1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import java.util.HashMap;
  29 import java.util.Map;
  30 import java.util.Set;
  31 
  32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  33 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 import com.sun.tools.javac.code.*;
  38 import com.sun.tools.javac.code.Attribute.TypeCompound;
  39 import com.sun.tools.javac.code.Symbol.VarSymbol;
  40 import com.sun.tools.javac.comp.*;
  41 import com.sun.tools.javac.tree.*;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Type.*;
  45 import com.sun.tools.javac.jvm.Code.*;
  46 import com.sun.tools.javac.jvm.Items.*;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.EndPosTable;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 
  51 import static com.sun.tools.javac.code.Flags.*;
  52 import static com.sun.tools.javac.code.Kinds.Kind.*;
  53 import static com.sun.tools.javac.code.TypeTag.*;
  54 import static com.sun.tools.javac.jvm.ByteCodes.*;
  55 import static com.sun.tools.javac.jvm.CRTFlags.*;
  56 import static com.sun.tools.javac.main.Option.*;
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Gen extends JCTree.Visitor {
  67     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  68 
  69     private final Log log;
  70     private final Symtab syms;
  71     private final Check chk;
  72     private final Resolve rs;
  73     private final TreeMaker make;
  74     private final Names names;
  75     private final Target target;
  76     private final String accessDollar;
  77     private final Types types;
  78     private final Lower lower;
  79     private final Annotate annotate;
  80     private final StringConcat concat;
  81 
  82     /** Format of stackmap tables to be generated. */
  83     private final Code.StackMapFormat stackMap;
  84 
  85     /** A type that serves as the expected type for all method expressions.
  86      */
  87     private final Type methodType;
  88 
  89     public static Gen instance(Context context) {
  90         Gen instance = context.get(genKey);
  91         if (instance == null)
  92             instance = new Gen(context);
  93         return instance;
  94     }
  95 
  96     /** Constant pool writer, set by genClass.
  97      */
  98     final PoolWriter poolWriter;
  99 
 100     @SuppressWarnings("this-escape")
 101     protected Gen(Context context) {
 102         context.put(genKey, this);
 103 
 104         names = Names.instance(context);
 105         log = Log.instance(context);
 106         syms = Symtab.instance(context);
 107         chk = Check.instance(context);
 108         rs = Resolve.instance(context);
 109         make = TreeMaker.instance(context);
 110         target = Target.instance(context);
 111         types = Types.instance(context);
 112         concat = StringConcat.instance(context);
 113 
 114         methodType = new MethodType(null, null, null, syms.methodClass);
 115         accessDollar = "access" + target.syntheticNameChar();
 116         lower = Lower.instance(context);
 117 
 118         Options options = Options.instance(context);
 119         lineDebugInfo =
 120             options.isUnset(G_CUSTOM) ||
 121             options.isSet(G_CUSTOM, "lines");
 122         varDebugInfo =
 123             options.isUnset(G_CUSTOM)
 124             ? options.isSet(G)
 125             : options.isSet(G_CUSTOM, "vars");
 126         genCrt = options.isSet(XJCOV);
 127         debugCode = options.isSet("debug.code");
 128         disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
 129         poolWriter = new PoolWriter(types, names);
 130 
 131         // ignore cldc because we cannot have both stackmap formats
 132         this.stackMap = StackMapFormat.JSR202;
 133         annotate = Annotate.instance(context);
 134         qualifiedSymbolCache = new HashMap<>();
 135     }
 136 
 137     /** Switches
 138      */
 139     private final boolean lineDebugInfo;
 140     private final boolean varDebugInfo;
 141     private final boolean genCrt;
 142     private final boolean debugCode;
 143     private boolean disableVirtualizedPrivateInvoke;
 144 
 145     /** Code buffer, set by genMethod.
 146      */
 147     private Code code;
 148 
 149     /** Items structure, set by genMethod.
 150      */
 151     private Items items;
 152 
 153     /** Environment for symbol lookup, set by genClass
 154      */
 155     private Env<AttrContext> attrEnv;
 156 
 157     /** The top level tree.
 158      */
 159     private JCCompilationUnit toplevel;
 160 
 161     /** The number of code-gen errors in this class.
 162      */
 163     private int nerrs = 0;
 164 
 165     /** An object containing mappings of syntax trees to their
 166      *  ending source positions.
 167      */
 168     EndPosTable endPosTable;
 169 
 170     boolean inCondSwitchExpression;
 171     Chain switchExpressionTrueChain;
 172     Chain switchExpressionFalseChain;
 173     List<LocalItem> stackBeforeSwitchExpression;
 174     LocalItem switchResult;
 175     Set<JCMethodInvocation> invocationsWithPatternMatchingCatch = Set.of();
 176     ListBuffer<int[]> patternMatchingInvocationRanges;
 177 
 178     /** Cache the symbol to reflect the qualifying type.
 179      *  key: corresponding type
 180      *  value: qualified symbol
 181      */
 182     Map<Type, Symbol> qualifiedSymbolCache;
 183 
 184     /** Generate code to load an integer constant.
 185      *  @param n     The integer to be loaded.
 186      */
 187     void loadIntConst(int n) {
 188         items.makeImmediateItem(syms.intType, n).load();
 189     }
 190 
 191     /** The opcode that loads a zero constant of a given type code.
 192      *  @param tc   The given type code (@see ByteCode).
 193      */
 194     public static int zero(int tc) {
 195         switch(tc) {
 196         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 197             return iconst_0;
 198         case LONGcode:
 199             return lconst_0;
 200         case FLOATcode:
 201             return fconst_0;
 202         case DOUBLEcode:
 203             return dconst_0;
 204         default:
 205             throw new AssertionError("zero");
 206         }
 207     }
 208 
 209     /** The opcode that loads a one constant of a given type code.
 210      *  @param tc   The given type code (@see ByteCode).
 211      */
 212     public static int one(int tc) {
 213         return zero(tc) + 1;
 214     }
 215 
 216     /** Generate code to load -1 of the given type code (either int or long).
 217      *  @param tc   The given type code (@see ByteCode).
 218      */
 219     void emitMinusOne(int tc) {
 220         if (tc == LONGcode) {
 221             items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
 222         } else {
 223             code.emitop0(iconst_m1);
 224         }
 225     }
 226 
 227     /** Construct a symbol to reflect the qualifying type that should
 228      *  appear in the byte code as per JLS 13.1.
 229      *
 230      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 231      *  for those cases where we need to work around VM bugs).
 232      *
 233      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 234      *  non-accessible class, clone it with the qualifier class as owner.
 235      *
 236      *  @param sym    The accessed symbol
 237      *  @param site   The qualifier's type.
 238      */
 239     Symbol binaryQualifier(Symbol sym, Type site) {
 240 
 241         if (site.hasTag(ARRAY)) {
 242             if (sym == syms.lengthVar ||
 243                 sym.owner != syms.arrayClass)
 244                 return sym;
 245             // array clone can be qualified by the array type in later targets
 246             Symbol qualifier;
 247             if ((qualifier = qualifiedSymbolCache.get(site)) == null) {
 248                 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol);
 249                 qualifiedSymbolCache.put(site, qualifier);
 250             }
 251             return sym.clone(qualifier);
 252         }
 253 
 254         if (sym.owner == site.tsym ||
 255             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 256             return sym;
 257         }
 258 
 259         // leave alone methods inherited from Object
 260         // JLS 13.1.
 261         if (sym.owner == syms.objectType.tsym)
 262             return sym;
 263 
 264         return sym.clone(site.tsym);
 265     }
 266 
 267     /** Insert a reference to given type in the constant pool,
 268      *  checking for an array with too many dimensions;
 269      *  return the reference's index.
 270      *  @param type   The type for which a reference is inserted.
 271      */
 272     int makeRef(DiagnosticPosition pos, Type type) {
 273         return poolWriter.putClass(checkDimension(pos, type));
 274     }
 275 
 276     /** Check if the given type is an array with too many dimensions.
 277      */
 278     private Type checkDimension(DiagnosticPosition pos, Type t) {
 279         checkDimensionInternal(pos, t);
 280         return t;
 281     }
 282 
 283     private void checkDimensionInternal(DiagnosticPosition pos, Type t) {
 284         switch (t.getTag()) {
 285         case METHOD:
 286             checkDimension(pos, t.getReturnType());
 287             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 288                 checkDimension(pos, args.head);
 289             break;
 290         case ARRAY:
 291             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 292                 log.error(pos, Errors.LimitDimensions);
 293                 nerrs++;
 294             }
 295             break;
 296         default:
 297             break;
 298         }
 299     }
 300 
 301     /** Create a temporary variable.
 302      *  @param type   The variable's type.
 303      */
 304     LocalItem makeTemp(Type type) {
 305         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 306                                     names.empty,
 307                                     type,
 308                                     env.enclMethod.sym);
 309         code.newLocal(v);
 310         return items.makeLocalItem(v);
 311     }
 312 
 313     /** Generate code to call a non-private method or constructor.
 314      *  @param pos         Position to be used for error reporting.
 315      *  @param site        The type of which the method is a member.
 316      *  @param name        The method's name.
 317      *  @param argtypes    The method's argument types.
 318      *  @param isStatic    A flag that indicates whether we call a
 319      *                     static or instance method.
 320      */
 321     void callMethod(DiagnosticPosition pos,
 322                     Type site, Name name, List<Type> argtypes,
 323                     boolean isStatic) {
 324         Symbol msym = rs.
 325             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 326         if (isStatic) items.makeStaticItem(msym).invoke();
 327         else items.makeMemberItem(msym, name == names.init).invoke();
 328     }
 329 
 330     /** Is the given method definition an access method
 331      *  resulting from a qualified super? This is signified by an odd
 332      *  access code.
 333      */
 334     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 335         return
 336             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 337             isOddAccessName(enclMethod.name);
 338     }
 339 
 340     /** Does given name start with "access$" and end in an odd digit?
 341      */
 342     private boolean isOddAccessName(Name name) {
 343         final String string = name.toString();
 344         return
 345             string.startsWith(accessDollar) &&
 346             (string.charAt(string.length() - 1) & 1) != 0;
 347     }
 348 
 349 /* ************************************************************************
 350  * Non-local exits
 351  *************************************************************************/
 352 
 353     /** Generate code to invoke the finalizer associated with given
 354      *  environment.
 355      *  Any calls to finalizers are appended to the environments `cont' chain.
 356      *  Mark beginning of gap in catch all range for finalizer.
 357      */
 358     void genFinalizer(Env<GenContext> env) {
 359         if (code.isAlive() && env.info.finalize != null)
 360             env.info.finalize.gen();
 361     }
 362 
 363     /** Generate code to call all finalizers of structures aborted by
 364      *  a non-local
 365      *  exit.  Return target environment of the non-local exit.
 366      *  @param target      The tree representing the structure that's aborted
 367      *  @param env         The environment current at the non-local exit.
