
1889             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1890                     s.members(), bestSoFar, allowBoxing, useVarargs, true);
1891             if (name == names.init) return bestSoFar;
1892             iphase = (iphase == null) ? null : iphase.update(s, this);
1893             if (iphase != null) {
1894                 for (Type itype : types.interfaces(s.type)) {
1895                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1896                 }
1897             }
1898         }
1899 
1900         Symbol concrete = bestSoFar.kind.isValid() &&
1901                 (bestSoFar.flags() & ABSTRACT) == 0 ?
1902                 bestSoFar : methodNotFound;
1903 
1904         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1905             //keep searching for abstract methods
1906             for (Type itype : itypes[iphase2.ordinal()]) {
1907                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1908                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1909                         (itype.tsym.flags() & DEFAULT) == 0) continue;
1910                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1911                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1912                 if (concrete != bestSoFar &&
1913                     concrete.kind.isValid() &&
1914                     bestSoFar.kind.isValid() &&
1915                         types.isSubSignature(concrete.type, bestSoFar.type)) {
1916                     //this is an hack - as javac does not do full membership checks
1917                     //most specific ends up comparing abstract methods that might have
1918                     //been implemented by some concrete method in a subclass and,
1919                     //because of raw override, it is possible for an abstract method
1920                     //to be more specific than the concrete method - so we need
1921                     //to explicitly call that out (see CR 6178365)
1922                     bestSoFar = concrete;
1923                 }
1924             }
1925         }
1926         if (isInterface && bestSoFar.kind.isResolutionError()) {
1927             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1928                     syms.objectType.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1929             if (bestSoFar.kind.isValid()) {
1930                 Symbol baseSymbol = bestSoFar;
1931                 bestSoFar = new MethodSymbol(bestSoFar.flags_field, bestSoFar.name, bestSoFar.type, intype.tsym) {
1932                     @Override
1933                     public Symbol baseSymbol() {
1934                         return baseSymbol;
1935                     }
1936                 };
1937             }
1938         }
1939         return bestSoFar;
1940     }
1941 
1942     enum InterfaceLookupPhase {
1943         ABSTRACT_OK() {
1944             @Override
1945             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1946                 //We should not look for abstract methods if receiver is a concrete class
1947                 //(as concrete classes are expected to implement all abstracts coming
1948                 //from superinterfaces)
1949                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1950                     return this;
1951                 } else {
1952                     return DEFAULT_OK;
1953                 }
1954             }
1955         },
1956         DEFAULT_OK() {
1957             @Override
1958             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1959                 return this;
1960             }
1961         };
1962 
1963         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1964     }
1965 
1966     /**
1967      * Return an Iterable object to scan the superclasses of a given type.
1968      * It's crucial that the scan is done lazily, as we don't want to accidentally
1969      * access more supertypes than strictly needed (as this could trigger completion
1970      * errors if some of the not-needed supertypes are missing/ill-formed).
1971      */
1972     Iterable<TypeSymbol> superclasses(final Type intype) {
1973         return () -> new Iterator<TypeSymbol>() {
1974 
1975             List<TypeSymbol> seen = List.nil();
1976             TypeSymbol currentSym = symbolFor(intype);
1977             TypeSymbol prevSym = null;
1978 
1979             public boolean hasNext() {
1980                 if (currentSym == syms.noSymbol) {
1981                     currentSym = symbolFor(types.supertype(prevSym.type));
1982                 }
1983                 return currentSym != null;
1984             }
1985 
1986             public TypeSymbol next() {
1987                 prevSym = currentSym;
1988                 currentSym = syms.noSymbol;
1989                 Assert.check(prevSym != null || prevSym != syms.noSymbol);
1990                 return prevSym;
1991             }
1992 
1993             public void remove() {
1994                 throw new UnsupportedOperationException();
1995             }
1996 
1997             TypeSymbol symbolFor(Type t) {
1998                 if (!t.hasTag(CLASS) &&
1999                         !t.hasTag(TYPEVAR)) {
2000                     return null;
2001                 }
2002                 t = types.skipTypeVars(t, false);
2003                 if (seen.contains(t.tsym)) {
2004                     //degenerate case in which we have a circular
2005                     //class hierarchy - because of ill-formed classfiles
2006                     return null;
2007                 }
2008                 seen = seen.prepend(t.tsym);
2009                 return t.tsym;
2010             }
2011         };
2012     }
2013 
2014     /** Find unqualified method matching given name, type and value arguments.
2015      *  @param env       The current environment.
2016      *  @param name      The method's name.
2017      *  @param argtypes  The method's value arguments.
2018      *  @param typeargtypes  The method's type arguments.
2019      *  @param allowBoxing Allow boxing conversions of arguments.
2020      *  @param useVarargs Box trailing arguments into an array for varargs.
2021      */
2022     Symbol findFun(Env<AttrContext> env, Name name,
2023                    List<Type> argtypes, List<Type> typeargtypes,
2024                    boolean allowBoxing, boolean useVarargs) {
2025         Symbol bestSoFar = methodNotFound;
2026         Env<AttrContext> env1 = env;
2027         boolean staticOnly = false;
2028         while (env1.outer != null) {
2029             if (isStatic(env1)) staticOnly = true;
2030             Assert.check(env1.info.preferredTreeForDiagnostics == null);
2031             env1.info.preferredTreeForDiagnostics = env.tree;
2032             try {
2033                 Symbol sym = findMethod(
2034                     env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
2035                     allowBoxing, useVarargs);
2036                 if (sym.exists()) {
2037                     if (sym.kind == MTH &&
2038                             sym.owner.kind == TYP &&
2039                             (sym.flags() & STATIC) == 0) {
2040                         if (staticOnly)
2041                             return new StaticError(sym);
2042                         if (env1.info.ctorPrologue && env1 == env)
2043                             return new RefBeforeCtorCalledError(sym);
2044                     }
2045                     return sym;
2046                 } else {
2047                     bestSoFar = bestOf(bestSoFar, sym);
2048                 }
2049             } finally {
2050                 env1.info.preferredTreeForDiagnostics = null;
2051             }
2052             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
2053             env1 = env1.outer;
2054         }
2055 
2056         Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
2057                                 typeargtypes, allowBoxing, useVarargs);
2058         if (sym.exists())
2059             return sym;
2060 
2061         for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
2062             Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
2063             if (currentSym.kind == MTH) {
2064                 if (currentSym.owner.type != origin.type)
2065                     currentSym = currentSym.clone(origin);
2066                 if (!isAccessible(env, origin.type, currentSym))
2067                     currentSym = new AccessError(env, origin.type, currentSym);
2068                 bestSoFar = selectBest(env, origin.type,
2069                                        argtypes, typeargtypes,
2070                                        currentSym, bestSoFar,
2071                                        allowBoxing, useVarargs);
2072             }
2073         }
2074         if (bestSoFar.exists())
2075             return bestSoFar;
2076 
2077         for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
2078             Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
2079             if (currentSym.kind == MTH) {
2080                 if (currentSym.owner.type != origin.type)
2081                     currentSym = currentSym.clone(origin);
2082                 if (!isAccessible(env, origin.type, currentSym))
2083                     currentSym = new AccessError(env, origin.type, currentSym);
2084                 bestSoFar = selectBest(env, origin.type,
2085                                        argtypes, typeargtypes,
2086                                        currentSym, bestSoFar,
2087                                        allowBoxing, useVarargs);
2088             }
2089         }
2090         return bestSoFar;
2091     }
2092 
2093     /** Load toplevel or member class with given fully qualified name and
2094      *  verify that it is accessible.
2095      *  @param env       The current environment.
2096      *  @param name      The fully qualified name of the class to be loaded.
2097      */
2098     Symbol loadClass(Env<AttrContext> env, Name name, RecoveryLoadClass recoveryLoadClass) {
2099         try {
2100             ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
2101             return isAccessible(env, c) ? c : new AccessError(env, null, c);
2102         } catch (ClassFinder.BadClassFile err) {
2103             return new BadClassFileError(err);
2104         } catch (CompletionFailure ex) {
2105             Symbol candidate = recoveryLoadClass.loadClass(env, name);
2106 
2107             if (candidate != null) {
2108                 return candidate;
2109             }
2110 
2111             return typeNotFound;
2112         }
2113     }
2114 
2115     public interface RecoveryLoadClass {
2116         Symbol loadClass(Env<AttrContext> env, Name name);
2117     }
2118 
2119     private final RecoveryLoadClass noRecovery = (env, name) -> null;
2120 
2121     private final RecoveryLoadClass doRecoveryLoadClass = new RecoveryLoadClass() {
2122         @Override public Symbol loadClass(Env<AttrContext> env, Name name) {
2123             List<Name> candidates = Convert.classCandidates(name);
2124             return lookupInvisibleSymbol(env, name,
2125                                          n -> () -> createCompoundIterator(candidates,
2126                                                                            c -> syms.getClassesForName(c)
2127                                                                                     .iterator()),
2128                                          (ms, n) -> {
2129                 for (Name candidate : candidates) {
2130                     try {
2131                         return finder.loadClass(ms, candidate);
2132                     } catch (CompletionFailure cf) {
2133                         //ignore
2134                     }
2135                 }
2136                 return null;
2137             }, sym -> sym.kind == Kind.TYP, typeNotFound);
2138         }
2139     };
2140 
2141     private final RecoveryLoadClass namedImportScopeRecovery = (env, name) -> {
2142         Scope importScope = env.toplevel.namedImportScope;
2143         Symbol existing = importScope.findFirst(Convert.shortName(name),
2144                                                 sym -> sym.kind == TYP && sym.flatName() == name);
2145 
2146         if (existing != null) {
2147             return new InvisibleSymbolError(env, true, existing);
2148         }
2149         return null;
2150     };
2151 
2152     private final RecoveryLoadClass starImportScopeRecovery = (env, name) -> {
2153         Scope importScope = env.toplevel.starImportScope;
2154         Symbol existing = importScope.findFirst(Convert.shortName(name),
2155                                                 sym -> sym.kind == TYP && sym.flatName() == name);
2156 
2157         if (existing != null) {
2158             try {
2159                 existing = finder.loadClass(existing.packge().modle, name);
2160 
2161                 return new InvisibleSymbolError(env, true, existing);
2162             } catch (CompletionFailure cf) {
2163                 //ignore
2164             }
2165         }
2166 
2167         return null;
2168     };
2169 
2170     Symbol lookupPackage(Env<AttrContext> env, Name name) {
2171         PackageSymbol pack = syms.lookupPackage(env.toplevel.modle, name);
2172 
2173         if (allowModules && isImportOnDemand(env, name)) {
2174             if (pack.members().isEmpty()) {
2175                 return lookupInvisibleSymbol(env, name, syms::getPackagesForName, syms::enterPackage, sym -> {
2176                     sym.complete();
2177                     return !sym.members().isEmpty();
2178                 }, pack);
2179             }
2180         }
2181 
2182         return pack;
2183     }
2184 
2185     private boolean isImportOnDemand(Env<AttrContext> env, Name name) {
2186         if (!env.tree.hasTag(IMPORT))
2187             return false;
2188 
2189         JCTree qualid = ((JCImport) env.tree).qualid;
2190 
2191         if (!qualid.hasTag(SELECT))
2192             return false;
2193 
2194         if (TreeInfo.name(qualid) != names.asterisk)
2195             return false;
2196 
2197         return TreeInfo.fullName(((JCFieldAccess) qualid).selected) == name;
2198     }
2199 
2200     private <S extends Symbol> Symbol lookupInvisibleSymbol(Env<AttrContext> env,
2201                                                             Name name,
2202                                                             Function<Name, Iterable<S>> get,
2203                                                             BiFunction<ModuleSymbol, Name, S> load,
2204                                                             Predicate<S> validate,
2205                                                             Symbol defaultResult) {
2206         //even if a class/package cannot be found in the current module and among packages in modules
2207         //it depends on that are exported for any or this module, the class/package may exist internally
2208         //in some of these modules, or may exist in a module on which this module does not depend.
2209         //Provide better diagnostic in such cases by looking for the class in any module:
2210         Iterable<? extends S> candidates = get.apply(name);
2211 
2212         for (S sym : candidates) {
2213             if (validate.test(sym))
2214                 return createInvisibleSymbolError(env, sym);
2215         }
2216 
2217         Set<ModuleSymbol> recoverableModules = new HashSet<>(syms.getAllModules());
2218 
2219         recoverableModules.add(syms.unnamedModule);
2220         recoverableModules.remove(env.toplevel.modle);
2221 
2222         for (ModuleSymbol ms : recoverableModules) {
2223             //avoid overly eager completing classes from source-based modules, as those
2224             //may not be completable with the current compiler settings:
2225             if (ms.sourceLocation == null) {
2226                 if (ms.classLocation == null) {
2227                     ms = moduleFinder.findModule(ms);
2228                 }
2229 
2230                 if (ms.kind != ERR) {
2231                     S sym = load.apply(ms, name);
2232 
2233                     if (sym != null && validate.test(sym)) {
2234                         return createInvisibleSymbolError(env, sym);
2235                     }
2236                 }
2237             }
2238         }
2239 
2240         return defaultResult;
2241     }
2242 
2243     private Symbol createInvisibleSymbolError(Env<AttrContext> env, Symbol sym) {
2244         if (symbolPackageVisible(env, sym)) {
2245             return new AccessError(env, null, sym);
2246         } else {
2247             return new InvisibleSymbolError(env, false, sym);
2248         }
2249     }
2250 
2251     private boolean symbolPackageVisible(Env<AttrContext> env, Symbol sym) {
2252         ModuleSymbol envMod = env.toplevel.modle;
2253         PackageSymbol symPack = sym.packge();
2254         return envMod == symPack.modle ||
2255                envMod.visiblePackages.containsKey(symPack.fullname);
2256     }
2257 
2258     /**
2259      * Find a type declared in a scope (not inherited).  Return null
2260      * if none is found.
2261      *  @param env       The current environment.
2262      *  @param site      The original type from where the selection takes
2263      *                   place.
2264      *  @param name      The type's name.
