1 /*
   2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import com.sun.tools.javac.api.Formattable.LocalizedString;
  29 import com.sun.tools.javac.code.*;
  30 import com.sun.tools.javac.code.Scope.WriteableScope;
  31 import com.sun.tools.javac.code.Source.Feature;
  32 import com.sun.tools.javac.code.Symbol.*;
  33 import com.sun.tools.javac.code.Type.*;
  34 import com.sun.tools.javac.comp.Attr.ResultInfo;
  35 import com.sun.tools.javac.comp.Check.CheckContext;
  36 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  37 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  38 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
  39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
  40 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
  41 import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
  42 import com.sun.tools.javac.jvm.*;
  43 import com.sun.tools.javac.main.Option;
  44 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  45 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  46 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  47 import com.sun.tools.javac.tree.*;
  48 import com.sun.tools.javac.tree.JCTree.*;
  49 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
  50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  51 import com.sun.tools.javac.util.*;
  52 import com.sun.tools.javac.util.DefinedBy.Api;
  53 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  54 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
  56 
  57 import java.util.Arrays;
  58 import java.util.Collection;
  59 import java.util.EnumSet;
  60 import java.util.HashSet;
  61 import java.util.Iterator;
  62 import java.util.LinkedHashMap;
  63 import java.util.Map;
  64 import java.util.Set;
  65 import java.util.function.BiFunction;
  66 import java.util.function.BiPredicate;
  67 import java.util.function.Function;
  68 import java.util.function.Predicate;
  69 import java.util.function.UnaryOperator;
  70 import java.util.stream.Stream;
  71 import java.util.stream.StreamSupport;
  72 
  73 import javax.lang.model.element.ElementVisitor;
  74 
  75 import static com.sun.tools.javac.code.Flags.*;
  76 import static com.sun.tools.javac.code.Flags.BLOCK;
  77 import static com.sun.tools.javac.code.Flags.STATIC;
  78 import static com.sun.tools.javac.code.Kinds.*;
  79 import static com.sun.tools.javac.code.Kinds.Kind.*;
  80 import static com.sun.tools.javac.code.TypeTag.*;
  81 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
  82 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  83 import static com.sun.tools.javac.util.Iterators.createCompoundIterator;
  84 
  85 /** Helper class for name resolution, used mostly by the attribution phase.
  86  *
  87  *  <p><b>This is NOT part of any supported API.
  88  *  If you write code that depends on this, you do so at your own risk.
  89  *  This code and its internal interfaces are subject to change or
  90  *  deletion without notice.</b>
  91  */
  92 public class Resolve {
  93     protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
  94 
  95     Names names;
  96     Log log;
  97     Symtab syms;
  98     Attr attr;
  99     AttrRecover attrRecover;
 100     DeferredAttr deferredAttr;
 101     Check chk;
 102     Infer infer;
 103     ClassFinder finder;
 104     ModuleFinder moduleFinder;
 105     Types types;
 106     JCDiagnostic.Factory diags;
 107     public final boolean allowModules;
 108     public final boolean allowRecords;
 109     private final boolean compactMethodDiags;
 110     private final boolean allowLocalVariableTypeInference;
 111     private final boolean allowYieldStatement;
 112     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
 113     final boolean dumpMethodReferenceSearchResults;
 114 
 115     WriteableScope polymorphicSignatureScope;
 116 
 117     @SuppressWarnings("this-escape")
 118     protected Resolve(Context context) {
 119         context.put(resolveKey, this);
 120         syms = Symtab.instance(context);
 121 
 122         varNotFound = new SymbolNotFoundError(ABSENT_VAR);
 123         methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
 124         typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
 125         referenceNotFound = ReferenceLookupResult.error(methodNotFound);
 126 
 127         names = Names.instance(context);
 128         log = Log.instance(context);
 129         attr = Attr.instance(context);
 130         attrRecover = AttrRecover.instance(context);
 131         deferredAttr = DeferredAttr.instance(context);
 132         chk = Check.instance(context);
 133         infer = Infer.instance(context);
 134         finder = ClassFinder.instance(context);
 135         moduleFinder = ModuleFinder.instance(context);
 136         types = Types.instance(context);
 137         diags = JCDiagnostic.Factory.instance(context);
 138         Preview preview = Preview.instance(context);
 139         Source source = Source.instance(context);
 140         Options options = Options.instance(context);
 141         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
 142                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
 143         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
 144         Target target = Target.instance(context);
 145         allowLocalVariableTypeInference = Feature.LOCAL_VARIABLE_TYPE_INFERENCE.allowedInSource(source);
 146         allowYieldStatement = Feature.SWITCH_EXPRESSION.allowedInSource(source);
 147         polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
 148         allowModules = Feature.MODULES.allowedInSource(source);
 149         allowRecords = Feature.RECORDS.allowedInSource(source);
 150         dumpMethodReferenceSearchResults = options.isSet("debug.dumpMethodReferenceSearchResults");
 151     }
 152 
 153     /** error symbols, which are returned when resolution fails
 154      */
 155     private final SymbolNotFoundError varNotFound;
 156     private final SymbolNotFoundError methodNotFound;
 157     private final SymbolNotFoundError typeNotFound;
 158 
 159     /** empty reference lookup result */
 160     private final ReferenceLookupResult referenceNotFound;
 161 
 162     public static Resolve instance(Context context) {
 163         Resolve instance = context.get(resolveKey);
 164         if (instance == null)
 165             instance = new Resolve(context);
 166         return instance;
 167     }
 168 
 169     private static Symbol bestOf(Symbol s1,
 170                                  Symbol s2) {
 171         return s1.kind.betterThan(s2.kind) ? s1 : s2;
 172     }
 173 
 174     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
 175     enum VerboseResolutionMode {
 176         SUCCESS("success"),
 177         FAILURE("failure"),
 178         APPLICABLE("applicable"),
 179         INAPPLICABLE("inapplicable"),
 180         DEFERRED_INST("deferred-inference"),
 181         PREDEF("predef"),
 182         OBJECT_INIT("object-init"),
 183         INTERNAL("internal");
 184 
 185         final String opt;
 186 
 187         private VerboseResolutionMode(String opt) {
 188             this.opt = opt;
 189         }
 190 
 191         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
 192             String s = opts.get("debug.verboseResolution");
 193             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
 194             if (s == null) return res;
 195             if (s.contains("all")) {
 196                 res = EnumSet.allOf(VerboseResolutionMode.class);
 197             }
 198             Collection<String> args = Arrays.asList(s.split(","));
 199             for (VerboseResolutionMode mode : values()) {
 200                 if (args.contains(mode.opt)) {
 201                     res.add(mode);
 202                 } else if (args.contains("-" + mode.opt)) {
 203                     res.remove(mode);
 204                 }
 205             }
 206             return res;
 207         }
 208     }
 209 
 210     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
 211             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
 212         boolean success = !bestSoFar.kind.isResolutionError();
 213 
 214         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
 215             return;
 216         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
 217             return;
 218         }
 219 
 220         if (bestSoFar.name == names.init &&
 221                 bestSoFar.owner == syms.objectType.tsym &&
 222                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
 223             return; //skip diags for Object constructor resolution
 224         } else if (site == syms.predefClass.type &&
 225                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
 226             return; //skip spurious diags for predef symbols (i.e. operators)
 227         } else if (currentResolutionContext.internalResolution &&
 228                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
 229             return;
 230         }
 231 
 232         int pos = 0;
 233         int mostSpecificPos = -1;
 234         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
 235         for (Candidate c : currentResolutionContext.candidates) {
 236             if (currentResolutionContext.step != c.step ||
 237                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
 238                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
 239                 continue;
 240             } else {
 241                 subDiags.append(c.isApplicable() ?
 242                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
 243                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
 244                 if (c.sym == bestSoFar)
 245                     mostSpecificPos = pos;
 246                 pos++;
 247             }
 248         }
 249         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
 250         List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
 251         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
 252                 site.tsym, mostSpecificPos, currentResolutionContext.step,
 253                 methodArguments(argtypes2),
 254                 methodArguments(typeargtypes));
 255         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
 256         log.report(d);
 257     }
 258 
 259     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
 260         JCDiagnostic subDiag = null;
 261         if (sym.type.hasTag(FORALL)) {
 262             subDiag = diags.fragment(Fragments.PartialInstSig(inst));
 263         }
 264 
 265         String key = subDiag == null ?
 266                 "applicable.method.found" :
 267                 "applicable.method.found.1";
 268 
 269         return diags.fragment(key, pos, sym, subDiag);
 270     }
 271 
 272     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
 273         return diags.fragment(Fragments.NotApplicableMethodFound(pos, sym, subDiag));
 274     }
 275     // </editor-fold>
 276 
 277 /* ************************************************************************
 278  * Identifier resolution
 279  *************************************************************************/
 280 
 281     /** An environment is "static" if its static level is greater than
 282      *  the one of its outer environment
 283      */
 284     protected static boolean isStatic(Env<AttrContext> env) {
 285         return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
 286     }
 287 
 288     /** An environment is an "initializer" if it is a constructor or
 289      *  an instance initializer.
 290      */
 291     static boolean isInitializer(Env<AttrContext> env) {
 292         Symbol owner = env.info.scope.owner;
 293         return owner.isConstructor() ||
 294             owner.owner.kind == TYP &&
 295             (owner.kind == VAR ||
 296              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
 297             (owner.flags() & STATIC) == 0;
 298     }
 299 
 300     /** Is class accessible in given environment?
 301      *  @param env    The current environment.
 302      *  @param c      The class whose accessibility is checked.
 303      */
 304     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
 305         return isAccessible(env, c, false);
 306     }
 307 
 308     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
 309 
 310         /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
 311            to refer to an inaccessible type
 312         */
 313         if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
 314             return true;
 315 
 316         if (env.info.visitingServiceImplementation &&
 317             env.toplevel.modle == c.packge().modle) {
 318             return true;
 319         }
 320 
 321         boolean isAccessible = false;
 322         switch ((short)(c.flags() & AccessFlags)) {
 323             case PRIVATE:
 324                 isAccessible =
 325                     env.enclClass.sym.outermostClass() ==
 326                     c.owner.outermostClass();
 327                 break;
 328             case 0:
 329                 isAccessible =
 330                     env.toplevel.packge == c.owner // fast special case
 331                     ||
 332                     env.toplevel.packge == c.packge();
 333                 break;
 334             default: // error recovery
 335                 isAccessible = true;
 336                 break;
 337             case PUBLIC:
 338                 if (allowModules) {
 339                     ModuleSymbol currModule = env.toplevel.modle;
 340                     currModule.complete();
 341                     PackageSymbol p = c.packge();
 342                     isAccessible =
 343                         currModule == p.modle ||
 344                         currModule.visiblePackages.get(p.fullname) == p ||
 345                         p == syms.rootPackage ||
 346                         (p.modle == syms.unnamedModule && currModule.readModules.contains(p.modle));
 347                 } else {
 348                     isAccessible = true;
 349                 }
 350                 break;
 351             case PROTECTED:
 352                 isAccessible =
 353                     env.toplevel.packge == c.owner // fast special case
 354                     ||
 355                     env.toplevel.packge == c.packge()
 356                     ||
 357                     isInnerSubClass(env.enclClass.sym, c.owner)
 358                     ||
 359                     env.info.allowProtectedAccess;
 360                 break;
 361         }
 362         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
 363             isAccessible :
 364             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
 365     }
 366     //where
 367         /** Is given class a subclass of given base class, or an inner class
 368          *  of a subclass?
 369          *  Return null if no such class exists.
 370          *  @param c     The class which is the subclass or is contained in it.
 371          *  @param base  The base class
 372          */
 373         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
 374             while (c != null && !c.isSubClass(base, types)) {
 375                 c = c.owner.enclClass();
 376             }
 377             return c != null;
 378         }
 379 
 380     boolean isAccessible(Env<AttrContext> env, Type t) {
 381         return isAccessible(env, t, false);
 382     }
 383 
 384     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
 385         if (t.hasTag(ARRAY)) {
 386             return isAccessible(env, types.cvarUpperBound(types.elemtype(t)));
 387         } else if (t.isUnion()) {
 388             return StreamSupport.stream(((UnionClassType) t).getAlternativeTypes().spliterator(), false)
 389                     .allMatch(alternative -> isAccessible(env, alternative.tsym, checkInner));
 390         } else {
 391             return isAccessible(env, t.tsym, checkInner);
 392         }
 393     }
 394 
 395     /** Is symbol accessible as a member of given type in given environment?
 396      *  @param env    The current environment.
 397      *  @param site   The type of which the tested symbol is regarded
 398      *                as a member.
 399      *  @param sym    The symbol.
 400      */
 401     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
 402         return isAccessible(env, site, sym, false);
 403     }
 404     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
 405         if (sym.name == names.init && sym.owner != site.tsym) return false;
 406 
 407         /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
 408            to refer to an inaccessible type
 409         */
 410         if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
 411             return true;
 412 
 413         if (env.info.visitingServiceImplementation &&
 414             env.toplevel.modle == sym.packge().modle) {
 415             return true;
 416         }
 417 
 418         switch ((short)(sym.flags() & AccessFlags)) {
 419         case PRIVATE:
 420             return
 421                 (env.enclClass.sym == sym.owner // fast special case
 422                  ||
 423                  env.enclClass.sym.outermostClass() ==
 424                  sym.owner.outermostClass())
 425                 &&
 426                 sym.isInheritedIn(site.tsym, types);
 427         case 0:
 428             return
 429                 (env.toplevel.packge == sym.owner.owner // fast special case
 430                  ||
 431                  env.toplevel.packge == sym.packge())
 432                 &&
 433                 isAccessible(env, site, checkInner)
 434                 &&
 435                 sym.isInheritedIn(site.tsym, types)
 436                 &&
 437                 notOverriddenIn(site, sym);
 438         case PROTECTED:
 439             return
 440                 (env.toplevel.packge == sym.owner.owner // fast special case
 441                  ||
 442                  env.toplevel.packge == sym.packge()
 443                  ||
 444                  isProtectedAccessible(sym, env.enclClass.sym, site)
 445                  ||
 446                  // OK to select instance method or field from 'super' or type name
 447                  // (but type names should be disallowed elsewhere!)
 448                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
 449                 &&
 450                 isAccessible(env, site, checkInner)
 451                 &&
 452                 notOverriddenIn(site, sym);
 453         default: // this case includes erroneous combinations as well
 454             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
 455         }
 456     }
 457     //where
 458     /* `sym' is accessible only if not overridden by
 459      * another symbol which is a member of `site'
 460      * (because, if it is overridden, `sym' is not strictly
 461      * speaking a member of `site'). A polymorphic signature method
 462      * cannot be overridden (e.g. MH.invokeExact(Object[])).
 463      */
 464     private boolean notOverriddenIn(Type site, Symbol sym) {
 465         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
 466             return true;
 467         else {
 468             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
 469             return (s2 == null || s2 == sym || sym.owner == s2.owner || (sym.owner.isInterface() && s2.owner == syms.objectType.tsym) ||
 470                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
 471         }
 472     }
 473     //where
 474         /** Is given protected symbol accessible if it is selected from given site
 475          *  and the selection takes place in given class?
 476          *  @param sym     The symbol with protected access
 477          *  @param c       The class where the access takes place
 478          *  @param site    The type of the qualifier
 479          */
 480         private
 481         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
 482             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
 483             while (c != null &&
 484                    !(c.isSubClass(sym.owner, types) &&
 485                      (c.flags() & INTERFACE) == 0 &&
 486                      // In JLS 2e 6.6.2.1, the subclass restriction applies
 487                      // only to instance fields and methods -- types are excluded
 488                      // regardless of whether they are declared 'static' or not.
 489                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
 490                 c = c.owner.enclClass();
 491             return c != null;
 492         }
 493 
 494     /**
 495      * Performs a recursive scan of a type looking for accessibility problems
 496      * from current attribution environment
 497      */
 498     void checkAccessibleType(Env<AttrContext> env, Type t) {
 499         accessibilityChecker.visit(t, env);
 500     }
 501 
 502     /**
 503      * Accessibility type-visitor
 504      */
 505     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
 506             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
 507 
 508         void visit(List<Type> ts, Env<AttrContext> env) {
 509             for (Type t : ts) {
 510                 visit(t, env);
 511             }
 512         }
 513 
 514         public Void visitType(Type t, Env<AttrContext> env) {
 515             return null;
 516         }
 517 
 518         @Override
 519         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
 520             visit(t.elemtype, env);
 521             return null;
 522         }
 523 
 524         @Override
 525         public Void visitClassType(ClassType t, Env<AttrContext> env) {
 526             visit(t.getTypeArguments(), env);
 527             if (!isAccessible(env, t, true)) {
 528                 accessBase(new AccessError(env, null, t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
 529             }
 530             return null;
 531         }
 532 
 533         @Override
 534         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
 535             visit(t.type, env);
 536             return null;
 537         }
 538 
 539         @Override
 540         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
 541             visit(t.getParameterTypes(), env);
 542             visit(t.getReturnType(), env);
 543             visit(t.getThrownTypes(), env);
 544             return null;
 545         }
 546     };
 547 
 548     /** Try to instantiate the type of a method so that it fits
 549      *  given type arguments and argument types. If successful, return
 550      *  the method's instantiated type, else return null.
 551      *  The instantiation will take into account an additional leading
 552      *  formal parameter if the method is an instance method seen as a member
 553      *  of an under determined site. In this case, we treat site as an additional
 554      *  parameter and the parameters of the class containing the method as
 555      *  additional type variables that get instantiated.
 556      *
 557      *  @param env         The current environment
 558      *  @param site        The type of which the method is a member.
 559      *  @param m           The method symbol.
 560      *  @param argtypes    The invocation's given value arguments.
 561      *  @param typeargtypes    The invocation's given type arguments.
 562      *  @param allowBoxing Allow boxing conversions of arguments.
 563      *  @param useVarargs Box trailing arguments into an array for varargs.
 564      */
 565     Type rawInstantiate(Env<AttrContext> env,
 566                         Type site,
 567                         Symbol m,
 568                         ResultInfo resultInfo,
 569                         List<Type> argtypes,
 570                         List<Type> typeargtypes,
 571                         boolean allowBoxing,
 572                         boolean useVarargs,
 573                         Warner warn) throws Infer.InferenceException {
 574         Type mt = types.memberType(site, m);
 575         // tvars is the list of formal type variables for which type arguments
 576         // need to inferred.
 577         List<Type> tvars = List.nil();
 578         if (typeargtypes == null) typeargtypes = List.nil();
 579         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
 580             // This is not a polymorphic method, but typeargs are supplied
 581             // which is fine, see JLS 15.12.2.1
 582         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
 583             ForAll pmt = (ForAll) mt;
 584             if (typeargtypes.length() != pmt.tvars.length())
 585                  // not enough args
 586                 throw new InapplicableMethodException(diags.fragment(Fragments.WrongNumberTypeArgs(Integer.toString(pmt.tvars.length()))));
 587             // Check type arguments are within bounds
 588             List<Type> formals = pmt.tvars;
 589             List<Type> actuals = typeargtypes;
 590             while (formals.nonEmpty() && actuals.nonEmpty()) {
 591                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
 592                                                 pmt.tvars, typeargtypes);
 593                 for (; bounds.nonEmpty(); bounds = bounds.tail) {
 594                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn)) {
 595                         throw new InapplicableMethodException(diags.fragment(Fragments.ExplicitParamDoNotConformToBounds(actuals.head, bounds)));
 596                     }
 597                 }
 598                 formals = formals.tail;
 599                 actuals = actuals.tail;
 600             }
 601             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
 602         } else if (mt.hasTag(FORALL)) {
 603             ForAll pmt = (ForAll) mt;
 604             List<Type> tvars1 = types.newInstances(pmt.tvars);
 605             tvars = tvars.appendList(tvars1);
 606             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
 607         }
 608 
 609         // find out whether we need to go the slow route via infer
 610         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
 611         for (List<Type> l = argtypes;
 612              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
 613              l = l.tail) {
 614             if (l.head.hasTag(FORALL)) instNeeded = true;
 615         }
 616 
 617         if (instNeeded) {
 618             return infer.instantiateMethod(env,
 619                                     tvars,
 620                                     (MethodType)mt,
 621                                     resultInfo,
 622                                     (MethodSymbol)m,
 623                                     argtypes,
 624                                     allowBoxing,
 625                                     useVarargs,
 626                                     currentResolutionContext,
 627                                     warn);
 628         }
 629 
 630         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
 631         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
 632                                 argtypes, mt.getParameterTypes(), warn);
 633         dc.complete();
 634         return mt;
 635     }
 636 
 637     Type checkMethod(Env<AttrContext> env,
 638                      Type site,
 639                      Symbol m,
 640                      ResultInfo resultInfo,
 641                      List<Type> argtypes,
 642                      List<Type> typeargtypes,
 643                      Warner warn) {
 644         MethodResolutionContext prevContext = currentResolutionContext;
 645         try {
 646             currentResolutionContext = new MethodResolutionContext();
 647             currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
 648                     AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
 649             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
 650                 //method/constructor references need special check class
 651                 //to handle inference variables in 'argtypes' (might happen
 652                 //during an unsticking round)
 653                 currentResolutionContext.methodCheck =
 654                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
 655             }
 656             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
 657             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
 658                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
 659         }
 660         finally {
 661             currentResolutionContext = prevContext;
 662         }
 663     }
 664 
 665     /** Same but returns null instead throwing a NoInstanceException
 666      */
 667     Type instantiate(Env<AttrContext> env,
 668                      Type site,
 669                      Symbol m,
 670                      ResultInfo resultInfo,
 671                      List<Type> argtypes,
 672                      List<Type> typeargtypes,
 673                      boolean allowBoxing,
 674                      boolean useVarargs,
 675                      Warner warn) {
 676         try {
 677             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
 678                                   allowBoxing, useVarargs, warn);
 679         } catch (InapplicableMethodException ex) {
 680             return null;
 681         }
 682     }
 683 
 684     /**
 685      * This interface defines an entry point that should be used to perform a
 686      * method check. A method check usually consist in determining as to whether
 687      * a set of types (actuals) is compatible with another set of types (formals).
