1 /*
2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package com.sun.tools.javac.jvm;
27
28 import java.util.HashMap;
29 import java.util.Map;
30 import java.util.Set;
31
32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
33 import com.sun.tools.javac.tree.TreeInfo.PosKind;
34 import com.sun.tools.javac.util.*;
35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
36 import com.sun.tools.javac.util.List;
37 import com.sun.tools.javac.code.*;
38 import com.sun.tools.javac.code.Attribute.TypeCompound;
39 import com.sun.tools.javac.code.Symbol.VarSymbol;
40 import com.sun.tools.javac.comp.*;
41 import com.sun.tools.javac.tree.*;
42
43 import com.sun.tools.javac.code.Symbol.*;
44 import com.sun.tools.javac.code.Type.*;
45 import com.sun.tools.javac.jvm.Code.*;
46 import com.sun.tools.javac.jvm.Items.*;
47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
48 import com.sun.tools.javac.tree.EndPosTable;
49 import com.sun.tools.javac.tree.JCTree.*;
50
51 import static com.sun.tools.javac.code.Flags.*;
52 import static com.sun.tools.javac.code.Kinds.Kind.*;
53 import static com.sun.tools.javac.code.TypeTag.*;
54 import static com.sun.tools.javac.jvm.ByteCodes.*;
55 import static com.sun.tools.javac.jvm.CRTFlags.*;
56 import static com.sun.tools.javac.main.Option.*;
57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
58
59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
60 *
61 * <p><b>This is NOT part of any supported API.
62 * If you write code that depends on this, you do so at your own risk.
63 * This code and its internal interfaces are subject to change or
64 * deletion without notice.</b>
65 */
66 public class Gen extends JCTree.Visitor {
67 protected static final Context.Key<Gen> genKey = new Context.Key<>();
68
69 private final Log log;
70 private final Symtab syms;
71 private final Check chk;
72 private final Resolve rs;
73 private final TreeMaker make;
74 private final Names names;
75 private final Target target;
76 private final String accessDollar;
77 private final Types types;
78 private final Lower lower;
79 private final Annotate annotate;
80 private final StringConcat concat;
81
82 /** Format of stackmap tables to be generated. */
83 private final Code.StackMapFormat stackMap;
84
85 /** A type that serves as the expected type for all method expressions.
86 */
87 private final Type methodType;
88
89 public static Gen instance(Context context) {
90 Gen instance = context.get(genKey);
91 if (instance == null)
92 instance = new Gen(context);
93 return instance;
94 }
95
96 /** Constant pool writer, set by genClass.
97 */
98 final PoolWriter poolWriter;
99
100 @SuppressWarnings("this-escape")
101 protected Gen(Context context) {
102 context.put(genKey, this);
103
104 names = Names.instance(context);
105 log = Log.instance(context);
106 syms = Symtab.instance(context);
107 chk = Check.instance(context);
108 rs = Resolve.instance(context);
109 make = TreeMaker.instance(context);
110 target = Target.instance(context);
111 types = Types.instance(context);
112 concat = StringConcat.instance(context);
113
114 methodType = new MethodType(null, null, null, syms.methodClass);
115 accessDollar = "access" + target.syntheticNameChar();
116 lower = Lower.instance(context);
117
118 Options options = Options.instance(context);
119 lineDebugInfo =
120 options.isUnset(G_CUSTOM) ||
121 options.isSet(G_CUSTOM, "lines");
122 varDebugInfo =
123 options.isUnset(G_CUSTOM)
124 ? options.isSet(G)
125 : options.isSet(G_CUSTOM, "vars");
126 genCrt = options.isSet(XJCOV);
127 debugCode = options.isSet("debug.code");
128 disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
129 poolWriter = new PoolWriter(types, names);
130
131 // ignore cldc because we cannot have both stackmap formats
132 this.stackMap = StackMapFormat.JSR202;
133 annotate = Annotate.instance(context);
134 qualifiedSymbolCache = new HashMap<>();
135 }
136
137 /** Switches
138 */
139 private final boolean lineDebugInfo;
140 private final boolean varDebugInfo;
141 private final boolean genCrt;
142 private final boolean debugCode;
143 private boolean disableVirtualizedPrivateInvoke;
144
145 /** Code buffer, set by genMethod.
146 */
147 private Code code;
148
149 /** Items structure, set by genMethod.
150 */
151 private Items items;
152
153 /** Environment for symbol lookup, set by genClass
154 */
155 private Env<AttrContext> attrEnv;
156
157 /** The top level tree.
158 */
159 private JCCompilationUnit toplevel;
160
161 /** The number of code-gen errors in this class.
162 */
163 private int nerrs = 0;
164
165 /** An object containing mappings of syntax trees to their
166 * ending source positions.
167 */
168 EndPosTable endPosTable;
169
170 boolean inCondSwitchExpression;
171 Chain switchExpressionTrueChain;
172 Chain switchExpressionFalseChain;
173 List<LocalItem> stackBeforeSwitchExpression;
174 LocalItem switchResult;
175 PatternMatchingCatchConfiguration patternMatchingCatchConfiguration =
176 new PatternMatchingCatchConfiguration(Set.of(), null, null, null);
177
178 /** Cache the symbol to reflect the qualifying type.
179 * key: corresponding type
180 * value: qualified symbol
181 */
182 Map<Type, Symbol> qualifiedSymbolCache;
183
184 /** Generate code to load an integer constant.
185 * @param n The integer to be loaded.
186 */
187 void loadIntConst(int n) {
188 items.makeImmediateItem(syms.intType, n).load();
189 }
190
191 /** The opcode that loads a zero constant of a given type code.
192 * @param tc The given type code (@see ByteCode).
193 */
194 public static int zero(int tc) {
195 switch(tc) {
196 case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
197 return iconst_0;
198 case LONGcode:
199 return lconst_0;
200 case FLOATcode:
201 return fconst_0;
202 case DOUBLEcode:
203 return dconst_0;
204 default:
205 throw new AssertionError("zero");
206 }
207 }
208
209 /** The opcode that loads a one constant of a given type code.
210 * @param tc The given type code (@see ByteCode).
211 */
212 public static int one(int tc) {
213 return zero(tc) + 1;
214 }
215
216 /** Generate code to load -1 of the given type code (either int or long).
217 * @param tc The given type code (@see ByteCode).
218 */
219 void emitMinusOne(int tc) {
220 if (tc == LONGcode) {
221 items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
222 } else {
223 code.emitop0(iconst_m1);
224 }
225 }
226
227 /** Construct a symbol to reflect the qualifying type that should
228 * appear in the byte code as per JLS 13.1.
229 *
230 * For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
231 * for those cases where we need to work around VM bugs).
232 *
233 * For {@literal target <= 1.1}: If qualified variable or method is defined in a
234 * non-accessible class, clone it with the qualifier class as owner.
235 *
236 * @param sym The accessed symbol
237 * @param site The qualifier's type.
238 */
239 Symbol binaryQualifier(Symbol sym, Type site) {
240
241 if (site.hasTag(ARRAY)) {
242 if (sym == syms.lengthVar ||
243 sym.owner != syms.arrayClass)
244 return sym;
245 // array clone can be qualified by the array type in later targets
246 Symbol qualifier;
247 if ((qualifier = qualifiedSymbolCache.get(site)) == null) {
248 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol);
249 qualifiedSymbolCache.put(site, qualifier);
250 }
251 return sym.clone(qualifier);
252 }
253
254 if (sym.owner == site.tsym ||
255 (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
256 return sym;
257 }
258
259 // leave alone methods inherited from Object
260 // JLS 13.1.
261 if (sym.owner == syms.objectType.tsym)
262 return sym;
263
264 return sym.clone(site.tsym);
265 }
266
267 /** Insert a reference to given type in the constant pool,
268 * checking for an array with too many dimensions;
269 * return the reference's index.
270 * @param type The type for which a reference is inserted.
271 */
272 int makeRef(DiagnosticPosition pos, Type type) {
273 return poolWriter.putClass(checkDimension(pos, type));
274 }
275
276 /** Check if the given type is an array with too many dimensions.
277 */
278 private Type checkDimension(DiagnosticPosition pos, Type t) {
279 checkDimensionInternal(pos, t);
280 return t;
281 }
282
283 private void checkDimensionInternal(DiagnosticPosition pos, Type t) {
284 switch (t.getTag()) {
285 case METHOD:
286 checkDimension(pos, t.getReturnType());
287 for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
288 checkDimension(pos, args.head);
289 break;
290 case ARRAY:
291 if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
292 log.error(pos, Errors.LimitDimensions);
293 nerrs++;
294 }
295 break;
296 default:
297 break;
298 }
299 }
300
301 /** Create a temporary variable.
302 * @param type The variable's type.
303 */
304 LocalItem makeTemp(Type type) {
305 VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
306 names.empty,
307 type,
308 env.enclMethod.sym);
309 code.newLocal(v);
310 return items.makeLocalItem(v);
311 }
312
313 /** Generate code to call a non-private method or constructor.
314 * @param pos Position to be used for error reporting.
315 * @param site The type of which the method is a member.
316 * @param name The method's name.
317 * @param argtypes The method's argument types.
318 * @param isStatic A flag that indicates whether we call a
319 * static or instance method.
320 */
321 void callMethod(DiagnosticPosition pos,
322 Type site, Name name, List<Type> argtypes,
323 boolean isStatic) {
324 Symbol msym = rs.
325 resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
326 if (isStatic) items.makeStaticItem(msym).invoke();
327 else items.makeMemberItem(msym, name == names.init).invoke();
328 }
329
330 /** Is the given method definition an access method
331 * resulting from a qualified super? This is signified by an odd
332 * access code.
333 */
334 private boolean isAccessSuper(JCMethodDecl enclMethod) {
335 return
336 (enclMethod.mods.flags & SYNTHETIC) != 0 &&
337 isOddAccessName(enclMethod.name);
338 }
339
340 /** Does given name start with "access$" and end in an odd digit?
341 */
342 private boolean isOddAccessName(Name name) {
343 final String string = name.toString();
344 return
345 string.startsWith(accessDollar) &&
346 (string.charAt(string.length() - 1) & 1) != 0;
347 }
348
349 /* ************************************************************************
350 * Non-local exits
351 *************************************************************************/
352
353 /** Generate code to invoke the finalizer associated with given
354 * environment.
355 * Any calls to finalizers are appended to the environments `cont' chain.
356 * Mark beginning of gap in catch all range for finalizer.
357 */
358 void genFinalizer(Env<GenContext> env) {
359 if (code.isAlive() && env.info.finalize != null)
360 env.info.finalize.gen();
361 }
362
363 /** Generate code to call all finalizers of structures aborted by
364 * a non-local
365 * exit. Return target environment of the non-local exit.
366 * @param target The tree representing the structure that's aborted
367 * @param env The environment current at the non-local exit.
