1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import com.sun.tools.javac.api.Formattable.LocalizedString; 29 import com.sun.tools.javac.code.*; 30 import com.sun.tools.javac.code.Scope.WriteableScope; 31 import com.sun.tools.javac.code.Source.Feature; 32 import com.sun.tools.javac.code.Symbol.*; 33 import com.sun.tools.javac.code.Type.*; 34 import com.sun.tools.javac.comp.Attr.ResultInfo; 35 import com.sun.tools.javac.comp.Check.CheckContext; 36 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 37 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext; 38 import com.sun.tools.javac.comp.DeferredAttr.DeferredType; 39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate; 40 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template; 41 import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind; 42 import com.sun.tools.javac.jvm.*; 43 import com.sun.tools.javac.main.Option; 44 import com.sun.tools.javac.resources.CompilerProperties.Errors; 45 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 46 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 47 import com.sun.tools.javac.tree.*; 48 import com.sun.tools.javac.tree.JCTree.*; 49 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind; 50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 51 import com.sun.tools.javac.util.*; 52 import com.sun.tools.javac.util.DefinedBy.Api; 53 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 54 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 55 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType; 56 57 import java.util.Arrays; 58 import java.util.Collection; 59 import java.util.EnumSet; 60 import java.util.HashSet; 61 import java.util.Iterator; 62 import java.util.LinkedHashMap; 63 import java.util.Map; 64 import java.util.Set; 65 import java.util.function.BiFunction; 66 import java.util.function.BiPredicate; 67 import java.util.function.Function; 68 import java.util.function.Predicate; 69 import java.util.function.UnaryOperator; 70 import java.util.stream.Stream; 71 import java.util.stream.StreamSupport; 72 73 import javax.lang.model.element.ElementVisitor; 74 75 import static com.sun.tools.javac.code.Flags.*; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Flags.STATIC; 78 import static com.sun.tools.javac.code.Kinds.*; 79 import static com.sun.tools.javac.code.Kinds.Kind.*; 80 import static com.sun.tools.javac.code.TypeTag.*; 81 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*; 82 import static com.sun.tools.javac.main.Option.DOE; 83 import static com.sun.tools.javac.tree.JCTree.Tag.*; 84 import static com.sun.tools.javac.util.Iterators.createCompoundIterator; 85 86 /** Helper class for name resolution, used mostly by the attribution phase. 87 * 88 * <p><b>This is NOT part of any supported API. 89 * If you write code that depends on this, you do so at your own risk. 90 * This code and its internal interfaces are subject to change or 91 * deletion without notice.</b> 92 */ 93 public class Resolve { 94 protected static final Context.Key<Resolve> resolveKey = new Context.Key<>(); 95 96 Names names; 97 Log log; 98 Symtab syms; 99 Attr attr; 100 AttrRecover attrRecover; 101 DeferredAttr deferredAttr; 102 Check chk; 103 Infer infer; 104 Preview preview; 105 ClassFinder finder; 106 ModuleFinder moduleFinder; 107 Types types; 108 JCDiagnostic.Factory diags; 109 public final boolean allowModules; 110 public final boolean allowRecords; 111 private final boolean compactMethodDiags; 112 private final boolean allowLocalVariableTypeInference; 113 private final boolean allowYieldStatement; 114 private final boolean allowPrivateMembersInPermitsClause; 115 final EnumSet<VerboseResolutionMode> verboseResolutionMode; 116 final boolean dumpMethodReferenceSearchResults; 117 final boolean dumpStacktraceOnError; 118 private final LocalProxyVarsGen localProxyVarsGen; 119 120 WriteableScope polymorphicSignatureScope; 121 122 @SuppressWarnings("this-escape") 123 protected Resolve(Context context) { 124 context.put(resolveKey, this); 125 syms = Symtab.instance(context); 126 127 varNotFound = new SymbolNotFoundError(ABSENT_VAR); 128 methodNotFound = new SymbolNotFoundError(ABSENT_MTH); 129 typeNotFound = new SymbolNotFoundError(ABSENT_TYP); 130 referenceNotFound = ReferenceLookupResult.error(methodNotFound); 131 132 names = Names.instance(context); 133 log = Log.instance(context); 134 attr = Attr.instance(context); 135 attrRecover = AttrRecover.instance(context); 136 deferredAttr = DeferredAttr.instance(context); 137 chk = Check.instance(context); 138 infer = Infer.instance(context); 139 finder = ClassFinder.instance(context); 140 moduleFinder = ModuleFinder.instance(context); 141 types = Types.instance(context); 142 diags = JCDiagnostic.Factory.instance(context); 143 preview = Preview.instance(context); 144 Source source = Source.instance(context); 145 Options options = Options.instance(context); 146 compactMethodDiags = options.isSet(Option.XDIAGS, "compact") || 147 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics"); 148 verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options); 149 Target target = Target.instance(context); 150 allowLocalVariableTypeInference = Feature.LOCAL_VARIABLE_TYPE_INFERENCE.allowedInSource(source); 151 allowYieldStatement = Feature.SWITCH_EXPRESSION.allowedInSource(source); 152 allowPrivateMembersInPermitsClause = Feature.PRIVATE_MEMBERS_IN_PERMITS_CLAUSE.allowedInSource(source); 153 polymorphicSignatureScope = WriteableScope.create(syms.noSymbol); 154 allowModules = Feature.MODULES.allowedInSource(source); 155 allowRecords = Feature.RECORDS.allowedInSource(source); 156 dumpMethodReferenceSearchResults = options.isSet("debug.dumpMethodReferenceSearchResults"); 157 dumpStacktraceOnError = options.isSet("dev") || options.isSet(DOE); 158 localProxyVarsGen = LocalProxyVarsGen.instance(context); 159 } 160 161 /** error symbols, which are returned when resolution fails 162 */ 163 private final SymbolNotFoundError varNotFound; 164 private final SymbolNotFoundError methodNotFound; 165 private final SymbolNotFoundError typeNotFound; 166 167 /** empty reference lookup result */ 168 private final ReferenceLookupResult referenceNotFound; 169 170 public static Resolve instance(Context context) { 171 Resolve instance = context.get(resolveKey); 172 if (instance == null) 173 instance = new Resolve(context); 174 return instance; 175 } 176 177 private static Symbol bestOf(Symbol s1, 178 Symbol s2) { 179 return s1.kind.betterThan(s2.kind) ? s1 : s2; 180 } 181 182 // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support"> 183 enum VerboseResolutionMode { 184 SUCCESS("success"), 185 FAILURE("failure"), 186 APPLICABLE("applicable"), 187 INAPPLICABLE("inapplicable"), 188 DEFERRED_INST("deferred-inference"), 189 PREDEF("predef"), 190 OBJECT_INIT("object-init"), 191 INTERNAL("internal"); 192 193 final String opt; 194 195 private VerboseResolutionMode(String opt) { 196 this.opt = opt; 197 } 198 199 static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) { 200 String s = opts.get("debug.verboseResolution"); 201 EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class); 202 if (s == null) return res; 203 if (s.contains("all")) { 204 res = EnumSet.allOf(VerboseResolutionMode.class); 205 } 206 Collection<String> args = Arrays.asList(s.split(",")); 207 for (VerboseResolutionMode mode : values()) { 208 if (args.contains(mode.opt)) { 209 res.add(mode); 210 } else if (args.contains("-" + mode.opt)) { 211 res.remove(mode); 212 } 213 } 214 return res; 215 } 216 } 217 218 void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site, 219 List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) { 220 boolean success = !bestSoFar.kind.isResolutionError(); 221 222 if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) { 223 return; 224 } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) { 225 return; 226 } 227 228 if (bestSoFar.name == names.init && 229 bestSoFar.owner == syms.objectType.tsym && 230 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) { 231 return; //skip diags for Object constructor resolution 232 } else if (site == syms.predefClass.type && 233 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) { 234 return; //skip spurious diags for predef symbols (i.e. operators) 235 } else if (currentResolutionContext.internalResolution && 236 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) { 237 return; 238 } 239 240 int pos = 0; 241 int mostSpecificPos = -1; 242 ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>(); 243 for (Candidate c : currentResolutionContext.candidates) { 244 if (currentResolutionContext.step != c.step || 245 (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) || 246 (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) { 247 continue; 248 } else { 249 subDiags.append(c.isApplicable() ? 250 getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) : 251 getVerboseInapplicableCandidateDiag(pos, c.sym, c.details)); 252 if (c.sym == bestSoFar) 253 mostSpecificPos = pos; 254 pos++; 255 } 256 } 257 String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1"; 258 List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step)); 259 JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name, 260 site.tsym, mostSpecificPos, currentResolutionContext.step, 261 methodArguments(argtypes2), 262 methodArguments(typeargtypes)); 263 JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList()); 264 log.report(d); 265 } 266 267 JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) { 268 JCDiagnostic subDiag = null; 269 if (sym.type.hasTag(FORALL)) { 270 subDiag = diags.fragment(Fragments.PartialInstSig(inst)); 271 } 272 273 String key = subDiag == null ? 274 "applicable.method.found" : 275 "applicable.method.found.1"; 276 277 return diags.fragment(key, pos, sym, subDiag); 278 } 279 280 JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) { 281 return diags.fragment(Fragments.NotApplicableMethodFound(pos, sym, subDiag)); 282 } 283 // </editor-fold> 284 285 /* ************************************************************************ 286 * Identifier resolution 287 *************************************************************************/ 288 289 /** An environment is "static" if its static level is greater than 290 * the one of its outer environment 291 */ 292 protected static boolean isStatic(Env<AttrContext> env) { 293 return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel; 294 } 295 296 /** An environment is an "initializer" if it is a constructor or 297 * an instance initializer. 298 */ 299 static boolean isInitializer(Env<AttrContext> env) { 300 Symbol owner = env.info.scope.owner; 301 return owner.isConstructor() || 302 owner.owner.kind == TYP && 303 (owner.kind == VAR || 304 owner.kind == MTH && (owner.flags() & BLOCK) != 0) && 305 (owner.flags() & STATIC) == 0; 306 } 307 308 /** Is class accessible in given environment? 309 * @param env The current environment. 310 * @param c The class whose accessibility is checked. 311 */ 312 public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) { 313 return isAccessible(env, c, false); 314 } 315 316 public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) { 317 318 /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor 319 to refer to an inaccessible type 320 */ 321 if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0) 322 return true; 323 324 if (env.info.visitingServiceImplementation && 325 env.toplevel.modle == c.packge().modle) { 326 return true; 327 } 328 329 boolean isAccessible = false; 330 switch ((short)(c.flags() & AccessFlags)) { 331 case PRIVATE: 332 isAccessible = 333 env.enclClass.sym.outermostClass() == 334 c.owner.outermostClass(); 335 break; 336 case 0: 337 isAccessible = 338 env.toplevel.packge == c.owner // fast special case 339 || 340 env.toplevel.packge == c.packge(); 341 break; 342 default: // error recovery 343 isAccessible = true; 344 break; 345 case PUBLIC: 346 if (allowModules) { 347 ModuleSymbol currModule = env.toplevel.modle; 348 currModule.complete(); 349 PackageSymbol p = c.packge(); 350 isAccessible = 351 currModule == p.modle || 352 currModule.visiblePackages.get(p.fullname) == p || 353 p == syms.rootPackage || 354 (p.modle == syms.unnamedModule && currModule.readModules.contains(p.modle)); 355 } else { 356 isAccessible = true; 357 } 358 break; 359 case PROTECTED: 360 isAccessible = 361 env.toplevel.packge == c.owner // fast special case 362 || 363 env.toplevel.packge == c.packge() 364 || 365 isInnerSubClass(env.enclClass.sym, c.owner) 366 || 367 env.info.allowProtectedAccess; 368 break; 369 } 370 return (checkInner == false || c.type.getEnclosingType() == Type.noType) ? 371 isAccessible : 372 isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner); 373 } 374 //where 375 /** Is given class a subclass of given base class, or an inner class 376 * of a subclass? 377 * Return null if no such class exists. 378 * @param c The class which is the subclass or is contained in it. 379 * @param base The base class 380 */ 381 private boolean isInnerSubClass(ClassSymbol c, Symbol base) { 382 while (c != null && !c.isSubClass(base, types)) { 383 c = c.owner.enclClass(); 384 } 385 return c != null; 386 } 387 388 boolean isAccessible(Env<AttrContext> env, Type t) { 389 return isAccessible(env, t, false); 390 } 391 392 boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) { 393 if (t.hasTag(ARRAY)) { 394 return isAccessible(env, types.cvarUpperBound(types.elemtype(t))); 395 } else if (t.isUnion()) { 396 return StreamSupport.stream(((UnionClassType) t).getAlternativeTypes().spliterator(), false) 397 .allMatch(alternative -> isAccessible(env, alternative.tsym, checkInner)); 398 } else { 399 return isAccessible(env, t.tsym, checkInner); 400 } 401 } 402 403 /** Is symbol accessible as a member of given type in given environment? 404 * @param env The current environment. 405 * @param site The type of which the tested symbol is regarded 406 * as a member. 407 * @param sym The symbol. 408 */ 409 public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) { 410 return isAccessible(env, site, sym, false); 411 } 412 public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) { 413 if (sym.name == names.init && sym.owner != site.tsym) return false; 414 415 /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor 416 to refer to an inaccessible type 417 */ 418 if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0) 419 return true; 420 421 if (env.info.visitingServiceImplementation && 422 env.toplevel.modle == sym.packge().modle) { 423 return true; 424 } 425 426 ClassSymbol enclosingCsym = env.enclClass.sym; 427 try { 428 switch ((short)(sym.flags() & AccessFlags)) { 429 case PRIVATE: 430 return 431 (env.enclClass.sym == sym.owner // fast special case 432 || 433 env.enclClass.sym.outermostClass() == 434 sym.owner.outermostClass() 435 || 436 privateMemberInPermitsClauseIfAllowed(env, sym)) 437 && 438 sym.isInheritedIn(site.tsym, types); 439 case 0: 440 return 441 (env.toplevel.packge == sym.owner.owner // fast special case 442 || 443 env.toplevel.packge == sym.packge()) 444 && 445 isAccessible(env, site, checkInner) 446 && 447 sym.isInheritedIn(site.tsym, types) 448 && 449 notOverriddenIn(site, sym); 450 case PROTECTED: 451 return 452 (env.toplevel.packge == sym.owner.owner // fast special case 453 || 454 env.toplevel.packge == sym.packge() 455 || 456 isProtectedAccessible(sym, env.enclClass.sym, site) 457 || 458 // OK to select instance method or field from 'super' or type name 459 // (but type names should be disallowed elsewhere!) 460 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP) 461 && 462 isAccessible(env, site, checkInner) 463 && 464 notOverriddenIn(site, sym); 465 default: // this case includes erroneous combinations as well 466 return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym); 467 } 468 } finally { 469 env.enclClass.sym = enclosingCsym; 470 } 471 } 472 473 private boolean privateMemberInPermitsClauseIfAllowed(Env<AttrContext> env, Symbol sym) { 474 return allowPrivateMembersInPermitsClause && 475 env.info.isPermitsClause && 476 ((JCClassDecl) env.tree).sym.outermostClass() == sym.owner.outermostClass(); 477 } 478 479 //where 480 /* `sym' is accessible only if not overridden by 481 * another symbol which is a member of `site' 482 * (because, if it is overridden, `sym' is not strictly 483 * speaking a member of `site'). A polymorphic signature method 484 * cannot be overridden (e.g. MH.invokeExact(Object[])). 485 */ 486 private boolean notOverriddenIn(Type site, Symbol sym) { 487 if (sym.kind != MTH || sym.isConstructor() || sym.isStatic()) 488 return true; 489 else { 490 Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true); 491 return (s2 == null || s2 == sym || sym.owner == s2.owner || (sym.owner.isInterface() && s2.owner == syms.objectType.tsym) || 492 !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym))); 493 } 494 } 495 //where 496 /** Is given protected symbol accessible if it is selected from given site 497 * and the selection takes place in given class? 498 * @param sym The symbol with protected access 499 * @param c The class where the access takes place 500 * @param site The type of the qualifier 501 */ 502 private 503 boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) { 504 Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site; 505 while (c != null && 506 !(c.isSubClass(sym.owner, types) && 507 (c.flags() & INTERFACE) == 0 && 508 // In JLS 2e 6.6.2.1, the subclass restriction applies 509 // only to instance fields and methods -- types are excluded 510 // regardless of whether they are declared 'static' or not. 511 ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types)))) 512 c = c.owner.enclClass(); 513 return c != null; 514 } 515 516 /** 517 * Performs a recursive scan of a type looking for accessibility problems 518 * from current attribution environment 519 */ 520 void checkAccessibleType(Env<AttrContext> env, Type t) { 521 accessibilityChecker.visit(t, env); 522 } 523 524 /** 525 * Accessibility type-visitor 526 */ 527 Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker = 528 new Types.SimpleVisitor<Void, Env<AttrContext>>() { 529 530 void visit(List<Type> ts, Env<AttrContext> env) { 531 for (Type t : ts) { 532 visit(t, env); 533 } 534 } 535 536 public Void visitType(Type t, Env<AttrContext> env) { 537 return null; 538 } 539 540 @Override 541 public Void visitArrayType(ArrayType t, Env<AttrContext> env) { 542 visit(t.elemtype, env); 543 return null; 544 } 545 546 @Override 547 public Void visitClassType(ClassType t, Env<AttrContext> env) { 548 visit(t.getTypeArguments(), env); 549 if (!isAccessible(env, t, true)) { 550 accessBase(new AccessError(env, null, t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true); 551 } 552 return null; 553 } 554 555 @Override 556 public Void visitWildcardType(WildcardType t, Env<AttrContext> env) { 557 visit(t.type, env); 558 return null; 559 } 560 561 @Override 562 public Void visitMethodType(MethodType t, Env<AttrContext> env) { 563 visit(t.getParameterTypes(), env); 564 visit(t.getReturnType(), env); 565 visit(t.getThrownTypes(), env); 566 return null; 567 } 568 }; 569 570 /** Try to instantiate the type of a method so that it fits 571 * given type arguments and argument types. If successful, return 572 * the method's instantiated type, else return null. 573 * The instantiation will take into account an additional leading 574 * formal parameter if the method is an instance method seen as a member 575 * of an under determined site. In this case, we treat site as an additional 576 * parameter and the parameters of the class containing the method as 577 * additional type variables that get instantiated. 578 * 579 * @param env The current environment 580 * @param site The type of which the method is a member. 581 * @param m The method symbol. 582 * @param argtypes The invocation's given value arguments. 583 * @param typeargtypes The invocation's given type arguments. 584 * @param allowBoxing Allow boxing conversions of arguments. 585 * @param useVarargs Box trailing arguments into an array for varargs. 586 */ 587 Type rawInstantiate(Env<AttrContext> env, 588 Type site, 589 Symbol m, 590 ResultInfo resultInfo, 591 List<Type> argtypes, 592 List<Type> typeargtypes, 593 boolean allowBoxing, 594 boolean useVarargs, 595 Warner warn) throws Infer.InferenceException { 596 Type mt = types.memberType(site, m); 597 // tvars is the list of formal type variables for which type arguments 598 // need to inferred. 599 List<Type> tvars = List.nil(); 600 if (typeargtypes == null) typeargtypes = List.nil(); 601 if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) { 602 // This is not a polymorphic method, but typeargs are supplied 603 // which is fine, see JLS 15.12.2.1 604 } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) { 605 ForAll pmt = (ForAll) mt; 606 if (typeargtypes.length() != pmt.tvars.length()) 607 // not enough args 608 throw new InapplicableMethodException(diags.fragment(Fragments.WrongNumberTypeArgs(Integer.toString(pmt.tvars.length()))), dumpStacktraceOnError); 609 // Check type arguments are within bounds 610 List<Type> formals = pmt.tvars; 611 List<Type> actuals = typeargtypes; 612 while (formals.nonEmpty() && actuals.nonEmpty()) { 613 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head), 614 pmt.tvars, typeargtypes); 615 for (; bounds.nonEmpty(); bounds = bounds.tail) { 616 if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn)) { 617 throw new InapplicableMethodException(diags.fragment(Fragments.ExplicitParamDoNotConformToBounds(actuals.head, bounds)), dumpStacktraceOnError); 618 } 619 } 620 formals = formals.tail; 621 actuals = actuals.tail; 622 } 623 mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes); 624 } else if (mt.hasTag(FORALL)) { 625 ForAll pmt = (ForAll) mt; 626 List<Type> tvars1 = types.newInstances(pmt.tvars); 627 tvars = tvars.appendList(tvars1); 628 mt = types.subst(pmt.qtype, pmt.tvars, tvars1); 629 } 630 631 // find out whether we need to go the slow route via infer 632 boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/ 633 for (List<Type> l = argtypes; 634 l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded; 635 l = l.tail) { 636 if (l.head.hasTag(FORALL)) instNeeded = true; 637 } 638 639 if (instNeeded) { 640 return infer.instantiateMethod(env, 641 tvars, 642 (MethodType)mt, 643 resultInfo, 644 (MethodSymbol)m, 645 argtypes, 646 allowBoxing, 647 useVarargs, 648 currentResolutionContext, 649 warn); 650 } 651 652 DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn); 653 currentResolutionContext.methodCheck.argumentsAcceptable(env, dc, 654 argtypes, mt.getParameterTypes(), warn); 655 dc.complete(); 656 return mt; 657 } 658 659 Type checkMethod(Env<AttrContext> env, 660 Type site, 661 Symbol m, 662 ResultInfo resultInfo, 663 List<Type> argtypes, 664 List<Type> typeargtypes, 665 Warner warn) { 666 MethodResolutionContext prevContext = currentResolutionContext; 667 try { 668 currentResolutionContext = new MethodResolutionContext(); 669 currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ? 