 688      * Since the notion of compatibility can vary depending on the circumstances,
 689      * this interfaces allows to easily add new pluggable method check routines.
 690      */
 691     interface MethodCheck {
 692         /**
 693          * Main method check routine. A method check usually consist in determining
 694          * as to whether a set of types (actuals) is compatible with another set of
 695          * types (formals). If an incompatibility is found, an unchecked exception
 696          * is assumed to be thrown.
 697          */
 698         void argumentsAcceptable(Env<AttrContext> env,
 699                                 DeferredAttrContext deferredAttrContext,
 700                                 List<Type> argtypes,
 701                                 List<Type> formals,
 702                                 Warner warn);
 703 
 704         /**
 705          * Retrieve the method check object that will be used during a
 706          * most specific check.
 707          */
 708         MethodCheck mostSpecificCheck(List<Type> actuals);
 709     }
 710 
 711     /**
 712      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
 713      */
 714     enum MethodCheckDiag {
 715         /**
 716          * Actuals and formals differs in length.
 717          */
 718         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
 719         /**
 720          * An actual is incompatible with a formal.
 721          */
 722         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
 723         /**
 724          * An actual is incompatible with the varargs element type.
 725          */
 726         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
 727         /**
 728          * The varargs element type is inaccessible.
 729          */
 730         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
 731 
 732         final String basicKey;
 733         final String inferKey;
 734 
 735         MethodCheckDiag(String basicKey, String inferKey) {
 736             this.basicKey = basicKey;
 737             this.inferKey = inferKey;
 738         }
 739 
 740         String regex() {
 741             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
 742         }
 743     }
 744 
 745     /**
 746      * Dummy method check object. All methods are deemed applicable, regardless
 747      * of their formal parameter types.
 748      */
 749     MethodCheck nilMethodCheck = new MethodCheck() {
 750         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
 751             //do nothing - method always applicable regardless of actuals
 752         }
 753 
 754         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 755             return this;
 756         }
 757     };
 758 
 759     /**
 760      * Base class for 'real' method checks. The class defines the logic for
 761      * iterating through formals and actuals and provides and entry point
 762      * that can be used by subclasses in order to define the actual check logic.
 763      */
 764     abstract class AbstractMethodCheck implements MethodCheck {
 765         @Override
 766         public void argumentsAcceptable(final Env<AttrContext> env,
 767                                     DeferredAttrContext deferredAttrContext,
 768                                     List<Type> argtypes,
 769                                     List<Type> formals,
 770                                     Warner warn) {
 771             //should we expand formals?
 772             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
 773             JCTree callTree = treeForDiagnostics(env);
 774             List<JCExpression> trees = TreeInfo.args(callTree);
 775 
 776             //inference context used during this method check
 777             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
 778 
 779             Type varargsFormal = useVarargs ? formals.last() : null;
 780 
 781             if (varargsFormal == null &&
 782                     argtypes.size() != formals.size()) {
 783                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
 784             }
 785 
 786             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
 787                 DiagnosticPosition pos = trees != null ? trees.head : null;
 788                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
 789                 argtypes = argtypes.tail;
 790                 formals = formals.tail;
 791                 trees = trees != null ? trees.tail : trees;
 792             }
 793 
 794             if (formals.head != varargsFormal) {
 795                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
 796             }
 797 
 798             if (useVarargs) {
 799                 //note: if applicability check is triggered by most specific test,
 800                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
 801                 final Type elt = types.elemtype(varargsFormal);
 802                 while (argtypes.nonEmpty()) {
 803                     DiagnosticPosition pos = trees != null ? trees.head : null;
 804                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
 805                     argtypes = argtypes.tail;
 806                     trees = trees != null ? trees.tail : trees;
 807                 }
 808             }
 809         }
 810 
 811             // where
 812             private JCTree treeForDiagnostics(Env<AttrContext> env) {
 813                 return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
 814             }
 815 
 816         /**
 817          * Does the actual argument conforms to the corresponding formal?
 818          */
 819         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
 820 
 821         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
 822             boolean inferDiag = inferenceContext != infer.emptyContext;
 823             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
 824                 Object[] args2 = new Object[args.length + 1];
 825                 System.arraycopy(args, 0, args2, 1, args.length);
 826                 args2[0] = inferenceContext.inferenceVars();
 827                 args = args2;
 828             }
 829             String key = inferDiag ? diag.inferKey : diag.basicKey;
 830             throw inferDiag ?
 831                 infer.error(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args)) :
 832                 methodCheckFailure.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
 833         }
 834 
 835         /**
 836          * To eliminate the overhead associated with allocating an exception object in such an
 837          * hot execution path, we use flyweight pattern - and share the same exception instance
 838          * across multiple method check failures.
 839          */
 840         class SharedInapplicableMethodException extends InapplicableMethodException {
 841             private static final long serialVersionUID = 0;
 842 
 843             SharedInapplicableMethodException() {
 844                 super(null);
 845             }
 846 
 847             SharedInapplicableMethodException setMessage(JCDiagnostic details) {
 848                 this.diagnostic = details;
 849                 return this;
 850             }
 851         }
 852 
 853         SharedInapplicableMethodException methodCheckFailure = new SharedInapplicableMethodException();
 854 
 855         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 856             return nilMethodCheck;
 857         }
 858 
 859     }
 860 
 861     /**
 862      * Arity-based method check. A method is applicable if the number of actuals
 863      * supplied conforms to the method signature.
 864      */
 865     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
 866         @Override
 867         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 868             //do nothing - actual always compatible to formals
 869         }
 870 
 871         @Override
 872         public String toString() {
 873             return "arityMethodCheck";
 874         }
 875     };
 876 
 877     /**
 878      * Main method applicability routine. Given a list of actual types A,
 879      * a list of formal types F, determines whether the types in A are
 880      * compatible (by method invocation conversion) with the types in F.
 881      *
 882      * Since this routine is shared between overload resolution and method
 883      * type-inference, a (possibly empty) inference context is used to convert
 884      * formal types to the corresponding 'undet' form ahead of a compatibility
 885      * check so that constraints can be propagated and collected.
 886      *
 887      * Moreover, if one or more types in A is a deferred type, this routine uses
 888      * DeferredAttr in order to perform deferred attribution. If one or more actual
 889      * deferred types are stuck, they are placed in a queue and revisited later
 890      * after the remainder of the arguments have been seen. If this is not sufficient
 891      * to 'unstuck' the argument, a cyclic inference error is called out.
 892      *
 893      * A method check handler (see above) is used in order to report errors.
 894      */
 895     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
 896 
 897         @Override
 898         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 899             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
 900             mresult.check(pos, actual);
 901         }
 902 
 903         @Override
 904         public void argumentsAcceptable(final Env<AttrContext> env,
 905                                     DeferredAttrContext deferredAttrContext,
 906                                     List<Type> argtypes,
 907                                     List<Type> formals,
 908                                     Warner warn) {
 909             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
 910             // should we check varargs element type accessibility?
 911             if (deferredAttrContext.phase.isVarargsRequired()) {
 912                 if (deferredAttrContext.mode == AttrMode.CHECK) {
 913                     varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
 914                 }
 915             }
 916         }
 917 
 918         /**
 919          * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
 920          * varargs element type of either the method invocation type signature (after inference completes)
 921          * or the method declaration signature (before inference completes).
 922          */
 923         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
 924             if (inferenceContext.free(t)) {
 925                 inferenceContext.addFreeTypeListener(List.of(t),
 926                         solvedContext -> varargsAccessible(env, solvedContext.asInstType(t), solvedContext));
 927             } else {
 928                 if (!isAccessible(env, types.erasure(t))) {
 929                     Symbol location = env.enclClass.sym;
 930                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
 931                 }
 932             }
 933         }
 934 
 935         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
 936                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
 937             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
 938                 MethodCheckDiag methodDiag = varargsCheck ?
 939                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
 940 
 941                 @Override
 942                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 943                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
 944                 }
 945             };
 946             return new MethodResultInfo(to, checkContext);
 947         }
 948 
 949         @Override
 950         public MethodCheck mostSpecificCheck(List<Type> actuals) {
 951             return new MostSpecificCheck(actuals);
 952         }
 953 
 954         @Override
 955         public String toString() {
 956             return "resolveMethodCheck";
 957         }
 958     };
 959 
 960     /**
 961      * This class handles method reference applicability checks; since during
 962      * these checks it's sometime possible to have inference variables on
 963      * the actual argument types list, the method applicability check must be
 964      * extended so that inference variables are 'opened' as needed.
 965      */
 966     class MethodReferenceCheck extends AbstractMethodCheck {
 967 
 968         InferenceContext pendingInferenceContext;
 969 
 970         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
 971             this.pendingInferenceContext = pendingInferenceContext;
 972         }
 973 
 974         @Override
 975         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
 976             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
 977             mresult.check(pos, actual);
 978         }
 979 
 980         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
 981                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
 982             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
 983                 MethodCheckDiag methodDiag = varargsCheck ?
 984                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
 985 
 986                 @Override
 987                 public boolean compatible(Type found, Type req, Warner warn) {
 988                     found = pendingInferenceContext.asUndetVar(found);
 989                     if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
 990                         req = types.boxedClass(req).type;
 991                     }
 992                     return super.compatible(found, req, warn);
 993                 }
 994 
 995                 @Override
 996                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 997                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
 998                 }
 999             };
1000             return new MethodResultInfo(to, checkContext);
1001         }
1002 
1003         @Override
1004         public MethodCheck mostSpecificCheck(List<Type> actuals) {
1005             return new MostSpecificCheck(actuals);
1006         }
1007 
1008         @Override
1009         public String toString() {
1010             return "MethodReferenceCheck";
1011         }
1012     }
1013 
1014     /**
1015      * Check context to be used during method applicability checks. A method check
1016      * context might contain inference variables.
1017      */
1018     abstract class MethodCheckContext implements CheckContext {
1019 
1020         boolean strict;
1021         DeferredAttrContext deferredAttrContext;
1022         Warner rsWarner;
1023 
1024         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
1025            this.strict = strict;
1026            this.deferredAttrContext = deferredAttrContext;
1027            this.rsWarner = rsWarner;
1028         }
1029 
1030         public boolean compatible(Type found, Type req, Warner warn) {
1031             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
1032             return strict ?
1033                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
1034                     types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
1035         }
1036 
1037         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1038             throw new InapplicableMethodException(details);
1039         }
1040 
1041         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
1042             return rsWarner;
1043         }
1044 
1045         public InferenceContext inferenceContext() {
1046             return deferredAttrContext.inferenceContext;
1047         }
1048 
1049         public DeferredAttrContext deferredAttrContext() {
1050             return deferredAttrContext;
1051         }
1052 
1053         @Override
1054         public String toString() {
1055             return "MethodCheckContext";
1056         }
1057     }
1058 
1059     /**
1060      * ResultInfo class to be used during method applicability checks. Check
1061      * for deferred types goes through special path.
1062      */
1063     class MethodResultInfo extends ResultInfo {
1064 
1065         public MethodResultInfo(Type pt, CheckContext checkContext) {
1066             attr.super(KindSelector.VAL, pt, checkContext);
1067         }
1068 
1069         @Override
1070         protected Type check(DiagnosticPosition pos, Type found) {
1071             if (found.hasTag(DEFERRED)) {
1072                 DeferredType dt = (DeferredType)found;
1073                 return dt.check(this);
1074             } else {
1075                 Type uResult = U(found);
1076                 Type capturedType = pos == null || pos.getTree() == null ?
1077                         types.capture(uResult) :
1078                         checkContext.inferenceContext()
1079                             .cachedCapture(pos.getTree(), uResult, true);
1080                 return super.check(pos, chk.checkNonVoid(pos, capturedType));
1081             }
1082         }
1083 
1084         /**
1085          * javac has a long-standing 'simplification' (see 6391995):
1086          * given an actual argument type, the method check is performed
1087          * on its upper bound. This leads to inconsistencies when an
1088          * argument type is checked against itself. For example, given
1089          * a type-variable T, it is not true that {@code U(T) <: T},
1090          * so we need to guard against that.
1091          */
1092         private Type U(Type found) {
1093             return found == pt ?
1094                     found : types.cvarUpperBound(found);
1095         }
1096 
1097         @Override
1098         protected MethodResultInfo dup(Type newPt) {
1099             return new MethodResultInfo(newPt, checkContext);
1100         }
1101 
1102         @Override
1103         protected ResultInfo dup(CheckContext newContext) {
1104             return new MethodResultInfo(pt, newContext);
1105         }
1106 
1107         @Override
1108         protected ResultInfo dup(Type newPt, CheckContext newContext) {
1109             return new MethodResultInfo(newPt, newContext);
1110         }
1111     }
1112 
1113     /**
1114      * Most specific method applicability routine. Given a list of actual types A,
1115      * a list of formal types F1, and a list of formal types F2, the routine determines
1116      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1117      * argument types A.
1118      */
1119     class MostSpecificCheck implements MethodCheck {
1120 
1121         List<Type> actuals;
1122 
1123         MostSpecificCheck(List<Type> actuals) {
1124             this.actuals = actuals;
1125         }
1126 
1127         @Override
1128         public void argumentsAcceptable(final Env<AttrContext> env,
1129                                     DeferredAttrContext deferredAttrContext,
1130                                     List<Type> formals1,
1131                                     List<Type> formals2,
1132                                     Warner warn) {
1133             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1134             while (formals2.nonEmpty()) {
1135                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1136                 mresult.check(null, formals1.head);
1137                 formals1 = formals1.tail;
1138                 formals2 = formals2.tail;
1139                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
1140             }
1141         }
1142 
1143        /**
1144         * Create a method check context to be used during the most specific applicability check
1145         */
1146         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1147                Warner rsWarner, Type actual) {
1148             return attr.new ResultInfo(KindSelector.VAL, to,
1149                    new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1150         }
1151 
1152         /**
1153          * Subclass of method check context class that implements most specific
1154          * method conversion. If the actual type under analysis is a deferred type
1155          * a full blown structural analysis is carried out.
1156          */
1157         class MostSpecificCheckContext extends MethodCheckContext {
1158 
1159             Type actual;
1160 
1161             public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1162                 super(true, deferredAttrContext, rsWarner);
1163                 this.actual = actual;
1164             }
1165 
1166             public boolean compatible(Type found, Type req, Warner warn) {
1167                 if (unrelatedFunctionalInterfaces(found, req) &&
1168                     (actual != null && actual.getTag() == DEFERRED)) {
1169                     DeferredType dt = (DeferredType) actual;
1170                     JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
1171                     if (speculativeTree != deferredAttr.stuckTree) {
1172                         return functionalInterfaceMostSpecific(found, req, speculativeTree);
1173                     }
1174                 }
1175                 return compatibleBySubtyping(found, req);
1176             }
1177 
1178             private boolean compatibleBySubtyping(Type found, Type req) {
1179                 if (!strict && found.isPrimitive() != req.isPrimitive()) {
1180                     found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1181                 }
1182                 return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1183             }
1184 
1185             /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1186             private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1187                 return types.isFunctionalInterface(t.tsym) &&
1188                        types.isFunctionalInterface(s.tsym) &&
1189                        unrelatedInterfaces(t, s);
1190             }
1191 
1192             /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/
1193             private boolean unrelatedInterfaces(Type t, Type s) {
1194                 if (t.isCompound()) {
1195                     for (Type ti : types.interfaces(t)) {
1196                         if (!unrelatedInterfaces(ti, s)) {
1197                             return false;
1198                         }
1199                     }
1200                     return true;
1201                 } else if (s.isCompound()) {
1202                     for (Type si : types.interfaces(s)) {
1203                         if (!unrelatedInterfaces(t, si)) {
1204                             return false;
1205                         }
1206                     }
1207                     return true;
1208                 } else {
1209                     return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null;
1210                 }
1211             }
1212 
1213             /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1214             private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1215                 Type tDesc = types.findDescriptorType(types.capture(t));
1216                 Type tDescNoCapture = types.findDescriptorType(t);
1217                 Type sDesc = types.findDescriptorType(s);
1218                 final List<Type> tTypeParams = tDesc.getTypeArguments();
1219                 final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments();
1220                 final List<Type> sTypeParams = sDesc.getTypeArguments();
1221 
1222                 // compare type parameters
1223                 if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) {
1224                     return false;
1225                 }
1226                 // can't use Types.hasSameBounds on sDesc because bounds may have ivars
1227                 List<Type> tIter = tTypeParams;
1228                 List<Type> sIter = sTypeParams;
1229                 while (tIter.nonEmpty() && sIter.nonEmpty()) {
1230                     Type tBound = tIter.head.getUpperBound();
1231                     Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
1232                     if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
1233                         return false;
1234                     }
1235                     if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
1236                         return false;
1237                     }
1238                     tIter = tIter.tail;
1239                     sIter = sIter.tail;
1240                 }
1241                 if (!tIter.isEmpty() || !sIter.isEmpty()) {
1242                     return false;
1243                 }
1244 
1245                 // compare parameters
1246                 List<Type> tParams = tDesc.getParameterTypes();
1247                 List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes();
1248                 List<Type> sParams = sDesc.getParameterTypes();
1249                 while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) {
1250                     Type tParam = tParams.head;
1251                     Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams);
1252                     Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
1253                     if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
1254                         return false;
1255                     }
1256                     if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) {
1257                         return false;
1258                     }
1259                     if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) {
1260                         return false;
1261                     }
1262                     tParams = tParams.tail;
1263                     tParamsNoCapture = tParamsNoCapture.tail;
1264                     sParams = sParams.tail;
1265                 }
1266                 if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) {
1267                     return false;
1268                 }
1269 
1270                 // compare returns
1271                 Type tRet = tDesc.getReturnType();
1272                 Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
1273                 if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
1274                     return false;
1275                 }
1276                 MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
1277                 msc.scan(tree);
1278                 return msc.result;
1279             }
1280 
1281             /**
1282              * Tests whether one functional interface type can be considered more specific
1283              * than another unrelated functional interface type for the scanned expression.