368 */
369 Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
370 Env<GenContext> env1 = env;
371 while (true) {
372 genFinalizer(env1);
373 if (env1.tree == target) break;
374 env1 = env1.next;
375 }
376 return env1;
377 }
378
379 /** Mark end of gap in catch-all range for finalizer.
380 * @param env the environment which might contain the finalizer
381 * (if it does, env.info.gaps != null).
382 */
383 void endFinalizerGap(Env<GenContext> env) {
384 if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
385 env.info.gaps.append(code.curCP());
386 }
387
388 /** Mark end of all gaps in catch-all ranges for finalizers of environments
389 * lying between, and including to two environments.
390 * @param from the most deeply nested environment to mark
391 * @param to the least deeply nested environment to mark
392 */
393 void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
394 Env<GenContext> last = null;
395 while (last != to) {
396 endFinalizerGap(from);
397 last = from;
398 from = from.next;
399 }
400 }
401
402 /** Do any of the structures aborted by a non-local exit have
403 * finalizers that require an empty stack?
404 * @param target The tree representing the structure that's aborted
405 * @param env The environment current at the non-local exit.
406 */
407 boolean hasFinally(JCTree target, Env<GenContext> env) {
408 while (env.tree != target) {
409 if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
410 return true;
411 env = env.next;
412 }
413 return false;
414 }
415
416 /* ************************************************************************
417 * Normalizing class-members.
418 *************************************************************************/
419
420 /** Distribute member initializer code into constructors and {@code <clinit>}
421 * method.
422 * @param defs The list of class member declarations.
423 * @param c The enclosing class.
424 */
425 List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
426 ListBuffer<JCStatement> initCode = new ListBuffer<>();
427 ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
428 ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
429 ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
430 ListBuffer<JCTree> methodDefs = new ListBuffer<>();
431 // Sort definitions into three listbuffers:
432 // - initCode for instance initializers
433 // - clinitCode for class initializers
434 // - methodDefs for method definitions
435 for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
436 JCTree def = l.head;
437 switch (def.getTag()) {
438 case BLOCK:
439 JCBlock block = (JCBlock)def;
440 if ((block.flags & STATIC) != 0)
441 clinitCode.append(block);
442 else if ((block.flags & SYNTHETIC) == 0)
443 initCode.append(block);
444 break;
445 case METHODDEF:
446 methodDefs.append(def);
447 break;
448 case VARDEF:
449 JCVariableDecl vdef = (JCVariableDecl) def;
450 VarSymbol sym = vdef.sym;
451 checkDimension(vdef.pos(), sym.type);
452 if (vdef.init != null) {
453 if ((sym.flags() & STATIC) == 0) {
454 // Always initialize instance variables.
455 JCStatement init = make.at(vdef.pos()).
456 Assignment(sym, vdef.init);
457 initCode.append(init);
458 endPosTable.replaceTree(vdef, init);
459 initTAs.addAll(getAndRemoveNonFieldTAs(sym));
460 } else if (sym.getConstValue() == null) {
461 // Initialize class (static) variables only if
462 // they are not compile-time constants.
463 JCStatement init = make.at(vdef.pos).
464 Assignment(sym, vdef.init);
465 clinitCode.append(init);
466 endPosTable.replaceTree(vdef, init);
467 clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
468 } else {
469 checkStringConstant(vdef.init.pos(), sym.getConstValue());
470 /* if the init contains a reference to an external class, add it to the
471 * constant's pool
472 */
473 vdef.init.accept(classReferenceVisitor);
474 }
475 }
476 break;
477 default:
478 Assert.error();
479 }
480 }
481 // Insert any instance initializers into all constructors.
482 if (initCode.length() != 0) {
483 List<JCStatement> inits = initCode.toList();
484 initTAs.addAll(c.getInitTypeAttributes());
485 List<Attribute.TypeCompound> initTAlist = initTAs.toList();
486 for (JCTree t : methodDefs) {
487 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
488 }
489 }
490 // If there are class initializers, create a <clinit> method
491 // that contains them as its body.
492 if (clinitCode.length() != 0) {
493 MethodSymbol clinit = new MethodSymbol(
494 STATIC | (c.flags() & STRICTFP),
495 names.clinit,
496 new MethodType(
497 List.nil(), syms.voidType,
498 List.nil(), syms.methodClass),
499 c);
500 c.members().enter(clinit);
501 List<JCStatement> clinitStats = clinitCode.toList();
502 JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
503 block.bracePos = TreeInfo.endPos(clinitStats.last());
504 methodDefs.append(make.MethodDef(clinit, block));
505
506 if (!clinitTAs.isEmpty())
507 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
508 if (!c.getClassInitTypeAttributes().isEmpty())
509 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
510 }
511 // Return all method definitions.
512 return methodDefs.toList();
513 }
514
515 private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
516 List<TypeCompound> tas = sym.getRawTypeAttributes();
517 ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
518 ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
519 for (TypeCompound ta : tas) {
520 Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
521 if (ta.getPosition().type == TargetType.FIELD) {
522 fieldTAs.add(ta);
523 } else {
524 nonfieldTAs.add(ta);
525 }
526 }
527 sym.setTypeAttributes(fieldTAs.toList());
528 return nonfieldTAs.toList();
529 }
530
531 /** Check a constant value and report if it is a string that is
532 * too large.
533 */
534 private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
535 if (nerrs != 0 || // only complain about a long string once
536 constValue == null ||
537 !(constValue instanceof String str) ||
538 str.length() < PoolWriter.MAX_STRING_LENGTH)
539 return;
540 log.error(pos, Errors.LimitString);
541 nerrs++;
542 }
543
544 /** Insert instance initializer code into constructors prior to the super() call.
545 * @param md The tree potentially representing a
546 * constructor's definition.
547 * @param initCode The list of instance initializer statements.
548 * @param initTAs Type annotations from the initializer expression.
549 */
550 void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
551 if (TreeInfo.isConstructor(md) && TreeInfo.hasConstructorCall(md, names._super)) {
552 // We are seeing a constructor that has a super() call.
553 // Find the super() invocation and append the given initializer code.
554 TreeInfo.mapSuperCalls(md.body, supercall -> make.Block(0, initCode.prepend(supercall)));
555
556 if (md.body.bracePos == Position.NOPOS)
557 md.body.bracePos = TreeInfo.endPos(md.body.stats.last());
558
559 md.sym.appendUniqueTypeAttributes(initTAs);
560 }
561 }
562
563 /* ************************************************************************
564 * Traversal methods
565 *************************************************************************/
566
567 /** Visitor argument: The current environment.
568 */
569 Env<GenContext> env;
570
571 /** Visitor argument: The expected type (prototype).
572 */
573 Type pt;
574
575 /** Visitor result: The item representing the computed value.
576 */
577 Item result;
578
579 /** Visitor method: generate code for a definition, catching and reporting
580 * any completion failures.
581 * @param tree The definition to be visited.
582 * @param env The environment current at the definition.
583 */
584 public void genDef(JCTree tree, Env<GenContext> env) {
585 Env<GenContext> prevEnv = this.env;
586 try {
587 this.env = env;
588 tree.accept(this);
589 } catch (CompletionFailure ex) {
590 chk.completionError(tree.pos(), ex);
591 } finally {
592 this.env = prevEnv;
593 }
594 }
595
596 /** Derived visitor method: check whether CharacterRangeTable
597 * should be emitted, if so, put a new entry into CRTable
598 * and call method to generate bytecode.
599 * If not, just call method to generate bytecode.
600 * @see #genStat(JCTree, Env)
601 *
602 * @param tree The tree to be visited.
603 * @param env The environment to use.
604 * @param crtFlags The CharacterRangeTable flags
605 * indicating type of the entry.
606 */
607 public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
608 if (!genCrt) {
609 genStat(tree, env);
610 return;
611 }
612 int startpc = code.curCP();
613 genStat(tree, env);
614 if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
615 code.crt.put(tree, crtFlags, startpc, code.curCP());
616 }
617
618 /** Derived visitor method: generate code for a statement.
619 */
620 public void genStat(JCTree tree, Env<GenContext> env) {
621 if (code.isAlive()) {
622 code.statBegin(tree.pos);
623 genDef(tree, env);
624 } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
625 // variables whose declarations are in a switch
626 // can be used even if the decl is unreachable.
627 code.newLocal(((JCVariableDecl) tree).sym);
628 }
629 }
630
631 /** Derived visitor method: check whether CharacterRangeTable
632 * should be emitted, if so, put a new entry into CRTable
633 * and call method to generate bytecode.
634 * If not, just call method to generate bytecode.
635 * @see #genStats(List, Env)
636 *
637 * @param trees The list of trees to be visited.
638 * @param env The environment to use.
639 * @param crtFlags The CharacterRangeTable flags
640 * indicating type of the entry.
641 */
642 public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
643 if (!genCrt) {
644 genStats(trees, env);
645 return;
646 }
647 if (trees.length() == 1) { // mark one statement with the flags
648 genStat(trees.head, env, crtFlags | CRT_STATEMENT);
649 } else {
650 int startpc = code.curCP();
651 genStats(trees, env);
652 code.crt.put(trees, crtFlags, startpc, code.curCP());
653 }
654 }
655
656 /** Derived visitor method: generate code for a list of statements.
657 */
658 public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
659 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
660 genStat(l.head, env, CRT_STATEMENT);
661 }
662
663 /** Derived visitor method: check whether CharacterRangeTable
664 * should be emitted, if so, put a new entry into CRTable
665 * and call method to generate bytecode.
666 * If not, just call method to generate bytecode.
667 * @see #genCond(JCTree,boolean)
668 *
669 * @param tree The tree to be visited.
670 * @param crtFlags The CharacterRangeTable flags
671 * indicating type of the entry.
672 */
673 public CondItem genCond(JCTree tree, int crtFlags) {
674 if (!genCrt) return genCond(tree, false);
675 int startpc = code.curCP();
676 CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
677 code.crt.put(tree, crtFlags, startpc, code.curCP());
678 return item;
679 }
680
681 /** Derived visitor method: generate code for a boolean
682 * expression in a control-flow context.
683 * @param _tree The expression to be visited.
684 * @param markBranches The flag to indicate that the condition is
685 * a flow controller so produced conditions
686 * should contain a proper tree to generate
687 * CharacterRangeTable branches for them.