670 AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK; 671 if (env.tree.hasTag(JCTree.Tag.REFERENCE)) { 672 //method/constructor references need special check class 673 //to handle inference variables in 'argtypes' (might happen 674 //during an unsticking round) 675 currentResolutionContext.methodCheck = 676 new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 677 } 678 MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase; 679 return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes, 680 step.isBoxingRequired(), step.isVarargsRequired(), warn); 681 } 682 finally { 683 currentResolutionContext = prevContext; 684 } 685 } 686 687 /** Same but returns null instead throwing a NoInstanceException 688 */ 689 Type instantiate(Env<AttrContext> env, 690 Type site, 691 Symbol m, 692 ResultInfo resultInfo, 693 List<Type> argtypes, 694 List<Type> typeargtypes, 695 boolean allowBoxing, 696 boolean useVarargs, 697 Warner warn) { 698 try { 699 return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes, 700 allowBoxing, useVarargs, warn); 701 } catch (InapplicableMethodException ex) { 702 return null; 703 } 704 } 705 706 /** 707 * This interface defines an entry point that should be used to perform a 708 * method check. A method check usually consist in determining as to whether 709 * a set of types (actuals) is compatible with another set of types (formals). 710 * Since the notion of compatibility can vary depending on the circumstances, 711 * this interfaces allows to easily add new pluggable method check routines. 712 */ 713 interface MethodCheck { 714 /** 715 * Main method check routine. A method check usually consist in determining 716 * as to whether a set of types (actuals) is compatible with another set of 717 * types (formals). If an incompatibility is found, an unchecked exception 718 * is assumed to be thrown. 719 */ 720 void argumentsAcceptable(Env<AttrContext> env, 721 DeferredAttrContext deferredAttrContext, 722 List<Type> argtypes, 723 List<Type> formals, 724 Warner warn); 725 726 /** 727 * Retrieve the method check object that will be used during a 728 * most specific check. 729 */ 730 MethodCheck mostSpecificCheck(List<Type> actuals); 731 } 732 733 /** 734 * Helper enum defining all method check diagnostics (used by resolveMethodCheck). 735 */ 736 enum MethodCheckDiag { 737 /** 738 * Actuals and formals differs in length. 739 */ 740 ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"), 741 /** 742 * An actual is incompatible with a formal. 743 */ 744 ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"), 745 /** 746 * An actual is incompatible with the varargs element type. 747 */ 748 VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"), 749 /** 750 * The varargs element type is inaccessible. 751 */ 752 INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type"); 753 754 final String basicKey; 755 final String inferKey; 756 757 MethodCheckDiag(String basicKey, String inferKey) { 758 this.basicKey = basicKey; 759 this.inferKey = inferKey; 760 } 761 762 String regex() { 763 return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey); 764 } 765 } 766 767 /** 768 * Dummy method check object. All methods are deemed applicable, regardless 769 * of their formal parameter types. 770 */ 771 MethodCheck nilMethodCheck = new MethodCheck() { 772 public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) { 773 //do nothing - method always applicable regardless of actuals 774 } 775 776 public MethodCheck mostSpecificCheck(List<Type> actuals) { 777 return this; 778 } 779 }; 780 781 /** 782 * Base class for 'real' method checks. The class defines the logic for 783 * iterating through formals and actuals and provides and entry point 784 * that can be used by subclasses in order to define the actual check logic. 785 */ 786 abstract class AbstractMethodCheck implements MethodCheck { 787 @Override 788 public void argumentsAcceptable(final Env<AttrContext> env, 789 DeferredAttrContext deferredAttrContext, 790 List<Type> argtypes, 791 List<Type> formals, 792 Warner warn) { 793 //should we expand formals? 794 boolean useVarargs = deferredAttrContext.phase.isVarargsRequired(); 795 JCTree callTree = treeForDiagnostics(env); 796 List<JCExpression> trees = TreeInfo.args(callTree); 797 798 //inference context used during this method check 799 InferenceContext inferenceContext = deferredAttrContext.inferenceContext; 800 801 Type varargsFormal = useVarargs ? formals.last() : null; 802 803 if (varargsFormal == null && 804 argtypes.size() != formals.size()) { 805 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args 806 } 807 808 while (argtypes.nonEmpty() && formals.head != varargsFormal) { 809 DiagnosticPosition pos = trees != null ? trees.head : null; 810 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn); 811 argtypes = argtypes.tail; 812 formals = formals.tail; 813 trees = trees != null ? trees.tail : trees; 814 } 815 816 if (formals.head != varargsFormal) { 817 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args 818 } 819 820 if (useVarargs) { 821 //note: if applicability check is triggered by most specific test, 822 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5) 823 final Type elt = types.elemtype(varargsFormal); 824 while (argtypes.nonEmpty()) { 825 DiagnosticPosition pos = trees != null ? trees.head : null; 826 checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn); 827 argtypes = argtypes.tail; 828 trees = trees != null ? trees.tail : trees; 829 } 830 } 831 } 832 833 // where 834 private JCTree treeForDiagnostics(Env<AttrContext> env) { 835 return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree; 836 } 837 838 /** 839 * Does the actual argument conforms to the corresponding formal? 840 */ 841 abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn); 842 843 protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) { 844 boolean inferDiag = inferenceContext != infer.emptyContext; 845 if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) { 846 Object[] args2 = new Object[args.length + 1]; 847 System.arraycopy(args, 0, args2, 1, args.length); 848 args2[0] = inferenceContext.inferenceVars(); 849 args = args2; 850 } 851 String key = inferDiag ? diag.inferKey : diag.basicKey; 852 throw inferDiag ? 853 infer.error(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args)) : 854 getMethodCheckFailure().setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args)); 855 } 856 857 /** 858 * To eliminate the overhead associated with allocating an exception object in such an 859 * hot execution path, we use flyweight pattern - and share the same exception instance 860 * across multiple method check failures. 861 */ 862 class SharedInapplicableMethodException extends InapplicableMethodException { 863 private static final long serialVersionUID = 0; 864 865 SharedInapplicableMethodException() { 866 super(null, Resolve.this.dumpStacktraceOnError); 867 } 868 869 SharedInapplicableMethodException setMessage(JCDiagnostic details) { 870 this.diagnostic = details; 871 return this; 872 } 873 } 874 875 private SharedInapplicableMethodException methodCheckFailure; 876 877 public MethodCheck mostSpecificCheck(List<Type> actuals) { 878 return nilMethodCheck; 879 } 880 881 private SharedInapplicableMethodException getMethodCheckFailure() { 882 return methodCheckFailure == null ? methodCheckFailure = new SharedInapplicableMethodException() : methodCheckFailure; 883 } 884 } 885 886 /** 887 * Arity-based method check. A method is applicable if the number of actuals 888 * supplied conforms to the method signature. 889 */ 890 MethodCheck arityMethodCheck = new AbstractMethodCheck() { 891 @Override 892 void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) { 893 //do nothing - actual always compatible to formals 894 } 895 896 @Override 897 public String toString() { 898 return "arityMethodCheck"; 899 } 900 }; 901 902 /** 903 * Main method applicability routine. Given a list of actual types A, 904 * a list of formal types F, determines whether the types in A are 905 * compatible (by method invocation conversion) with the types in F. 906 * 907 * Since this routine is shared between overload resolution and method 908 * type-inference, a (possibly empty) inference context is used to convert 909 * formal types to the corresponding 'undet' form ahead of a compatibility 910 * check so that constraints can be propagated and collected. 911 * 912 * Moreover, if one or more types in A is a deferred type, this routine uses 913 * DeferredAttr in order to perform deferred attribution. If one or more actual 914 * deferred types are stuck, they are placed in a queue and revisited later 915 * after the remainder of the arguments have been seen. If this is not sufficient 916 * to 'unstuck' the argument, a cyclic inference error is called out. 917 * 918 * A method check handler (see above) is used in order to report errors. 919 */ 920 MethodCheck resolveMethodCheck = new AbstractMethodCheck() { 921 922 @Override 923 void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) { 924 ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn); 925 mresult.check(pos, actual); 926 } 927 928 @Override 929 public void argumentsAcceptable(final Env<AttrContext> env, 930 DeferredAttrContext deferredAttrContext, 931 List<Type> argtypes, 932 List<Type> formals, 933 Warner warn) { 934 super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn); 935 // should we check varargs element type accessibility? 936 if (deferredAttrContext.phase.isVarargsRequired()) { 937 if (deferredAttrContext.mode == AttrMode.CHECK) { 938 varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext); 939 } 940 } 941 } 942 943 /** 944 * Test that the runtime array element type corresponding to 't' is accessible. 't' should be the 945 * varargs element type of either the method invocation type signature (after inference completes) 946 * or the method declaration signature (before inference completes). 947 */ 948 private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) { 949 if (inferenceContext.free(t)) { 950 inferenceContext.addFreeTypeListener(List.of(t), 951 solvedContext -> varargsAccessible(env, solvedContext.asInstType(t), solvedContext)); 952 } else { 953 if (!isAccessible(env, types.erasure(t))) { 954 Symbol location = env.enclClass.sym; 955 reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location); 956 } 957 } 958 } 959 960 private ResultInfo methodCheckResult(final boolean varargsCheck, Type to, 961 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) { 962 CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) { 963 MethodCheckDiag methodDiag = varargsCheck ? 964 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH; 965 966 @Override 967 public void report(DiagnosticPosition pos, JCDiagnostic details) { 968 reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details); 969 } 970 }; 971 return new MethodResultInfo(to, checkContext); 972 } 973 974 @Override 975 public MethodCheck mostSpecificCheck(List<Type> actuals) { 976 return new MostSpecificCheck(actuals); 977 } 978 979 @Override 980 public String toString() { 981 return "resolveMethodCheck"; 982 } 983 }; 984 985 /** 986 * This class handles method reference applicability checks; since during 987 * these checks it's sometime possible to have inference variables on 988 * the actual argument types list, the method applicability check must be 989 * extended so that inference variables are 'opened' as needed. 990 */ 991 class MethodReferenceCheck extends AbstractMethodCheck { 992 993 InferenceContext pendingInferenceContext; 994 995 MethodReferenceCheck(InferenceContext pendingInferenceContext) { 996 this.pendingInferenceContext = pendingInferenceContext; 997 } 998 999 @Override 1000 void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) { 1001 ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn); 1002 mresult.check(pos, actual); 1003 } 1004 1005 private ResultInfo methodCheckResult(final boolean varargsCheck, Type to, 1006 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) { 1007 CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) { 1008 MethodCheckDiag methodDiag = varargsCheck ? 1009 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH; 1010 1011 @Override 1012 public boolean compatible(Type found, Type req, Warner warn) { 1013 found = pendingInferenceContext.asUndetVar(found); 1014 if (found.hasTag(UNDETVAR) && req.isPrimitive()) { 1015 req = types.boxedClass(req).type; 1016 } 1017 return super.compatible(found, req, warn); 1018 } 1019 1020 @Override 1021 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1022 reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details); 1023 } 1024 }; 1025 return new MethodResultInfo(to, checkContext); 1026 } 1027 1028 @Override 1029 public MethodCheck mostSpecificCheck(List<Type> actuals) { 1030 return new MostSpecificCheck(actuals); 1031 } 1032 1033 @Override 1034 public String toString() { 1035 return "MethodReferenceCheck"; 1036 } 1037 } 1038 1039 /** 1040 * Check context to be used during method applicability checks. A method check 1041 * context might contain inference variables. 1042 */ 1043 abstract class MethodCheckContext implements CheckContext { 1044 1045 boolean strict; 1046 DeferredAttrContext deferredAttrContext; 1047 Warner rsWarner; 1048 1049 public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) { 1050 this.strict = strict; 1051 this.deferredAttrContext = deferredAttrContext; 1052 this.rsWarner = rsWarner; 1053 } 1054 1055 public boolean compatible(Type found, Type req, Warner warn) { 1056 InferenceContext inferenceContext = deferredAttrContext.inferenceContext; 1057 return strict ? 1058 types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) : 1059 types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn); 1060 } 1061 1062 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1063 throw new InapplicableMethodException(details, Resolve.this.dumpStacktraceOnError); 1064 } 1065 1066 public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) { 1067 return rsWarner; 1068 } 1069 1070 public InferenceContext inferenceContext() { 1071 return deferredAttrContext.inferenceContext; 1072 } 1073 1074 public DeferredAttrContext deferredAttrContext() { 1075 return deferredAttrContext; 1076 } 1077 1078 @Override 1079 public String toString() { 1080 return "MethodCheckContext"; 1081 } 1082 } 1083 1084 /** 1085 * ResultInfo class to be used during method applicability checks. Check 1086 * for deferred types goes through special path. 1087 */ 1088 class MethodResultInfo extends ResultInfo { 1089 1090 public MethodResultInfo(Type pt, CheckContext checkContext) { 1091 attr.super(KindSelector.VAL, pt, checkContext); 1092 } 1093 1094 @Override 1095 protected Type check(DiagnosticPosition pos, Type found) { 1096 if (found.hasTag(DEFERRED)) { 1097 DeferredType dt = (DeferredType)found; 1098 return dt.check(this); 1099 } else { 1100 Type uResult = U(found); 1101 Type capturedType = pos == null || pos.getTree() == null ? 1102 types.capture(uResult) : 1103 checkContext.inferenceContext() 1104 .cachedCapture(pos.getTree(), uResult, true); 1105 return super.check(pos, chk.checkNonVoid(pos, capturedType)); 1106 } 1107 } 1108 1109 /** 1110 * javac has a long-standing 'simplification' (see 6391995): 1111 * given an actual argument type, the method check is performed 1112 * on its upper bound. This leads to inconsistencies when an 1113 * argument type is checked against itself. For example, given 1114 * a type-variable T, it is not true that {@code U(T) <: T}, 1115 * so we need to guard against that. 1116 */ 1117 private Type U(Type found) { 1118 return found == pt ? 1119 found : types.cvarUpperBound(found); 1120 } 1121 1122 @Override 1123 protected MethodResultInfo dup(Type newPt) { 1124 return new MethodResultInfo(newPt, checkContext); 1125 } 1126 1127 @Override 1128 protected ResultInfo dup(CheckContext newContext) { 1129 return new MethodResultInfo(pt, newContext); 1130 } 1131 1132 @Override 1133 protected ResultInfo dup(Type newPt, CheckContext newContext) { 1134 return new MethodResultInfo(newPt, newContext); 1135 } 1136 } 1137 1138 /** 1139 * Most specific method applicability routine. Given a list of actual types A, 1140 * a list of formal types F1, and a list of formal types F2, the routine determines 1141 * as to whether the types in F1 can be considered more specific than those in F2 w.r.t. 1142 * argument types A. 1143 */ 1144 class MostSpecificCheck implements MethodCheck { 1145 1146 List<Type> actuals; 1147 1148 MostSpecificCheck(List<Type> actuals) { 1149 this.actuals = actuals; 1150 } 1151 1152 @Override 1153 public void argumentsAcceptable(final Env<AttrContext> env, 1154 DeferredAttrContext deferredAttrContext, 1155 List<Type> formals1, 1156 List<Type> formals2, 1157 Warner warn) { 1158 formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired()); 1159 while (formals2.nonEmpty()) { 1160 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head); 1161 mresult.check(null, formals1.head); 1162 formals1 = formals1.tail; 1163 formals2 = formals2.tail; 1164 actuals = actuals.isEmpty() ? actuals : actuals.tail; 1165 } 1166 } 1167 1168 /** 1169 * Create a method check context to be used during the most specific applicability check 1170 */ 1171 ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext, 1172 Warner rsWarner, Type actual) { 1173 return attr.new ResultInfo(KindSelector.VAL, to, 1174 new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual)); 1175 } 1176 1177 /** 1178 * Subclass of method check context class that implements most specific 1179 * method conversion. If the actual type under analysis is a deferred type 1180 * a full blown structural analysis is carried out. 1181 */ 1182 class MostSpecificCheckContext extends MethodCheckContext { 1183 1184 Type actual; 1185 1186 public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) { 1187 super(true, deferredAttrContext, rsWarner); 1188 this.actual = actual; 1189 } 1190 1191 public boolean compatible(Type found, Type req, Warner warn) { 1192 if (unrelatedFunctionalInterfaces(found, req) && 1193 (actual != null && actual.getTag() == DEFERRED)) { 1194 DeferredType dt = (DeferredType) actual; 1195 JCTree speculativeTree = dt.speculativeTree(deferredAttrContext); 1196 if (speculativeTree != deferredAttr.stuckTree) { 1197 return functionalInterfaceMostSpecific(found, req, speculativeTree); 1198 } 1199 } 1200 return compatibleBySubtyping(found, req); 1201 } 1202 1203 private boolean compatibleBySubtyping(Type found, Type req) { 1204 if (!strict && found.isPrimitive() != req.isPrimitive()) { 1205 found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found); 1206 } 1207 return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req)); 1208 } 1209 1210 /** Whether {@code t} and {@code s} are unrelated functional interface types. */ 1211 private boolean unrelatedFunctionalInterfaces(Type t, Type s) { 1212 return types.isFunctionalInterface(t.tsym) && 1213 types.isFunctionalInterface(s.tsym) && 1214 unrelatedInterfaces(t, s); 1215 } 1216 1217 /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/ 1218 private boolean unrelatedInterfaces(Type t, Type s) { 1219 if (t.isCompound()) { 1220 for (Type ti : types.interfaces(t)) { 1221 if (!unrelatedInterfaces(ti, s)) { 1222 return false; 1223 } 1224 } 1225 return true; 1226 } else if (s.isCompound()) { 1227 for (Type si : types.interfaces(s)) { 1228 if (!unrelatedInterfaces(t, si)) { 1229 return false; 1230 } 1231 } 1232 return true; 1233 } else { 1234 return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null; 1235 } 1236 } 1237 1238 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */ 1239 private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) { 1240 Type tDesc; 1241 Type tDescNoCapture; 1242 Type sDesc; 1243 try { 1244 tDesc = types.findDescriptorType(types.capture(t)); 1245 tDescNoCapture = types.findDescriptorType(t); 1246 sDesc = types.findDescriptorType(s); 1247 } catch (Types.FunctionDescriptorLookupError ex) { 1248 // don't report, a more meaningful error should be reported upstream 1249 return false; 1250 } 1251 final List<Type> tTypeParams = tDesc.getTypeArguments(); 1252 final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments(); 1253 final List<Type> sTypeParams = sDesc.getTypeArguments(); 1254 1255 // compare type parameters 1256 if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) { 1257 return false; 1258 } 1259 // can't use Types.hasSameBounds on sDesc because bounds may have ivars 1260 List<Type> tIter = tTypeParams; 1261 List<Type> sIter = sTypeParams; 1262 while (tIter.nonEmpty() && sIter.nonEmpty()) { 1263 Type tBound = tIter.head.getUpperBound(); 1264 Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams); 1265 if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) { 1266 return false; 1267 } 1268 if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) { 1269 return false; 1270 } 1271 tIter = tIter.tail; 1272 sIter = sIter.tail; 1273 } 1274 if (!tIter.isEmpty() || !sIter.isEmpty()) { 1275 return false; 1276 } 1277 1278 // compare parameters 1279 List<Type> tParams = tDesc.getParameterTypes(); 1280 List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes(); 1281 List<Type> sParams = sDesc.getParameterTypes(); 1282 while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) { 1283 Type tParam = tParams.head; 1284 Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams); 1285 Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams); 1286 if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) { 1287 return false; 1288 } 1289 if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) { 1290 return false; 1291 } 1292 if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) { 1293 return false; 1294 } 1295 tParams = tParams.tail; 1296 tParamsNoCapture = tParamsNoCapture.tail; 1297 sParams = sParams.tail; 1298 } 1299 if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) { 1300 return false; 1301 } 1302 1303 // compare returns 1304 Type tRet = tDesc.getReturnType(); 1305 Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams); 1306 if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) { 1307 return false; 1308 } 1309 MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet); 1310 msc.scan(tree); 1311 return msc.result; 1312 } 1313 1314 /** 1315 * Tests whether one functional interface type can be considered more specific 1316 * than another unrelated functional interface type for the scanned expression. 