1284              */
1285             class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
1286 
1287                 final Type tRet;
1288                 final Type sRet;
1289                 boolean result;
1290 
1291                 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1292                 MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
1293                     this.tRet = tRet;
1294                     this.sRet = sRet;
1295                     result = true;
1296                 }
1297 
1298                 @Override
1299                 void skip(JCTree tree) {
1300                     result = false;
1301                 }
1302 
1303                 @Override
1304                 public void visitConditional(JCConditional tree) {
1305                     scan(asExpr(tree.truepart));
1306                     scan(asExpr(tree.falsepart));
1307                 }
1308 
1309                 @Override
1310                 public void visitReference(JCMemberReference tree) {
1311                     if (sRet.hasTag(VOID)) {
1312                         // do nothing
1313                     } else if (tRet.hasTag(VOID)) {
1314                         result = false;
1315                     } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
1316                         boolean retValIsPrimitive =
1317                                 tree.refPolyKind == PolyKind.STANDALONE &&
1318                                 tree.sym.type.getReturnType().isPrimitive();
1319                         result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1320                                   (retValIsPrimitive != sRet.isPrimitive());
1321                     } else {
1322                         result &= compatibleBySubtyping(tRet, sRet);
1323                     }
1324                 }
1325 
1326                 @Override
1327                 public void visitParens(JCParens tree) {
1328                     scan(asExpr(tree.expr));
1329                 }
1330 
1331                 @Override
1332                 public void visitLambda(JCLambda tree) {
1333                     if (sRet.hasTag(VOID)) {
1334                         // do nothing
1335                     } else if (tRet.hasTag(VOID)) {
1336                         result = false;
1337                     } else {
1338                         List<JCExpression> lambdaResults = lambdaResults(tree);
1339                         if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
1340                             for (JCExpression expr : lambdaResults) {
1341                                 result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
1342                             }
1343                         } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
1344                             for (JCExpression expr : lambdaResults) {
1345                                 boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1346                                 result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1347                                         (retValIsPrimitive != sRet.isPrimitive());
1348                             }
1349                         } else {
1350                             result &= compatibleBySubtyping(tRet, sRet);
1351                         }
1352                     }
1353                 }
1354                 //where
1355 
1356                 private List<JCExpression> lambdaResults(JCLambda lambda) {
1357                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1358                         return List.of(asExpr((JCExpression) lambda.body));
1359                     } else {
1360                         final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1361                         DeferredAttr.LambdaReturnScanner lambdaScanner =
1362                                 new DeferredAttr.LambdaReturnScanner() {
1363                                     @Override
1364                                     public void visitReturn(JCReturn tree) {
1365                                         if (tree.expr != null) {
1366                                             buffer.append(asExpr(tree.expr));
1367                                         }
1368                                     }
1369                                 };
1370                         lambdaScanner.scan(lambda.body);
1371                         return buffer.toList();
1372                     }
1373                 }
1374 
1375                 private JCExpression asExpr(JCExpression expr) {
1376                     if (expr.type.hasTag(DEFERRED)) {
1377                         JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
1378                         if (speculativeTree != deferredAttr.stuckTree) {
1379                             expr = (JCExpression)speculativeTree;
1380                         }
1381                     }
1382                     return expr;
1383                 }
1384             }
1385 
1386         }
1387 
1388         public MethodCheck mostSpecificCheck(List<Type> actuals) {
1389             Assert.error("Cannot get here!");
1390             return null;
1391         }
1392     }
1393 
1394     public static class InapplicableMethodException extends RuntimeException {
1395         private static final long serialVersionUID = 0;
1396 
1397         transient JCDiagnostic diagnostic;
1398 
1399         InapplicableMethodException(JCDiagnostic diag) {
1400             this.diagnostic = diag;
1401         }
1402 
1403         public JCDiagnostic getDiagnostic() {
1404             return diagnostic;
1405         }
1406 
1407         @Override
1408         public Throwable fillInStackTrace() {
1409             // This is an internal exception; the stack trace is irrelevant.
1410             return this;
1411         }
1412     }
1413 
1414 /* ***************************************************************************
1415  *  Symbol lookup
1416  *  the following naming conventions for arguments are used
1417  *
1418  *       env      is the environment where the symbol was mentioned
1419  *       site     is the type of which the symbol is a member
1420  *       name     is the symbol's name
1421  *                if no arguments are given
1422  *       argtypes are the value arguments, if we search for a method
1423  *
1424  *  If no symbol was found, a ResolveError detailing the problem is returned.
1425  ****************************************************************************/
1426 
1427     /** Find field. Synthetic fields are always skipped.
1428      *  @param env     The current environment.
1429      *  @param site    The original type from where the selection takes place.
1430      *  @param name    The name of the field.
1431      *  @param c       The class to search for the field. This is always
1432      *                 a superclass or implemented interface of site's class.
1433      */
1434     Symbol findField(Env<AttrContext> env,
1435                      Type site,
1436                      Name name,
1437                      TypeSymbol c) {
1438         while (c.type.hasTag(TYPEVAR))
1439             c = c.type.getUpperBound().tsym;
1440         Symbol bestSoFar = varNotFound;
1441         Symbol sym;
1442         for (Symbol s : c.members().getSymbolsByName(name)) {
1443             if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1444                 return isAccessible(env, site, s)
1445                     ? s : new AccessError(env, site, s);
1446             }
1447         }
1448         Type st = types.supertype(c.type);
1449         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1450             sym = findField(env, site, name, st.tsym);
1451             bestSoFar = bestOf(bestSoFar, sym);
1452         }
1453         for (List<Type> l = types.interfaces(c.type);
1454              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1455              l = l.tail) {
1456             sym = findField(env, site, name, l.head.tsym);
1457             if (bestSoFar.exists() && sym.exists() &&
1458                 sym.owner != bestSoFar.owner)
1459                 bestSoFar = new AmbiguityError(bestSoFar, sym);
1460             else
1461                 bestSoFar = bestOf(bestSoFar, sym);
1462         }
1463         return bestSoFar;
1464     }
1465 
1466     /** Resolve a field identifier, throw a fatal error if not found.
1467      *  @param pos       The position to use for error reporting.
1468      *  @param env       The environment current at the method invocation.
1469      *  @param site      The type of the qualifying expression, in which
1470      *                   identifier is searched.
1471      *  @param name      The identifier's name.
1472      */
1473     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1474                                           Type site, Name name) {
1475         Symbol sym = findField(env, site, name, site.tsym);
1476         if (sym.kind == VAR) return (VarSymbol)sym;
1477         else throw new FatalError(
1478                  diags.fragment(Fragments.FatalErrCantLocateField(name)));
1479     }
1480 
1481     /** Find unqualified variable or field with given name.
1482      *  Synthetic fields always skipped.
1483      *  @param env     The current environment.
1484      *  @param name    The name of the variable or field.
1485      */
1486     Symbol findVar(Env<AttrContext> env, Name name) {
1487         Symbol bestSoFar = varNotFound;
1488         Env<AttrContext> env1 = env;
1489         boolean staticOnly = false;
1490         while (env1.outer != null) {
1491             Symbol sym = null;
1492             for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1493                 if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1494                     sym = s;
1495                     if (staticOnly) {
1496                         return new StaticError(sym);
1497                     }
1498                     break;
1499                 }
1500             }
1501             if (isStatic(env1)) staticOnly = true;
1502             if (sym == null) {
1503                 sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1504             }
1505             if (sym.exists()) {
1506                 if (staticOnly &&
1507                         sym.kind == VAR &&
1508                         sym.owner.kind == TYP &&
1509                         (sym.flags() & STATIC) == 0)
1510                     return new StaticError(sym);
1511                 else
1512                     return sym;
1513             } else {
1514                 bestSoFar = bestOf(bestSoFar, sym);
1515             }
1516 
1517             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1518             env1 = env1.outer;
1519         }
1520 
1521         Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1522         if (sym.exists())
1523             return sym;
1524         if (bestSoFar.exists())
1525             return bestSoFar;
1526 
1527         Symbol origin = null;
1528         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1529             for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1530                 if (currentSymbol.kind != VAR)
1531                     continue;
1532                 // invariant: sym.kind == Symbol.Kind.VAR
1533                 if (!bestSoFar.kind.isResolutionError() &&
1534                     currentSymbol.owner != bestSoFar.owner)
1535                     return new AmbiguityError(bestSoFar, currentSymbol);
1536                 else if (!bestSoFar.kind.betterThan(VAR)) {
1537                     origin = sc.getOrigin(currentSymbol).owner;
1538                     bestSoFar = isAccessible(env, origin.type, currentSymbol)
1539                         ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1540                 }
1541             }
1542             if (bestSoFar.exists()) break;
1543         }
1544         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1545             return bestSoFar.clone(origin);
1546         else
1547             return bestSoFar;
1548     }
1549 
1550     Warner noteWarner = new Warner();
1551 
1552     /** Select the best method for a call site among two choices.
1553      *  @param env              The current environment.
1554      *  @param site             The original type from where the
1555      *                          selection takes place.
1556      *  @param argtypes         The invocation's value arguments,
1557      *  @param typeargtypes     The invocation's type arguments,
1558      *  @param sym              Proposed new best match.
1559      *  @param bestSoFar        Previously found best match.
1560      *  @param allowBoxing Allow boxing conversions of arguments.
1561      *  @param useVarargs Box trailing arguments into an array for varargs.
1562      */
1563     @SuppressWarnings("fallthrough")
1564     Symbol selectBest(Env<AttrContext> env,
1565                       Type site,
1566                       List<Type> argtypes,
1567                       List<Type> typeargtypes,
1568                       Symbol sym,
1569                       Symbol bestSoFar,
1570                       boolean allowBoxing,
1571                       boolean useVarargs) {
1572         if (sym.kind == ERR ||
1573                 (site.tsym != sym.owner && !sym.isInheritedIn(site.tsym, types)) ||
1574                 !notOverriddenIn(site, sym)) {
1575             return bestSoFar;
1576         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1577             return bestSoFar.kind.isResolutionError() ?
1578                     new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1579                     bestSoFar;
1580         }
1581         Assert.check(!sym.kind.isResolutionError());
1582         try {
1583             types.noWarnings.clear();
1584             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1585                                allowBoxing, useVarargs, types.noWarnings);
1586             currentResolutionContext.addApplicableCandidate(sym, mt);
1587         } catch (InapplicableMethodException ex) {
1588             currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1589             // Currently, an InapplicableMethodException occurs.
1590             // If bestSoFar.kind was ABSENT_MTH, return an InapplicableSymbolError(kind is WRONG_MTH).
1591             // If bestSoFar.kind was HIDDEN(AccessError)/WRONG_MTH/WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS).
1592             // See JDK-8255968 for more information.
1593             switch (bestSoFar.kind) {
1594                 case ABSENT_MTH:
1595                     return new InapplicableSymbolError(currentResolutionContext);
1596                 case HIDDEN:
1597                     if (bestSoFar instanceof AccessError accessError) {
1598                         // Add the JCDiagnostic of previous AccessError to the currentResolutionContext
1599                         // and construct InapplicableSymbolsError.
1600                         // Intentionally fallthrough.
1601                         currentResolutionContext.addInapplicableCandidate(accessError.sym,
1602                                 accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes));
1603                     } else {
1604                         return bestSoFar;
1605                     }
1606                 case WRONG_MTH:
1607                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1608                 default:
1609                     return bestSoFar;
1610             }
1611         }
1612         if (!isAccessible(env, site, sym)) {
1613             AccessError curAccessError = new AccessError(env, site, sym);
1614             JCDiagnostic curDiagnostic = curAccessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes);
1615             // Currently, an AccessError occurs.
1616             // If bestSoFar.kind was ABSENT_MTH, return an AccessError(kind is HIDDEN).
1617             // If bestSoFar.kind was HIDDEN(AccessError), WRONG_MTH, WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS).
1618             // See JDK-8255968 for more information.
1619             if (bestSoFar.kind == ABSENT_MTH) {
1620                 bestSoFar = curAccessError;
1621             } else if (bestSoFar.kind == WRONG_MTH) {
1622                 // Add the JCDiagnostic of current AccessError to the currentResolutionContext
1623                 // and construct InapplicableSymbolsError.
1624                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1625                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1626             } else if (bestSoFar.kind == WRONG_MTHS) {
1627                 // Add the JCDiagnostic of current AccessError to the currentResolutionContext
1628                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1629             } else if (bestSoFar.kind == HIDDEN && bestSoFar instanceof AccessError accessError) {
1630                 // Add the JCDiagnostics of previous and current AccessError to the currentResolutionContext
1631                 // and construct InapplicableSymbolsError.
1632                 currentResolutionContext.addInapplicableCandidate(accessError.sym,
1633                         accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes));
1634                 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic);
1635                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1636             }
1637             return bestSoFar;
1638         }
1639         return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1640             ? sym
1641             : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1642     }
1643 
1644     /* Return the most specific of the two methods for a call,
1645      *  given that both are accessible and applicable.
1646      *  @param m1               A new candidate for most specific.
1647      *  @param m2               The previous most specific candidate.
1648      *  @param env              The current environment.
1649      *  @param site             The original type from where the selection
1650      *                          takes place.
1651      *  @param allowBoxing Allow boxing conversions of arguments.
1652      *  @param useVarargs Box trailing arguments into an array for varargs.
1653      */
1654     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1655                         Symbol m2,
1656                         Env<AttrContext> env,
1657                         final Type site,
1658                         boolean useVarargs) {
1659         switch (m2.kind) {
1660         case MTH:
1661             if (m1 == m2) return m1;
1662             boolean m1SignatureMoreSpecific =
1663                     signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1664             boolean m2SignatureMoreSpecific =
1665                     signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1666             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1667                 Type mt1 = types.memberType(site, m1);
1668                 Type mt2 = types.memberType(site, m2);
1669                 if (!types.overrideEquivalent(mt1, mt2))
1670                     return ambiguityError(m1, m2);
1671 
1672                 // same signature; select (a) the non-bridge method, or
1673                 // (b) the one that overrides the other, or (c) the concrete
1674                 // one, or (d) merge both abstract signatures
1675                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1676                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1677 
1678                 if (m1.baseSymbol() == m2.baseSymbol()) {
1679                     // this is the same imported symbol which has been cloned twice.
1680                     // Return the first one (either will do).
1681                     return m1;
1682                 }
1683 
1684                 // if one overrides or hides the other, use it
1685                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1686                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1687                 // the two owners can never be the same if the target methods are compiled from source,
1688                 // but we need to protect against cases where the methods are defined in some classfile
1689                 // and make sure we issue an ambiguity error accordingly (by skipping the logic below).
1690                 if (m1Owner != m2Owner) {
1691                     if (types.asSuper(m1Owner.type, m2Owner) != null &&
1692                         ((m1.owner.flags_field & INTERFACE) == 0 ||
1693                          (m2.owner.flags_field & INTERFACE) != 0) &&
1694                         m1.overrides(m2, m1Owner, types, false))
1695                         return m1;
1696                     if (types.asSuper(m2Owner.type, m1Owner) != null &&
1697                         ((m2.owner.flags_field & INTERFACE) == 0 ||
1698                          (m1.owner.flags_field & INTERFACE) != 0) &&
1699                         m2.overrides(m1, m2Owner, types, false))
1700                         return m2;
1701                 }
1702                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1703                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1704                 if (m1Abstract && !m2Abstract) return m2;
1705                 if (m2Abstract && !m1Abstract) return m1;
1706                 // both abstract or both concrete
1707                 return ambiguityError(m1, m2);
1708             }
1709             if (m1SignatureMoreSpecific) return m1;
1710             if (m2SignatureMoreSpecific) return m2;
1711             return ambiguityError(m1, m2);
1712         case AMBIGUOUS:
1713             //compare m1 to ambiguous methods in m2
1714             AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1715             boolean m1MoreSpecificThanAnyAmbiguous = true;
1716             boolean allAmbiguousMoreSpecificThanM1 = true;
1717             for (Symbol s : e.ambiguousSyms) {
1718                 Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1719                 m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1720                 allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1721             }
1722             if (m1MoreSpecificThanAnyAmbiguous)
1723                 return m1;
1724             //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1725             //more specific than m1, add it as a new ambiguous method:
1726             if (!allAmbiguousMoreSpecificThanM1)
1727                 e.addAmbiguousSymbol(m1);
1728             return e;
1729         default:
1730             throw new AssertionError();
1731         }
1732     }
1733     //where
1734     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1735         noteWarner.clear();
1736         int maxLength = Math.max(
1737                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1738                             m2.type.getParameterTypes().length());
1739         MethodResolutionContext prevResolutionContext = currentResolutionContext;
1740         try {
1741             currentResolutionContext = new MethodResolutionContext();
1742             currentResolutionContext.step = prevResolutionContext.step;
1743             currentResolutionContext.methodCheck =
1744                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1745             Type mst = instantiate(env, site, m2, null,
1746                     adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1747                     false, useVarargs, noteWarner);
1748             return mst != null &&
1749                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1750         } finally {
1751             currentResolutionContext = prevResolutionContext;
1752         }
1753     }
1754 
1755     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1756         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1757             Type varargsElem = types.elemtype(args.last());
1758             if (varargsElem == null) {
1759                 Assert.error("Bad varargs = " + args.last() + " " + msym);
1760             }
1761             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1762             while (newArgs.length() < length) {
1763                 newArgs = newArgs.append(newArgs.last());
1764             }
1765             return newArgs;
1766         } else {
1767             return args;
1768         }
1769     }
1770     //where
1771     Symbol ambiguityError(Symbol m1, Symbol m2) {
1772         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1773             return (m1.flags() & CLASH) == 0 ? m1 : m2;
1774         } else {
1775             return new AmbiguityError(m1, m2);
1776         }
1777     }
1778 
1779     Symbol findMethodInScope(Env<AttrContext> env,
1780             Type site,
1781             Name name,
1782             List<Type> argtypes,
1783             List<Type> typeargtypes,
1784             Scope sc,
1785             Symbol bestSoFar,
1786             boolean allowBoxing,
1787             boolean useVarargs,
1788             boolean abstractok) {
1789         for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1790             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1791                     bestSoFar, allowBoxing, useVarargs);
1792         }
1793         return bestSoFar;
1794     }
1795     //where
1796         class LookupFilter implements Predicate<Symbol> {
1797 
1798             boolean abstractOk;
1799 
1800             LookupFilter(boolean abstractOk) {
1801                 this.abstractOk = abstractOk;
1802             }
1803 
1804             @Override
1805             public boolean test(Symbol s) {
1806                 long flags = s.flags();
1807                 return s.kind == MTH &&
1808                         (flags & SYNTHETIC) == 0 &&
1809                         (abstractOk ||
1810                         (flags & DEFAULT) != 0 ||
1811                         (flags & ABSTRACT) == 0);
1812             }
1813         }
1814 
1815     /** Find best qualified method matching given name, type and value
1816      *  arguments.
1817      *  @param env       The current environment.
1818      *  @param site      The original type from where the selection
1819      *                   takes place.
1820      *  @param name      The method's name.
1821      *  @param argtypes  The method's value arguments.
1822      *  @param typeargtypes The method's type arguments
1823      *  @param allowBoxing Allow boxing conversions of arguments.
1824      *  @param useVarargs Box trailing arguments into an array for varargs.
1825      */
1826     Symbol findMethod(Env<AttrContext> env,
1827                       Type site,
1828                       Name name,
1829                       List<Type> argtypes,
1830                       List<Type> typeargtypes,
1831                       boolean allowBoxing,
1832                       boolean useVarargs) {
1833         Symbol bestSoFar = methodNotFound;
1834         bestSoFar = findMethod(env,
1835                           site,
1836                           name,
1837                           argtypes,
1838                           typeargtypes,
1839                           site.tsym.type,
1840                           bestSoFar,
1841                           allowBoxing,
1842                           useVarargs);
1843         return bestSoFar;
1844     }
1845     // where
1846     private Symbol findMethod(Env<AttrContext> env,
1847                               Type site,
1848                               Name name,
1849                               List<Type> argtypes,
1850                               List<Type> typeargtypes,
1851                               Type intype,
1852                               Symbol bestSoFar,
1853                               boolean allowBoxing,
1854                               boolean useVarargs) {
1855         @SuppressWarnings({"unchecked","rawtypes"})
1856         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1857 
1858         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1859         boolean isInterface = site.tsym.isInterface();
1860         for (TypeSymbol s : isInterface ? List.of(intype.tsym) : superclasses(intype)) {
1861             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1862                     s.members(), bestSoFar, allowBoxing, useVarargs, true);
1863             if (name == names.init) return bestSoFar;
1864             iphase = (iphase == null) ? null : iphase.update(s, this);
1865             if (iphase != null) {
1866                 for (Type itype : types.interfaces(s.type)) {
1867                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1868                 }
1869             }
1870         }
1871 
1872         Symbol concrete = bestSoFar.kind.isValid() &&
1873                 (bestSoFar.flags() & ABSTRACT) == 0 ?
1874                 bestSoFar : methodNotFound;
1875 
1876         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1877             //keep searching for abstract methods
1878             for (Type itype : itypes[iphase2.ordinal()]) {
1879                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1880                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1881                         (itype.tsym.flags() & DEFAULT) == 0) continue;
1882                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1883                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1884                 if (concrete != bestSoFar &&
1885                     concrete.kind.isValid() &&
1886                     bestSoFar.kind.isValid() &&
1887                         types.isSubSignature(concrete.type, bestSoFar.type)) {
1888                     //this is an hack - as javac does not do full membership checks
1889                     //most specific ends up comparing abstract methods that might have
1890                     //been implemented by some concrete method in a subclass and,
1891                     //because of raw override, it is possible for an abstract method
1892                     //to be more specific than the concrete method - so we need
1893                     //to explicitly call that out (see CR 6178365)
1894                     bestSoFar = concrete;
1895                 }
1896             }
1897         }
1898         if (isInterface && bestSoFar.kind.isResolutionError()) {
1899             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1900                     syms.objectType.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1901             if (bestSoFar.kind.isValid()) {
1902                 Symbol baseSymbol = bestSoFar;
1903                 bestSoFar = new MethodSymbol(bestSoFar.flags_field, bestSoFar.name, bestSoFar.type, intype.tsym) {
1904                     @Override
1905                     public Symbol baseSymbol() {
1906                         return baseSymbol;
1907                     }
1908                 };
1909             }
1910         }
1911         return bestSoFar;
1912     }
1913 
1914     enum InterfaceLookupPhase {
1915         ABSTRACT_OK() {
1916             @Override
1917             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1918                 //We should not look for abstract methods if receiver is a concrete class
1919                 //(as concrete classes are expected to implement all abstracts coming
1920                 //from superinterfaces)
1921                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1922                     return this;
1923                 } else {
1924                     return DEFAULT_OK;
1925                 }
1926             }
1927         },
1928         DEFAULT_OK() {
1929             @Override
1930             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1931                 return this;
1932             }
1933         };
1934 
1935         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1936     }
1937 
1938     /**
1939      * Return an Iterable object to scan the superclasses of a given type.