688 */
689 public CondItem genCond(JCTree _tree, boolean markBranches) {
690 JCTree inner_tree = TreeInfo.skipParens(_tree);
691 if (inner_tree.hasTag(CONDEXPR)) {
692 JCConditional tree = (JCConditional)inner_tree;
693 CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
694 if (cond.isTrue()) {
695 code.resolve(cond.trueJumps);
696 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
697 if (markBranches) result.tree = tree.truepart;
698 return result;
699 }
700 if (cond.isFalse()) {
701 code.resolve(cond.falseJumps);
702 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
703 if (markBranches) result.tree = tree.falsepart;
704 return result;
705 }
706 Chain secondJumps = cond.jumpFalse();
707 code.resolve(cond.trueJumps);
708 CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
709 if (markBranches) first.tree = tree.truepart;
710 Chain falseJumps = first.jumpFalse();
711 code.resolve(first.trueJumps);
712 Chain trueJumps = code.branch(goto_);
713 code.resolve(secondJumps);
714 CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
715 CondItem result = items.makeCondItem(second.opcode,
716 Code.mergeChains(trueJumps, second.trueJumps),
717 Code.mergeChains(falseJumps, second.falseJumps));
718 if (markBranches) result.tree = tree.falsepart;
719 return result;
720 } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) {
721 code.resolvePending();
722
723 boolean prevInCondSwitchExpression = inCondSwitchExpression;
724 Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain;
725 Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain;
726 try {
727 inCondSwitchExpression = true;
728 switchExpressionTrueChain = null;
729 switchExpressionFalseChain = null;
730 try {
731 doHandleSwitchExpression((JCSwitchExpression) inner_tree);
732 } catch (CompletionFailure ex) {
733 chk.completionError(_tree.pos(), ex);
734 code.state.stacksize = 1;
735 }
736 CondItem result = items.makeCondItem(goto_,
737 switchExpressionTrueChain,
738 switchExpressionFalseChain);
739 if (markBranches) result.tree = _tree;
740 return result;
741 } finally {
742 inCondSwitchExpression = prevInCondSwitchExpression;
743 switchExpressionTrueChain = prevSwitchExpressionTrueChain;
744 switchExpressionFalseChain = prevSwitchExpressionFalseChain;
745 }
746 } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) {
747 code.resolvePending();
748
749 LetExpr tree = (LetExpr) inner_tree;
750 int limit = code.nextreg;
751 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
752 try {
753 genStats(tree.defs, env);
754 } finally {
755 code.setLetExprStackPos(prevLetExprStart);
756 }
757 CondItem result = genCond(tree.expr, markBranches);
758 code.endScopes(limit);
759 //make sure variables defined in the let expression are not included
760 //in the defined variables for jumps that go outside of this let
761 //expression:
762 undefineVariablesInChain(result.falseJumps, limit);
763 undefineVariablesInChain(result.trueJumps, limit);
764 return result;
765 } else {
766 CondItem result = genExpr(_tree, syms.booleanType).mkCond();
767 if (markBranches) result.tree = _tree;
768 return result;
769 }
770 }
771 //where:
772 private void undefineVariablesInChain(Chain toClear, int limit) {
773 while (toClear != null) {
774 toClear.state.defined.excludeFrom(limit);
775 toClear = toClear.next;
776 }
777 }
778
779 public Code getCode() {
780 return code;
781 }
782
783 public Items getItems() {
784 return items;
785 }
786
787 public Env<AttrContext> getAttrEnv() {
788 return attrEnv;
789 }
790
791 /** Visitor class for expressions which might be constant expressions.
792 * This class is a subset of TreeScanner. Intended to visit trees pruned by
793 * Lower as long as constant expressions looking for references to any
794 * ClassSymbol. Any such reference will be added to the constant pool so
795 * automated tools can detect class dependencies better.
796 */
797 class ClassReferenceVisitor extends JCTree.Visitor {
798
799 @Override
800 public void visitTree(JCTree tree) {}
801
802 @Override
803 public void visitBinary(JCBinary tree) {
804 tree.lhs.accept(this);
805 tree.rhs.accept(this);
806 }
807
808 @Override
809 public void visitSelect(JCFieldAccess tree) {
810 if (tree.selected.type.hasTag(CLASS)) {
811 makeRef(tree.selected.pos(), tree.selected.type);
812 }
813 }
814
815 @Override
816 public void visitIdent(JCIdent tree) {
817 if (tree.sym.owner instanceof ClassSymbol classSymbol) {
818 poolWriter.putClass(classSymbol);
819 }
820 }
821
822 @Override
823 public void visitConditional(JCConditional tree) {
824 tree.cond.accept(this);
825 tree.truepart.accept(this);
826 tree.falsepart.accept(this);
827 }
828
829 @Override
830 public void visitUnary(JCUnary tree) {
831 tree.arg.accept(this);
832 }
833
834 @Override
835 public void visitParens(JCParens tree) {
836 tree.expr.accept(this);
837 }
838
839 @Override
840 public void visitTypeCast(JCTypeCast tree) {
841 tree.expr.accept(this);
842 }
843 }
844
845 private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
846
847 /** Visitor method: generate code for an expression, catching and reporting
848 * any completion failures.
849 * @param tree The expression to be visited.
850 * @param pt The expression's expected type (proto-type).
851 */
852 public Item genExpr(JCTree tree, Type pt) {
853 if (!code.isAlive()) {
854 return items.makeStackItem(pt);
855 }
856
857 Type prevPt = this.pt;
858 try {
859 if (tree.type.constValue() != null) {
860 // Short circuit any expressions which are constants
861 tree.accept(classReferenceVisitor);
862 checkStringConstant(tree.pos(), tree.type.constValue());
863 Symbol sym = TreeInfo.symbol(tree);
864 if (sym != null && isConstantDynamic(sym)) {
865 result = items.makeDynamicItem(sym);
866 } else {
867 result = items.makeImmediateItem(tree.type, tree.type.constValue());
868 }
869 } else {
870 this.pt = pt;
871 tree.accept(this);
872 }
873 return result.coerce(pt);
874 } catch (CompletionFailure ex) {
875 chk.completionError(tree.pos(), ex);
876 code.state.stacksize = 1;
877 return items.makeStackItem(pt);
878 } finally {
879 this.pt = prevPt;
880 }
881 }
882
883 public boolean isConstantDynamic(Symbol sym) {
884 return sym.kind == VAR &&
885 sym instanceof DynamicVarSymbol dynamicVarSymbol &&
886 dynamicVarSymbol.isDynamic();
887 }
888
889 /** Derived visitor method: generate code for a list of method arguments.
890 * @param trees The argument expressions to be visited.
891 * @param pts The expression's expected types (i.e. the formal parameter
892 * types of the invoked method).
893 */
894 public void genArgs(List<JCExpression> trees, List<Type> pts) {
895 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
896 genExpr(l.head, pts.head).load();
897 pts = pts.tail;
898 }
899 // require lists be of same length
900 Assert.check(pts.isEmpty());
901 }
902
903 /* ************************************************************************
904 * Visitor methods for statements and definitions
905 *************************************************************************/
906
907 /** Thrown when the byte code size exceeds limit.
908 */
909 public static class CodeSizeOverflow extends RuntimeException {
910 private static final long serialVersionUID = 0;
911 public CodeSizeOverflow() {}
912 }
913
914 public void visitMethodDef(JCMethodDecl tree) {
915 // Create a new local environment that points pack at method
916 // definition.
917 Env<GenContext> localEnv = env.dup(tree);
918 localEnv.enclMethod = tree;
919 // The expected type of every return statement in this method
920 // is the method's return type.
921 this.pt = tree.sym.erasure(types).getReturnType();
922
923 checkDimension(tree.pos(), tree.sym.erasure(types));
924 genMethod(tree, localEnv, false);
925 }
926 //where
927 /** Generate code for a method.
928 * @param tree The tree representing the method definition.
929 * @param env The environment current for the method body.
930 * @param fatcode A flag that indicates whether all jumps are
931 * within 32K. We first invoke this method under
932 * the assumption that fatcode == false, i.e. all
933 * jumps are within 32K. If this fails, fatcode
934 * is set to true and we try again.
935 */
936 void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
937 MethodSymbol meth = tree.sym;
938 int extras = 0;
939 // Count up extra parameters
940 if (meth.isConstructor()) {
941 extras++;
942 if (meth.enclClass().isInner() &&
943 !meth.enclClass().isStatic()) {
944 extras++;
945 }
946 } else if ((tree.mods.flags & STATIC) == 0) {
947 extras++;
948 }
949 // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
950 if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
951 ClassFile.MAX_PARAMETERS) {
952 log.error(tree.pos(), Errors.LimitParameters);
953 nerrs++;
954 }
955
956 else if (tree.body != null) {
957 // Create a new code structure and initialize it.
958 int startpcCrt = initCode(tree, env, fatcode);
959
960 try {
961 genStat(tree.body, env);
962 } catch (CodeSizeOverflow e) {
963 // Failed due to code limit, try again with jsr/ret
964 startpcCrt = initCode(tree, env, fatcode);
965 genStat(tree.body, env);
966 }
967
968 if (code.state.stacksize != 0) {
969 log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
970 throw new AssertionError();
971 }
972
973 // If last statement could complete normally, insert a
974 // return at the end.
975 if (code.isAlive()) {
976 code.statBegin(TreeInfo.endPos(tree.body));
977 if (env.enclMethod == null ||
978 env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
979 code.emitop0(return_);
980 } else {
981 // sometime dead code seems alive (4415991);
982 // generate a small loop instead
983 int startpc = code.entryPoint();
984 CondItem c = items.makeCondItem(goto_);
985 code.resolve(c.jumpTrue(), startpc);
986 }
987 }
988 if (genCrt)
989 code.crt.put(tree.body,
990 CRT_BLOCK,
991 startpcCrt,
992 code.curCP());
993
994 code.endScopes(0);
995
996 // If we exceeded limits, panic
997 if (code.checkLimits(tree.pos(), log)) {
998 nerrs++;
999 return;
1000 }
1001
1002 // If we generated short code but got a long jump, do it again
1003 // with fatCode = true.
1004 if (!fatcode && code.fatcode) genMethod(tree, env, true);
1005
1006 // Clean up
1007 if(stackMap == StackMapFormat.JSR202) {
1008 code.lastFrame = null;
1009 code.frameBeforeLast = null;
1010 }
1011
1012 // Compress exception table
1013 code.compressCatchTable();
1014
1015 // Fill in type annotation positions for exception parameters
1016 code.fillExceptionParameterPositions();
1017 }
1018 }
1019
1020 private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1021 MethodSymbol meth = tree.sym;
1022
1023 // Create a new code structure.
1024 meth.code = code = new Code(meth,
1025 fatcode,
1026 lineDebugInfo ? toplevel.lineMap : null,
1027 varDebugInfo,
1028 stackMap,
1029 debugCode,
1030 genCrt ? new CRTable(tree, env.toplevel.endPositions)
1031 : null,
1032 syms,
1033 types,
1034 poolWriter);
1035 items = new Items(poolWriter, code, syms, types);
1036 if (code.debugCode) {
1037 System.err.println(meth + " for body " + tree);
1038 }
1039
1040 // If method is not static, create a new local variable address
1041 // for `this'.
1042 if ((tree.mods.flags & STATIC) == 0) {
1043 Type selfType = meth.owner.type;
1044 if (meth.isConstructor() && selfType != syms.objectType)
1045 selfType = UninitializedType.uninitializedThis(selfType);
1046 code.setDefined(
1047 code.newLocal(
1048 new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1049 }
1050
1051 // Mark all parameters as defined from the beginning of
1052 // the method.