2265      *  @param c         The class to search for the member type. This is
2266      *                   always a superclass or implemented interface of
2267      *                   site's class.
2268      */
2269     Symbol findImmediateMemberType(Env<AttrContext> env,
2270                                    Type site,
2271                                    Name name,
2272                                    TypeSymbol c) {
2273         for (Symbol sym : c.members().getSymbolsByName(name)) {
2274             if (sym.kind == TYP) {
2275                 return isAccessible(env, site, sym)
2276                     ? sym
2277                     : new AccessError(env, site, sym);
2278             }
2279         }
2280         return typeNotFound;
2281     }
2282 
2283     /** Find a member type inherited from a superclass or interface.
2284      *  @param env       The current environment.
2285      *  @param site      The original type from where the selection takes
2286      *                   place.
2287      *  @param name      The type's name.
2288      *  @param c         The class to search for the member type. This is
2289      *                   always a superclass or implemented interface of
2290      *                   site's class.
2291      */
2292     Symbol findInheritedMemberType(Env<AttrContext> env,
2293                                    Type site,
2294                                    Name name,
2295                                    TypeSymbol c) {
2296         Symbol bestSoFar = typeNotFound;
2297         Symbol sym;
2298         Type st = types.supertype(c.type);
2299         if (st != null && st.hasTag(CLASS)) {
2300             sym = findMemberType(env, site, name, st.tsym);
2301             bestSoFar = bestOf(bestSoFar, sym);
2302         }
2303         for (List<Type> l = types.interfaces(c.type);
2304              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
2305              l = l.tail) {
2306             sym = findMemberType(env, site, name, l.head.tsym);
2307             if (!bestSoFar.kind.isResolutionError() &&
2308                 !sym.kind.isResolutionError() &&
2309                 sym.owner != bestSoFar.owner)
2310                 bestSoFar = new AmbiguityError(bestSoFar, sym);
2311             else
2312                 bestSoFar = bestOf(bestSoFar, sym);
2313         }
2314         return bestSoFar;
2315     }
2316 
2317     /** Find qualified member type.
2318      *  @param env       The current environment.
2319      *  @param site      The original type from where the selection takes
2320      *                   place.
2321      *  @param name      The type's name.
2322      *  @param c         The class to search for the member type. This is
2323      *                   always a superclass or implemented interface of
2324      *                   site's class.
2325      */
2326     Symbol findMemberType(Env<AttrContext> env,
2327                           Type site,
2328                           Name name,
2329                           TypeSymbol c) {
2330         Symbol sym = findImmediateMemberType(env, site, name, c);
2331 
2332         if (sym != typeNotFound)
2333             return sym;
2334 
2335         return findInheritedMemberType(env, site, name, c);
2336 
2337     }
2338 
2339     /** Find a global type in given scope and load corresponding class.
2340      *  @param env       The current environment.
2341      *  @param scope     The scope in which to look for the type.
2342      *  @param name      The type's name.
2343      */
2344     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name, RecoveryLoadClass recoveryLoadClass) {
2345         Symbol bestSoFar = typeNotFound;
2346         for (Symbol s : scope.getSymbolsByName(name)) {
2347             Symbol sym = loadClass(env, s.flatName(), recoveryLoadClass);
2348             if (bestSoFar.kind == TYP && sym.kind == TYP &&
2349                 bestSoFar != sym)
2350                 return new AmbiguityError(bestSoFar, sym);
2351             else
2352                 bestSoFar = bestOf(bestSoFar, sym);
2353         }
2354         return bestSoFar;
2355     }
2356 
2357     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2358         for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
2359             if (sym.kind == TYP) {
2360                 if (sym.type.hasTag(TYPEVAR) &&
2361                         (staticOnly || (isStatic(env) && sym.owner.kind == TYP)))
2362                     // if staticOnly is set, it means that we have recursed through a static declaration,
2363                     // so type variable symbols should not be accessible. If staticOnly is unset, but
2364                     // we are in a static declaration (field or method), we should not allow type-variables
2365                     // defined in the enclosing class to "leak" into this context.
2366                     return new StaticError(sym);
2367                 return sym;
2368             }
2369         }
2370         return typeNotFound;
2371     }
2372 
2373     /** Find an unqualified type symbol.
2374      *  @param env       The current environment.
2375      *  @param name      The type's name.
2376      */
2377     Symbol findType(Env<AttrContext> env, Name name) {
2378         if (name == names.empty)
2379             return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
2380         Symbol bestSoFar = typeNotFound;
2381         Symbol sym;
2382         boolean staticOnly = false;
2383         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2384             // First, look for a type variable and the first member type
2385             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2386             if (isStatic(env1)) staticOnly = true;
2387             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2388                                           name, env1.enclClass.sym);
2389 
2390             // Return the type variable if we have it, and have no
2391             // immediate member, OR the type variable is for a method.
2392             if (tyvar != typeNotFound) {
2393                 if (env.baseClause || sym == typeNotFound ||
2394                     (tyvar.kind == TYP && tyvar.exists() &&
2395                      tyvar.owner.kind == MTH)) {
2396                     return tyvar;
2397                 }
2398             }
2399 
2400             // If the environment is a class def, finish up,
2401             // otherwise, do the entire findMemberType
2402             if (sym == typeNotFound)
2403                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2404                                               name, env1.enclClass.sym);
2405 
2406             if (staticOnly && sym.kind == TYP &&
2407                 sym.type.hasTag(CLASS) &&
2408                 sym.type.getEnclosingType().hasTag(CLASS) &&
2409                 env1.enclClass.sym.type.isParameterized() &&
2410                 sym.type.getEnclosingType().isParameterized())
2411                 return new StaticError(sym);
2412             else if (sym.exists()) return sym;
2413             else bestSoFar = bestOf(bestSoFar, sym);
2414 
2415             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2416             if ((encl.sym.flags() & STATIC) != 0)
2417                 staticOnly = true;
2418         }
2419 
2420         if (!env.tree.hasTag(IMPORT)) {
2421             sym = findGlobalType(env, env.toplevel.namedImportScope, name, namedImportScopeRecovery);
2422             if (sym.exists()) return sym;
2423             else bestSoFar = bestOf(bestSoFar, sym);
2424 
2425             sym = findGlobalType(env, env.toplevel.toplevelScope, name, noRecovery);
2426             if (sym.exists()) return sym;
2427             else bestSoFar = bestOf(bestSoFar, sym);
2428 
2429             sym = findGlobalType(env, env.toplevel.packge.members(), name, noRecovery);
2430             if (sym.exists()) return sym;
2431             else bestSoFar = bestOf(bestSoFar, sym);
2432 
2433             sym = findGlobalType(env, env.toplevel.starImportScope, name, starImportScopeRecovery);
2434             if (sym.exists()) return sym;
2435             else bestSoFar = bestOf(bestSoFar, sym);
2436         }
2437 
2438         return bestSoFar;
2439     }
2440 
2441     /** Find an unqualified identifier which matches a specified kind set.
2442      *  @param pos       position on which report warnings, if any;
2443      *                   null warnings should not be reported
2444      *  @param env       The current environment.
2445      *  @param name      The identifier's name.
2446      *  @param kind      Indicates the possible symbol kinds
2447      *                   (a subset of VAL, TYP, PCK).
2448      */
2449     Symbol findIdent(DiagnosticPosition pos, Env<AttrContext> env, Name name, KindSelector kind) {
2450         try {
2451             return checkNonExistentType(checkRestrictedType(pos, findIdentInternal(pos, env, name, kind), name));
2452         } catch (ClassFinder.BadClassFile err) {
2453             return new BadClassFileError(err);
2454         } catch (CompletionFailure cf) {
2455             chk.completionError(pos, cf);
2456             return typeNotFound;
2457         }
2458     }
2459 
2460     Symbol findIdentInternal(DiagnosticPosition pos, Env<AttrContext> env, Name name, KindSelector kind) {
2461         Symbol bestSoFar = typeNotFound;
2462         Symbol sym;
2463 
2464         if (kind.contains(KindSelector.VAL)) {
2465             sym = findVar(pos, env, name);
2466             if (sym.exists()) return sym;
2467             else bestSoFar = bestOf(bestSoFar, sym);
2468         }
2469 
2470         if (kind.contains(KindSelector.TYP)) {
2471             sym = findType(env, name);
2472             if (sym.exists()) return sym;
2473             else bestSoFar = bestOf(bestSoFar, sym);
2474         }
2475 
2476         if (kind.contains(KindSelector.PCK))
2477             return lookupPackage(env, name);
2478         else return bestSoFar;
2479     }
2480 
2481     /** Find an identifier in a package which matches a specified kind set.
2482      *  @param pos       position on which report warnings, if any;
2483      *                   null warnings should not be reported
2484      *  @param env       The current environment.
2485      *  @param name      The identifier's name.
2486      *  @param kind      Indicates the possible symbol kinds
2487      *                   (a nonempty subset of TYP, PCK).
2488      */
2489     Symbol findIdentInPackage(DiagnosticPosition pos,
2490                               Env<AttrContext> env, TypeSymbol pck,
2491                               Name name, KindSelector kind) {
2492         return checkNonExistentType(checkRestrictedType(pos, findIdentInPackageInternal(env, pck, name, kind), name));
2493     }
2494 
2495     Symbol findIdentInPackageInternal(Env<AttrContext> env, TypeSymbol pck,
2496                               Name name, KindSelector kind) {
2497         Name fullname = TypeSymbol.formFullName(name, pck);
2498         Symbol bestSoFar = typeNotFound;
2499         if (kind.contains(KindSelector.TYP)) {
2500             RecoveryLoadClass recoveryLoadClass =
2501                     allowModules && !kind.contains(KindSelector.PCK) &&
2502                     !pck.exists() && !env.info.attributionMode.isSpeculative ?
2503                         doRecoveryLoadClass : noRecovery;
2504             Symbol sym = loadClass(env, fullname, recoveryLoadClass);
2505             if (sym.exists()) {
2506                 // don't allow programs to use flatnames
2507                 if (name == sym.name) return sym;
2508             }
2509             else bestSoFar = bestOf(bestSoFar, sym);
2510         }
2511         if (kind.contains(KindSelector.PCK)) {
2512             return lookupPackage(env, fullname);
2513         }
2514         return bestSoFar;
2515     }
2516 
2517     /** Find an identifier among the members of a given type `site'.
2518      *  @param pos       position on which report warnings, if any;
2519      *                   null warnings should not be reported
2520      *  @param env       The current environment.
2521      *  @param site      The type containing the symbol to be found.
2522      *  @param name      The identifier's name.
2523      *  @param kind      Indicates the possible symbol kinds
2524      *                   (a subset of VAL, TYP).
2525      */
2526     Symbol findIdentInType(DiagnosticPosition pos,
2527                            Env<AttrContext> env, Type site,
2528                            Name name, KindSelector kind) {
2529         try {
2530             return checkNonExistentType(checkRestrictedType(pos, findIdentInTypeInternal(env, site, name, kind), name));
2531         } catch (ClassFinder.BadClassFile err) {
2532             return new BadClassFileError(err);
2533         } catch (CompletionFailure cf) {
2534             chk.completionError(pos, cf);
2535             return typeNotFound;
2536         }
2537     }
2538 
2539     private Symbol checkNonExistentType(Symbol symbol) {
2540         /*  Guard against returning a type is not on the class path of the current compilation,
2541          *  but *was* on the class path of a separate compilation that produced a class file
2542          *  that is on the class path of the current compilation. Such a type will fail completion
2543          *  but the completion failure may have been silently swallowed (e.g. missing annotation types)
2544          *  with an error stub symbol lingering in the symbol tables.
2545          */
2546         return symbol instanceof ClassSymbol c && c.type.isErroneous() && c.classfile == null ? typeNotFound : symbol;
2547     }
2548 
2549     Symbol findIdentInTypeInternal(Env<AttrContext> env, Type site,
2550                            Name name, KindSelector kind) {
2551         Symbol bestSoFar = typeNotFound;
2552         Symbol sym;
2553         if (kind.contains(KindSelector.VAL)) {
2554             sym = findField(env, site, name, site.tsym);
2555             if (sym.exists()) return sym;
2556             else bestSoFar = bestOf(bestSoFar, sym);
2557         }
2558 
2559         if (kind.contains(KindSelector.TYP)) {
2560             sym = findMemberType(env, site, name, site.tsym);
2561             if (sym.exists()) return sym;
2562             else bestSoFar = bestOf(bestSoFar, sym);
2563         }
2564         return bestSoFar;
2565     }
2566 
2567     private Symbol checkRestrictedType(DiagnosticPosition pos, Symbol bestSoFar, Name name) {
2568         if (bestSoFar.kind == TYP || bestSoFar.kind == ABSENT_TYP) {
2569             if (allowLocalVariableTypeInference && name.equals(names.var)) {
2570                 bestSoFar = new BadRestrictedTypeError(names.var);
2571             } else if (name.equals(names.yield)) {
2572                 if (allowYieldStatement) {
2573                     bestSoFar = new BadRestrictedTypeError(names.yield);
2574                 } else if (pos != null) {
2575                     log.warning(pos, Warnings.IllegalRefToRestrictedType(names.yield));
2576                 }
2577             }
2578         }
2579         return bestSoFar;
2580     }
2581 
2582 /* ***************************************************************************
2583  *  Access checking
2584  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2585  *  an error message in the process
2586  ****************************************************************************/
2587 
2588     /** If `sym' is a bad symbol: report error and return errSymbol
2589      *  else pass through unchanged,
2590      *  additional arguments duplicate what has been used in trying to find the
2591      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2592      *  expect misses to happen frequently.
2593      *
2594      *  @param sym       The symbol that was found, or a ResolveError.
2595      *  @param pos       The position to use for error reporting.
2596      *  @param location  The symbol the served as a context for this lookup
2597      *  @param site      The original type from where the selection took place.
2598      *  @param name      The symbol's name.
2599      *  @param qualified Did we get here through a qualified expression resolution?
2600      *  @param argtypes  The invocation's value arguments,
2601      *                   if we looked for a method.
2602      *  @param typeargtypes  The invocation's type arguments,
2603      *                   if we looked for a method.