1940      * It's crucial that the scan is done lazily, as we don't want to accidentally
1941      * access more supertypes than strictly needed (as this could trigger completion
1942      * errors if some of the not-needed supertypes are missing/ill-formed).
1943      */
1944     Iterable<TypeSymbol> superclasses(final Type intype) {
1945         return () -> new Iterator<TypeSymbol>() {
1946 
1947             List<TypeSymbol> seen = List.nil();
1948             TypeSymbol currentSym = symbolFor(intype);
1949             TypeSymbol prevSym = null;
1950 
1951             public boolean hasNext() {
1952                 if (currentSym == syms.noSymbol) {
1953                     currentSym = symbolFor(types.supertype(prevSym.type));
1954                 }
1955                 return currentSym != null;
1956             }
1957 
1958             public TypeSymbol next() {
1959                 prevSym = currentSym;
1960                 currentSym = syms.noSymbol;
1961                 Assert.check(prevSym != null || prevSym != syms.noSymbol);
1962                 return prevSym;
1963             }
1964 
1965             public void remove() {
1966                 throw new UnsupportedOperationException();
1967             }
1968 
1969             TypeSymbol symbolFor(Type t) {
1970                 if (!t.hasTag(CLASS) &&
1971                         !t.hasTag(TYPEVAR)) {
1972                     return null;
1973                 }
1974                 t = types.skipTypeVars(t, false);
1975                 if (seen.contains(t.tsym)) {
1976                     //degenerate case in which we have a circular
1977                     //class hierarchy - because of ill-formed classfiles
1978                     return null;
1979                 }
1980                 seen = seen.prepend(t.tsym);
1981                 return t.tsym;
1982             }
1983         };
1984     }
1985 
1986     /** Find unqualified method matching given name, type and value arguments.
1987      *  @param env       The current environment.
1988      *  @param name      The method's name.
1989      *  @param argtypes  The method's value arguments.
1990      *  @param typeargtypes  The method's type arguments.
1991      *  @param allowBoxing Allow boxing conversions of arguments.
1992      *  @param useVarargs Box trailing arguments into an array for varargs.
1993      */
1994     Symbol findFun(Env<AttrContext> env, Name name,
1995                    List<Type> argtypes, List<Type> typeargtypes,
1996                    boolean allowBoxing, boolean useVarargs) {
1997         Symbol bestSoFar = methodNotFound;
1998         Env<AttrContext> env1 = env;
1999         boolean staticOnly = false;
2000         while (env1.outer != null) {
2001             if (isStatic(env1)) staticOnly = true;
2002             Assert.check(env1.info.preferredTreeForDiagnostics == null);
2003             env1.info.preferredTreeForDiagnostics = env.tree;
2004             try {
2005                 Symbol sym = findMethod(
2006                     env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
2007                     allowBoxing, useVarargs);
2008                 if (sym.exists()) {
2009                     if (staticOnly &&
2010                         sym.kind == MTH &&
2011                         sym.owner.kind == TYP &&
2012                         (sym.flags() & STATIC) == 0) return new StaticError(sym);
2013                     else return sym;
2014                 } else {
2015                     bestSoFar = bestOf(bestSoFar, sym);
2016                 }
2017             } finally {
2018                 env1.info.preferredTreeForDiagnostics = null;
2019             }
2020             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
2021             env1 = env1.outer;
2022         }
2023 
2024         Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
2025                                 typeargtypes, allowBoxing, useVarargs);
2026         if (sym.exists())
2027             return sym;
2028 
2029         for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
2030             Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
2031             if (currentSym.kind == MTH) {
2032                 if (currentSym.owner.type != origin.type)
2033                     currentSym = currentSym.clone(origin);
2034                 if (!isAccessible(env, origin.type, currentSym))
2035                     currentSym = new AccessError(env, origin.type, currentSym);
2036                 bestSoFar = selectBest(env, origin.type,
2037                                        argtypes, typeargtypes,
2038                                        currentSym, bestSoFar,
2039                                        allowBoxing, useVarargs);
2040             }
2041         }
2042         if (bestSoFar.exists())
2043             return bestSoFar;
2044 
2045         for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
2046             Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
2047             if (currentSym.kind == MTH) {
2048                 if (currentSym.owner.type != origin.type)
2049                     currentSym = currentSym.clone(origin);
2050                 if (!isAccessible(env, origin.type, currentSym))
2051                     currentSym = new AccessError(env, origin.type, currentSym);
2052                 bestSoFar = selectBest(env, origin.type,
2053                                        argtypes, typeargtypes,
2054                                        currentSym, bestSoFar,
2055                                        allowBoxing, useVarargs);
2056             }
2057         }
2058         return bestSoFar;
2059     }
2060 
2061     /** Load toplevel or member class with given fully qualified name and
2062      *  verify that it is accessible.
2063      *  @param env       The current environment.
2064      *  @param name      The fully qualified name of the class to be loaded.
2065      */
2066     Symbol loadClass(Env<AttrContext> env, Name name, RecoveryLoadClass recoveryLoadClass) {
2067         try {
2068             ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
2069             return isAccessible(env, c) ? c : new AccessError(env, null, c);
2070         } catch (ClassFinder.BadClassFile err) {
2071             return new BadClassFileError(err);
2072         } catch (CompletionFailure ex) {
2073             Symbol candidate = recoveryLoadClass.loadClass(env, name);
2074 
2075             if (candidate != null) {
2076                 return candidate;
2077             }
2078 
2079             return typeNotFound;
2080         }
2081     }
2082 
2083     public interface RecoveryLoadClass {
2084         Symbol loadClass(Env<AttrContext> env, Name name);
2085     }
2086 
2087     private final RecoveryLoadClass noRecovery = (env, name) -> null;
2088 
2089     private final RecoveryLoadClass doRecoveryLoadClass = new RecoveryLoadClass() {
2090         @Override public Symbol loadClass(Env<AttrContext> env, Name name) {
2091             List<Name> candidates = Convert.classCandidates(name);
2092             return lookupInvisibleSymbol(env, name,
2093                                          n -> () -> createCompoundIterator(candidates,
2094                                                                            c -> syms.getClassesForName(c)
2095                                                                                     .iterator()),
2096                                          (ms, n) -> {
2097                 for (Name candidate : candidates) {
2098                     try {
2099                         return finder.loadClass(ms, candidate);
2100                     } catch (CompletionFailure cf) {
2101                         //ignore
2102                     }
2103                 }
2104                 return null;
2105             }, sym -> sym.kind == Kind.TYP, typeNotFound);
2106         }
2107     };
2108 
2109     private final RecoveryLoadClass namedImportScopeRecovery = (env, name) -> {
2110         Scope importScope = env.toplevel.namedImportScope;
2111         Symbol existing = importScope.findFirst(Convert.shortName(name),
2112                                                 sym -> sym.kind == TYP && sym.flatName() == name);
2113 
2114         if (existing != null) {
2115             return new InvisibleSymbolError(env, true, existing);
2116         }
2117         return null;
2118     };
2119 
2120     private final RecoveryLoadClass starImportScopeRecovery = (env, name) -> {
2121         Scope importScope = env.toplevel.starImportScope;
2122         Symbol existing = importScope.findFirst(Convert.shortName(name),
2123                                                 sym -> sym.kind == TYP && sym.flatName() == name);
2124 
2125         if (existing != null) {
2126             try {
2127                 existing = finder.loadClass(existing.packge().modle, name);
2128 
2129                 return new InvisibleSymbolError(env, true, existing);
2130             } catch (CompletionFailure cf) {
2131                 //ignore
2132             }
2133         }
2134 
2135         return null;
2136     };
2137 
2138     Symbol lookupPackage(Env<AttrContext> env, Name name) {
2139         PackageSymbol pack = syms.lookupPackage(env.toplevel.modle, name);
2140 
2141         if (allowModules && isImportOnDemand(env, name)) {
2142             if (pack.members().isEmpty()) {
2143                 return lookupInvisibleSymbol(env, name, syms::getPackagesForName, syms::enterPackage, sym -> {
2144                     sym.complete();
2145                     return !sym.members().isEmpty();
2146                 }, pack);
2147             }
2148         }
2149 
2150         return pack;
2151     }
2152 
2153     private boolean isImportOnDemand(Env<AttrContext> env, Name name) {
2154         if (!env.tree.hasTag(IMPORT))
2155             return false;
2156 
2157         JCTree qualid = ((JCImport) env.tree).qualid;
2158 
2159         if (!qualid.hasTag(SELECT))
2160             return false;
2161 
2162         if (TreeInfo.name(qualid) != names.asterisk)
2163             return false;
2164 
2165         return TreeInfo.fullName(((JCFieldAccess) qualid).selected) == name;
2166     }
2167 
2168     private <S extends Symbol> Symbol lookupInvisibleSymbol(Env<AttrContext> env,
2169                                                             Name name,
2170                                                             Function<Name, Iterable<S>> get,
2171                                                             BiFunction<ModuleSymbol, Name, S> load,
2172                                                             Predicate<S> validate,
2173                                                             Symbol defaultResult) {
2174         //even if a class/package cannot be found in the current module and among packages in modules
2175         //it depends on that are exported for any or this module, the class/package may exist internally
2176         //in some of these modules, or may exist in a module on which this module does not depend.
2177         //Provide better diagnostic in such cases by looking for the class in any module:
2178         Iterable<? extends S> candidates = get.apply(name);
2179 
2180         for (S sym : candidates) {
2181             if (validate.test(sym))
2182                 return createInvisibleSymbolError(env, sym);
2183         }
2184 
2185         Set<ModuleSymbol> recoverableModules = new HashSet<>(syms.getAllModules());
2186 
2187         recoverableModules.add(syms.unnamedModule);
2188         recoverableModules.remove(env.toplevel.modle);
2189 
2190         for (ModuleSymbol ms : recoverableModules) {
2191             //avoid overly eager completing classes from source-based modules, as those
2192             //may not be completable with the current compiler settings:
2193             if (ms.sourceLocation == null) {
2194                 if (ms.classLocation == null) {
2195                     ms = moduleFinder.findModule(ms);
2196                 }
2197 
2198                 if (ms.kind != ERR) {
2199                     S sym = load.apply(ms, name);
2200 
2201                     if (sym != null && validate.test(sym)) {
2202                         return createInvisibleSymbolError(env, sym);
2203                     }
2204                 }
2205             }
2206         }
2207 
2208         return defaultResult;
2209     }
2210 
2211     private Symbol createInvisibleSymbolError(Env<AttrContext> env, Symbol sym) {
2212         if (symbolPackageVisible(env, sym)) {
2213             return new AccessError(env, null, sym);
2214         } else {
2215             return new InvisibleSymbolError(env, false, sym);
2216         }
2217     }
2218 
2219     private boolean symbolPackageVisible(Env<AttrContext> env, Symbol sym) {
2220         ModuleSymbol envMod = env.toplevel.modle;
2221         PackageSymbol symPack = sym.packge();
2222         return envMod == symPack.modle ||
2223                envMod.visiblePackages.containsKey(symPack.fullname);
2224     }
2225 
2226     /**
2227      * Find a type declared in a scope (not inherited).  Return null
2228      * if none is found.
2229      *  @param env       The current environment.
2230      *  @param site      The original type from where the selection takes
2231      *                   place.
2232      *  @param name      The type's name.
2233      *  @param c         The class to search for the member type. This is
2234      *                   always a superclass or implemented interface of
2235      *                   site's class.
2236      */
2237     Symbol findImmediateMemberType(Env<AttrContext> env,
2238                                    Type site,
2239                                    Name name,
2240                                    TypeSymbol c) {
2241         for (Symbol sym : c.members().getSymbolsByName(name)) {
2242             if (sym.kind == TYP) {
2243                 return isAccessible(env, site, sym)
2244                     ? sym
2245                     : new AccessError(env, site, sym);
2246             }
2247         }
2248         return typeNotFound;
2249     }
2250 
2251     /** Find a member type inherited from a superclass or interface.
2252      *  @param env       The current environment.
2253      *  @param site      The original type from where the selection takes
2254      *                   place.
2255      *  @param name      The type's name.
2256      *  @param c         The class to search for the member type. This is
2257      *                   always a superclass or implemented interface of
2258      *                   site's class.
2259      */
2260     Symbol findInheritedMemberType(Env<AttrContext> env,
2261                                    Type site,
2262                                    Name name,
2263                                    TypeSymbol c) {
2264         Symbol bestSoFar = typeNotFound;
2265         Symbol sym;
2266         Type st = types.supertype(c.type);
2267         if (st != null && st.hasTag(CLASS)) {
2268             sym = findMemberType(env, site, name, st.tsym);
2269             bestSoFar = bestOf(bestSoFar, sym);
2270         }
2271         for (List<Type> l = types.interfaces(c.type);
2272              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
2273              l = l.tail) {
2274             sym = findMemberType(env, site, name, l.head.tsym);
2275             if (!bestSoFar.kind.isResolutionError() &&
2276                 !sym.kind.isResolutionError() &&
2277                 sym.owner != bestSoFar.owner)
2278                 bestSoFar = new AmbiguityError(bestSoFar, sym);
2279             else
2280                 bestSoFar = bestOf(bestSoFar, sym);
2281         }
2282         return bestSoFar;
2283     }
2284 
2285     /** Find qualified member type.
2286      *  @param env       The current environment.
2287      *  @param site      The original type from where the selection takes
2288      *                   place.
2289      *  @param name      The type's name.
2290      *  @param c         The class to search for the member type. This is
2291      *                   always a superclass or implemented interface of
2292      *                   site's class.
2293      */
2294     Symbol findMemberType(Env<AttrContext> env,
2295                           Type site,
2296                           Name name,
2297                           TypeSymbol c) {
2298         Symbol sym = findImmediateMemberType(env, site, name, c);
2299 
2300         if (sym != typeNotFound)
2301             return sym;
2302 
2303         return findInheritedMemberType(env, site, name, c);
2304 
2305     }
2306 
2307     /** Find a global type in given scope and load corresponding class.
2308      *  @param env       The current environment.
2309      *  @param scope     The scope in which to look for the type.
2310      *  @param name      The type's name.
2311      */
2312     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name, RecoveryLoadClass recoveryLoadClass) {
2313         Symbol bestSoFar = typeNotFound;
2314         for (Symbol s : scope.getSymbolsByName(name)) {
2315             Symbol sym = loadClass(env, s.flatName(), recoveryLoadClass);
2316             if (bestSoFar.kind == TYP && sym.kind == TYP &&
2317                 bestSoFar != sym)
2318                 return new AmbiguityError(bestSoFar, sym);
2319             else
2320                 bestSoFar = bestOf(bestSoFar, sym);
2321         }
2322         return bestSoFar;
2323     }
2324 
2325     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2326         for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
2327             if (sym.kind == TYP) {
2328                 if (sym.type.hasTag(TYPEVAR) &&
2329                         (staticOnly || (isStatic(env) && sym.owner.kind == TYP)))
2330                     // if staticOnly is set, it means that we have recursed through a static declaration,
2331                     // so type variable symbols should not be accessible. If staticOnly is unset, but
2332                     // we are in a static declaration (field or method), we should not allow type-variables
2333                     // defined in the enclosing class to "leak" into this context.
2334                     return new StaticError(sym);
2335                 return sym;
2336             }
2337         }
2338         return typeNotFound;
2339     }
2340 
2341     /** Find an unqualified type symbol.
2342      *  @param env       The current environment.
2343      *  @param name      The type's name.
2344      */
2345     Symbol findType(Env<AttrContext> env, Name name) {
2346         if (name == names.empty)
2347             return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
2348         Symbol bestSoFar = typeNotFound;
2349         Symbol sym;
2350         boolean staticOnly = false;
2351         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2352             // First, look for a type variable and the first member type
2353             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2354             if (isStatic(env1)) staticOnly = true;
2355             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2356                                           name, env1.enclClass.sym);
2357 
2358             // Return the type variable if we have it, and have no
2359             // immediate member, OR the type variable is for a method.
2360             if (tyvar != typeNotFound) {
2361                 if (env.baseClause || sym == typeNotFound ||
2362                     (tyvar.kind == TYP && tyvar.exists() &&
2363                      tyvar.owner.kind == MTH)) {
2364                     return tyvar;
2365                 }
2366             }
2367 
2368             // If the environment is a class def, finish up,
2369             // otherwise, do the entire findMemberType
2370             if (sym == typeNotFound)
2371                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2372                                               name, env1.enclClass.sym);
2373 
2374             if (staticOnly && sym.kind == TYP &&
2375                 sym.type.hasTag(CLASS) &&
2376                 sym.type.getEnclosingType().hasTag(CLASS) &&
2377                 env1.enclClass.sym.type.isParameterized() &&
2378                 sym.type.getEnclosingType().isParameterized())
2379                 return new StaticError(sym);
2380             else if (sym.exists()) return sym;
2381             else bestSoFar = bestOf(bestSoFar, sym);
2382 
2383             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2384             if ((encl.sym.flags() & STATIC) != 0)
2385                 staticOnly = true;
2386         }
2387 
2388         if (!env.tree.hasTag(IMPORT)) {
2389             sym = findGlobalType(env, env.toplevel.namedImportScope, name, namedImportScopeRecovery);
2390             if (sym.exists()) return sym;
2391             else bestSoFar = bestOf(bestSoFar, sym);
2392 
2393             sym = findGlobalType(env, env.toplevel.toplevelScope, name, noRecovery);
2394             if (sym.exists()) return sym;
2395             else bestSoFar = bestOf(bestSoFar, sym);
2396 
2397             sym = findGlobalType(env, env.toplevel.packge.members(), name, noRecovery);
2398             if (sym.exists()) return sym;
2399             else bestSoFar = bestOf(bestSoFar, sym);
2400 
2401             sym = findGlobalType(env, env.toplevel.starImportScope, name, starImportScopeRecovery);
2402             if (sym.exists()) return sym;
2403             else bestSoFar = bestOf(bestSoFar, sym);
2404         }
2405 
2406         return bestSoFar;
2407     }
2408 
2409     /** Find an unqualified identifier which matches a specified kind set.
2410      *  @param pos       position on which report warnings, if any;
2411      *                   null warnings should not be reported
2412      *  @param env       The current environment.
2413      *  @param name      The identifier's name.
2414      *  @param kind      Indicates the possible symbol kinds
2415      *                   (a subset of VAL, TYP, PCK).
2416      */
2417     Symbol findIdent(DiagnosticPosition pos, Env<AttrContext> env, Name name, KindSelector kind) {
2418         return checkNonExistentType(checkRestrictedType(pos, findIdentInternal(env, name, kind), name));
2419     }
2420 
2421     Symbol findIdentInternal(Env<AttrContext> env, Name name, KindSelector kind) {
2422         Symbol bestSoFar = typeNotFound;
2423         Symbol sym;
2424 
2425         if (kind.contains(KindSelector.VAL)) {
2426             sym = findVar(env, name);
2427             if (sym.exists()) return sym;
2428             else bestSoFar = bestOf(bestSoFar, sym);
2429         }
2430 
2431         if (kind.contains(KindSelector.TYP)) {
2432             sym = findType(env, name);
2433             if (sym.exists()) return sym;
2434             else bestSoFar = bestOf(bestSoFar, sym);
2435         }
2436 
2437         if (kind.contains(KindSelector.PCK))
2438             return lookupPackage(env, name);
2439         else return bestSoFar;
2440     }
2441 
2442     /** Find an identifier in a package which matches a specified kind set.
2443      *  @param pos       position on which report warnings, if any;
2444      *                   null warnings should not be reported
2445      *  @param env       The current environment.
2446      *  @param name      The identifier's name.
2447      *  @param kind      Indicates the possible symbol kinds
2448      *                   (a nonempty subset of TYP, PCK).
2449      */
2450     Symbol findIdentInPackage(DiagnosticPosition pos,
2451                               Env<AttrContext> env, TypeSymbol pck,
2452                               Name name, KindSelector kind) {
2453         return checkNonExistentType(checkRestrictedType(pos, findIdentInPackageInternal(env, pck, name, kind), name));
2454     }
2455 
2456     Symbol findIdentInPackageInternal(Env<AttrContext> env, TypeSymbol pck,
2457                               Name name, KindSelector kind) {
2458         Name fullname = TypeSymbol.formFullName(name, pck);
2459         Symbol bestSoFar = typeNotFound;
2460         if (kind.contains(KindSelector.TYP)) {
2461             RecoveryLoadClass recoveryLoadClass =
2462                     allowModules && !kind.contains(KindSelector.PCK) &&
2463                     !pck.exists() && !env.info.attributionMode.isSpeculative ?