1317 */ 1318 class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner { 1319 1320 final Type tRet; 1321 final Type sRet; 1322 boolean result; 1323 1324 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */ 1325 MostSpecificFunctionReturnChecker(Type tRet, Type sRet) { 1326 this.tRet = tRet; 1327 this.sRet = sRet; 1328 result = true; 1329 } 1330 1331 @Override 1332 void skip(JCTree tree) { 1333 result = false; 1334 } 1335 1336 @Override 1337 public void visitConditional(JCConditional tree) { 1338 scan(asExpr(tree.truepart)); 1339 scan(asExpr(tree.falsepart)); 1340 } 1341 1342 @Override 1343 public void visitReference(JCMemberReference tree) { 1344 if (sRet.hasTag(VOID)) { 1345 // do nothing 1346 } else if (tRet.hasTag(VOID)) { 1347 result = false; 1348 } else if (tRet.isPrimitive() != sRet.isPrimitive()) { 1349 boolean retValIsPrimitive = 1350 tree.refPolyKind == PolyKind.STANDALONE && 1351 tree.sym.type.getReturnType().isPrimitive(); 1352 result &= (retValIsPrimitive == tRet.isPrimitive()) && 1353 (retValIsPrimitive != sRet.isPrimitive()); 1354 } else { 1355 result &= compatibleBySubtyping(tRet, sRet); 1356 } 1357 } 1358 1359 @Override 1360 public void visitParens(JCParens tree) { 1361 scan(asExpr(tree.expr)); 1362 } 1363 1364 @Override 1365 public void visitLambda(JCLambda tree) { 1366 if (sRet.hasTag(VOID)) { 1367 // do nothing 1368 } else if (tRet.hasTag(VOID)) { 1369 result = false; 1370 } else { 1371 List<JCExpression> lambdaResults = lambdaResults(tree); 1372 if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) { 1373 for (JCExpression expr : lambdaResults) { 1374 result &= functionalInterfaceMostSpecific(tRet, sRet, expr); 1375 } 1376 } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) { 1377 for (JCExpression expr : lambdaResults) { 1378 boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive(); 1379 result &= (retValIsPrimitive == tRet.isPrimitive()) && 1380 (retValIsPrimitive != sRet.isPrimitive()); 1381 } 1382 } else { 1383 result &= compatibleBySubtyping(tRet, sRet); 1384 } 1385 } 1386 } 1387 //where 1388 1389 private List<JCExpression> lambdaResults(JCLambda lambda) { 1390 if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) { 1391 return List.of(asExpr((JCExpression) lambda.body)); 1392 } else { 1393 final ListBuffer<JCExpression> buffer = new ListBuffer<>(); 1394 DeferredAttr.LambdaReturnScanner lambdaScanner = 1395 new DeferredAttr.LambdaReturnScanner() { 1396 @Override 1397 public void visitReturn(JCReturn tree) { 1398 if (tree.expr != null) { 1399 buffer.append(asExpr(tree.expr)); 1400 } 1401 } 1402 }; 1403 lambdaScanner.scan(lambda.body); 1404 return buffer.toList(); 1405 } 1406 } 1407 1408 private JCExpression asExpr(JCExpression expr) { 1409 if (expr.type.hasTag(DEFERRED)) { 1410 JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext); 1411 if (speculativeTree != deferredAttr.stuckTree) { 1412 expr = (JCExpression)speculativeTree; 1413 } 1414 } 1415 return expr; 1416 } 1417 } 1418 1419 } 1420 1421 public MethodCheck mostSpecificCheck(List<Type> actuals) { 1422 Assert.error("Cannot get here!"); 1423 return null; 1424 } 1425 } 1426 1427 public static class InapplicableMethodException extends CompilerInternalException { 1428 private static final long serialVersionUID = 0; 1429 1430 transient JCDiagnostic diagnostic; 1431 1432 InapplicableMethodException(JCDiagnostic diag, boolean dumpStackTraceOnError) { 1433 super(dumpStackTraceOnError); 1434 this.diagnostic = diag; 1435 } 1436 1437 public JCDiagnostic getDiagnostic() { 1438 return diagnostic; 1439 } 1440 } 1441 1442 /* *************************************************************************** 1443 * Symbol lookup 1444 * the following naming conventions for arguments are used 1445 * 1446 * env is the environment where the symbol was mentioned 1447 * site is the type of which the symbol is a member 1448 * name is the symbol's name 1449 * if no arguments are given 1450 * argtypes are the value arguments, if we search for a method 1451 * 1452 * If no symbol was found, a ResolveError detailing the problem is returned. 1453 ****************************************************************************/ 1454 1455 /** Find field. Synthetic fields are always skipped. 1456 * @param env The current environment. 1457 * @param site The original type from where the selection takes place. 1458 * @param name The name of the field. 1459 * @param c The class to search for the field. This is always 1460 * a superclass or implemented interface of site's class. 1461 */ 1462 Symbol findField(Env<AttrContext> env, 1463 Type site, 1464 Name name, 1465 TypeSymbol c) { 1466 while (c.type.hasTag(TYPEVAR)) 1467 c = c.type.getUpperBound().tsym; 1468 Symbol bestSoFar = varNotFound; 1469 Symbol sym; 1470 for (Symbol s : c.members().getSymbolsByName(name)) { 1471 if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) { 1472 return isAccessible(env, site, s) 1473 ? s : new AccessError(env, site, s); 1474 } 1475 } 1476 Type st = types.supertype(c.type); 1477 if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) { 1478 sym = findField(env, site, name, st.tsym); 1479 bestSoFar = bestOf(bestSoFar, sym); 1480 } 1481 for (List<Type> l = types.interfaces(c.type); 1482 bestSoFar.kind != AMBIGUOUS && l.nonEmpty(); 1483 l = l.tail) { 1484 sym = findField(env, site, name, l.head.tsym); 1485 if (bestSoFar.exists() && sym.exists() && 1486 sym.owner != bestSoFar.owner) 1487 bestSoFar = new AmbiguityError(bestSoFar, sym); 1488 else 1489 bestSoFar = bestOf(bestSoFar, sym); 1490 } 1491 return bestSoFar; 1492 } 1493 1494 /** Resolve a field identifier, throw a fatal error if not found. 1495 * @param pos The position to use for error reporting. 1496 * @param env The environment current at the method invocation. 1497 * @param site The type of the qualifying expression, in which 1498 * identifier is searched. 1499 * @param name The identifier's name. 1500 */ 1501 public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env, 1502 Type site, Name name) { 1503 Symbol sym = findField(env, site, name, site.tsym); 1504 if (sym.kind == VAR) return (VarSymbol)sym; 1505 else throw new FatalError( 1506 diags.fragment(Fragments.FatalErrCantLocateField(name))); 1507 } 1508 1509 /** Find unqualified variable or field with given name. 1510 * Synthetic fields always skipped. 1511 * @param pos The position to use for error reporting. 1512 * @param env The current environment. 1513 * @param name The name of the variable or field. 1514 */ 1515 Symbol findVar(DiagnosticPosition pos, Env<AttrContext> env, Name name) { 1516 Symbol bestSoFar = varNotFound; 1517 Env<AttrContext> env1 = env; 1518 boolean staticOnly = false; 1519 while (env1.outer != null) { 1520 Symbol sym = null; 1521 for (Symbol s : env1.info.scope.getSymbolsByName(name)) { 1522 if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) { 1523 sym = s; 1524 if (staticOnly) { 1525 return new StaticError(sym); 1526 } 1527 break; 1528 } 1529 } 1530 if (isStatic(env1)) staticOnly = true; 1531 if (sym == null) { 1532 sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym); 1533 } 1534 if (sym.exists()) { 1535 if (sym.kind == VAR && 1536 sym.owner.kind == TYP && 1537 (sym.flags() & STATIC) == 0) { 1538 if (staticOnly) 1539 return new StaticError(sym); 1540 } 1541 return sym; 1542 } else { 1543 bestSoFar = bestOf(bestSoFar, sym); 1544 } 1545 1546 if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true; 1547 env1 = env1.outer; 1548 } 1549 1550 Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass); 1551 if (sym.exists()) 1552 return sym; 1553 if (bestSoFar.exists()) 1554 return bestSoFar; 1555 1556 Symbol origin = null; 1557 for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) { 1558 for (Symbol currentSymbol : sc.getSymbolsByName(name)) { 1559 if (currentSymbol.kind != VAR) 1560 continue; 1561 // invariant: sym.kind == Symbol.Kind.VAR 1562 if (!bestSoFar.kind.isResolutionError() && 1563 currentSymbol.owner != bestSoFar.owner) 1564 return new AmbiguityError(bestSoFar, currentSymbol); 1565 else if (!bestSoFar.kind.betterThan(VAR)) { 1566 origin = sc.getOrigin(currentSymbol).owner; 1567 bestSoFar = isAccessible(env, origin.type, currentSymbol) 1568 ? currentSymbol : new AccessError(env, origin.type, currentSymbol); 1569 } 1570 } 1571 if (bestSoFar.exists()) break; 1572 } 1573 if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type) 1574 return bestSoFar.clone(origin); 1575 else 1576 return bestSoFar; 1577 } 1578 1579 Warner noteWarner = new Warner(); 1580 1581 /** Select the best method for a call site among two choices. 1582 * @param env The current environment. 1583 * @param site The original type from where the 1584 * selection takes place. 1585 * @param argtypes The invocation's value arguments, 1586 * @param typeargtypes The invocation's type arguments, 1587 * @param sym Proposed new best match. 1588 * @param bestSoFar Previously found best match. 1589 * @param allowBoxing Allow boxing conversions of arguments. 1590 * @param useVarargs Box trailing arguments into an array for varargs. 1591 */ 1592 @SuppressWarnings("fallthrough") 1593 Symbol selectBest(Env<AttrContext> env, 1594 Type site, 1595 List<Type> argtypes, 1596 List<Type> typeargtypes, 1597 Symbol sym, 1598 Symbol bestSoFar, 1599 boolean allowBoxing, 1600 boolean useVarargs) { 1601 if (sym.kind == ERR || 1602 (site.tsym != sym.owner && !sym.isInheritedIn(site.tsym, types)) || 1603 !notOverriddenIn(site, sym)) { 1604 return bestSoFar; 1605 } else if (useVarargs && (sym.flags() & VARARGS) == 0) { 1606 return bestSoFar.kind.isResolutionError() ? 1607 new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) : 1608 bestSoFar; 1609 } 1610 Assert.check(!sym.kind.isResolutionError()); 1611 try { 1612 types.noWarnings.clear(); 1613 Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes, 1614 allowBoxing, useVarargs, types.noWarnings); 1615 currentResolutionContext.addApplicableCandidate(sym, mt); 1616 } catch (InapplicableMethodException ex) { 1617 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic()); 1618 // Currently, an InapplicableMethodException occurs. 1619 // If bestSoFar.kind was ABSENT_MTH, return an InapplicableSymbolError(kind is WRONG_MTH). 1620 // If bestSoFar.kind was HIDDEN(AccessError)/WRONG_MTH/WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS). 1621 // See JDK-8255968 for more information. 1622 switch (bestSoFar.kind) { 1623 case ABSENT_MTH: 1624 return new InapplicableSymbolError(currentResolutionContext); 1625 case HIDDEN: 1626 if (bestSoFar instanceof AccessError accessError) { 1627 // Add the JCDiagnostic of previous AccessError to the currentResolutionContext 1628 // and construct InapplicableSymbolsError. 1629 // Intentionally fallthrough. 1630 currentResolutionContext.addInapplicableCandidate(accessError.sym, 1631 accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes)); 1632 } else { 1633 return bestSoFar; 1634 } 1635 case WRONG_MTH: 1636 bestSoFar = new InapplicableSymbolsError(currentResolutionContext); 1637 default: 1638 return bestSoFar; 1639 } 1640 } 1641 if (!isAccessible(env, site, sym)) { 1642 AccessError curAccessError = new AccessError(env, site, sym); 1643 JCDiagnostic curDiagnostic = curAccessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes); 1644 // Currently, an AccessError occurs. 1645 // If bestSoFar.kind was ABSENT_MTH, return an AccessError(kind is HIDDEN). 1646 // If bestSoFar.kind was HIDDEN(AccessError), WRONG_MTH, WRONG_MTHS, return an InapplicableSymbolsError(kind is WRONG_MTHS). 1647 // See JDK-8255968 for more information. 1648 if (bestSoFar.kind == ABSENT_MTH) { 1649 bestSoFar = curAccessError; 1650 } else if (bestSoFar.kind == WRONG_MTH) { 1651 // Add the JCDiagnostic of current AccessError to the currentResolutionContext 1652 // and construct InapplicableSymbolsError. 1653 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic); 1654 bestSoFar = new InapplicableSymbolsError(currentResolutionContext); 1655 } else if (bestSoFar.kind == WRONG_MTHS) { 1656 // Add the JCDiagnostic of current AccessError to the currentResolutionContext 1657 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic); 1658 } else if (bestSoFar.kind == HIDDEN && bestSoFar instanceof AccessError accessError) { 1659 // Add the JCDiagnostics of previous and current AccessError to the currentResolutionContext 1660 // and construct InapplicableSymbolsError. 1661 currentResolutionContext.addInapplicableCandidate(accessError.sym, 1662 accessError.getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, null, null, site, null, argtypes, typeargtypes)); 1663 currentResolutionContext.addInapplicableCandidate(sym, curDiagnostic); 1664 bestSoFar = new InapplicableSymbolsError(currentResolutionContext); 1665 } 1666 return bestSoFar; 1667 } 1668 return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS) 1669 ? sym 1670 : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs); 1671 } 1672 1673 /* Return the most specific of the two methods for a call, 1674 * given that both are accessible and applicable. 1675 * @param m1 A new candidate for most specific. 1676 * @param m2 The previous most specific candidate. 1677 * @param env The current environment. 1678 * @param site The original type from where the selection 1679 * takes place. 1680 * @param allowBoxing Allow boxing conversions of arguments. 1681 * @param useVarargs Box trailing arguments into an array for varargs. 1682 */ 1683 Symbol mostSpecific(List<Type> argtypes, Symbol m1, 1684 Symbol m2, 1685 Env<AttrContext> env, 1686 final Type site, 1687 boolean useVarargs) { 1688 switch (m2.kind) { 1689 case MTH: 1690 if (m1 == m2) return m1; 1691 boolean m1SignatureMoreSpecific = 1692 signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs); 1693 boolean m2SignatureMoreSpecific = 1694 signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs); 1695 if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) { 1696 Type mt1 = types.memberType(site, m1); 1697 Type mt2 = types.memberType(site, m2); 1698 if (!types.overrideEquivalent(mt1, mt2)) 1699 return ambiguityError(m1, m2); 1700 1701 // same signature; select (a) the non-bridge method, or 1702 // (b) the one that overrides the other, or (c) the concrete 1703 // one, or (d) merge both abstract signatures 1704 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE)) 1705 return ((m1.flags() & BRIDGE) != 0) ? m2 : m1; 1706 1707 if (m1.baseSymbol() == m2.baseSymbol()) { 1708 // this is the same imported symbol which has been cloned twice. 1709 // Return the first one (either will do). 1710 return m1; 1711 } 1712 1713 // if one overrides or hides the other, use it 1714 TypeSymbol m1Owner = (TypeSymbol)m1.owner; 1715 TypeSymbol m2Owner = (TypeSymbol)m2.owner; 1716 // the two owners can never be the same if the target methods are compiled from source, 1717 // but we need to protect against cases where the methods are defined in some classfile 1718 // and make sure we issue an ambiguity error accordingly (by skipping the logic below). 1719 if (m1Owner != m2Owner) { 1720 if (types.asSuper(m1Owner.type, m2Owner) != null && 1721 ((m1.owner.flags_field & INTERFACE) == 0 || 1722 (m2.owner.flags_field & INTERFACE) != 0) && 1723 m1.overrides(m2, m1Owner, types, false)) 1724 return m1; 1725 if (types.asSuper(m2Owner.type, m1Owner) != null && 1726 ((m2.owner.flags_field & INTERFACE) == 0 || 1727 (m1.owner.flags_field & INTERFACE) != 0) && 1728 m2.overrides(m1, m2Owner, types, false)) 1729 return m2; 1730 } 1731 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0; 1732 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0; 1733 if (m1Abstract && !m2Abstract) return m2; 1734 if (m2Abstract && !m1Abstract) return m1; 1735 // both abstract or both concrete 1736 return ambiguityError(m1, m2); 1737 } 1738 if (m1SignatureMoreSpecific) return m1; 1739 if (m2SignatureMoreSpecific) return m2; 1740 return ambiguityError(m1, m2); 1741 case AMBIGUOUS: 1742 //compare m1 to ambiguous methods in m2 1743 AmbiguityError e = (AmbiguityError)m2.baseSymbol(); 1744 boolean m1MoreSpecificThanAnyAmbiguous = true; 1745 boolean allAmbiguousMoreSpecificThanM1 = true; 1746 for (Symbol s : e.ambiguousSyms) { 1747 Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs); 1748 m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1; 1749 allAmbiguousMoreSpecificThanM1 &= moreSpecific == s; 1750 } 1751 if (m1MoreSpecificThanAnyAmbiguous) 1752 return m1; 1753 //if m1 is more specific than some ambiguous methods, but other ambiguous methods are 1754 //more specific than m1, add it as a new ambiguous method: 1755 if (!allAmbiguousMoreSpecificThanM1) 1756 e.addAmbiguousSymbol(m1); 1757 return e; 1758 default: 1759 throw new AssertionError(); 1760 } 1761 } 1762 //where 1763 private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) { 1764 noteWarner.clear(); 1765 int maxLength = Math.max( 1766 Math.max(m1.type.getParameterTypes().length(), actuals.length()), 1767 m2.type.getParameterTypes().length()); 1768 MethodResolutionContext prevResolutionContext = currentResolutionContext; 1769 try { 1770 currentResolutionContext = new MethodResolutionContext(); 1771 currentResolutionContext.step = prevResolutionContext.step; 1772 currentResolutionContext.methodCheck = 1773 prevResolutionContext.methodCheck.mostSpecificCheck(actuals); 1774 Type mst = instantiate(env, site, m2, null, 1775 adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null, 1776 false, useVarargs, noteWarner); 1777 return mst != null && 1778 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED); 1779 } finally { 1780 currentResolutionContext = prevResolutionContext; 1781 } 1782 } 1783 1784 List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) { 1785 if ((msym.flags() & VARARGS) != 0 && allowVarargs) { 1786 Type varargsElem = types.elemtype(args.last()); 1787 if (varargsElem == null) { 1788 Assert.error("Bad varargs = " + args.last() + " " + msym); 1789 } 1790 List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse(); 1791 while (newArgs.length() < length) { 1792 newArgs = newArgs.append(newArgs.last()); 1793 } 1794 return newArgs; 1795 } else { 1796 return args; 1797 } 1798 } 1799 //where 1800 Symbol ambiguityError(Symbol m1, Symbol m2) { 1801 if (((m1.flags() | m2.flags()) & CLASH) != 0) { 1802 return (m1.flags() & CLASH) == 0 ? m1 : m2; 1803 } else { 1804 return new AmbiguityError(m1, m2); 1805 } 1806 } 1807 1808 Symbol findMethodInScope(Env<AttrContext> env, 1809 Type site, 1810 Name name, 1811 List<Type> argtypes, 1812 List<Type> typeargtypes, 1813 Scope sc, 1814 Symbol bestSoFar, 1815 boolean allowBoxing, 1816 boolean useVarargs, 1817 boolean abstractok) { 1818 for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) { 1819 bestSoFar = selectBest(env, site, argtypes, typeargtypes, s, 1820 bestSoFar, allowBoxing, useVarargs); 1821 } 1822 return bestSoFar; 1823 } 1824 //where 1825 class LookupFilter implements Predicate<Symbol> { 1826 1827 boolean abstractOk; 1828 1829 LookupFilter(boolean abstractOk) { 1830 this.abstractOk = abstractOk; 1831 } 1832 1833 @Override 1834 public boolean test(Symbol s) { 1835 long flags = s.flags(); 1836 return s.kind == MTH && 1837 (flags & SYNTHETIC) == 0 && 1838 (abstractOk || 1839 (flags & DEFAULT) != 0 || 1840 (flags & ABSTRACT) == 0); 1841 } 1842 } 1843 1844 /** Find best qualified method matching given name, type and value 1845 * arguments. 1846 * @param env The current environment. 1847 * @param site The original type from where the selection 1848 * takes place. 1849 * @param name The method's name. 1850 * @param argtypes The method's value arguments. 1851 * @param typeargtypes The method's type arguments 1852 * @param allowBoxing Allow boxing conversions of arguments. 1853 * @param useVarargs Box trailing arguments into an array for varargs. 1854 */ 1855 Symbol findMethod(Env<AttrContext> env, 1856 Type site, 1857 Name name, 1858 List<Type> argtypes, 1859 List<Type> typeargtypes, 1860 boolean allowBoxing, 1861 boolean useVarargs) { 1862 Symbol bestSoFar = methodNotFound; 1863 bestSoFar = findMethod(env, 1864 site, 1865 name, 1866 argtypes, 1867 typeargtypes, 1868 site.tsym.type, 1869 bestSoFar, 1870 allowBoxing, 1871 useVarargs); 1872 if (bestSoFar.kind == AMBIGUOUS) { 1873 AmbiguityError a_err = (AmbiguityError)bestSoFar.baseSymbol(); 1874 bestSoFar = a_err.mergeAbstracts(site); 1875 } 1876 return bestSoFar; 1877 } 1878 // where 1879 private Symbol findMethod(Env<AttrContext> env, 1880 Type site, 1881 Name name, 1882 List<Type> argtypes, 1883 List<Type> typeargtypes, 1884 Type intype, 1885 Symbol bestSoFar, 1886 boolean allowBoxing, 1887 boolean useVarargs) { 1888 @SuppressWarnings({"unchecked","rawtypes"}) 1889 List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() }; 1890 1891 InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK; 1892 boolean isInterface = site.tsym.isInterface(); 1893 for (TypeSymbol s : isInterface ? List.of(intype.tsym) : superclasses(intype)) { 1894 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes, 1895 s.members(), bestSoFar, allowBoxing, useVarargs, true); 1896 if (name == names.init) return bestSoFar; 1897 iphase = (iphase == null) ? null : iphase.update(s, this); 1898 if (iphase != null) { 1899 for (Type itype : types.interfaces(s.type)) { 1900 itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]); 1901 } 1902 } 1903 } 1904 1905 Symbol concrete = bestSoFar.kind.isValid() && 1906 (bestSoFar.flags() & ABSTRACT) == 0 ? 