1053 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1054 checkDimension(l.head.pos(), l.head.sym.type);
1055 code.setDefined(code.newLocal(l.head.sym));
1056 }
1057
1058 // Get ready to generate code for method body.
1059 int startpcCrt = genCrt ? code.curCP() : 0;
1060 code.entryPoint();
1061
1062 // Suppress initial stackmap
1063 code.pendingStackMap = false;
1064
1065 return startpcCrt;
1066 }
1067
1068 public void visitVarDef(JCVariableDecl tree) {
1069 VarSymbol v = tree.sym;
1070 if (tree.init != null) {
1071 checkStringConstant(tree.init.pos(), v.getConstValue());
1072 if (v.getConstValue() == null || varDebugInfo) {
1073 Assert.check(code.isStatementStart());
1074 code.newLocal(v);
1075 genExpr(tree.init, v.erasure(types)).load();
1076 items.makeLocalItem(v).store();
1077 Assert.check(code.isStatementStart());
1078 }
1079 } else {
1080 code.newLocal(v);
1081 }
1082 checkDimension(tree.pos(), v.type);
1083 }
1084
1085 public void visitSkip(JCSkip tree) {
1086 }
1087
1088 public void visitBlock(JCBlock tree) {
1089 /* this method is heavily invoked, as expected, for deeply nested blocks, if blocks doesn't happen to have
1090 * patterns there will be an unnecessary tax on memory consumption every time this method is executed, for this
1091 * reason we have created helper methods and here at a higher level we just discriminate depending on the
1092 * presence, or not, of patterns in a given block
1093 */
1094 if (tree.patternMatchingCatch != null) {
1095 visitBlockWithPatterns(tree);
1096 } else {
1097 internalVisitBlock(tree);
1098 }
1099 }
1100
1101 private void visitBlockWithPatterns(JCBlock tree) {
1102 PatternMatchingCatchConfiguration prevConfiguration = patternMatchingCatchConfiguration;
1103 try {
1104 patternMatchingCatchConfiguration =
1105 new PatternMatchingCatchConfiguration(tree.patternMatchingCatch.calls2Handle(),
1106 new ListBuffer<int[]>(),
1107 tree.patternMatchingCatch.handler(),
1108 code.state.dup());
1109 internalVisitBlock(tree);
1110 } finally {
1111 generatePatternMatchingCatch(env);
1112 patternMatchingCatchConfiguration = prevConfiguration;
1113 }
1114 }
1115
1116 private void generatePatternMatchingCatch(Env<GenContext> env) {
1117 if (patternMatchingCatchConfiguration.handler != null &&
1118 !patternMatchingCatchConfiguration.ranges.isEmpty()) {
1119 Chain skipCatch = code.branch(goto_);
1120 JCCatch handler = patternMatchingCatchConfiguration.handler();
1121 code.entryPoint(patternMatchingCatchConfiguration.startState(),
1122 handler.param.sym.type);
1123 genPatternMatchingCatch(handler,
1124 env,
1125 patternMatchingCatchConfiguration.ranges.toList());
1126 code.resolve(skipCatch);
1127 }
1128 }
1129
1130 private void internalVisitBlock(JCBlock tree) {
1131 int limit = code.nextreg;
1132 Env<GenContext> localEnv = env.dup(tree, new GenContext());
1133 genStats(tree.stats, localEnv);
1134 // End the scope of all block-local variables in variable info.
1135 if (!env.tree.hasTag(METHODDEF)) {
1136 code.statBegin(tree.bracePos);
1137 code.endScopes(limit);
1138 code.pendingStatPos = Position.NOPOS;
1139 }
1140 }
1141
1142 public void visitDoLoop(JCDoWhileLoop tree) {
1143 genLoop(tree, tree.body, tree.cond, List.nil(), false);
1144 }
1145
1146 public void visitWhileLoop(JCWhileLoop tree) {
1147 genLoop(tree, tree.body, tree.cond, List.nil(), true);
1148 }
1149
1150 public void visitForLoop(JCForLoop tree) {
1151 int limit = code.nextreg;
1152 genStats(tree.init, env);
1153 genLoop(tree, tree.body, tree.cond, tree.step, true);
1154 code.endScopes(limit);
1155 }
1156 //where
1157 /** Generate code for a loop.
1158 * @param loop The tree representing the loop.
1159 * @param body The loop's body.
1160 * @param cond The loop's controlling condition.
1161 * @param step "Step" statements to be inserted at end of
1162 * each iteration.
1163 * @param testFirst True if the loop test belongs before the body.
1164 */
1165 private void genLoop(JCStatement loop,
1166 JCStatement body,
1167 JCExpression cond,
1168 List<JCExpressionStatement> step,
1169 boolean testFirst) {
1170 Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1171 int startpc = code.entryPoint();
1172 if (testFirst) { //while or for loop
1173 CondItem c;
1174 if (cond != null) {
1175 code.statBegin(cond.pos);
1176 Assert.check(code.isStatementStart());
1177 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1178 } else {
1179 c = items.makeCondItem(goto_);
1180 }
1181 Chain loopDone = c.jumpFalse();
1182 code.resolve(c.trueJumps);
1183 Assert.check(code.isStatementStart());
1184 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1185 code.resolve(loopEnv.info.cont);
1186 genStats(step, loopEnv);
1187 code.resolve(code.branch(goto_), startpc);
1188 code.resolve(loopDone);
1189 } else {
1190 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1191 code.resolve(loopEnv.info.cont);
1192 genStats(step, loopEnv);
1193 if (code.isAlive()) {
1194 CondItem c;
1195 if (cond != null) {
1196 code.statBegin(cond.pos);
1197 Assert.check(code.isStatementStart());
1198 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1199 } else {
1200 c = items.makeCondItem(goto_);
1201 }
1202 code.resolve(c.jumpTrue(), startpc);
1203 Assert.check(code.isStatementStart());
1204 code.resolve(c.falseJumps);
1205 }
1206 }
1207 code.resolve(loopEnv.info.exit);
1208 }
1209
1210 public void visitForeachLoop(JCEnhancedForLoop tree) {
1211 throw new AssertionError(); // should have been removed by Lower.
1212 }
1213
1214 public void visitLabelled(JCLabeledStatement tree) {
1215 Env<GenContext> localEnv = env.dup(tree, new GenContext());
1216 genStat(tree.body, localEnv, CRT_STATEMENT);
1217 code.resolve(localEnv.info.exit);
1218 }
1219
1220 public void visitSwitch(JCSwitch tree) {
1221 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1222 }
1223
1224 @Override
1225 public void visitSwitchExpression(JCSwitchExpression tree) {
1226 code.resolvePending();
1227 boolean prevInCondSwitchExpression = inCondSwitchExpression;
1228 try {
1229 inCondSwitchExpression = false;
1230 doHandleSwitchExpression(tree);
1231 } finally {
1232 inCondSwitchExpression = prevInCondSwitchExpression;
1233 }
1234 result = items.makeStackItem(pt);
1235 }
1236
1237 private void doHandleSwitchExpression(JCSwitchExpression tree) {
1238 List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression;
1239 LocalItem prevSwitchResult = switchResult;
1240 int limit = code.nextreg;
1241 try {
1242 stackBeforeSwitchExpression = List.nil();
1243 switchResult = null;
1244 if (hasTry(tree)) {
1245 //if the switch expression contains try-catch, the catch handlers need to have
1246 //an empty stack. So stash whole stack to local variables, and restore it before
1247 //breaks:
1248 while (code.state.stacksize > 0) {
1249 Type type = code.state.peek();
1250 Name varName = names.fromString(target.syntheticNameChar() +
1251 "stack" +
1252 target.syntheticNameChar() +
1253 tree.pos +
1254 target.syntheticNameChar() +
1255 code.state.stacksize);
1256 VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type,
1257 this.env.enclMethod.sym);
1258 LocalItem item = items.new LocalItem(type, code.newLocal(var));
1259 stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item);
1260 item.store();
1261 }
1262 switchResult = makeTemp(tree.type);
1263 }
1264 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
1265 try {
1266 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1267 } finally {
1268 code.setLetExprStackPos(prevLetExprStart);
1269 }
1270 } finally {
1271 stackBeforeSwitchExpression = prevStackBeforeSwitchExpression;
1272 switchResult = prevSwitchResult;
1273 code.endScopes(limit);
1274 }
1275 }
1276 //where:
1277 private boolean hasTry(JCSwitchExpression tree) {
1278 class HasTryScanner extends TreeScanner {
1279 private boolean hasTry;
1280
1281 @Override
1282 public void visitTry(JCTry tree) {
1283 hasTry = true;
1284 }
1285
1286 @Override
1287 public void visitSynchronized(JCSynchronized tree) {
1288 hasTry = true;
1289 }
1290
1291 @Override
1292 public void visitClassDef(JCClassDecl tree) {
1293 }
1294
1295 @Override
1296 public void visitLambda(JCLambda tree) {
1297 }
1298 };
1299
1300 HasTryScanner hasTryScanner = new HasTryScanner();
1301
1302 hasTryScanner.scan(tree);
1303 return hasTryScanner.hasTry;
1304 }
1305
1306 private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases,
1307 boolean patternSwitch) {
1308 int limit = code.nextreg;
1309 Assert.check(!selector.type.hasTag(CLASS));
1310 int switchStart = patternSwitch ? code.entryPoint() : -1;
1311 int startpcCrt = genCrt ? code.curCP() : 0;
1312 Assert.check(code.isStatementStart());
1313 Item sel = genExpr(selector, syms.intType);
1314 if (cases.isEmpty()) {
1315 // We are seeing: switch <sel> {}
1316 sel.load().drop();
1317 if (genCrt)
1318 code.crt.put(TreeInfo.skipParens(selector),
1319 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1320 } else {
1321 // We are seeing a nonempty switch.
1322 sel.load();
1323 if (genCrt)
1324 code.crt.put(TreeInfo.skipParens(selector),
1325 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1326 Env<GenContext> switchEnv = env.dup(swtch, new GenContext());
1327 switchEnv.info.isSwitch = true;
1328
1329 // Compute number of labels and minimum and maximum label values.
1330 // For each case, store its label in an array.
1331 int lo = Integer.MAX_VALUE; // minimum label.
1332 int hi = Integer.MIN_VALUE; // maximum label.
1333 int nlabels = 0; // number of labels.
1334
1335 int[] labels = new int[cases.length()]; // the label array.
1336 int defaultIndex = -1; // the index of the default clause.
1337
1338 List<JCCase> l = cases;
1339 for (int i = 0; i < labels.length; i++) {
1340 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) {
1341 Assert.check(l.head.labels.size() == 1);
1342 int val = ((Number) constLabel.expr.type.constValue()).intValue();
1343 labels[i] = val;
1344 if (val < lo) lo = val;
1345 if (hi < val) hi = val;
1346 nlabels++;
1347 } else {
1348 Assert.check(defaultIndex == -1);
1349 defaultIndex = i;
1350 }
1351 l = l.tail;
1352 }
1353
1354 // Determine whether to issue a tableswitch or a lookupswitch
1355 // instruction.