2604      *  @param logResolveHelper helper class used to log resolve errors
2605      */
2606     Symbol accessInternal(Symbol sym,
2607                   DiagnosticPosition pos,
2608                   Symbol location,
2609                   Type site,
2610                   Name name,
2611                   boolean qualified,
2612                   List<Type> argtypes,
2613                   List<Type> typeargtypes,
2614                   LogResolveHelper logResolveHelper) {
2615         if (sym.kind.isResolutionError()) {
2616             ResolveError errSym = (ResolveError)sym.baseSymbol();
2617             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2618             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2619             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2620                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2621             }
2622         }
2623         return sym;
2624     }
2625 
2626     /**
2627      * Variant of the generalized access routine, to be used for generating method
2628      * resolution diagnostics
2629      */
2630     Symbol accessMethod(Symbol sym,
2631                   DiagnosticPosition pos,
2632                   Symbol location,
2633                   Type site,
2634                   Name name,
2635                   boolean qualified,
2636                   List<Type> argtypes,
2637                   List<Type> typeargtypes) {
2638         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2639     }
2640 
2641     /** Same as original accessMethod(), but without location.
2642      */
2643     Symbol accessMethod(Symbol sym,
2644                   DiagnosticPosition pos,
2645                   Type site,
2646                   Name name,
2647                   boolean qualified,
2648                   List<Type> argtypes,
2649                   List<Type> typeargtypes) {
2650         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2651     }
2652 
2653     /**
2654      * Variant of the generalized access routine, to be used for generating variable,
2655      * type resolution diagnostics
2656      */
2657     Symbol accessBase(Symbol sym,
2658                   DiagnosticPosition pos,
2659                   Symbol location,
2660                   Type site,
2661                   Name name,
2662                   boolean qualified) {
2663         return accessInternal(sym, pos, location, site, name, qualified, List.nil(), null, basicLogResolveHelper);
2664     }
2665 
2666     /** Same as original accessBase(), but without location.
2667      */
2668     Symbol accessBase(Symbol sym,
2669                   DiagnosticPosition pos,
2670                   Type site,
2671                   Name name,
2672                   boolean qualified) {
2673         return accessBase(sym, pos, site.tsym, site, name, qualified);
2674     }
2675 
2676     interface LogResolveHelper {
2677         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2678         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2679     }
2680 
2681     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2682         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2683             return !site.isErroneous();
2684         }
2685         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2686             return argtypes;
2687         }
2688     };
2689 
2690     LogResolveHelper silentLogResolveHelper = new LogResolveHelper() {
2691         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2692             return false;
2693         }
2694         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2695             return argtypes;
2696         }
2697     };
2698 
2699     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2700         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2701             return !site.isErroneous() &&
2702                         !Type.isErroneous(argtypes) &&
2703                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
2704         }
2705         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2706             return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2707         }
2708     };
2709 
2710     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2711 
2712         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2713             deferredAttr.super(mode, msym, step);
2714         }
2715 
2716         @Override
2717         protected Type typeOf(DeferredType dt, Type pt) {
2718             Type res = super.typeOf(dt, pt);
2719             if (!res.isErroneous()) {
2720                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
2721                     case LAMBDA:
2722                     case REFERENCE:
2723                         return dt;
2724                     case CONDEXPR:
2725                         return res == Type.recoveryType ?
2726                                 dt : res;
2727                 }
2728             }
2729             return res;
2730         }
2731     }
2732 
2733     /** Check that sym is not an abstract method.
2734      */
2735     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2736         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2737             log.error(pos,
2738                       Errors.AbstractCantBeAccessedDirectly(kindName(sym),sym, sym.location()));
2739     }
2740 
2741 /* ***************************************************************************
2742  *  Name resolution
2743  *  Naming conventions are as for symbol lookup
2744  *  Unlike the find... methods these methods will report access errors
2745  ****************************************************************************/
2746 
2747     /** Resolve an unqualified (non-method) identifier.
2748      *  @param pos       The position to use for error reporting.
2749      *  @param env       The environment current at the identifier use.
2750      *  @param name      The identifier's name.
2751      *  @param kind      The set of admissible symbol kinds for the identifier.
2752      */
2753     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2754                         Name name, KindSelector kind) {
2755         return accessBase(
2756             findIdent(pos, env, name, kind),
2757             pos, env.enclClass.sym.type, name, false);
2758     }
2759 
2760     /** Resolve an unqualified method identifier.
2761      *  @param pos       The position to use for error reporting.
2762      *  @param env       The environment current at the method invocation.
2763      *  @param name      The identifier's name.
2764      *  @param argtypes  The types of the invocation's value arguments.
2765      *  @param typeargtypes  The types of the invocation's type arguments.
2766      */
2767     Symbol resolveMethod(DiagnosticPosition pos,
2768                          Env<AttrContext> env,
2769                          Name name,
2770                          List<Type> argtypes,
2771                          List<Type> typeargtypes) {
2772         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2773                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2774                     @Override
2775                     Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2776                         return findFun(env, name, argtypes, typeargtypes,
2777                                 phase.isBoxingRequired(),
2778                                 phase.isVarargsRequired());
2779                     }});
2780     }
2781 
2782     /** Resolve a qualified method identifier
2783      *  @param pos       The position to use for error reporting.
2784      *  @param env       The environment current at the method invocation.
2785      *  @param site      The type of the qualifying expression, in which
2786      *                   identifier is searched.
2787      *  @param name      The identifier's name.
2788      *  @param argtypes  The types of the invocation's value arguments.
2789      *  @param typeargtypes  The types of the invocation's type arguments.
2790      */
2791     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2792                                   Type site, Name name, List<Type> argtypes,
2793                                   List<Type> typeargtypes) {
2794         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2795     }
2796     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2797                                   Symbol location, Type site, Name name, List<Type> argtypes,
2798                                   List<Type> typeargtypes) {
2799         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2800     }
2801     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2802                                   DiagnosticPosition pos, Env<AttrContext> env,
2803                                   Symbol location, Type site, Name name, List<Type> argtypes,
2804                                   List<Type> typeargtypes) {
2805         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2806             @Override
2807             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2808                 return findMethod(env, site, name, argtypes, typeargtypes,
2809                         phase.isBoxingRequired(),
2810                         phase.isVarargsRequired());
2811             }
2812             @Override
2813             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2814                 if (sym.kind.isResolutionError()) {
2815                     sym = super.access(env, pos, location, sym);
2816                 } else {
2817                     MethodSymbol msym = (MethodSymbol)sym;
2818                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2819                         env.info.pendingResolutionPhase = BASIC;
2820                         return findPolymorphicSignatureInstance(env, sym, argtypes);
2821                     }
2822                 }
2823                 return sym;
2824             }
2825         });
2826     }
2827 
2828     /** Find or create an implicit method of exactly the given type (after erasure).
2829      *  Searches in a side table, not the main scope of the site.
2830      *  This emulates the lookup process required by JSR 292 in JVM.
2831      *  @param env       Attribution environment
2832      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2833      *  @param argtypes  The required argument types
2834      */
2835     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2836                                             final Symbol spMethod,
2837                                             List<Type> argtypes) {
2838         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2839                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2840         return findPolymorphicSignatureInstance(spMethod, mtype);
2841     }
2842 
2843     Symbol findPolymorphicSignatureInstance(final Symbol spMethod,
2844                                             Type mtype) {
2845         for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2846             // Check that there is already a method symbol for the method
2847             // type and owner
2848             if (types.isSameType(mtype, sym.type) &&
2849                 spMethod.owner == sym.owner) {
2850                 return sym;
2851             }
2852         }
2853 
2854         Type spReturnType = spMethod.asType().getReturnType();
2855         if (types.isSameType(spReturnType, syms.objectType)) {
2856             // Polymorphic return, pass through mtype
2857         } else if (!types.isSameType(spReturnType, mtype.getReturnType())) {
2858             // Retain the sig poly method's return type, which differs from that of mtype
2859             // Will result in an incompatible return type error
2860             mtype = new MethodType(mtype.getParameterTypes(),
2861                     spReturnType,
2862                     mtype.getThrownTypes(),
2863                     syms.methodClass);
2864         }
2865 
2866         // Create the desired method
2867         // Retain static modifier is to support invocations to
2868         // MethodHandle.linkTo* methods
2869         long flags = ABSTRACT | HYPOTHETICAL |
2870                      spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
2871         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2872             @Override
2873             public Symbol baseSymbol() {
2874                 return spMethod;
2875             }
2876         };
2877         if (!mtype.isErroneous()) { // Cache only if kosher.
2878             polymorphicSignatureScope.enter(msym);
2879         }
2880         return msym;
2881     }
2882 
2883     /** Resolve a qualified method identifier, throw a fatal error if not
2884      *  found.
2885      *  @param pos       The position to use for error reporting.
2886      *  @param env       The environment current at the method invocation.
2887      *  @param site      The type of the qualifying expression, in which
2888      *                   identifier is searched.
2889      *  @param name      The identifier's name.
2890      *  @param argtypes  The types of the invocation's value arguments.
2891      *  @param typeargtypes  The types of the invocation's type arguments.
2892      */
2893     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2894                                         Type site, Name name,
2895                                         List<Type> argtypes,
2896                                         List<Type> typeargtypes) {
2897         MethodResolutionContext resolveContext = new MethodResolutionContext();
2898         resolveContext.internalResolution = true;
2899         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2900                 site, name, argtypes, typeargtypes);
2901         if (sym.kind == MTH) return (MethodSymbol)sym;
2902         else throw new FatalError(
2903                  diags.fragment(Fragments.FatalErrCantLocateMeth(name)));
2904     }
2905 
2906     /** Resolve constructor.
2907      *  @param pos       The position to use for error reporting.
2908      *  @param env       The environment current at the constructor invocation.
2909      *  @param site      The type of class for which a constructor is searched.
2910      *  @param argtypes  The types of the constructor invocation's value
2911      *                   arguments.
2912      *  @param typeargtypes  The types of the constructor invocation's type
2913      *                   arguments.
2914      */
2915     Symbol resolveConstructor(DiagnosticPosition pos,
2916                               Env<AttrContext> env,
2917                               Type site,
2918                               List<Type> argtypes,
2919                               List<Type> typeargtypes) {
2920         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2921     }
2922 
2923     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2924                               final DiagnosticPosition pos,
2925                               Env<AttrContext> env,
2926                               Type site,
2927                               List<Type> argtypes,
2928                               List<Type> typeargtypes) {
2929         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2930             @Override
2931             Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2932                 return findConstructor(pos, env, site, argtypes, typeargtypes,
2933                         phase.isBoxingRequired(),
2934                         phase.isVarargsRequired());
2935             }
2936         });
2937     }
2938 
2939     /** Resolve a constructor, throw a fatal error if not found.
2940      *  @param pos       The position to use for error reporting.
2941      *  @param env       The environment current at the method invocation.
2942      *  @param site      The type to be constructed.
2943      *  @param argtypes  The types of the invocation's value arguments.
2944      *  @param typeargtypes  The types of the invocation's type arguments.
2945      */
2946     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2947                                         Type site,
2948                                         List<Type> argtypes,
2949                                         List<Type> typeargtypes) {
2950         MethodResolutionContext resolveContext = new MethodResolutionContext();
2951         resolveContext.internalResolution = true;
2952         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2953         if (sym.kind == MTH) return (MethodSymbol)sym;
2954         else throw new FatalError(
2955                  diags.fragment(Fragments.FatalErrCantLocateCtor(site)));
2956     }
2957 
2958     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2959                               Type site, List<Type> argtypes,
2960                               List<Type> typeargtypes,
2961                               boolean allowBoxing,
2962                               boolean useVarargs) {
2963         Symbol sym = findMethod(env, site,
2964                                     names.init, argtypes,
2965                                     typeargtypes, allowBoxing,
2966                                     useVarargs);
2967         chk.checkDeprecated(pos, env.info.scope.owner, sym);
2968         chk.checkPreview(pos, env.info.scope.owner, sym);
2969         return sym;
2970     }
2971 
2972     /** Resolve constructor using diamond inference.
2973      *  @param pos       The position to use for error reporting.
2974      *  @param env       The environment current at the constructor invocation.
2975      *  @param site      The type of class for which a constructor is searched.
2976      *                   The scope of this class has been touched in attribution.
2977      *  @param argtypes  The types of the constructor invocation's value
2978      *                   arguments.
2979      *  @param typeargtypes  The types of the constructor invocation's type
2980      *                   arguments.
2981      */
2982     Symbol resolveDiamond(DiagnosticPosition pos,
2983                               Env<AttrContext> env,
2984                               Type site,
2985                               List<Type> argtypes,
2986                               List<Type> typeargtypes) {
2987         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2988                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2989                     @Override
2990                     Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2991                         return findDiamond(pos, env, site, argtypes, typeargtypes,
2992                                 phase.isBoxingRequired(),
2993                                 phase.isVarargsRequired());
2994                     }
2995                     @Override
2996                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2997                         if (sym.kind.isResolutionError()) {
2998                             if (sym.kind != WRONG_MTH &&
2999                                 sym.kind != WRONG_MTHS) {
3000                                 sym = super.access(env, pos, location, sym);
3001                             } else {
3002                                 sym = new DiamondError(sym, currentResolutionContext);
3003                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
3004                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
3005                             }
3006                         }
3007                         return sym;
3008                     }});
3009     }
3010 
3011     /** Find the constructor using diamond inference and do some checks(deprecated and preview).
3012      *  @param pos          The position to use for error reporting.
3013      *  @param env          The environment current at the constructor invocation.
3014      *  @param site         The type of class for which a constructor is searched.
3015      *                      The scope of this class has been touched in attribution.
3016      *  @param argtypes     The types of the constructor invocation's value arguments.
3017      *  @param typeargtypes The types of the constructor invocation's type arguments.
3018      *  @param allowBoxing  Allow boxing conversions of arguments.
3019      *  @param useVarargs   Box trailing arguments into an array for varargs.