1907 bestSoFar : methodNotFound; 1908 1909 for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) { 1910 //keep searching for abstract methods 1911 for (Type itype : itypes[iphase2.ordinal()]) { 1912 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure()) 1913 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && 1914 (itype.tsym.flags() & DEFAULT) == 0) continue; 1915 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes, 1916 itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true); 1917 if (concrete != bestSoFar && 1918 concrete.kind.isValid() && 1919 bestSoFar.kind.isValid() && 1920 types.isSubSignature(concrete.type, bestSoFar.type)) { 1921 //this is an hack - as javac does not do full membership checks 1922 //most specific ends up comparing abstract methods that might have 1923 //been implemented by some concrete method in a subclass and, 1924 //because of raw override, it is possible for an abstract method 1925 //to be more specific than the concrete method - so we need 1926 //to explicitly call that out (see CR 6178365) 1927 bestSoFar = concrete; 1928 } 1929 } 1930 } 1931 if (isInterface && bestSoFar.kind.isResolutionError()) { 1932 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes, 1933 syms.objectType.tsym.members(), bestSoFar, allowBoxing, useVarargs, true); 1934 if (bestSoFar.kind.isValid()) { 1935 Symbol baseSymbol = bestSoFar; 1936 bestSoFar = new MethodSymbol(bestSoFar.flags_field, bestSoFar.name, bestSoFar.type, intype.tsym) { 1937 @Override 1938 public Symbol baseSymbol() { 1939 return baseSymbol; 1940 } 1941 }; 1942 } 1943 } 1944 return bestSoFar; 1945 } 1946 1947 enum InterfaceLookupPhase { 1948 ABSTRACT_OK() { 1949 @Override 1950 InterfaceLookupPhase update(Symbol s, Resolve rs) { 1951 //We should not look for abstract methods if receiver is a concrete class 1952 //(as concrete classes are expected to implement all abstracts coming 1953 //from superinterfaces) 1954 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) { 1955 return this; 1956 } else { 1957 return DEFAULT_OK; 1958 } 1959 } 1960 }, 1961 DEFAULT_OK() { 1962 @Override 1963 InterfaceLookupPhase update(Symbol s, Resolve rs) { 1964 return this; 1965 } 1966 }; 1967 1968 abstract InterfaceLookupPhase update(Symbol s, Resolve rs); 1969 } 1970 1971 /** 1972 * Return an Iterable object to scan the superclasses of a given type. 1973 * It's crucial that the scan is done lazily, as we don't want to accidentally 1974 * access more supertypes than strictly needed (as this could trigger completion 1975 * errors if some of the not-needed supertypes are missing/ill-formed). 1976 */ 1977 Iterable<TypeSymbol> superclasses(final Type intype) { 1978 return () -> new Iterator<TypeSymbol>() { 1979 1980 List<TypeSymbol> seen = List.nil(); 1981 TypeSymbol currentSym = symbolFor(intype); 1982 TypeSymbol prevSym = null; 1983 1984 public boolean hasNext() { 1985 if (currentSym == syms.noSymbol) { 1986 currentSym = symbolFor(types.supertype(prevSym.type)); 1987 } 1988 return currentSym != null; 1989 } 1990 1991 public TypeSymbol next() { 1992 prevSym = currentSym; 1993 currentSym = syms.noSymbol; 1994 Assert.check(prevSym != null || prevSym != syms.noSymbol); 1995 return prevSym; 1996 } 1997 1998 public void remove() { 1999 throw new UnsupportedOperationException(); 2000 } 2001 2002 TypeSymbol symbolFor(Type t) { 2003 if (!t.hasTag(CLASS) && 2004 !t.hasTag(TYPEVAR)) { 2005 return null; 2006 } 2007 t = types.skipTypeVars(t, false); 2008 if (seen.contains(t.tsym)) { 2009 //degenerate case in which we have a circular 2010 //class hierarchy - because of ill-formed classfiles 2011 return null; 2012 } 2013 seen = seen.prepend(t.tsym); 2014 return t.tsym; 2015 } 2016 }; 2017 } 2018 2019 /** Find unqualified method matching given name, type and value arguments. 2020 * @param env The current environment. 2021 * @param name The method's name. 2022 * @param argtypes The method's value arguments. 2023 * @param typeargtypes The method's type arguments. 2024 * @param allowBoxing Allow boxing conversions of arguments. 2025 * @param useVarargs Box trailing arguments into an array for varargs. 2026 */ 2027 Symbol findFun(Env<AttrContext> env, Name name, 2028 List<Type> argtypes, List<Type> typeargtypes, 2029 boolean allowBoxing, boolean useVarargs) { 2030 Symbol bestSoFar = methodNotFound; 2031 Env<AttrContext> env1 = env; 2032 boolean staticOnly = false; 2033 while (env1.outer != null) { 2034 if (isStatic(env1)) staticOnly = true; 2035 Assert.check(env1.info.preferredTreeForDiagnostics == null); 2036 env1.info.preferredTreeForDiagnostics = env.tree; 2037 try { 2038 Symbol sym = findMethod( 2039 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes, 2040 allowBoxing, useVarargs); 2041 if (sym.exists()) { 2042 if (sym.kind == MTH && 2043 sym.owner.kind == TYP && 2044 (sym.flags() & STATIC) == 0) { 2045 if (staticOnly) 2046 return new StaticError(sym); 2047 } 2048 return sym; 2049 } else { 2050 bestSoFar = bestOf(bestSoFar, sym); 2051 } 2052 } finally { 2053 env1.info.preferredTreeForDiagnostics = null; 2054 } 2055 if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true; 2056 env1 = env1.outer; 2057 } 2058 2059 Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes, 2060 typeargtypes, allowBoxing, useVarargs); 2061 if (sym.exists()) 2062 return sym; 2063 2064 for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) { 2065 Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner; 2066 if (currentSym.kind == MTH) { 2067 if (currentSym.owner.type != origin.type) 2068 currentSym = currentSym.clone(origin); 2069 if (!isAccessible(env, origin.type, currentSym)) 2070 currentSym = new AccessError(env, origin.type, currentSym); 2071 bestSoFar = selectBest(env, origin.type, 2072 argtypes, typeargtypes, 2073 currentSym, bestSoFar, 2074 allowBoxing, useVarargs); 2075 } 2076 } 2077 if (bestSoFar.exists()) 2078 return bestSoFar; 2079 2080 for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) { 2081 Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner; 2082 if (currentSym.kind == MTH) { 2083 if (currentSym.owner.type != origin.type) 2084 currentSym = currentSym.clone(origin); 2085 if (!isAccessible(env, origin.type, currentSym)) 2086 currentSym = new AccessError(env, origin.type, currentSym); 2087 bestSoFar = selectBest(env, origin.type, 2088 argtypes, typeargtypes, 2089 currentSym, bestSoFar, 2090 allowBoxing, useVarargs); 2091 } 2092 } 2093 return bestSoFar; 2094 } 2095 2096 /** Load toplevel or member class with given fully qualified name and 2097 * verify that it is accessible. 2098 * @param env The current environment. 2099 * @param name The fully qualified name of the class to be loaded. 2100 */ 2101 Symbol loadClass(Env<AttrContext> env, Name name, RecoveryLoadClass recoveryLoadClass) { 2102 try { 2103 ClassSymbol c = finder.loadClass(env.toplevel.modle, name); 2104 return isAccessible(env, c) ? c : new AccessError(env, null, c); 2105 } catch (ClassFinder.BadClassFile err) { 2106 return new BadClassFileError(err); 2107 } catch (CompletionFailure ex) { 2108 Symbol candidate = recoveryLoadClass.loadClass(env, name); 2109 2110 if (candidate != null) { 2111 return candidate; 2112 } 2113 2114 return typeNotFound; 2115 } 2116 } 2117 2118 public interface RecoveryLoadClass { 2119 Symbol loadClass(Env<AttrContext> env, Name name); 2120 } 2121 2122 private final RecoveryLoadClass noRecovery = (env, name) -> null; 2123 2124 private final RecoveryLoadClass doRecoveryLoadClass = new RecoveryLoadClass() { 2125 @Override public Symbol loadClass(Env<AttrContext> env, Name name) { 2126 List<Name> candidates = Convert.classCandidates(name); 2127 return lookupInvisibleSymbol(env, name, 2128 n -> () -> createCompoundIterator(candidates, 2129 c -> syms.getClassesForName(c) 2130 .iterator()), 2131 (ms, n) -> { 2132 for (Name candidate : candidates) { 2133 try { 2134 return finder.loadClass(ms, candidate); 2135 } catch (CompletionFailure cf) { 2136 //ignore 2137 } 2138 } 2139 return null; 2140 }, sym -> sym.kind == Kind.TYP, typeNotFound); 2141 } 2142 }; 2143 2144 private final RecoveryLoadClass namedImportScopeRecovery = (env, name) -> { 2145 Scope importScope = env.toplevel.namedImportScope; 2146 Symbol existing = importScope.findFirst(Convert.shortName(name), 2147 sym -> sym.kind == TYP && sym.flatName() == name); 2148 2149 if (existing != null) { 2150 return new InvisibleSymbolError(env, true, existing); 2151 } 2152 return null; 2153 }; 2154 2155 private final RecoveryLoadClass starImportScopeRecovery = 2156 onDemandImportScopeRecovery(false); 2157 2158 private final RecoveryLoadClass moduleImportScopeRecovery = 2159 onDemandImportScopeRecovery(true); 2160 2161 private RecoveryLoadClass onDemandImportScopeRecovery(boolean moduleImportScope) { 2162 return (env, name) -> { 2163 Scope importScope = moduleImportScope ? env.toplevel.moduleImportScope 2164 : env.toplevel.starImportScope; 2165 Symbol existing = importScope.findFirst(Convert.shortName(name), 2166 sym -> sym.kind == TYP && sym.flatName() == name); 2167 2168 if (existing != null) { 2169 try { 2170 existing = finder.loadClass(existing.packge().modle, name); 2171 2172 return new InvisibleSymbolError(env, true, existing); 2173 } catch (CompletionFailure cf) { 2174 //ignore 2175 } 2176 } 2177 2178 return null; 2179 }; 2180 } 2181 2182 Symbol lookupPackage(Env<AttrContext> env, Name name) { 2183 PackageSymbol pack = syms.lookupPackage(env.toplevel.modle, name); 2184 2185 if (allowModules && isImportOnDemand(env, name)) { 2186 if (pack.members().isEmpty()) { 2187 return lookupInvisibleSymbol(env, name, syms::getPackagesForName, syms::enterPackage, sym -> { 2188 sym.complete(); 2189 return !sym.members().isEmpty(); 2190 }, pack); 2191 } 2192 } 2193 2194 return pack; 2195 } 2196 2197 private boolean isImportOnDemand(Env<AttrContext> env, Name name) { 2198 if (!env.tree.hasTag(IMPORT)) 2199 return false; 2200 2201 JCTree qualid = ((JCImport) env.tree).qualid; 2202 2203 if (!qualid.hasTag(SELECT)) 2204 return false; 2205 2206 if (TreeInfo.name(qualid) != names.asterisk) 2207 return false; 2208 2209 return TreeInfo.fullName(((JCFieldAccess) qualid).selected) == name; 2210 } 2211 2212 private <S extends Symbol> Symbol lookupInvisibleSymbol(Env<AttrContext> env, 2213 Name name, 2214 Function<Name, Iterable<S>> get, 2215 BiFunction<ModuleSymbol, Name, S> load, 2216 Predicate<S> validate, 2217 Symbol defaultResult) { 2218 //even if a class/package cannot be found in the current module and among packages in modules 2219 //it depends on that are exported for any or this module, the class/package may exist internally 2220 //in some of these modules, or may exist in a module on which this module does not depend. 2221 //Provide better diagnostic in such cases by looking for the class in any module: 2222 Iterable<? extends S> candidates = get.apply(name); 2223 2224 for (S sym : candidates) { 2225 if (validate.test(sym)) 2226 return createInvisibleSymbolError(env, sym); 2227 } 2228 2229 Set<ModuleSymbol> recoverableModules = new HashSet<>(syms.getAllModules()); 2230 2231 recoverableModules.add(syms.unnamedModule); 2232 recoverableModules.remove(env.toplevel.modle); 2233 2234 for (ModuleSymbol ms : recoverableModules) { 2235 //avoid overly eager completing classes from source-based modules, as those 2236 //may not be completable with the current compiler settings: 2237 if (ms.sourceLocation == null) { 2238 if (ms.classLocation == null) { 2239 ms = moduleFinder.findModule(ms); 2240 } 2241 2242 if (ms.kind != ERR) { 2243 S sym = load.apply(ms, name); 2244 2245 if (sym != null && validate.test(sym)) { 2246 return createInvisibleSymbolError(env, sym); 2247 } 2248 } 2249 } 2250 } 2251 2252 return defaultResult; 2253 } 2254 2255 private Symbol createInvisibleSymbolError(Env<AttrContext> env, Symbol sym) { 2256 if (symbolPackageVisible(env, sym)) { 2257 return new AccessError(env, null, sym); 2258 } else { 2259 return new InvisibleSymbolError(env, false, sym); 2260 } 2261 } 2262 2263 private boolean symbolPackageVisible(Env<AttrContext> env, Symbol sym) { 2264 ModuleSymbol envMod = env.toplevel.modle; 2265 PackageSymbol symPack = sym.packge(); 2266 return envMod == symPack.modle || 2267 envMod.visiblePackages.containsKey(symPack.fullname); 2268 } 2269 2270 /** 2271 * Find a type declared in a scope (not inherited). Return null 2272 * if none is found. 2273 * @param env The current environment. 2274 * @param site The original type from where the selection takes 2275 * place. 2276 * @param name The type's name. 2277 * @param c The class to search for the member type. This is 2278 * always a superclass or implemented interface of 2279 * site's class. 2280 */ 2281 Symbol findImmediateMemberType(Env<AttrContext> env, 2282 Type site, 2283 Name name, 2284 TypeSymbol c) { 2285 for (Symbol sym : c.members().getSymbolsByName(name)) { 2286 if (sym.kind == TYP) { 2287 return isAccessible(env, site, sym) 2288 ? sym 2289 : new AccessError(env, site, sym); 2290 } 2291 } 2292 return typeNotFound; 2293 } 2294 2295 /** Find a member type inherited from a superclass or interface. 2296 * @param env The current environment. 2297 * @param site The original type from where the selection takes 2298 * place. 2299 * @param name The type's name. 2300 * @param c The class to search for the member type. This is 2301 * always a superclass or implemented interface of 2302 * site's class. 2303 */ 2304 Symbol findInheritedMemberType(Env<AttrContext> env, 2305 Type site, 2306 Name name, 2307 TypeSymbol c) { 2308 Symbol bestSoFar = typeNotFound; 2309 Symbol sym; 2310 Type st = types.supertype(c.type); 2311 if (st != null && st.hasTag(CLASS)) { 2312 sym = findMemberType(env, site, name, st.tsym); 2313 bestSoFar = bestOf(bestSoFar, sym); 2314 } 2315 for (List<Type> l = types.interfaces(c.type); 2316 bestSoFar.kind != AMBIGUOUS && l.nonEmpty(); 2317 l = l.tail) { 2318 sym = findMemberType(env, site, name, l.head.tsym); 2319 if (!bestSoFar.kind.isResolutionError() && 2320 !sym.kind.isResolutionError() && 2321 sym.owner != bestSoFar.owner) 2322 bestSoFar = new AmbiguityError(bestSoFar, sym); 2323 else 2324 bestSoFar = bestOf(bestSoFar, sym); 2325 } 2326 return bestSoFar; 2327 } 2328 2329 /** Find qualified member type. 2330 * @param env The current environment. 2331 * @param site The original type from where the selection takes 2332 * place. 2333 * @param name The type's name. 2334 * @param c The class to search for the member type. This is 2335 * always a superclass or implemented interface of 2336 * site's class. 2337 */ 2338 Symbol findMemberType(Env<AttrContext> env, 2339 Type site, 2340 Name name, 2341 TypeSymbol c) { 2342 Symbol sym = findImmediateMemberType(env, site, name, c); 2343 2344 if (sym != typeNotFound) 2345 return sym; 2346 2347 return findInheritedMemberType(env, site, name, c); 2348 2349 } 2350 2351 /** Find a global type in given scope and load corresponding class. 2352 * @param env The current environment. 2353 * @param scope The scope in which to look for the type. 2354 * @param name The type's name. 2355 */ 2356 Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name, RecoveryLoadClass recoveryLoadClass) { 2357 Symbol bestSoFar = typeNotFound; 2358 for (Symbol s : scope.getSymbolsByName(name)) { 2359 Symbol sym = loadClass(env, s.flatName(), recoveryLoadClass); 2360 if (bestSoFar.kind == TYP && sym.kind == TYP && 2361 bestSoFar != sym) 2362 return new AmbiguityError(bestSoFar, sym); 2363 else 2364 bestSoFar = bestOf(bestSoFar, sym); 2365 } 2366 return bestSoFar; 2367 } 2368 2369 Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) { 2370 for (Symbol sym : env.info.scope.getSymbolsByName(name)) { 2371 if (sym.kind == TYP) { 2372 if (sym.type.hasTag(TYPEVAR) && 2373 (staticOnly || (isStatic(env) && sym.owner.kind == TYP))) 2374 // if staticOnly is set, it means that we have recursed through a static declaration, 2375 // so type variable symbols should not be accessible. If staticOnly is unset, but 2376 // we are in a static declaration (field or method), we should not allow type-variables 2377 // defined in the enclosing class to "leak" into this context. 2378 return new StaticError(sym); 2379 return sym; 2380 } 2381 } 2382 return typeNotFound; 2383 } 2384 2385 /** Find an unqualified type symbol. 2386 * @param env The current environment. 2387 * @param name The type's name. 2388 */ 2389 Symbol findType(Env<AttrContext> env, Name name) { 2390 if (name == names.empty) 2391 return typeNotFound; // do not allow inadvertent "lookup" of anonymous types 2392 Symbol bestSoFar = typeNotFound; 2393 Symbol sym; 2394 boolean staticOnly = false; 2395 for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) { 2396 // First, look for a type variable and the first member type 2397 final Symbol tyvar = findTypeVar(env1, name, staticOnly); 2398 if (isStatic(env1)) staticOnly = true; 2399 sym = findImmediateMemberType(env1, env1.enclClass.sym.type, 2400 name, env1.enclClass.sym); 2401 2402 // Return the type variable if we have it, and have no 2403 // immediate member, OR the type variable is for a method. 2404 if (tyvar != typeNotFound) { 2405 if (env.baseClause || sym == typeNotFound || 2406 (tyvar.kind == TYP && tyvar.exists() && 2407 tyvar.owner.kind == MTH)) { 2408 return tyvar; 2409 } 2410 } 2411 2412 // If the environment is a class def, finish up, 2413 // otherwise, do the entire findMemberType 2414 if (sym == typeNotFound) 2415 sym = findInheritedMemberType(env1, env1.enclClass.sym.type, 2416 name, env1.enclClass.sym); 2417 2418 if (staticOnly && sym.kind == TYP && 2419 sym.type.hasTag(CLASS) && 2420 sym.type.getEnclosingType().hasTag(CLASS) && 2421 env1.enclClass.sym.type.isParameterized() && 2422 sym.type.getEnclosingType().isParameterized()) 2423 return new StaticError(sym); 2424 else if (sym.exists()) return sym; 2425 else bestSoFar = bestOf(bestSoFar, sym); 2426 2427 JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass; 2428 if ((encl.sym.flags() & STATIC) != 0) 2429 staticOnly = true; 2430 } 2431 2432 if (!env.tree.hasTag(IMPORT)) { 2433 sym = findGlobalType(env, env.toplevel.namedImportScope, name, namedImportScopeRecovery); 2434 if (sym.exists()) return sym; 2435 else bestSoFar = bestOf(bestSoFar, sym); 2436 2437 sym = findGlobalType(env, env.toplevel.toplevelScope, name, noRecovery); 2438 if (sym.exists()) return sym; 2439 else bestSoFar = bestOf(bestSoFar, sym); 2440 2441 sym = findGlobalType(env, env.toplevel.packge.members(), name, noRecovery); 2442 if (sym.exists()) return sym; 2443 else bestSoFar = bestOf(bestSoFar, sym); 2444 2445 sym = findGlobalType(env, env.toplevel.starImportScope, name, starImportScopeRecovery); 2446 if (sym.exists()) return sym; 2447 else bestSoFar = bestOf(bestSoFar, sym); 2448 2449 sym = findGlobalType(env, env.toplevel.moduleImportScope, name, moduleImportScopeRecovery); 2450 if (sym.exists()) return sym; 2451 2452 else bestSoFar = bestOf(bestSoFar, sym); 2453 } 2454 2455 return bestSoFar; 2456 } 2457 2458 /** Find an unqualified identifier which matches a specified kind set. 2459 * @param pos position on which report warnings, if any; 2460 * null warnings should not be reported 2461 * @param env The current environment. 2462 * @param name The identifier's name. 2463 * @param kind Indicates the possible symbol kinds 2464 * (a subset of VAL, TYP, PCK). 2465 */ 2466 Symbol findIdent(DiagnosticPosition pos, Env<AttrContext> env, Name name, KindSelector kind) { 2467 try { 2468 return checkNonExistentType(checkRestrictedType(pos, findIdentInternal(pos, env, name, kind), name)); 2469 } catch (ClassFinder.BadClassFile err) { 2470 return new BadClassFileError(err); 2471 } catch (CompletionFailure cf) { 2472 chk.completionError(pos, cf); 2473 return typeNotFound; 2474 } 2475 } 2476 2477 Symbol findIdentInternal(DiagnosticPosition pos, Env<AttrContext> env, Name name, KindSelector kind) { 2478 Symbol bestSoFar = typeNotFound; 2479 Symbol sym; 2480 2481 if (kind.contains(KindSelector.VAL)) { 2482 sym = findVar(pos, env, name); 2483 if (sym.exists()) return sym; 2484 else bestSoFar = bestOf(bestSoFar, sym); 2485 } 2486 2487 if (kind.contains(KindSelector.TYP)) { 2488 sym = findType(env, name); 2489 if (sym.exists()) return sym; 2490 else bestSoFar = bestOf(bestSoFar, sym); 2491 } 2492 2493 if (kind.contains(KindSelector.PCK)) 2494 return lookupPackage(env, name); 2495 else return bestSoFar; 2496 } 2497 2498 /** Find an identifier in a package which matches a specified kind set. 2499 * @param pos position on which report warnings, if any; 2500 * null warnings should not be reported 2501 * @param env The current environment. 2502 * @param name The identifier's name. 2503 * @param kind Indicates the possible symbol kinds 2504 * (a nonempty subset of TYP, PCK). 2505 */ 2506 Symbol findIdentInPackage(DiagnosticPosition pos, 2507 Env<AttrContext> env, TypeSymbol pck, 2508 Name name, KindSelector kind) { 2509 return checkNonExistentType(checkRestrictedType(pos, findIdentInPackageInternal(env, pck, name, kind), name)); 2510 } 2511 2512 Symbol findIdentInPackageInternal(Env<AttrContext> env, TypeSymbol pck, 2513 Name name, KindSelector kind) { 2514 Name fullname = TypeSymbol.formFullName(name, pck); 2515 Symbol bestSoFar = typeNotFound; 2516 if (kind.contains(KindSelector.TYP)) { 2517 RecoveryLoadClass recoveryLoadClass = 2518 allowModules && !kind.contains(KindSelector.PCK) && 2519 !pck.exists() && !env.info.attributionMode.isSpeculative ? 2520 doRecoveryLoadClass : noRecovery; 2521 Symbol sym = loadClass(env, fullname, recoveryLoadClass); 2522 if (sym.exists()) { 2523 // don't allow programs to use flatnames 2524 if (name == sym.name) return sym; 2525 } 2526 else bestSoFar = bestOf(bestSoFar, sym); 2527 } 2528 if (kind.contains(KindSelector.PCK)) { 2529 return lookupPackage(env, fullname); 2530 } 2531 return bestSoFar; 2532 } 2533 2534 /** Find an identifier among the members of a given type `site'. 2535 * @param pos position on which report warnings, if any; 2536 * null warnings should not be reported 2537 * @param env The current environment. 2538 * @param site The type containing the symbol to be found. 2539 * @param name The identifier's name. 2540 * @param kind Indicates the possible symbol kinds 2541 * (a subset of VAL, TYP). 