1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import java.util.HashMap;
  29 import java.util.Map;
  30 import java.util.Set;
  31 
  32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  33 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 import com.sun.tools.javac.code.*;
  38 import com.sun.tools.javac.code.Attribute.TypeCompound;
  39 import com.sun.tools.javac.code.Symbol.VarSymbol;
  40 import com.sun.tools.javac.comp.*;
  41 import com.sun.tools.javac.tree.*;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Type.*;
  45 import com.sun.tools.javac.jvm.Code.*;
  46 import com.sun.tools.javac.jvm.Items.*;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.EndPosTable;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 
  51 import static com.sun.tools.javac.code.Flags.*;
  52 import static com.sun.tools.javac.code.Kinds.Kind.*;
  53 import static com.sun.tools.javac.code.TypeTag.*;
  54 import static com.sun.tools.javac.jvm.ByteCodes.*;
  55 import static com.sun.tools.javac.jvm.CRTFlags.*;
  56 import static com.sun.tools.javac.main.Option.*;
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Gen extends JCTree.Visitor {
  67     private static final Object[] NO_STATIC_ARGS = new Object[0];
  68     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  69 
  70     private final Log log;
  71     private final Symtab syms;
  72     private final Check chk;
  73     private final Resolve rs;
  74     private final TreeMaker make;
  75     private final Names names;
  76     private final Target target;
  77     private final Name accessDollar;
  78     private final Types types;
  79     private final Lower lower;
  80     private final Annotate annotate;
  81     private final StringConcat concat;
  82     private final TransValues transValues;
  83 
  84     /** Format of stackmap tables to be generated. */
  85     private final Code.StackMapFormat stackMap;
  86 
  87     /** A type that serves as the expected type for all method expressions.
  88      */
  89     private final Type methodType;
  90 
  91     public static Gen instance(Context context) {
  92         Gen instance = context.get(genKey);
  93         if (instance == null)
  94             instance = new Gen(context);
  95         return instance;
  96     }
  97 
  98     /** Constant pool writer, set by genClass.
  99      */
 100     final PoolWriter poolWriter;
 101 
 102     @SuppressWarnings("this-escape")
 103     protected Gen(Context context) {
 104         context.put(genKey, this);
 105 
 106         names = Names.instance(context);
 107         log = Log.instance(context);
 108         syms = Symtab.instance(context);
 109         chk = Check.instance(context);
 110         rs = Resolve.instance(context);
 111         make = TreeMaker.instance(context);
 112         target = Target.instance(context);
 113         types = Types.instance(context);
 114         concat = StringConcat.instance(context);
 115 
 116         methodType = new MethodType(null, null, null, syms.methodClass);
 117         accessDollar = names.
 118             fromString("access" + target.syntheticNameChar());
 119         lower = Lower.instance(context);
 120         transValues = TransValues.instance(context);
 121 
 122         Options options = Options.instance(context);
 123         lineDebugInfo =
 124             options.isUnset(G_CUSTOM) ||
 125             options.isSet(G_CUSTOM, "lines");
 126         varDebugInfo =
 127             options.isUnset(G_CUSTOM)
 128             ? options.isSet(G)
 129             : options.isSet(G_CUSTOM, "vars");
 130         genCrt = options.isSet(XJCOV);
 131         debugCode = options.isSet("debug.code");
 132         disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
 133         poolWriter = new PoolWriter(types, names);
 134 
 135         // ignore cldc because we cannot have both stackmap formats
 136         this.stackMap = StackMapFormat.JSR202;
 137         annotate = Annotate.instance(context);
 138         Source source = Source.instance(context);
 139         allowPrimitiveClasses = Source.Feature.PRIMITIVE_CLASSES.allowedInSource(source) && options.isSet("enablePrimitiveClasses");
 140         qualifiedSymbolCache = new HashMap<>();
 141     }
 142 
 143     /** Switches
 144      */
 145     private final boolean lineDebugInfo;
 146     private final boolean varDebugInfo;
 147     private final boolean genCrt;
 148     private final boolean debugCode;
 149     private boolean disableVirtualizedPrivateInvoke;
 150 
 151     /** Code buffer, set by genMethod.
 152      */
 153     private Code code;
 154 
 155     /** Items structure, set by genMethod.
 156      */
 157     private Items items;
 158 
 159     /** Environment for symbol lookup, set by genClass
 160      */
 161     private Env<AttrContext> attrEnv;
 162 
 163     /** The top level tree.
 164      */
 165     private JCCompilationUnit toplevel;
 166 
 167     /** The number of code-gen errors in this class.
 168      */
 169     private int nerrs = 0;
 170 
 171     /** An object containing mappings of syntax trees to their
 172      *  ending source positions.
 173      */
 174     EndPosTable endPosTable;
 175 
 176     boolean inCondSwitchExpression;
 177     Chain switchExpressionTrueChain;
 178     Chain switchExpressionFalseChain;
 179     List<LocalItem> stackBeforeSwitchExpression;
 180     LocalItem switchResult;
 181     Set<JCMethodInvocation> invocationsWithPatternMatchingCatch = Set.of();
 182     ListBuffer<int[]> patternMatchingInvocationRanges;
 183 
 184     boolean allowPrimitiveClasses;
 185 
 186     /** Cache the symbol to reflect the qualifying type.
 187      *  key: corresponding type
 188      *  value: qualified symbol
 189      */
 190     Map<Type, Symbol> qualifiedSymbolCache;
 191 
 192     /** Generate code to load an integer constant.
 193      *  @param n     The integer to be loaded.
 194      */
 195     void loadIntConst(int n) {
 196         items.makeImmediateItem(syms.intType, n).load();
 197     }
 198 
 199     /** The opcode that loads a zero constant of a given type code.
 200      *  @param tc   The given type code (@see ByteCode).
 201      */
 202     public static int zero(int tc) {
 203         switch(tc) {
 204         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 205             return iconst_0;
 206         case LONGcode:
 207             return lconst_0;
 208         case FLOATcode:
 209             return fconst_0;
 210         case DOUBLEcode:
 211             return dconst_0;
 212         default:
 213             throw new AssertionError("zero");
 214         }
 215     }
 216 
 217     /** The opcode that loads a one constant of a given type code.
 218      *  @param tc   The given type code (@see ByteCode).
 219      */
 220     public static int one(int tc) {
 221         return zero(tc) + 1;
 222     }
 223 
 224     /** Generate code to load -1 of the given type code (either int or long).
 225      *  @param tc   The given type code (@see ByteCode).
 226      */
 227     void emitMinusOne(int tc) {
 228         if (tc == LONGcode) {
 229             items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
 230         } else {
 231             code.emitop0(iconst_m1);
 232         }
 233     }
 234 
 235     /** Construct a symbol to reflect the qualifying type that should
 236      *  appear in the byte code as per JLS 13.1.
 237      *
 238      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 239      *  for those cases where we need to work around VM bugs).
 240      *
 241      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 242      *  non-accessible class, clone it with the qualifier class as owner.
 243      *
 244      *  @param sym    The accessed symbol
 245      *  @param site   The qualifier's type.
 246      */
 247     Symbol binaryQualifier(Symbol sym, Type site) {
 248 
 249         if (site.hasTag(ARRAY)) {
 250             if (sym == syms.lengthVar ||
 251                 sym.owner != syms.arrayClass)
 252                 return sym;
 253             // array clone can be qualified by the array type in later targets
 254             Symbol qualifier;
 255             if ((qualifier = qualifiedSymbolCache.get(site)) == null) {
 256                 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol);
 257                 qualifiedSymbolCache.put(site, qualifier);
 258             }
 259             return sym.clone(qualifier);
 260         }
 261 
 262         if (sym.owner == site.tsym ||
 263             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 264             return sym;
 265         }
 266 
 267         // leave alone methods inherited from Object
 268         // JLS 13.1.
 269         if (sym.owner == syms.objectType.tsym)
 270             return sym;
 271 
 272         return sym.clone(site.tsym);
 273     }
 274 
 275     /** Insert a reference to given type in the constant pool,
 276      *  checking for an array with too many dimensions;
 277      *  return the reference's index.
 278      *  @param type   The type for which a reference is inserted.
 279      */
 280     int makeRef(DiagnosticPosition pos, Type type, boolean emitQtype) {
 281         checkDimension(pos, type);
 282         if (emitQtype) {
 283             return poolWriter.putClass(new ConstantPoolQType(type, types));
 284         } else {
 285             return poolWriter.putClass(type);
 286         }
 287     }
 288 
 289     /** Insert a reference to given type in the constant pool,
 290      *  checking for an array with too many dimensions;
 291      *  return the reference's index.