 368      */
 369     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 370         Env<GenContext> env1 = env;
 371         while (true) {
 372             genFinalizer(env1);
 373             if (env1.tree == target) break;
 374             env1 = env1.next;
 375         }
 376         return env1;
 377     }
 378 
 379     /** Mark end of gap in catch-all range for finalizer.
 380      *  @param env   the environment which might contain the finalizer
 381      *               (if it does, env.info.gaps != null).
 382      */
 383     void endFinalizerGap(Env<GenContext> env) {
 384         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 385             env.info.gaps.append(code.curCP());
 386     }
 387 
 388     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 389      *  lying between, and including to two environments.
 390      *  @param from    the most deeply nested environment to mark
 391      *  @param to      the least deeply nested environment to mark
 392      */
 393     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 394         Env<GenContext> last = null;
 395         while (last != to) {
 396             endFinalizerGap(from);
 397             last = from;
 398             from = from.next;
 399         }
 400     }
 401 
 402     /** Do any of the structures aborted by a non-local exit have
 403      *  finalizers that require an empty stack?
 404      *  @param target      The tree representing the structure that's aborted
 405      *  @param env         The environment current at the non-local exit.
 406      */
 407     boolean hasFinally(JCTree target, Env<GenContext> env) {
 408         while (env.tree != target) {
 409             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 410                 return true;
 411             env = env.next;
 412         }
 413         return false;
 414     }
 415 
 416 /* ************************************************************************
 417  * Normalizing class-members.
 418  *************************************************************************/
 419 
 420     /** Distribute member initializer code into constructors and {@code <clinit>}
 421      *  method.
 422      *  @param defs         The list of class member declarations.
 423      *  @param c            The enclosing class.
 424      */
 425     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 426         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 427         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 428         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 429         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 430         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 431         // Sort definitions into three listbuffers:
 432         //  - initCode for instance initializers
 433         //  - clinitCode for class initializers
 434         //  - methodDefs for method definitions
 435         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 436             JCTree def = l.head;
 437             switch (def.getTag()) {
 438             case BLOCK:
 439                 JCBlock block = (JCBlock)def;
 440                 if ((block.flags & STATIC) != 0)
 441                     clinitCode.append(block);
 442                 else if ((block.flags & SYNTHETIC) == 0)
 443                     initCode.append(block);
 444                 break;
 445             case METHODDEF:
 446                 methodDefs.append(def);
 447                 break;
 448             case VARDEF:
 449                 JCVariableDecl vdef = (JCVariableDecl) def;
 450                 VarSymbol sym = vdef.sym;
 451                 checkDimension(vdef.pos(), sym.type);
 452                 if (vdef.init != null) {
 453                     if ((sym.flags() & STATIC) == 0) {
 454                         // Always initialize instance variables.
 455                         JCStatement init = make.at(vdef.pos()).
 456                             Assignment(sym, vdef.init);
 457                         initCode.append(init);
 458                         endPosTable.replaceTree(vdef, init);
 459                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 460                     } else if (sym.getConstValue() == null) {
 461                         // Initialize class (static) variables only if
 462                         // they are not compile-time constants.
 463                         JCStatement init = make.at(vdef.pos).
 464                             Assignment(sym, vdef.init);
 465                         clinitCode.append(init);
 466                         endPosTable.replaceTree(vdef, init);
 467                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 468                     } else {
 469                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 470                         /* if the init contains a reference to an external class, add it to the
 471                          * constant's pool
 472                          */
 473                         vdef.init.accept(classReferenceVisitor);
 474                     }
 475                 }
 476                 break;
 477             default:
 478                 Assert.error();
 479             }
 480         }
 481         // Insert any instance initializers into all constructors.
 482         if (initCode.length() != 0) {
 483             List<JCStatement> inits = initCode.toList();
 484             initTAs.addAll(c.getInitTypeAttributes());
 485             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 486             for (JCTree t : methodDefs) {
 487                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 488             }
 489         }
 490         // If there are class initializers, create a <clinit> method
 491         // that contains them as its body.
 492         if (clinitCode.length() != 0) {
 493             MethodSymbol clinit = new MethodSymbol(
 494                 STATIC | (c.flags() & STRICTFP),
 495                 names.clinit,
 496                 new MethodType(
 497                     List.nil(), syms.voidType,
 498                     List.nil(), syms.methodClass),
 499                 c);
 500             c.members().enter(clinit);
 501             List<JCStatement> clinitStats = clinitCode.toList();
 502             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 503             block.endpos = TreeInfo.endPos(clinitStats.last());
 504             methodDefs.append(make.MethodDef(clinit, block));
 505 
 506             if (!clinitTAs.isEmpty())
 507                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 508             if (!c.getClassInitTypeAttributes().isEmpty())
 509                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 510         }
 511         // Return all method definitions.
 512         return methodDefs.toList();
 513     }
 514 
 515     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 516         List<TypeCompound> tas = sym.getRawTypeAttributes();
 517         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 518         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 519         for (TypeCompound ta : tas) {
 520             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 521             if (ta.getPosition().type == TargetType.FIELD) {
 522                 fieldTAs.add(ta);
 523             } else {
 524                 nonfieldTAs.add(ta);
 525             }
 526         }
 527         sym.setTypeAttributes(fieldTAs.toList());
 528         return nonfieldTAs.toList();
 529     }
 530 
 531     /** Check a constant value and report if it is a string that is
 532      *  too large.
 533      */
 534     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 535         if (nerrs != 0 || // only complain about a long string once
 536             constValue == null ||
 537             !(constValue instanceof String str) ||
 538             str.length() < PoolWriter.MAX_STRING_LENGTH)
 539             return;
 540         log.error(pos, Errors.LimitString);
 541         nerrs++;
 542     }
 543 
 544     /** Insert instance initializer code into constructors prior to the super() call.
 545      *  @param md        The tree potentially representing a
 546      *                   constructor's definition.
 547      *  @param initCode  The list of instance initializer statements.
 548      *  @param initTAs  Type annotations from the initializer expression.
 549      */
 550     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 551         if (TreeInfo.isConstructor(md) && TreeInfo.hasConstructorCall(md, names._super)) {
 552             // We are seeing a constructor that has a super() call.
 553             // Find the super() invocation and append the given initializer code.
 554             TreeInfo.mapSuperCalls(md.body, supercall -> make.Block(0, initCode.prepend(supercall)));
 555 
 556             if (md.body.endpos == Position.NOPOS)
 557                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 558 
 559             md.sym.appendUniqueTypeAttributes(initTAs);
 560         }
 561     }
 562 
 563 /* ************************************************************************
 564  * Traversal methods
 565  *************************************************************************/
 566 
 567     /** Visitor argument: The current environment.
 568      */
 569     Env<GenContext> env;
 570 
 571     /** Visitor argument: The expected type (prototype).
 572      */
 573     Type pt;
 574 
 575     /** Visitor result: The item representing the computed value.
 576      */
 577     Item result;
 578 
 579     /** Visitor method: generate code for a definition, catching and reporting
 580      *  any completion failures.
 581      *  @param tree    The definition to be visited.
 582      *  @param env     The environment current at the definition.
 583      */
 584     public void genDef(JCTree tree, Env<GenContext> env) {
 585         Env<GenContext> prevEnv = this.env;
 586         try {
 587             this.env = env;
 588             tree.accept(this);
 589         } catch (CompletionFailure ex) {
 590             chk.completionError(tree.pos(), ex);
 591         } finally {
 592             this.env = prevEnv;
 593         }
 594     }
 595 
 596     /** Derived visitor method: check whether CharacterRangeTable
 597      *  should be emitted, if so, put a new entry into CRTable
 598      *  and call method to generate bytecode.
 599      *  If not, just call method to generate bytecode.
 600      *  @see    #genStat(JCTree, Env)
 601      *
 602      *  @param  tree     The tree to be visited.
 603      *  @param  env      The environment to use.
 604      *  @param  crtFlags The CharacterRangeTable flags
 605      *                   indicating type of the entry.
 606      */
 607     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 608         if (!genCrt) {
 609             genStat(tree, env);
 610             return;
 611         }
 612         int startpc = code.curCP();
 613         genStat(tree, env);
 614         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 615         code.crt.put(tree, crtFlags, startpc, code.curCP());
 616     }
 617 
 618     /** Derived visitor method: generate code for a statement.
 619      */
 620     public void genStat(JCTree tree, Env<GenContext> env) {
 621         if (code.isAlive()) {
 622             code.statBegin(tree.pos);
 623             genDef(tree, env);
 624         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 625             // variables whose declarations are in a switch
 626             // can be used even if the decl is unreachable.
 627             code.newLocal(((JCVariableDecl) tree).sym);
 628         }
 629     }
 630 
 631     /** Derived visitor method: check whether CharacterRangeTable
 632      *  should be emitted, if so, put a new entry into CRTable
 633      *  and call method to generate bytecode.
 634      *  If not, just call method to generate bytecode.
 635      *  @see    #genStats(List, Env)
 636      *
 637      *  @param  trees    The list of trees to be visited.
 638      *  @param  env      The environment to use.
 639      *  @param  crtFlags The CharacterRangeTable flags
 640      *                   indicating type of the entry.
 641      */
 642     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 643         if (!genCrt) {
 644             genStats(trees, env);
 645             return;
 646         }
 647         if (trees.length() == 1) {        // mark one statement with the flags
 648             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 649         } else {
 650             int startpc = code.curCP();
 651             genStats(trees, env);
 652             code.crt.put(trees, crtFlags, startpc, code.curCP());
 653         }
 654     }
 655 
 656     /** Derived visitor method: generate code for a list of statements.
 657      */
 658     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 659         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 660             genStat(l.head, env, CRT_STATEMENT);
 661     }
 662 
 663     /** Derived visitor method: check whether CharacterRangeTable
 664      *  should be emitted, if so, put a new entry into CRTable
 665      *  and call method to generate bytecode.
 666      *  If not, just call method to generate bytecode.
 667      *  @see    #genCond(JCTree,boolean)
 668      *
 669      *  @param  tree     The tree to be visited.
 670      *  @param  crtFlags The CharacterRangeTable flags
 671      *                   indicating type of the entry.
 672      */
 673     public CondItem genCond(JCTree tree, int crtFlags) {
 674         if (!genCrt) return genCond(tree, false);
 675         int startpc = code.curCP();
 676         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 677         code.crt.put(tree, crtFlags, startpc, code.curCP());
 678         return item;
 679     }
 680 
 681     /** Derived visitor method: generate code for a boolean
 682      *  expression in a control-flow context.
 683      *  @param _tree         The expression to be visited.
 684      *  @param markBranches The flag to indicate that the condition is
 685      *                      a flow controller so produced conditions
 686      *                      should contain a proper tree to generate
 687      *                      CharacterRangeTable branches for them.