2542 */ 2543 Symbol findIdentInType(DiagnosticPosition pos, 2544 Env<AttrContext> env, Type site, 2545 Name name, KindSelector kind) { 2546 try { 2547 return checkNonExistentType(checkRestrictedType(pos, findIdentInTypeInternal(env, site, name, kind), name)); 2548 } catch (ClassFinder.BadClassFile err) { 2549 return new BadClassFileError(err); 2550 } catch (CompletionFailure cf) { 2551 chk.completionError(pos, cf); 2552 return typeNotFound; 2553 } 2554 } 2555 2556 private Symbol checkNonExistentType(Symbol symbol) { 2557 /* Guard against returning a type is not on the class path of the current compilation, 2558 * but *was* on the class path of a separate compilation that produced a class file 2559 * that is on the class path of the current compilation. Such a type will fail completion 2560 * but the completion failure may have been silently swallowed (e.g. missing annotation types) 2561 * with an error stub symbol lingering in the symbol tables. 2562 */ 2563 return symbol instanceof ClassSymbol c && c.type.isErroneous() && c.classfile == null ? typeNotFound : symbol; 2564 } 2565 2566 Symbol findIdentInTypeInternal(Env<AttrContext> env, Type site, 2567 Name name, KindSelector kind) { 2568 Symbol bestSoFar = typeNotFound; 2569 Symbol sym; 2570 if (kind.contains(KindSelector.VAL)) { 2571 sym = findField(env, site, name, site.tsym); 2572 if (sym.exists()) return sym; 2573 else bestSoFar = bestOf(bestSoFar, sym); 2574 } 2575 2576 if (kind.contains(KindSelector.TYP)) { 2577 sym = findMemberType(env, site, name, site.tsym); 2578 if (sym.exists()) return sym; 2579 else bestSoFar = bestOf(bestSoFar, sym); 2580 } 2581 return bestSoFar; 2582 } 2583 2584 private Symbol checkRestrictedType(DiagnosticPosition pos, Symbol bestSoFar, Name name) { 2585 if (bestSoFar.kind == TYP || bestSoFar.kind == ABSENT_TYP) { 2586 if (allowLocalVariableTypeInference && name.equals(names.var)) { 2587 bestSoFar = new BadRestrictedTypeError(names.var); 2588 } else if (name.equals(names.yield)) { 2589 if (allowYieldStatement) { 2590 bestSoFar = new BadRestrictedTypeError(names.yield); 2591 } else if (pos != null) { 2592 log.warning(pos, Warnings.IllegalRefToRestrictedType(names.yield)); 2593 } 2594 } 2595 } 2596 return bestSoFar; 2597 } 2598 2599 /* *************************************************************************** 2600 * Access checking 2601 * The following methods convert ResolveErrors to ErrorSymbols, issuing 2602 * an error message in the process 2603 ****************************************************************************/ 2604 2605 /** If `sym' is a bad symbol: report error and return errSymbol 2606 * else pass through unchanged, 2607 * additional arguments duplicate what has been used in trying to find the 2608 * symbol {@literal (--> flyweight pattern)}. This improves performance since we 2609 * expect misses to happen frequently. 2610 * 2611 * @param sym The symbol that was found, or a ResolveError. 2612 * @param pos The position to use for error reporting. 2613 * @param location The symbol the served as a context for this lookup 2614 * @param site The original type from where the selection took place. 2615 * @param name The symbol's name. 2616 * @param qualified Did we get here through a qualified expression resolution? 2617 * @param argtypes The invocation's value arguments, 2618 * if we looked for a method. 2619 * @param typeargtypes The invocation's type arguments, 2620 * if we looked for a method. 2621 * @param logResolveHelper helper class used to log resolve errors 2622 */ 2623 Symbol accessInternal(Symbol sym, 2624 DiagnosticPosition pos, 2625 Symbol location, 2626 Type site, 2627 Name name, 2628 boolean qualified, 2629 List<Type> argtypes, 2630 List<Type> typeargtypes, 2631 LogResolveHelper logResolveHelper) { 2632 if (sym.kind.isResolutionError()) { 2633 ResolveError errSym = (ResolveError)sym.baseSymbol(); 2634 sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol); 2635 argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes); 2636 if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) { 2637 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes); 2638 } 2639 } 2640 return sym; 2641 } 2642 2643 /** 2644 * Variant of the generalized access routine, to be used for generating method 2645 * resolution diagnostics 2646 */ 2647 Symbol accessMethod(Symbol sym, 2648 DiagnosticPosition pos, 2649 Symbol location, 2650 Type site, 2651 Name name, 2652 boolean qualified, 2653 List<Type> argtypes, 2654 List<Type> typeargtypes) { 2655 return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper); 2656 } 2657 2658 /** Same as original accessMethod(), but without location. 2659 */ 2660 Symbol accessMethod(Symbol sym, 2661 DiagnosticPosition pos, 2662 Type site, 2663 Name name, 2664 boolean qualified, 2665 List<Type> argtypes, 2666 List<Type> typeargtypes) { 2667 return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes); 2668 } 2669 2670 /** 2671 * Variant of the generalized access routine, to be used for generating variable, 2672 * type resolution diagnostics 2673 */ 2674 Symbol accessBase(Symbol sym, 2675 DiagnosticPosition pos, 2676 Symbol location, 2677 Type site, 2678 Name name, 2679 boolean qualified) { 2680 return accessInternal(sym, pos, location, site, name, qualified, List.nil(), null, basicLogResolveHelper); 2681 } 2682 2683 /** Same as original accessBase(), but without location. 2684 */ 2685 Symbol accessBase(Symbol sym, 2686 DiagnosticPosition pos, 2687 Type site, 2688 Name name, 2689 boolean qualified) { 2690 return accessBase(sym, pos, site.tsym, site, name, qualified); 2691 } 2692 2693 interface LogResolveHelper { 2694 boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes); 2695 List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes); 2696 } 2697 2698 LogResolveHelper basicLogResolveHelper = new LogResolveHelper() { 2699 public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) { 2700 return !site.isErroneous(); 2701 } 2702 public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) { 2703 return argtypes; 2704 } 2705 }; 2706 2707 LogResolveHelper silentLogResolveHelper = new LogResolveHelper() { 2708 public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) { 2709 return false; 2710 } 2711 public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) { 2712 return argtypes; 2713 } 2714 }; 2715 2716 LogResolveHelper methodLogResolveHelper = new LogResolveHelper() { 2717 public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) { 2718 return !site.isErroneous() && 2719 !Type.isErroneous(argtypes) && 2720 (typeargtypes == null || !Type.isErroneous(typeargtypes)); 2721 } 2722 public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) { 2723 return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step)); 2724 } 2725 }; 2726 2727 class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap { 2728 2729 public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) { 2730 deferredAttr.super(mode, msym, step); 2731 } 2732 2733 @Override 2734 protected Type typeOf(DeferredType dt, Type pt) { 2735 Type res = super.typeOf(dt, pt); 2736 if (!res.isErroneous()) { 2737 switch (TreeInfo.skipParens(dt.tree).getTag()) { 2738 case LAMBDA: 2739 case REFERENCE: 2740 return dt; 2741 case CONDEXPR: 2742 return res == Type.recoveryType ? 2743 dt : res; 2744 } 2745 } 2746 return res; 2747 } 2748 } 2749 2750 /** Check that sym is not an abstract method. 2751 */ 2752 void checkNonAbstract(DiagnosticPosition pos, Symbol sym) { 2753 if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0) 2754 log.error(pos, 2755 Errors.AbstractCantBeAccessedDirectly(kindName(sym),sym, sym.location())); 2756 } 2757 2758 /* *************************************************************************** 2759 * Name resolution 2760 * Naming conventions are as for symbol lookup 2761 * Unlike the find... methods these methods will report access errors 2762 ****************************************************************************/ 2763 2764 /** Resolve an unqualified (non-method) identifier. 2765 * @param pos The position to use for error reporting. 2766 * @param env The environment current at the identifier use. 2767 * @param name The identifier's name. 2768 * @param kind The set of admissible symbol kinds for the identifier. 2769 */ 2770 Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env, 2771 Name name, KindSelector kind) { 2772 return accessBase( 2773 findIdent(pos, env, name, kind), 2774 pos, env.enclClass.sym.type, name, false); 2775 } 2776 2777 /** Resolve an unqualified method identifier. 2778 * @param pos The position to use for error reporting. 2779 * @param env The environment current at the method invocation. 2780 * @param name The identifier's name. 2781 * @param argtypes The types of the invocation's value arguments. 2782 * @param typeargtypes The types of the invocation's type arguments. 2783 */ 2784 Symbol resolveMethod(DiagnosticPosition pos, 2785 Env<AttrContext> env, 2786 Name name, 2787 List<Type> argtypes, 2788 List<Type> typeargtypes) { 2789 return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck, 2790 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) { 2791 @Override 2792 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 2793 return findFun(env, name, argtypes, typeargtypes, 2794 phase.isBoxingRequired(), 2795 phase.isVarargsRequired()); 2796 }}); 2797 } 2798 2799 /** Resolve a qualified method identifier 2800 * @param pos The position to use for error reporting. 2801 * @param env The environment current at the method invocation. 2802 * @param site The type of the qualifying expression, in which 2803 * identifier is searched. 2804 * @param name The identifier's name. 2805 * @param argtypes The types of the invocation's value arguments. 2806 * @param typeargtypes The types of the invocation's type arguments. 2807 */ 2808 Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env, 2809 Type site, Name name, List<Type> argtypes, 2810 List<Type> typeargtypes) { 2811 return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes); 2812 } 2813 Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env, 2814 Symbol location, Type site, Name name, List<Type> argtypes, 2815 List<Type> typeargtypes) { 2816 return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes); 2817 } 2818 private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext, 2819 DiagnosticPosition pos, Env<AttrContext> env, 2820 Symbol location, Type site, Name name, List<Type> argtypes, 2821 List<Type> typeargtypes) { 2822 return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) { 2823 @Override 2824 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 2825 return findMethod(env, site, name, argtypes, typeargtypes, 2826 phase.isBoxingRequired(), 2827 phase.isVarargsRequired()); 2828 } 2829 @Override 2830 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) { 2831 if (sym.kind.isResolutionError()) { 2832 sym = super.access(env, pos, location, sym); 2833 } else { 2834 MethodSymbol msym = (MethodSymbol)sym; 2835 if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) { 2836 env.info.pendingResolutionPhase = BASIC; 2837 return findPolymorphicSignatureInstance(env, sym, argtypes); 2838 } 2839 } 2840 return sym; 2841 } 2842 }); 2843 } 2844 2845 /** Find or create an implicit method of exactly the given type (after erasure). 2846 * Searches in a side table, not the main scope of the site. 2847 * This emulates the lookup process required by JSR 292 in JVM. 2848 * @param env Attribution environment 2849 * @param spMethod signature polymorphic method - i.e. MH.invokeExact 2850 * @param argtypes The required argument types 2851 */ 2852 Symbol findPolymorphicSignatureInstance(Env<AttrContext> env, 2853 final Symbol spMethod, 2854 List<Type> argtypes) { 2855 Type mtype = infer.instantiatePolymorphicSignatureInstance(env, 2856 (MethodSymbol)spMethod, currentResolutionContext, argtypes); 2857 return findPolymorphicSignatureInstance(spMethod, mtype); 2858 } 2859 2860 Symbol findPolymorphicSignatureInstance(final Symbol spMethod, 2861 Type mtype) { 2862 for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) { 2863 // Check that there is already a method symbol for the method 2864 // type and owner 2865 if (types.isSameType(mtype, sym.type) && 2866 spMethod.owner == sym.owner) { 2867 return sym; 2868 } 2869 } 2870 2871 Type spReturnType = spMethod.asType().getReturnType(); 2872 if (types.isSameType(spReturnType, syms.objectType)) { 2873 // Polymorphic return, pass through mtype 2874 } else if (!types.isSameType(spReturnType, mtype.getReturnType())) { 2875 // Retain the sig poly method's return type, which differs from that of mtype 2876 // Will result in an incompatible return type error 2877 mtype = new MethodType(mtype.getParameterTypes(), 2878 spReturnType, 2879 mtype.getThrownTypes(), 2880 syms.methodClass); 2881 } 2882 2883 // Create the desired method 2884 // Retain static modifier is to support invocations to 2885 // MethodHandle.linkTo* methods 2886 long flags = ABSTRACT | HYPOTHETICAL | 2887 spMethod.flags() & (Flags.AccessFlags | Flags.STATIC); 2888 Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) { 2889 @Override 2890 public Symbol baseSymbol() { 2891 return spMethod; 2892 } 2893 }; 2894 if (!mtype.isErroneous()) { // Cache only if kosher. 2895 polymorphicSignatureScope.enter(msym); 2896 } 2897 return msym; 2898 } 2899 2900 /** Resolve a qualified method identifier, throw a fatal error if not 2901 * found. 2902 * @param pos The position to use for error reporting. 2903 * @param env The environment current at the method invocation. 2904 * @param site The type of the qualifying expression, in which 2905 * identifier is searched. 2906 * @param name The identifier's name. 2907 * @param argtypes The types of the invocation's value arguments. 2908 * @param typeargtypes The types of the invocation's type arguments. 2909 */ 2910 public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env, 2911 Type site, Name name, 2912 List<Type> argtypes, 2913 List<Type> typeargtypes) { 2914 MethodResolutionContext resolveContext = new MethodResolutionContext(); 2915 resolveContext.internalResolution = true; 2916 Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym, 2917 site, name, argtypes, typeargtypes); 2918 if (sym.kind == MTH) return (MethodSymbol)sym; 2919 else throw new FatalError( 2920 diags.fragment(Fragments.FatalErrCantLocateMeth(name))); 2921 } 2922 2923 /** Resolve constructor. 2924 * @param pos The position to use for error reporting. 2925 * @param env The environment current at the constructor invocation. 2926 * @param site The type of class for which a constructor is searched. 2927 * @param argtypes The types of the constructor invocation's value 2928 * arguments. 2929 * @param typeargtypes The types of the constructor invocation's type 2930 * arguments. 2931 */ 2932 Symbol resolveConstructor(DiagnosticPosition pos, 2933 Env<AttrContext> env, 2934 Type site, 2935 List<Type> argtypes, 2936 List<Type> typeargtypes) { 2937 return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes); 2938 } 2939 2940 private Symbol resolveConstructor(MethodResolutionContext resolveContext, 2941 final DiagnosticPosition pos, 2942 Env<AttrContext> env, 2943 Type site, 2944 List<Type> argtypes, 2945 List<Type> typeargtypes) { 2946 return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) { 2947 @Override 2948 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 2949 return findConstructor(pos, env, site, argtypes, typeargtypes, 2950 phase.isBoxingRequired(), 2951 phase.isVarargsRequired()); 2952 } 2953 }); 2954 } 2955 2956 /** Resolve a constructor, throw a fatal error if not found. 2957 * @param pos The position to use for error reporting. 2958 * @param env The environment current at the method invocation. 2959 * @param site The type to be constructed. 2960 * @param argtypes The types of the invocation's value arguments. 2961 * @param typeargtypes The types of the invocation's type arguments. 2962 */ 2963 public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env, 2964 Type site, 2965 List<Type> argtypes, 2966 List<Type> typeargtypes) { 2967 MethodResolutionContext resolveContext = new MethodResolutionContext(); 2968 resolveContext.internalResolution = true; 2969 Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes); 2970 if (sym.kind == MTH) return (MethodSymbol)sym; 2971 else throw new FatalError( 2972 diags.fragment(Fragments.FatalErrCantLocateCtor(site))); 2973 } 2974 2975 Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env, 2976 Type site, List<Type> argtypes, 2977 List<Type> typeargtypes, 2978 boolean allowBoxing, 2979 boolean useVarargs) { 2980 Symbol sym = findMethod(env, site, 2981 names.init, argtypes, 2982 typeargtypes, allowBoxing, 2983 useVarargs); 2984 chk.checkDeprecated(pos, env.info.scope.owner, sym); 2985 chk.checkPreview(pos, env.info.scope.owner, sym); 2986 return sym; 2987 } 2988 2989 /** Resolve constructor using diamond inference. 2990 * @param pos The position to use for error reporting. 2991 * @param env The environment current at the constructor invocation. 2992 * @param site The type of class for which a constructor is searched. 2993 * The scope of this class has been touched in attribution. 2994 * @param argtypes The types of the constructor invocation's value 2995 * arguments. 2996 * @param typeargtypes The types of the constructor invocation's type 2997 * arguments. 2998 */ 2999 Symbol resolveDiamond(DiagnosticPosition pos, 3000 Env<AttrContext> env, 3001 Type site, 3002 List<Type> argtypes, 3003 List<Type> typeargtypes) { 3004 return lookupMethod(env, pos, site.tsym, resolveMethodCheck, 3005 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) { 3006 @Override 3007 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 3008 return findDiamond(pos, env, site, argtypes, typeargtypes, 3009 phase.isBoxingRequired(), 3010 phase.isVarargsRequired()); 3011 } 3012 @Override 3013 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) { 3014 if (sym.kind.isResolutionError()) { 3015 if (sym.kind != WRONG_MTH && 3016 sym.kind != WRONG_MTHS) { 3017 sym = super.access(env, pos, location, sym); 3018 } else { 3019 sym = new DiamondError(sym, currentResolutionContext); 3020 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes); 3021 env.info.pendingResolutionPhase = currentResolutionContext.step; 3022 } 3023 } 3024 return sym; 3025 }}); 3026 } 3027 3028 /** Find the constructor using diamond inference and do some checks(deprecated and preview). 3029 * @param pos The position to use for error reporting. 3030 * @param env The environment current at the constructor invocation. 3031 * @param site The type of class for which a constructor is searched. 3032 * The scope of this class has been touched in attribution. 3033 * @param argtypes The types of the constructor invocation's value arguments. 3034 * @param typeargtypes The types of the constructor invocation's type arguments. 3035 * @param allowBoxing Allow boxing conversions of arguments. 3036 * @param useVarargs Box trailing arguments into an array for varargs. 3037 */ 3038 private Symbol findDiamond(DiagnosticPosition pos, 3039 Env<AttrContext> env, 3040 Type site, 3041 List<Type> argtypes, 3042 List<Type> typeargtypes, 3043 boolean allowBoxing, 3044 boolean useVarargs) { 3045 Symbol sym = findDiamond(env, site, argtypes, typeargtypes, allowBoxing, useVarargs); 3046 chk.checkDeprecated(pos, env.info.scope.owner, sym); 3047 chk.checkPreview(pos, env.info.scope.owner, sym); 3048 return sym; 3049 } 3050 3051 /** This method scans all the constructor symbol in a given class scope - 3052 * assuming that the original scope contains a constructor of the kind: 3053 * {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo, 3054 * a method check is executed against the modified constructor type: 3055 * {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond 3056 * inference. The inferred return type of the synthetic constructor IS 3057 * the inferred type for the diamond operator. 3058 */ 3059 private Symbol findDiamond(Env<AttrContext> env, 3060 Type site, 3061 List<Type> argtypes, 3062 List<Type> typeargtypes, 3063 boolean allowBoxing, 3064 boolean useVarargs) { 3065 Symbol bestSoFar = methodNotFound; 3066 TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym; 3067 for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) { 3068 //- System.out.println(" e " + e.sym); 3069 if (sym.kind == MTH && 3070 (sym.flags_field & SYNTHETIC) == 0) { 3071 List<Type> oldParams = sym.type.hasTag(FORALL) ? 3072 ((ForAll)sym.type).tvars : 3073 List.nil(); 3074 Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams), 3075 types.createMethodTypeWithReturn(sym.type.asMethodType(), site)); 3076 MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) { 3077 @Override 3078 public Symbol baseSymbol() { 3079 return sym; 3080 } 3081 }; 3082 bestSoFar = selectBest(env, site, argtypes, typeargtypes, 3083 newConstr, 3084 bestSoFar, 3085 allowBoxing, 3086 useVarargs); 3087 } 3088 } 3089 return bestSoFar; 3090 } 3091 3092 Symbol getMemberReference(DiagnosticPosition pos, 3093 Env<AttrContext> env, 3094 JCMemberReference referenceTree, 3095 Type site, 3096 Name name) { 3097 3098 site = types.capture(site); 3099 3100 ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper( 3101 referenceTree, site, name, List.nil(), null, VARARITY); 3102 3103 Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup()); 3104 Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym, 3105 nilMethodCheck, lookupHelper); 3106 3107 env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase; 3108 3109 return sym; 3110 } 3111 3112 ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree, 3113 Type site, 3114 Name name, 3115 List<Type> argtypes, 3116 List<Type> typeargtypes, 3117 MethodResolutionPhase maxPhase) { 3118 if (!name.equals(names.init)) { 3119 //method reference 3120 return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase); 3121 } else if (site.hasTag(ARRAY)) { 3122 //array constructor reference 3123 return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase); 3124 } else { 3125 //class constructor reference 3126 return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase); 3127 } 3128 } 3129 3130 /** 3131 * Resolution of member references is typically done as a single 3132 * overload resolution step, where the argument types A are inferred from 3133 * the target functional descriptor. 