 292      *  @param type   The type for which a reference is inserted.
 293      */
 294     int makeRef(DiagnosticPosition pos, Type type) {
 295         return makeRef(pos, type, false);
 296     }
 297 
 298     /** Check if the given type is an array with too many dimensions.
 299      */
 300     private Type checkDimension(DiagnosticPosition pos, Type t) {
 301         checkDimensionInternal(pos, t);
 302         return t;
 303     }
 304 
 305     private void checkDimensionInternal(DiagnosticPosition pos, Type t) {
 306         switch (t.getTag()) {
 307         case METHOD:
 308             checkDimension(pos, t.getReturnType());
 309             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 310                 checkDimension(pos, args.head);
 311             break;
 312         case ARRAY:
 313             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 314                 log.error(pos, Errors.LimitDimensions);
 315                 nerrs++;
 316             }
 317             break;
 318         default:
 319             break;
 320         }
 321     }
 322 
 323     /** Create a temporary variable.
 324      *  @param type   The variable's type.
 325      */
 326     LocalItem makeTemp(Type type) {
 327         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 328                                     names.empty,
 329                                     type,
 330                                     env.enclMethod.sym);
 331         code.newLocal(v);
 332         return items.makeLocalItem(v);
 333     }
 334 
 335     /** Generate code to call a non-private method or constructor.
 336      *  @param pos         Position to be used for error reporting.
 337      *  @param site        The type of which the method is a member.
 338      *  @param name        The method's name.
 339      *  @param argtypes    The method's argument types.
 340      *  @param isStatic    A flag that indicates whether we call a
 341      *                     static or instance method.
 342      */
 343     void callMethod(DiagnosticPosition pos,
 344                     Type site, Name name, List<Type> argtypes,
 345                     boolean isStatic) {
 346         Symbol msym = rs.
 347             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 348         if (isStatic) items.makeStaticItem(msym).invoke();
 349         else items.makeMemberItem(msym, names.isInitOrVNew(name)).invoke();
 350     }
 351 
 352     /** Is the given method definition an access method
 353      *  resulting from a qualified super? This is signified by an odd
 354      *  access code.
 355      */
 356     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 357         return
 358             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 359             isOddAccessName(enclMethod.name);
 360     }
 361 
 362     /** Does given name start with "access$" and end in an odd digit?
 363      */
 364     private boolean isOddAccessName(Name name) {
 365         return
 366             name.startsWith(accessDollar) &&
 367             (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
 368     }
 369 
 370 /* ************************************************************************
 371  * Non-local exits
 372  *************************************************************************/
 373 
 374     /** Generate code to invoke the finalizer associated with given
 375      *  environment.
 376      *  Any calls to finalizers are appended to the environments `cont' chain.
 377      *  Mark beginning of gap in catch all range for finalizer.
 378      */
 379     void genFinalizer(Env<GenContext> env) {
 380         if (code.isAlive() && env.info.finalize != null)
 381             env.info.finalize.gen();
 382     }
 383 
 384     /** Generate code to call all finalizers of structures aborted by
 385      *  a non-local
 386      *  exit.  Return target environment of the non-local exit.
 387      *  @param target      The tree representing the structure that's aborted
 388      *  @param env         The environment current at the non-local exit.
 389      */
 390     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 391         Env<GenContext> env1 = env;
 392         while (true) {
 393             genFinalizer(env1);
 394             if (env1.tree == target) break;
 395             env1 = env1.next;
 396         }
 397         return env1;
 398     }
 399 
 400     /** Mark end of gap in catch-all range for finalizer.
 401      *  @param env   the environment which might contain the finalizer
 402      *               (if it does, env.info.gaps != null).
 403      */
 404     void endFinalizerGap(Env<GenContext> env) {
 405         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 406             env.info.gaps.append(code.curCP());
 407     }
 408 
 409     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 410      *  lying between, and including to two environments.
 411      *  @param from    the most deeply nested environment to mark
 412      *  @param to      the least deeply nested environment to mark
 413      */
 414     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 415         Env<GenContext> last = null;
 416         while (last != to) {
 417             endFinalizerGap(from);
 418             last = from;
 419             from = from.next;
 420         }
 421     }
 422 
 423     /** Do any of the structures aborted by a non-local exit have
 424      *  finalizers that require an empty stack?
 425      *  @param target      The tree representing the structure that's aborted
 426      *  @param env         The environment current at the non-local exit.
 427      */
 428     boolean hasFinally(JCTree target, Env<GenContext> env) {
 429         while (env.tree != target) {
 430             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 431                 return true;
 432             env = env.next;
 433         }
 434         return false;
 435     }
 436 
 437 /* ************************************************************************
 438  * Normalizing class-members.
 439  *************************************************************************/
 440 
 441     /** Distribute member initializer code into constructors and {@code <clinit>}
 442      *  method.
 443      *  @param defs         The list of class member declarations.
 444      *  @param c            The enclosing class.
 445      */
 446     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 447         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 448         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 449         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 450         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 451         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 452         // Sort definitions into three listbuffers:
 453         //  - initCode for instance initializers
 454         //  - clinitCode for class initializers
 455         //  - methodDefs for method definitions
 456         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 457             JCTree def = l.head;
 458             switch (def.getTag()) {
 459             case BLOCK:
 460                 JCBlock block = (JCBlock)def;
 461                 if ((block.flags & STATIC) != 0)
 462                     clinitCode.append(block);
 463                 else if ((block.flags & SYNTHETIC) == 0)
 464                     initCode.append(block);
 465                 break;
 466             case METHODDEF:
 467                 methodDefs.append(def);
 468                 break;
 469             case VARDEF:
 470                 JCVariableDecl vdef = (JCVariableDecl) def;
 471                 VarSymbol sym = vdef.sym;
 472                 checkDimension(vdef.pos(), sym.type);
 473                 if (vdef.init != null) {
 474                     if ((sym.flags() & STATIC) == 0) {
 475                         // Always initialize instance variables.
 476                         JCStatement init = make.at(vdef.pos()).
 477                             Assignment(sym, vdef.init);
 478                         initCode.append(init);
 479                         endPosTable.replaceTree(vdef, init);
 480                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 481                     } else if (sym.getConstValue() == null) {
 482                         // Initialize class (static) variables only if
 483                         // they are not compile-time constants.
 484                         JCStatement init = make.at(vdef.pos).
 485                             Assignment(sym, vdef.init);
 486                         clinitCode.append(init);
 487                         endPosTable.replaceTree(vdef, init);
 488                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 489                     } else {
 490                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 491                         /* if the init contains a reference to an external class, add it to the
 492                          * constant's pool
 493                          */
 494                         vdef.init.accept(classReferenceVisitor);
 495                     }
 496                 }
 497                 break;
 498             default:
 499                 Assert.error();
 500             }
 501         }
 502         // Insert any instance initializers into all constructors.
 503         if (initCode.length() != 0) {
 504             List<JCStatement> inits = initCode.toList();
 505             initTAs.addAll(c.getInitTypeAttributes());
 506             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 507             for (JCTree t : methodDefs) {
 508                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 509             }
 510         }
 511         // If there are class initializers, create a <clinit> method
 512         // that contains them as its body.
 513         if (clinitCode.length() != 0) {
 514             MethodSymbol clinit = new MethodSymbol(
 515                 STATIC | (c.flags() & STRICTFP),
 516                 names.clinit,
 517                 new MethodType(
 518                     List.nil(), syms.voidType,
 519                     List.nil(), syms.methodClass),
 520                 c);
 521             c.members().enter(clinit);
 522             List<JCStatement> clinitStats = clinitCode.toList();
 523             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 524             block.endpos = TreeInfo.endPos(clinitStats.last());
 525             methodDefs.append(make.MethodDef(clinit, block));
 526 
 527             if (!clinitTAs.isEmpty())
 528                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 529             if (!c.getClassInitTypeAttributes().isEmpty())
 530                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 531         }
 532         // Return all method definitions.
 533         return methodDefs.toList();
 534     }
 535 
 536     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 537         List<TypeCompound> tas = sym.getRawTypeAttributes();
 538         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 539         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 540         for (TypeCompound ta : tas) {
 541             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 542             if (ta.getPosition().type == TargetType.FIELD) {
 543                 fieldTAs.add(ta);
 544             } else {
 545                 nonfieldTAs.add(ta);
 546             }
 547         }
 548         sym.setTypeAttributes(fieldTAs.toList());
 549         return nonfieldTAs.toList();
 550     }
 551 
 552     /** Check a constant value and report if it is a string that is
 553      *  too large.