1356 long table_space_cost = 4 + ((long) hi - lo + 1); // words
1357 long table_time_cost = 3; // comparisons
1358 long lookup_space_cost = 3 + 2 * (long) nlabels;
1359 long lookup_time_cost = nlabels;
1360 int opcode =
1361 nlabels > 0 &&
1362 table_space_cost + 3 * table_time_cost <=
1363 lookup_space_cost + 3 * lookup_time_cost
1364 ?
1365 tableswitch : lookupswitch;
1366
1367 int startpc = code.curCP(); // the position of the selector operation
1368 code.emitop0(opcode);
1369 code.align(4);
1370 int tableBase = code.curCP(); // the start of the jump table
1371 int[] offsets = null; // a table of offsets for a lookupswitch
1372 code.emit4(-1); // leave space for default offset
1373 if (opcode == tableswitch) {
1374 code.emit4(lo); // minimum label
1375 code.emit4(hi); // maximum label
1376 for (long i = lo; i <= hi; i++) { // leave space for jump table
1377 code.emit4(-1);
1378 }
1379 } else {
1380 code.emit4(nlabels); // number of labels
1381 for (int i = 0; i < nlabels; i++) {
1382 code.emit4(-1); code.emit4(-1); // leave space for lookup table
1383 }
1384 offsets = new int[labels.length];
1385 }
1386 Code.State stateSwitch = code.state.dup();
1387 code.markDead();
1388
1389 // For each case do:
1390 l = cases;
1391 for (int i = 0; i < labels.length; i++) {
1392 JCCase c = l.head;
1393 l = l.tail;
1394
1395 int pc = code.entryPoint(stateSwitch);
1396 // Insert offset directly into code or else into the
1397 // offsets table.
1398 if (i != defaultIndex) {
1399 if (opcode == tableswitch) {
1400 code.put4(
1401 tableBase + 4 * (labels[i] - lo + 3),
1402 pc - startpc);
1403 } else {
1404 offsets[i] = pc - startpc;
1405 }
1406 } else {
1407 code.put4(tableBase, pc - startpc);
1408 }
1409
1410 // Generate code for the statements in this case.
1411 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1412 }
1413
1414 if (switchEnv.info.cont != null) {
1415 Assert.check(patternSwitch);
1416 code.resolve(switchEnv.info.cont, switchStart);
1417 }
1418
1419 // Resolve all breaks.
1420 code.resolve(switchEnv.info.exit);
1421
1422 // If we have not set the default offset, we do so now.
1423 if (code.get4(tableBase) == -1) {
1424 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1425 }
1426
1427 if (opcode == tableswitch) {
1428 // Let any unfilled slots point to the default case.
1429 int defaultOffset = code.get4(tableBase);
1430 for (long i = lo; i <= hi; i++) {
1431 int t = (int)(tableBase + 4 * (i - lo + 3));
1432 if (code.get4(t) == -1)
1433 code.put4(t, defaultOffset);
1434 }
1435 } else {
1436 // Sort non-default offsets and copy into lookup table.
1437 if (defaultIndex >= 0)
1438 for (int i = defaultIndex; i < labels.length - 1; i++) {
1439 labels[i] = labels[i+1];
1440 offsets[i] = offsets[i+1];
1441 }
1442 if (nlabels > 0)
1443 qsort2(labels, offsets, 0, nlabels - 1);
1444 for (int i = 0; i < nlabels; i++) {
1445 int caseidx = tableBase + 8 * (i + 1);
1446 code.put4(caseidx, labels[i]);
1447 code.put4(caseidx + 4, offsets[i]);
1448 }
1449 }
1450
1451 if (swtch instanceof JCSwitchExpression) {
1452 // Emit line position for the end of a switch expression
1453 code.statBegin(TreeInfo.endPos(swtch));
1454 }
1455 }
1456 code.endScopes(limit);
1457 }
1458 //where
1459 /** Sort (int) arrays of keys and values
1460 */
1461 static void qsort2(int[] keys, int[] values, int lo, int hi) {
1462 int i = lo;
1463 int j = hi;
1464 int pivot = keys[(i+j)/2];
1465 do {
1466 while (keys[i] < pivot) i++;
1467 while (pivot < keys[j]) j--;
1468 if (i <= j) {
1469 int temp1 = keys[i];
1470 keys[i] = keys[j];
1471 keys[j] = temp1;
1472 int temp2 = values[i];
1473 values[i] = values[j];
1474 values[j] = temp2;
1475 i++;
1476 j--;
1477 }
1478 } while (i <= j);
1479 if (lo < j) qsort2(keys, values, lo, j);
1480 if (i < hi) qsort2(keys, values, i, hi);
1481 }
1482
1483 public void visitSynchronized(JCSynchronized tree) {
1484 int limit = code.nextreg;
1485 // Generate code to evaluate lock and save in temporary variable.
1486 final LocalItem lockVar = makeTemp(syms.objectType);
1487 Assert.check(code.isStatementStart());
1488 genExpr(tree.lock, tree.lock.type).load().duplicate();
1489 lockVar.store();
1490
1491 // Generate code to enter monitor.
1492 code.emitop0(monitorenter);
1493 code.state.lock(lockVar.reg);
1494
1495 // Generate code for a try statement with given body, no catch clauses
1496 // in a new environment with the "exit-monitor" operation as finalizer.
1497 final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1498 syncEnv.info.finalize = new GenFinalizer() {
1499 void gen() {
1500 genLast();
1501 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1502 syncEnv.info.gaps.append(code.curCP());
1503 }
1504 void genLast() {
1505 if (code.isAlive()) {
1506 lockVar.load();
1507 code.emitop0(monitorexit);
1508 code.state.unlock(lockVar.reg);
1509 }
1510 }
1511 };
1512 syncEnv.info.gaps = new ListBuffer<>();
1513 genTry(tree.body, List.nil(), syncEnv);
1514 code.endScopes(limit);
1515 }
1516
1517 public void visitTry(final JCTry tree) {
1518 // Generate code for a try statement with given body and catch clauses,
1519 // in a new environment which calls the finally block if there is one.
1520 final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1521 final Env<GenContext> oldEnv = env;
1522 tryEnv.info.finalize = new GenFinalizer() {
1523 void gen() {
1524 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1525 tryEnv.info.gaps.append(code.curCP());
1526 genLast();
1527 }
1528 void genLast() {
1529 if (tree.finalizer != null)
1530 genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1531 }
1532 boolean hasFinalizer() {
1533 return tree.finalizer != null;
1534 }
1535
1536 @Override
1537 void afterBody() {
1538 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1539 //for body-only finally, remove the GenFinalizer after try body
1540 //so that the finally is not generated to catch bodies:
1541 tryEnv.info.finalize = null;
1542 }
1543 }
1544
1545 };
1546 tryEnv.info.gaps = new ListBuffer<>();
1547 genTry(tree.body, tree.catchers, tryEnv);
1548 }
1549 //where
1550 /** Generate code for a try or synchronized statement
1551 * @param body The body of the try or synchronized statement.
1552 * @param catchers The list of catch clauses.
1553 * @param env The current environment of the body.
1554 */
1555 void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1556 int limit = code.nextreg;
1557 int startpc = code.curCP();
1558 Code.State stateTry = code.state.dup();
1559 genStat(body, env, CRT_BLOCK);
1560 int endpc = code.curCP();
1561 List<Integer> gaps = env.info.gaps.toList();
1562 code.statBegin(TreeInfo.endPos(body));
1563 genFinalizer(env);
1564 code.statBegin(TreeInfo.endPos(env.tree));
1565 Chain exitChain;
1566 boolean actualTry = env.tree.hasTag(TRY);
1567 if (startpc == endpc && actualTry) {
1568 exitChain = code.branch(dontgoto);
1569 } else {
1570 exitChain = code.branch(goto_);
1571 }
1572 endFinalizerGap(env);
1573 env.info.finalize.afterBody();
1574 boolean hasFinalizer =
1575 env.info.finalize != null &&
1576 env.info.finalize.hasFinalizer();
1577 if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1578 // start off with exception on stack
1579 code.entryPoint(stateTry, l.head.param.sym.type);
1580 genCatch(l.head, env, startpc, endpc, gaps);
1581 genFinalizer(env);
1582 if (hasFinalizer || l.tail.nonEmpty()) {
1583 code.statBegin(TreeInfo.endPos(env.tree));
1584 exitChain = Code.mergeChains(exitChain,
1585 code.branch(goto_));
1586 }
1587 endFinalizerGap(env);
1588 }
1589 if (hasFinalizer && (startpc != endpc || !actualTry)) {
1590 // Create a new register segment to avoid allocating
1591 // the same variables in finalizers and other statements.
1592 code.newRegSegment();
1593
1594 // Add a catch-all clause.
1595
1596 // start off with exception on stack
1597 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1598
1599 // Register all exception ranges for catch all clause.
1600 // The range of the catch all clause is from the beginning
1601 // of the try or synchronized block until the present
1602 // code pointer excluding all gaps in the current
1603 // environment's GenContext.
1604 int startseg = startpc;
1605 while (env.info.gaps.nonEmpty()) {
1606 int endseg = env.info.gaps.next().intValue();
1607 registerCatch(body.pos(), startseg, endseg,
1608 catchallpc, 0);
1609 startseg = env.info.gaps.next().intValue();
1610 }
1611 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1612 code.markStatBegin();
1613
1614 Item excVar = makeTemp(syms.throwableType);
1615 excVar.store();
1616 genFinalizer(env);
1617 code.resolvePending();
1618 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1619 code.markStatBegin();
1620
1621 excVar.load();
1622 registerCatch(body.pos(), startseg,
1623 env.info.gaps.next().intValue(),
1624 catchallpc, 0);
1625 code.emitop0(athrow);
1626 code.markDead();
1627
1628 // If there are jsr's to this finalizer, ...
1629 if (env.info.cont != null) {
1630 // Resolve all jsr's.
1631 code.resolve(env.info.cont);
1632
1633 // Mark statement line number
1634 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1635 code.markStatBegin();
1636
1637 // Save return address.
1638 LocalItem retVar = makeTemp(syms.throwableType);
1639 retVar.store();
1640
1641 // Generate finalizer code.
1642 env.info.finalize.genLast();
1643
1644 // Return.
1645 code.emitop1w(ret, retVar.reg);
1646 code.markDead();
1647 }
1648 }
1649 // Resolve all breaks.
1650 code.resolve(exitChain);
1651
1652 code.endScopes(limit);
1653 }
1654
1655 /** Generate code for a catch clause.
1656 * @param tree The catch clause.
1657 * @param env The environment current in the enclosing try.
1658 * @param startpc Start pc of try-block.
1659 * @param endpc End pc of try-block.