2464                         doRecoveryLoadClass : noRecovery;
2465             Symbol sym = loadClass(env, fullname, recoveryLoadClass);
2466             if (sym.exists()) {
2467                 // don't allow programs to use flatnames
2468                 if (name == sym.name) return sym;
2469             }
2470             else bestSoFar = bestOf(bestSoFar, sym);
2471         }
2472         if (kind.contains(KindSelector.PCK)) {
2473             return lookupPackage(env, fullname);
2474         }
2475         return bestSoFar;
2476     }
2477 
2478     /** Find an identifier among the members of a given type `site'.
2479      *  @param pos       position on which report warnings, if any;
2480      *                   null warnings should not be reported
2481      *  @param env       The current environment.
2482      *  @param site      The type containing the symbol to be found.
2483      *  @param name      The identifier's name.
2484      *  @param kind      Indicates the possible symbol kinds
2485      *                   (a subset of VAL, TYP).
2486      */
2487     Symbol findIdentInType(DiagnosticPosition pos,
2488                            Env<AttrContext> env, Type site,
2489                            Name name, KindSelector kind) {
2490         return checkNonExistentType(checkRestrictedType(pos, findIdentInTypeInternal(env, site, name, kind), name));
2491     }
2492 
2493     private Symbol checkNonExistentType(Symbol symbol) {
2494         /*  Guard against returning a type is not on the class path of the current compilation,
2495          *  but *was* on the class path of a separate compilation that produced a class file
2496          *  that is on the class path of the current compilation. Such a type will fail completion
2497          *  but the completion failure may have been silently swallowed (e.g. missing annotation types)
2498          *  with an error stub symbol lingering in the symbol tables.
2499          */
2500         return symbol instanceof ClassSymbol c && c.type.isErroneous() && c.classfile == null ? typeNotFound : symbol;
2501     }
2502 
2503     Symbol findIdentInTypeInternal(Env<AttrContext> env, Type site,
2504                            Name name, KindSelector kind) {
2505         Symbol bestSoFar = typeNotFound;
2506         Symbol sym;
2507         if (kind.contains(KindSelector.VAL)) {
2508             sym = findField(env, site, name, site.tsym);
2509             if (sym.exists()) return sym;
2510             else bestSoFar = bestOf(bestSoFar, sym);
2511         }
2512 
2513         if (kind.contains(KindSelector.TYP)) {
2514             sym = findMemberType(env, site, name, site.tsym);
2515             if (sym.exists()) return sym;
2516             else bestSoFar = bestOf(bestSoFar, sym);
2517         }
2518         return bestSoFar;
2519     }
2520 
2521     private Symbol checkRestrictedType(DiagnosticPosition pos, Symbol bestSoFar, Name name) {
2522         if (bestSoFar.kind == TYP || bestSoFar.kind == ABSENT_TYP) {
2523             if (allowLocalVariableTypeInference && name.equals(names.var)) {
2524                 bestSoFar = new BadRestrictedTypeError(names.var);
2525             } else if (name.equals(names.yield)) {
2526                 if (allowYieldStatement) {
2527                     bestSoFar = new BadRestrictedTypeError(names.yield);
2528                 } else if (pos != null) {
2529                     log.warning(pos, Warnings.IllegalRefToRestrictedType(names.yield));
2530                 }
2531             }
2532         }
2533         return bestSoFar;
2534     }
2535 
2536 /* ***************************************************************************
2537  *  Access checking
2538  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2539  *  an error message in the process
2540  ****************************************************************************/
2541 
2542     /** If `sym' is a bad symbol: report error and return errSymbol
2543      *  else pass through unchanged,
2544      *  additional arguments duplicate what has been used in trying to find the
2545      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2546      *  expect misses to happen frequently.
2547      *
2548      *  @param sym       The symbol that was found, or a ResolveError.
2549      *  @param pos       The position to use for error reporting.
2550      *  @param location  The symbol the served as a context for this lookup
2551      *  @param site      The original type from where the selection took place.
2552      *  @param name      The symbol's name.
2553      *  @param qualified Did we get here through a qualified expression resolution?
2554      *  @param argtypes  The invocation's value arguments,
2555      *                   if we looked for a method.
2556      *  @param typeargtypes  The invocation's type arguments,
2557      *                   if we looked for a method.
2558      *  @param logResolveHelper helper class used to log resolve errors
2559      */
2560     Symbol accessInternal(Symbol sym,
2561                   DiagnosticPosition pos,
2562                   Symbol location,
2563                   Type site,
2564                   Name name,
2565                   boolean qualified,
2566                   List<Type> argtypes,
2567                   List<Type> typeargtypes,
2568                   LogResolveHelper logResolveHelper) {
2569         if (sym.kind.isResolutionError()) {
2570             ResolveError errSym = (ResolveError)sym.baseSymbol();
2571             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2572             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2573             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2574                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2575             }
2576         }
2577         return sym;
2578     }
2579 
2580     /**
2581      * Variant of the generalized access routine, to be used for generating method
2582      * resolution diagnostics
2583      */
2584     Symbol accessMethod(Symbol sym,
2585                   DiagnosticPosition pos,
2586                   Symbol location,
2587                   Type site,
2588                   Name name,
2589                   boolean qualified,
2590                   List<Type> argtypes,
2591                   List<Type> typeargtypes) {
2592         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2593     }
2594 
2595     /** Same as original accessMethod(), but without location.
2596      */
2597     Symbol accessMethod(Symbol sym,
2598                   DiagnosticPosition pos,
2599                   Type site,
2600                   Name name,
2601                   boolean qualified,
2602                   List<Type> argtypes,
2603                   List<Type> typeargtypes) {
2604         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2605     }
2606 
2607     /**
2608      * Variant of the generalized access routine, to be used for generating variable,
2609      * type resolution diagnostics
2610      */
2611     Symbol accessBase(Symbol sym,
2612                   DiagnosticPosition pos,
2613                   Symbol location,
2614                   Type site,
2615                   Name name,
2616                   boolean qualified) {
2617         return accessInternal(sym, pos, location, site, name, qualified, List.nil(), null, basicLogResolveHelper);
2618     }
2619 
2620     /** Same as original accessBase(), but without location.
2621      */
2622     Symbol accessBase(Symbol sym,
2623                   DiagnosticPosition pos,
2624                   Type site,
2625                   Name name,
2626                   boolean qualified) {
2627         return accessBase(sym, pos, site.tsym, site, name, qualified);
2628     }
2629 
2630     interface LogResolveHelper {
2631         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2632         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2633     }
2634 
2635     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2636         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2637             return !site.isErroneous();
2638         }
2639         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2640             return argtypes;
2641         }
2642     };
2643 
2644     LogResolveHelper silentLogResolveHelper = new LogResolveHelper() {
2645         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2646             return false;
2647         }
2648         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2649             return argtypes;
2650         }
2651     };
2652 
2653     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2654         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2655             return !site.isErroneous() &&
2656                         !Type.isErroneous(argtypes) &&
2657                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
2658         }
2659         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2660             return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2661         }
2662     };
2663 
2664     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2665 
2666         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2667             deferredAttr.super(mode, msym, step);
2668         }
2669 
2670         @Override
2671         protected Type typeOf(DeferredType dt, Type pt) {
2672             Type res = super.typeOf(dt, pt);
2673             if (!res.isErroneous()) {
2674                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
2675                     case LAMBDA:
2676                     case REFERENCE:
2677                         return dt;
2678                     case CONDEXPR:
2679                         return res == Type.recoveryType ?
2680                                 dt : res;
2681                 }
2682             }
2683             return res;
2684         }
2685     }
2686 
2687     /** Check that sym is not an abstract method.
2688      */
2689     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2690         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2691             log.error(pos,
2692                       Errors.AbstractCantBeAccessedDirectly(kindName(sym),sym, sym.location()));
2693     }
2694 
2695 /* ***************************************************************************
2696  *  Name resolution
2697  *  Naming conventions are as for symbol lookup
2698  *  Unlike the find... methods these methods will report access errors
2699  ****************************************************************************/
2700 
2701     /** Resolve an unqualified (non-method) identifier.
2702      *  @param pos       The position to use for error reporting.
2703      *  @param env       The environment current at the identifier use.
2704      *  @param name      The identifier's name.
2705      *  @param kind      The set of admissible symbol kinds for the identifier.
2706      */
2707     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2708                         Name name, KindSelector kind) {
2709         return accessBase(
2710             findIdent(pos, env, name, kind),
2711             pos, env.enclClass.sym.type, name, false);
2712     }
2713 
2714     /** Resolve an unqualified method identifier.
2715      *  @param pos       The position to use for error reporting.
2716      *  @param env       The environment current at the method invocation.
2717      *  @param name      The identifier's name.
2718      *  @param argtypes  The types of the invocation's value arguments.
2719      *  @param typeargtypes  The types of the invocation's type arguments.
2720      */
2721     Symbol resolveMethod(DiagnosticPosition pos,
2722                          Env<AttrContext> env,
2723                          Name name,
2724                          List<Type> argtypes,
2725                          List<Type> typeargtypes) {
2726         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2727                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2728                     @Override
2729                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2730                         return findFun(env, name, argtypes, typeargtypes,
2731                                 phase.isBoxingRequired(),
2732                                 phase.isVarargsRequired());
2733                     }});
2734     }
2735 
2736     /** Resolve a qualified method identifier
2737      *  @param pos       The position to use for error reporting.
2738      *  @param env       The environment current at the method invocation.
2739      *  @param site      The type of the qualifying expression, in which
2740      *                   identifier is searched.
2741      *  @param name      The identifier's name.
2742      *  @param argtypes  The types of the invocation's value arguments.
2743      *  @param typeargtypes  The types of the invocation's type arguments.
2744      */
2745     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2746                                   Type site, Name name, List<Type> argtypes,
2747                                   List<Type> typeargtypes) {
2748         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2749     }
2750     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2751                                   Symbol location, Type site, Name name, List<Type> argtypes,
2752                                   List<Type> typeargtypes) {
2753         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2754     }
2755     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2756                                   DiagnosticPosition pos, Env<AttrContext> env,
2757                                   Symbol location, Type site, Name name, List<Type> argtypes,
2758                                   List<Type> typeargtypes) {
2759         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2760             @Override
2761             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2762                 return findMethod(env, site, name, argtypes, typeargtypes,
2763                         phase.isBoxingRequired(),
2764                         phase.isVarargsRequired());
2765             }
2766             @Override
2767             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2768                 if (sym.kind.isResolutionError()) {
2769                     sym = super.access(env, pos, location, sym);
2770                 } else {
2771                     MethodSymbol msym = (MethodSymbol)sym;
2772                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2773                         env.info.pendingResolutionPhase = BASIC;
2774                         return findPolymorphicSignatureInstance(env, sym, argtypes);
2775                     }
2776                 }
2777                 return sym;
2778             }
2779         });
2780     }
2781 
2782     /** Find or create an implicit method of exactly the given type (after erasure).
2783      *  Searches in a side table, not the main scope of the site.
2784      *  This emulates the lookup process required by JSR 292 in JVM.
2785      *  @param env       Attribution environment
2786      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2787      *  @param argtypes  The required argument types
2788      */
2789     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2790                                             final Symbol spMethod,
2791                                             List<Type> argtypes) {
2792         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2793                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2794         return findPolymorphicSignatureInstance(spMethod, mtype);
2795     }
2796 
2797     Symbol findPolymorphicSignatureInstance(final Symbol spMethod,
2798                                             Type mtype) {
2799         for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2800             // Check that there is already a method symbol for the method
2801             // type and owner
2802             if (types.isSameType(mtype, sym.type) &&
2803                 spMethod.owner == sym.owner) {
2804                 return sym;
2805             }
2806         }
2807 
2808         Type spReturnType = spMethod.asType().getReturnType();
2809         if (types.isSameType(spReturnType, syms.objectType)) {
2810             // Polymorphic return, pass through mtype
2811         } else if (!types.isSameType(spReturnType, mtype.getReturnType())) {
2812             // Retain the sig poly method's return type, which differs from that of mtype
2813             // Will result in an incompatible return type error
2814             mtype = new MethodType(mtype.getParameterTypes(),
2815                     spReturnType,
2816                     mtype.getThrownTypes(),
2817                     syms.methodClass);
2818         }
2819 
2820         // Create the desired method
2821         // Retain static modifier is to support invocations to
2822         // MethodHandle.linkTo* methods
2823         long flags = ABSTRACT | HYPOTHETICAL |
2824                      spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
2825         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2826             @Override
2827             public Symbol baseSymbol() {
2828                 return spMethod;
2829             }
2830         };
2831         if (!mtype.isErroneous()) { // Cache only if kosher.
2832             polymorphicSignatureScope.enter(msym);
2833         }
2834         return msym;
2835     }
2836 
2837     /** Resolve a qualified method identifier, throw a fatal error if not
2838      *  found.
2839      *  @param pos       The position to use for error reporting.
2840      *  @param env       The environment current at the method invocation.
2841      *  @param site      The type of the qualifying expression, in which
2842      *                   identifier is searched.
2843      *  @param name      The identifier's name.
2844      *  @param argtypes  The types of the invocation's value arguments.
2845      *  @param typeargtypes  The types of the invocation's type arguments.
2846      */
2847     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2848                                         Type site, Name name,
2849                                         List<Type> argtypes,
2850                                         List<Type> typeargtypes) {
2851         MethodResolutionContext resolveContext = new MethodResolutionContext();
2852         resolveContext.internalResolution = true;
2853         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2854                 site, name, argtypes, typeargtypes);
2855         if (sym.kind == MTH) return (MethodSymbol)sym;
2856         else throw new FatalError(
2857                  diags.fragment(Fragments.FatalErrCantLocateMeth(name)));
2858     }
2859 
2860     /** Resolve constructor.
2861      *  @param pos       The position to use for error reporting.
2862      *  @param env       The environment current at the constructor invocation.
2863      *  @param site      The type of class for which a constructor is searched.
2864      *  @param argtypes  The types of the constructor invocation's value
2865      *                   arguments.
2866      *  @param typeargtypes  The types of the constructor invocation's type
2867      *                   arguments.
2868      */
2869     Symbol resolveConstructor(DiagnosticPosition pos,
2870                               Env<AttrContext> env,
2871                               Type site,
2872                               List<Type> argtypes,
2873                               List<Type> typeargtypes) {
2874         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2875     }
2876 
2877     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2878                               final DiagnosticPosition pos,
2879                               Env<AttrContext> env,
2880                               Type site,
2881                               List<Type> argtypes,
2882                               List<Type> typeargtypes) {
2883         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2884             @Override
2885             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2886                 return findConstructor(pos, env, site, argtypes, typeargtypes,
2887                         phase.isBoxingRequired(),
2888                         phase.isVarargsRequired());
2889             }
2890         });
2891     }
2892 
2893     /** Resolve a constructor, throw a fatal error if not found.
2894      *  @param pos       The position to use for error reporting.
2895      *  @param env       The environment current at the method invocation.
2896      *  @param site      The type to be constructed.
2897      *  @param argtypes  The types of the invocation's value arguments.
2898      *  @param typeargtypes  The types of the invocation's type arguments.
2899      */
2900     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2901                                         Type site,
2902                                         List<Type> argtypes,
2903                                         List<Type> typeargtypes) {
2904         MethodResolutionContext resolveContext = new MethodResolutionContext();
2905         resolveContext.internalResolution = true;
2906         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2907         if (sym.kind == MTH) return (MethodSymbol)sym;
2908         else throw new FatalError(
2909                  diags.fragment(Fragments.FatalErrCantLocateCtor(site)));
2910     }
2911 
2912     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2913                               Type site, List<Type> argtypes,
2914                               List<Type> typeargtypes,
2915                               boolean allowBoxing,
2916                               boolean useVarargs) {
2917         Symbol sym = findMethod(env, site,
2918                                     names.init, argtypes,
2919                                     typeargtypes, allowBoxing,
2920                                     useVarargs);
2921         chk.checkDeprecated(pos, env.info.scope.owner, sym);
2922         chk.checkPreview(pos, env.info.scope.owner, sym);
2923         return sym;
2924     }
2925 
2926     /** Resolve constructor using diamond inference.
2927      *  @param pos       The position to use for error reporting.
2928      *  @param env       The environment current at the constructor invocation.
2929      *  @param site      The type of class for which a constructor is searched.
2930      *                   The scope of this class has been touched in attribution.
2931      *  @param argtypes  The types of the constructor invocation's value
2932      *                   arguments.
2933      *  @param typeargtypes  The types of the constructor invocation's type
2934      *                   arguments.
2935      */
2936     Symbol resolveDiamond(DiagnosticPosition pos,
2937                               Env<AttrContext> env,
2938                               Type site,
2939                               List<Type> argtypes,
2940                               List<Type> typeargtypes) {
2941         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2942                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2943                     @Override
2944                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2945                         return findDiamond(pos, env, site, argtypes, typeargtypes,
2946                                 phase.isBoxingRequired(),
2947                                 phase.isVarargsRequired());
2948                     }
2949                     @Override
2950                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2951                         if (sym.kind.isResolutionError()) {
2952                             if (sym.kind != WRONG_MTH &&
2953                                 sym.kind != WRONG_MTHS) {
2954                                 sym = super.access(env, pos, location, sym);
2955                             } else {
2956                                 sym = new DiamondError(sym, currentResolutionContext);
2957                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2958                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
2959                             }
2960                         }
2961                         return sym;
2962                     }});
2963     }
2964 
2965     /** Find the constructor using diamond inference and do some checks(deprecated and preview).
2966      *  @param pos          The position to use for error reporting.
2967      *  @param env          The environment current at the constructor invocation.
2968      *  @param site         The type of class for which a constructor is searched.
2969      *                      The scope of this class has been touched in attribution.
2970      *  @param argtypes     The types of the constructor invocation's value arguments.
2971      *  @param typeargtypes The types of the constructor invocation's type arguments.
2972      *  @param allowBoxing  Allow boxing conversions of arguments.
2973      *  @param useVarargs   Box trailing arguments into an array for varargs.
2974      */
2975     private Symbol findDiamond(DiagnosticPosition pos,
2976                                Env<AttrContext> env,
2977                                Type site,
2978                                List<Type> argtypes,
2979                                List<Type> typeargtypes,
2980                                boolean allowBoxing,
2981                                boolean useVarargs) {
2982         Symbol sym = findDiamond(env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
2983         chk.checkDeprecated(pos, env.info.scope.owner, sym);
2984         chk.checkPreview(pos, env.info.scope.owner, sym);
2985         return sym;
2986     }
2987 
2988     /** This method scans all the constructor symbol in a given class scope -
2989      *  assuming that the original scope contains a constructor of the kind:
2990      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2991      *  a method check is executed against the modified constructor type:
2992      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2993      *  inference. The inferred return type of the synthetic constructor IS
2994      *  the inferred type for the diamond operator.
2995      */
2996     private Symbol findDiamond(Env<AttrContext> env,
2997                               Type site,
2998                               List<Type> argtypes,
2999                               List<Type> typeargtypes,
3000                               boolean allowBoxing,
3001                               boolean useVarargs) {
3002         Symbol bestSoFar = methodNotFound;
3003         TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
3004         for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
3005             //- System.out.println(" e " + e.sym);
3006             if (sym.kind == MTH &&
3007                 (sym.flags_field & SYNTHETIC) == 0) {
3008                     List<Type> oldParams = sym.type.hasTag(FORALL) ?
3009                             ((ForAll)sym.type).tvars :
3010                             List.nil();
3011                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
3012                                                  types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
3013                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
3014                         @Override
3015                         public Symbol baseSymbol() {
3016                             return sym;
3017                         }
3018                     };
3019                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
3020                             newConstr,
3021                             bestSoFar,
3022                             allowBoxing,
3023                             useVarargs);
3024             }
3025         }
3026         return bestSoFar;
3027     }
3028 
3029     Symbol getMemberReference(DiagnosticPosition pos,
3030             Env<AttrContext> env,
3031             JCMemberReference referenceTree,
3032             Type site,
3033             Name name) {
3034 
3035         site = types.capture(site);
3036 
3037         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
3038                 referenceTree, site, name, List.nil(), null, VARARITY);
3039 
3040         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
3041         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
3042                 nilMethodCheck, lookupHelper);
3043 
3044         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
3045 
3046         return sym;
3047     }
3048 
3049     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
3050                                   Type site,
3051                                   Name name,
3052                                   List<Type> argtypes,
3053                                   List<Type> typeargtypes,
3054                                   MethodResolutionPhase maxPhase) {
3055         if (!name.equals(names.init)) {
3056             //method reference
3057             return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
3058         } else if (site.hasTag(ARRAY)) {
3059             //array constructor reference
3060             return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
3061         } else {
3062             //class constructor reference
3063             return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
3064         }
3065     }
3066 
3067     /**
3068      * Resolution of member references is typically done as a single
3069      * overload resolution step, where the argument types A are inferred from
3070      * the target functional descriptor.