 554      */
 555     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 556         if (nerrs != 0 || // only complain about a long string once
 557             constValue == null ||
 558             !(constValue instanceof String str) ||
 559             str.length() < PoolWriter.MAX_STRING_LENGTH)
 560             return;
 561         log.error(pos, Errors.LimitString);
 562         nerrs++;
 563     }
 564 
 565     /** Insert instance initializer code into initial constructor.
 566      *  @param md        The tree potentially representing a
 567      *                   constructor's definition.
 568      *  @param initCode  The list of instance initializer statements.
 569      *  @param initTAs  Type annotations from the initializer expression.
 570      */
 571     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 572         if (names.isInitOrVNew(md.name) && TreeInfo.isInitialConstructor(md)) {
 573             // We are seeing a constructor that does not call another
 574             // constructor of the same class.
 575             List<JCStatement> stats = md.body.stats;
 576             ListBuffer<JCStatement> newstats = new ListBuffer<>();
 577 
 578             if (stats.nonEmpty()) {
 579                 // Copy initializers of synthetic variables generated in
 580                 // the translation of inner classes.
 581                 while (TreeInfo.isSyntheticInit(stats.head)) {
 582                     newstats.append(stats.head);
 583                     stats = stats.tail;
 584                 }
 585                 // Copy superclass constructor call
 586                 newstats.append(stats.head);
 587                 stats = stats.tail;
 588                 // Copy remaining synthetic initializers.
 589                 while (stats.nonEmpty() &&
 590                        TreeInfo.isSyntheticInit(stats.head)) {
 591                     newstats.append(stats.head);
 592                     stats = stats.tail;
 593                 }
 594                 // Now insert the initializer code.
 595                 newstats.appendList(initCode);
 596                 // And copy all remaining statements.
 597                 while (stats.nonEmpty()) {
 598                     newstats.append(stats.head);
 599                     stats = stats.tail;
 600                 }
 601             }
 602             md.body.stats = newstats.toList();
 603             if (md.body.endpos == Position.NOPOS)
 604                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 605 
 606             md.sym.appendUniqueTypeAttributes(initTAs);
 607         }
 608     }
 609 
 610 /* ************************************************************************
 611  * Traversal methods
 612  *************************************************************************/
 613 
 614     /** Visitor argument: The current environment.
 615      */
 616     Env<GenContext> env;
 617 
 618     /** Visitor argument: The expected type (prototype).
 619      */
 620     Type pt;
 621 
 622     /** Visitor result: The item representing the computed value.
 623      */
 624     Item result;
 625 
 626     /** Visitor method: generate code for a definition, catching and reporting
 627      *  any completion failures.
 628      *  @param tree    The definition to be visited.
 629      *  @param env     The environment current at the definition.
 630      */
 631     public void genDef(JCTree tree, Env<GenContext> env) {
 632         Env<GenContext> prevEnv = this.env;
 633         try {
 634             this.env = env;
 635             tree.accept(this);
 636         } catch (CompletionFailure ex) {
 637             chk.completionError(tree.pos(), ex);
 638         } finally {
 639             this.env = prevEnv;
 640         }
 641     }
 642 
 643     /** Derived visitor method: check whether CharacterRangeTable
 644      *  should be emitted, if so, put a new entry into CRTable
 645      *  and call method to generate bytecode.
 646      *  If not, just call method to generate bytecode.
 647      *  @see    #genStat(JCTree, Env)
 648      *
 649      *  @param  tree     The tree to be visited.
 650      *  @param  env      The environment to use.
 651      *  @param  crtFlags The CharacterRangeTable flags
 652      *                   indicating type of the entry.
 653      */
 654     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 655         if (!genCrt) {
 656             genStat(tree, env);
 657             return;
 658         }
 659         int startpc = code.curCP();
 660         genStat(tree, env);
 661         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 662         code.crt.put(tree, crtFlags, startpc, code.curCP());
 663     }
 664 
 665     /** Derived visitor method: generate code for a statement.
 666      */
 667     public void genStat(JCTree tree, Env<GenContext> env) {
 668         if (code.isAlive()) {
 669             code.statBegin(tree.pos);
 670             genDef(tree, env);
 671         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 672             // variables whose declarations are in a switch
 673             // can be used even if the decl is unreachable.
 674             code.newLocal(((JCVariableDecl) tree).sym);
 675         }
 676     }
 677 
 678     /** Derived visitor method: check whether CharacterRangeTable
 679      *  should be emitted, if so, put a new entry into CRTable
 680      *  and call method to generate bytecode.
 681      *  If not, just call method to generate bytecode.
 682      *  @see    #genStats(List, Env)
 683      *
 684      *  @param  trees    The list of trees to be visited.
 685      *  @param  env      The environment to use.
 686      *  @param  crtFlags The CharacterRangeTable flags
 687      *                   indicating type of the entry.
 688      */
 689     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 690         if (!genCrt) {
 691             genStats(trees, env);
 692             return;
 693         }
 694         if (trees.length() == 1) {        // mark one statement with the flags
 695             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 696         } else {
 697             int startpc = code.curCP();
 698             genStats(trees, env);
 699             code.crt.put(trees, crtFlags, startpc, code.curCP());
 700         }
 701     }
 702 
 703     /** Derived visitor method: generate code for a list of statements.
 704      */
 705     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 706         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 707             genStat(l.head, env, CRT_STATEMENT);
 708     }
 709 
 710     /** Derived visitor method: check whether CharacterRangeTable
 711      *  should be emitted, if so, put a new entry into CRTable
 712      *  and call method to generate bytecode.
 713      *  If not, just call method to generate bytecode.
 714      *  @see    #genCond(JCTree,boolean)
 715      *
 716      *  @param  tree     The tree to be visited.
 717      *  @param  crtFlags The CharacterRangeTable flags
 718      *                   indicating type of the entry.
 719      */
 720     public CondItem genCond(JCTree tree, int crtFlags) {
 721         if (!genCrt) return genCond(tree, false);
 722         int startpc = code.curCP();
 723         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 724         code.crt.put(tree, crtFlags, startpc, code.curCP());
 725         return item;
 726     }
 727 
 728     /** Derived visitor method: generate code for a boolean
 729      *  expression in a control-flow context.
 730      *  @param _tree         The expression to be visited.
 731      *  @param markBranches The flag to indicate that the condition is
 732      *                      a flow controller so produced conditions
 733      *                      should contain a proper tree to generate
 734      *                      CharacterRangeTable branches for them.
 735      */
 736     public CondItem genCond(JCTree _tree, boolean markBranches) {
 737         JCTree inner_tree = TreeInfo.skipParens(_tree);
 738         if (inner_tree.hasTag(CONDEXPR)) {
 739             JCConditional tree = (JCConditional)inner_tree;
 740             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 741             if (cond.isTrue()) {
 742                 code.resolve(cond.trueJumps);
 743                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 744                 if (markBranches) result.tree = tree.truepart;
 745                 return result;
 746             }
 747             if (cond.isFalse()) {
 748                 code.resolve(cond.falseJumps);
 749                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 750                 if (markBranches) result.tree = tree.falsepart;
 751                 return result;
 752             }
 753             Chain secondJumps = cond.jumpFalse();
 754             code.resolve(cond.trueJumps);
 755             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 756             if (markBranches) first.tree = tree.truepart;
 757             Chain falseJumps = first.jumpFalse();
 758             code.resolve(first.trueJumps);
 759             Chain trueJumps = code.branch(goto_);
 760             code.resolve(secondJumps);
 761             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 762             CondItem result = items.makeCondItem(second.opcode,
 763                                       Code.mergeChains(trueJumps, second.trueJumps),
 764                                       Code.mergeChains(falseJumps, second.falseJumps));
 765             if (markBranches) result.tree = tree.falsepart;
 766             return result;
 767         } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) {
 768             code.resolvePending();
 769 
 770             boolean prevInCondSwitchExpression = inCondSwitchExpression;
 771             Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain;
 772             Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain;
 773             try {
 774                 inCondSwitchExpression = true;
 775                 switchExpressionTrueChain = null;
 776                 switchExpressionFalseChain = null;
 777                 try {
 778                     doHandleSwitchExpression((JCSwitchExpression) inner_tree);
 779                 } catch (CompletionFailure ex) {
 780                     chk.completionError(_tree.pos(), ex);
 781                     code.state.stacksize = 1;
 782                 }
 783                 CondItem result = items.makeCondItem(goto_,
 784                                                      switchExpressionTrueChain,
 785                                                      switchExpressionFalseChain);
 786                 if (markBranches) result.tree = _tree;
 787                 return result;
 788             } finally {
 789                 inCondSwitchExpression = prevInCondSwitchExpression;
 790                 switchExpressionTrueChain = prevSwitchExpressionTrueChain;
 791                 switchExpressionFalseChain = prevSwitchExpressionFalseChain;
 792             }
 793         } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) {
 794             code.resolvePending();
 795 
 796             LetExpr tree = (LetExpr) inner_tree;
 797             int limit = code.nextreg;
 798             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
 799             try {
 800                 genStats(tree.defs, env);
 801             } finally {
 802                 code.setLetExprStackPos(prevLetExprStart);
 803             }
 804             CondItem result = genCond(tree.expr, markBranches);
 805             code.endScopes(limit);
 806             return result;
 807         } else {
 808             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 809             if (markBranches) result.tree = _tree;
 810             return result;
 811         }
 812     }
 813 
 814     public Code getCode() {
 815         return code;
 816     }
 817 
 818     public Items getItems() {
 819         return items;
 820     }
 821 
 822     public Env<AttrContext> getAttrEnv() {
 823         return attrEnv;
 824     }
 825 
 826     /** Visitor class for expressions which might be constant expressions.