1660 */
1661 void genCatch(JCCatch tree,
1662 Env<GenContext> env,
1663 int startpc, int endpc,
1664 List<Integer> gaps) {
1665 if (startpc != endpc) {
1666 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1667 = catchTypesWithAnnotations(tree);
1668 while (gaps.nonEmpty()) {
1669 for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1670 JCExpression subCatch = subCatch1.snd;
1671 int catchType = makeRef(tree.pos(), subCatch.type);
1672 int end = gaps.head.intValue();
1673 registerCatch(tree.pos(),
1674 startpc, end, code.curCP(),
1675 catchType);
1676 for (Attribute.TypeCompound tc : subCatch1.fst) {
1677 tc.position.setCatchInfo(catchType, startpc);
1678 }
1679 }
1680 gaps = gaps.tail;
1681 startpc = gaps.head.intValue();
1682 gaps = gaps.tail;
1683 }
1684 if (startpc < endpc) {
1685 for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1686 JCExpression subCatch = subCatch1.snd;
1687 int catchType = makeRef(tree.pos(), subCatch.type);
1688 registerCatch(tree.pos(),
1689 startpc, endpc, code.curCP(),
1690 catchType);
1691 for (Attribute.TypeCompound tc : subCatch1.fst) {
1692 tc.position.setCatchInfo(catchType, startpc);
1693 }
1694 }
1695 }
1696 genCatchBlock(tree, env);
1697 }
1698 }
1699 void genPatternMatchingCatch(JCCatch tree,
1700 Env<GenContext> env,
1701 List<int[]> ranges) {
1702 for (int[] range : ranges) {
1703 JCExpression subCatch = tree.param.vartype;
1704 int catchType = makeRef(tree.pos(), subCatch.type);
1705 registerCatch(tree.pos(),
1706 range[0], range[1], code.curCP(),
1707 catchType);
1708 }
1709 genCatchBlock(tree, env);
1710 }
1711 void genCatchBlock(JCCatch tree, Env<GenContext> env) {
1712 VarSymbol exparam = tree.param.sym;
1713 code.statBegin(tree.pos);
1714 code.markStatBegin();
1715 int limit = code.nextreg;
1716 code.newLocal(exparam);
1717 items.makeLocalItem(exparam).store();
1718 code.statBegin(TreeInfo.firstStatPos(tree.body));
1719 genStat(tree.body, env, CRT_BLOCK);
1720 code.endScopes(limit);
1721 code.statBegin(TreeInfo.endPos(tree.body));
1722 }
1723 // where
1724 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1725 return TreeInfo.isMultiCatch(tree) ?
1726 catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1727 List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1728 }
1729 // where
1730 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1731 List<JCExpression> alts = tree.alternatives;
1732 List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1733 alts = alts.tail;
1734
1735 while(alts != null && alts.head != null) {
1736 JCExpression alt = alts.head;
1737 if (alt instanceof JCAnnotatedType annotatedType) {
1738 res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt));
1739 } else {
1740 res = res.prepend(new Pair<>(List.nil(), alt));
1741 }
1742 alts = alts.tail;
1743 }
1744 return res.reverse();
1745 }
1746
1747 /** Register a catch clause in the "Exceptions" code-attribute.
1748 */
1749 void registerCatch(DiagnosticPosition pos,
1750 int startpc, int endpc,
1751 int handler_pc, int catch_type) {
1752 char startpc1 = (char)startpc;
1753 char endpc1 = (char)endpc;
1754 char handler_pc1 = (char)handler_pc;
1755 if (startpc1 == startpc &&
1756 endpc1 == endpc &&
1757 handler_pc1 == handler_pc) {
1758 code.addCatch(startpc1, endpc1, handler_pc1,
1759 (char)catch_type);
1760 } else {
1761 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1762 nerrs++;
1763 }
1764 }
1765
1766 public void visitIf(JCIf tree) {
1767 int limit = code.nextreg;
1768 Chain thenExit = null;
1769 Assert.check(code.isStatementStart());
1770 CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1771 CRT_FLOW_CONTROLLER);
1772 Chain elseChain = c.jumpFalse();
1773 Assert.check(code.isStatementStart());
1774 if (!c.isFalse()) {
1775 code.resolve(c.trueJumps);
1776 genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1777 thenExit = code.branch(goto_);
1778 }
1779 if (elseChain != null) {
1780 code.resolve(elseChain);
1781 if (tree.elsepart != null) {
1782 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1783 }
1784 }
1785 code.resolve(thenExit);
1786 code.endScopes(limit);
1787 Assert.check(code.isStatementStart());
1788 }
1789
1790 public void visitExec(JCExpressionStatement tree) {
1791 // Optimize x++ to ++x and x-- to --x.
1792 JCExpression e = tree.expr;
1793 switch (e.getTag()) {
1794 case POSTINC:
1795 ((JCUnary) e).setTag(PREINC);
1796 break;
1797 case POSTDEC:
1798 ((JCUnary) e).setTag(PREDEC);
1799 break;
1800 }
1801 Assert.check(code.isStatementStart());
1802 genExpr(tree.expr, tree.expr.type).drop();
1803 Assert.check(code.isStatementStart());
1804 }
1805
1806 public void visitBreak(JCBreak tree) {
1807 Assert.check(code.isStatementStart());
1808 final Env<GenContext> targetEnv = unwindBreak(tree.target);
1809 targetEnv.info.addExit(code.branch(goto_));
1810 endFinalizerGaps(env, targetEnv);
1811 }
1812
1813 public void visitYield(JCYield tree) {
1814 Assert.check(code.isStatementStart());
1815 final Env<GenContext> targetEnv;
1816 if (inCondSwitchExpression) {
1817 CondItem value = genCond(tree.value, CRT_FLOW_TARGET);
1818 Chain falseJumps = value.jumpFalse();
1819
1820 code.resolve(value.trueJumps);
1821 Env<GenContext> localEnv = unwindBreak(tree.target);
1822 reloadStackBeforeSwitchExpr();
1823 Chain trueJumps = code.branch(goto_);
1824
1825 endFinalizerGaps(env, localEnv);
1826
1827 code.resolve(falseJumps);
1828 targetEnv = unwindBreak(tree.target);
1829 reloadStackBeforeSwitchExpr();
1830 falseJumps = code.branch(goto_);
1831
1832 if (switchExpressionTrueChain == null) {
1833 switchExpressionTrueChain = trueJumps;
1834 } else {
1835 switchExpressionTrueChain =
1836 Code.mergeChains(switchExpressionTrueChain, trueJumps);
1837 }
1838 if (switchExpressionFalseChain == null) {
1839 switchExpressionFalseChain = falseJumps;
1840 } else {
1841 switchExpressionFalseChain =
1842 Code.mergeChains(switchExpressionFalseChain, falseJumps);
1843 }
1844 } else {
1845 genExpr(tree.value, pt).load();
1846 if (switchResult != null)
1847 switchResult.store();
1848
1849 targetEnv = unwindBreak(tree.target);
1850
1851 if (code.isAlive()) {
1852 reloadStackBeforeSwitchExpr();
1853 if (switchResult != null)
1854 switchResult.load();
1855
1856 targetEnv.info.addExit(code.branch(goto_));
1857 code.markDead();
1858 }
1859 }
1860 endFinalizerGaps(env, targetEnv);
1861 }
1862 //where:
1863 /** As side-effect, might mark code as dead disabling any further emission.
1864 */
1865 private Env<GenContext> unwindBreak(JCTree target) {
1866 int tmpPos = code.pendingStatPos;
1867 Env<GenContext> targetEnv = unwind(target, env);
1868 code.pendingStatPos = tmpPos;
1869 return targetEnv;
1870 }
1871
1872 private void reloadStackBeforeSwitchExpr() {
1873 for (LocalItem li : stackBeforeSwitchExpression)
1874 li.load();
1875 }
1876
1877 public void visitContinue(JCContinue tree) {
1878 int tmpPos = code.pendingStatPos;
1879 Env<GenContext> targetEnv = unwind(tree.target, env);
1880 code.pendingStatPos = tmpPos;
1881 Assert.check(code.isStatementStart());
1882 targetEnv.info.addCont(code.branch(goto_));
1883 endFinalizerGaps(env, targetEnv);
1884 }
1885
1886 public void visitReturn(JCReturn tree) {
1887 int limit = code.nextreg;
1888 final Env<GenContext> targetEnv;
1889
1890 /* Save and then restore the location of the return in case a finally
1891 * is expanded (with unwind()) in the middle of our bytecodes.
1892 */
1893 int tmpPos = code.pendingStatPos;
1894 if (tree.expr != null) {
1895 Assert.check(code.isStatementStart());
1896 Item r = genExpr(tree.expr, pt).load();
1897 if (hasFinally(env.enclMethod, env)) {
1898 r = makeTemp(pt);
1899 r.store();
1900 }
1901 targetEnv = unwind(env.enclMethod, env);
1902 code.pendingStatPos = tmpPos;
1903 r.load();
1904 code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1905 } else {
1906 targetEnv = unwind(env.enclMethod, env);
1907 code.pendingStatPos = tmpPos;
1908 code.emitop0(return_);
1909 }
1910 endFinalizerGaps(env, targetEnv);
1911 code.endScopes(limit);
1912 }
1913
1914 public void visitThrow(JCThrow tree) {
1915 Assert.check(code.isStatementStart());
1916 genExpr(tree.expr, tree.expr.type).load();
1917 code.emitop0(athrow);
1918 Assert.check(code.isStatementStart());
1919 }
1920
1921 /* ************************************************************************
1922 * Visitor methods for expressions
1923 *************************************************************************/
1924
1925 public void visitApply(JCMethodInvocation tree) {
1926 setTypeAnnotationPositions(tree.pos);
1927 // Generate code for method.
1928 Item m = genExpr(tree.meth, methodType);
1929 // Generate code for all arguments, where the expected types are
1930 // the parameters of the method's external type (that is, any implicit
1931 // outer instance of a super(...) call appears as first parameter).