3071      *
3072      * If the member reference is a method reference with a type qualifier,
3073      * a two-step lookup process is performed. The first step uses the
3074      * expected argument list A, while the second step discards the first
3075      * type from A (which is treated as a receiver type).
3076      *
3077      * There are two cases in which inference is performed: (i) if the member
3078      * reference is a constructor reference and the qualifier type is raw - in
3079      * which case diamond inference is used to infer a parameterization for the
3080      * type qualifier; (ii) if the member reference is an unbound reference
3081      * where the type qualifier is raw - in that case, during the unbound lookup
3082      * the receiver argument type is used to infer an instantiation for the raw
3083      * qualifier type.
3084      *
3085      * When a multi-step resolution process is exploited, the process of picking
3086      * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
3087      *
3088      * This routine returns a pair (T,S), where S is the member reference symbol,
3089      * and T is the type of the class in which S is defined. This is necessary as
3090      * the type T might be dynamically inferred (i.e. if constructor reference
3091      * has a raw qualifier).
3092      */
3093     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
3094                                   JCMemberReference referenceTree,
3095                                   Type site,
3096                                   Name name,
3097                                   List<Type> argtypes,
3098                                   List<Type> typeargtypes,
3099                                   Type descriptor,
3100                                   MethodCheck methodCheck,
3101                                   InferenceContext inferenceContext,
3102                                   ReferenceChooser referenceChooser) {
3103 
3104         //step 1 - bound lookup
3105         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
3106                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
3107         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
3108         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
3109         boundSearchResolveContext.methodCheck = methodCheck;
3110         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
3111                 site.tsym, boundSearchResolveContext, boundLookupHelper);
3112         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
3113         ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext, isStaticSelector);
3114         if (dumpMethodReferenceSearchResults) {
3115             dumpMethodReferenceSearchResults(referenceTree, boundSearchResolveContext, boundSym, true);
3116         }
3117 
3118         //step 2 - unbound lookup
3119         Symbol unboundSym = methodNotFound;
3120         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
3121         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
3122         ReferenceLookupResult unboundRes = referenceNotFound;
3123         if (unboundLookupHelper != null) {
3124             MethodResolutionContext unboundSearchResolveContext =
3125                     new MethodResolutionContext();
3126             unboundSearchResolveContext.methodCheck = methodCheck;
3127             unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
3128                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
3129             unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext, isStaticSelector);
3130             if (dumpMethodReferenceSearchResults) {
3131                 dumpMethodReferenceSearchResults(referenceTree, unboundSearchResolveContext, unboundSym, false);
3132             }
3133         }
3134 
3135         //merge results
3136         Pair<Symbol, ReferenceLookupHelper> res;
3137         ReferenceLookupResult bestRes = referenceChooser.result(boundRes, unboundRes);
3138         res = new Pair<>(bestRes.sym,
3139                 bestRes == unboundRes ? unboundLookupHelper : boundLookupHelper);
3140         env.info.pendingResolutionPhase = bestRes == unboundRes ?
3141                 unboundEnv.info.pendingResolutionPhase :
3142                 boundEnv.info.pendingResolutionPhase;
3143 
3144         if (!res.fst.kind.isResolutionError()) {
3145             //handle sigpoly method references
3146             MethodSymbol msym = (MethodSymbol)res.fst;
3147             if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
3148                 env.info.pendingResolutionPhase = BASIC;
3149                 res = new Pair<>(findPolymorphicSignatureInstance(msym, descriptor), res.snd);
3150             }
3151         }
3152 
3153         return res;
3154     }
3155 
3156     private void dumpMethodReferenceSearchResults(JCMemberReference referenceTree,
3157                                                   MethodResolutionContext resolutionContext,
3158                                                   Symbol bestSoFar,
3159                                                   boolean bound) {
3160         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
3161         int pos = 0;
3162         int mostSpecificPos = -1;
3163         for (Candidate c : resolutionContext.candidates) {
3164             if (resolutionContext.step != c.step || !c.isApplicable()) {
3165                 continue;
3166             } else {
3167                 JCDiagnostic subDiag = null;
3168                 if (c.sym.type.hasTag(FORALL)) {
3169                     subDiag = diags.fragment(Fragments.PartialInstSig(c.mtype));
3170                 }
3171 
3172                 String key = subDiag == null ?
3173                         "applicable.method.found.2" :
3174                         "applicable.method.found.3";
3175                 subDiags.append(diags.fragment(key, pos,
3176                         c.sym.isStatic() ? Fragments.Static : Fragments.NonStatic, c.sym, subDiag));
3177                 if (c.sym == bestSoFar)
3178                     mostSpecificPos = pos;
3179                 pos++;
3180             }
3181         }
3182         JCDiagnostic main = diags.note(
3183                 log.currentSource(),
3184                 referenceTree,
3185                 "method.ref.search.results.multi",
3186                 bound ? Fragments.Bound : Fragments.Unbound,
3187                 referenceTree.toString(), mostSpecificPos);
3188         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
3189         log.report(d);
3190     }
3191 
3192     /**
3193      * This class is used to represent a method reference lookup result. It keeps track of two
3194      * things: (i) the symbol found during a method reference lookup and (ii) the static kind
3195      * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
3196      */
3197     static class ReferenceLookupResult {
3198 
3199         /**
3200          * Static kind associated with a method reference lookup. Erroneous lookups end up with
3201          * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
3202          * depending on whether all applicable candidates are static or non-static methods,
3203          * respectively. If a successful lookup has both static and non-static applicable methods,
3204          * its kind is set to BOTH.
3205          */
3206         enum StaticKind {
3207             STATIC,
3208             NON_STATIC,
3209             BOTH,
3210             UNDEFINED;
3211 
3212             /**
3213              * Retrieve the static kind associated with a given (method) symbol.
3214              */
3215             static StaticKind from(Symbol s) {
3216                 return s.isStatic() ?
3217                         STATIC : NON_STATIC;
3218             }
3219 
3220             /**
3221              * Merge two static kinds together.
3222              */
3223             static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
3224                 if (sk1 == UNDEFINED) {
3225                     return sk2;
3226                 } else if (sk2 == UNDEFINED) {
3227                     return sk1;
3228                 } else {
3229                     return sk1 == sk2 ? sk1 : BOTH;
3230                 }
3231             }
3232         }
3233 
3234         /** The static kind. */
3235         StaticKind staticKind;
3236 
3237         /** The lookup result. */
3238         Symbol sym;
3239 
3240         ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) {
3241             this(sym, staticKind(sym, resolutionContext, isStaticSelector));
3242         }
3243 
3244         private ReferenceLookupResult(Symbol sym, StaticKind staticKind) {
3245             this.staticKind = staticKind;
3246             this.sym = sym;
3247         }
3248 
3249         private static StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) {
3250             if (sym.kind == MTH && !isStaticSelector) {
3251                 return StaticKind.from(sym);
3252             } else if (sym.kind == MTH || sym.kind == AMBIGUOUS) {
3253                 return resolutionContext.candidates.stream()
3254                         .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
3255                         .map(c -> StaticKind.from(c.sym))
3256                         .reduce(StaticKind::reduce)
3257                         .orElse(StaticKind.UNDEFINED);
3258             } else {
3259                 return StaticKind.UNDEFINED;
3260             }
3261         }
3262 
3263         /**
3264          * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
3265          */
3266         boolean isSuccess() {
3267             return staticKind != StaticKind.UNDEFINED;
3268         }
3269 
3270         /**
3271          * Does this result have given static kind?
3272          */
3273         boolean hasKind(StaticKind sk) {
3274             return this.staticKind == sk;
3275         }
3276 
3277         /**
3278          * Error recovery helper: can this lookup result be ignored (for the purpose of returning
3279          * some 'better' result) ?
3280          */
3281         boolean canIgnore() {
3282             switch (sym.kind) {
3283                 case ABSENT_MTH:
3284                     return true;
3285                 case WRONG_MTH:
3286                     InapplicableSymbolError errSym =
3287                             (InapplicableSymbolError)sym.baseSymbol();
3288                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
3289                             .matches(errSym.errCandidate().snd);
3290                 case WRONG_MTHS:
3291                     InapplicableSymbolsError errSyms =
3292                             (InapplicableSymbolsError)sym.baseSymbol();
3293                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
3294                 default:
3295                     return false;
3296             }
3297         }
3298 
3299         static ReferenceLookupResult error(Symbol sym) {
3300             return new ReferenceLookupResult(sym, StaticKind.UNDEFINED);
3301         }
3302     }
3303 
3304     /**
3305      * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
3306      * {@code ReferenceLookupResult} objects into a {@code Symbol}, which is then regarded as the
3307      * result of method reference resolution.
3308      */
3309     abstract class ReferenceChooser {
3310         /**
3311          * Generate a result from a pair of lookup result objects. This method delegates to the
3312          * appropriate result generation routine.
3313          */
3314         ReferenceLookupResult result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3315             return unboundRes != referenceNotFound ?
3316                     unboundResult(boundRes, unboundRes) :
3317                     boundResult(boundRes);
3318         }
3319 
3320         /**
3321          * Generate a symbol from a given bound lookup result.
3322          */
3323         abstract ReferenceLookupResult boundResult(ReferenceLookupResult boundRes);
3324 
3325         /**
3326          * Generate a symbol from a pair of bound/unbound lookup results.
3327          */
3328         abstract ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
3329     }
3330 
3331     /**
3332      * This chooser implements the selection strategy used during a full lookup; this logic
3333      * is described in JLS SE 8 (15.3.2).
3334      */
3335     ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
3336 
3337         @Override
3338         ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) {
3339             return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
3340                     boundRes : //the search produces a non-static method
3341                     ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false));
3342         }
3343 
3344         @Override
3345         ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3346             if (boundRes.isSuccess() && boundRes.sym.isStatic() &&
3347                     (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
3348                 //the first search produces a static method and no non-static method is applicable
3349                 //during the second search
3350                 return boundRes;
3351             } else if (unboundRes.isSuccess() && !unboundRes.sym.isStatic() &&
3352                     (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
3353                 //the second search produces a non-static method and no static method is applicable
3354                 //during the first search
3355                 return unboundRes;
3356             } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
3357                 //both searches produce some result; ambiguity (error recovery)
3358                 return ReferenceLookupResult.error(ambiguityError(boundRes.sym, unboundRes.sym));
3359             } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3360                 //Both searches failed to produce a result with correct staticness (i.e. first search
3361                 //produces an non-static method). Alternatively, a given search produced a result
3362                 //with the right staticness, but the other search has applicable methods with wrong
3363                 //staticness (error recovery)
3364                 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ?
3365                         boundRes.sym : unboundRes.sym, true));
3366             } else {
3367                 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3368                 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3369                         unboundRes : boundRes;
3370             }
3371         }
3372     };
3373 
3374     /**
3375      * This chooser implements the selection strategy used during an arity-based lookup; this logic
3376      * is described in JLS SE 8 (15.12.2.1).
3377      */
3378     ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
3379 
3380         @Override
3381         ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) {
3382             return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
3383                     boundRes : //the search has at least one applicable non-static method
3384                     ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false));
3385         }
3386 
3387         @Override
3388         ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3389             if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
3390                 //the first search has at least one applicable static method
3391                 return boundRes;
3392             } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
3393                 //the second search has at least one applicable non-static method
3394                 return unboundRes;
3395             } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3396                 //either the first search produces a non-static method, or second search produces
3397                 //a non-static method (error recovery)
3398                 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ?
3399                         boundRes.sym : unboundRes.sym, true));
3400             } else {
3401                 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3402                 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3403                         unboundRes : boundRes;
3404             }
3405         }
3406     };
3407 
3408     /**
3409      * Helper for defining custom method-like lookup logic; a lookup helper
3410      * provides hooks for (i) the actual lookup logic and (ii) accessing the
3411      * lookup result (this step might result in compiler diagnostics to be generated)
3412      */
3413     abstract class LookupHelper {
3414 
3415         /** name of the symbol to lookup */
3416         Name name;
3417 
3418         /** location in which the lookup takes place */
3419         Type site;
3420 
3421         /** actual types used during the lookup */
3422         List<Type> argtypes;
3423 
3424         /** type arguments used during the lookup */
3425         List<Type> typeargtypes;
3426 
3427         /** Max overload resolution phase handled by this helper */
3428         MethodResolutionPhase maxPhase;
3429 
3430         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3431             this.name = name;
3432             this.site = site;
3433             this.argtypes = argtypes;
3434             this.typeargtypes = typeargtypes;
3435             this.maxPhase = maxPhase;
3436         }
3437 
3438         /**
3439          * Should lookup stop at given phase with given result
3440          */
3441         final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3442             return phase.ordinal() > maxPhase.ordinal() ||
3443                  !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS || sym.kind == STATICERR;
3444         }
3445 
3446         /**
3447          * Search for a symbol under a given overload resolution phase - this method
3448          * is usually called several times, once per each overload resolution phase
3449          */
3450         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3451 
3452         /**
3453          * Dump overload resolution info
3454          */
3455         void debug(DiagnosticPosition pos, Symbol sym) {
3456             //do nothing
3457         }
3458 
3459         /**
3460          * Validate the result of the lookup
3461          */
3462         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3463     }
3464 
3465     abstract class BasicLookupHelper extends LookupHelper {
3466 
3467         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3468             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3469         }
3470 
3471         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3472             super(name, site, argtypes, typeargtypes, maxPhase);
3473         }
3474 
3475         @Override
3476         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3477             Symbol sym = doLookup(env, phase);
3478             if (sym.kind == AMBIGUOUS) {
3479                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3480                 sym = a_err.mergeAbstracts(site);
3481             }
3482             return sym;
3483         }
3484 
3485         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
3486 
3487         @Override
3488         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3489             if (sym.kind.isResolutionError()) {
3490                 //if nothing is found return the 'first' error
3491                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3492             }
3493             return sym;
3494         }
3495 
3496         @Override
3497         void debug(DiagnosticPosition pos, Symbol sym) {
3498             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3499         }
3500     }
3501 
3502     /**
3503      * Helper class for member reference lookup. A reference lookup helper
3504      * defines the basic logic for member reference lookup; a method gives
3505      * access to an 'unbound' helper used to perform an unbound member
3506      * reference lookup.
3507      */
3508     abstract class ReferenceLookupHelper extends LookupHelper {
3509 
3510         /** The member reference tree */
3511         JCMemberReference referenceTree;
3512 
3513         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3514                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3515             super(name, site, argtypes, typeargtypes, maxPhase);
3516             this.referenceTree = referenceTree;
3517         }
3518 
3519         /**
3520          * Returns an unbound version of this lookup helper. By default, this
3521          * method returns an dummy lookup helper.
3522          */
3523         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3524             return null;
3525         }
3526 
3527         /**
3528          * Get the kind of the member reference
3529          */
3530         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3531 
3532         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3533             if (sym.kind == AMBIGUOUS) {
3534                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3535                 sym = a_err.mergeAbstracts(site);
3536             }
3537             //skip error reporting
3538             return sym;
3539         }
3540     }
3541 
3542     /**
3543      * Helper class for method reference lookup. The lookup logic is based
3544      * upon Resolve.findMethod; in certain cases, this helper class has a
3545      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3546      * In such cases, non-static lookup results are thrown away.
3547      */
3548     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3549 
3550         /** The original method reference lookup site. */
3551         Type originalSite;
3552 
3553         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3554                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3555             super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3556             this.originalSite = site;
3557         }
3558 
3559         @Override
3560         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3561             return findMethod(env, site, name, argtypes, typeargtypes,
3562                     phase.isBoxingRequired(), phase.isVarargsRequired());
3563         }
3564 
3565         @Override
3566         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3567             if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3568                 if (argtypes.nonEmpty() &&
3569                         (argtypes.head.hasTag(NONE) ||
3570                         types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), originalSite))) {
3571                     return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3572                             originalSite, argtypes, typeargtypes, maxPhase);
3573                 } else {
3574                     return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3575                         @Override
3576                         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3577                             return this;
3578                         }
3579 
3580                         @Override
3581                         Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3582                             return methodNotFound;
3583                         }
3584 
3585                         @Override
3586                         ReferenceKind referenceKind(Symbol sym) {
3587                             Assert.error();
3588                             return null;
3589                         }
3590                     };
3591                 }
3592             } else {
3593                 return super.unboundLookup(inferenceContext);
3594             }
3595         }
3596 
3597         @Override
3598         ReferenceKind referenceKind(Symbol sym) {
3599             if (sym.isStatic()) {
3600                 return ReferenceKind.STATIC;
3601             } else {
3602                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3603                 return selName != null && selName == names._super ?
3604                         ReferenceKind.SUPER :
3605                         ReferenceKind.BOUND;
3606             }
3607         }
3608     }
3609 
3610     /**
3611      * Helper class for unbound method reference lookup. Essentially the same
3612      * as the basic method reference lookup helper; main difference is that static
3613      * lookup results are thrown away. If qualifier type is raw, an attempt to
3614      * infer a parameterized type is made using the first actual argument (that
3615      * would otherwise be ignored during the lookup).
3616      */
3617     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3618 
3619         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3620                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3621             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3622             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3623                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3624                 this.site = types.skipTypeVars(asSuperSite, true);
3625             }
3626         }
3627 
3628         @Override
3629         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3630             return this;
3631         }
3632 
3633         @Override
3634         ReferenceKind referenceKind(Symbol sym) {
3635             return ReferenceKind.UNBOUND;
3636         }
3637     }
3638 
3639     /**
3640      * Helper class for array constructor lookup; an array constructor lookup
3641      * is simulated by looking up a method that returns the array type specified
3642      * as qualifier, and that accepts a single int parameter (size of the array).
3643      */
3644     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3645 
3646         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3647                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3648             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3649         }
3650 
3651         @Override
3652         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3653             WriteableScope sc = WriteableScope.create(syms.arrayClass);
3654             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3655             arrayConstr.type = new MethodType(List.of(syms.intType), site, List.nil(), syms.methodClass);
3656             sc.enter(arrayConstr);
3657             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3658         }
3659 
3660         @Override
3661         ReferenceKind referenceKind(Symbol sym) {
3662             return ReferenceKind.ARRAY_CTOR;
3663         }
3664     }
3665 
3666     /**
3667      * Helper class for constructor reference lookup. The lookup logic is based
3668      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3669      * whether the constructor reference needs diamond inference (this is the case
3670      * if the qualifier type is raw). A special erroneous symbol is returned
3671      * if the lookup returns the constructor of an inner class and there's no
3672      * enclosing instance in scope.
3673      */
3674     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3675 
3676         boolean needsInference;
3677 
3678         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3679                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3680             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3681             if (site.isRaw()) {
3682                 this.site = new ClassType(site.getEnclosingType(),
3683                         !(site.tsym.isInner() && site.getEnclosingType().isRaw()) ?
3684                                 site.tsym.type.getTypeArguments() : List.nil(), site.tsym, site.getMetadata());
3685                 needsInference = true;
3686             }
3687         }
3688 
3689         @Override
3690         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3691             Symbol sym = needsInference ?
3692                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3693                 findMethod(env, site, name, argtypes, typeargtypes,
3694                         phase.isBoxingRequired(), phase.isVarargsRequired());
3695             return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
3696         }
3697 
3698         @Override
3699         ReferenceKind referenceKind(Symbol sym) {
3700             return site.getEnclosingType().hasTag(NONE) ?
3701                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3702         }
3703     }
3704 
3705     /**
3706      * Main overload resolution routine. On each overload resolution step, a
3707      * lookup helper class is used to perform the method/constructor lookup;
3708      * at the end of the lookup, the helper is used to validate the results
3709      * (this last step might trigger overload resolution diagnostics).
3710      */
3711     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3712         MethodResolutionContext resolveContext = new MethodResolutionContext();
3713         resolveContext.methodCheck = methodCheck;
3714         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3715     }
3716 
3717     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3718             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3719         MethodResolutionContext prevResolutionContext = currentResolutionContext;
3720         try {
3721             Symbol bestSoFar = methodNotFound;
3722             currentResolutionContext = resolveContext;
3723             for (MethodResolutionPhase phase : methodResolutionSteps) {
3724                 if (lookupHelper.shouldStop(bestSoFar, phase))
3725                     break;
3726                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
3727                 Symbol prevBest = bestSoFar;
3728                 currentResolutionContext.step = phase;
3729                 Symbol sym = lookupHelper.lookup(env, phase);
3730                 lookupHelper.debug(pos, sym);
3731                 bestSoFar = phase.mergeResults(bestSoFar, sym);
3732                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3733             }
3734             return lookupHelper.access(env, pos, location, bestSoFar);
3735         } finally {
3736             currentResolutionContext = prevResolutionContext;
3737         }
3738     }
3739 
3740     /**
3741      * Resolve `c.name' where name == this or name == super.
3742      * @param pos           The position to use for error reporting.
3743      * @param env           The environment current at the expression.