3134 * 3135 * If the member reference is a method reference with a type qualifier, 3136 * a two-step lookup process is performed. The first step uses the 3137 * expected argument list A, while the second step discards the first 3138 * type from A (which is treated as a receiver type). 3139 * 3140 * There are two cases in which inference is performed: (i) if the member 3141 * reference is a constructor reference and the qualifier type is raw - in 3142 * which case diamond inference is used to infer a parameterization for the 3143 * type qualifier; (ii) if the member reference is an unbound reference 3144 * where the type qualifier is raw - in that case, during the unbound lookup 3145 * the receiver argument type is used to infer an instantiation for the raw 3146 * qualifier type. 3147 * 3148 * When a multi-step resolution process is exploited, the process of picking 3149 * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}. 3150 * 3151 * This routine returns a pair (T,S), where S is the member reference symbol, 3152 * and T is the type of the class in which S is defined. This is necessary as 3153 * the type T might be dynamically inferred (i.e. if constructor reference 3154 * has a raw qualifier). 3155 */ 3156 Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env, 3157 JCMemberReference referenceTree, 3158 Type site, 3159 Name name, 3160 List<Type> argtypes, 3161 List<Type> typeargtypes, 3162 Type descriptor, 3163 MethodCheck methodCheck, 3164 InferenceContext inferenceContext, 3165 ReferenceChooser referenceChooser) { 3166 3167 //step 1 - bound lookup 3168 ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper( 3169 referenceTree, site, name, argtypes, typeargtypes, VARARITY); 3170 Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup()); 3171 MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext(); 3172 boundSearchResolveContext.methodCheck = methodCheck; 3173 Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), 3174 site.tsym, boundSearchResolveContext, boundLookupHelper); 3175 boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names); 3176 ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext, isStaticSelector); 3177 if (dumpMethodReferenceSearchResults) { 3178 dumpMethodReferenceSearchResults(referenceTree, boundSearchResolveContext, boundSym, true); 3179 } 3180 3181 //step 2 - unbound lookup 3182 Symbol unboundSym = methodNotFound; 3183 Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup()); 3184 ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext); 3185 ReferenceLookupResult unboundRes = referenceNotFound; 3186 if (unboundLookupHelper != null) { 3187 MethodResolutionContext unboundSearchResolveContext = 3188 new MethodResolutionContext(); 3189 unboundSearchResolveContext.methodCheck = methodCheck; 3190 unboundSym = lookupMethod(unboundEnv, env.tree.pos(), 3191 site.tsym, unboundSearchResolveContext, unboundLookupHelper); 3192 unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext, isStaticSelector); 3193 if (dumpMethodReferenceSearchResults) { 3194 dumpMethodReferenceSearchResults(referenceTree, unboundSearchResolveContext, unboundSym, false); 3195 } 3196 } 3197 3198 //merge results 3199 Pair<Symbol, ReferenceLookupHelper> res; 3200 ReferenceLookupResult bestRes = referenceChooser.result(boundRes, unboundRes); 3201 res = new Pair<>(bestRes.sym, 3202 bestRes == unboundRes ? unboundLookupHelper : boundLookupHelper); 3203 env.info.pendingResolutionPhase = bestRes == unboundRes ? 3204 unboundEnv.info.pendingResolutionPhase : 3205 boundEnv.info.pendingResolutionPhase; 3206 3207 if (!res.fst.kind.isResolutionError()) { 3208 //handle sigpoly method references 3209 MethodSymbol msym = (MethodSymbol)res.fst; 3210 if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) { 3211 env.info.pendingResolutionPhase = BASIC; 3212 res = new Pair<>(findPolymorphicSignatureInstance(msym, descriptor), res.snd); 3213 } 3214 } 3215 3216 return res; 3217 } 3218 3219 private void dumpMethodReferenceSearchResults(JCMemberReference referenceTree, 3220 MethodResolutionContext resolutionContext, 3221 Symbol bestSoFar, 3222 boolean bound) { 3223 ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>(); 3224 int pos = 0; 3225 int mostSpecificPos = -1; 3226 for (Candidate c : resolutionContext.candidates) { 3227 if (resolutionContext.step != c.step || !c.isApplicable()) { 3228 continue; 3229 } else { 3230 JCDiagnostic subDiag = null; 3231 if (c.sym.type.hasTag(FORALL)) { 3232 subDiag = diags.fragment(Fragments.PartialInstSig(c.mtype)); 3233 } 3234 3235 String key = subDiag == null ? 3236 "applicable.method.found.2" : 3237 "applicable.method.found.3"; 3238 subDiags.append(diags.fragment(key, pos, 3239 c.sym.isStatic() ? Fragments.Static : Fragments.NonStatic, c.sym, subDiag)); 3240 if (c.sym == bestSoFar) 3241 mostSpecificPos = pos; 3242 pos++; 3243 } 3244 } 3245 JCDiagnostic main = diags.note( 3246 log.currentSource(), 3247 referenceTree, 3248 "method.ref.search.results.multi", 3249 bound ? Fragments.Bound : Fragments.Unbound, 3250 referenceTree.toString(), mostSpecificPos); 3251 JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList()); 3252 log.report(d); 3253 } 3254 3255 /** 3256 * This class is used to represent a method reference lookup result. It keeps track of two 3257 * things: (i) the symbol found during a method reference lookup and (ii) the static kind 3258 * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}). 3259 */ 3260 static class ReferenceLookupResult { 3261 3262 /** 3263 * Static kind associated with a method reference lookup. Erroneous lookups end up with 3264 * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC, 3265 * depending on whether all applicable candidates are static or non-static methods, 3266 * respectively. If a successful lookup has both static and non-static applicable methods, 3267 * its kind is set to BOTH. 3268 */ 3269 enum StaticKind { 3270 STATIC, 3271 NON_STATIC, 3272 BOTH, 3273 UNDEFINED; 3274 3275 /** 3276 * Retrieve the static kind associated with a given (method) symbol. 3277 */ 3278 static StaticKind from(Symbol s) { 3279 return s.isStatic() ? 3280 STATIC : NON_STATIC; 3281 } 3282 3283 /** 3284 * Merge two static kinds together. 3285 */ 3286 static StaticKind reduce(StaticKind sk1, StaticKind sk2) { 3287 if (sk1 == UNDEFINED) { 3288 return sk2; 3289 } else if (sk2 == UNDEFINED) { 3290 return sk1; 3291 } else { 3292 return sk1 == sk2 ? sk1 : BOTH; 3293 } 3294 } 3295 } 3296 3297 /** The static kind. */ 3298 StaticKind staticKind; 3299 3300 /** The lookup result. */ 3301 Symbol sym; 3302 3303 ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) { 3304 this(sym, staticKind(sym, resolutionContext, isStaticSelector)); 3305 } 3306 3307 private ReferenceLookupResult(Symbol sym, StaticKind staticKind) { 3308 this.staticKind = staticKind; 3309 this.sym = sym; 3310 } 3311 3312 private static StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext, boolean isStaticSelector) { 3313 if (sym.kind == MTH && !isStaticSelector) { 3314 return StaticKind.from(sym); 3315 } else if (sym.kind == MTH || sym.kind == AMBIGUOUS) { 3316 return resolutionContext.candidates.stream() 3317 .filter(c -> c.isApplicable() && c.step == resolutionContext.step) 3318 .map(c -> StaticKind.from(c.sym)) 3319 .reduce(StaticKind::reduce) 3320 .orElse(StaticKind.UNDEFINED); 3321 } else { 3322 return StaticKind.UNDEFINED; 3323 } 3324 } 3325 3326 /** 3327 * Does this result corresponds to a successful lookup (i.e. one where a method has been found?) 3328 */ 3329 boolean isSuccess() { 3330 return staticKind != StaticKind.UNDEFINED; 3331 } 3332 3333 /** 3334 * Does this result have given static kind? 3335 */ 3336 boolean hasKind(StaticKind sk) { 3337 return this.staticKind == sk; 3338 } 3339 3340 /** 3341 * Error recovery helper: can this lookup result be ignored (for the purpose of returning 3342 * some 'better' result) ? 3343 */ 3344 boolean canIgnore() { 3345 switch (sym.kind) { 3346 case ABSENT_MTH: 3347 return true; 3348 case WRONG_MTH: 3349 InapplicableSymbolError errSym = 3350 (InapplicableSymbolError)sym.baseSymbol(); 3351 return new Template(MethodCheckDiag.ARITY_MISMATCH.regex()) 3352 .matches(errSym.errCandidate().snd); 3353 case WRONG_MTHS: 3354 InapplicableSymbolsError errSyms = 3355 (InapplicableSymbolsError)sym.baseSymbol(); 3356 return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty(); 3357 default: 3358 return false; 3359 } 3360 } 3361 3362 static ReferenceLookupResult error(Symbol sym) { 3363 return new ReferenceLookupResult(sym, StaticKind.UNDEFINED); 3364 } 3365 } 3366 3367 /** 3368 * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup) 3369 * {@code ReferenceLookupResult} objects into a {@code Symbol}, which is then regarded as the 3370 * result of method reference resolution. 3371 */ 3372 abstract class ReferenceChooser { 3373 /** 3374 * Generate a result from a pair of lookup result objects. This method delegates to the 3375 * appropriate result generation routine. 3376 */ 3377 ReferenceLookupResult result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) { 3378 return unboundRes != referenceNotFound ? 3379 unboundResult(boundRes, unboundRes) : 3380 boundResult(boundRes); 3381 } 3382 3383 /** 3384 * Generate a symbol from a given bound lookup result. 3385 */ 3386 abstract ReferenceLookupResult boundResult(ReferenceLookupResult boundRes); 3387 3388 /** 3389 * Generate a symbol from a pair of bound/unbound lookup results. 3390 */ 3391 abstract ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes); 3392 } 3393 3394 /** 3395 * This chooser implements the selection strategy used during a full lookup; this logic 3396 * is described in JLS SE 8 (15.3.2). 3397 */ 3398 ReferenceChooser basicReferenceChooser = new ReferenceChooser() { 3399 3400 @Override 3401 ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) { 3402 return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ? 3403 boundRes : //the search produces a non-static method 3404 ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false)); 3405 } 3406 3407 @Override 3408 ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) { 3409 if (boundRes.isSuccess() && boundRes.sym.isStatic() && 3410 (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) { 3411 //the first search produces a static method and no non-static method is applicable 3412 //during the second search 3413 return boundRes; 3414 } else if (unboundRes.isSuccess() && !unboundRes.sym.isStatic() && 3415 (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) { 3416 //the second search produces a non-static method and no static method is applicable 3417 //during the first search 3418 return unboundRes; 3419 } else if (boundRes.isSuccess() && unboundRes.isSuccess()) { 3420 //both searches produce some result; ambiguity (error recovery) 3421 return ReferenceLookupResult.error(ambiguityError(boundRes.sym, unboundRes.sym)); 3422 } else if (boundRes.isSuccess() || unboundRes.isSuccess()) { 3423 //Both searches failed to produce a result with correct staticness (i.e. first search 3424 //produces an non-static method). Alternatively, a given search produced a result 3425 //with the right staticness, but the other search has applicable methods with wrong 3426 //staticness (error recovery) 3427 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ? 3428 boundRes.sym : unboundRes.sym, true)); 3429 } else { 3430 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery) 3431 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ? 3432 unboundRes : boundRes; 3433 } 3434 } 3435 }; 3436 3437 /** 3438 * This chooser implements the selection strategy used during an arity-based lookup; this logic 3439 * is described in JLS SE 8 (15.12.2.1). 3440 */ 3441 ReferenceChooser structuralReferenceChooser = new ReferenceChooser() { 3442 3443 @Override 3444 ReferenceLookupResult boundResult(ReferenceLookupResult boundRes) { 3445 return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ? 3446 boundRes : //the search has at least one applicable non-static method 3447 ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.sym, false)); 3448 } 3449 3450 @Override 3451 ReferenceLookupResult unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) { 3452 if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) { 3453 //the first search has at least one applicable static method 3454 return boundRes; 3455 } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) { 3456 //the second search has at least one applicable non-static method 3457 return unboundRes; 3458 } else if (boundRes.isSuccess() || unboundRes.isSuccess()) { 3459 //either the first search produces a non-static method, or second search produces 3460 //a non-static method (error recovery) 3461 return ReferenceLookupResult.error(new BadMethodReferenceError(boundRes.isSuccess() ? 3462 boundRes.sym : unboundRes.sym, true)); 3463 } else { 3464 //both searches fail to produce a result - pick 'better' error using heuristics (error recovery) 3465 return (boundRes.canIgnore() && !unboundRes.canIgnore()) ? 3466 unboundRes : boundRes; 3467 } 3468 } 3469 }; 3470 3471 /** 3472 * Helper for defining custom method-like lookup logic; a lookup helper 3473 * provides hooks for (i) the actual lookup logic and (ii) accessing the 3474 * lookup result (this step might result in compiler diagnostics to be generated) 3475 */ 3476 abstract class LookupHelper { 3477 3478 /** name of the symbol to lookup */ 3479 Name name; 3480 3481 /** location in which the lookup takes place */ 3482 Type site; 3483 3484 /** actual types used during the lookup */ 3485 List<Type> argtypes; 3486 3487 /** type arguments used during the lookup */ 3488 List<Type> typeargtypes; 3489 3490 /** Max overload resolution phase handled by this helper */ 3491 MethodResolutionPhase maxPhase; 3492 3493 LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3494 this.name = name; 3495 this.site = site; 3496 this.argtypes = argtypes; 3497 this.typeargtypes = typeargtypes; 3498 this.maxPhase = maxPhase; 3499 } 3500 3501 /** 3502 * Should lookup stop at given phase with given result 3503 */ 3504 final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) { 3505 return phase.ordinal() > maxPhase.ordinal() || 3506 !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS || sym.kind == STATICERR; 3507 } 3508 3509 /** 3510 * Search for a symbol under a given overload resolution phase - this method 3511 * is usually called several times, once per each overload resolution phase 3512 */ 3513 abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase); 3514 3515 /** 3516 * Dump overload resolution info 3517 */ 3518 void debug(DiagnosticPosition pos, Symbol sym) { 3519 //do nothing 3520 } 3521 3522 /** 3523 * Validate the result of the lookup 3524 */ 3525 abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym); 3526 } 3527 3528 abstract class BasicLookupHelper extends LookupHelper { 3529 3530 BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) { 3531 this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY); 3532 } 3533 3534 BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3535 super(name, site, argtypes, typeargtypes, maxPhase); 3536 } 3537 3538 @Override 3539 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) { 3540 if (sym.kind.isResolutionError()) { 3541 //if nothing is found return the 'first' error 3542 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes); 3543 } 3544 return sym; 3545 } 3546 3547 @Override 3548 void debug(DiagnosticPosition pos, Symbol sym) { 3549 reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym); 3550 } 3551 } 3552 3553 /** 3554 * Helper class for member reference lookup. A reference lookup helper 3555 * defines the basic logic for member reference lookup; a method gives 3556 * access to an 'unbound' helper used to perform an unbound member 3557 * reference lookup. 3558 */ 3559 abstract class ReferenceLookupHelper extends LookupHelper { 3560 3561 /** The member reference tree */ 3562 JCMemberReference referenceTree; 3563 3564 ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site, 3565 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3566 super(name, site, argtypes, typeargtypes, maxPhase); 3567 this.referenceTree = referenceTree; 3568 } 3569 3570 /** 3571 * Returns an unbound version of this lookup helper. By default, this 3572 * method returns an dummy lookup helper. 3573 */ 3574 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) { 3575 return null; 3576 } 3577 3578 /** 3579 * Get the kind of the member reference 3580 */ 3581 abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym); 3582 3583 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) { 3584 //skip error reporting 3585 return sym; 3586 } 3587 } 3588 3589 /** 3590 * Helper class for method reference lookup. The lookup logic is based 3591 * upon Resolve.findMethod; in certain cases, this helper class has a 3592 * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper). 3593 * In such cases, non-static lookup results are thrown away. 3594 */ 3595 class MethodReferenceLookupHelper extends ReferenceLookupHelper { 3596 3597 /** The original method reference lookup site. */ 3598 Type originalSite; 3599 3600 MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site, 3601 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3602 super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase); 3603 this.originalSite = site; 3604 } 3605 3606 @Override 3607 final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 3608 return findMethod(env, site, name, argtypes, typeargtypes, 3609 phase.isBoxingRequired(), phase.isVarargsRequired()); 3610 } 3611 3612 @Override 3613 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) { 3614 if (TreeInfo.isStaticSelector(referenceTree.expr, names)) { 3615 if (argtypes.nonEmpty() && 3616 (argtypes.head.hasTag(NONE) || 3617 types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), originalSite))) { 3618 return new UnboundMethodReferenceLookupHelper(referenceTree, name, 3619 originalSite, argtypes, typeargtypes, maxPhase); 3620 } else { 3621 return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) { 3622 @Override 3623 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) { 3624 return this; 3625 } 3626 3627 @Override 3628 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 3629 return methodNotFound; 3630 } 3631 3632 @Override 3633 ReferenceKind referenceKind(Symbol sym) { 3634 Assert.error(); 3635 return null; 3636 } 3637 }; 3638 } 3639 } else { 3640 return super.unboundLookup(inferenceContext); 3641 } 3642 } 3643 3644 @Override 3645 ReferenceKind referenceKind(Symbol sym) { 3646 if (sym.isStatic()) { 3647 return ReferenceKind.STATIC; 3648 } else { 3649 Name selName = TreeInfo.name(referenceTree.getQualifierExpression()); 3650 return selName != null && selName == names._super ? 3651 ReferenceKind.SUPER : 3652 ReferenceKind.BOUND; 3653 } 3654 } 3655 3656 @Override 3657 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) { 3658 if (originalSite.hasTag(TYPEVAR) && sym.kind == MTH) { 3659 sym = (sym.flags() & Flags.PRIVATE) != 0 ? 3660 new AccessError(env, site, sym) : 3661 sym; 3662 return accessBase(sym, pos, location, originalSite, name, true); 3663 } else { 3664 return super.access(env, pos, location, sym); 3665 } 3666 } 3667 } 3668 3669 /** 3670 * Helper class for unbound method reference lookup. Essentially the same 3671 * as the basic method reference lookup helper; main difference is that static 3672 * lookup results are thrown away. If qualifier type is raw, an attempt to 3673 * infer a parameterized type is made using the first actual argument (that 3674 * would otherwise be ignored during the lookup). 3675 */ 3676 class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper { 3677 3678 UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site, 3679 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3680 super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase); 3681 if (site.isRaw() && !argtypes.head.hasTag(NONE)) { 3682 Type asSuperSite = types.asSuper(argtypes.head, site.tsym); 3683 this.site = types.skipTypeVars(asSuperSite, true); 3684 } 3685 } 3686 3687 @Override 3688 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) { 3689 return this; 3690 } 3691 3692 @Override 3693 ReferenceKind referenceKind(Symbol sym) { 3694 return ReferenceKind.UNBOUND; 3695 } 3696 } 3697 3698 /** 3699 * Helper class for array constructor lookup; an array constructor lookup 3700 * is simulated by looking up a method that returns the array type specified 3701 * as qualifier, and that accepts a single int parameter (size of the array). 3702 */ 3703 class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper { 3704 3705 ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes, 3706 List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3707 super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase); 3708 } 3709 3710 @Override 3711 protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 3712 WriteableScope sc = WriteableScope.create(syms.arrayClass); 3713 MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym); 3714 arrayConstr.type = new MethodType(List.of(syms.intType), site, List.nil(), syms.methodClass); 3715 sc.enter(arrayConstr); 3716 return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false); 3717 } 3718 3719 @Override 3720 ReferenceKind referenceKind(Symbol sym) { 3721 return ReferenceKind.ARRAY_CTOR; 3722 } 3723 } 3724 3725 /** 3726 * Helper class for constructor reference lookup. The lookup logic is based 3727 * upon either Resolve.findMethod or Resolve.findDiamond - depending on 3728 * whether the constructor reference needs diamond inference (this is the case 3729 * if the qualifier type is raw). A special erroneous symbol is returned 3730 * if the lookup returns the constructor of an inner class and there's no 3731 * enclosing instance in scope. 3732 */ 3733 class ConstructorReferenceLookupHelper extends ReferenceLookupHelper { 3734 3735 boolean needsInference; 3736 3737 ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes, 3738 List<Type> typeargtypes, MethodResolutionPhase maxPhase) { 3739 super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase); 3740 if (site.isRaw()) { 3741 this.site = new ClassType(site.getEnclosingType(), 3742 !