3020      */
3021     private Symbol findDiamond(DiagnosticPosition pos,
3022                                Env<AttrContext> env,
3023                                Type site,
3024                                List<Type> argtypes,
3025                                List<Type> typeargtypes,
3026                                boolean allowBoxing,
3027                                boolean useVarargs) {
3028         Symbol sym = findDiamond(env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
3029         chk.checkDeprecated(pos, env.info.scope.owner, sym);
3030         chk.checkPreview(pos, env.info.scope.owner, sym);
3031         return sym;
3032     }
3033 
3034     /** This method scans all the constructor symbol in a given class scope -
3035      *  assuming that the original scope contains a constructor of the kind:
3036      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
3037      *  a method check is executed against the modified constructor type:
3038      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
3039      *  inference. The inferred return type of the synthetic constructor IS
3040      *  the inferred type for the diamond operator.
3041      */
3042     private Symbol findDiamond(Env<AttrContext> env,
3043                               Type site,
3044                               List<Type> argtypes,
3045                               List<Type> typeargtypes,
3046                               boolean allowBoxing,
3047                               boolean useVarargs) {
3048         Symbol bestSoFar = methodNotFound;
3049         TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
3050         for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
3051             //- System.out.println(" e " + e.sym);
3052             if (sym.kind == MTH &&
3053                 (sym.flags_field & SYNTHETIC) == 0) {
3054                     List<Type> oldParams = sym.type.hasTag(FORALL) ?
3055                             ((ForAll)sym.type).tvars :
3056                             List.nil();
3057                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
3058                                                  types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
3059                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
3060                         @Override
3061                         public Symbol baseSymbol() {
3062                             return sym;
3063                         }
3064                     };
3065                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
3066                             newConstr,
3067                             bestSoFar,
3068                             allowBoxing,
3069                             useVarargs);
3070             }
3071         }
3072         return bestSoFar;
3073     }
3074 
3075     Symbol getMemberReference(DiagnosticPosition pos,
3076             Env<AttrContext> env,
3077             JCMemberReference referenceTree,
3078             Type site,
3079             Name name) {
3080 
3081         site = types.capture(site);
3082 
3083         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
3084                 referenceTree, site, name, List.nil(), null, VARARITY);
3085 
3086         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
3087         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
3088                 nilMethodCheck, lookupHelper);
3089 
3090         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
3091 
3092         return sym;
3093     }
3094 
3095     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
3096                                   Type site,
3097                                   Name name,
3098                                   List<Type> argtypes,
3099                                   List<Type> typeargtypes,
3100                                   MethodResolutionPhase maxPhase) {
3101         if (!name.equals(names.init)) {
3102             //method reference
3103             return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
3104         } else if (site.hasTag(ARRAY)) {
3105             //array constructor reference
3106             return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
3107         } else {
3108             //class constructor reference
3109             return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
3110         }
3111     }
3112 
3113     /**
3114      * Resolution of member references is typically done as a single
3115      * overload resolution step, where the argument types A are inferred from
3116      * the target functional descriptor.
3117      *
3118      * If the member reference is a method reference with a type qualifier,
3119      * a two-step lookup process is performed. The first step uses the
3120      * expected argument list A, while the second step discards the first
3121      * type from A (which is treated as a receiver type).
3122      *
3123      * There are two cases in which inference is performed: (i) if the member
3124      * reference is a constructor reference and the qualifier type is raw - in
3125      * which case diamond inference is used to infer a parameterization for the
3126      * type qualifier; (ii) if the member reference is an unbound reference
3127      * where the type qualifier is raw - in that case, during the unbound lookup
3128      * the receiver argument type is used to infer an instantiation for the raw
3129      * qualifier type.
3130      *
3131      * When a multi-step resolution process is exploited, the process of picking
3132      * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
3133      *
3134      * This routine returns a pair (T,S), where S is the member reference symbol,
3135      * and T is the type of the class in which S is defined. This is necessary as
3136      * the type T might be dynamically inferred (i.e. if constructor reference
3137      * has a raw qualifier).
3138      */
3139     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
3140                                   JCMemberReference referenceTree,
3141                                   Type site,
3142                                   Name name,
3143                                   List<Type> argtypes,
3144                                   List<Type> typeargtypes,
3145                                   Type descriptor,
3146                                   MethodCheck methodCheck,
3147                                   InferenceContext inferenceContext,
3148                                   ReferenceChooser referenceChooser) {
3149 
3150         //step 1 - bound lookup
3151         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
3152                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
3153         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
3154         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
3155         boundSearchResolveContext.methodCheck = methodCheck;
3156         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
3157                 site.tsym, boundSearchResolveContext, boundLookupHelper);
3158         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
3159         ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext, isStaticSelector);
3160         if (dumpMethodReferenceSearchResults) {
3161             dumpMethodReferenceSearchResults(referenceTree, boundSearchResolveContext, boundSym, true);
3162         }
3163 
3164         //step 2 - unbound lookup
3165         Symbol unboundSym = methodNotFound;
3166         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
3167         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
3168         ReferenceLookupResult unboundRes = referenceNotFound;
3169         if (unboundLookupHelper != null) {
3170             MethodResolutionContext unboundSearchResolveContext =
3171                     new MethodResolutionContext();
3172             unboundSearchResolveContext.methodCheck = methodCheck;
3173             unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
3174                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
3175             unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext, isStaticSelector);
3176             if (dumpMethodReferenceSearchResults) {
3177                 dumpMethodReferenceSearchResults(referenceTree, unboundSearchResolveContext, unboundSym, false);
3178             }
3179         }
3180 
3181         //merge results
3182         Pair<Symbol, ReferenceLookupHelper> res;
3183         ReferenceLookupResult bestRes = referenceChooser.result(boundRes, unboundRes);
3184         res = new Pair<>(bestRes.sym,
3185                 bestRes == unboundRes ? unboundLookupHelper : boundLookupHelper);
3186         env.info.pendingResolutionPhase = bestRes == unboundRes ?
3187                 unboundEnv.info.pendingResolutionPhase :
3188                 boundEnv.info.pendingResolutionPhase;
3189 
3190         if (!res.fst.kind.isResolutionError()) {
3191             //handle sigpoly method references
3192             MethodSymbol msym = (MethodSymbol)res.fst;
3193             if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
3194                 env.info.pendingResolutionPhase = BASIC;
3195                 res = new Pair<>(findPolymorphicSignatureInstance(msym, descriptor), res.snd);
3196             }
3197         }
3198 
3199         return res;
3200     }
3201 
3202     private void dumpMethodReferenceSearchResults(JCMemberReference referenceTree,
3203                                                   MethodResolutionContext resolutionContext,
3204                                                   Symbol bestSoFar,
3205                                                   boolean bound) {
3206         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
3207         int pos = 0;
3208         int mostSpecificPos = -1;
3209         for (Candidate c : resolutionContext.candidates) {
3210             if (resolutionContext.step != c.step || !c.isApplicable()) {
3211                 continue;
3212             } else {
3213                 JCDiagnostic subDiag = null;
3214                 if (c.sym.type.hasTag(FORALL)) {
3215                     subDiag = diags.fragment(Fragments.PartialInstSig(c.mtype));
3216                 }
3217 
3218                 String key = subDiag == null ?
3219                         "applicable.method.found.2" :
3220                         "applicable.method.found.3";
3221                 subDiags.append(diags.fragment(key, pos,
3222                         c.sym.isStatic() ? Fragments.Static : Fragments.NonStatic, c.sym, subDiag));
3223                 if (c.sym == bestSoFar)
3224                     mostSpecificPos = pos;
3225                 pos++;
3226             }
3227         }
3228         JCDiagnostic main = diags.note(
3229                 log.currentSource(),
3230                 referenceTree,
3231                 "method.ref.search.results.multi",
3232                 bound ? Fragments.Bound : Fragments.Unbound,
3233                 referenceTree.toString(), mostSpecificPos);
3234         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
3235         log.report(d);
3236     }
3237 
3238     /**
3239      * This class is used to represent a method reference lookup result. It keeps track of two
3240      * things: (i) the symbol found during a method reference lookup and (ii) the static kind
3241      * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
3242      */
3243     static class ReferenceLookupResult {
3244 
3245         /**
3246          * Static kind associated with a method reference lookup. Erroneous lookups end up with
3247          * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
3248          * depending on whether all applicable candidates are static or non-static methods,
3249          * respectively. If a successful lookup has both static and non-static applicable methods,
3250          * its kind is set to BOTH.
3251          */
3252         enum StaticKind {
3253             STATIC,
3254             NON_STATIC,
3255             BOTH,
3256             UNDEFINED;
3257 
3258             /**
3259              * Retrieve the static kind associated with a given (method) symbol.
3260              */
3261             static StaticKind from(Symbol s) {
3262                 return s.isStatic() ?
3263                         STATIC : NON_STATIC;
3264             }
3265 
3266             /**
3267              * Merge two static kinds together.
3268              */
3269             static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
3270                 if (sk1 == UNDEFINED) {
3271                     return sk2;
3272                 } else if (sk2 == UNDEFINED) {
3273                     return sk1;
3274                 } else {
3275                     return sk1 == sk2 ? sk1 : BOTH;
3276                 }
3277             }
3278         }
3279 
3280         /** The static kind. */
3281         StaticKind staticKind;
3282 
3283         /** The lookup result. */
3284         Symbol sym;
3285 
3286         ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) {
3287             this(sym, staticKind(sym, resolutionContext, isStaticSelector));
3288         }
3289 
3290         private ReferenceLookupResult(Symbol sym, StaticKind staticKind) {
3291             this.staticKind = staticKind;
3292             this.sym = sym;
3293         }
3294 
3295         private static StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) {
3296             if (sym.kind == MTH && !isStaticSelector) {
3297                 return StaticKind.from(sym);
3298             } else if (sym.kind == MTH || sym.kind == AMBIGUOUS) {
3299                 return resolutionContext.candidates.stream()
3300                         .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
3301                         .map(c -> StaticKind.from(c.sym))
3302                         .reduce(StaticKind::reduce)
3303                         .orElse(StaticKind.UNDEFINED);
3304             } else {
3305                 return StaticKind.UNDEFINED;
3306             }
3307         }
3308 
3309         /**
3310          * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
3311          */
3312         boolean isSuccess() {
3313             return staticKind != StaticKind.UNDEFINED;
3314         }
3315 
3316         /**
3317          * Does this result have given static kind?
3318          */
3319         boolean hasKind(StaticKind sk) {
3320             return this.staticKind == sk;
3321         }
3322 
3323         /**
3324          * Error recovery helper: can this lookup result be ignored (for the purpose of returning
3325          * some 'better' result) ?
3326          */
3327         boolean canIgnore() {
3328             switch (sym.kind) {
3329                 case ABSENT_MTH:
3330                     return true;
3331                 case WRONG_MTH:
3332                     InapplicableSymbolError errSym =
3333                             (InapplicableSymbolError)sym.baseSymbol();
3334                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
3335                             .matches(errSym.errCandidate().snd);
3336                 case WRONG_MTHS:
3337                     InapplicableSymbolsError errSyms =
3338                             (InapplicableSymbolsError)sym.baseSymbol();
3339                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
3340                 default:
3341                     return false;
3342             }
3343         }
3344 
3345         static ReferenceLookupResult error(Symbol sym) {
3346             return new ReferenceLookupResult(sym, StaticKind.UNDEFINED);
3347         }
3348     }
3349 
3350     /**
3351      * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
3352      * {@code ReferenceLookupResult} objects into a {@code Symbol}, which is then regarded as the
3353      * result of method reference resolution.
3354      */
3355     abstract class ReferenceChooser {
3356         /**
3357          * Generate a result from a pair of lookup result objects. This method delegates to the
3358          * appropriate result generation routine.
3359          */
3360         ReferenceLookupResult result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3361             return unboundRes != referenceNotFound ?
3362                     unboundResult(boundRes, unboundRes) :
3363                     boundResult(boundRes);
3364         }
3365 
3366         /**
3367          * Generate a symbol from a given bound lookup result.
3368          */
3369         abstract ReferenceLookupResult boundResult(ReferenceLookupResult boundRes);
3370 
3371         /**
3372          * Generate a symbol from a pair of bound/unbound lookup results.
3373          */
3374         abstract ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
3375     }
3376 
3377     /**
3378      * This chooser implements the selection strategy used during a full lookup; this logic
3379      * is described in JLS SE 8 (15.3.2).
3380      */
3381     ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
3382 
3383         @Override
3384         ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) {
3385             return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
3386                     boundRes : //the search produces a non-static method
3387                     ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false));
3388         }
3389 
3390         @Override
3391         ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3392             if (boundRes.isSuccess() && boundRes.sym.isStatic() &&
3393                     (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
3394                 //the first search produces a static method and no non-static method is applicable
3395                 //during the second search
3396                 return boundRes;
3397             } else if (unboundRes.isSuccess() && !unboundRes.sym.isStatic() &&
3398                     (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
3399                 //the second search produces a non-static method and no static method is applicable
3400                 //during the first search
3401                 return unboundRes;
3402             } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
3403                 //both searches produce some result; ambiguity (error recovery)
3404                 return ReferenceLookupResult.error(ambiguityError(boundRes.sym, unboundRes.sym));
3405             } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3406                 //Both searches failed to produce a result with correct staticness (i.e. first search
3407                 //produces an non-static method). Alternatively, a given search produced a result
3408                 //with the right staticness, but the other search has applicable methods with wrong
3409                 //staticness (error recovery)
3410                 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ?
3411                         boundRes.sym : unboundRes.sym, true));
3412             } else {
3413                 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3414                 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3415                         unboundRes : boundRes;
3416             }
3417         }
3418     };
3419 
3420     /**
3421      * This chooser implements the selection strategy used during an arity-based lookup; this logic
3422      * is described in JLS SE 8 (15.12.2.1).
3423      */
3424     ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
3425 
3426         @Override
3427         ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) {
3428             return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
3429                     boundRes : //the search has at least one applicable non-static method
3430                     ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false));
3431         }
3432 
3433         @Override
3434         ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3435             if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
3436                 //the first search has at least one applicable static method
3437                 return boundRes;
3438             } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
3439                 //the second search has at least one applicable non-static method
3440                 return unboundRes;
3441             } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3442                 //either the first search produces a non-static method, or second search produces
3443                 //a non-static method (error recovery)
3444                 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ?