 827      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 828      *  Lower as long as constant expressions looking for references to any
 829      *  ClassSymbol. Any such reference will be added to the constant pool so
 830      *  automated tools can detect class dependencies better.
 831      */
 832     class ClassReferenceVisitor extends JCTree.Visitor {
 833 
 834         @Override
 835         public void visitTree(JCTree tree) {}
 836 
 837         @Override
 838         public void visitBinary(JCBinary tree) {
 839             tree.lhs.accept(this);
 840             tree.rhs.accept(this);
 841         }
 842 
 843         @Override
 844         public void visitSelect(JCFieldAccess tree) {
 845             if (tree.selected.type.hasTag(CLASS)) {
 846                 makeRef(tree.selected.pos(), tree.selected.type);
 847             }
 848         }
 849 
 850         @Override
 851         public void visitIdent(JCIdent tree) {
 852             if (tree.sym.owner instanceof ClassSymbol classSymbol) {
 853                 poolWriter.putClass(classSymbol);
 854             }
 855         }
 856 
 857         @Override
 858         public void visitConditional(JCConditional tree) {
 859             tree.cond.accept(this);
 860             tree.truepart.accept(this);
 861             tree.falsepart.accept(this);
 862         }
 863 
 864         @Override
 865         public void visitUnary(JCUnary tree) {
 866             tree.arg.accept(this);
 867         }
 868 
 869         @Override
 870         public void visitParens(JCParens tree) {
 871             tree.expr.accept(this);
 872         }
 873 
 874         @Override
 875         public void visitTypeCast(JCTypeCast tree) {
 876             tree.expr.accept(this);
 877         }
 878     }
 879 
 880     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 881 
 882     /** Visitor method: generate code for an expression, catching and reporting
 883      *  any completion failures.
 884      *  @param tree    The expression to be visited.
 885      *  @param pt      The expression's expected type (proto-type).
 886      */
 887     public Item genExpr(JCTree tree, Type pt) {
 888         if (!code.isAlive()) {
 889             return items.makeStackItem(pt);
 890         }
 891 
 892         Type prevPt = this.pt;
 893         try {
 894             if (tree.type.constValue() != null) {
 895                 // Short circuit any expressions which are constants
 896                 tree.accept(classReferenceVisitor);
 897                 checkStringConstant(tree.pos(), tree.type.constValue());
 898                 Symbol sym = TreeInfo.symbol(tree);
 899                 if (sym != null && isConstantDynamic(sym)) {
 900                     result = items.makeDynamicItem(sym);
 901                 } else {
 902                     result = items.makeImmediateItem(tree.type, tree.type.constValue());
 903                 }
 904             } else {
 905                 this.pt = pt;
 906                 tree.accept(this);
 907             }
 908             return result.coerce(pt);
 909         } catch (CompletionFailure ex) {
 910             chk.completionError(tree.pos(), ex);
 911             code.state.stacksize = 1;
 912             return items.makeStackItem(pt);
 913         } finally {
 914             this.pt = prevPt;
 915         }
 916     }
 917 
 918     public boolean isConstantDynamic(Symbol sym) {
 919         return sym.kind == VAR &&
 920                 sym instanceof DynamicVarSymbol dynamicVarSymbol &&
 921                 dynamicVarSymbol.isDynamic();
 922     }
 923 
 924     /** Derived visitor method: generate code for a list of method arguments.
 925      *  @param trees    The argument expressions to be visited.
 926      *  @param pts      The expression's expected types (i.e. the formal parameter
 927      *                  types of the invoked method).
 928      */
 929     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 930         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 931             genExpr(l.head, pts.head).load();
 932             pts = pts.tail;
 933         }
 934         // require lists be of same length
 935         Assert.check(pts.isEmpty());
 936     }
 937 
 938 /* ************************************************************************
 939  * Visitor methods for statements and definitions
 940  *************************************************************************/
 941 
 942     /** Thrown when the byte code size exceeds limit.
 943      */
 944     public static class CodeSizeOverflow extends RuntimeException {
 945         private static final long serialVersionUID = 0;
 946         public CodeSizeOverflow() {}
 947     }
 948 
 949     public void visitMethodDef(JCMethodDecl tree) {
 950         // Create a new local environment that points pack at method
 951         // definition.
 952         Env<GenContext> localEnv = env.dup(tree);
 953         localEnv.enclMethod = tree;
 954         // The expected type of every return statement in this method
 955         // is the method's return type.
 956         this.pt = tree.sym.erasure(types).getReturnType();
 957 
 958         checkDimension(tree.pos(), tree.sym.erasure(types));
 959         genMethod(tree, localEnv, false);
 960     }
 961 //where
 962         /** Generate code for a method.
 963          *  @param tree     The tree representing the method definition.
 964          *  @param env      The environment current for the method body.
 965          *  @param fatcode  A flag that indicates whether all jumps are
 966          *                  within 32K.  We first invoke this method under
 967          *                  the assumption that fatcode == false, i.e. all
 968          *                  jumps are within 32K.  If this fails, fatcode
 969          *                  is set to true and we try again.
 970          */
 971         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 972             MethodSymbol meth = tree.sym;
 973             int extras = 0;
 974             // Count up extra parameters
 975             if (meth.isInitOrVNew()) {
 976                 extras++;
 977                 if (meth.enclClass().isInner() &&
 978                     !meth.enclClass().isStatic()) {
 979                     extras++;
 980                 }
 981             } else if ((tree.mods.flags & STATIC) == 0) {
 982                 extras++;
 983             }
 984             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 985             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 986                 ClassFile.MAX_PARAMETERS) {
 987                 log.error(tree.pos(), Errors.LimitParameters);
 988                 nerrs++;
 989             }
 990 
 991             else if (tree.body != null) {
 992                 // Create a new code structure and initialize it.
 993                 int startpcCrt = initCode(tree, env, fatcode);
 994 
 995                 try {
 996                     genStat(tree.body, env);
 997                 } catch (CodeSizeOverflow e) {
 998                     // Failed due to code limit, try again with jsr/ret
 999                     startpcCrt = initCode(tree, env, fatcode);
1000                     genStat(tree.body, env);
1001                 }
1002 
1003                 if (code.state.stacksize != 0) {
1004                     log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
1005                     throw new AssertionError();
1006                 }
1007 
1008                 // If last statement could complete normally, insert a
1009                 // return at the end.
1010                 if (code.isAlive()) {
1011                     code.statBegin(TreeInfo.endPos(tree.body));
1012                     if (env.enclMethod == null ||
1013                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
1014                         code.emitop0(return_);
1015                     } else if (env.enclMethod.sym.isValueObjectFactory()) {
1016                         items.makeLocalItem(env.enclMethod.factoryProduct).load();
1017                         code.emitop0(areturn);
1018                     } else {
1019                         // sometime dead code seems alive (4415991);
1020                         // generate a small loop instead
1021                         int startpc = code.entryPoint();
1022                         CondItem c = items.makeCondItem(goto_);
1023                         code.resolve(c.jumpTrue(), startpc);
1024                     }
1025                 }
1026                 if (genCrt)
1027                     code.crt.put(tree.body,
1028                                  CRT_BLOCK,
1029                                  startpcCrt,
1030                                  code.curCP());
1031 
1032                 code.endScopes(0);
1033 
1034                 // If we exceeded limits, panic
1035                 if (code.checkLimits(tree.pos(), log)) {
1036                     nerrs++;
1037                     return;
1038                 }
1039 
1040                 // If we generated short code but got a long jump, do it again
1041                 // with fatCode = true.