(site.tsym.isInner() && site.getEnclosingType().isRaw()) ? 3743 site.tsym.type.getTypeArguments() : List.nil(), site.tsym, site.getMetadata()); 3744 needsInference = true; 3745 } 3746 } 3747 3748 @Override 3749 protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) { 3750 return needsInference ? 3751 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) : 3752 findMethod(env, site, name, argtypes, typeargtypes, 3753 phase.isBoxingRequired(), phase.isVarargsRequired()); 3754 } 3755 3756 @Override 3757 ReferenceKind referenceKind(Symbol sym) { 3758 return site.getEnclosingType().hasTag(NONE) ? 3759 ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER; 3760 } 3761 } 3762 3763 /** 3764 * Main overload resolution routine. On each overload resolution step, a 3765 * lookup helper class is used to perform the method/constructor lookup; 3766 * at the end of the lookup, the helper is used to validate the results 3767 * (this last step might trigger overload resolution diagnostics). 3768 */ 3769 Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) { 3770 MethodResolutionContext resolveContext = new MethodResolutionContext(); 3771 resolveContext.methodCheck = methodCheck; 3772 return lookupMethod(env, pos, location, resolveContext, lookupHelper); 3773 } 3774 3775 Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, 3776 MethodResolutionContext resolveContext, LookupHelper lookupHelper) { 3777 MethodResolutionContext prevResolutionContext = currentResolutionContext; 3778 try { 3779 Symbol bestSoFar = methodNotFound; 3780 currentResolutionContext = resolveContext; 3781 for (MethodResolutionPhase phase : methodResolutionSteps) { 3782 if (lookupHelper.shouldStop(bestSoFar, phase)) 3783 break; 3784 MethodResolutionPhase prevPhase = currentResolutionContext.step; 3785 Symbol prevBest = bestSoFar; 3786 currentResolutionContext.step = phase; 3787 Symbol sym = lookupHelper.lookup(env, phase); 3788 lookupHelper.debug(pos, sym); 3789 bestSoFar = phase.mergeResults(bestSoFar, sym); 3790 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase; 3791 } 3792 return lookupHelper.access(env, pos, location, bestSoFar); 3793 } finally { 3794 currentResolutionContext = prevResolutionContext; 3795 } 3796 } 3797 3798 /** 3799 * Find a "valid" reference to an enclosing 'A.this' such that A is a subclass of the provided class symbol. 3800 * A reference to an enclosing 'A.this' is "valid" if (a) we're not in the early-construction context for A 3801 * and (b) if the current class is not an inner class of A. 3802 */ 3803 Symbol findSelfContaining(DiagnosticPosition pos, 3804 Env<AttrContext> env, 3805 TypeSymbol c, 3806 boolean isSuper) { 3807 Env<AttrContext> env1 = isSuper ? env.outer : env; 3808 boolean staticOnly = false; 3809 while (env1.outer != null) { 3810 if (isStatic(env1)) staticOnly = true; 3811 if (env1.enclClass.sym.isSubClass(c, types)) { 3812 Symbol sym = env1.info.scope.findFirst(names._this); 3813 if (sym != null) { 3814 if (staticOnly) { 3815 // current class is not an inner class, stop search 3816 return new StaticError(sym); 3817 } else { 3818 // found it 3819 return sym; 3820 } 3821 } 3822 } 3823 if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true; 3824 env1 = env1.outer; 3825 } 3826 return varNotFound; 3827 } 3828 3829 /** 3830 * Resolve the (method) owner of a local class. This can fail if the local class 3831 * is referenced from a static context nested inside the local class. Effectively, 3832 * this lookup succeeds if we can access a local variable declared inside the owner 3833 * method from the provided env. 3834 */ 3835 Symbol findLocalClassOwner(Env<AttrContext> env, TypeSymbol c) { 3836 Symbol owner = c.owner; 3837 Assert.check(owner.kind == MTH || owner.kind == VAR); 3838 Env<AttrContext> env1 = env; 3839 boolean staticOnly = false; 3840 while (env1.outer != null) { 3841 if (env1.info.scope.owner == owner) { 3842 return (staticOnly) ? 3843 new BadLocalClassCreation(c) : 3844 owner; 3845 } 3846 if (isStatic(env1)) staticOnly = true; 3847 env1 = env1.outer; 3848 } 3849 return owner.kind == MTH ? 3850 methodNotFound : 3851 varNotFound; 3852 } 3853 3854 /** 3855 * Resolve `c.name' where name == this or name == super. 3856 * @param pos The position to use for error reporting. 3857 * @param env The environment current at the expression. 3858 * @param c The type of the selected expression 3859 * @param tree The expression 3860 */ 3861 Symbol resolveSelf(DiagnosticPosition pos, 3862 Env<AttrContext> env, 3863 TypeSymbol c, 3864 JCFieldAccess tree) { 3865 Name name = tree.name; 3866 Assert.check(name == names._this || name == names._super); 3867 Env<AttrContext> env1 = env; 3868 boolean staticOnly = false; 3869 while (env1.outer != null) { 3870 if (isStatic(env1)) staticOnly = true; 3871 if (env1.enclClass.sym == c) { 3872 Symbol sym = env1.info.scope.findFirst(name); 3873 if (sym != null) { 3874 if (staticOnly) 3875 sym = new StaticError(sym); 3876 return accessBase(sym, pos, env.enclClass.sym.type, 3877 name, true); 3878 } 3879 } 3880 if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true; 3881 env1 = env1.outer; 3882 } 3883 if (c.isInterface() && 3884 name == names._super && !isStatic(env) && 3885 types.isDirectSuperInterface(c, env.enclClass.sym)) { 3886 //this might be a default super call if one of the superinterfaces is 'c' 3887 for (Type t : pruneInterfaces(env.enclClass.type)) { 3888 if (t.tsym == c) { 3889 env.info.defaultSuperCallSite = t; 3890 return new VarSymbol(0, names._super, 3891 types.asSuper(env.enclClass.type, c), env.enclClass.sym); 3892 } 3893 } 3894 //find a direct supertype that is a subtype of 'c' 3895 for (Type i : types.directSupertypes(env.enclClass.type)) { 3896 if (i.tsym.isSubClass(c, types) && i.tsym != c) { 3897 log.error(pos, 3898 Errors.IllegalDefaultSuperCall(c, 3899 Fragments.RedundantSupertype(c, i))); 3900 return syms.errSymbol; 3901 } 3902 } 3903 Assert.error(); 3904 } 3905 log.error(pos, Errors.NotEnclClass(c)); 3906 return syms.errSymbol; 3907 } 3908 //where 3909 private List<Type> pruneInterfaces(Type t) { 3910 ListBuffer<Type> result = new ListBuffer<>(); 3911 for (Type t1 : types.interfaces(t)) { 3912 boolean shouldAdd = true; 3913 for (Type t2 : types.directSupertypes(t)) { 3914 if (t1 != t2 && !t2.hasTag(ERROR) && types.isSubtypeNoCapture(t2, t1)) { 3915 shouldAdd = false; 3916 } 3917 } 3918 if (shouldAdd) { 3919 result.append(t1); 3920 } 3921 } 3922 return result.toList(); 3923 } 3924 3925 /* *************************************************************************** 3926 * ResolveError classes, indicating error situations when accessing symbols 3927 ****************************************************************************/ 3928 3929 //used by TransTypes when checking target type of synthetic cast 3930 public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) { 3931 AccessError error = new AccessError(env, env.enclClass.type, type.tsym); 3932 logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null); 3933 } 3934 //where 3935 private void logResolveError(ResolveError error, 3936 DiagnosticPosition pos, 3937 Symbol location, 3938 Type site, 3939 Name name, 3940 List<Type> argtypes, 3941 List<Type> typeargtypes) { 3942 JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 3943 pos, location, site, name, argtypes, typeargtypes); 3944 if (d != null) { 3945 d.setFlag(DiagnosticFlag.RESOLVE_ERROR); 3946 log.report(d); 3947 } 3948 } 3949 3950 private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args"); 3951 3952 public Object methodArguments(List<Type> argtypes) { 3953 if (argtypes == null || argtypes.isEmpty()) { 3954 return noArgs; 3955 } else { 3956 ListBuffer<Object> diagArgs = new ListBuffer<>(); 3957 for (Type t : argtypes) { 3958 if (t.hasTag(DEFERRED)) { 3959 diagArgs.append(((DeferredAttr.DeferredType)t).tree); 3960 } else { 3961 diagArgs.append(t); 3962 } 3963 } 3964 return diagArgs; 3965 } 3966 } 3967 3968 /** check if a type is a subtype of Serializable, if that is available.*/ 3969 boolean isSerializable(Type t) { 3970 try { 3971 syms.serializableType.complete(); 3972 } 3973 catch (CompletionFailure e) { 3974 return false; 3975 } 3976 return types.isSubtype(t, syms.serializableType); 3977 } 3978 3979 /** 3980 * Root class for resolution errors. Subclass of ResolveError 3981 * represent a different kinds of resolution error - as such they must 3982 * specify how they map into concrete compiler diagnostics. 3983 */ 3984 abstract class ResolveError extends Symbol { 3985 3986 /** The name of the kind of error, for debugging only. */ 3987 final String debugName; 3988 3989 ResolveError(Kind kind, String debugName) { 3990 super(kind, 0, null, null, null); 3991 this.debugName = debugName; 3992 } 3993 3994 @Override @DefinedBy(Api.LANGUAGE_MODEL) 3995 public <R, P> R accept(ElementVisitor<R, P> v, P p) { 3996 throw new AssertionError(); 3997 } 3998 3999 @Override 4000 public String toString() { 4001 return debugName; 4002 } 4003 4004 @Override 4005 public boolean exists() { 4006 return false; 4007 } 4008 4009 @Override 4010 public boolean isStatic() { 4011 return false; 4012 } 4013 4014 /** 4015 * Create an external representation for this erroneous symbol to be 4016 * used during attribution - by default this returns the symbol of a 4017 * brand new error type which stores the original type found 4018 * during resolution. 4019 * 4020 * @param name the name used during resolution 4021 * @param location the location from which the symbol is accessed 4022 */ 4023 protected Symbol access(Name name, TypeSymbol location) { 4024 return types.createErrorType(name, location, syms.errSymbol.type).tsym; 4025 } 4026 4027 /** 4028 * Create a diagnostic representing this resolution error. 4029 * 4030 * @param dkind The kind of the diagnostic to be created (e.g error). 4031 * @param pos The position to be used for error reporting. 4032 * @param site The original type from where the selection took place. 4033 * @param name The name of the symbol to be resolved. 4034 * @param argtypes The invocation's value arguments, 4035 * if we looked for a method. 4036 * @param typeargtypes The invocation's type arguments, 4037 * if we looked for a method. 4038 */ 4039 abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4040 DiagnosticPosition pos, 4041 Symbol location, 4042 Type site, 4043 Name name, 4044 List<Type> argtypes, 4045 List<Type> typeargtypes); 4046 } 4047 4048 /** 4049 * This class is the root class of all resolution errors caused by 4050 * an invalid symbol being found during resolution. 4051 */ 4052 abstract class InvalidSymbolError extends ResolveError { 4053 4054 /** The invalid symbol found during resolution */ 4055 Symbol sym; 4056 4057 InvalidSymbolError(Kind kind, Symbol sym, String debugName) { 4058 super(kind, debugName); 4059 this.sym = sym; 4060 } 4061 4062 @Override 4063 public boolean exists() { 4064 return true; 4065 } 4066 4067 @Override 4068 public String toString() { 4069 return super.toString() + " wrongSym=" + sym; 4070 } 4071 4072 @Override 4073 public Symbol access(Name name, TypeSymbol location) { 4074 if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP)) 4075 return types.createErrorType(name, location, sym.type).tsym; 4076 else 4077 return sym; 4078 } 4079 } 4080 4081 class BadRestrictedTypeError extends ResolveError { 4082 private final Name typeName; 4083 BadRestrictedTypeError(Name typeName) { 4084 super(Kind.BAD_RESTRICTED_TYPE, "bad var use"); 4085 this.typeName = typeName; 4086 } 4087 4088 @Override 4089 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) { 4090 return diags.create(dkind, log.currentSource(), pos, "illegal.ref.to.restricted.type", typeName); 4091 } 4092 } 4093 4094 /** 4095 * InvalidSymbolError error class indicating that a symbol matching a 4096 * given name does not exists in a given site. 4097 */ 4098 class SymbolNotFoundError extends ResolveError { 4099 4100 SymbolNotFoundError(Kind kind) { 4101 this(kind, "symbol not found error"); 4102 } 4103 4104 SymbolNotFoundError(Kind kind, String debugName) { 4105 super(kind, debugName); 4106 } 4107 4108 @Override 4109 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4110 DiagnosticPosition pos, 4111 Symbol location, 4112 Type site, 4113 Name name, 4114 List<Type> argtypes, 4115 List<Type> typeargtypes) { 4116 argtypes = argtypes == null ? List.nil() : argtypes; 4117 typeargtypes = typeargtypes == null ? List.nil() : typeargtypes; 4118 if (name == names.error) 4119 return null; 4120 4121 boolean hasLocation = false; 4122 if (location == null) { 4123 location = site.tsym; 4124 } 4125 if (!location.name.isEmpty()) { 4126 if (location.kind == PCK && !site.tsym.exists() && location.name != names.java) { 4127 return diags.create(dkind, log.currentSource(), pos, 4128 "doesnt.exist", location); 4129 } 4130 hasLocation = !location.name.equals(names._this) && 4131 !location.name.equals(names._super); 4132 } 4133 boolean isConstructor = name == names.init; 4134 KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind(); 4135 Name idname = isConstructor ? site.tsym.name : name; 4136 String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation); 4137 if (hasLocation) { 4138 return diags.create(dkind, log.currentSource(), pos, 4139 errKey, kindname, idname, //symbol kindname, name 4140 typeargtypes, args(argtypes), //type parameters and arguments (if any) 4141 getLocationDiag(location, site)); //location kindname, type 4142 } 4143 else { 4144 return diags.create(dkind, log.currentSource(), pos, 4145 errKey, kindname, idname, //symbol kindname, name 4146 typeargtypes, args(argtypes)); //type parameters and arguments (if any) 4147 } 4148 } 4149 //where 4150 private Object args(List<Type> args) { 4151 return args.isEmpty() ? args : methodArguments(args); 4152 } 4153 4154 private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) { 4155 String key = "cant.resolve"; 4156 String suffix = hasLocation ? ".location" : ""; 4157 switch (kindname) { 4158 case METHOD: 4159 case CONSTRUCTOR: { 4160 suffix += ".args"; 4161 suffix += hasTypeArgs ? ".params" : ""; 4162 } 4163 } 4164 return key + suffix; 4165 } 4166 private JCDiagnostic getLocationDiag(Symbol location, Type site) { 4167 if (location.kind == VAR) { 4168 return diags.fragment(Fragments.Location1(kindName(location), 4169 location, 4170 location.type)); 4171 } else { 4172 return diags.fragment(Fragments.Location(typeKindName(site), 4173 site, 4174 null)); 4175 } 4176 } 4177 } 4178 4179 /** 4180 * InvalidSymbolError error class indicating that a given symbol 4181 * (either a method, a constructor or an operand) is not applicable 4182 * given an actual arguments/type argument list. 4183 */ 4184 class InapplicableSymbolError extends ResolveError { 4185 4186 protected MethodResolutionContext resolveContext; 4187 4188 InapplicableSymbolError(MethodResolutionContext context) { 4189 this(WRONG_MTH, "inapplicable symbol error", context); 4190 } 4191 4192 protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) { 4193 super(kind, debugName); 4194 this.resolveContext = context; 4195 } 4196 4197 @Override 4198 public String toString() { 4199 return super.toString(); 4200 } 4201 4202 @Override 4203 public boolean exists() { 4204 return true; 4205 } 4206 4207 @Override 4208 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4209 DiagnosticPosition pos, 4210 Symbol location, 4211 Type site, 4212 Name name, 4213 List<Type> argtypes, 4214 List<Type> typeargtypes) { 4215 if (name == names.error) 4216 return null; 4217 4218 Pair<Symbol, JCDiagnostic> c = errCandidate(); 4219 Symbol ws = c.fst.asMemberOf(site, types); 4220 UnaryOperator<JCDiagnostic> rewriter = compactMethodDiags ? 4221 d -> MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd) : null; 4222 4223 // If the problem is due to type arguments, then the method parameters aren't relevant, 4224 // so use the error message that omits them to avoid confusion. 4225 switch (c.snd.getCode()) { 4226 case "compiler.misc.wrong.number.type.args": 4227 case "compiler.misc.explicit.param.do.not.conform.to.bounds": 4228 return diags.create(dkind, log.currentSource(), pos, 4229 "cant.apply.symbol.noargs", 4230 rewriter, 4231 kindName(ws), 4232 ws.name == names.init ? ws.owner.name : ws.name, 4233 ws.owner.type, 4234 c.snd); 4235 default: 4236 // Avoid saying "constructor Array in class Array" 4237 if (ws.owner == syms.arrayClass && ws.name == names.init) { 4238 return diags.create(dkind, log.currentSource(), pos, 4239 "cant.apply.array.ctor", 4240 rewriter, 4241 methodArguments(ws.type.getParameterTypes()), 4242 methodArguments(argtypes), 4243 c.snd); 4244 } 4245 return diags.create(dkind, log.currentSource(), pos, 4246 "cant.apply.symbol", 4247 rewriter, 4248 kindName(ws), 4249 ws.name == names.init ? ws.owner.name : ws.name, 4250 methodArguments(ws.type.getParameterTypes()), 4251 methodArguments(argtypes), 4252 kindName(ws.owner), 4253 ws.owner.type, 4254 c.snd); 4255 } 4256 } 4257 4258 @Override 4259 public Symbol access(Name name, TypeSymbol location) { 4260 Pair<Symbol, JCDiagnostic> cand = errCandidate(); 4261 TypeSymbol errSymbol = types.createErrorType(name, location, cand != null ? cand.fst.type : syms.errSymbol.type).tsym; 4262 if (cand != null) { 4263 attrRecover.wrongMethodSymbolCandidate(errSymbol, cand.fst, cand.snd); 4264 } 4265 return errSymbol; 4266 } 4267 4268 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4269 Candidate bestSoFar = null; 4270 for (Candidate c : resolveContext.candidates) { 4271 if (c.isApplicable()) continue; 4272 bestSoFar = c; 4273 } 4274 Assert.checkNonNull(bestSoFar); 4275 return new Pair<>(bestSoFar.sym, bestSoFar.details); 4276 } 4277 } 4278 4279 /** 4280 * ResolveError error class indicating that a symbol (either methods, constructors or operand) 4281 * is not applicable given an actual arguments/type argument list. 4282 */ 4283 class InapplicableSymbolsError extends InapplicableSymbolError { 4284 4285 InapplicableSymbolsError(MethodResolutionContext context) { 4286 super(WRONG_MTHS, "inapplicable symbols", context); 4287 } 4288 4289 @Override 4290 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4291 DiagnosticPosition pos, 4292 Symbol location, 4293 Type site, 4294 Name name, 4295 List<Type> argtypes, 4296 List<Type> typeargtypes) { 4297 Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates(); 4298 Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ? 4299 filterCandidates(candidatesMap) : 4300 mapCandidates(); 4301 if (filteredCandidates.isEmpty()) { 4302 filteredCandidates = candidatesMap; 4303 } 4304 boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size(); 4305 if (filteredCandidates.size() > 1) { 4306 JCDiagnostic err = diags.create(dkind, 4307 null, 4308 truncatedDiag ? 4309 EnumSet.of(DiagnosticFlag.COMPRESSED) : 4310 EnumSet.noneOf(DiagnosticFlag.class), 4311 log.currentSource(), 4312 pos, 4313 "cant.apply.symbols", 4314 name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(), 4315 name == names.init ? site.tsym.name : name, 4316 methodArguments(argtypes)); 4317 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site)); 4318 } else if (filteredCandidates.size() == 1) { 4319 Map.Entry<Symbol, JCDiagnostic> _e = 4320 filteredCandidates.entrySet().iterator().next(); 4321 final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue()); 4322 JCDiagnostic d = new InapplicableSymbolError(resolveContext) { 4323 @Override 4324 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4325 return p; 4326 } 4327 }.getDiagnostic(dkind, pos, 4328 location, site, name, argtypes, typeargtypes); 4329 if (truncatedDiag) { 4330 d.setFlag(DiagnosticFlag.COMPRESSED); 4331 } 4332 return d; 4333 } else { 4334 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos, 4335 location, site, name, argtypes, typeargtypes); 4336 } 4337 } 4338 //where 4339 private Map<Symbol, JCDiagnostic> mapCandidates() { 4340 MostSpecificMap candidates = new MostSpecificMap(); 4341 for (Candidate c : resolveContext.candidates) { 4342 if (c.isApplicable()) continue; 4343 candidates.put(c); 4344 } 4345 return candidates; 4346 } 4347 4348 @SuppressWarnings("serial") 4349 private class MostSpecificMap extends LinkedHashMap<Symbol, JCDiagnostic> { 4350 private void put(Candidate c) { 4351 ListBuffer<Symbol> overridden = new ListBuffer<>(); 4352 for (Symbol s : keySet()) { 4353 if (s == c.sym) { 4354 continue; 4355 } 4356 if (c.sym.overrides(s, (TypeSymbol)s.owner, types, false)) { 4357 overridden.add(s); 4358 } else if (s.overrides(c.sym, (TypeSymbol)c.sym.owner, types, false)) { 4359 return; 4360 } 4361 } 4362 for (Symbol s : overridden) { 4363 remove(s); 4364 } 4365 put(c.sym, c.details); 4366 } 4367 } 4368 4369 Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) { 4370 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>(); 4371 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) { 4372 JCDiagnostic d = _entry.getValue(); 4373 if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) { 4374 candidates.put(_entry.getKey(), d); 4375 } 4376 } 4377 return candidates; 4378 } 4379 4380 private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) { 4381 List<JCDiagnostic> details = List.nil(); 4382 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) { 4383 Symbol sym = _entry.getKey(); 4384 JCDiagnostic detailDiag = 4385 diags.fragment(Fragments.InapplicableMethod(Kinds.kindName(sym), 4386 sym.location(site, types), 4387 sym.asMemberOf(site, types), 4388 _entry.getValue())); 4389 details = details.prepend(detailDiag); 4390 } 4391 //typically members are visited in reverse order (see Scope) 4392 //so we need to reverse the candidate list so that candidates 4393 //conform to source order 4394 return details; 4395 } 4396 4397 @Override 4398 protected Pair<Symbol, JCDiagnostic> errCandidate() { 4399 Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates(); 4400 Map<Symbol, JCDiagnostic> filteredCandidates = filterCandidates(candidatesMap); 4401 if (filteredCandidates.size() == 1) { 4402 return Pair.of(filteredCandidates.keySet().iterator().next(), 4403 filteredCandidates.values().iterator().next()); 4404 } 4405 return null; 4406 } 4407 } 4408 4409 /** 4410 * DiamondError error class indicating that a constructor symbol is not applicable 4411 * given an actual arguments/type argument list using diamond inference. 