 688      */
 689     public CondItem genCond(JCTree _tree, boolean markBranches) {
 690         JCTree inner_tree = TreeInfo.skipParens(_tree);
 691         if (inner_tree.hasTag(CONDEXPR)) {
 692             JCConditional tree = (JCConditional)inner_tree;
 693             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 694             if (cond.isTrue()) {
 695                 code.resolve(cond.trueJumps);
 696                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 697                 if (markBranches) result.tree = tree.truepart;
 698                 return result;
 699             }
 700             if (cond.isFalse()) {
 701                 code.resolve(cond.falseJumps);
 702                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 703                 if (markBranches) result.tree = tree.falsepart;
 704                 return result;
 705             }
 706             Chain secondJumps = cond.jumpFalse();
 707             code.resolve(cond.trueJumps);
 708             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 709             if (markBranches) first.tree = tree.truepart;
 710             Chain falseJumps = first.jumpFalse();
 711             code.resolve(first.trueJumps);
 712             Chain trueJumps = code.branch(goto_);
 713             code.resolve(secondJumps);
 714             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 715             CondItem result = items.makeCondItem(second.opcode,
 716                                       Code.mergeChains(trueJumps, second.trueJumps),
 717                                       Code.mergeChains(falseJumps, second.falseJumps));
 718             if (markBranches) result.tree = tree.falsepart;
 719             return result;
 720         } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) {
 721             code.resolvePending();
 722 
 723             boolean prevInCondSwitchExpression = inCondSwitchExpression;
 724             Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain;
 725             Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain;
 726             try {
 727                 inCondSwitchExpression = true;
 728                 switchExpressionTrueChain = null;
 729                 switchExpressionFalseChain = null;
 730                 try {
 731                     doHandleSwitchExpression((JCSwitchExpression) inner_tree);
 732                 } catch (CompletionFailure ex) {
 733                     chk.completionError(_tree.pos(), ex);
 734                     code.state.stacksize = 1;
 735                 }
 736                 CondItem result = items.makeCondItem(goto_,
 737                                                      switchExpressionTrueChain,
 738                                                      switchExpressionFalseChain);
 739                 if (markBranches) result.tree = _tree;
 740                 return result;
 741             } finally {
 742                 inCondSwitchExpression = prevInCondSwitchExpression;
 743                 switchExpressionTrueChain = prevSwitchExpressionTrueChain;
 744                 switchExpressionFalseChain = prevSwitchExpressionFalseChain;
 745             }
 746         } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) {
 747             code.resolvePending();
 748 
 749             LetExpr tree = (LetExpr) inner_tree;
 750             int limit = code.nextreg;
 751             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
 752             try {
 753                 genStats(tree.defs, env);
 754             } finally {
 755                 code.setLetExprStackPos(prevLetExprStart);
 756             }
 757             CondItem result = genCond(tree.expr, markBranches);
 758             code.endScopes(limit);
 759             return result;
 760         } else {
 761             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 762             if (markBranches) result.tree = _tree;
 763             return result;
 764         }
 765     }
 766 
 767     public Code getCode() {
 768         return code;
 769     }
 770 
 771     public Items getItems() {
 772         return items;
 773     }
 774 
 775     public Env<AttrContext> getAttrEnv() {
 776         return attrEnv;
 777     }
 778 
 779     /** Visitor class for expressions which might be constant expressions.
 780      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 781      *  Lower as long as constant expressions looking for references to any
 782      *  ClassSymbol. Any such reference will be added to the constant pool so
 783      *  automated tools can detect class dependencies better.
 784      */
 785     class ClassReferenceVisitor extends JCTree.Visitor {
 786 
 787         @Override
 788         public void visitTree(JCTree tree) {}
 789 
 790         @Override
 791         public void visitBinary(JCBinary tree) {
 792             tree.lhs.accept(this);
 793             tree.rhs.accept(this);
 794         }
 795 
 796         @Override
 797         public void visitSelect(JCFieldAccess tree) {
 798             if (tree.selected.type.hasTag(CLASS)) {
 799                 makeRef(tree.selected.pos(), tree.selected.type);
 800             }
 801         }
 802 
 803         @Override
 804         public void visitIdent(JCIdent tree) {
 805             if (tree.sym.owner instanceof ClassSymbol classSymbol) {
 806                 poolWriter.putClass(classSymbol);
 807             }
 808         }
 809 
 810         @Override
 811         public void visitConditional(JCConditional tree) {
 812             tree.cond.accept(this);
 813             tree.truepart.accept(this);
 814             tree.falsepart.accept(this);
 815         }
 816 
 817         @Override
 818         public void visitUnary(JCUnary tree) {
 819             tree.arg.accept(this);
 820         }
 821 
 822         @Override
 823         public void visitParens(JCParens tree) {
 824             tree.expr.accept(this);
 825         }
 826 
 827         @Override
 828         public void visitTypeCast(JCTypeCast tree) {
 829             tree.expr.accept(this);
 830         }
 831     }
 832 
 833     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 834 
 835     /** Visitor method: generate code for an expression, catching and reporting
 836      *  any completion failures.
 837      *  @param tree    The expression to be visited.
 838      *  @param pt      The expression's expected type (proto-type).
 839      */
 840     public Item genExpr(JCTree tree, Type pt) {
 841         if (!code.isAlive()) {
 842             return items.makeStackItem(pt);
 843         }
 844 
 845         Type prevPt = this.pt;
 846         try {
 847             if (tree.type.constValue() != null) {
 848                 // Short circuit any expressions which are constants
 849                 tree.accept(classReferenceVisitor);
 850                 checkStringConstant(tree.pos(), tree.type.constValue());
 851                 Symbol sym = TreeInfo.symbol(tree);
 852                 if (sym != null && isConstantDynamic(sym)) {
 853                     result = items.makeDynamicItem(sym);
 854                 } else {
 855                     result = items.makeImmediateItem(tree.type, tree.type.constValue());
 856                 }
 857             } else {
 858                 this.pt = pt;
 859                 tree.accept(this);
 860             }
 861             return result.coerce(pt);
 862         } catch (CompletionFailure ex) {
 863             chk.completionError(tree.pos(), ex);
 864             code.state.stacksize = 1;
 865             return items.makeStackItem(pt);
 866         } finally {
 867             this.pt = prevPt;
 868         }
 869     }
 870 
 871     public boolean isConstantDynamic(Symbol sym) {
 872         return sym.kind == VAR &&
 873                 sym instanceof DynamicVarSymbol dynamicVarSymbol &&
 874                 dynamicVarSymbol.isDynamic();
 875     }
 876 
 877     /** Derived visitor method: generate code for a list of method arguments.
 878      *  @param trees    The argument expressions to be visited.
 879      *  @param pts      The expression's expected types (i.e. the formal parameter
 880      *                  types of the invoked method).
 881      */
 882     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 883         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 884             genExpr(l.head, pts.head).load();
 885             pts = pts.tail;
 886         }
 887         // require lists be of same length
 888         Assert.check(pts.isEmpty());
 889     }
 890 
 891 /* ************************************************************************
 892  * Visitor methods for statements and definitions
 893  *************************************************************************/
 894 
 895     /** Thrown when the byte code size exceeds limit.
 896      */
 897     public static class CodeSizeOverflow extends RuntimeException {
 898         private static final long serialVersionUID = 0;
 899         public CodeSizeOverflow() {}
 900     }
 901 
 902     public void visitMethodDef(JCMethodDecl tree) {
 903         // Create a new local environment that points pack at method
 904         // definition.
 905         Env<GenContext> localEnv = env.dup(tree);
 906         localEnv.enclMethod = tree;
 907         // The expected type of every return statement in this method
 908         // is the method's return type.
 909         this.pt = tree.sym.erasure(types).getReturnType();
 910 
 911         checkDimension(tree.pos(), tree.sym.erasure(types));
 912         genMethod(tree, localEnv, false);
 913     }
 914 //where
 915         /** Generate code for a method.
 916          *  @param tree     The tree representing the method definition.
 917          *  @param env      The environment current for the method body.
 918          *  @param fatcode  A flag that indicates whether all jumps are
 919          *                  within 32K.  We first invoke this method under
 920          *                  the assumption that fatcode == false, i.e. all
 921          *                  jumps are within 32K.  If this fails, fatcode
 922          *                  is set to true and we try again.
 923          */
 924         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 925             MethodSymbol meth = tree.sym;
 926             int extras = 0;
 927             // Count up extra parameters
 928             if (meth.isConstructor()) {
 929                 extras++;
 930                 if (meth.enclClass().isInner() &&
 931                     !meth.enclClass().isStatic()) {
 932                     extras++;
 933                 }
 934             } else if ((tree.mods.flags & STATIC) == 0) {
 935                 extras++;
 936             }
 937             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 938             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 939                 ClassFile.MAX_PARAMETERS) {
 940                 log.error(tree.pos(), Errors.LimitParameters);
 941                 nerrs++;
 942             }
 943 
 944             else if (tree.body != null) {
 945                 // Create a new code structure and initialize it.
 946                 int startpcCrt = initCode(tree, env, fatcode);
 947 
 948                 try {
 949                     genStat(tree.body, env);
 950                 } catch (CodeSizeOverflow e) {
 951                     // Failed due to code limit, try again with jsr/ret
 952                     startpcCrt = initCode(tree, env, fatcode);
 953                     genStat(tree.body, env);
 954                 }
 955 
 956                 if (code.state.stacksize != 0) {
 957                     log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
 958                     throw new AssertionError();
 959                 }
 960 
 961                 // If last statement could complete normally, insert a
 962                 // return at the end.
 963                 if (code.isAlive()) {
 964                     code.statBegin(TreeInfo.endPos(tree.body));
 965                     if (env.enclMethod == null ||
 966                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
 967                         code.emitop0(return_);
 968                     } else {
 969                         // sometime dead code seems alive (4415991);
 970                         // generate a small loop instead
 971                         int startpc = code.entryPoint();
 972                         CondItem c = items.makeCondItem(goto_);
 973                         code.resolve(c.jumpTrue(), startpc);
 974                     }
 975                 }
 976                 if (genCrt)
 977                     code.crt.put(tree.body,
 978                                  CRT_BLOCK,
 979                                  startpcCrt,
 980                                  code.curCP());
 981 
 982                 code.endScopes(0);
 983 
 984                 // If we exceeded limits, panic
 985                 if (code.checkLimits(tree.pos(), log)) {
 986                     nerrs++;
 987                     return;
 988                 }
 989 
 990                 // If we generated short code but got a long jump, do it again
 991                 // with fatCode = true.
 992                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
 993 
 994                 // Clean up
 995                 if(stackMap == StackMapFormat.JSR202) {
 996                     code.lastFrame = null;
 997                     code.frameBeforeLast = null;
 998                 }
 999 
1000                 // Compress exception table
1001                 code.compressCatchTable();
1002 
1003                 // Fill in type annotation positions for exception parameters
1004                 code.fillExceptionParameterPositions();
1005             }
1006         }
1007 
1008         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1009             MethodSymbol meth = tree.sym;
1010 
1011             // Create a new code structure.