1042                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
1043 
1044                 // Clean up
1045                 if(stackMap == StackMapFormat.JSR202) {
1046                     code.lastFrame = null;
1047                     code.frameBeforeLast = null;
1048                 }
1049 
1050                 // Compress exception table
1051                 code.compressCatchTable();
1052 
1053                 // Fill in type annotation positions for exception parameters
1054                 code.fillExceptionParameterPositions();
1055             }
1056         }
1057 
1058         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1059             MethodSymbol meth = tree.sym;
1060 
1061             // Create a new code structure.
1062             meth.code = code = new Code(meth,
1063                                         fatcode,
1064                                         lineDebugInfo ? toplevel.lineMap : null,
1065                                         varDebugInfo,
1066                                         stackMap,
1067                                         debugCode,
1068                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1069                                                : null,
1070                                         syms,
1071                                         types,
1072                                         poolWriter,
1073                                         allowPrimitiveClasses);
1074             items = new Items(poolWriter, code, syms, types);
1075             if (code.debugCode) {
1076                 System.err.println(meth + " for body " + tree);
1077             }
1078 
1079             // If method is not static, create a new local variable address
1080             // for `this'.
1081             if ((tree.mods.flags & STATIC) == 0) {
1082                 Type selfType = meth.owner.type;
1083                 if (meth.isInitOrVNew() && selfType != syms.objectType)
1084                     selfType = UninitializedType.uninitializedThis(selfType);
1085                 code.setDefined(
1086                         code.newLocal(
1087                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1088             }
1089 
1090             // Mark all parameters as defined from the beginning of
1091             // the method.
1092             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1093                 checkDimension(l.head.pos(), l.head.sym.type);
1094                 code.setDefined(code.newLocal(l.head.sym));
1095             }
1096 
1097             // Get ready to generate code for method body.
1098             int startpcCrt = genCrt ? code.curCP() : 0;
1099             code.entryPoint();
1100 
1101             // Suppress initial stackmap
1102             code.pendingStackMap = false;
1103 
1104             return startpcCrt;
1105         }
1106 
1107     public void visitVarDef(JCVariableDecl tree) {
1108         VarSymbol v = tree.sym;
1109         if (tree.init != null) {
1110             checkStringConstant(tree.init.pos(), v.getConstValue());
1111             if (v.getConstValue() == null || varDebugInfo) {
1112                 Assert.check(code.isStatementStart());
1113                 code.newLocal(v);
1114                 genExpr(tree.init, v.erasure(types)).load();
1115                 items.makeLocalItem(v).store();
1116                 Assert.check(code.isStatementStart());
1117             }
1118         } else {
1119             code.newLocal(v);
1120         }
1121         checkDimension(tree.pos(), v.type);
1122         Type localType = v.erasure(types);
1123         if (localType.requiresPreload(env.enclClass.sym)) {
1124             poolWriter.enterPreloadClass((ClassSymbol) localType.tsym);
1125         }
1126     }
1127 
1128     public void visitSkip(JCSkip tree) {
1129     }
1130 
1131     public void visitBlock(JCBlock tree) {
1132         if (tree.patternMatchingCatch != null) {
1133             Set<JCMethodInvocation> prevInvocationsWithPatternMatchingCatch = invocationsWithPatternMatchingCatch;
1134             ListBuffer<int[]> prevRanges = patternMatchingInvocationRanges;
1135             State startState = code.state.dup();
1136             try {
1137                 invocationsWithPatternMatchingCatch = tree.patternMatchingCatch.calls2Handle();
1138                 patternMatchingInvocationRanges = new ListBuffer<>();
1139                 doVisitBlock(tree);
1140             } finally {
1141                 Chain skipCatch = code.branch(goto_);
1142                 JCCatch handler = tree.patternMatchingCatch.handler();
1143                 code.entryPoint(startState, handler.param.sym.type);
1144                 genPatternMatchingCatch(handler, env, patternMatchingInvocationRanges.toList());
1145                 code.resolve(skipCatch);
1146                 invocationsWithPatternMatchingCatch = prevInvocationsWithPatternMatchingCatch;
1147                 patternMatchingInvocationRanges = prevRanges;
1148             }
1149         } else {
1150             doVisitBlock(tree);
1151         }
1152     }
1153 
1154     private void doVisitBlock(JCBlock tree) {
1155         int limit = code.nextreg;
1156         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1157         genStats(tree.stats, localEnv);
1158         // End the scope of all block-local variables in variable info.
1159         if (!env.tree.hasTag(METHODDEF)) {
1160             code.statBegin(tree.endpos);
1161             code.endScopes(limit);
1162             code.pendingStatPos = Position.NOPOS;
1163         }
1164     }
1165 
1166     public void visitDoLoop(JCDoWhileLoop tree) {
1167         genLoop(tree, tree.body, tree.cond, List.nil(), false);
1168     }
1169 
1170     public void visitWhileLoop(JCWhileLoop tree) {
1171         genLoop(tree, tree.body, tree.cond, List.nil(), true);
1172     }
1173 
1174     public void visitWithField(JCWithField tree) {
1175         switch(tree.field.getTag()) {
1176             case IDENT:
1177                 Symbol sym = ((JCIdent) tree.field).sym;
1178                 items.makeThisItem().load();
1179                 genExpr(tree.value, tree.field.type).load();
1180                 sym = binaryQualifier(sym, env.enclClass.type);
1181                 code.emitop2(withfield, sym, PoolWriter::putMember);
1182                 result = items.makeStackItem(tree.type);
1183                 break;
1184             case SELECT:
1185                 JCFieldAccess fieldAccess = (JCFieldAccess) tree.field;
1186                 sym = TreeInfo.symbol(fieldAccess);
1187                 // JDK-8207332: To maintain the order of side effects, must compute value ahead of field
1188                 genExpr(tree.value, tree.field.type).load();
1189                 genExpr(fieldAccess.selected, fieldAccess.selected.type).load();
1190                 if (Code.width(tree.field.type) == 2) {
1191                     code.emitop0(dup_x2);
1192                     code.emitop0(pop);
1193                 } else {
1194                     code.emitop0(swap);
1195                 }
1196                 sym = binaryQualifier(sym, fieldAccess.selected.type);
1197                 code.emitop2(withfield, sym, PoolWriter::putMember);
1198                 result = items.makeStackItem(tree.type);
1199                 break;
1200             default:
1201                 Assert.check(false);
1202         }
1203     }
1204 
1205     public void visitForLoop(JCForLoop tree) {
1206         int limit = code.nextreg;
1207         genStats(tree.init, env);
1208         genLoop(tree, tree.body, tree.cond, tree.step, true);
1209         code.endScopes(limit);
1210     }
1211     //where
1212         /** Generate code for a loop.
1213          *  @param loop       The tree representing the loop.
1214          *  @param body       The loop's body.
1215          *  @param cond       The loop's controlling condition.
1216          *  @param step       "Step" statements to be inserted at end of
1217          *                    each iteration.
1218          *  @param testFirst  True if the loop test belongs before the body.
1219          */
1220         private void genLoop(JCStatement loop,
1221                              JCStatement body,
1222                              JCExpression cond,
1223                              List<JCExpressionStatement> step,
1224                              boolean testFirst) {
1225             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1226             int startpc = code.entryPoint();
1227             if (testFirst) { //while or for loop
1228                 CondItem c;
1229                 if (cond != null) {
1230                     code.statBegin(cond.pos);
1231                     Assert.check(code.isStatementStart());
1232                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1233                 } else {
1234                     c = items.makeCondItem(goto_);
1235                 }
1236                 Chain loopDone = c.jumpFalse();
1237                 code.resolve(c.trueJumps);
1238                 Assert.check(code.isStatementStart());
1239                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1240                 code.resolve(loopEnv.info.cont);
1241                 genStats(step, loopEnv);
1242                 code.resolve(code.branch(goto_), startpc);
1243                 code.resolve(loopDone);
1244             } else {
1245                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1246                 code.resolve(loopEnv.info.cont);
1247                 genStats(step, loopEnv);
1248                 if (code.isAlive()) {
1249                     CondItem c;
1250                     if (cond != null) {
1251                         code.statBegin(cond.pos);
1252                         Assert.check(code.isStatementStart());
1253                         c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1254                     } else {
1255                         c = items.makeCondItem(goto_);
1256                     }
1257                     code.resolve(c.jumpTrue(), startpc);
1258                     Assert.check(code.isStatementStart());
1259                     code.resolve(c.falseJumps);
1260                 }
1261             }
1262             Chain exit = loopEnv.info.exit;
1263             if (exit != null) {
1264                 code.resolve(exit);
1265                 exit.state.defined.excludeFrom(code.nextreg);
1266             }
1267         }
1268 
1269     public void visitForeachLoop(JCEnhancedForLoop tree) {
1270         throw new AssertionError(); // should have been removed by Lower.