1932 MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1933 genArgs(tree.args,
1934 msym.externalType(types).getParameterTypes());
1935 if (!msym.isDynamic()) {
1936 code.statBegin(tree.pos);
1937 }
1938 if (patternMatchingCatchConfiguration.invocations().contains(tree)) {
1939 int start = code.curCP();
1940 result = m.invoke();
1941 patternMatchingCatchConfiguration.ranges().add(new int[] {start, code.curCP()});
1942 } else {
1943 if (msym.isConstructor() && TreeInfo.isConstructorCall(tree)) {
1944 //if this is a this(...) or super(...) call, there is a pending
1945 //"uninitialized this" before this call. One catch handler cannot
1946 //handle exceptions that may come from places with "uninitialized this"
1947 //and (initialized) this, hence generate one set of handlers here
1948 //for the "uninitialized this" case, and another set of handlers
1949 //will be generated at the end of the method for the initialized this,
1950 //if needed:
1951 generatePatternMatchingCatch(env);
1952 result = m.invoke();
1953 patternMatchingCatchConfiguration =
1954 patternMatchingCatchConfiguration.restart(code.state.dup());
1955 } else {
1956 result = m.invoke();
1957 }
1958 }
1959 }
1960
1961 public void visitConditional(JCConditional tree) {
1962 Chain thenExit = null;
1963 code.statBegin(tree.cond.pos);
1964 CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1965 Chain elseChain = c.jumpFalse();
1966 if (!c.isFalse()) {
1967 code.resolve(c.trueJumps);
1968 int startpc = genCrt ? code.curCP() : 0;
1969 code.statBegin(tree.truepart.pos);
1970 genExpr(tree.truepart, pt).load();
1971 if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1972 startpc, code.curCP());
1973 thenExit = code.branch(goto_);
1974 }
1975 if (elseChain != null) {
1976 code.resolve(elseChain);
1977 int startpc = genCrt ? code.curCP() : 0;
1978 code.statBegin(tree.falsepart.pos);
1979 genExpr(tree.falsepart, pt).load();
1980 if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1981 startpc, code.curCP());
1982 }
1983 code.resolve(thenExit);
1984 result = items.makeStackItem(pt);
1985 }
1986
1987 private void setTypeAnnotationPositions(int treePos) {
1988 MethodSymbol meth = code.meth;
1989 boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1990 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1991
1992 for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1993 if (ta.hasUnknownPosition())
1994 ta.tryFixPosition();
1995
1996 if (ta.position.matchesPos(treePos))
1997 ta.position.updatePosOffset(code.cp);
1998 }
1999
2000 if (!initOrClinit)
2001 return;
2002
2003 for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
2004 if (ta.hasUnknownPosition())
2005 ta.tryFixPosition();
2006
2007 if (ta.position.matchesPos(treePos))
2008 ta.position.updatePosOffset(code.cp);
2009 }
2010
2011 ClassSymbol clazz = meth.enclClass();
2012 for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
2013 if (!s.getKind().isField())
2014 continue;
2015
2016 for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
2017 if (ta.hasUnknownPosition())
2018 ta.tryFixPosition();
2019
2020 if (ta.position.matchesPos(treePos))
2021 ta.position.updatePosOffset(code.cp);
2022 }
2023 }
2024 }
2025
2026 public void visitNewClass(JCNewClass tree) {
2027 // Enclosing instances or anonymous classes should have been eliminated
2028 // by now.
2029 Assert.check(tree.encl == null && tree.def == null);
2030 setTypeAnnotationPositions(tree.pos);
2031
2032 code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2033 code.emitop0(dup);
2034
2035 // Generate code for all arguments, where the expected types are
2036 // the parameters of the constructor's external type (that is,
2037 // any implicit outer instance appears as first parameter).
2038 genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
2039
2040 items.makeMemberItem(tree.constructor, true).invoke();
2041 result = items.makeStackItem(tree.type);
2042 }
2043
2044 public void visitNewArray(JCNewArray tree) {
2045 setTypeAnnotationPositions(tree.pos);
2046
2047 if (tree.elems != null) {
2048 Type elemtype = types.elemtype(tree.type);
2049 loadIntConst(tree.elems.length());
2050 Item arr = makeNewArray(tree.pos(), tree.type, 1);
2051 int i = 0;
2052 for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
2053 arr.duplicate();
2054 loadIntConst(i);
2055 i++;
2056 genExpr(l.head, elemtype).load();
2057 items.makeIndexedItem(elemtype).store();
2058 }
2059 result = arr;
2060 } else {
2061 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2062 genExpr(l.head, syms.intType).load();
2063 }
2064 result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
2065 }
2066 }
2067 //where
2068 /** Generate code to create an array with given element type and number
2069 * of dimensions.
2070 */
2071 Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
2072 Type elemtype = types.elemtype(type);
2073 if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
2074 log.error(pos, Errors.LimitDimensions);
2075 nerrs++;
2076 }
2077 int elemcode = Code.arraycode(elemtype);
2078 if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
2079 code.emitAnewarray(makeRef(pos, elemtype), type);
2080 } else if (elemcode == 1) {
2081 code.emitMultianewarray(ndims, makeRef(pos, type), type);
2082 } else {
2083 code.emitNewarray(elemcode, type);
2084 }
2085 return items.makeStackItem(type);
2086 }
2087
2088 public void visitParens(JCParens tree) {
2089 result = genExpr(tree.expr, tree.expr.type);
2090 }
2091
2092 public void visitAssign(JCAssign tree) {
2093 Item l = genExpr(tree.lhs, tree.lhs.type);
2094 genExpr(tree.rhs, tree.lhs.type).load();
2095 if (tree.rhs.type.hasTag(BOT)) {
2096 /* This is just a case of widening reference conversion that per 5.1.5 simply calls
2097 for "regarding a reference as having some other type in a manner that can be proved
2098 correct at compile time."
2099 */
2100 code.state.forceStackTop(tree.lhs.type);
2101 }
2102 result = items.makeAssignItem(l);
2103 }
2104
2105 public void visitAssignop(JCAssignOp tree) {
2106 OperatorSymbol operator = tree.operator;
2107 Item l;
2108 if (operator.opcode == string_add) {
2109 l = concat.makeConcat(tree);
2110 } else {
2111 // Generate code for first expression
2112 l = genExpr(tree.lhs, tree.lhs.type);
2113
2114 // If we have an increment of -32768 to +32767 of a local
2115 // int variable we can use an incr instruction instead of
2116 // proceeding further.
2117 if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2118 l instanceof LocalItem localItem &&
2119 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2120 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2121 tree.rhs.type.constValue() != null) {
2122 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2123 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2124 localItem.incr(ival);
2125 result = l;
2126 return;
2127 }
2128 // Otherwise, duplicate expression, load one copy
2129 // and complete binary operation.
2130 l.duplicate();
2131 l.coerce(operator.type.getParameterTypes().head).load();
2132 completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2133 }
2134 result = items.makeAssignItem(l);
2135 }
2136
2137 public void visitUnary(JCUnary tree) {
2138 OperatorSymbol operator = tree.operator;
2139 if (tree.hasTag(NOT)) {
2140 CondItem od = genCond(tree.arg, false);
2141 result = od.negate();
2142 } else {
2143 Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2144 switch (tree.getTag()) {
2145 case POS:
2146 result = od.load();
2147 break;
2148 case NEG:
2149 result = od.load();
2150 code.emitop0(operator.opcode);
2151 break;
2152 case COMPL:
2153 result = od.load();
2154 emitMinusOne(od.typecode);
2155 code.emitop0(operator.opcode);
2156 break;
2157 case PREINC: case PREDEC:
2158 od.duplicate();
2159 if (od instanceof LocalItem localItem &&
2160 (operator.opcode == iadd || operator.opcode == isub)) {
2161 localItem.incr(tree.hasTag(PREINC) ? 1 : -1);
2162 result = od;
2163 } else {
2164 od.load();
2165 code.emitop0(one(od.typecode));
2166 code.emitop0(operator.opcode);
2167 // Perform narrowing primitive conversion if byte,
2168 // char, or short. Fix for 4304655.
2169 if (od.typecode != INTcode &&
2170 Code.truncate(od.typecode) == INTcode)
2171 code.emitop0(int2byte + od.typecode - BYTEcode);
2172 result = items.makeAssignItem(od);
2173 }
2174 break;
2175 case POSTINC: case POSTDEC:
2176 od.duplicate();
2177 if (od instanceof LocalItem localItem &&
2178 (operator.opcode == iadd || operator.opcode == isub)) {
2179 Item res = od.load();
2180 localItem.incr(tree.hasTag(POSTINC) ? 1 : -1);
2181 result = res;
2182 } else {
2183 Item res = od.load();
2184 od.stash(od.typecode);
2185 code.emitop0(one(od.typecode));
2186 code.emitop0(operator.opcode);
2187 // Perform narrowing primitive conversion if byte,
2188 // char, or short. Fix for 4304655.
2189 if (od.typecode != INTcode &&
2190 Code.truncate(od.typecode) == INTcode)
2191 code.emitop0(int2byte + od.typecode - BYTEcode);
2192 od.store();
2193 result = res;
2194 }
2195 break;
2196 case NULLCHK:
2197 result = od.load();
2198 code.emitop0(dup);
2199 genNullCheck(tree);
2200 break;
2201 default:
2202 Assert.error();
2203 }
2204 }
2205 }
2206
2207 /** Generate a null check from the object value at stack top. */
2208 private void genNullCheck(JCTree tree) {
2209 code.statBegin(tree.pos);
2210 callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
2211 List.of(syms.objectType), true);
2212 code.emitop0(pop);
2213 }
2214
2215 public void visitBinary(JCBinary tree) {
2216 OperatorSymbol operator = tree.operator;
2217 if (operator.opcode == string_add) {
2218 result = concat.makeConcat(tree);
2219 } else if (tree.hasTag(AND)) {
2220 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2221 if (!lcond.isFalse()) {
2222 Chain falseJumps = lcond.jumpFalse();
2223 code.resolve(lcond.trueJumps);
2224 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2225 result = items.
2226 makeCondItem(rcond.opcode,
2227 rcond.trueJumps,
2228 Code.mergeChains(falseJumps,
2229 rcond.falseJumps));
2230 } else {
2231 result = lcond;
2232 }
2233 } else if (tree.hasTag(OR)) {
2234 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2235 if (!lcond.isTrue()) {
2236 Chain trueJumps = lcond.jumpTrue();
2237 code.resolve(lcond.falseJumps);
2238 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2239 result = items.
2240 makeCondItem(rcond.opcode,
2241 Code.mergeChains(trueJumps, rcond.trueJumps),
2242 rcond.falseJumps);
2243 } else {
2244 result = lcond;
2245 }
2246 } else {
2247 Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2248 od.load();
2249 result = completeBinop(tree.lhs, tree.rhs, operator);
2250 }
2251 }
2252
2253
2254 /** Complete generating code for operation, with left operand
2255 * already on stack.
2256 * @param lhs The tree representing the left operand.
2257 * @param rhs The tree representing the right operand.
2258 * @param operator The operator symbol.
2259 */
2260 Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2261 MethodType optype = (MethodType)operator.type;
2262 int opcode = operator.opcode;
2263 if (opcode >= if_icmpeq && opcode <= if_icmple &&
2264 rhs.type.constValue() instanceof Number number &&
2265 number.intValue() == 0) {
2266 opcode = opcode + (ifeq - if_icmpeq);
2267 } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2268 TreeInfo.isNull(rhs)) {
2269 opcode = opcode + (if_acmp_null - if_acmpeq);
2270 } else {
2271 // The expected type of the right operand is
2272 // the second parameter type of the operator, except for
2273 // shifts with long shiftcount, where we convert the opcode
2274 // to a short shift and the expected type to int.