3445                         boundRes.sym : unboundRes.sym, true));
3446             } else {
3447                 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3448                 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3449                         unboundRes : boundRes;
3450             }
3451         }
3452     };
3453 
3454     /**
3455      * Helper for defining custom method-like lookup logic; a lookup helper
3456      * provides hooks for (i) the actual lookup logic and (ii) accessing the
3457      * lookup result (this step might result in compiler diagnostics to be generated)
3458      */
3459     abstract class LookupHelper {
3460 
3461         /** name of the symbol to lookup */
3462         Name name;
3463 
3464         /** location in which the lookup takes place */
3465         Type site;
3466 
3467         /** actual types used during the lookup */
3468         List<Type> argtypes;
3469 
3470         /** type arguments used during the lookup */
3471         List<Type> typeargtypes;
3472 
3473         /** Max overload resolution phase handled by this helper */
3474         MethodResolutionPhase maxPhase;
3475 
3476         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3477             this.name = name;
3478             this.site = site;
3479             this.argtypes = argtypes;
3480             this.typeargtypes = typeargtypes;
3481             this.maxPhase = maxPhase;
3482         }
3483 
3484         /**
3485          * Should lookup stop at given phase with given result
3486          */
3487         final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3488             return phase.ordinal() > maxPhase.ordinal() ||
3489                  !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS || sym.kind == STATICERR;
3490         }
3491 
3492         /**
3493          * Search for a symbol under a given overload resolution phase - this method
3494          * is usually called several times, once per each overload resolution phase
3495          */
3496         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3497 
3498         /**
3499          * Dump overload resolution info
3500          */
3501         void debug(DiagnosticPosition pos, Symbol sym) {
3502             //do nothing
3503         }
3504 
3505         /**
3506          * Validate the result of the lookup
3507          */
3508         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3509     }
3510 
3511     abstract class BasicLookupHelper extends LookupHelper {
3512 
3513         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3514             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3515         }
3516 
3517         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3518             super(name, site, argtypes, typeargtypes, maxPhase);
3519         }
3520 
3521         @Override
3522         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3523             if (sym.kind.isResolutionError()) {
3524                 //if nothing is found return the 'first' error
3525                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3526             }
3527             return sym;
3528         }
3529 
3530         @Override
3531         void debug(DiagnosticPosition pos, Symbol sym) {
3532             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3533         }
3534     }
3535 
3536     /**
3537      * Helper class for member reference lookup. A reference lookup helper
3538      * defines the basic logic for member reference lookup; a method gives
3539      * access to an 'unbound' helper used to perform an unbound member
3540      * reference lookup.
3541      */
3542     abstract class ReferenceLookupHelper extends LookupHelper {
3543 
3544         /** The member reference tree */
3545         JCMemberReference referenceTree;
3546 
3547         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3548                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3549             super(name, site, argtypes, typeargtypes, maxPhase);
3550             this.referenceTree = referenceTree;
3551         }
3552 
3553         /**
3554          * Returns an unbound version of this lookup helper. By default, this
3555          * method returns an dummy lookup helper.
3556          */
3557         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3558             return null;
3559         }
3560 
3561         /**
3562          * Get the kind of the member reference
3563          */
3564         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3565 
3566         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3567             //skip error reporting
3568             return sym;
3569         }
3570     }
3571 
3572     /**
3573      * Helper class for method reference lookup. The lookup logic is based
3574      * upon Resolve.findMethod; in certain cases, this helper class has a
3575      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3576      * In such cases, non-static lookup results are thrown away.
3577      */
3578     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3579 
3580         /** The original method reference lookup site. */
3581         Type originalSite;
3582 
3583         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3584                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3585             super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3586             this.originalSite = site;
3587         }
3588 
3589         @Override
3590         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3591             return findMethod(env, site, name, argtypes, typeargtypes,
3592                     phase.isBoxingRequired(), phase.isVarargsRequired());
3593         }
3594 
3595         @Override
3596         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3597             if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3598                 if (argtypes.nonEmpty() &&
3599                         (argtypes.head.hasTag(NONE) ||
3600                         types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), originalSite))) {
3601                     return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3602                             originalSite, argtypes, typeargtypes, maxPhase);
3603                 } else {
3604                     return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3605                         @Override
3606                         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3607                             return this;
3608                         }
3609 
3610                         @Override
3611                         Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3612                             return methodNotFound;
3613                         }
3614 
3615                         @Override
3616                         ReferenceKind referenceKind(Symbol sym) {
3617                             Assert.error();
3618                             return null;
3619                         }
3620                     };
3621                 }
3622             } else {
3623                 return super.unboundLookup(inferenceContext);
3624             }
3625         }
3626 
3627         @Override
3628         ReferenceKind referenceKind(Symbol sym) {
3629             if (sym.isStatic()) {
3630                 return ReferenceKind.STATIC;
3631             } else {
3632                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3633                 return selName != null && selName == names._super ?
3634                         ReferenceKind.SUPER :
3635                         ReferenceKind.BOUND;
3636             }
3637         }
3638 
3639         @Override
3640         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3641             if (originalSite.hasTag(TYPEVAR) && sym.kind == MTH) {
3642                 sym = (sym.flags() & Flags.PRIVATE) != 0 ?
3643                         new AccessError(env, site, sym) :
3644                         sym;
3645                 return accessBase(sym, pos, location, originalSite, name, true);
3646             } else {
3647                 return super.access(env, pos, location, sym);
3648             }
3649         }
3650     }
3651 
3652     /**
3653      * Helper class for unbound method reference lookup. Essentially the same
3654      * as the basic method reference lookup helper; main difference is that static
3655      * lookup results are thrown away. If qualifier type is raw, an attempt to
3656      * infer a parameterized type is made using the first actual argument (that
3657      * would otherwise be ignored during the lookup).
3658      */
3659     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3660 
3661         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3662                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3663             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3664             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3665                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3666                 this.site = types.skipTypeVars(asSuperSite, true);
3667             }
3668         }
3669 
3670         @Override
3671         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3672             return this;
3673         }
3674 
3675         @Override
3676         ReferenceKind referenceKind(Symbol sym) {
3677             return ReferenceKind.UNBOUND;
3678         }
3679     }
3680 
3681     /**
3682      * Helper class for array constructor lookup; an array constructor lookup
3683      * is simulated by looking up a method that returns the array type specified
3684      * as qualifier, and that accepts a single int parameter (size of the array).
3685      */
3686     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3687 
3688         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3689                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3690             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3691         }
3692 
3693         @Override
3694         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3695             WriteableScope sc = WriteableScope.create(syms.arrayClass);
3696             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3697             arrayConstr.type = new MethodType(List.of(syms.intType), site, List.nil(), syms.methodClass);
3698             sc.enter(arrayConstr);
3699             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3700         }
3701 
3702         @Override
3703         ReferenceKind referenceKind(Symbol sym) {
3704             return ReferenceKind.ARRAY_CTOR;
3705         }
3706     }
3707 
3708     /**
3709      * Helper class for constructor reference lookup. The lookup logic is based
3710      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3711      * whether the constructor reference needs diamond inference (this is the case
3712      * if the qualifier type is raw). A special erroneous symbol is returned
3713      * if the lookup returns the constructor of an inner class and there's no
3714      * enclosing instance in scope.
3715      */
3716     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3717 
3718         boolean needsInference;
3719 
3720         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3721                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3722             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3723             if (site.isRaw()) {
3724                 this.site = new ClassType(site.getEnclosingType(),
3725                         !(site.tsym.isInner() && site.getEnclosingType().isRaw()) ?
3726                                 site.tsym.type.getTypeArguments() : List.nil(), site.tsym, site.getMetadata());
3727                 needsInference = true;
3728             }
3729         }
3730 
3731         @Override
3732         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3733             Symbol sym = needsInference ?
3734                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3735                 findMethod(env, site, name, argtypes, typeargtypes,
3736                         phase.isBoxingRequired(), phase.isVarargsRequired());
3737             return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
3738         }
3739 
3740         @Override
3741         ReferenceKind referenceKind(Symbol sym) {
3742             return site.getEnclosingType().hasTag(NONE) ?
3743                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3744         }
3745     }
3746 
3747     /**
3748      * Main overload resolution routine. On each overload resolution step, a
3749      * lookup helper class is used to perform the method/constructor lookup;
3750      * at the end of the lookup, the helper is used to validate the results
3751      * (this last step might trigger overload resolution diagnostics).
3752      */
3753     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3754         MethodResolutionContext resolveContext = new MethodResolutionContext();
3755         resolveContext.methodCheck = methodCheck;
3756         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3757     }
3758 
3759     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3760             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3761         MethodResolutionContext prevResolutionContext = currentResolutionContext;
3762         try {
3763             Symbol bestSoFar = methodNotFound;
3764             currentResolutionContext = resolveContext;
3765             for (MethodResolutionPhase phase : methodResolutionSteps) {
3766                 if (lookupHelper.shouldStop(bestSoFar, phase))
3767                     break;
3768                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
3769                 Symbol prevBest = bestSoFar;
3770                 currentResolutionContext.step = phase;
3771                 Symbol sym = lookupHelper.lookup(env, phase);
3772                 lookupHelper.debug(pos, sym);
3773                 bestSoFar = phase.mergeResults(bestSoFar, sym);
3774                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3775             }
3776             return lookupHelper.access(env, pos, location, bestSoFar);
3777         } finally {
3778             currentResolutionContext = prevResolutionContext;
3779         }
3780     }
3781 
3782     /**
3783      * Resolve `c.name' where name == this or name == super.
3784      * @param pos           The position to use for error reporting.
3785      * @param env           The environment current at the expression.
3786      * @param c             The qualifier.
3787      * @param name          The identifier's name.
3788      */
3789     Symbol resolveSelf(DiagnosticPosition pos,
3790                        Env<AttrContext> env,
3791                        TypeSymbol c,
3792                        Name name) {
3793         Assert.check(name == names._this || name == names._super);
3794         Env<AttrContext> env1 = env;
3795         boolean staticOnly = false;
3796         while (env1.outer != null) {
3797             if (isStatic(env1)) staticOnly = true;
3798             if (env1.enclClass.sym == c) {
3799                 Symbol sym = env1.info.scope.findFirst(name);
3800                 if (sym != null) {
3801                     if (staticOnly)
3802                         sym = new StaticError(sym);
3803                     else if (env1.info.ctorPrologue && !isAllowedEarlyReference(pos, env1, (VarSymbol)sym))
3804                         sym = new RefBeforeCtorCalledError(sym);
3805                     return accessBase(sym, pos, env.enclClass.sym.type,
3806                                   name, true);
3807                 }
3808             }
3809             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3810             env1 = env1.outer;
3811         }
3812         if (c.isInterface() &&
3813             name == names._super && !isStatic(env) &&
3814             types.isDirectSuperInterface(c, env.enclClass.sym)) {
3815             //this might be a default super call if one of the superinterfaces is 'c'
3816             for (Type t : pruneInterfaces(env.enclClass.type)) {
3817                 if (t.tsym == c) {
3818                     if (env.info.ctorPrologue)
3819                         log.error(pos, Errors.CantRefBeforeCtorCalled(name));
3820                     env.info.defaultSuperCallSite = t;
3821                     return new VarSymbol(0, names._super,
3822                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3823                 }
3824             }
3825             //find a direct supertype that is a subtype of 'c'
3826             for (Type i : types.directSupertypes(env.enclClass.type)) {
3827                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3828                     log.error(pos,
3829                               Errors.IllegalDefaultSuperCall(c,
3830                                                              Fragments.RedundantSupertype(c, i)));
3831                     return syms.errSymbol;
3832                 }
3833             }
3834             Assert.error();
3835         }
3836         log.error(pos, Errors.NotEnclClass(c));
3837         return syms.errSymbol;
3838     }
3839     //where
3840     private List<Type> pruneInterfaces(Type t) {
3841         ListBuffer<Type> result = new ListBuffer<>();
3842         for (Type t1 : types.interfaces(t)) {
3843             boolean shouldAdd = true;
3844             for (Type t2 : types.directSupertypes(t)) {
3845                 if (t1 != t2 && !t2.hasTag(ERROR) && types.isSubtypeNoCapture(t2, t1)) {
3846                     shouldAdd = false;
3847                 }
3848             }
3849             if (shouldAdd) {
3850                 result.append(t1);
3851             }
3852         }
3853         return result.toList();
3854     }
3855 
3856     /**
3857      * Determine if an early instance field reference may appear in a constructor prologue.
3858      *
3859      * <p>
3860      * This is only allowed when:
3861      *  - The field is being assigned a value (i.e., written but not read)
3862      *  - The field is not inherited from a superclass
3863      *  - The assignment is not within a lambda, because that would require
3864      *    capturing 'this' which is not allowed prior to super().
3865      *
3866      * <p>
3867      * Note, this method doesn't catch all such scenarios, because this method
3868      * is invoked for symbol "x" only for "x = 42" but not for "this.x = 42".
3869      * We also don't verify that the field has no initializer, which is required.
3870      * To catch those cases, we rely on similar logic in Attr.checkAssignable().
3871      */
3872     private boolean isAllowedEarlyReference(DiagnosticPosition pos, Env<AttrContext> env, VarSymbol v) {
3873 
3874         // Check assumptions
3875         Assert.check(env.info.ctorPrologue);
3876         Assert.check((v.flags_field & STATIC) == 0);
3877 
3878         // The symbol must appear in the LHS of an assignment statement
3879         if (!(env.tree instanceof JCAssign assign))
3880             return false;
3881 
3882         // The assignment statement must not be within a lambda
3883         if (env.info.isLambda)
3884             return false;
3885 
3886         // Get the symbol's qualifier, if any
3887         JCExpression lhs = TreeInfo.skipParens(assign.lhs);
3888         JCExpression base;
3889         switch (lhs.getTag()) {
3890         case IDENT:
3891             base = null;
3892             break;
3893         case SELECT:
3894             JCFieldAccess select = (JCFieldAccess)lhs;
3895             base = select.selected;
3896             if (!TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, base))
3897                 return false;
3898             break;
3899         default:
3900             return false;
3901         }
3902 
3903         // If an early reference, the field must not be declared in a superclass
3904         if (isEarlyReference(env, base, v) && v.owner != env.enclClass.sym)
3905             return false;
3906 
3907         // The flexible constructors feature must be enabled
3908         preview.checkSourceLevel(pos, Feature.FLEXIBLE_CONSTRUCTORS);
3909 
3910         // OK
3911         return true;
3912     }
3913 
3914     /**
3915      * Determine if the variable appearance constitutes an early reference to the current class.