1012             meth.code = code = new Code(meth,
1013                                         fatcode,
1014                                         lineDebugInfo ? toplevel.lineMap : null,
1015                                         varDebugInfo,
1016                                         stackMap,
1017                                         debugCode,
1018                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1019                                                : null,
1020                                         syms,
1021                                         types,
1022                                         poolWriter);
1023             items = new Items(poolWriter, code, syms, types);
1024             if (code.debugCode) {
1025                 System.err.println(meth + " for body " + tree);
1026             }
1027 
1028             // If method is not static, create a new local variable address
1029             // for `this'.
1030             if ((tree.mods.flags & STATIC) == 0) {
1031                 Type selfType = meth.owner.type;
1032                 if (meth.isConstructor() && selfType != syms.objectType)
1033                     selfType = UninitializedType.uninitializedThis(selfType);
1034                 code.setDefined(
1035                         code.newLocal(
1036                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1037             }
1038 
1039             // Mark all parameters as defined from the beginning of
1040             // the method.
1041             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1042                 checkDimension(l.head.pos(), l.head.sym.type);
1043                 code.setDefined(code.newLocal(l.head.sym));
1044             }
1045 
1046             // Get ready to generate code for method body.
1047             int startpcCrt = genCrt ? code.curCP() : 0;
1048             code.entryPoint();
1049 
1050             // Suppress initial stackmap
1051             code.pendingStackMap = false;
1052 
1053             return startpcCrt;
1054         }
1055 
1056     public void visitVarDef(JCVariableDecl tree) {
1057         VarSymbol v = tree.sym;
1058         if (tree.init != null) {
1059             checkStringConstant(tree.init.pos(), v.getConstValue());
1060             if (v.getConstValue() == null || varDebugInfo) {
1061                 Assert.check(code.isStatementStart());
1062                 code.newLocal(v);
1063                 genExpr(tree.init, v.erasure(types)).load();
1064                 items.makeLocalItem(v).store();
1065                 Assert.check(code.isStatementStart());
1066             }
1067         } else {
1068             code.newLocal(v);
1069         }
1070         checkDimension(tree.pos(), v.type);
1071     }
1072 
1073     public void visitSkip(JCSkip tree) {
1074     }
1075 
1076     public void visitBlock(JCBlock tree) {
1077         if (tree.patternMatchingCatch != null) {
1078             Set<JCMethodInvocation> prevInvocationsWithPatternMatchingCatch = invocationsWithPatternMatchingCatch;
1079             ListBuffer<int[]> prevRanges = patternMatchingInvocationRanges;
1080             State startState = code.state.dup();
1081             try {
1082                 invocationsWithPatternMatchingCatch = tree.patternMatchingCatch.calls2Handle();
1083                 patternMatchingInvocationRanges = new ListBuffer<>();
1084                 doVisitBlock(tree);
1085             } finally {
1086                 Chain skipCatch = code.branch(goto_);
1087                 JCCatch handler = tree.patternMatchingCatch.handler();
1088                 code.entryPoint(startState, handler.param.sym.type);
1089                 genPatternMatchingCatch(handler, env, patternMatchingInvocationRanges.toList());
1090                 code.resolve(skipCatch);
1091                 invocationsWithPatternMatchingCatch = prevInvocationsWithPatternMatchingCatch;
1092                 patternMatchingInvocationRanges = prevRanges;
1093             }
1094         } else {
1095             doVisitBlock(tree);
1096         }
1097     }
1098 
1099     private void doVisitBlock(JCBlock tree) {
1100         int limit = code.nextreg;
1101         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1102         genStats(tree.stats, localEnv);
1103         // End the scope of all block-local variables in variable info.
1104         if (!env.tree.hasTag(METHODDEF)) {
1105             code.statBegin(tree.endpos);
1106             code.endScopes(limit);
1107             code.pendingStatPos = Position.NOPOS;
1108         }
1109     }
1110 
1111     public void visitDoLoop(JCDoWhileLoop tree) {
1112         genLoop(tree, tree.body, tree.cond, List.nil(), false);
1113     }
1114 
1115     public void visitWhileLoop(JCWhileLoop tree) {
1116         genLoop(tree, tree.body, tree.cond, List.nil(), true);
1117     }
1118 
1119     public void visitForLoop(JCForLoop tree) {
1120         int limit = code.nextreg;
1121         genStats(tree.init, env);
1122         genLoop(tree, tree.body, tree.cond, tree.step, true);
1123         code.endScopes(limit);
1124     }
1125     //where
1126         /** Generate code for a loop.
1127          *  @param loop       The tree representing the loop.
1128          *  @param body       The loop's body.
1129          *  @param cond       The loop's controlling condition.
1130          *  @param step       "Step" statements to be inserted at end of
1131          *                    each iteration.
1132          *  @param testFirst  True if the loop test belongs before the body.
1133          */
1134         private void genLoop(JCStatement loop,
1135                              JCStatement body,
1136                              JCExpression cond,
1137                              List<JCExpressionStatement> step,
1138                              boolean testFirst) {
1139             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1140             int startpc = code.entryPoint();
1141             if (testFirst) { //while or for loop
1142                 CondItem c;
1143                 if (cond != null) {
1144                     code.statBegin(cond.pos);
1145                     Assert.check(code.isStatementStart());
1146                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1147                 } else {
1148                     c = items.makeCondItem(goto_);
1149                 }
1150                 Chain loopDone = c.jumpFalse();
1151                 code.resolve(c.trueJumps);
1152                 Assert.check(code.isStatementStart());
1153                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1154                 code.resolve(loopEnv.info.cont);
1155                 genStats(step, loopEnv);
1156                 code.resolve(code.branch(goto_), startpc);
1157                 code.resolve(loopDone);
1158             } else {
1159                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1160                 code.resolve(loopEnv.info.cont);
1161                 genStats(step, loopEnv);
1162                 if (code.isAlive()) {
1163                     CondItem c;
1164                     if (cond != null) {
1165                         code.statBegin(cond.pos);
1166                         Assert.check(code.isStatementStart());
1167                         c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1168                     } else {
1169                         c = items.makeCondItem(goto_);
1170                     }
1171                     code.resolve(c.jumpTrue(), startpc);
1172                     Assert.check(code.isStatementStart());
1173                     code.resolve(c.falseJumps);
1174                 }
1175             }
1176             Chain exit = loopEnv.info.exit;
1177             if (exit != null) {
1178                 code.resolve(exit);
1179                 exit.state.defined.excludeFrom(code.nextreg);
1180             }
1181         }
1182 
1183     public void visitForeachLoop(JCEnhancedForLoop tree) {
1184         throw new AssertionError(); // should have been removed by Lower.
1185     }
1186 
1187     public void visitLabelled(JCLabeledStatement tree) {
1188         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1189         genStat(tree.body, localEnv, CRT_STATEMENT);
1190         Chain exit = localEnv.info.exit;
1191         if (exit != null) {
1192             code.resolve(exit);
1193             exit.state.defined.excludeFrom(code.nextreg);
1194         }
1195     }
1196 
1197     public void visitSwitch(JCSwitch tree) {
1198         handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1199     }
1200 
1201     @Override
1202     public void visitSwitchExpression(JCSwitchExpression tree) {
1203         code.resolvePending();
1204         boolean prevInCondSwitchExpression = inCondSwitchExpression;
1205         try {
1206             inCondSwitchExpression = false;
1207             doHandleSwitchExpression(tree);
1208         } finally {
1209             inCondSwitchExpression = prevInCondSwitchExpression;
1210         }
1211         result = items.makeStackItem(pt);
1212     }
1213 
1214     private void doHandleSwitchExpression(JCSwitchExpression tree) {
1215         List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression;
1216         LocalItem prevSwitchResult = switchResult;
1217         int limit = code.nextreg;
1218         try {
1219             stackBeforeSwitchExpression = List.nil();
1220             switchResult = null;
1221             if (hasTry(tree)) {
1222                 //if the switch expression contains try-catch, the catch handlers need to have
1223                 //an empty stack. So stash whole stack to local variables, and restore it before
1224                 //breaks:
1225                 while (code.state.stacksize > 0) {
1226                     Type type = code.state.peek();
1227                     Name varName = names.fromString(target.syntheticNameChar() +
1228                                                     "stack" +
1229                                                     target.syntheticNameChar() +
1230                                                     tree.pos +
1231                                                     target.syntheticNameChar() +
1232                                                     code.state.stacksize);
1233                     VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type,
1234                                                   this.env.enclMethod.sym);
1235                     LocalItem item = items.new LocalItem(type, code.newLocal(var));
1236                     stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item);
1237                     item.store();
1238                 }
1239                 switchResult = makeTemp(tree.type);
1240             }
1241             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
1242             try {
1243                 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1244             } finally {
1245                 code.setLetExprStackPos(prevLetExprStart);
1246             }
1247         } finally {
1248             stackBeforeSwitchExpression = prevStackBeforeSwitchExpression;
1249             switchResult = prevSwitchResult;
1250             code.endScopes(limit);
1251         }
1252     }
1253     //where:
1254         private boolean hasTry(JCSwitchExpression tree) {
1255             class HasTryScanner extends TreeScanner {
1256                 private boolean hasTry;
1257 
1258                 @Override
1259                 public void visitTry(JCTry tree) {
1260                     hasTry = true;
1261                 }
1262 
1263                 @Override
1264                 public void visitSynchronized(JCSynchronized tree) {
1265                     hasTry = true;
1266                 }
1267 
1268                 @Override
1269                 public void visitClassDef(JCClassDecl tree) {
1270                 }
1271 
1272                 @Override
1273                 public void visitLambda(JCLambda tree) {
1274                 }
1275             };
1276 
1277             HasTryScanner hasTryScanner = new HasTryScanner();
1278 
1279             hasTryScanner.scan(tree);
1280             return hasTryScanner.hasTry;
1281         }
1282 
1283     private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases,
1284                               boolean patternSwitch) {
1285         int limit = code.nextreg;
1286         Assert.check(!selector.type.hasTag(CLASS));
1287         int switchStart = patternSwitch ? code.entryPoint() : -1;
1288         int startpcCrt = genCrt ? code.curCP() : 0;
1289         Assert.check(code.isStatementStart());
1290         Item sel = genExpr(selector, syms.intType);
1291         if (cases.isEmpty()) {
1292             // We are seeing:  switch <sel> {}
1293             sel.load().drop();
1294             if (genCrt)
1295                 code.crt.put(TreeInfo.skipParens(selector),
1296                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1297         } else {
1298             // We are seeing a nonempty switch.
1299             sel.load();
1300             if (genCrt)
1301                 code.crt.put(TreeInfo.skipParens(selector),
1302                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1303             Env<GenContext> switchEnv = env.dup(swtch, new GenContext());
1304             switchEnv.info.isSwitch = true;
1305 
1306             // Compute number of labels and minimum and maximum label values.