1271     }
1272 
1273     public void visitLabelled(JCLabeledStatement tree) {
1274         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1275         genStat(tree.body, localEnv, CRT_STATEMENT);
1276         Chain exit = localEnv.info.exit;
1277         if (exit != null) {
1278             code.resolve(exit);
1279             exit.state.defined.excludeFrom(code.nextreg);
1280         }
1281     }
1282 
1283     public void visitSwitch(JCSwitch tree) {
1284         handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1285     }
1286 
1287     @Override
1288     public void visitSwitchExpression(JCSwitchExpression tree) {
1289         code.resolvePending();
1290         boolean prevInCondSwitchExpression = inCondSwitchExpression;
1291         try {
1292             inCondSwitchExpression = false;
1293             doHandleSwitchExpression(tree);
1294         } finally {
1295             inCondSwitchExpression = prevInCondSwitchExpression;
1296         }
1297         result = items.makeStackItem(pt);
1298     }
1299 
1300     private void doHandleSwitchExpression(JCSwitchExpression tree) {
1301         List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression;
1302         LocalItem prevSwitchResult = switchResult;
1303         int limit = code.nextreg;
1304         try {
1305             stackBeforeSwitchExpression = List.nil();
1306             switchResult = null;
1307             if (hasTry(tree)) {
1308                 //if the switch expression contains try-catch, the catch handlers need to have
1309                 //an empty stack. So stash whole stack to local variables, and restore it before
1310                 //breaks:
1311                 while (code.state.stacksize > 0) {
1312                     Type type = code.state.peek();
1313                     Name varName = names.fromString(target.syntheticNameChar() +
1314                                                     "stack" +
1315                                                     target.syntheticNameChar() +
1316                                                     tree.pos +
1317                                                     target.syntheticNameChar() +
1318                                                     code.state.stacksize);
1319                     VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type,
1320                                                   this.env.enclMethod.sym);
1321                     LocalItem item = items.new LocalItem(type, code.newLocal(var));
1322                     stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item);
1323                     item.store();
1324                 }
1325                 switchResult = makeTemp(tree.type);
1326             }
1327             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
1328             try {
1329                 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1330             } finally {
1331                 code.setLetExprStackPos(prevLetExprStart);
1332             }
1333         } finally {
1334             stackBeforeSwitchExpression = prevStackBeforeSwitchExpression;
1335             switchResult = prevSwitchResult;
1336             code.endScopes(limit);
1337         }
1338     }
1339     //where:
1340         private boolean hasTry(JCSwitchExpression tree) {
1341             boolean[] hasTry = new boolean[1];
1342             new TreeScanner() {
1343                 @Override
1344                 public void visitTry(JCTry tree) {
1345                     hasTry[0] = true;
1346                 }
1347 
1348                 @Override
1349                 public void visitClassDef(JCClassDecl tree) {
1350                 }
1351 
1352                 @Override
1353                 public void visitLambda(JCLambda tree) {
1354                 }
1355             }.scan(tree);
1356             return hasTry[0];
1357         }
1358 
1359     private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases,
1360                               boolean patternSwitch) {
1361         int limit = code.nextreg;
1362         Assert.check(!selector.type.hasTag(CLASS));
1363         int switchStart = patternSwitch ? code.entryPoint() : -1;
1364         int startpcCrt = genCrt ? code.curCP() : 0;
1365         Assert.check(code.isStatementStart());
1366         Item sel = genExpr(selector, syms.intType);
1367         if (cases.isEmpty()) {
1368             // We are seeing:  switch <sel> {}
1369             sel.load().drop();
1370             if (genCrt)
1371                 code.crt.put(TreeInfo.skipParens(selector),
1372                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1373         } else {
1374             // We are seeing a nonempty switch.
1375             sel.load();
1376             if (genCrt)
1377                 code.crt.put(TreeInfo.skipParens(selector),
1378                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1379             Env<GenContext> switchEnv = env.dup(swtch, new GenContext());
1380             switchEnv.info.isSwitch = true;
1381 
1382             // Compute number of labels and minimum and maximum label values.
1383             // For each case, store its label in an array.
1384             int lo = Integer.MAX_VALUE;  // minimum label.
1385             int hi = Integer.MIN_VALUE;  // maximum label.
1386             int nlabels = 0;               // number of labels.
1387 
1388             int[] labels = new int[cases.length()];  // the label array.
1389             int defaultIndex = -1;     // the index of the default clause.
1390 
1391             List<JCCase> l = cases;
1392             for (int i = 0; i < labels.length; i++) {
1393                 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) {
1394                     Assert.check(l.head.labels.size() == 1);
1395                     int val = ((Number) constLabel.expr.type.constValue()).intValue();
1396                     labels[i] = val;
1397                     if (val < lo) lo = val;
1398                     if (hi < val) hi = val;
1399                     nlabels++;
1400                 } else {
1401                     Assert.check(defaultIndex == -1);
1402                     defaultIndex = i;
1403                 }
1404                 l = l.tail;
1405             }
1406 
1407             // Determine whether to issue a tableswitch or a lookupswitch
1408             // instruction.
1409             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1410             long table_time_cost = 3; // comparisons
1411             long lookup_space_cost = 3 + 2 * (long) nlabels;
1412             long lookup_time_cost = nlabels;
1413             int opcode =
1414                 nlabels > 0 &&
1415                 table_space_cost + 3 * table_time_cost <=
1416                 lookup_space_cost + 3 * lookup_time_cost
1417                 ?
1418                 tableswitch : lookupswitch;
1419 
1420             int startpc = code.curCP();    // the position of the selector operation
1421             code.emitop0(opcode);
1422             code.align(4);
1423             int tableBase = code.curCP();  // the start of the jump table
1424             int[] offsets = null;          // a table of offsets for a lookupswitch
1425             code.emit4(-1);                // leave space for default offset
1426             if (opcode == tableswitch) {
1427                 code.emit4(lo);            // minimum label
1428                 code.emit4(hi);            // maximum label
1429                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1430                     code.emit4(-1);
1431                 }
1432             } else {
1433                 code.emit4(nlabels);    // number of labels
1434                 for (int i = 0; i < nlabels; i++) {
1435                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1436                 }
1437                 offsets = new int[labels.length];
1438             }
1439             Code.State stateSwitch = code.state.dup();
1440             code.markDead();
1441 
1442             // For each case do:
1443             l = cases;
1444             for (int i = 0; i < labels.length; i++) {
1445                 JCCase c = l.head;
1446                 l = l.tail;
1447 
1448                 int pc = code.entryPoint(stateSwitch);
1449                 // Insert offset directly into code or else into the
1450                 // offsets table.
1451                 if (i != defaultIndex) {
1452                     if (opcode == tableswitch) {
1453                         code.put4(
1454                             tableBase + 4 * (labels[i] - lo + 3),
1455                             pc - startpc);
1456                     } else {
1457                         offsets[i] = pc - startpc;
1458                     }
1459                 } else {
1460                     code.put4(tableBase, pc - startpc);
1461                 }
1462 
1463                 // Generate code for the statements in this case.
1464                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1465             }
1466 
1467             if (switchEnv.info.cont != null) {
1468                 Assert.check(patternSwitch);
1469                 code.resolve(switchEnv.info.cont, switchStart);
1470             }
1471 
1472             // Resolve all breaks.
1473             Chain exit = switchEnv.info.exit;
1474             if  (exit != null) {
1475                 code.resolve(exit);
1476                 exit.state.defined.excludeFrom(limit);
1477             }
1478 
1479             // If we have not set the default offset, we do so now.
1480             if (code.get4(tableBase) == -1) {
1481                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1482             }
1483 
1484             if (opcode == tableswitch) {
1485                 // Let any unfilled slots point to the default case.
1486                 int defaultOffset = code.get4(tableBase);
1487                 for (long i = lo; i <= hi; i++) {
1488                     int t = (int)(tableBase + 4 * (i - lo + 3));
1489                     if (code.get4(t) == -1)
1490                         code.put4(t, defaultOffset);
1491                 }
1492             } else {
1493                 // Sort non-default offsets and copy into lookup table.