3744      * @param c             The qualifier.
3745      * @param name          The identifier's name.
3746      */
3747     Symbol resolveSelf(DiagnosticPosition pos,
3748                        Env<AttrContext> env,
3749                        TypeSymbol c,
3750                        Name name) {
3751         Env<AttrContext> env1 = env;
3752         boolean staticOnly = false;
3753         while (env1.outer != null) {
3754             if (isStatic(env1)) staticOnly = true;
3755             if (env1.enclClass.sym == c) {
3756                 Symbol sym = env1.info.scope.findFirst(name);
3757                 if (sym != null) {
3758                     if (staticOnly) sym = new StaticError(sym);
3759                     return accessBase(sym, pos, env.enclClass.sym.type,
3760                                   name, true);
3761                 }
3762             }
3763             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3764             env1 = env1.outer;
3765         }
3766         if (c.isInterface() &&
3767             name == names._super && !isStatic(env) &&
3768             types.isDirectSuperInterface(c, env.enclClass.sym)) {
3769             //this might be a default super call if one of the superinterfaces is 'c'
3770             for (Type t : pruneInterfaces(env.enclClass.type)) {
3771                 if (t.tsym == c) {
3772                     env.info.defaultSuperCallSite = t;
3773                     return new VarSymbol(0, names._super,
3774                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3775                 }
3776             }
3777             //find a direct supertype that is a subtype of 'c'
3778             for (Type i : types.directSupertypes(env.enclClass.type)) {
3779                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3780                     log.error(pos,
3781                               Errors.IllegalDefaultSuperCall(c,
3782                                                              Fragments.RedundantSupertype(c, i)));
3783                     return syms.errSymbol;
3784                 }
3785             }
3786             Assert.error();
3787         }
3788         log.error(pos, Errors.NotEnclClass(c));
3789         return syms.errSymbol;
3790     }
3791     //where
3792     private List<Type> pruneInterfaces(Type t) {
3793         ListBuffer<Type> result = new ListBuffer<>();
3794         for (Type t1 : types.interfaces(t)) {
3795             boolean shouldAdd = true;
3796             for (Type t2 : types.directSupertypes(t)) {
3797                 if (t1 != t2 && !t2.hasTag(ERROR) && types.isSubtypeNoCapture(t2, t1)) {
3798                     shouldAdd = false;
3799                 }
3800             }
3801             if (shouldAdd) {
3802                 result.append(t1);
3803             }
3804         }
3805         return result.toList();
3806     }
3807 
3808 
3809     /**
3810      * Resolve `c.this' for an enclosing class c that contains the
3811      * named member.
3812      * @param pos           The position to use for error reporting.
3813      * @param env           The environment current at the expression.
3814      * @param member        The member that must be contained in the result.
3815      */
3816     Symbol resolveSelfContaining(DiagnosticPosition pos,
3817                                  Env<AttrContext> env,
3818                                  Symbol member,
3819                                  boolean isSuperCall) {
3820         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3821         if (sym == null) {
3822             log.error(pos, Errors.EnclClassRequired(member));
3823             return syms.errSymbol;
3824         } else {
3825             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3826         }
3827     }
3828 
3829     boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
3830         if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
3831             Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3832             return encl == null || encl.kind.isResolutionError();
3833         }
3834         return false;
3835     }
3836 
3837     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3838                                  Symbol member,
3839                                  boolean isSuperCall) {
3840         Name name = names._this;
3841         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3842         boolean staticOnly = false;
3843         if (env1 != null) {
3844             while (env1 != null && env1.outer != null) {
3845                 if (isStatic(env1)) staticOnly = true;
3846                 if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
3847                     Symbol sym = env1.info.scope.findFirst(name);
3848                     if (sym != null) {
3849                         if (staticOnly) sym = new StaticError(sym);
3850                         return sym;
3851                     }
3852                 }
3853                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
3854                     staticOnly = true;
3855                 env1 = env1.outer;
3856             }
3857         }
3858         return null;
3859     }
3860 
3861     /**
3862      * Resolve an appropriate implicit this instance for t's container.
3863      * JLS 8.8.5.1 and 15.9.2
3864      */
3865     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3866         return resolveImplicitThis(pos, env, t, false);
3867     }
3868 
3869     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3870         Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3871                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3872                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3873         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym) {
3874             log.error(pos, Errors.CantRefBeforeCtorCalled("this"));
3875         }
3876         return thisType;
3877     }
3878 
3879 /* ***************************************************************************
3880  *  ResolveError classes, indicating error situations when accessing symbols
3881  ****************************************************************************/
3882 
3883     //used by TransTypes when checking target type of synthetic cast
3884     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3885         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3886         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3887     }
3888     //where
3889     private void logResolveError(ResolveError error,
3890             DiagnosticPosition pos,
3891             Symbol location,
3892             Type site,
3893             Name name,
3894             List<Type> argtypes,
3895             List<Type> typeargtypes) {
3896         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3897                 pos, location, site, name, argtypes, typeargtypes);
3898         if (d != null) {
3899             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3900             log.report(d);
3901         }
3902     }
3903 
3904     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3905 
3906     public Object methodArguments(List<Type> argtypes) {
3907         if (argtypes == null || argtypes.isEmpty()) {
3908             return noArgs;
3909         } else {
3910             ListBuffer<Object> diagArgs = new ListBuffer<>();
3911             for (Type t : argtypes) {
3912                 if (t.hasTag(DEFERRED)) {
3913                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3914                 } else {
3915                     diagArgs.append(t);
3916                 }
3917             }
3918             return diagArgs;
3919         }
3920     }
3921 
3922     /** check if a type is a subtype of Serializable, if that is available.*/
3923     boolean isSerializable(Type t) {
3924         try {
3925             syms.serializableType.complete();
3926         }
3927         catch (CompletionFailure e) {
3928             return false;
3929         }
3930         return types.isSubtype(t, syms.serializableType);
3931     }
3932 
3933     /**
3934      * Root class for resolution errors. Subclass of ResolveError
3935      * represent a different kinds of resolution error - as such they must
3936      * specify how they map into concrete compiler diagnostics.
3937      */
3938     abstract class ResolveError extends Symbol {
3939 
3940         /** The name of the kind of error, for debugging only. */
3941         final String debugName;
3942 
3943         ResolveError(Kind kind, String debugName) {
3944             super(kind, 0, null, null, null);
3945             this.debugName = debugName;
3946         }
3947 
3948         @Override @DefinedBy(Api.LANGUAGE_MODEL)
3949         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3950             throw new AssertionError();
3951         }
3952 
3953         @Override
3954         public String toString() {
3955             return debugName;
3956         }
3957 
3958         @Override
3959         public boolean exists() {
3960             return false;
3961         }
3962 
3963         @Override
3964         public boolean isStatic() {
3965             return false;
3966         }
3967 
3968         /**
3969          * Create an external representation for this erroneous symbol to be
3970          * used during attribution - by default this returns the symbol of a
3971          * brand new error type which stores the original type found
3972          * during resolution.
3973          *
3974          * @param name     the name used during resolution
3975          * @param location the location from which the symbol is accessed
3976          */
3977         protected Symbol access(Name name, TypeSymbol location) {
3978             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3979         }
3980 
3981         /**
3982          * Create a diagnostic representing this resolution error.
3983          *
3984          * @param dkind     The kind of the diagnostic to be created (e.g error).
3985          * @param pos       The position to be used for error reporting.
3986          * @param site      The original type from where the selection took place.
3987          * @param name      The name of the symbol to be resolved.
3988          * @param argtypes  The invocation's value arguments,
3989          *                  if we looked for a method.
3990          * @param typeargtypes  The invocation's type arguments,
3991          *                      if we looked for a method.
3992          */
3993         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3994                 DiagnosticPosition pos,
3995                 Symbol location,
3996                 Type site,
3997                 Name name,
3998                 List<Type> argtypes,
3999                 List<Type> typeargtypes);
4000     }
4001 
4002     /**
4003      * This class is the root class of all resolution errors caused by
4004      * an invalid symbol being found during resolution.
4005      */
4006     abstract class InvalidSymbolError extends ResolveError {
4007 
4008         /** The invalid symbol found during resolution */
4009         Symbol sym;
4010 
4011         InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
4012             super(kind, debugName);
4013             this.sym = sym;
4014         }
4015 
4016         @Override
4017         public boolean exists() {
4018             return true;
4019         }
4020 
4021         @Override
4022         public String toString() {
4023              return super.toString() + " wrongSym=" + sym;
4024         }
4025 
4026         @Override
4027         public Symbol access(Name name, TypeSymbol location) {
4028             if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
4029                 return types.createErrorType(name, location, sym.type).tsym;
4030             else
4031                 return sym;
4032         }
4033     }
4034 
4035     class BadRestrictedTypeError extends ResolveError {
4036         private final Name typeName;
4037         BadRestrictedTypeError(Name typeName) {
4038             super(Kind.BAD_RESTRICTED_TYPE, "bad var use");
4039             this.typeName = typeName;
4040         }
4041 
4042         @Override
4043         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4044             return diags.create(dkind, log.currentSource(), pos, "illegal.ref.to.restricted.type", typeName);
4045         }
4046     }
4047 
4048     /**
4049      * InvalidSymbolError error class indicating that a symbol matching a
4050      * given name does not exists in a given site.
4051      */
4052     class SymbolNotFoundError extends ResolveError {
4053 
4054         SymbolNotFoundError(Kind kind) {
4055             this(kind, "symbol not found error");
4056         }
4057 
4058         SymbolNotFoundError(Kind kind, String debugName) {
4059             super(kind, debugName);
4060         }
4061 
4062         @Override
4063         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4064                 DiagnosticPosition pos,
4065                 Symbol location,
4066                 Type site,
4067                 Name name,
4068                 List<Type> argtypes,
4069                 List<Type> typeargtypes) {
4070             argtypes = argtypes == null ? List.nil() : argtypes;
4071             typeargtypes = typeargtypes == null ? List.nil() : typeargtypes;
4072             if (name == names.error)
4073                 return null;
4074 
4075             boolean hasLocation = false;
4076             if (location == null) {
4077                 location = site.tsym;
4078             }
4079             if (!location.name.isEmpty()) {
4080                 if (location.kind == PCK && !site.tsym.exists() && location.name != names.java) {
4081                     return diags.create(dkind, log.currentSource(), pos,
4082                         "doesnt.exist", location);
4083                 }
4084                 hasLocation = !location.name.equals(names._this) &&
4085                         !location.name.equals(names._super);
4086             }
4087             boolean isConstructor = name == names.init;
4088             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
4089             Name idname = isConstructor ? site.tsym.name : name;
4090             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
4091             if (hasLocation) {
4092                 return diags.create(dkind, log.currentSource(), pos,
4093                         errKey, kindname, idname, //symbol kindname, name
4094                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
4095                         getLocationDiag(location, site)); //location kindname, type
4096             }
4097             else {
4098                 return diags.create(dkind, log.currentSource(), pos,
4099                         errKey, kindname, idname, //symbol kindname, name
4100                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
4101             }
4102         }
4103         //where
4104         private Object args(List<Type> args) {
4105             return args.isEmpty() ? args : methodArguments(args);
4106         }
4107 
4108         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
4109             String key = "cant.resolve";
4110             String suffix = hasLocation ? ".location" : "";
4111             switch (kindname) {
4112                 case METHOD:
4113                 case CONSTRUCTOR: {
4114                     suffix += ".args";
4115                     suffix += hasTypeArgs ? ".params" : "";
4116                 }
4117             }
4118             return key + suffix;
4119         }
4120         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
4121             if (location.kind == VAR) {
4122                 return diags.fragment(Fragments.Location1(kindName(location),
4123                                                           location,
4124                                                           location.type));
4125             } else {
4126                 return diags.fragment(Fragments.Location(typeKindName(site),
4127                                       site,
4128                                       null));
4129             }
4130         }
4131     }
4132 
4133     /**
4134      * InvalidSymbolError error class indicating that a given symbol
4135      * (either a method, a constructor or an operand) is not applicable
4136      * given an actual arguments/type argument list.
4137      */
4138     class InapplicableSymbolError extends ResolveError {
4139 
4140         protected MethodResolutionContext resolveContext;
4141 
4142         InapplicableSymbolError(MethodResolutionContext context) {
4143             this(WRONG_MTH, "inapplicable symbol error", context);
4144         }
4145 
4146         protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
4147             super(kind, debugName);
4148             this.resolveContext = context;
4149         }
4150 
4151         @Override
4152         public String toString() {
4153             return super.toString();
4154         }
4155 
4156         @Override
4157         public boolean exists() {
4158             return true;
4159         }
4160 
4161         @Override
4162         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4163                 DiagnosticPosition pos,
4164                 Symbol location,
4165                 Type site,
4166                 Name name,
4167                 List<Type> argtypes,
4168                 List<Type> typeargtypes) {
4169             if (name == names.error)
4170                 return null;
4171 
4172             Pair<Symbol, JCDiagnostic> c = errCandidate();
4173             Symbol ws = c.fst.asMemberOf(site, types);
4174             UnaryOperator<JCDiagnostic> rewriter = compactMethodDiags ?
4175               d -> MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd) : null;
4176 
4177             // If the problem is due to type arguments, then the method parameters aren't relevant,
4178             // so use the error message that omits them to avoid confusion.
4179             switch (c.snd.getCode()) {
4180                 case "compiler.misc.wrong.number.type.args":
4181                 case "compiler.misc.explicit.param.do.not.conform.to.bounds":
4182                     return diags.create(dkind, log.currentSource(), pos,
4183                               "cant.apply.symbol.noargs",
4184                               rewriter,
4185                               kindName(ws),
4186                               ws.name == names.init ? ws.owner.name : ws.name,
4187                               kindName(ws.owner),
4188                               ws.owner.type,
4189                               c.snd);
4190                 default:
4191                     // Avoid saying "constructor Array in class Array"
4192                     if (ws.owner == syms.arrayClass && ws.name == names.init) {
4193                         return diags.create(dkind, log.currentSource(), pos,
4194                                   "cant.apply.array.ctor",
4195                                   rewriter,
4196                                   methodArguments(ws.type.getParameterTypes()),
4197                                   methodArguments(argtypes),
4198                                   c.snd);
4199                     }
4200                     return diags.create(dkind, log.currentSource(), pos,
4201                               "cant.apply.symbol",
4202                               rewriter,
4203                               kindName(ws),
4204                               ws.name == names.init ? ws.owner.name : ws.name,
4205                               methodArguments(ws.type.getParameterTypes()),
4206                               methodArguments(argtypes),
4207                               kindName(ws.owner),
4208                               ws.owner.type,
4209                               c.snd);
4210             }
4211         }
4212 
4213         @Override
4214         public Symbol access(Name name, TypeSymbol location) {
4215             Pair<Symbol, JCDiagnostic> cand = errCandidate();
4216             TypeSymbol errSymbol = types.createErrorType(name, location, cand != null ? cand.fst.type : syms.errSymbol.type).tsym;
4217             if (cand != null) {
4218                 attrRecover.wrongMethodSymbolCandidate(errSymbol, cand.fst, cand.snd);
4219             }
4220             return errSymbol;
4221         }
4222 
4223         protected Pair<Symbol, JCDiagnostic> errCandidate() {
4224             Candidate bestSoFar = null;
4225             for (Candidate c : resolveContext.candidates) {
4226                 if (c.isApplicable()) continue;
4227                 bestSoFar = c;
4228             }
4229             Assert.checkNonNull(bestSoFar);
4230             return new Pair<>(bestSoFar.sym, bestSoFar.details);
4231         }
4232     }
4233 
4234     /**
4235      * ResolveError error class indicating that a symbol (either methods, constructors or operand)
4236      * is not applicable given an actual arguments/type argument list.
4237      */
4238     class InapplicableSymbolsError extends InapplicableSymbolError {
4239 
4240         InapplicableSymbolsError(MethodResolutionContext context) {
4241             super(WRONG_MTHS, "inapplicable symbols", context);
4242         }
4243 
4244         @Override
4245         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4246                 DiagnosticPosition pos,
4247                 Symbol location,
4248                 Type site,
4249                 Name name,
4250                 List<Type> argtypes,
4251                 List<Type> typeargtypes) {
4252             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
4253             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
4254                     filterCandidates(candidatesMap) :
4255                     mapCandidates();
4256             if (filteredCandidates.isEmpty()) {
4257                 filteredCandidates = candidatesMap;
4258             }
4259             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
4260             if (filteredCandidates.size() > 1) {
4261                 JCDiagnostic err = diags.create(dkind,
4262                         null,
4263                         truncatedDiag ?
4264                                 EnumSet.of(DiagnosticFlag.COMPRESSED) :
4265                                 EnumSet.noneOf(DiagnosticFlag.class),
4266                         log.currentSource(),
4267                         pos,
4268                         "cant.apply.symbols",
4269                         name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
4270                         name == names.init ? site.tsym.name : name,
4271                         methodArguments(argtypes));
4272                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
4273             } else if (filteredCandidates.size() == 1) {
4274                 Map.Entry<Symbol, JCDiagnostic> _e =
4275                                 filteredCandidates.entrySet().iterator().next();
4276                 final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
4277                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
4278                     @Override
4279                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
4280                         return p;
4281                     }
4282                 }.getDiagnostic(dkind, pos,
4283                     location, site, name, argtypes, typeargtypes);
4284                 if (truncatedDiag) {
4285                     d.setFlag(DiagnosticFlag.COMPRESSED);
4286                 }
4287                 return d;
4288             } else {
4289                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
4290                     location, site, name, argtypes, typeargtypes);
4291             }
4292         }
4293         //where
4294             private Map<Symbol, JCDiagnostic> mapCandidates() {
4295                 MostSpecificMap candidates = new MostSpecificMap();
4296                 for (Candidate c : resolveContext.candidates) {
4297                     if (c.isApplicable()) continue;
4298                     candidates.put(c);
4299                 }
4300                 return candidates;
4301             }
4302 
4303             @SuppressWarnings("serial")
4304             private class MostSpecificMap extends LinkedHashMap<Symbol, JCDiagnostic> {
4305                 private void put(Candidate c) {
4306                     ListBuffer<Symbol> overridden = new ListBuffer<>();
4307                     for (Symbol s : keySet()) {
4308                         if (s == c.sym) {
4309                             continue;
4310                         }
4311                         if (c.sym.overrides(s, (TypeSymbol)s.owner, types, false)) {
4312                             overridden.add(s);
4313                         } else if (s.overrides(c.sym, (TypeSymbol)c.sym.owner, types, false)) {
4314                             return;
4315                         }
4316                     }
4317                     for (Symbol s : overridden) {
4318                         remove(s);
4319                     }
4320                     put(c.sym, c.details);
4321                 }
4322             }
4323 
4324             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
4325                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
4326                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4327                     JCDiagnostic d = _entry.getValue();
4328                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
4329                         candidates.put(_entry.getKey(), d);
4330                     }
4331                 }
4332                 return candidates;
4333             }
4334 
4335             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
4336                 List<JCDiagnostic> details = List.nil();
4337                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4338                     Symbol sym = _entry.getKey();
4339                     JCDiagnostic detailDiag =
4340                             diags.fragment(Fragments.InapplicableMethod(Kinds.kindName(sym),
4341                                                                         sym.location(site, types),
4342                                                                         sym.asMemberOf(site, types),
4343                                                                         _entry.getValue()));
4344                     details = details.prepend(detailDiag);
4345                 }
4346                 //typically members are visited in reverse order (see Scope)
4347                 //so we need to reverse the candidate list so that candidates
4348                 //conform to source order
4349                 return details;
4350             }
4351 
4352         @Override
4353         protected Pair<Symbol, JCDiagnostic> errCandidate() {
4354             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
4355             Map<Symbol, JCDiagnostic> filteredCandidates = filterCandidates(candidatesMap);
4356             if (filteredCandidates.size() == 1) {
4357                 return Pair.of(filteredCandidates.keySet().iterator().next(),
4358                                filteredCandidates.values().iterator().next());
4359             }
4360             return null;
4361         }
4362     }
4363 
4364     /**
4365      * DiamondError error class indicating that a constructor symbol is not applicable
4366      * given an actual arguments/type argument list using diamond inference.
4367      */
4368     class DiamondError extends InapplicableSymbolError {
4369 
4370         Symbol sym;
4371 
4372         public DiamondError(Symbol sym, MethodResolutionContext context) {
4373             super(sym.kind, "diamondError", context);
4374             this.sym = sym;
4375         }
4376 
4377         JCDiagnostic getDetails() {
4378             return (sym.kind == WRONG_MTH) ?