3916      *
3917      * <p>
3918      * This means the variable is an instance field of the current class and it appears
3919      * in an early initialization context of it (i.e., one of its constructor prologues).
3920      *
3921      * <p>
3922      * Such a reference is only allowed for assignments to non-initialized fields that are
3923      * not inherited from a superclass, though that is not enforced by this method.
3924      *
3925      * @param env    The current environment
3926      * @param base   Variable qualifier, if any, otherwise null
3927      * @param v      The variable
3928      */
3929     public boolean isEarlyReference(Env<AttrContext> env, JCTree base, VarSymbol v) {
3930         return env.info.ctorPrologue &&
3931             (v.flags() & STATIC) == 0 &&
3932             v.owner.kind == TYP &&
3933             types.isSubtype(env.enclClass.type, v.owner.type) &&
3934             (base == null || TreeInfo.isExplicitThisReference(types, (ClassType)env.enclClass.type, base));
3935     }
3936 
3937     /**
3938      * Resolve `c.this' for an enclosing class c that contains the
3939      * named member.
3940      * @param pos           The position to use for error reporting.
3941      * @param env           The environment current at the expression.
3942      * @param member        The member that must be contained in the result.
3943      */
3944     Symbol resolveSelfContaining(DiagnosticPosition pos,
3945                                  Env<AttrContext> env,
3946                                  Symbol member,
3947                                  boolean isSuperCall) {
3948         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3949         if (sym == null) {
3950             log.error(pos, Errors.EnclClassRequired(member));
3951             return syms.errSymbol;
3952         } else {
3953             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3954         }
3955     }
3956 
3957     boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
3958         if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
3959             Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3960             return encl == null || encl.kind.isResolutionError();
3961         }
3962         return false;
3963     }
3964 
3965     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3966                                  Symbol member,
3967                                  boolean isSuperCall) {
3968         Name name = names._this;
3969         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3970         boolean staticOnly = false;
3971         if (env1 != null) {
3972             while (env1 != null && env1.outer != null) {
3973                 if (isStatic(env1)) staticOnly = true;
3974                 if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
3975                     Symbol sym = env1.info.scope.findFirst(name);
3976                     if (sym != null) {
3977                         if (staticOnly) sym = new StaticError(sym);
3978                         return sym;
3979                     }
3980                 }
3981                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
3982                     staticOnly = true;
3983                 env1 = env1.outer;
3984             }
3985         }
3986         return null;
3987     }
3988 
3989     /**
3990      * Resolve an appropriate implicit this instance for t's container.
3991      * JLS 8.8.5.1 and 15.9.2
3992      */
3993     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3994         return resolveImplicitThis(pos, env, t, false);
3995     }
3996 
3997     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3998         Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3999                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
4000                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
4001         if (env.info.ctorPrologue && thisType.tsym == env.enclClass.sym) {
4002             log.error(pos, Errors.CantRefBeforeCtorCalled(names._this));
4003         }
4004         return thisType;
4005     }
4006 
4007 /* ***************************************************************************
4008  *  ResolveError classes, indicating error situations when accessing symbols
4009  ****************************************************************************/
4010 
4011     //used by TransTypes when checking target type of synthetic cast
4012     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
4013         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
4014         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
4015     }
4016     //where
4017     private void logResolveError(ResolveError error,
4018             DiagnosticPosition pos,
4019             Symbol location,
4020             Type site,
4021             Name name,
4022             List<Type> argtypes,
4023             List<Type> typeargtypes) {
4024         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4025                 pos, location, site, name, argtypes, typeargtypes);
4026         if (d != null) {
4027             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
4028             log.report(d);
4029         }
4030     }
4031 
4032     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
4033 
4034     public Object methodArguments(List<Type> argtypes) {
4035         if (argtypes == null || argtypes.isEmpty()) {
4036             return noArgs;
4037         } else {
4038             ListBuffer<Object> diagArgs = new ListBuffer<>();
4039             for (Type t : argtypes) {
4040                 if (t.hasTag(DEFERRED)) {
4041                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
4042                 } else {
4043                     diagArgs.append(t);
4044                 }
4045             }
4046             return diagArgs;
4047         }
4048     }
4049 
4050     /** check if a type is a subtype of Serializable, if that is available.*/
4051     boolean isSerializable(Type t) {
4052         try {
4053             syms.serializableType.complete();
4054         }
4055         catch (CompletionFailure e) {
4056             return false;
4057         }
4058         return types.isSubtype(t, syms.serializableType);
4059     }
4060 
4061     /**
4062      * Root class for resolution errors. Subclass of ResolveError
4063      * represent a different kinds of resolution error - as such they must
4064      * specify how they map into concrete compiler diagnostics.
4065      */
4066     abstract class ResolveError extends Symbol {
4067 
4068         /** The name of the kind of error, for debugging only. */
4069         final String debugName;
4070 
4071         ResolveError(Kind kind, String debugName) {
4072             super(kind, 0, null, null, null);
4073             this.debugName = debugName;
4074         }
4075 
4076         @Override @DefinedBy(Api.LANGUAGE_MODEL)
4077         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
4078             throw new AssertionError();
4079         }
4080 
4081         @Override
4082         public String toString() {
4083             return debugName;
4084         }
4085 
4086         @Override
4087         public boolean exists() {
4088             return false;
4089         }
4090 
4091         @Override
4092         public boolean isStatic() {
4093             return false;
4094         }
4095 
4096         /**
4097          * Create an external representation for this erroneous symbol to be
4098          * used during attribution - by default this returns the symbol of a
4099          * brand new error type which stores the original type found
4100          * during resolution.
4101          *
4102          * @param name     the name used during resolution
4103          * @param location the location from which the symbol is accessed
4104          */
4105         protected Symbol access(Name name, TypeSymbol location) {
4106             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
4107         }
4108 
4109         /**
4110          * Create a diagnostic representing this resolution error.
4111          *
4112          * @param dkind     The kind of the diagnostic to be created (e.g error).
4113          * @param pos       The position to be used for error reporting.
4114          * @param site      The original type from where the selection took place.
4115          * @param name      The name of the symbol to be resolved.
4116          * @param argtypes  The invocation's value arguments,
4117          *                  if we looked for a method.
4118          * @param typeargtypes  The invocation's type arguments,
4119          *                      if we looked for a method.
4120          */
4121         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4122                 DiagnosticPosition pos,
4123                 Symbol location,
4124                 Type site,
4125                 Name name,
4126                 List<Type> argtypes,
4127                 List<Type> typeargtypes);
4128     }
4129 
4130     /**
4131      * This class is the root class of all resolution errors caused by
4132      * an invalid symbol being found during resolution.
4133      */
4134     abstract class InvalidSymbolError extends ResolveError {
4135 
4136         /** The invalid symbol found during resolution */
4137         Symbol sym;
4138 
4139         InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
4140             super(kind, debugName);
4141             this.sym = sym;
4142         }
4143 
4144         @Override
4145         public boolean exists() {
4146             return true;
4147         }
4148 
4149         @Override
4150         public String toString() {
4151              return super.toString() + " wrongSym=" + sym;
4152         }
4153 
4154         @Override
4155         public Symbol access(Name name, TypeSymbol location) {
4156             if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
4157                 return types.createErrorType(name, location, sym.type).tsym;
4158             else
4159                 return sym;
4160         }
4161     }
4162 
4163     class BadRestrictedTypeError extends ResolveError {
4164         private final Name typeName;
4165         BadRestrictedTypeError(Name typeName) {
4166             super(Kind.BAD_RESTRICTED_TYPE, "bad var use");
4167             this.typeName = typeName;
4168         }
4169 
4170         @Override
4171         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4172             return diags.create(dkind, log.currentSource(), pos, "illegal.ref.to.restricted.type", typeName);
4173         }
4174     }
4175 
4176     /**
4177      * InvalidSymbolError error class indicating that a symbol matching a
4178      * given name does not exists in a given site.
4179      */
4180     class SymbolNotFoundError extends ResolveError {
4181 
4182         SymbolNotFoundError(Kind kind) {
4183             this(kind, "symbol not found error");
4184         }
4185 
4186         SymbolNotFoundError(Kind kind, String debugName) {
4187             super(kind, debugName);
4188         }
4189 
4190         @Override
4191         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4192                 DiagnosticPosition pos,
4193                 Symbol location,
4194                 Type site,
4195                 Name name,
4196                 List<Type> argtypes,
4197                 List<Type> typeargtypes) {
4198             argtypes = argtypes == null ? List.nil() : argtypes;
4199             typeargtypes = typeargtypes == null ? List.nil() : typeargtypes;
4200             if (name == names.error)
4201                 return null;
4202 
4203             boolean hasLocation = false;
4204             if (location == null) {
4205                 location = site.tsym;
4206             }
4207             if (!location.name.isEmpty()) {
4208                 if (location.kind == PCK && !site.tsym.exists() && location.name != names.java) {
4209                     return diags.create(dkind, log.currentSource(), pos,
4210                         "doesnt.exist", location);
4211                 }
4212                 hasLocation = !location.name.equals(names._this) &&
4213                         !location.name.equals(names._super);
4214             }
4215             boolean isConstructor = name == names.init;
4216             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
4217             Name idname = isConstructor ? site.tsym.name : name;
4218             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
4219             if (hasLocation) {
4220                 return diags.create(dkind, log.currentSource(), pos,
4221                         errKey, kindname, idname, //symbol kindname, name
4222                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
4223                         getLocationDiag(location, site)); //location kindname, type
4224             }
4225             else {
4226                 return diags.create(dkind, log.currentSource(), pos,
4227                         errKey, kindname, idname, //symbol kindname, name
4228                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
4229             }
4230         }
4231         //where
4232         private Object args(List<Type> args) {
4233             return args.isEmpty() ? args : methodArguments(args);
4234         }
4235 
4236         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
4237             String key = "cant.resolve";
4238             String suffix = hasLocation ? ".location" : "";
4239             switch (kindname) {
4240                 case METHOD:
4241                 case CONSTRUCTOR: {
4242                     suffix += ".args";
4243                     suffix += hasTypeArgs ? ".params" : "";
4244                 }
4245             }
4246             return key + suffix;
4247         }
4248         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
4249             if (location.kind == VAR) {
4250                 return diags.fragment(Fragments.Location1(kindName(location),
4251                                                           location,
4252                                                           location.type));
4253             } else {
4254                 return diags.fragment(Fragments.Location(typeKindName(site),
4255                                       site,
4256                                       null));
4257             }
4258         }
4259     }
4260 
4261     /**
4262      * InvalidSymbolError error class indicating that a given symbol
4263      * (either a method, a constructor or an operand) is not applicable
4264      * given an actual arguments/type argument list.
4265      */
4266     class InapplicableSymbolError extends ResolveError {
4267 
4268         protected MethodResolutionContext resolveContext;
4269 
4270         InapplicableSymbolError(MethodResolutionContext context) {
4271             this(WRONG_MTH, "inapplicable symbol error", context);
4272         }
4273 
4274         protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
4275             super(kind, debugName);
4276             this.resolveContext = context;
4277         }
4278 
4279         @Override
4280         public String toString() {
4281             return super.toString();
4282         }
4283 
4284         @Override
4285         public boolean exists() {
4286             return true;
4287         }
4288 
4289         @Override
4290         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4291                 DiagnosticPosition pos,
4292                 Symbol location,
4293                 Type site,
4294                 Name name,
4295                 List<Type> argtypes,
4296                 List<Type> typeargtypes) {
4297             if (name == names.error)
4298                 return null;
4299 
4300             Pair<Symbol, JCDiagnostic> c = errCandidate();
4301             Symbol ws = c.fst.asMemberOf(site, types);
4302             UnaryOperator<JCDiagnostic> rewriter = compactMethodDiags ?
4303               d -> MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd) : null;
4304 
4305             // If the problem is due to type arguments, then the method parameters aren't relevant,
4306             // so use the error message that omits them to avoid confusion.
4307             switch (c.snd.getCode()) {
4308                 case "compiler.misc.wrong.number.type.args":
4309                 case "compiler.misc.explicit.param.do.not.conform.to.bounds":
4310                     return diags.create(dkind, log.currentSource(), pos,
4311                               "cant.apply.symbol.noargs",
4312                               rewriter,
4313                               kindName(ws),
4314                               ws.name == names.init ? ws.owner.name : ws.name,
4315                               kindName(ws.owner),
4316                               ws.owner.type,
4317                               c.snd);
4318                 default:
4319                     // Avoid saying "constructor Array in class Array"
4320                     if (ws.owner == syms.arrayClass && ws.name == names.init) {
4321                         return diags.create(dkind, log.currentSource(), pos,
4322                                   "cant.apply.array.ctor",
4323                                   rewriter,
4324                                   methodArguments(ws.type.getParameterTypes()),
4325                                   methodArguments(argtypes),
4326                                   c.snd);
4327                     }
4328                     return diags.create(dkind, log.currentSource(), pos,
4329                               "cant.apply.symbol",
4330                               rewriter,
4331                               kindName(ws),
4332                               ws.name == names.init ? ws.owner.name : ws.name,
4333                               methodArguments(ws.type.getParameterTypes()),
4334                               methodArguments(argtypes),
4335                               kindName(ws.owner),
4336                               ws.owner.type,
4337                               c.snd);
4338             }
4339         }
4340 
4341         @Override
4342         public Symbol access(Name name, TypeSymbol location) {
4343             Pair<Symbol, JCDiagnostic> cand = errCandidate();
4344             TypeSymbol errSymbol = types.createErrorType(name, location, cand != null ? cand.fst.type : syms.errSymbol.type).tsym;
4345             if (cand != null) {
4346                 attrRecover.wrongMethodSymbolCandidate(errSymbol, cand.fst, cand.snd);
4347             }
4348             return errSymbol;
4349         }
4350 
4351         protected Pair<Symbol, JCDiagnostic> errCandidate() {
4352             Candidate bestSoFar = null;
4353             for (Candidate c : resolveContext.candidates) {
4354                 if (c.isApplicable()) continue;
4355                 bestSoFar = c;
4356             }
4357             Assert.checkNonNull(bestSoFar);
4358             return new Pair<>(bestSoFar.sym, bestSoFar.details);
4359         }
4360     }
4361 
4362     /**
4363      * ResolveError error class indicating that a symbol (either methods, constructors or operand)
4364      * is not applicable given an actual arguments/type argument list.