1307             // For each case, store its label in an array.
1308             int lo = Integer.MAX_VALUE;  // minimum label.
1309             int hi = Integer.MIN_VALUE;  // maximum label.
1310             int nlabels = 0;               // number of labels.
1311 
1312             int[] labels = new int[cases.length()];  // the label array.
1313             int defaultIndex = -1;     // the index of the default clause.
1314 
1315             List<JCCase> l = cases;
1316             for (int i = 0; i < labels.length; i++) {
1317                 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) {
1318                     Assert.check(l.head.labels.size() == 1);
1319                     int val = ((Number) constLabel.expr.type.constValue()).intValue();
1320                     labels[i] = val;
1321                     if (val < lo) lo = val;
1322                     if (hi < val) hi = val;
1323                     nlabels++;
1324                 } else {
1325                     Assert.check(defaultIndex == -1);
1326                     defaultIndex = i;
1327                 }
1328                 l = l.tail;
1329             }
1330 
1331             // Determine whether to issue a tableswitch or a lookupswitch
1332             // instruction.
1333             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1334             long table_time_cost = 3; // comparisons
1335             long lookup_space_cost = 3 + 2 * (long) nlabels;
1336             long lookup_time_cost = nlabels;
1337             int opcode =
1338                 nlabels > 0 &&
1339                 table_space_cost + 3 * table_time_cost <=
1340                 lookup_space_cost + 3 * lookup_time_cost
1341                 ?
1342                 tableswitch : lookupswitch;
1343 
1344             int startpc = code.curCP();    // the position of the selector operation
1345             code.emitop0(opcode);
1346             code.align(4);
1347             int tableBase = code.curCP();  // the start of the jump table
1348             int[] offsets = null;          // a table of offsets for a lookupswitch
1349             code.emit4(-1);                // leave space for default offset
1350             if (opcode == tableswitch) {
1351                 code.emit4(lo);            // minimum label
1352                 code.emit4(hi);            // maximum label
1353                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1354                     code.emit4(-1);
1355                 }
1356             } else {
1357                 code.emit4(nlabels);    // number of labels
1358                 for (int i = 0; i < nlabels; i++) {
1359                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1360                 }
1361                 offsets = new int[labels.length];
1362             }
1363             Code.State stateSwitch = code.state.dup();
1364             code.markDead();
1365 
1366             // For each case do:
1367             l = cases;
1368             for (int i = 0; i < labels.length; i++) {
1369                 JCCase c = l.head;
1370                 l = l.tail;
1371 
1372                 int pc = code.entryPoint(stateSwitch);
1373                 // Insert offset directly into code or else into the
1374                 // offsets table.
1375                 if (i != defaultIndex) {
1376                     if (opcode == tableswitch) {
1377                         code.put4(
1378                             tableBase + 4 * (labels[i] - lo + 3),
1379                             pc - startpc);
1380                     } else {
1381                         offsets[i] = pc - startpc;
1382                     }
1383                 } else {
1384                     code.put4(tableBase, pc - startpc);
1385                 }
1386 
1387                 // Generate code for the statements in this case.
1388                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1389             }
1390 
1391             if (switchEnv.info.cont != null) {
1392                 Assert.check(patternSwitch);
1393                 code.resolve(switchEnv.info.cont, switchStart);
1394             }
1395 
1396             // Resolve all breaks.
1397             Chain exit = switchEnv.info.exit;
1398             if  (exit != null) {
1399                 code.resolve(exit);
1400                 exit.state.defined.excludeFrom(limit);
1401             }
1402 
1403             // If we have not set the default offset, we do so now.
1404             if (code.get4(tableBase) == -1) {
1405                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1406             }
1407 
1408             if (opcode == tableswitch) {
1409                 // Let any unfilled slots point to the default case.
1410                 int defaultOffset = code.get4(tableBase);
1411                 for (long i = lo; i <= hi; i++) {
1412                     int t = (int)(tableBase + 4 * (i - lo + 3));
1413                     if (code.get4(t) == -1)
1414                         code.put4(t, defaultOffset);
1415                 }
1416             } else {
1417                 // Sort non-default offsets and copy into lookup table.
1418                 if (defaultIndex >= 0)
1419                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1420                         labels[i] = labels[i+1];
1421                         offsets[i] = offsets[i+1];
1422                     }
1423                 if (nlabels > 0)
1424                     qsort2(labels, offsets, 0, nlabels - 1);
1425                 for (int i = 0; i < nlabels; i++) {
1426                     int caseidx = tableBase + 8 * (i + 1);
1427                     code.put4(caseidx, labels[i]);
1428                     code.put4(caseidx + 4, offsets[i]);
1429                 }
1430             }
1431 
1432             if (swtch instanceof JCSwitchExpression) {
1433                  // Emit line position for the end of a switch expression
1434                  code.statBegin(TreeInfo.endPos(swtch));
1435             }
1436         }
1437         code.endScopes(limit);
1438     }
1439 //where
1440         /** Sort (int) arrays of keys and values
1441          */
1442        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1443             int i = lo;
1444             int j = hi;
1445             int pivot = keys[(i+j)/2];
1446             do {
1447                 while (keys[i] < pivot) i++;
1448                 while (pivot < keys[j]) j--;
1449                 if (i <= j) {
1450                     int temp1 = keys[i];
1451                     keys[i] = keys[j];
1452                     keys[j] = temp1;
1453                     int temp2 = values[i];
1454                     values[i] = values[j];
1455                     values[j] = temp2;
1456                     i++;
1457                     j--;
1458                 }
1459             } while (i <= j);
1460             if (lo < j) qsort2(keys, values, lo, j);
1461             if (i < hi) qsort2(keys, values, i, hi);
1462         }
1463 
1464     public void visitSynchronized(JCSynchronized tree) {
1465         int limit = code.nextreg;
1466         // Generate code to evaluate lock and save in temporary variable.
1467         final LocalItem lockVar = makeTemp(syms.objectType);
1468         Assert.check(code.isStatementStart());
1469         genExpr(tree.lock, tree.lock.type).load().duplicate();
1470         lockVar.store();
1471 
1472         // Generate code to enter monitor.
1473         code.emitop0(monitorenter);
1474         code.state.lock(lockVar.reg);
1475 
1476         // Generate code for a try statement with given body, no catch clauses
1477         // in a new environment with the "exit-monitor" operation as finalizer.
1478         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1479         syncEnv.info.finalize = new GenFinalizer() {
1480             void gen() {
1481                 genLast();
1482                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1483                 syncEnv.info.gaps.append(code.curCP());
1484             }
1485             void genLast() {
1486                 if (code.isAlive()) {
1487                     lockVar.load();
1488                     code.emitop0(monitorexit);
1489                     code.state.unlock(lockVar.reg);
1490                 }
1491             }
1492         };
1493         syncEnv.info.gaps = new ListBuffer<>();
1494         genTry(tree.body, List.nil(), syncEnv);
1495         code.endScopes(limit);
1496     }
1497 
1498     public void visitTry(final JCTry tree) {
1499         // Generate code for a try statement with given body and catch clauses,
1500         // in a new environment which calls the finally block if there is one.
1501         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1502         final Env<GenContext> oldEnv = env;
1503         tryEnv.info.finalize = new GenFinalizer() {
1504             void gen() {
1505                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1506                 tryEnv.info.gaps.append(code.curCP());
1507                 genLast();
1508             }
1509             void genLast() {
1510                 if (tree.finalizer != null)
1511                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1512             }
1513             boolean hasFinalizer() {
1514                 return tree.finalizer != null;
1515             }
1516 
1517             @Override
1518             void afterBody() {
1519                 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1520                     //for body-only finally, remove the GenFinalizer after try body
1521                     //so that the finally is not generated to catch bodies:
1522                     tryEnv.info.finalize = null;
1523                 }
1524             }
1525 
1526         };
1527         tryEnv.info.gaps = new ListBuffer<>();
1528         genTry(tree.body, tree.catchers, tryEnv);
1529     }
1530     //where
1531         /** Generate code for a try or synchronized statement
1532          *  @param body      The body of the try or synchronized statement.
1533          *  @param catchers  The list of catch clauses.
1534          *  @param env       The current environment of the body.
1535          */
1536         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1537             int limit = code.nextreg;
1538             int startpc = code.curCP();
1539             Code.State stateTry = code.state.dup();
1540             genStat(body, env, CRT_BLOCK);
1541             int endpc = code.curCP();
1542             List<Integer> gaps = env.info.gaps.toList();
1543             code.statBegin(TreeInfo.endPos(body));
1544             genFinalizer(env);
1545             code.statBegin(TreeInfo.endPos(env.tree));
1546             Chain exitChain;
1547             boolean actualTry = env.tree.hasTag(TRY);
1548             if (startpc == endpc && actualTry) {
1549                 exitChain = code.branch(dontgoto);
1550             } else {
1551                 exitChain = code.branch(goto_);
1552             }
1553             endFinalizerGap(env);
1554             env.info.finalize.afterBody();
1555             boolean hasFinalizer =
1556                 env.info.finalize != null &&
1557                 env.info.finalize.hasFinalizer();
1558             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1559                 // start off with exception on stack
1560                 code.entryPoint(stateTry, l.head.param.sym.type);
1561                 genCatch(l.head, env, startpc, endpc, gaps);
1562                 genFinalizer(env);
1563                 if (hasFinalizer || l.tail.nonEmpty()) {
1564                     code.statBegin(TreeInfo.endPos(env.tree));
1565                     exitChain = Code.mergeChains(exitChain,
1566                                                  code.branch(goto_));
1567                 }
1568                 endFinalizerGap(env);
1569             }
1570             if (hasFinalizer && (startpc != endpc || !actualTry)) {
1571                 // Create a new register segment to avoid allocating
1572                 // the same variables in finalizers and other statements.
1573                 code.newRegSegment();
1574 
1575                 // Add a catch-all clause.
1576 
1577                 // start off with exception on stack
1578                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1579 
1580                 // Register all exception ranges for catch all clause.
1581                 // The range of the catch all clause is from the beginning
1582                 // of the try or synchronized block until the present
1583                 // code pointer excluding all gaps in the current
1584                 // environment's GenContext.
1585                 int startseg = startpc;
1586                 while (env.info.gaps.nonEmpty()) {
1587                     int endseg = env.info.gaps.next().intValue();
1588                     registerCatch(body.pos(), startseg, endseg,
1589                                   catchallpc, 0);
1590                     startseg = env.info.gaps.next().intValue();
1591                 }
1592                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1593                 code.markStatBegin();
1594 
1595                 Item excVar = makeTemp(syms.throwableType);
1596                 excVar.store();
1597                 genFinalizer(env);
1598                 code.resolvePending();
1599                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1600                 code.markStatBegin();
1601 
1602                 excVar.load();
1603                 registerCatch(body.pos(), startseg,
1604                               env.info.gaps.next().intValue(),
1605                               catchallpc, 0);
1606                 code.emitop0(athrow);
1607                 code.markDead();
1608 
1609                 // If there are jsr's to this finalizer, ...