2275 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2276 if (opcode >= ishll && opcode <= lushrl) {
2277 opcode = opcode + (ishl - ishll);
2278 rtype = syms.intType;
2279 }
2280 // Generate code for right operand and load.
2281 genExpr(rhs, rtype).load();
2282 // If there are two consecutive opcode instructions,
2283 // emit the first now.
2284 if (opcode >= (1 << preShift)) {
2285 code.emitop0(opcode >> preShift);
2286 opcode = opcode & 0xFF;
2287 }
2288 }
2289 if (opcode >= ifeq && opcode <= if_acmpne ||
2290 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2291 return items.makeCondItem(opcode);
2292 } else {
2293 code.emitop0(opcode);
2294 return items.makeStackItem(optype.restype);
2295 }
2296 }
2297
2298 public void visitTypeCast(JCTypeCast tree) {
2299 result = genExpr(tree.expr, tree.clazz.type).load();
2300 setTypeAnnotationPositions(tree.pos);
2301 // Additional code is only needed if we cast to a reference type
2302 // which is not statically a supertype of the expression's type.
2303 // For basic types, the coerce(...) in genExpr(...) will do
2304 // the conversion.
2305 if (!tree.clazz.type.isPrimitive() &&
2306 !types.isSameType(tree.expr.type, tree.clazz.type) &&
2307 types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2308 code.emitop2(checkcast, checkDimension(tree.pos(), tree.clazz.type), PoolWriter::putClass);
2309 }
2310 }
2311
2312 public void visitWildcard(JCWildcard tree) {
2313 throw new AssertionError(this.getClass().getName());
2314 }
2315
2316 public void visitTypeTest(JCInstanceOf tree) {
2317 genExpr(tree.expr, tree.expr.type).load();
2318 setTypeAnnotationPositions(tree.pos);
2319 code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type));
2320 result = items.makeStackItem(syms.booleanType);
2321 }
2322
2323 public void visitIndexed(JCArrayAccess tree) {
2324 genExpr(tree.indexed, tree.indexed.type).load();
2325 genExpr(tree.index, syms.intType).load();
2326 result = items.makeIndexedItem(tree.type);
2327 }
2328
2329 public void visitIdent(JCIdent tree) {
2330 Symbol sym = tree.sym;
2331 if (tree.name == names._this || tree.name == names._super) {
2332 Item res = tree.name == names._this
2333 ? items.makeThisItem()
2334 : items.makeSuperItem();
2335 if (sym.kind == MTH) {
2336 // Generate code to address the constructor.
2337 res.load();
2338 res = items.makeMemberItem(sym, true);
2339 }
2340 result = res;
2341 } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) {
2342 if (isConstantDynamic(sym)) {
2343 setTypeAnnotationPositions(tree.pos);
2344 }
2345 result = items.makeDynamicItem(sym);
2346 } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) {
2347 result = items.makeLocalItem((VarSymbol)sym);
2348 } else if ((sym.flags() & STATIC) != 0) {
2349 if (!isAccessSuper(env.enclMethod))
2350 sym = binaryQualifier(sym, env.enclClass.type);
2351 result = items.makeStaticItem(sym);
2352 } else {
2353 items.makeThisItem().load();
2354 sym = binaryQualifier(sym, env.enclClass.type);
2355 result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2356 }
2357 }
2358
2359 //where
2360 private boolean nonVirtualForPrivateAccess(Symbol sym) {
2361 boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2362 !disableVirtualizedPrivateInvoke;
2363 return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2364 }
2365
2366 public void visitSelect(JCFieldAccess tree) {
2367 Symbol sym = tree.sym;
2368
2369 if (tree.name == names._class) {
2370 code.emitLdc((LoadableConstant)checkDimension(tree.pos(), tree.selected.type));
2371 result = items.makeStackItem(pt);
2372 return;
2373 }
2374
2375 Symbol ssym = TreeInfo.symbol(tree.selected);
2376
2377 // Are we selecting via super?
2378 boolean selectSuper =
2379 ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2380
2381 // Are we accessing a member of the superclass in an access method
2382 // resulting from a qualified super?
2383 boolean accessSuper = isAccessSuper(env.enclMethod);
2384
2385 Item base = (selectSuper)
2386 ? items.makeSuperItem()
2387 : genExpr(tree.selected, tree.selected.type);
2388
2389 if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2390 // We are seeing a variable that is constant but its selecting
2391 // expression is not.
2392 if ((sym.flags() & STATIC) != 0) {
2393 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2394 base = base.load();
2395 base.drop();
2396 } else {
2397 base.load();
2398 genNullCheck(tree.selected);
2399 }
2400 result = items.
2401 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2402 } else {
2403 if (isInvokeDynamic(sym)) {
2404 result = items.makeDynamicItem(sym);
2405 return;
2406 } else {
2407 sym = binaryQualifier(sym, tree.selected.type);
2408 }
2409 if ((sym.flags() & STATIC) != 0) {
2410 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2411 base = base.load();
2412 base.drop();
2413 result = items.makeStaticItem(sym);
2414 } else {
2415 base.load();
2416 if (sym == syms.lengthVar) {
2417 code.emitop0(arraylength);
2418 result = items.makeStackItem(syms.intType);
2419 } else {
2420 result = items.
2421 makeMemberItem(sym,
2422 nonVirtualForPrivateAccess(sym) ||
2423 selectSuper || accessSuper);
2424 }
2425 }
2426 }
2427 }
2428
2429 public boolean isInvokeDynamic(Symbol sym) {
2430 return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2431 }
2432
2433 public void visitLiteral(JCLiteral tree) {
2434 if (tree.type.hasTag(BOT)) {
2435 code.emitop0(aconst_null);
2436 result = items.makeStackItem(tree.type);
2437 }
2438 else
2439 result = items.makeImmediateItem(tree.type, tree.value);
2440 }
2441
2442 public void visitLetExpr(LetExpr tree) {
2443 code.resolvePending();
2444
2445 int limit = code.nextreg;
2446 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2447 try {
2448 genStats(tree.defs, env);
2449 } finally {
2450 code.setLetExprStackPos(prevLetExprStart);
2451 }
2452 result = genExpr(tree.expr, tree.expr.type).load();
2453 code.endScopes(limit);
2454 }
2455
2456 private void generateReferencesToPrunedTree(ClassSymbol classSymbol) {
2457 List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2458 if (prunedInfo != null) {
2459 for (JCTree prunedTree: prunedInfo) {
2460 prunedTree.accept(classReferenceVisitor);
2461 }
2462 }
2463 }
2464
2465 /* ************************************************************************
2466 * main method
2467 *************************************************************************/
2468
2469 /** Generate code for a class definition.
2470 * @param env The attribution environment that belongs to the
2471 * outermost class containing this class definition.
2472 * We need this for resolving some additional symbols.
2473 * @param cdef The tree representing the class definition.
2474 * @return True if code is generated with no errors.
2475 */
2476 public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2477 try {
2478 attrEnv = env;
2479 ClassSymbol c = cdef.sym;
2480 this.toplevel = env.toplevel;
2481 this.endPosTable = toplevel.endPositions;
2482 /* method normalizeDefs() can add references to external classes into the constant pool
2483 */
2484 cdef.defs = normalizeDefs(cdef.defs, c);
2485 generateReferencesToPrunedTree(c);
2486 Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2487 localEnv.toplevel = env.toplevel;
2488 localEnv.enclClass = cdef;
2489
2490 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2491 genDef(l.head, localEnv);
2492 }
2493 if (poolWriter.size() > PoolWriter.MAX_ENTRIES) {
2494 log.error(cdef.pos(), Errors.LimitPool);
2495 nerrs++;
2496 }
2497 if (nerrs != 0) {
2498 // if errors, discard code
2499 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2500 if (l.head.hasTag(METHODDEF))
2501 ((JCMethodDecl) l.head).sym.code = null;
2502 }
2503 }
2504 cdef.defs = List.nil(); // discard trees
2505 return nerrs == 0;
2506 } finally {
2507 // note: this method does NOT support recursion.
2508 attrEnv = null;
2509 this.env = null;
2510 toplevel = null;
2511 endPosTable = null;
2512 nerrs = 0;
2513 qualifiedSymbolCache.clear();
2514 }
2515 }
2516
2517 /* ************************************************************************
2518 * Auxiliary classes
2519 *************************************************************************/
2520
2521 /** An abstract class for finalizer generation.
2522 */
2523 abstract class GenFinalizer {
2524 /** Generate code to clean up when unwinding. */
2525 abstract void gen();
2526
2527 /** Generate code to clean up at last. */
2528 abstract void genLast();
2529
2530 /** Does this finalizer have some nontrivial cleanup to perform? */
2531 boolean hasFinalizer() { return true; }
2532
2533 /** Should be invoked after the try's body has been visited. */
2534 void afterBody() {}
2535 }
2536
2537 /** code generation contexts,
2538 * to be used as type parameter for environments.
2539 */
2540 final class GenContext {
2541
2542 /**
2543 * The top defined local variables for exit or continue branches to merge into.
2544 * It may contain uninitialized variables to be initialized by branched code,
2545 * so we cannot use Code.State.defined bits.
2546 */
2547 final int limit;
2548
2549 /** A chain for all unresolved jumps that exit the current environment.
2550 */
2551 Chain exit = null;
2552
2553 /** A chain for all unresolved jumps that continue in the
2554 * current environment.
2555 */
2556 Chain cont = null;
2557
2558 /** A closure that generates the finalizer of the current environment.
2559 * Only set for Synchronized and Try contexts.
2560 */
2561 GenFinalizer finalize = null;
2562
2563 /** Is this a switch statement? If so, allocate registers
2564 * even when the variable declaration is unreachable.
2565 */
2566 boolean isSwitch = false;
2567
2568 /** A list buffer containing all gaps in the finalizer range,
2569 * where a catch all exception should not apply.
2570 */
2571 ListBuffer<Integer> gaps = null;
2572
2573 GenContext() {
2574 var code = Gen.this.code;
2575 this.limit = code == null ? 0 : code.nextreg;
2576 }
2577
2578 /** Add given chain to exit chain.
2579 */
2580 void addExit(Chain c) {
2581 if (c != null) {
2582 c.state.defined.excludeFrom(limit);
2583 }
2584 exit = Code.mergeChains(c, exit);
2585 }
2586
2587 /** Add given chain to cont chain.
2588 */
2589 void addCont(Chain c) {
2590 if (c != null) {
2591 c.state.defined.excludeFrom(limit);
2592 }
2593 cont = Code.mergeChains(c, cont);
2594 }
2595 }
2596
2597 record PatternMatchingCatchConfiguration(Set<JCMethodInvocation> invocations,
2598 ListBuffer<int[]> ranges,
2599 JCCatch handler,
2600 State startState) {
2601 public PatternMatchingCatchConfiguration restart(State newState) {
2602 return new PatternMatchingCatchConfiguration(invocations(),
2603 new ListBuffer<int[]>(),
2604 handler(),
2605 newState);
2606 }
2607 }
2608 }