4365      */
4366     class InapplicableSymbolsError extends InapplicableSymbolError {
4367 
4368         InapplicableSymbolsError(MethodResolutionContext context) {
4369             super(WRONG_MTHS, "inapplicable symbols", context);
4370         }
4371 
4372         @Override
4373         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4374                 DiagnosticPosition pos,
4375                 Symbol location,
4376                 Type site,
4377                 Name name,
4378                 List<Type> argtypes,
4379                 List<Type> typeargtypes) {
4380             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
4381             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
4382                     filterCandidates(candidatesMap) :
4383                     mapCandidates();
4384             if (filteredCandidates.isEmpty()) {
4385                 filteredCandidates = candidatesMap;
4386             }
4387             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
4388             if (filteredCandidates.size() > 1) {
4389                 JCDiagnostic err = diags.create(dkind,
4390                         null,
4391                         truncatedDiag ?
4392                                 EnumSet.of(DiagnosticFlag.COMPRESSED) :
4393                                 EnumSet.noneOf(DiagnosticFlag.class),
4394                         log.currentSource(),
4395                         pos,
4396                         "cant.apply.symbols",
4397                         name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
4398                         name == names.init ? site.tsym.name : name,
4399                         methodArguments(argtypes));
4400                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
4401             } else if (filteredCandidates.size() == 1) {
4402                 Map.Entry<Symbol, JCDiagnostic> _e =
4403                                 filteredCandidates.entrySet().iterator().next();
4404                 final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
4405                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
4406                     @Override
4407                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
4408                         return p;
4409                     }
4410                 }.getDiagnostic(dkind, pos,
4411                     location, site, name, argtypes, typeargtypes);
4412                 if (truncatedDiag) {
4413                     d.setFlag(DiagnosticFlag.COMPRESSED);
4414                 }
4415                 return d;
4416             } else {
4417                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
4418                     location, site, name, argtypes, typeargtypes);
4419             }
4420         }
4421         //where
4422             private Map<Symbol, JCDiagnostic> mapCandidates() {
4423                 MostSpecificMap candidates = new MostSpecificMap();
4424                 for (Candidate c : resolveContext.candidates) {
4425                     if (c.isApplicable()) continue;
4426                     candidates.put(c);
4427                 }
4428                 return candidates;
4429             }
4430 
4431             @SuppressWarnings("serial")
4432             private class MostSpecificMap extends LinkedHashMap<Symbol, JCDiagnostic> {
4433                 private void put(Candidate c) {
4434                     ListBuffer<Symbol> overridden = new ListBuffer<>();
4435                     for (Symbol s : keySet()) {
4436                         if (s == c.sym) {
4437                             continue;
4438                         }
4439                         if (c.sym.overrides(s, (TypeSymbol)s.owner, types, false)) {
4440                             overridden.add(s);
4441                         } else if (s.overrides(c.sym, (TypeSymbol)c.sym.owner, types, false)) {
4442                             return;
4443                         }
4444                     }
4445                     for (Symbol s : overridden) {
4446                         remove(s);
4447                     }
4448                     put(c.sym, c.details);
4449                 }
4450             }
4451 
4452             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
4453                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
4454                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4455                     JCDiagnostic d = _entry.getValue();
4456                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
4457                         candidates.put(_entry.getKey(), d);
4458                     }
4459                 }
4460                 return candidates;
4461             }
4462 
4463             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
4464                 List<JCDiagnostic> details = List.nil();
4465                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4466                     Symbol sym = _entry.getKey();
4467                     JCDiagnostic detailDiag =
4468                             diags.fragment(Fragments.InapplicableMethod(Kinds.kindName(sym),
4469                                                                         sym.location(site, types),
4470                                                                         sym.asMemberOf(site, types),
4471                                                                         _entry.getValue()));
4472                     details = details.prepend(detailDiag);
4473                 }
4474                 //typically members are visited in reverse order (see Scope)
4475                 //so we need to reverse the candidate list so that candidates
4476                 //conform to source order
4477                 return details;
4478             }
4479 
4480         @Override
4481         protected Pair<Symbol, JCDiagnostic> errCandidate() {
4482             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
4483             Map<Symbol, JCDiagnostic> filteredCandidates = filterCandidates(candidatesMap);
4484             if (filteredCandidates.size() == 1) {
4485                 return Pair.of(filteredCandidates.keySet().iterator().next(),
4486                                filteredCandidates.values().iterator().next());
4487             }
4488             return null;
4489         }
4490     }
4491 
4492     /**
4493      * DiamondError error class indicating that a constructor symbol is not applicable
4494      * given an actual arguments/type argument list using diamond inference.
4495      */
4496     class DiamondError extends InapplicableSymbolError {
4497 
4498         Symbol sym;
4499 
4500         public DiamondError(Symbol sym, MethodResolutionContext context) {
4501             super(sym.kind, "diamondError", context);
4502             this.sym = sym;
4503         }
4504 
4505         JCDiagnostic getDetails() {
4506             return (sym.kind == WRONG_MTH) ?
4507                     ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
4508                     null;
4509         }
4510 
4511         @Override
4512         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
4513                 Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4514             JCDiagnostic details = getDetails();
4515             if (details != null && compactMethodDiags) {
4516                 JCDiagnostic simpleDiag =
4517                         MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
4518                 if (simpleDiag != null) {
4519                     return simpleDiag;
4520                 }
4521             }
4522             String key = details == null ?
4523                 "cant.apply.diamond" :
4524                 "cant.apply.diamond.1";
4525             return diags.create(dkind, log.currentSource(), pos, key,
4526                     Fragments.Diamond(site.tsym), details);
4527         }
4528     }
4529 
4530     /**
4531      * An InvalidSymbolError error class indicating that a symbol is not
4532      * accessible from a given site
4533      */
4534     class AccessError extends InvalidSymbolError {
4535 
4536         private Env<AttrContext> env;
4537         private Type site;
4538 
4539         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
4540             super(HIDDEN, sym, "access error");
4541             this.env = env;
4542             this.site = site;
4543         }
4544 
4545         @Override
4546         public boolean exists() {
4547             return false;
4548         }
4549 
4550         @Override
4551         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4552                 DiagnosticPosition pos,
4553                 Symbol location,
4554                 Type site,
4555                 Name name,
4556                 List<Type> argtypes,
4557                 List<Type> typeargtypes) {
4558             if (sym.name == names.init && sym.owner != site.tsym) {
4559                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
4560                         pos, location, site, name, argtypes, typeargtypes);
4561             }
4562             else if ((sym.flags() & PUBLIC) != 0
4563                 || (env != null && this.site != null
4564                     && !isAccessible(env, this.site))) {
4565                 if (sym.owner.kind == PCK) {
4566                     return diags.create(dkind, log.currentSource(),
4567                             pos, "not.def.access.package.cant.access",
4568                         sym, sym.location(), inaccessiblePackageReason(env, sym.packge()));
4569                 } else if (   sym.packge() != syms.rootPackage
4570                            && !symbolPackageVisible(env, sym)) {
4571                     return diags.create(dkind, log.currentSource(),
4572                             pos, "not.def.access.class.intf.cant.access.reason",
4573                             sym, sym.location(), sym.location().packge(),
4574                             inaccessiblePackageReason(env, sym.packge()));
4575                 } else {
4576                     return diags.create(dkind, log.currentSource(),
4577                             pos, "not.def.access.class.intf.cant.access",
4578                         sym, sym.location());
4579                 }
4580             }
4581             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
4582                 return diags.create(dkind, log.currentSource(),
4583                         pos, "report.access", sym,
4584                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
4585                         sym.location());
4586             }
4587             else {
4588                 return diags.create(dkind, log.currentSource(),
4589                         pos, "not.def.public.cant.access", sym, sym.location());
4590             }
4591         }
4592 
4593         private String toString(Type type) {
4594             StringBuilder sb = new StringBuilder();
4595             sb.append(type);
4596             if (type != null) {
4597                 sb.append("[tsym:").append(type.tsym);
4598                 if (type.tsym != null)
4599                     sb.append("packge:").append(type.tsym.packge());
4600                 sb.append("]");
4601             }
4602             return sb.toString();
4603         }
4604     }
4605 
4606     class InvisibleSymbolError extends InvalidSymbolError {
4607 
4608         private final Env<AttrContext> env;
4609         private final boolean suppressError;
4610 
4611         InvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
4612             super(HIDDEN, sym, "invisible class error");
4613             this.env = env;
4614             this.suppressError = suppressError;
4615             this.name = sym.name;
4616         }
4617 
4618         @Override
4619         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4620                 DiagnosticPosition pos,
4621                 Symbol location,
4622                 Type site,
4623                 Name name,
4624                 List<Type> argtypes,
4625                 List<Type> typeargtypes) {
4626             if (suppressError)
4627                 return null;
4628 
4629             if (sym.kind == PCK) {
4630                 JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4631                 return diags.create(dkind, log.currentSource(),
4632                         pos, "package.not.visible", sym, details);
4633             }
4634 
4635             JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4636 
4637             if (pos.getTree() != null) {
4638                 Symbol o = sym;
4639                 JCTree tree = pos.getTree();
4640 
4641                 while (o.kind != PCK && tree.hasTag(SELECT)) {
4642                     o = o.owner;
4643                     tree = ((JCFieldAccess) tree).selected;
4644                 }
4645 
4646                 if (o.kind == PCK) {
4647                     pos = tree.pos();
4648 
4649                     return diags.create(dkind, log.currentSource(),
4650                             pos, "package.not.visible", o, details);
4651                 }
4652             }
4653 
4654             return diags.create(dkind, log.currentSource(),
4655                     pos, "not.def.access.package.cant.access", sym, sym.packge(), details);
4656         }
4657     }
4658 
4659     JCDiagnostic inaccessiblePackageReason(Env<AttrContext> env, PackageSymbol sym) {
4660         //no dependency:
4661         if (!env.toplevel.modle.readModules.contains(sym.modle)) {
4662             //does not read:
4663             if (sym.modle != syms.unnamedModule) {
4664                 if (env.toplevel.modle != syms.unnamedModule) {
4665                     return diags.fragment(Fragments.NotDefAccessDoesNotRead(env.toplevel.modle,
4666                                                                             sym,
4667                                                                             sym.modle));
4668                 } else {
4669                     return diags.fragment(Fragments.NotDefAccessDoesNotReadFromUnnamed(sym,
4670                                                                                        sym.modle));
4671                 }
4672             } else {
4673                 return diags.fragment(Fragments.NotDefAccessDoesNotReadUnnamed(sym,
4674                                                                                env.toplevel.modle));
4675             }
4676         } else {
4677             if (sym.packge().modle.exports.stream().anyMatch(e -> e.packge == sym)) {
4678                 //not exported to this module:
4679                 if (env.toplevel.modle != syms.unnamedModule) {
4680                     return diags.fragment(Fragments.NotDefAccessNotExportedToModule(sym,
4681                                                                                     sym.modle,
4682                                                                                     env.toplevel.modle));
4683                 } else {
4684                     return diags.fragment(Fragments.NotDefAccessNotExportedToModuleFromUnnamed(sym,
4685                                                                                                sym.modle));
4686                 }
4687             } else {
4688                 //not exported:
4689                 if (env.toplevel.modle != syms.unnamedModule) {
4690                     return diags.fragment(Fragments.NotDefAccessNotExported(sym,
4691                                                                             sym.modle));
4692                 } else {
4693                     return diags.fragment(Fragments.NotDefAccessNotExportedFromUnnamed(sym,
4694                                                                                        sym.modle));
4695                 }
4696             }
4697         }
4698     }
4699 
4700     /**
4701      * InvalidSymbolError error class indicating that an instance member
4702      * has erroneously been accessed from a static context.
4703      */
4704     class StaticError extends InvalidSymbolError {
4705 
4706         StaticError(Symbol sym) {
4707             this(sym, "static error");
4708         }
4709 
4710         StaticError(Symbol sym, String debugName) {
4711             super(STATICERR, sym, debugName);
4712         }
4713 
4714         @Override
4715         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4716                 DiagnosticPosition pos,
4717                 Symbol location,
4718                 Type site,
4719                 Name name,
4720                 List<Type> argtypes,
4721                 List<Type> typeargtypes) {
4722             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4723                 ? types.erasure(sym.type).tsym
4724                 : sym);
4725             return diags.create(dkind, log.currentSource(), pos,
4726                     "non-static.cant.be.ref", kindName(sym), errSym);
4727         }
4728     }
4729 
4730     /**
4731      * Specialization of {@link InvalidSymbolError} for illegal
4732      * early accesses within a constructor prologue.
4733      */
4734     class RefBeforeCtorCalledError extends StaticError {
4735 
4736         RefBeforeCtorCalledError(Symbol sym) {
4737             super(sym, "prologue error");
4738         }
4739 
4740         @Override
4741         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4742                 DiagnosticPosition pos,
4743                 Symbol location,
4744                 Type site,
4745                 Name name,
4746                 List<Type> argtypes,
4747                 List<Type> typeargtypes) {
4748             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4749                 ? types.erasure(sym.type).tsym
4750                 : sym);
4751             return diags.create(dkind, log.currentSource(), pos,
4752                     "cant.ref.before.ctor.called", errSym);
4753         }
4754     }
4755 
4756     /**
4757      * InvalidSymbolError error class indicating that a pair of symbols
4758      * (either methods, constructors or operands) are ambiguous
4759      * given an actual arguments/type argument list.