4379                     ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
4380                     null;
4381         }
4382 
4383         @Override
4384         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
4385                 Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4386             JCDiagnostic details = getDetails();
4387             if (details != null && compactMethodDiags) {
4388                 JCDiagnostic simpleDiag =
4389                         MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
4390                 if (simpleDiag != null) {
4391                     return simpleDiag;
4392                 }
4393             }
4394             String key = details == null ?
4395                 "cant.apply.diamond" :
4396                 "cant.apply.diamond.1";
4397             return diags.create(dkind, log.currentSource(), pos, key,
4398                     Fragments.Diamond(site.tsym), details);
4399         }
4400     }
4401 
4402     /**
4403      * An InvalidSymbolError error class indicating that a symbol is not
4404      * accessible from a given site
4405      */
4406     class AccessError extends InvalidSymbolError {
4407 
4408         private Env<AttrContext> env;
4409         private Type site;
4410 
4411         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
4412             super(HIDDEN, sym, "access error");
4413             this.env = env;
4414             this.site = site;
4415         }
4416 
4417         @Override
4418         public boolean exists() {
4419             return false;
4420         }
4421 
4422         @Override
4423         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4424                 DiagnosticPosition pos,
4425                 Symbol location,
4426                 Type site,
4427                 Name name,
4428                 List<Type> argtypes,
4429                 List<Type> typeargtypes) {
4430             if (sym.name == names.init && sym.owner != site.tsym) {
4431                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
4432                         pos, location, site, name, argtypes, typeargtypes);
4433             }
4434             else if ((sym.flags() & PUBLIC) != 0
4435                 || (env != null && this.site != null
4436                     && !isAccessible(env, this.site))) {
4437                 if (sym.owner.kind == PCK) {
4438                     return diags.create(dkind, log.currentSource(),
4439                             pos, "not.def.access.package.cant.access",
4440                         sym, sym.location(), inaccessiblePackageReason(env, sym.packge()));
4441                 } else if (   sym.packge() != syms.rootPackage
4442                            && !symbolPackageVisible(env, sym)) {
4443                     return diags.create(dkind, log.currentSource(),
4444                             pos, "not.def.access.class.intf.cant.access.reason",
4445                             sym, sym.location(), sym.location().packge(),
4446                             inaccessiblePackageReason(env, sym.packge()));
4447                 } else {
4448                     return diags.create(dkind, log.currentSource(),
4449                             pos, "not.def.access.class.intf.cant.access",
4450                         sym, sym.location());
4451                 }
4452             }
4453             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
4454                 return diags.create(dkind, log.currentSource(),
4455                         pos, "report.access", sym,
4456                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
4457                         sym.location());
4458             }
4459             else {
4460                 return diags.create(dkind, log.currentSource(),
4461                         pos, "not.def.public.cant.access", sym, sym.location());
4462             }
4463         }
4464 
4465         private String toString(Type type) {
4466             StringBuilder sb = new StringBuilder();
4467             sb.append(type);
4468             if (type != null) {
4469                 sb.append("[tsym:").append(type.tsym);
4470                 if (type.tsym != null)
4471                     sb.append("packge:").append(type.tsym.packge());
4472                 sb.append("]");
4473             }
4474             return sb.toString();
4475         }
4476     }
4477 
4478     class InvisibleSymbolError extends InvalidSymbolError {
4479 
4480         private final Env<AttrContext> env;
4481         private final boolean suppressError;
4482 
4483         InvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
4484             super(HIDDEN, sym, "invisible class error");
4485             this.env = env;
4486             this.suppressError = suppressError;
4487             this.name = sym.name;
4488         }
4489 
4490         @Override
4491         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4492                 DiagnosticPosition pos,
4493                 Symbol location,
4494                 Type site,
4495                 Name name,
4496                 List<Type> argtypes,
4497                 List<Type> typeargtypes) {
4498             if (suppressError)
4499                 return null;
4500 
4501             if (sym.kind == PCK) {
4502                 JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4503                 return diags.create(dkind, log.currentSource(),
4504                         pos, "package.not.visible", sym, details);
4505             }
4506 
4507             JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4508 
4509             if (pos.getTree() != null) {
4510                 Symbol o = sym;
4511                 JCTree tree = pos.getTree();
4512 
4513                 while (o.kind != PCK && tree.hasTag(SELECT)) {
4514                     o = o.owner;
4515                     tree = ((JCFieldAccess) tree).selected;
4516                 }
4517 
4518                 if (o.kind == PCK) {
4519                     pos = tree.pos();
4520 
4521                     return diags.create(dkind, log.currentSource(),
4522                             pos, "package.not.visible", o, details);
4523                 }
4524             }
4525 
4526             return diags.create(dkind, log.currentSource(),
4527                     pos, "not.def.access.package.cant.access", sym, sym.packge(), details);
4528         }
4529     }
4530 
4531     JCDiagnostic inaccessiblePackageReason(Env<AttrContext> env, PackageSymbol sym) {
4532         //no dependency:
4533         if (!env.toplevel.modle.readModules.contains(sym.modle)) {
4534             //does not read:
4535             if (sym.modle != syms.unnamedModule) {
4536                 if (env.toplevel.modle != syms.unnamedModule) {
4537                     return diags.fragment(Fragments.NotDefAccessDoesNotRead(env.toplevel.modle,
4538                                                                             sym,
4539                                                                             sym.modle));
4540                 } else {
4541                     return diags.fragment(Fragments.NotDefAccessDoesNotReadFromUnnamed(sym,
4542                                                                                        sym.modle));
4543                 }
4544             } else {
4545                 return diags.fragment(Fragments.NotDefAccessDoesNotReadUnnamed(sym,
4546                                                                                env.toplevel.modle));
4547             }
4548         } else {
4549             if (sym.packge().modle.exports.stream().anyMatch(e -> e.packge == sym)) {
4550                 //not exported to this module:
4551                 if (env.toplevel.modle != syms.unnamedModule) {
4552                     return diags.fragment(Fragments.NotDefAccessNotExportedToModule(sym,
4553                                                                                     sym.modle,
4554                                                                                     env.toplevel.modle));
4555                 } else {
4556                     return diags.fragment(Fragments.NotDefAccessNotExportedToModuleFromUnnamed(sym,
4557                                                                                                sym.modle));
4558                 }
4559             } else {
4560                 //not exported:
4561                 if (env.toplevel.modle != syms.unnamedModule) {
4562                     return diags.fragment(Fragments.NotDefAccessNotExported(sym,
4563                                                                             sym.modle));
4564                 } else {
4565                     return diags.fragment(Fragments.NotDefAccessNotExportedFromUnnamed(sym,
4566                                                                                        sym.modle));
4567                 }
4568             }
4569         }
4570     }
4571 
4572     /**
4573      * InvalidSymbolError error class indicating that an instance member
4574      * has erroneously been accessed from a static context.
4575      */
4576     class StaticError extends InvalidSymbolError {
4577 
4578         StaticError(Symbol sym) {
4579             super(STATICERR, sym, "static error");
4580         }
4581 
4582         @Override
4583         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4584                 DiagnosticPosition pos,
4585                 Symbol location,
4586                 Type site,
4587                 Name name,
4588                 List<Type> argtypes,
4589                 List<Type> typeargtypes) {
4590             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4591                 ? types.erasure(sym.type).tsym
4592                 : sym);
4593             return diags.create(dkind, log.currentSource(), pos,
4594                     "non-static.cant.be.ref", kindName(sym), errSym);
4595         }
4596     }
4597 
4598     /**
4599      * InvalidSymbolError error class indicating that a pair of symbols
4600      * (either methods, constructors or operands) are ambiguous
4601      * given an actual arguments/type argument list.
4602      */
4603     class AmbiguityError extends ResolveError {
4604 
4605         /** The other maximally specific symbol */
4606         List<Symbol> ambiguousSyms = List.nil();
4607 
4608         @Override
4609         public boolean exists() {
4610             return true;
4611         }
4612 
4613         AmbiguityError(Symbol sym1, Symbol sym2) {
4614             super(AMBIGUOUS, "ambiguity error");
4615             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4616         }
4617 
4618         private List<Symbol> flatten(Symbol sym) {
4619             if (sym.kind == AMBIGUOUS) {
4620                 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4621             } else {
4622                 return List.of(sym);
4623             }
4624         }
4625 
4626         AmbiguityError addAmbiguousSymbol(Symbol s) {
4627             ambiguousSyms = ambiguousSyms.prepend(s);
4628             return this;
4629         }
4630 
4631         @Override
4632         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4633                 DiagnosticPosition pos,
4634                 Symbol location,
4635                 Type site,
4636                 Name name,
4637                 List<Type> argtypes,
4638                 List<Type> typeargtypes) {
4639             List<Symbol> diagSyms = ambiguousSyms.reverse();
4640             Symbol s1 = diagSyms.head;
4641             Symbol s2 = diagSyms.tail.head;
4642             Name sname = s1.name;
4643             if (sname == names.init) sname = s1.owner.name;
4644             return diags.create(dkind, log.currentSource(),
4645                     pos, "ref.ambiguous", sname,
4646                     kindName(s1),
4647                     s1,
4648                     s1.location(site, types),
4649                     kindName(s2),
4650                     s2,
4651                     s2.location(site, types));
4652         }
4653 
4654         /**
4655          * If multiple applicable methods are found during overload and none of them
4656          * is more specific than the others, attempt to merge their signatures.
4657          */
4658         Symbol mergeAbstracts(Type site) {
4659             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4660             return types.mergeAbstracts(ambiguousInOrder, site, true).orElse(this);
4661         }
4662 
4663         @Override
4664         protected Symbol access(Name name, TypeSymbol location) {
4665             Symbol firstAmbiguity = ambiguousSyms.last();
4666             return firstAmbiguity.kind == TYP ?
4667                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
4668                     firstAmbiguity;
4669         }
4670     }
4671 
4672     class BadVarargsMethod extends ResolveError {
4673 
4674         ResolveError delegatedError;
4675 
4676         BadVarargsMethod(ResolveError delegatedError) {
4677             super(delegatedError.kind, "badVarargs");
4678             this.delegatedError = delegatedError;
4679         }
4680 
4681         @Override
4682         public Symbol baseSymbol() {
4683             return delegatedError.baseSymbol();
4684         }
4685 
4686         @Override
4687         protected Symbol access(Name name, TypeSymbol location) {
4688             return delegatedError.access(name, location);
4689         }
4690 
4691         @Override
4692         public boolean exists() {
4693             return true;
4694         }
4695 
4696         @Override
4697         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4698             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4699         }
4700     }
4701 
4702     /**
4703      * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4704      * but with the wrong staticness.
4705      */
4706     class BadMethodReferenceError extends StaticError {
4707 
4708         boolean unboundLookup;
4709 
4710         public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4711             super(sym);
4712             this.unboundLookup = unboundLookup;
4713         }
4714 
4715         @Override
4716         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4717             final String key;
4718             if (!unboundLookup) {
4719                 key = "bad.static.method.in.bound.lookup";
4720             } else if (sym.isStatic()) {
4721                 key = "bad.static.method.in.unbound.lookup";
4722             } else {
4723                 key = "bad.instance.method.in.unbound.lookup";
4724             }
4725             return sym.kind.isResolutionError() ?
4726                     ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4727                     diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4728         }
4729     }
4730 
4731     /**
4732      * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4733      * but pointing to a class for which an enclosing instance is not available.
4734      */
4735     class BadConstructorReferenceError extends InvalidSymbolError {
4736 
4737         public BadConstructorReferenceError(Symbol sym) {
4738             super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4739         }
4740 
4741         @Override
4742         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4743            return diags.create(dkind, log.currentSource(), pos,
4744                 "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4745         }
4746     }
4747 
4748     class BadClassFileError extends InvalidSymbolError {
4749 
4750         private final CompletionFailure ex;
4751 
4752         public BadClassFileError(CompletionFailure ex) {
4753             super(HIDDEN, ex.sym, "BadClassFileError");
4754             this.name = sym.name;
4755             this.ex = ex;
4756         }
4757 
4758         @Override
4759         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4760             JCDiagnostic d = diags.create(dkind, log.currentSource(), pos,
4761                 "cant.access", ex.sym, ex.getDetailValue());
4762 
4763             d.setFlag(DiagnosticFlag.NON_DEFERRABLE);
4764             return d;
4765         }
4766 
4767     }
4768 
4769     /**
4770      * Helper class for method resolution diagnostic simplification.
4771      * Certain resolution diagnostic are rewritten as simpler diagnostic
4772      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4773      * is stripped away, as it doesn't carry additional info. The logic
4774      * for matching a given diagnostic is given in terms of a template
4775      * hierarchy: a diagnostic template can be specified programmatically,
4776      * so that only certain diagnostics are matched. Each templete is then
4777      * associated with a rewriter object that carries out the task of rewtiting
4778      * the diagnostic to a simpler one.
4779      */
4780     static class MethodResolutionDiagHelper {
4781 
4782         /**
4783          * A diagnostic rewriter transforms a method resolution diagnostic
4784          * into a simpler one
4785          */
4786         interface DiagnosticRewriter {
4787             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4788                     DiagnosticPosition preferredPos, DiagnosticSource preferredSource,
4789                     DiagnosticType preferredKind, JCDiagnostic d);
4790         }
4791 
4792         /**
4793          * A diagnostic template is made up of two ingredients: (i) a regular
4794          * expression for matching a diagnostic key and (ii) a list of sub-templates
4795          * for matching diagnostic arguments.
4796          */
4797         static class Template {
4798 
4799             /** regex used to match diag key */
4800             String regex;
4801 
4802             /** templates used to match diagnostic args */
4803             Template[] subTemplates;
4804 
4805             Template(String key, Template... subTemplates) {
4806                 this.regex = key;
4807                 this.subTemplates = subTemplates;
4808             }
4809 
4810             /**
4811              * Returns true if the regex matches the diagnostic key and if
4812              * all diagnostic arguments are matches by corresponding sub-templates.
4813              */
4814             boolean matches(Object o) {
4815                 JCDiagnostic d = (JCDiagnostic)o;
4816                 Object[] args = d.getArgs();
4817                 if (!d.getCode().matches(regex) ||
4818                         subTemplates.length != d.getArgs().length) {
4819                     return false;
4820                 }
4821                 for (int i = 0; i < args.length ; i++) {
4822                     if (!subTemplates[i].matches(args[i])) {
4823                         return false;
4824                     }
4825                 }
4826                 return true;
4827             }
4828         }
4829 
4830         /**
4831          * Common rewriter for all argument mismatch simplifications.
4832          */
4833         static class ArgMismatchRewriter implements DiagnosticRewriter {
4834 
4835             /** the index of the subdiagnostic to be used as primary. */
4836             int causeIndex;
4837 
4838             public ArgMismatchRewriter(int causeIndex) {
4839                 this.causeIndex = causeIndex;
4840             }
4841 
4842             @Override
4843             public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4844                     DiagnosticPosition preferredPos, DiagnosticSource preferredSource,
4845                     DiagnosticType preferredKind, JCDiagnostic d) {
4846                 JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4847                 DiagnosticPosition pos = d.getDiagnosticPosition();
4848                 if (pos == null) {
4849                     pos = preferredPos;
4850                 }
4851                 return diags.create(preferredKind, preferredSource, pos,
4852                         "prob.found.req", cause);
4853             }
4854         }
4855 
4856         /** a dummy template that match any diagnostic argument */
4857         static final Template skip = new Template("") {
4858             @Override
4859             boolean matches(Object d) {
4860                 return true;
4861             }
4862         };
4863 
4864         /** template for matching inference-free arguments mismatch failures */
4865         static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4866 
4867         /** template for matching inference related arguments mismatch failures */
4868         static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4869             @Override
4870             boolean matches(Object o) {
4871                 if (!super.matches(o)) {
4872                     return false;
4873                 }
4874                 JCDiagnostic d = (JCDiagnostic)o;
4875                 @SuppressWarnings("unchecked")
4876                 List<Type> tvars = (List<Type>)d.getArgs()[0];
4877                 return !containsAny(d, tvars);
4878             }
4879 
4880             BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4881                 if (o instanceof Type type) {
4882                     return type.containsAny(ts);
4883                 } else if (o instanceof JCDiagnostic diagnostic) {
4884                     return containsAny(diagnostic, ts);
4885                 } else {
4886                     return false;
4887                 }
4888             };
4889 
4890             boolean containsAny(JCDiagnostic d, List<Type> ts) {
4891                 return Stream.of(d.getArgs())
4892                         .anyMatch(o -> containsPredicate.test(o, ts));
4893             }
4894         };
4895 
4896         /** rewriter map used for method resolution simplification */
4897         static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4898 
4899         static {
4900             rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4901             rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4902         }
4903 
4904         /**
4905          * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4906          * and rewrite it accordingly.
4907          */
4908         static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4909                                     DiagnosticType dkind, JCDiagnostic d) {
4910             for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4911                 if (_entry.getKey().matches(d)) {
4912                     JCDiagnostic simpleDiag =
4913                             _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4914                     simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4915                     return simpleDiag;
4916                 }
4917             }
4918             return null;
4919         }
4920     }
4921 
4922     enum MethodResolutionPhase {
4923         BASIC(false, false),
4924         BOX(true, false),
4925         VARARITY(true, true) {
4926             @Override
4927             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4928                 //Check invariants (see {@code LookupHelper.shouldStop})
4929                 Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
4930                 if (!sym.kind.isResolutionError()) {
4931                     //varargs resolution successful
4932                     return sym;
4933                 } else {
4934                     //pick best error
4935                     switch (bestSoFar.kind) {
4936                         case WRONG_MTH:
4937                         case WRONG_MTHS:
4938                             //Override previous errors if they were caused by argument mismatch.
4939                             //This generally means preferring current symbols - but we need to pay
4940                             //attention to the fact that the varargs lookup returns 'less' candidates
4941                             //than the previous rounds, and adjust that accordingly.
4942                             switch (sym.kind) {
4943                                 case WRONG_MTH:
4944                                     //if the previous round matched more than one method, return that
4945                                     //result instead
4946                                     return bestSoFar.kind == WRONG_MTHS ?
4947                                             bestSoFar : sym;
4948                                 case ABSENT_MTH:
4949                                     //do not override erroneous symbol if the arity lookup did not
4950                                     //match any method
4951                                     return bestSoFar;
4952                                 case WRONG_MTHS:
4953                                 default:
4954                                     //safe to override
4955                                     return sym;
4956                             }
4957                         default:
4958                             //otherwise, return first error
4959                             return bestSoFar;
4960                     }
4961                 }
4962             }
4963         };
4964 
4965         final boolean isBoxingRequired;
4966         final boolean isVarargsRequired;
4967 
4968         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4969            this.isBoxingRequired = isBoxingRequired;
4970            this.isVarargsRequired = isVarargsRequired;
4971         }
4972 
4973         public boolean isBoxingRequired() {
4974             return isBoxingRequired;
4975         }
4976 
4977         public boolean isVarargsRequired() {
4978             return isVarargsRequired;
4979         }
4980 
4981         public Symbol mergeResults(Symbol prev, Symbol sym) {
4982             return sym;
4983         }
4984     }
4985 
4986     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4987 
4988     /**
4989      * A resolution context is used to keep track of intermediate results of
4990      * overload resolution, such as list of method that are not applicable
4991      * (used to generate more precise diagnostics) and so on. Resolution contexts
4992      * can be nested - this means that when each overload resolution routine should
4993      * work within the resolution context it created.
4994      */
4995     class MethodResolutionContext {
4996 
4997         private List<Candidate> candidates = List.nil();
4998 
4999         MethodResolutionPhase step = null;
5000 
5001         MethodCheck methodCheck = resolveMethodCheck;
5002 
5003         private boolean internalResolution = false;
5004         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
5005 
5006         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
5007             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
5008             candidates = candidates.append(c);
5009         }
5010 
5011         void addApplicableCandidate(Symbol sym, Type mtype) {
5012             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
5013             candidates = candidates.append(c);
5014         }
5015 
5016         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
5017             DeferredAttrContext parent = (pendingResult == null)
5018                 ? deferredAttr.emptyDeferredAttrContext
5019                 : pendingResult.checkContext.deferredAttrContext();
5020             return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
5021                     inferenceContext, parent, warn);
5022         }
5023 
5024         /**
5025          * This class represents an overload resolution candidate. There are two
5026          * kinds of candidates: applicable methods and inapplicable methods;
5027          * applicable methods have a pointer to the instantiated method type,
5028          * while inapplicable candidates contain further details about the
5029          * reason why the method has been considered inapplicable.
5030          */
5031         @SuppressWarnings("overrides")
5032         class Candidate {
5033 
5034             final MethodResolutionPhase step;
5035             final Symbol sym;
5036             final JCDiagnostic details;
5037             final Type mtype;
5038 
5039             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
5040                 this.step = step;
5041                 this.sym = sym;
5042                 this.details = details;
5043                 this.mtype = mtype;
5044             }
5045 
5046             boolean isApplicable() {
5047                 return mtype != null;
5048             }
5049         }
5050 
5051         DeferredAttr.AttrMode attrMode() {
5052             return attrMode;
5053         }
5054 
5055         boolean internal() {
5056             return internalResolution;
5057         }
5058     }
5059 
5060     MethodResolutionContext currentResolutionContext = null;
5061 }