4412 */ 4413 class DiamondError extends InapplicableSymbolError { 4414 4415 Symbol sym; 4416 4417 public DiamondError(Symbol sym, MethodResolutionContext context) { 4418 super(sym.kind, "diamondError", context); 4419 this.sym = sym; 4420 } 4421 4422 JCDiagnostic getDetails() { 4423 return (sym.kind == WRONG_MTH) ? 4424 ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd : 4425 null; 4426 } 4427 4428 @Override 4429 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, 4430 Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) { 4431 JCDiagnostic details = getDetails(); 4432 if (details != null && compactMethodDiags) { 4433 JCDiagnostic simpleDiag = 4434 MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details); 4435 if (simpleDiag != null) { 4436 return simpleDiag; 4437 } 4438 } 4439 String key = details == null ? 4440 "cant.apply.diamond" : 4441 "cant.apply.diamond.1"; 4442 return diags.create(dkind, log.currentSource(), pos, key, 4443 Fragments.Diamond(site.tsym), details); 4444 } 4445 } 4446 4447 /** 4448 * An InvalidSymbolError error class indicating that a symbol is not 4449 * accessible from a given site 4450 */ 4451 class AccessError extends InvalidSymbolError { 4452 4453 private Env<AttrContext> env; 4454 private Type site; 4455 4456 AccessError(Env<AttrContext> env, Type site, Symbol sym) { 4457 super(HIDDEN, sym, "access error"); 4458 this.env = env; 4459 this.site = site; 4460 } 4461 4462 @Override 4463 public boolean exists() { 4464 return false; 4465 } 4466 4467 @Override 4468 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4469 DiagnosticPosition pos, 4470 Symbol location, 4471 Type site, 4472 Name name, 4473 List<Type> argtypes, 4474 List<Type> typeargtypes) { 4475 if (sym.name == names.init && sym.owner != site.tsym) { 4476 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, 4477 pos, location, site, name, argtypes, typeargtypes); 4478 } 4479 else if ((sym.flags() & PUBLIC) != 0 4480 || (env != null && this.site != null 4481 && !isAccessible(env, this.site))) { 4482 if (sym.owner.kind == PCK) { 4483 return diags.create(dkind, log.currentSource(), 4484 pos, "not.def.access.package.cant.access", 4485 sym, sym.location(), inaccessiblePackageReason(env, sym.packge())); 4486 } else if ( sym.packge() != syms.rootPackage 4487 && !symbolPackageVisible(env, sym)) { 4488 return diags.create(dkind, log.currentSource(), 4489 pos, "not.def.access.class.intf.cant.access.reason", 4490 sym, sym.location(), sym.location().packge(), 4491 inaccessiblePackageReason(env, sym.packge())); 4492 } else { 4493 return diags.create(dkind, log.currentSource(), 4494 pos, "not.def.access.class.intf.cant.access", 4495 sym, sym.location()); 4496 } 4497 } 4498 else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) { 4499 return diags.create(dkind, log.currentSource(), 4500 pos, "report.access", sym, 4501 asFlagSet(sym.flags() & (PRIVATE | PROTECTED)), 4502 sym.location()); 4503 } 4504 else { 4505 return diags.create(dkind, log.currentSource(), 4506 pos, "not.def.public.cant.access", sym, sym.location()); 4507 } 4508 } 4509 4510 private String toString(Type type) { 4511 StringBuilder sb = new StringBuilder(); 4512 sb.append(type); 4513 if (type != null) { 4514 sb.append("[tsym:").append(type.tsym); 4515 if (type.tsym != null) 4516 sb.append("packge:").append(type.tsym.packge()); 4517 sb.append("]"); 4518 } 4519 return sb.toString(); 4520 } 4521 } 4522 4523 class InvisibleSymbolError extends InvalidSymbolError { 4524 4525 private final Env<AttrContext> env; 4526 private final boolean suppressError; 4527 4528 InvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) { 4529 super(HIDDEN, sym, "invisible class error"); 4530 this.env = env; 4531 this.suppressError = suppressError; 4532 this.name = sym.name; 4533 } 4534 4535 @Override 4536 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4537 DiagnosticPosition pos, 4538 Symbol location, 4539 Type site, 4540 Name name, 4541 List<Type> argtypes, 4542 List<Type> typeargtypes) { 4543 if (suppressError) 4544 return null; 4545 4546 if (sym.kind == PCK) { 4547 JCDiagnostic details = inaccessiblePackageReason(env, sym.packge()); 4548 return diags.create(dkind, log.currentSource(), 4549 pos, "package.not.visible", sym, details); 4550 } 4551 4552 JCDiagnostic details = inaccessiblePackageReason(env, sym.packge()); 4553 4554 if (pos.getTree() != null) { 4555 Symbol o = sym; 4556 JCTree tree = pos.getTree(); 4557 4558 while (o.kind != PCK && tree.hasTag(SELECT)) { 4559 o = o.owner; 4560 tree = ((JCFieldAccess) tree).selected; 4561 } 4562 4563 if (o.kind == PCK) { 4564 pos = tree.pos(); 4565 4566 return diags.create(dkind, log.currentSource(), 4567 pos, "package.not.visible", o, details); 4568 } 4569 } 4570 4571 return diags.create(dkind, log.currentSource(), 4572 pos, "not.def.access.package.cant.access", sym, sym.packge(), details); 4573 } 4574 } 4575 4576 JCDiagnostic inaccessiblePackageReason(Env<AttrContext> env, PackageSymbol sym) { 4577 //no dependency: 4578 if (!env.toplevel.modle.readModules.contains(sym.modle)) { 4579 //does not read: 4580 if (sym.modle != syms.unnamedModule) { 4581 if (env.toplevel.modle != syms.unnamedModule) { 4582 return diags.fragment(Fragments.NotDefAccessDoesNotRead(env.toplevel.modle, 4583 sym, 4584 sym.modle)); 4585 } else { 4586 return diags.fragment(Fragments.NotDefAccessDoesNotReadFromUnnamed(sym, 4587 sym.modle)); 4588 } 4589 } else { 4590 return diags.fragment(Fragments.NotDefAccessDoesNotReadUnnamed(sym, 4591 env.toplevel.modle)); 4592 } 4593 } else { 4594 if (sym.packge().modle.exports.stream().anyMatch(e -> e.packge == sym)) { 4595 //not exported to this module: 4596 if (env.toplevel.modle != syms.unnamedModule) { 4597 return diags.fragment(Fragments.NotDefAccessNotExportedToModule(sym, 4598 sym.modle, 4599 env.toplevel.modle)); 4600 } else { 4601 return diags.fragment(Fragments.NotDefAccessNotExportedToModuleFromUnnamed(sym, 4602 sym.modle)); 4603 } 4604 } else { 4605 //not exported: 4606 if (env.toplevel.modle != syms.unnamedModule) { 4607 return diags.fragment(Fragments.NotDefAccessNotExported(sym, 4608 sym.modle)); 4609 } else { 4610 return diags.fragment(Fragments.NotDefAccessNotExportedFromUnnamed(sym, 4611 sym.modle)); 4612 } 4613 } 4614 } 4615 } 4616 4617 /** 4618 * InvalidSymbolError error class indicating that an instance member 4619 * has erroneously been accessed from a static context. 4620 */ 4621 class StaticError extends InvalidSymbolError { 4622 4623 StaticError(Symbol sym) { 4624 this(sym, "static error"); 4625 } 4626 4627 StaticError(Symbol sym, String debugName) { 4628 super(STATICERR, sym, debugName); 4629 } 4630 4631 @Override 4632 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4633 DiagnosticPosition pos, 4634 Symbol location, 4635 Type site, 4636 Name name, 4637 List<Type> argtypes, 4638 List<Type> typeargtypes) { 4639 Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS)) 4640 ? types.erasure(sym.type).tsym 4641 : sym); 4642 return diags.create(dkind, log.currentSource(), pos, 4643 "non-static.cant.be.ref", kindName(sym), errSym); 4644 } 4645 } 4646 4647 /** 4648 * Specialization of {@link StaticError} for illegal 4649 * creation of local class instances from a static context. 4650 */ 4651 class BadLocalClassCreation extends StaticError { 4652 BadLocalClassCreation(Symbol sym) { 4653 super(sym, "bad local class creation"); 4654 } 4655 4656 @Override 4657 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4658 DiagnosticPosition pos, 4659 Symbol location, 4660 Type site, 4661 Name name, 4662 List<Type> argtypes, 4663 List<Type> typeargtypes) { 4664 return diags.create(dkind, log.currentSource(), pos, 4665 "local.cant.be.inst.static", kindName(sym), sym); 4666 } 4667 } 4668 4669 /** 4670 * Specialization of {@link InvalidSymbolError} for illegal 4671 * early accesses within a constructor prologue. 4672 */ 4673 class RefBeforeCtorCalledError extends StaticError { 4674 4675 RefBeforeCtorCalledError(Symbol sym) { 4676 super(sym, "prologue error"); 4677 } 4678 4679 @Override 4680 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4681 DiagnosticPosition pos, 4682 Symbol location, 4683 Type site, 4684 Name name, 4685 List<Type> argtypes, 4686 List<Type> typeargtypes) { 4687 Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS)) 4688 ? types.erasure(sym.type).tsym 4689 : sym); 4690 return diags.create(dkind, log.currentSource(), pos, 4691 "cant.ref.before.ctor.called", errSym); 4692 } 4693 } 4694 4695 /** 4696 * InvalidSymbolError error class indicating that a pair of symbols 4697 * (either methods, constructors or operands) are ambiguous 4698 * given an actual arguments/type argument list. 4699 */ 4700 class AmbiguityError extends ResolveError { 4701 4702 /** The other maximally specific symbol */ 4703 List<Symbol> ambiguousSyms = List.nil(); 4704 4705 @Override 4706 public boolean exists() { 4707 return true; 4708 } 4709 4710 AmbiguityError(Symbol sym1, Symbol sym2) { 4711 super(AMBIGUOUS, "ambiguity error"); 4712 ambiguousSyms = flatten(sym2).appendList(flatten(sym1)); 4713 } 4714 4715 private List<Symbol> flatten(Symbol sym) { 4716 if (sym.kind == AMBIGUOUS) { 4717 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms; 4718 } else { 4719 return List.of(sym); 4720 } 4721 } 4722 4723 AmbiguityError addAmbiguousSymbol(Symbol s) { 4724 ambiguousSyms = ambiguousSyms.prepend(s); 4725 return this; 4726 } 4727 4728 @Override 4729 JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind, 4730 DiagnosticPosition pos, 4731 Symbol location, 4732 Type site, 4733 Name name, 4734 List<Type> argtypes, 4735 List<Type> typeargtypes) { 4736 List<Symbol> diagSyms = ambiguousSyms.reverse(); 4737 Symbol s1 = diagSyms.head; 4738 Symbol s2 = diagSyms.tail.head; 4739 Name sname = s1.name; 4740 if (sname == names.init) sname = s1.owner.name; 4741 return diags.create(dkind, log.currentSource(), 4742 pos, "ref.ambiguous", sname, 4743 kindName(s1), 4744 s1, 4745 s1.location(site, types), 4746 kindName(s2), 4747 s2, 4748 s2.location(site, types)); 4749 } 4750 4751 /** 4752 * If multiple applicable methods are found during overload and none of them 4753 * is more specific than the others, attempt to merge their signatures. 4754 */ 4755 Symbol mergeAbstracts(Type site) { 4756 List<Symbol> ambiguousInOrder = ambiguousSyms.reverse(); 4757 return types.mergeAbstracts(ambiguousInOrder, site, true).orElse(this); 4758 } 4759 4760 @Override 4761 protected Symbol access(Name name, TypeSymbol location) { 4762 Symbol firstAmbiguity = ambiguousSyms.last(); 4763 return firstAmbiguity.kind == TYP ? 4764 types.createErrorType(name, location, firstAmbiguity.type).tsym : 4765 firstAmbiguity; 4766 } 4767 } 4768 4769 class BadVarargsMethod extends ResolveError { 4770 4771 ResolveError delegatedError; 4772 4773 BadVarargsMethod(ResolveError delegatedError) { 4774 super(delegatedError.kind, "badVarargs"); 4775 this.delegatedError = delegatedError; 4776 } 4777 4778 @Override 4779 public Symbol baseSymbol() { 4780 return delegatedError.baseSymbol(); 4781 } 4782 4783 @Override 4784 protected Symbol access(Name name, TypeSymbol location) { 4785 return delegatedError.access(name, location); 4786 } 4787 4788 @Override 4789 public boolean exists() { 4790 return true; 4791 } 4792 4793 @Override 4794 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) { 4795 return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes); 4796 } 4797 } 4798 4799 /** 4800 * BadMethodReferenceError error class indicating that a method reference symbol has been found, 4801 * but with the wrong staticness. 4802 */ 4803 class BadMethodReferenceError extends StaticError { 4804 4805 boolean unboundLookup; 4806 4807 public BadMethodReferenceError(Symbol sym, boolean unboundLookup) { 4808 super(sym, "bad method ref error"); 4809 this.unboundLookup = unboundLookup; 4810 } 4811 4812 @Override 4813 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) { 4814 final String key; 4815 if (!unboundLookup) { 4816 key = "bad.static.method.in.bound.lookup"; 4817 } else if (sym.isStatic()) { 4818 key = "bad.static.method.in.unbound.lookup"; 4819 } else { 4820 key = "bad.instance.method.in.unbound.lookup"; 4821 } 4822 return sym.kind.isResolutionError() ? 4823 ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) : 4824 diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym); 4825 } 4826 } 4827 4828 class BadClassFileError extends InvalidSymbolError { 4829 4830 private final CompletionFailure ex; 4831 4832 public BadClassFileError(CompletionFailure ex) { 4833 super(HIDDEN, ex.sym, "BadClassFileError"); 4834 this.name = sym.name; 4835 this.ex = ex; 4836 } 4837 4838 @Override 4839 JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) { 4840 JCDiagnostic d = diags.create(dkind, log.currentSource(), pos, 4841 "cant.access", ex.sym, ex.getDetailValue()); 4842 4843 d.setFlag(DiagnosticFlag.NON_DEFERRABLE); 4844 return d; 4845 } 4846 4847 } 4848 4849 /** 4850 * Helper class for method resolution diagnostic simplification. 4851 * Certain resolution diagnostic are rewritten as simpler diagnostic 4852 * where the enclosing resolution diagnostic (i.e. 'inapplicable method') 4853 * is stripped away, as it doesn't carry additional info. The logic 4854 * for matching a given diagnostic is given in terms of a template 4855 * hierarchy: a diagnostic template can be specified programmatically, 4856 * so that only certain diagnostics are matched. Each templete is then 4857 * associated with a rewriter object that carries out the task of rewtiting 4858 * the diagnostic to a simpler one. 4859 */ 4860 static class MethodResolutionDiagHelper { 4861 4862 /** 4863 * A diagnostic rewriter transforms a method resolution diagnostic 4864 * into a simpler one 4865 */ 4866 interface DiagnosticRewriter { 4867 JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags, 4868 DiagnosticPosition preferredPos, DiagnosticSource preferredSource, 4869 DiagnosticType preferredKind, JCDiagnostic d); 4870 } 4871 4872 /** 4873 * A diagnostic template is made up of two ingredients: (i) a regular 4874 * expression for matching a diagnostic key and (ii) a list of sub-templates 4875 * for matching diagnostic arguments. 4876 */ 4877 static class Template { 4878 4879 /** regex used to match diag key */ 4880 String regex; 4881 4882 /** templates used to match diagnostic args */ 4883 Template[] subTemplates; 4884 4885 Template(String key, Template... subTemplates) { 4886 this.regex = key; 4887 this.subTemplates = subTemplates; 4888 } 4889 4890 /** 4891 * Returns true if the regex matches the diagnostic key and if 4892 * all diagnostic arguments are matches by corresponding sub-templates. 4893 */ 4894 boolean matches(Object o) { 4895 JCDiagnostic d = (JCDiagnostic)o; 4896 Object[] args = d.getArgs(); 4897 if (!d.getCode().matches(regex) || 4898 subTemplates.length != d.getArgs().length) { 4899 return false; 4900 } 4901 for (int i = 0; i < args.length ; i++) { 4902 if (!subTemplates[i].matches(args[i])) { 4903 return false; 4904 } 4905 } 4906 return true; 4907 } 4908 } 4909 4910 /** 4911 * Common rewriter for all argument mismatch simplifications. 4912 */ 4913 static class ArgMismatchRewriter implements DiagnosticRewriter { 4914 4915 /** the index of the subdiagnostic to be used as primary. */ 4916 int causeIndex; 4917 4918 public ArgMismatchRewriter(int causeIndex) { 4919 this.causeIndex = causeIndex; 4920 } 4921 4922 @Override 4923 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags, 4924 DiagnosticPosition preferredPos, DiagnosticSource preferredSource, 4925 DiagnosticType preferredKind, JCDiagnostic d) { 4926 JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex]; 4927 DiagnosticPosition pos = d.getDiagnosticPosition(); 4928 if (pos == null) { 4929 pos = preferredPos; 4930 } 4931 return diags.create(preferredKind, preferredSource, pos, 4932 "prob.found.req", cause); 4933 } 4934 } 4935 4936 /** a dummy template that match any diagnostic argument */ 4937 static final Template skip = new Template("") { 4938 @Override 4939 boolean matches(Object d) { 4940 return true; 4941 } 4942 }; 4943 4944 /** template for matching inference-free arguments mismatch failures */ 4945 static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip); 4946 4947 /** template for matching inference related arguments mismatch failures */ 4948 static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) { 4949 @Override 4950 boolean matches(Object o) { 4951 if (!super.matches(o)) { 4952 return false; 4953 } 4954 JCDiagnostic d = (JCDiagnostic)o; 4955 @SuppressWarnings("unchecked") 4956 List<Type> tvars = (List<Type>)d.getArgs()[0]; 4957 return !containsAny(d, tvars); 4958 } 4959 4960 BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> { 4961 if (o instanceof Type type) { 4962 return type.containsAny(ts); 4963 } else if (o instanceof JCDiagnostic diagnostic) { 4964 return containsAny(diagnostic, ts); 4965 } else { 4966 return false; 4967 } 4968 }; 4969 4970 boolean containsAny(JCDiagnostic d, List<Type> ts) { 4971 return Stream.of(d.getArgs()) 4972 .anyMatch(o -> containsPredicate.test(o, ts)); 4973 } 4974 }; 4975 4976 /** rewriter map used for method resolution simplification */ 4977 static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>(); 4978 4979 static { 4980 rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0)); 4981 rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1)); 4982 } 4983 4984 /** 4985 * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it, 4986 * and rewrite it accordingly. 4987 */ 4988 static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source, 4989 DiagnosticType dkind, JCDiagnostic d) { 4990 for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) { 4991 if (_entry.getKey().matches(d)) { 4992 JCDiagnostic simpleDiag = 4993 _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d); 4994 simpleDiag.setFlag(DiagnosticFlag.COMPRESSED); 4995 return simpleDiag; 4996 } 4997 } 4998 return null; 4999 } 5000 } 5001 5002 enum MethodResolutionPhase { 5003 BASIC(false, false), 5004 BOX(true, false), 5005 VARARITY(true, true) { 5006 @Override 5007 public Symbol mergeResults(Symbol bestSoFar, Symbol sym) { 5008 //Check invariants (see {@code LookupHelper.shouldStop}) 5009 Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS); 5010 if (!sym.kind.isResolutionError()) { 5011 //varargs resolution successful 5012 return sym; 5013 } else { 5014 //pick best error 5015 switch (bestSoFar.kind) { 5016 case WRONG_MTH: 5017 case WRONG_MTHS: 5018 //Override previous errors if they were caused by argument mismatch. 5019 //This generally means preferring current symbols - but we need to pay 5020 //attention to the fact that the varargs lookup returns 'less' candidates 5021 //than the previous rounds, and adjust that accordingly. 5022 switch (sym.kind) { 5023 case WRONG_MTH: 5024 //if the previous round matched more than one method, return that 5025 //result instead 5026 return bestSoFar.kind == WRONG_MTHS ? 5027 bestSoFar : sym; 5028 case ABSENT_MTH: 5029 //do not override erroneous symbol if the arity lookup did not 5030 //match any method 5031 return bestSoFar; 5032 case WRONG_MTHS: 5033 default: 5034 //safe to override 5035 return sym; 5036 } 5037 default: 5038 //otherwise, return first error 5039 return bestSoFar; 5040 } 5041 } 5042 } 5043 }; 5044 5045 final boolean isBoxingRequired; 5046 final boolean isVarargsRequired; 5047 5048 MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) { 5049 this.isBoxingRequired = isBoxingRequired; 5050 this.isVarargsRequired = isVarargsRequired; 5051 } 5052 5053 public boolean isBoxingRequired() { 5054 return isBoxingRequired; 5055 } 5056 5057 public boolean isVarargsRequired() { 5058 return isVarargsRequired; 5059 } 5060 5061 public Symbol mergeResults(Symbol prev, Symbol sym) { 5062 return sym; 5063 } 5064 } 5065 5066 final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY); 5067 5068 /** 5069 * A resolution context is used to keep track of intermediate results of 5070 * overload resolution, such as list of method that are not applicable 5071 * (used to generate more precise diagnostics) and so on. Resolution contexts 5072 * can be nested - this means that when each overload resolution routine should 5073 * work within the resolution context it created. 5074 */ 5075 class MethodResolutionContext { 5076 5077 private List<Candidate> candidates = List.nil(); 5078 5079 MethodResolutionPhase step = null; 5080 5081 MethodCheck methodCheck = resolveMethodCheck; 5082 5083 private boolean internalResolution = false; 5084 private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE; 5085 5086 void addInapplicableCandidate(Symbol sym, JCDiagnostic details) { 5087 Candidate c = new Candidate(currentResolutionContext.step, sym, details, null); 5088 candidates = candidates.append(c); 5089 } 5090 5091 void addApplicableCandidate(Symbol sym, Type mtype) { 5092 Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype); 5093 candidates = candidates.append(c); 5094 } 5095 5096 DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) { 5097 DeferredAttrContext parent = (pendingResult == null) 5098 ? deferredAttr.emptyDeferredAttrContext 5099 : pendingResult.checkContext.deferredAttrContext(); 5100 return deferredAttr.new DeferredAttrContext(attrMode, sym, step, 5101 inferenceContext, parent, warn); 5102 } 5103 5104 /** 5105 * This class represents an overload resolution candidate. There are two 5106 * kinds of candidates: applicable methods and inapplicable methods; 5107 * applicable methods have a pointer to the instantiated method type, 5108 * while inapplicable candidates contain further details about the 5109 * reason why the method has been considered inapplicable. 5110 */ 5111 class Candidate { 5112 5113 final MethodResolutionPhase step; 5114 final Symbol sym; 5115 final JCDiagnostic details; 5116 final Type mtype; 5117 5118 private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) { 5119 this.step = step; 5120 this.sym = sym; 5121 this.details = details; 5122 this.mtype = mtype; 5123 } 5124 5125 boolean isApplicable() { 5126 return mtype != null; 5127 } 5128 } 5129 5130 DeferredAttr.AttrMode attrMode() { 5131 return attrMode; 5132 } 5133 } 5134 5135 MethodResolutionContext currentResolutionContext = null; 5136 }