4760      */
4761     class AmbiguityError extends ResolveError {
4762 
4763         /** The other maximally specific symbol */
4764         List<Symbol> ambiguousSyms = List.nil();
4765 
4766         @Override
4767         public boolean exists() {
4768             return true;
4769         }
4770 
4771         AmbiguityError(Symbol sym1, Symbol sym2) {
4772             super(AMBIGUOUS, "ambiguity error");
4773             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4774         }
4775 
4776         private List<Symbol> flatten(Symbol sym) {
4777             if (sym.kind == AMBIGUOUS) {
4778                 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4779             } else {
4780                 return List.of(sym);
4781             }
4782         }
4783 
4784         AmbiguityError addAmbiguousSymbol(Symbol s) {
4785             ambiguousSyms = ambiguousSyms.prepend(s);
4786             return this;
4787         }
4788 
4789         @Override
4790         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4791                 DiagnosticPosition pos,
4792                 Symbol location,
4793                 Type site,
4794                 Name name,
4795                 List<Type> argtypes,
4796                 List<Type> typeargtypes) {
4797             List<Symbol> diagSyms = ambiguousSyms.reverse();
4798             Symbol s1 = diagSyms.head;
4799             Symbol s2 = diagSyms.tail.head;
4800             Name sname = s1.name;
4801             if (sname == names.init) sname = s1.owner.name;
4802             return diags.create(dkind, log.currentSource(),
4803                     pos, "ref.ambiguous", sname,
4804                     kindName(s1),
4805                     s1,
4806                     s1.location(site, types),
4807                     kindName(s2),
4808                     s2,
4809                     s2.location(site, types));
4810         }
4811 
4812         /**
4813          * If multiple applicable methods are found during overload and none of them
4814          * is more specific than the others, attempt to merge their signatures.
4815          */
4816         Symbol mergeAbstracts(Type site) {
4817             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4818             return types.mergeAbstracts(ambiguousInOrder, site, true).orElse(this);
4819         }
4820 
4821         @Override
4822         protected Symbol access(Name name, TypeSymbol location) {
4823             Symbol firstAmbiguity = ambiguousSyms.last();
4824             return firstAmbiguity.kind == TYP ?
4825                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
4826                     firstAmbiguity;
4827         }
4828     }
4829 
4830     class BadVarargsMethod extends ResolveError {
4831 
4832         ResolveError delegatedError;
4833 
4834         BadVarargsMethod(ResolveError delegatedError) {
4835             super(delegatedError.kind, "badVarargs");
4836             this.delegatedError = delegatedError;
4837         }
4838 
4839         @Override
4840         public Symbol baseSymbol() {
4841             return delegatedError.baseSymbol();
4842         }
4843 
4844         @Override
4845         protected Symbol access(Name name, TypeSymbol location) {
4846             return delegatedError.access(name, location);
4847         }
4848 
4849         @Override
4850         public boolean exists() {
4851             return true;
4852         }
4853 
4854         @Override
4855         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4856             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4857         }
4858     }
4859 
4860     /**
4861      * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4862      * but with the wrong staticness.
4863      */
4864     class BadMethodReferenceError extends StaticError {
4865 
4866         boolean unboundLookup;
4867 
4868         public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4869             super(sym, "bad method ref error");
4870             this.unboundLookup = unboundLookup;
4871         }
4872 
4873         @Override
4874         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4875             final String key;
4876             if (!unboundLookup) {
4877                 key = "bad.static.method.in.bound.lookup";
4878             } else if (sym.isStatic()) {
4879                 key = "bad.static.method.in.unbound.lookup";
4880             } else {
4881                 key = "bad.instance.method.in.unbound.lookup";
4882             }
4883             return sym.kind.isResolutionError() ?
4884                     ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4885                     diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4886         }
4887     }
4888 
4889     /**
4890      * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4891      * but pointing to a class for which an enclosing instance is not available.
4892      */
4893     class BadConstructorReferenceError extends InvalidSymbolError {
4894 
4895         public BadConstructorReferenceError(Symbol sym) {
4896             super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4897         }
4898 
4899         @Override
4900         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4901            return diags.create(dkind, log.currentSource(), pos,
4902                 "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4903         }
4904     }
4905 
4906     class BadClassFileError extends InvalidSymbolError {
4907 
4908         private final CompletionFailure ex;
4909 
4910         public BadClassFileError(CompletionFailure ex) {
4911             super(HIDDEN, ex.sym, "BadClassFileError");
4912             this.name = sym.name;
4913             this.ex = ex;
4914         }
4915 
4916         @Override
4917         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4918             JCDiagnostic d = diags.create(dkind, log.currentSource(), pos,
4919                 "cant.access", ex.sym, ex.getDetailValue());
4920 
4921             d.setFlag(DiagnosticFlag.NON_DEFERRABLE);
4922             return d;
4923         }
4924 
4925     }
4926 
4927     /**
4928      * Helper class for method resolution diagnostic simplification.
4929      * Certain resolution diagnostic are rewritten as simpler diagnostic
4930      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4931      * is stripped away, as it doesn't carry additional info. The logic
4932      * for matching a given diagnostic is given in terms of a template
4933      * hierarchy: a diagnostic template can be specified programmatically,
4934      * so that only certain diagnostics are matched. Each templete is then
4935      * associated with a rewriter object that carries out the task of rewtiting
4936      * the diagnostic to a simpler one.
4937      */
4938     static class MethodResolutionDiagHelper {
4939 
4940         /**
4941          * A diagnostic rewriter transforms a method resolution diagnostic
4942          * into a simpler one
4943          */
4944         interface DiagnosticRewriter {
4945             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4946                     DiagnosticPosition preferredPos, DiagnosticSource preferredSource,
4947                     DiagnosticType preferredKind, JCDiagnostic d);
4948         }
4949 
4950         /**
4951          * A diagnostic template is made up of two ingredients: (i) a regular
4952          * expression for matching a diagnostic key and (ii) a list of sub-templates
4953          * for matching diagnostic arguments.
4954          */
4955         static class Template {
4956 
4957             /** regex used to match diag key */
4958             String regex;
4959 
4960             /** templates used to match diagnostic args */
4961             Template[] subTemplates;
4962 
4963             Template(String key, Template... subTemplates) {
4964                 this.regex = key;
4965                 this.subTemplates = subTemplates;
4966             }
4967 
4968             /**
4969              * Returns true if the regex matches the diagnostic key and if
4970              * all diagnostic arguments are matches by corresponding sub-templates.
4971              */
4972             boolean matches(Object o) {
4973                 JCDiagnostic d = (JCDiagnostic)o;
4974                 Object[] args = d.getArgs();
4975                 if (!d.getCode().matches(regex) ||
4976                         subTemplates.length != d.getArgs().length) {
4977                     return false;
4978                 }
4979                 for (int i = 0; i < args.length ; i++) {
4980                     if (!subTemplates[i].matches(args[i])) {
4981                         return false;
4982                     }
4983                 }
4984                 return true;
4985             }
4986         }
4987 
4988         /**
4989          * Common rewriter for all argument mismatch simplifications.
4990          */
4991         static class ArgMismatchRewriter implements DiagnosticRewriter {
4992 
4993             /** the index of the subdiagnostic to be used as primary. */
4994             int causeIndex;
4995 
4996             public ArgMismatchRewriter(int causeIndex) {
4997                 this.causeIndex = causeIndex;
4998             }
4999 
5000             @Override
5001             public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
5002                     DiagnosticPosition preferredPos, DiagnosticSource preferredSource,
5003                     DiagnosticType preferredKind, JCDiagnostic d) {
5004                 JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
5005                 DiagnosticPosition pos = d.getDiagnosticPosition();
5006                 if (pos == null) {
5007                     pos = preferredPos;
5008                 }
5009                 return diags.create(preferredKind, preferredSource, pos,
5010                         "prob.found.req", cause);
5011             }
5012         }
5013 
5014         /** a dummy template that match any diagnostic argument */
5015         static final Template skip = new Template("") {
5016             @Override
5017             boolean matches(Object d) {
5018                 return true;
5019             }
5020         };
5021 
5022         /** template for matching inference-free arguments mismatch failures */
5023         static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
5024 
5025         /** template for matching inference related arguments mismatch failures */
5026         static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
5027             @Override
5028             boolean matches(Object o) {
5029                 if (!super.matches(o)) {
5030                     return false;
5031                 }
5032                 JCDiagnostic d = (JCDiagnostic)o;
5033                 @SuppressWarnings("unchecked")
5034                 List<Type> tvars = (List<Type>)d.getArgs()[0];
5035                 return !containsAny(d, tvars);
5036             }
5037 
5038             BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
5039                 if (o instanceof Type type) {
5040                     return type.containsAny(ts);
5041                 } else if (o instanceof JCDiagnostic diagnostic) {
5042                     return containsAny(diagnostic, ts);
5043                 } else {
5044                     return false;
5045                 }
5046             };
5047 
5048             boolean containsAny(JCDiagnostic d, List<Type> ts) {
5049                 return Stream.of(d.getArgs())
5050                         .anyMatch(o -> containsPredicate.test(o, ts));
5051             }
5052         };
5053 
5054         /** rewriter map used for method resolution simplification */
5055         static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
5056 
5057         static {
5058             rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
5059             rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
5060         }
5061 
5062         /**
5063          * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
5064          * and rewrite it accordingly.
5065          */
5066         static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
5067                                     DiagnosticType dkind, JCDiagnostic d) {
5068             for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
5069                 if (_entry.getKey().matches(d)) {
5070                     JCDiagnostic simpleDiag =
5071                             _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
5072                     simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
5073                     return simpleDiag;
5074                 }
5075             }
5076             return null;
5077         }
5078     }
5079 
5080     enum MethodResolutionPhase {
5081         BASIC(false, false),
5082         BOX(true, false),
5083         VARARITY(true, true) {
5084             @Override
5085             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
5086                 //Check invariants (see {@code LookupHelper.shouldStop})
5087                 Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
5088                 if (!sym.kind.isResolutionError()) {
5089                     //varargs resolution successful
5090                     return sym;
5091                 } else {
5092                     //pick best error
5093                     switch (bestSoFar.kind) {
5094                         case WRONG_MTH:
5095                         case WRONG_MTHS:
5096                             //Override previous errors if they were caused by argument mismatch.
5097                             //This generally means preferring current symbols - but we need to pay
5098                             //attention to the fact that the varargs lookup returns 'less' candidates
5099                             //than the previous rounds, and adjust that accordingly.
5100                             switch (sym.kind) {
5101                                 case WRONG_MTH:
5102                                     //if the previous round matched more than one method, return that
5103                                     //result instead
5104                                     return bestSoFar.kind == WRONG_MTHS ?
5105                                             bestSoFar : sym;
5106                                 case ABSENT_MTH:
5107                                     //do not override erroneous symbol if the arity lookup did not
5108                                     //match any method
5109                                     return bestSoFar;
5110                                 case WRONG_MTHS:
5111                                 default:
5112                                     //safe to override
5113                                     return sym;
5114                             }
5115                         default:
5116                             //otherwise, return first error
5117                             return bestSoFar;
5118                     }
5119                 }
5120             }
5121         };
5122 
5123         final boolean isBoxingRequired;
5124         final boolean isVarargsRequired;
5125 
5126         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
5127            this.isBoxingRequired = isBoxingRequired;
5128            this.isVarargsRequired = isVarargsRequired;
5129         }
5130 
5131         public boolean isBoxingRequired() {
5132             return isBoxingRequired;
5133         }
5134 
5135         public boolean isVarargsRequired() {
5136             return isVarargsRequired;
5137         }
5138 
5139         public Symbol mergeResults(Symbol prev, Symbol sym) {
5140             return sym;
5141         }
5142     }
5143 
5144     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
5145 
5146     /**
5147      * A resolution context is used to keep track of intermediate results of
5148      * overload resolution, such as list of method that are not applicable
5149      * (used to generate more precise diagnostics) and so on. Resolution contexts
5150      * can be nested - this means that when each overload resolution routine should
5151      * work within the resolution context it created.
5152      */
5153     class MethodResolutionContext {
5154 
5155         private List<Candidate> candidates = List.nil();
5156 
5157         MethodResolutionPhase step = null;
5158 
5159         MethodCheck methodCheck = resolveMethodCheck;
5160 
5161         private boolean internalResolution = false;
5162         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
5163 
5164         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
5165             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
5166             candidates = candidates.append(c);
5167         }
5168 
5169         void addApplicableCandidate(Symbol sym, Type mtype) {
5170             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
5171             candidates = candidates.append(c);
5172         }
5173 
5174         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
5175             DeferredAttrContext parent = (pendingResult == null)
5176                 ? deferredAttr.emptyDeferredAttrContext
5177                 : pendingResult.checkContext.deferredAttrContext();
5178             return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
5179                     inferenceContext, parent, warn);
5180         }
5181 
5182         /**
5183          * This class represents an overload resolution candidate. There are two
5184          * kinds of candidates: applicable methods and inapplicable methods;
5185          * applicable methods have a pointer to the instantiated method type,
5186          * while inapplicable candidates contain further details about the
5187          * reason why the method has been considered inapplicable.
5188          */
5189         @SuppressWarnings("overrides")
5190         class Candidate {
5191 
5192             final MethodResolutionPhase step;
5193             final Symbol sym;
5194             final JCDiagnostic details;
5195             final Type mtype;
5196 
5197             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
5198                 this.step = step;
5199                 this.sym = sym;
5200                 this.details = details;
5201                 this.mtype = mtype;
5202             }
5203 
5204             boolean isApplicable() {
5205                 return mtype != null;
5206             }
5207         }
5208 
5209         DeferredAttr.AttrMode attrMode() {
5210             return attrMode;
5211         }
5212 
5213         boolean internal() {
5214             return internalResolution;
5215         }
5216     }
5217 
5218     MethodResolutionContext currentResolutionContext = null;
5219 }