1610                 if (env.info.cont != null) {
1611                     // Resolve all jsr's.
1612                     code.resolve(env.info.cont);
1613 
1614                     // Mark statement line number
1615                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1616                     code.markStatBegin();
1617 
1618                     // Save return address.
1619                     LocalItem retVar = makeTemp(syms.throwableType);
1620                     retVar.store();
1621 
1622                     // Generate finalizer code.
1623                     env.info.finalize.genLast();
1624 
1625                     // Return.
1626                     code.emitop1w(ret, retVar.reg);
1627                     code.markDead();
1628                 }
1629             }
1630             // Resolve all breaks.
1631             code.resolve(exitChain);
1632 
1633             code.endScopes(limit);
1634         }
1635 
1636         /** Generate code for a catch clause.
1637          *  @param tree     The catch clause.
1638          *  @param env      The environment current in the enclosing try.
1639          *  @param startpc  Start pc of try-block.
1640          *  @param endpc    End pc of try-block.
1641          */
1642         void genCatch(JCCatch tree,
1643                       Env<GenContext> env,
1644                       int startpc, int endpc,
1645                       List<Integer> gaps) {
1646             if (startpc != endpc) {
1647                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1648                         = catchTypesWithAnnotations(tree);
1649                 while (gaps.nonEmpty()) {
1650                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1651                         JCExpression subCatch = subCatch1.snd;
1652                         int catchType = makeRef(tree.pos(), subCatch.type);
1653                         int end = gaps.head.intValue();
1654                         registerCatch(tree.pos(),
1655                                       startpc,  end, code.curCP(),
1656                                       catchType);
1657                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1658                                 tc.position.setCatchInfo(catchType, startpc);
1659                         }
1660                     }
1661                     gaps = gaps.tail;
1662                     startpc = gaps.head.intValue();
1663                     gaps = gaps.tail;
1664                 }
1665                 if (startpc < endpc) {
1666                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1667                         JCExpression subCatch = subCatch1.snd;
1668                         int catchType = makeRef(tree.pos(), subCatch.type);
1669                         registerCatch(tree.pos(),
1670                                       startpc, endpc, code.curCP(),
1671                                       catchType);
1672                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1673                             tc.position.setCatchInfo(catchType, startpc);
1674                         }
1675                     }
1676                 }
1677                 genCatchBlock(tree, env);
1678             }
1679         }
1680         void genPatternMatchingCatch(JCCatch tree,
1681                                      Env<GenContext> env,
1682                                      List<int[]> ranges) {
1683             for (int[] range : ranges) {
1684                 JCExpression subCatch = tree.param.vartype;
1685                 int catchType = makeRef(tree.pos(), subCatch.type);
1686                 registerCatch(tree.pos(),
1687                               range[0], range[1], code.curCP(),
1688                               catchType);
1689             }
1690             genCatchBlock(tree, env);
1691         }
1692         void genCatchBlock(JCCatch tree, Env<GenContext> env) {
1693             VarSymbol exparam = tree.param.sym;
1694             code.statBegin(tree.pos);
1695             code.markStatBegin();
1696             int limit = code.nextreg;
1697             code.newLocal(exparam);
1698             items.makeLocalItem(exparam).store();
1699             code.statBegin(TreeInfo.firstStatPos(tree.body));
1700             genStat(tree.body, env, CRT_BLOCK);
1701             code.endScopes(limit);
1702             code.statBegin(TreeInfo.endPos(tree.body));
1703         }
1704         // where
1705         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1706             return TreeInfo.isMultiCatch(tree) ?
1707                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1708                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1709         }
1710         // where
1711         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1712             List<JCExpression> alts = tree.alternatives;
1713             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1714             alts = alts.tail;
1715 
1716             while(alts != null && alts.head != null) {
1717                 JCExpression alt = alts.head;
1718                 if (alt instanceof JCAnnotatedType annotatedType) {
1719                     res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt));
1720                 } else {
1721                     res = res.prepend(new Pair<>(List.nil(), alt));
1722                 }
1723                 alts = alts.tail;
1724             }
1725             return res.reverse();
1726         }
1727 
1728         /** Register a catch clause in the "Exceptions" code-attribute.
1729          */
1730         void registerCatch(DiagnosticPosition pos,
1731                            int startpc, int endpc,
1732                            int handler_pc, int catch_type) {
1733             char startpc1 = (char)startpc;
1734             char endpc1 = (char)endpc;
1735             char handler_pc1 = (char)handler_pc;
1736             if (startpc1 == startpc &&
1737                 endpc1 == endpc &&
1738                 handler_pc1 == handler_pc) {
1739                 code.addCatch(startpc1, endpc1, handler_pc1,
1740                               (char)catch_type);
1741             } else {
1742                 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1743                 nerrs++;
1744             }
1745         }
1746 
1747     public void visitIf(JCIf tree) {
1748         int limit = code.nextreg;
1749         Chain thenExit = null;
1750         Assert.check(code.isStatementStart());
1751         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1752                              CRT_FLOW_CONTROLLER);
1753         Chain elseChain = c.jumpFalse();
1754         Assert.check(code.isStatementStart());
1755         if (!c.isFalse()) {
1756             code.resolve(c.trueJumps);
1757             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1758             thenExit = code.branch(goto_);
1759         }
1760         if (elseChain != null) {
1761             code.resolve(elseChain);
1762             if (tree.elsepart != null) {
1763                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1764             }
1765         }
1766         code.resolve(thenExit);
1767         code.endScopes(limit);
1768         Assert.check(code.isStatementStart());
1769     }
1770 
1771     public void visitExec(JCExpressionStatement tree) {
1772         // Optimize x++ to ++x and x-- to --x.
1773         JCExpression e = tree.expr;
1774         switch (e.getTag()) {
1775             case POSTINC:
1776                 ((JCUnary) e).setTag(PREINC);
1777                 break;
1778             case POSTDEC:
1779                 ((JCUnary) e).setTag(PREDEC);
1780                 break;
1781         }
1782         Assert.check(code.isStatementStart());
1783         genExpr(tree.expr, tree.expr.type).drop();
1784         Assert.check(code.isStatementStart());
1785     }
1786 
1787     public void visitBreak(JCBreak tree) {
1788         Assert.check(code.isStatementStart());
1789         final Env<GenContext> targetEnv = unwindBreak(tree.target);
1790         targetEnv.info.addExit(code.branch(goto_));
1791         endFinalizerGaps(env, targetEnv);
1792     }
1793 
1794     public void visitYield(JCYield tree) {
1795         Assert.check(code.isStatementStart());
1796         final Env<GenContext> targetEnv;
1797         if (inCondSwitchExpression) {
1798             CondItem value = genCond(tree.value, CRT_FLOW_TARGET);
1799             Chain falseJumps = value.jumpFalse();
1800 
1801             code.resolve(value.trueJumps);
1802             Env<GenContext> localEnv = unwindBreak(tree.target);
1803             reloadStackBeforeSwitchExpr();
1804             Chain trueJumps = code.branch(goto_);
1805 
1806             endFinalizerGaps(env, localEnv);
1807 
1808             code.resolve(falseJumps);
1809             targetEnv = unwindBreak(tree.target);
1810             reloadStackBeforeSwitchExpr();
1811             falseJumps = code.branch(goto_);
1812 
1813             if (switchExpressionTrueChain == null) {
1814                 switchExpressionTrueChain = trueJumps;
1815             } else {
1816                 switchExpressionTrueChain =
1817                         Code.mergeChains(switchExpressionTrueChain, trueJumps);
1818             }
1819             if (switchExpressionFalseChain == null) {
1820                 switchExpressionFalseChain = falseJumps;
1821             } else {
1822                 switchExpressionFalseChain =
1823                         Code.mergeChains(switchExpressionFalseChain, falseJumps);
1824             }
1825         } else {
1826             genExpr(tree.value, pt).load();
1827             if (switchResult != null)
1828                 switchResult.store();
1829 
1830             targetEnv = unwindBreak(tree.target);
1831 
1832             if (code.isAlive()) {
1833                 reloadStackBeforeSwitchExpr();
1834                 if (switchResult != null)
1835                     switchResult.load();
1836 
1837                 code.state.forceStackTop(tree.target.type);
1838                 targetEnv.info.addExit(code.branch(goto_));
1839                 code.markDead();
1840             }
1841         }
1842         endFinalizerGaps(env, targetEnv);
1843     }
1844     //where:
1845         /** As side-effect, might mark code as dead disabling any further emission.
1846          */
1847         private Env<GenContext> unwindBreak(JCTree target) {
1848             int tmpPos = code.pendingStatPos;
1849             Env<GenContext> targetEnv = unwind(target, env);
1850             code.pendingStatPos = tmpPos;
1851             return targetEnv;
1852         }
1853 
1854         private void reloadStackBeforeSwitchExpr() {
1855             for (LocalItem li : stackBeforeSwitchExpression)
1856                 li.load();
1857         }
1858 
1859     public void visitContinue(JCContinue tree) {
1860         int tmpPos = code.pendingStatPos;
1861         Env<GenContext> targetEnv = unwind(tree.target, env);
1862         code.pendingStatPos = tmpPos;
1863         Assert.check(code.isStatementStart());
1864         targetEnv.info.addCont(code.branch(goto_));
1865         endFinalizerGaps(env, targetEnv);
1866     }
1867 
1868     public void visitReturn(JCReturn tree) {
1869         int limit = code.nextreg;
1870         final Env<GenContext> targetEnv;
1871 
1872         /* Save and then restore the location of the return in case a finally
1873          * is expanded (with unwind()) in the middle of our bytecodes.
1874          */
1875         int tmpPos = code.pendingStatPos;
1876         if (tree.expr != null) {
1877             Assert.check(code.isStatementStart());
1878             Item r = genExpr(tree.expr, pt).load();
1879             if (hasFinally(env.enclMethod, env)) {
1880                 r = makeTemp(pt);
1881                 r.store();
1882             }
1883             targetEnv = unwind(env.enclMethod, env);
1884             code.pendingStatPos = tmpPos;
1885             r.load();
1886             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1887         } else {
1888             targetEnv = unwind(env.enclMethod, env);
1889             code.pendingStatPos = tmpPos;
1890             code.emitop0(return_);
1891         }
1892         endFinalizerGaps(env, targetEnv);
1893         code.endScopes(limit);
1894     }
1895 
1896     public void visitThrow(JCThrow tree) {
1897         Assert.check(code.isStatementStart());
1898         genExpr(tree.expr, tree.expr.type).load();
1899         code.emitop0(athrow);
1900         Assert.check(code.isStatementStart());
1901     }
1902 
1903 /* ************************************************************************
1904  * Visitor methods for expressions
1905  *************************************************************************/
1906 
1907     public void visitApply(JCMethodInvocation tree) {
1908         setTypeAnnotationPositions(tree.pos);
1909         // Generate code for method.