1494                 if (defaultIndex >= 0)
1495                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1496                         labels[i] = labels[i+1];
1497                         offsets[i] = offsets[i+1];
1498                     }
1499                 if (nlabels > 0)
1500                     qsort2(labels, offsets, 0, nlabels - 1);
1501                 for (int i = 0; i < nlabels; i++) {
1502                     int caseidx = tableBase + 8 * (i + 1);
1503                     code.put4(caseidx, labels[i]);
1504                     code.put4(caseidx + 4, offsets[i]);
1505                 }
1506             }
1507         }
1508         code.endScopes(limit);
1509     }
1510 //where
1511         /** Sort (int) arrays of keys and values
1512          */
1513        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1514             int i = lo;
1515             int j = hi;
1516             int pivot = keys[(i+j)/2];
1517             do {
1518                 while (keys[i] < pivot) i++;
1519                 while (pivot < keys[j]) j--;
1520                 if (i <= j) {
1521                     int temp1 = keys[i];
1522                     keys[i] = keys[j];
1523                     keys[j] = temp1;
1524                     int temp2 = values[i];
1525                     values[i] = values[j];
1526                     values[j] = temp2;
1527                     i++;
1528                     j--;
1529                 }
1530             } while (i <= j);
1531             if (lo < j) qsort2(keys, values, lo, j);
1532             if (i < hi) qsort2(keys, values, i, hi);
1533         }
1534 
1535     public void visitSynchronized(JCSynchronized tree) {
1536         int limit = code.nextreg;
1537         // Generate code to evaluate lock and save in temporary variable.
1538         final LocalItem lockVar = makeTemp(syms.objectType);
1539         Assert.check(code.isStatementStart());
1540         genExpr(tree.lock, tree.lock.type).load().duplicate();
1541         lockVar.store();
1542 
1543         // Generate code to enter monitor.
1544         code.emitop0(monitorenter);
1545         code.state.lock(lockVar.reg);
1546 
1547         // Generate code for a try statement with given body, no catch clauses
1548         // in a new environment with the "exit-monitor" operation as finalizer.
1549         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1550         syncEnv.info.finalize = new GenFinalizer() {
1551             void gen() {
1552                 genLast();
1553                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1554                 syncEnv.info.gaps.append(code.curCP());
1555             }
1556             void genLast() {
1557                 if (code.isAlive()) {
1558                     lockVar.load();
1559                     code.emitop0(monitorexit);
1560                     code.state.unlock(lockVar.reg);
1561                 }
1562             }
1563         };
1564         syncEnv.info.gaps = new ListBuffer<>();
1565         genTry(tree.body, List.nil(), syncEnv);
1566         code.endScopes(limit);
1567     }
1568 
1569     public void visitTry(final JCTry tree) {
1570         // Generate code for a try statement with given body and catch clauses,
1571         // in a new environment which calls the finally block if there is one.
1572         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1573         final Env<GenContext> oldEnv = env;
1574         tryEnv.info.finalize = new GenFinalizer() {
1575             void gen() {
1576                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1577                 tryEnv.info.gaps.append(code.curCP());
1578                 genLast();
1579             }
1580             void genLast() {
1581                 if (tree.finalizer != null)
1582                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1583             }
1584             boolean hasFinalizer() {
1585                 return tree.finalizer != null;
1586             }
1587 
1588             @Override
1589             void afterBody() {
1590                 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1591                     //for body-only finally, remove the GenFinalizer after try body
1592                     //so that the finally is not generated to catch bodies:
1593                     tryEnv.info.finalize = null;
1594                 }
1595             }
1596 
1597         };
1598         tryEnv.info.gaps = new ListBuffer<>();
1599         genTry(tree.body, tree.catchers, tryEnv);
1600     }
1601     //where
1602         /** Generate code for a try or synchronized statement
1603          *  @param body      The body of the try or synchronized statement.
1604          *  @param catchers  The list of catch clauses.
1605          *  @param env       The current environment of the body.
1606          */
1607         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1608             int limit = code.nextreg;
1609             int startpc = code.curCP();
1610             Code.State stateTry = code.state.dup();
1611             genStat(body, env, CRT_BLOCK);
1612             int endpc = code.curCP();
1613             List<Integer> gaps = env.info.gaps.toList();
1614             code.statBegin(TreeInfo.endPos(body));
1615             genFinalizer(env);
1616             code.statBegin(TreeInfo.endPos(env.tree));
1617             Chain exitChain;
1618             boolean actualTry = env.tree.hasTag(TRY);
1619             if (startpc == endpc && actualTry) {
1620                 exitChain = code.branch(dontgoto);
1621             } else {
1622                 exitChain = code.branch(goto_);
1623             }
1624             endFinalizerGap(env);
1625             env.info.finalize.afterBody();
1626             boolean hasFinalizer =
1627                 env.info.finalize != null &&
1628                 env.info.finalize.hasFinalizer();
1629             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1630                 // start off with exception on stack
1631                 code.entryPoint(stateTry, l.head.param.sym.type);
1632                 genCatch(l.head, env, startpc, endpc, gaps);
1633                 genFinalizer(env);
1634                 if (hasFinalizer || l.tail.nonEmpty()) {
1635                     code.statBegin(TreeInfo.endPos(env.tree));
1636                     exitChain = Code.mergeChains(exitChain,
1637                                                  code.branch(goto_));
1638                 }
1639                 endFinalizerGap(env);
1640             }
1641             if (hasFinalizer && (startpc != endpc || !actualTry)) {
1642                 // Create a new register segment to avoid allocating
1643                 // the same variables in finalizers and other statements.
1644                 code.newRegSegment();
1645 
1646                 // Add a catch-all clause.
1647 
1648                 // start off with exception on stack
1649                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1650 
1651                 // Register all exception ranges for catch all clause.
1652                 // The range of the catch all clause is from the beginning
1653                 // of the try or synchronized block until the present
1654                 // code pointer excluding all gaps in the current
1655                 // environment's GenContext.
1656                 int startseg = startpc;
1657                 while (env.info.gaps.nonEmpty()) {
1658                     int endseg = env.info.gaps.next().intValue();
1659                     registerCatch(body.pos(), startseg, endseg,
1660                                   catchallpc, 0);
1661                     startseg = env.info.gaps.next().intValue();
1662                 }
1663                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1664                 code.markStatBegin();
1665 
1666                 Item excVar = makeTemp(syms.throwableType);
1667                 excVar.store();
1668                 genFinalizer(env);
1669                 code.resolvePending();
1670                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1671                 code.markStatBegin();
1672 
1673                 excVar.load();
1674                 registerCatch(body.pos(), startseg,
1675                               env.info.gaps.next().intValue(),
1676                               catchallpc, 0);
1677                 code.emitop0(athrow);
1678                 code.markDead();
1679 
1680                 // If there are jsr's to this finalizer, ...
1681                 if (env.info.cont != null) {
1682                     // Resolve all jsr's.
1683                     code.resolve(env.info.cont);
1684 
1685                     // Mark statement line number
1686                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1687                     code.markStatBegin();
1688 
1689                     // Save return address.
1690                     LocalItem retVar = makeTemp(syms.throwableType);
1691                     retVar.store();
1692 
1693                     // Generate finalizer code.
1694                     env.info.finalize.genLast();
1695 
1696                     // Return.
1697                     code.emitop1w(ret, retVar.reg);
1698                     code.markDead();
1699                 }
1700             }
1701             // Resolve all breaks.
1702             code.resolve(exitChain);
1703 
1704             code.endScopes(limit);
1705         }
1706 
1707         /** Generate code for a catch clause.
1708          *  @param tree     The catch clause.
1709          *  @param env      The environment current in the enclosing try.
1710          *  @param startpc  Start pc of try-block.
1711          *  @param endpc    End pc of try-block.