1910         Item m = genExpr(tree.meth, methodType);
1911         // Generate code for all arguments, where the expected types are
1912         // the parameters of the method's external type (that is, any implicit
1913         // outer instance of a super(...) call appears as first parameter).
1914         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1915         genArgs(tree.args,
1916                 msym.externalType(types).getParameterTypes());
1917         if (!msym.isDynamic()) {
1918             code.statBegin(tree.pos);
1919         }
1920         if (invocationsWithPatternMatchingCatch.contains(tree)) {
1921             int start = code.curCP();
1922             result = m.invoke();
1923             patternMatchingInvocationRanges.add(new int[] {start, code.curCP()});
1924         } else {
1925             result = m.invoke();
1926         }
1927     }
1928 
1929     public void visitConditional(JCConditional tree) {
1930         Chain thenExit = null;
1931         code.statBegin(tree.cond.pos);
1932         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1933         Chain elseChain = c.jumpFalse();
1934         if (!c.isFalse()) {
1935             code.resolve(c.trueJumps);
1936             int startpc = genCrt ? code.curCP() : 0;
1937             code.statBegin(tree.truepart.pos);
1938             genExpr(tree.truepart, pt).load();
1939             code.state.forceStackTop(tree.type);
1940             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1941                                      startpc, code.curCP());
1942             thenExit = code.branch(goto_);
1943         }
1944         if (elseChain != null) {
1945             code.resolve(elseChain);
1946             int startpc = genCrt ? code.curCP() : 0;
1947             code.statBegin(tree.falsepart.pos);
1948             genExpr(tree.falsepart, pt).load();
1949             code.state.forceStackTop(tree.type);
1950             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1951                                      startpc, code.curCP());
1952         }
1953         code.resolve(thenExit);
1954         result = items.makeStackItem(pt);
1955     }
1956 
1957     private void setTypeAnnotationPositions(int treePos) {
1958         MethodSymbol meth = code.meth;
1959         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1960                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1961 
1962         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1963             if (ta.hasUnknownPosition())
1964                 ta.tryFixPosition();
1965 
1966             if (ta.position.matchesPos(treePos))
1967                 ta.position.updatePosOffset(code.cp);
1968         }
1969 
1970         if (!initOrClinit)
1971             return;
1972 
1973         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1974             if (ta.hasUnknownPosition())
1975                 ta.tryFixPosition();
1976 
1977             if (ta.position.matchesPos(treePos))
1978                 ta.position.updatePosOffset(code.cp);
1979         }
1980 
1981         ClassSymbol clazz = meth.enclClass();
1982         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1983             if (!s.getKind().isField())
1984                 continue;
1985 
1986             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1987                 if (ta.hasUnknownPosition())
1988                     ta.tryFixPosition();
1989 
1990                 if (ta.position.matchesPos(treePos))
1991                     ta.position.updatePosOffset(code.cp);
1992             }
1993         }
1994     }
1995 
1996     public void visitNewClass(JCNewClass tree) {
1997         // Enclosing instances or anonymous classes should have been eliminated
1998         // by now.
1999         Assert.check(tree.encl == null && tree.def == null);
2000         setTypeAnnotationPositions(tree.pos);
2001 
2002         code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2003         code.emitop0(dup);
2004 
2005         // Generate code for all arguments, where the expected types are
2006         // the parameters of the constructor's external type (that is,
2007         // any implicit outer instance appears as first parameter).
2008         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
2009 
2010         items.makeMemberItem(tree.constructor, true).invoke();
2011         result = items.makeStackItem(tree.type);
2012     }
2013 
2014     public void visitNewArray(JCNewArray tree) {
2015         setTypeAnnotationPositions(tree.pos);
2016 
2017         if (tree.elems != null) {
2018             Type elemtype = types.elemtype(tree.type);
2019             loadIntConst(tree.elems.length());
2020             Item arr = makeNewArray(tree.pos(), tree.type, 1);
2021             int i = 0;
2022             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
2023                 arr.duplicate();
2024                 loadIntConst(i);
2025                 i++;
2026                 genExpr(l.head, elemtype).load();
2027                 items.makeIndexedItem(elemtype).store();
2028             }
2029             result = arr;
2030         } else {
2031             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2032                 genExpr(l.head, syms.intType).load();
2033             }
2034             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
2035         }
2036     }
2037 //where
2038         /** Generate code to create an array with given element type and number
2039          *  of dimensions.
2040          */
2041         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
2042             Type elemtype = types.elemtype(type);
2043             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
2044                 log.error(pos, Errors.LimitDimensions);
2045                 nerrs++;
2046             }
2047             int elemcode = Code.arraycode(elemtype);
2048             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
2049                 code.emitAnewarray(makeRef(pos, elemtype), type);
2050             } else if (elemcode == 1) {
2051                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
2052             } else {
2053                 code.emitNewarray(elemcode, type);
2054             }
2055             return items.makeStackItem(type);
2056         }
2057 
2058     public void visitParens(JCParens tree) {
2059         result = genExpr(tree.expr, tree.expr.type);
2060     }
2061 
2062     public void visitAssign(JCAssign tree) {
2063         Item l = genExpr(tree.lhs, tree.lhs.type);
2064         genExpr(tree.rhs, tree.lhs.type).load();
2065         if (tree.rhs.type.hasTag(BOT)) {
2066             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
2067                for "regarding a reference as having some other type in a manner that can be proved
2068                correct at compile time."
2069             */
2070             code.state.forceStackTop(tree.lhs.type);
2071         }
2072         result = items.makeAssignItem(l);
2073     }
2074 
2075     public void visitAssignop(JCAssignOp tree) {
2076         OperatorSymbol operator = tree.operator;
2077         Item l;
2078         if (operator.opcode == string_add) {
2079             l = concat.makeConcat(tree);
2080         } else {
2081             // Generate code for first expression
2082             l = genExpr(tree.lhs, tree.lhs.type);
2083 
2084             // If we have an increment of -32768 to +32767 of a local
2085             // int variable we can use an incr instruction instead of
2086             // proceeding further.
2087             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2088                 l instanceof LocalItem localItem &&
2089                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2090                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2091                 tree.rhs.type.constValue() != null) {
2092                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2093                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2094                 localItem.incr(ival);
2095                 result = l;
2096                 return;
2097             }
2098             // Otherwise, duplicate expression, load one copy
2099             // and complete binary operation.
2100             l.duplicate();
2101             l.coerce(operator.type.getParameterTypes().head).load();
2102             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2103         }
2104         result = items.makeAssignItem(l);
2105     }
2106 
2107     public void visitUnary(JCUnary tree) {
2108         OperatorSymbol operator = tree.operator;
2109         if (tree.hasTag(NOT)) {
2110             CondItem od = genCond(tree.arg, false);
2111             result = od.negate();
2112         } else {
2113             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2114             switch (tree.getTag()) {
2115             case POS:
2116                 result = od.load();
2117                 break;
2118             case NEG:
2119                 result = od.load();
2120                 code.emitop0(operator.opcode);
2121                 break;
2122             case COMPL:
2123                 result = od.load();
2124                 emitMinusOne(od.typecode);
2125                 code.emitop0(operator.opcode);
2126                 break;
2127             case PREINC: case PREDEC:
2128                 od.duplicate();
2129                 if (od instanceof LocalItem localItem &&
2130                     (operator.opcode == iadd || operator.opcode == isub)) {
2131                     localItem.incr(tree.hasTag(PREINC) ? 1 : -1);
2132                     result = od;
2133                 } else {
2134                     od.load();
2135                     code.emitop0(one(od.typecode));
2136                     code.emitop0(operator.opcode);
2137                     // Perform narrowing primitive conversion if byte,
2138                     // char, or short.  Fix for 4304655.
2139                     if (od.typecode != INTcode &&
2140                         Code.truncate(od.typecode) == INTcode)
2141                       code.emitop0(int2byte + od.typecode - BYTEcode);
2142                     result = items.makeAssignItem(od);
2143                 }
2144                 break;
2145             case POSTINC: case POSTDEC:
2146                 od.duplicate();
2147                 if (od instanceof LocalItem localItem &&
2148                     (operator.opcode == iadd || operator.opcode == isub)) {
2149                     Item res = od.load();
2150                     localItem.incr(tree.hasTag(POSTINC) ? 1 : -1);
2151                     result = res;
2152                 } else {
2153                     Item res = od.load();
2154                     od.stash(od.typecode);
2155                     code.emitop0(one(od.typecode));
2156                     code.emitop0(operator.opcode);
2157                     // Perform narrowing primitive conversion if byte,
2158                     // char, or short.  Fix for 4304655.
2159                     if (od.typecode != INTcode &&
2160                         Code.truncate(od.typecode) == INTcode)
2161                       code.emitop0(int2byte + od.typecode - BYTEcode);
2162                     od.store();
2163                     result = res;
2164                 }
2165                 break;
2166             case NULLCHK:
2167                 result = od.load();
2168                 code.emitop0(dup);
2169                 genNullCheck(tree);
2170                 break;
2171             default:
2172                 Assert.error();
2173             }
2174         }
2175     }
2176 
2177     /** Generate a null check from the object value at stack top. */
2178     private void genNullCheck(JCTree tree) {
2179         code.statBegin(tree.pos);
2180         callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
2181                    List.of(syms.objectType), true);
2182         code.emitop0(pop);
2183     }
2184 
2185     public void visitBinary(JCBinary tree) {
2186         OperatorSymbol operator = tree.operator;
2187         if (operator.opcode == string_add) {
2188             result = concat.makeConcat(tree);
2189         } else if (tree.hasTag(AND)) {
2190             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2191             if (!lcond.isFalse()) {
2192                 Chain falseJumps = lcond.jumpFalse();
2193                 code.resolve(lcond.trueJumps);
2194                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2195                 result = items.
2196                     makeCondItem(rcond.opcode,
2197                                  rcond.trueJumps,
2198                                  Code.mergeChains(falseJumps,
2199                                                   rcond.falseJumps));
2200             } else {
2201                 result = lcond;
2202             }
2203         } else if (tree.hasTag(OR)) {
2204             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2205             if (!lcond.isTrue()) {
2206                 Chain trueJumps = lcond.jumpTrue();
2207                 code.resolve(lcond.falseJumps);
2208                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2209                 result = items.
2210                     makeCondItem(rcond.opcode,
2211                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2212                                  rcond.falseJumps);
2213             } else {
2214                 result = lcond;
2215             }
2216         } else {
2217             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2218             od.load();
2219             result = completeBinop(tree.lhs, tree.rhs, operator);
2220         }
2221     }
2222 
2223 
2224         /** Complete generating code for operation, with left operand
2225          *  already on stack.
2226          *  @param lhs       The tree representing the left operand.
2227          *  @param rhs       The tree representing the right operand.
2228          *  @param operator  The operator symbol.
2229          */
2230         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2231             MethodType optype = (MethodType)operator.type;
2232             int opcode = operator.opcode;
2233             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2234                     rhs.type.constValue() instanceof Number number &&
2235                     number.intValue() == 0) {
2236                 opcode = opcode + (ifeq - if_icmpeq);
2237             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2238                        TreeInfo.isNull(rhs)) {
2239                 opcode = opcode + (if_acmp_null - if_acmpeq);
2240             } else {
2241                 // The expected type of the right operand is
2242                 // the second parameter type of the operator, except for
2243                 // shifts with long shiftcount, where we convert the opcode
2244                 // to a short shift and the expected type to int.
2245                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2246                 if (opcode >= ishll && opcode <= lushrl) {
2247                     opcode = opcode + (ishl - ishll);
2248                     rtype = syms.intType;
2249                 }
2250                 // Generate code for right operand and load.
2251                 genExpr(rhs, rtype).load();
2252                 // If there are two consecutive opcode instructions,
2253                 // emit the first now.
2254                 if (opcode >= (1 << preShift)) {
2255                     code.emitop0(opcode >> preShift);
2256                     opcode = opcode & 0xFF;
2257                 }
2258             }
2259             if (opcode >= ifeq && opcode <= if_acmpne ||
2260                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2261                 return items.makeCondItem(opcode);
2262             } else {
2263                 code.emitop0(opcode);
2264                 return items.makeStackItem(optype.restype);
2265             }
2266         }
2267 
2268     public void visitTypeCast(JCTypeCast tree) {
2269         result = genExpr(tree.expr, tree.clazz.type).load();
2270         setTypeAnnotationPositions(tree.pos);
2271         // Additional code is only needed if we cast to a reference type
2272         // which is not statically a supertype of the expression's type.
2273         // For basic types, the coerce(...) in genExpr(...) will do
2274         // the conversion.
2275         if (!tree.clazz.type.isPrimitive() &&
2276            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2277            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2278             code.emitop2(checkcast, checkDimension(tree.pos(), tree.clazz.type), PoolWriter::putClass);
2279         }
2280     }
2281 
2282     public void visitWildcard(JCWildcard tree) {
2283         throw new AssertionError(this.getClass().getName());
2284     }
2285 
2286     public void visitTypeTest(JCInstanceOf tree) {
2287         genExpr(tree.expr, tree.expr.type).load();
2288         setTypeAnnotationPositions(tree.pos);
2289         code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type));
2290         result = items.makeStackItem(syms.booleanType);
2291     }
2292 
2293     public void visitIndexed(JCArrayAccess tree) {
2294         genExpr(tree.indexed, tree.indexed.type).load();
2295         genExpr(tree.index, syms.intType).load();
2296         result = items.makeIndexedItem(tree.type);
2297     }
2298 
2299     public void visitIdent(JCIdent tree) {
2300         Symbol sym = tree.sym;
2301         if (tree.name == names._this || tree.name == names._super) {
2302             Item res = tree.name == names._this
2303                 ? items.makeThisItem()
2304                 : items.makeSuperItem();
2305             if (sym.kind == MTH) {
2306                 // Generate code to address the constructor.
2307                 res.load();
2308                 res = items.makeMemberItem(sym, true);
2309             }
2310             result = res;
2311        } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) {
2312             if (isConstantDynamic(sym)) {
2313                 setTypeAnnotationPositions(tree.pos);
2314             }
2315             result = items.makeDynamicItem(sym);
2316         } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) {
2317             result = items.makeLocalItem((VarSymbol)sym);
2318         } else if ((sym.flags() & STATIC) != 0) {
2319             if (!isAccessSuper(env.enclMethod))
2320                 sym = binaryQualifier(sym, env.enclClass.type);
2321             result = items.makeStaticItem(sym);
2322         } else {
2323             items.makeThisItem().load();
2324             sym = binaryQualifier(sym, env.enclClass.type);
2325             result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2326         }
2327     }
2328 
2329     //where
2330     private boolean nonVirtualForPrivateAccess(Symbol sym) {
2331         boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2332                              !disableVirtualizedPrivateInvoke;
2333         return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2334     }
2335 
2336     public void visitSelect(JCFieldAccess tree) {
2337         Symbol sym = tree.sym;
2338 
2339         if (tree.name == names._class) {
2340             code.emitLdc((LoadableConstant)checkDimension(tree.pos(), tree.selected.type));
2341             result = items.makeStackItem(pt);
2342             return;
2343        }
2344 
2345         Symbol ssym = TreeInfo.symbol(tree.selected);
2346 
2347         // Are we selecting via super?
2348         boolean selectSuper =
2349             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2350 
2351         // Are we accessing a member of the superclass in an access method
2352         // resulting from a qualified super?
2353         boolean accessSuper = isAccessSuper(env.enclMethod);
2354 
2355         Item base = (selectSuper)
2356             ? items.makeSuperItem()
2357             : genExpr(tree.selected, tree.selected.type);
2358 
2359         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2360             // We are seeing a variable that is constant but its selecting
2361             // expression is not.
2362             if ((sym.flags() & STATIC) != 0) {
2363                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2364                     base = base.load();
2365                 base.drop();
2366             } else {
2367                 base.load();
2368                 genNullCheck(tree.selected);
2369             }
2370             result = items.
2371                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2372         } else {
2373             if (isInvokeDynamic(sym)) {
2374                 result = items.makeDynamicItem(sym);
2375                 return;
2376             } else {
2377                 sym = binaryQualifier(sym, tree.selected.type);
2378             }
2379             if ((sym.flags() & STATIC) != 0) {
2380                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2381                     base = base.load();
2382                 base.drop();
2383                 result = items.makeStaticItem(sym);
2384             } else {
2385                 base.load();
2386                 if (sym == syms.lengthVar) {
2387                     code.emitop0(arraylength);
2388                     result = items.makeStackItem(syms.intType);
2389                 } else {
2390                     result = items.
2391                         makeMemberItem(sym,
2392                                        nonVirtualForPrivateAccess(sym) ||
2393                                        selectSuper || accessSuper);
2394                 }
2395             }
2396         }
2397     }
2398 
2399     public boolean isInvokeDynamic(Symbol sym) {
2400         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2401     }
2402 
2403     public void visitLiteral(JCLiteral tree) {
2404         if (tree.type.hasTag(BOT)) {
2405             code.emitop0(aconst_null);
2406             result = items.makeStackItem(tree.type);
2407         }
2408         else
2409             result = items.makeImmediateItem(tree.type, tree.value);
2410     }
2411 
2412     public void visitLetExpr(LetExpr tree) {
2413         code.resolvePending();
2414 
2415         int limit = code.nextreg;
2416         int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2417         try {
2418             genStats(tree.defs, env);
2419         } finally {
2420             code.setLetExprStackPos(prevLetExprStart);
2421         }
2422         result = genExpr(tree.expr, tree.expr.type).load();
2423         code.endScopes(limit);
2424     }
2425 
2426     private void generateReferencesToPrunedTree(ClassSymbol classSymbol) {
2427         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2428         if (prunedInfo != null) {
2429             for (JCTree prunedTree: prunedInfo) {
2430                 prunedTree.accept(classReferenceVisitor);
2431             }
2432         }
2433     }
2434 
2435 /* ************************************************************************
2436  * main method
2437  *************************************************************************/
2438 
2439     /** Generate code for a class definition.
2440      *  @param env   The attribution environment that belongs to the
2441      *               outermost class containing this class definition.
2442      *               We need this for resolving some additional symbols.
2443      *  @param cdef  The tree representing the class definition.
2444      *  @return      True if code is generated with no errors.
2445      */
2446     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2447         try {
2448             attrEnv = env;
2449             ClassSymbol c = cdef.sym;
2450             this.toplevel = env.toplevel;
2451             this.endPosTable = toplevel.endPositions;
2452             /* method normalizeDefs() can add references to external classes into the constant pool
2453              */
2454             cdef.defs = normalizeDefs(cdef.defs, c);
2455             generateReferencesToPrunedTree(c);
2456             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2457             localEnv.toplevel = env.toplevel;
2458             localEnv.enclClass = cdef;
2459 
2460             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2461                 genDef(l.head, localEnv);
2462             }
2463             if (poolWriter.size() > PoolWriter.MAX_ENTRIES) {
2464                 log.error(cdef.pos(), Errors.LimitPool);
2465                 nerrs++;
2466             }
2467             if (nerrs != 0) {
2468                 // if errors, discard code
2469                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2470                     if (l.head.hasTag(METHODDEF))
2471                         ((JCMethodDecl) l.head).sym.code = null;
2472                 }
2473             }
2474             cdef.defs = List.nil(); // discard trees
2475             return nerrs == 0;
2476         } finally {
2477             // note: this method does NOT support recursion.
2478             attrEnv = null;
2479             this.env = null;
2480             toplevel = null;
2481             endPosTable = null;
2482             nerrs = 0;
2483             qualifiedSymbolCache.clear();
2484         }
2485     }
2486 
2487 /* ************************************************************************
2488  * Auxiliary classes
2489  *************************************************************************/
2490 
2491     /** An abstract class for finalizer generation.
2492      */
2493     abstract class GenFinalizer {
2494         /** Generate code to clean up when unwinding. */
2495         abstract void gen();
2496 
2497         /** Generate code to clean up at last. */
2498         abstract void genLast();
2499 
2500         /** Does this finalizer have some nontrivial cleanup to perform? */
2501         boolean hasFinalizer() { return true; }
2502 
2503         /** Should be invoked after the try's body has been visited. */
2504         void afterBody() {}
2505     }
2506 
2507     /** code generation contexts,
2508      *  to be used as type parameter for environments.
2509      */
2510     static class GenContext {
2511 
2512         /** A chain for all unresolved jumps that exit the current environment.
2513          */
2514         Chain exit = null;
2515 
2516         /** A chain for all unresolved jumps that continue in the
2517          *  current environment.
2518          */
2519         Chain cont = null;
2520 
2521         /** A closure that generates the finalizer of the current environment.
2522          *  Only set for Synchronized and Try contexts.
2523          */
2524         GenFinalizer finalize = null;
2525 
2526         /** Is this a switch statement?  If so, allocate registers
2527          * even when the variable declaration is unreachable.
2528          */
2529         boolean isSwitch = false;
2530 
2531         /** A list buffer containing all gaps in the finalizer range,
2532          *  where a catch all exception should not apply.
2533          */
2534         ListBuffer<Integer> gaps = null;
2535 
2536         /** Add given chain to exit chain.
2537          */
2538         void addExit(Chain c)  {
2539             exit = Code.mergeChains(c, exit);
2540         }
2541 
2542         /** Add given chain to cont chain.
2543          */
2544         void addCont(Chain c) {
2545             cont = Code.mergeChains(c, cont);
2546         }
2547     }
2548 
2549 }