1712          */
1713         void genCatch(JCCatch tree,
1714                       Env<GenContext> env,
1715                       int startpc, int endpc,
1716                       List<Integer> gaps) {
1717             if (startpc != endpc) {
1718                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1719                         = catchTypesWithAnnotations(tree);
1720                 while (gaps.nonEmpty()) {
1721                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1722                         JCExpression subCatch = subCatch1.snd;
1723                         int catchType = makeRef(tree.pos(), subCatch.type);
1724                         int end = gaps.head.intValue();
1725                         registerCatch(tree.pos(),
1726                                       startpc,  end, code.curCP(),
1727                                       catchType);
1728                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1729                                 tc.position.setCatchInfo(catchType, startpc);
1730                         }
1731                     }
1732                     gaps = gaps.tail;
1733                     startpc = gaps.head.intValue();
1734                     gaps = gaps.tail;
1735                 }
1736                 if (startpc < endpc) {
1737                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1738                         JCExpression subCatch = subCatch1.snd;
1739                         int catchType = makeRef(tree.pos(), subCatch.type);
1740                         registerCatch(tree.pos(),
1741                                       startpc, endpc, code.curCP(),
1742                                       catchType);
1743                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1744                             tc.position.setCatchInfo(catchType, startpc);
1745                         }
1746                     }
1747                 }
1748                 genCatchBlock(tree, env);
1749             }
1750         }
1751         void genPatternMatchingCatch(JCCatch tree,
1752                                      Env<GenContext> env,
1753                                      List<int[]> ranges) {
1754             for (int[] range : ranges) {
1755                 JCExpression subCatch = tree.param.vartype;
1756                 int catchType = makeRef(tree.pos(), subCatch.type);
1757                 registerCatch(tree.pos(),
1758                               range[0], range[1], code.curCP(),
1759                               catchType);
1760             }
1761             genCatchBlock(tree, env);
1762         }
1763         void genCatchBlock(JCCatch tree, Env<GenContext> env) {
1764             VarSymbol exparam = tree.param.sym;
1765             code.statBegin(tree.pos);
1766             code.markStatBegin();
1767             int limit = code.nextreg;
1768             code.newLocal(exparam);
1769             items.makeLocalItem(exparam).store();
1770             code.statBegin(TreeInfo.firstStatPos(tree.body));
1771             genStat(tree.body, env, CRT_BLOCK);
1772             code.endScopes(limit);
1773             code.statBegin(TreeInfo.endPos(tree.body));
1774         }
1775         // where
1776         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1777             return TreeInfo.isMultiCatch(tree) ?
1778                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1779                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1780         }
1781         // where
1782         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1783             List<JCExpression> alts = tree.alternatives;
1784             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1785             alts = alts.tail;
1786 
1787             while(alts != null && alts.head != null) {
1788                 JCExpression alt = alts.head;
1789                 if (alt instanceof JCAnnotatedType annotatedType) {
1790                     res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt));
1791                 } else {
1792                     res = res.prepend(new Pair<>(List.nil(), alt));
1793                 }
1794                 alts = alts.tail;
1795             }
1796             return res.reverse();
1797         }
1798 
1799         /** Register a catch clause in the "Exceptions" code-attribute.
1800          */
1801         void registerCatch(DiagnosticPosition pos,
1802                            int startpc, int endpc,
1803                            int handler_pc, int catch_type) {
1804             char startpc1 = (char)startpc;
1805             char endpc1 = (char)endpc;
1806             char handler_pc1 = (char)handler_pc;
1807             if (startpc1 == startpc &&
1808                 endpc1 == endpc &&
1809                 handler_pc1 == handler_pc) {
1810                 code.addCatch(startpc1, endpc1, handler_pc1,
1811                               (char)catch_type);
1812             } else {
1813                 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1814                 nerrs++;
1815             }
1816         }
1817 
1818     public void visitIf(JCIf tree) {
1819         int limit = code.nextreg;
1820         Chain thenExit = null;
1821         Assert.check(code.isStatementStart());
1822         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1823                              CRT_FLOW_CONTROLLER);
1824         Chain elseChain = c.jumpFalse();
1825         Assert.check(code.isStatementStart());
1826         if (!c.isFalse()) {
1827             code.resolve(c.trueJumps);
1828             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1829             thenExit = code.branch(goto_);
1830         }
1831         if (elseChain != null) {
1832             code.resolve(elseChain);
1833             if (tree.elsepart != null) {
1834                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1835             }
1836         }
1837         code.resolve(thenExit);
1838         code.endScopes(limit);
1839         Assert.check(code.isStatementStart());
1840     }
1841 
1842     public void visitExec(JCExpressionStatement tree) {
1843         // Optimize x++ to ++x and x-- to --x.
1844         JCExpression e = tree.expr;
1845         switch (e.getTag()) {
1846             case POSTINC:
1847                 ((JCUnary) e).setTag(PREINC);
1848                 break;
1849             case POSTDEC:
1850                 ((JCUnary) e).setTag(PREDEC);
1851                 break;
1852         }
1853         Assert.check(code.isStatementStart());
1854         genExpr(tree.expr, tree.expr.type).drop();
1855         Assert.check(code.isStatementStart());
1856     }
1857 
1858     public void visitBreak(JCBreak tree) {
1859         Assert.check(code.isStatementStart());
1860         final Env<GenContext> targetEnv = unwindBreak(tree.target);
1861         targetEnv.info.addExit(code.branch(goto_));
1862         endFinalizerGaps(env, targetEnv);
1863     }
1864 
1865     public void visitYield(JCYield tree) {
1866         Assert.check(code.isStatementStart());
1867         final Env<GenContext> targetEnv;
1868         if (inCondSwitchExpression) {
1869             CondItem value = genCond(tree.value, CRT_FLOW_TARGET);
1870             Chain falseJumps = value.jumpFalse();
1871 
1872             code.resolve(value.trueJumps);
1873             Env<GenContext> localEnv = unwindBreak(tree.target);
1874             reloadStackBeforeSwitchExpr();
1875             Chain trueJumps = code.branch(goto_);
1876 
1877             endFinalizerGaps(env, localEnv);
1878 
1879             code.resolve(falseJumps);
1880             targetEnv = unwindBreak(tree.target);
1881             reloadStackBeforeSwitchExpr();
1882             falseJumps = code.branch(goto_);
1883 
1884             if (switchExpressionTrueChain == null) {
1885                 switchExpressionTrueChain = trueJumps;
1886             } else {
1887                 switchExpressionTrueChain =
1888                         Code.mergeChains(switchExpressionTrueChain, trueJumps);
1889             }
1890             if (switchExpressionFalseChain == null) {
1891                 switchExpressionFalseChain = falseJumps;
1892             } else {
1893                 switchExpressionFalseChain =
1894                         Code.mergeChains(switchExpressionFalseChain, falseJumps);
1895             }
1896         } else {
1897             genExpr(tree.value, pt).load();
1898             if (switchResult != null)
1899                 switchResult.store();
1900 
1901             targetEnv = unwindBreak(tree.target);
1902 
1903             if (code.isAlive()) {
1904                 reloadStackBeforeSwitchExpr();
1905                 if (switchResult != null)
1906                     switchResult.load();
1907 
1908                 code.state.forceStackTop(tree.target.type);
1909                 targetEnv.info.addExit(code.branch(goto_));
1910                 code.markDead();
1911             }
1912         }
1913         endFinalizerGaps(env, targetEnv);
1914     }
1915     //where:
1916         /** As side-effect, might mark code as dead disabling any further emission.
1917          */
1918         private Env<GenContext> unwindBreak(JCTree target) {
1919             int tmpPos = code.pendingStatPos;
1920             Env<GenContext> targetEnv = unwind(target, env);
1921             code.pendingStatPos = tmpPos;
1922             return targetEnv;
1923         }
1924 
1925         private void reloadStackBeforeSwitchExpr() {
1926             for (LocalItem li : stackBeforeSwitchExpression)
1927                 li.load();
1928         }
1929 
1930     public void visitContinue(JCContinue tree) {
1931         int tmpPos = code.pendingStatPos;
1932         Env<GenContext> targetEnv = unwind(tree.target, env);
1933         code.pendingStatPos = tmpPos;
1934         Assert.check(code.isStatementStart());
1935         targetEnv.info.addCont(code.branch(goto_));
1936         endFinalizerGaps(env, targetEnv);
1937     }
1938 
1939     public void visitReturn(JCReturn tree) {
1940         int limit = code.nextreg;
1941         final Env<GenContext> targetEnv;
1942 
1943         /* Save and then restore the location of the return in case a finally
1944          * is expanded (with unwind()) in the middle of our bytecodes.
1945          */
1946         int tmpPos = code.pendingStatPos;
1947         if (tree.expr != null) {
1948             Assert.check(code.isStatementStart());
1949             Item r = genExpr(tree.expr, pt).load();
1950             if (hasFinally(env.enclMethod, env)) {
1951                 r = makeTemp(pt);
1952                 r.store();
1953             }
1954             targetEnv = unwind(env.enclMethod, env);
1955             code.pendingStatPos = tmpPos;
1956             r.load();
1957             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1958         } else {
1959             targetEnv = unwind(env.enclMethod, env);
1960             code.pendingStatPos = tmpPos;
1961             code.emitop0(return_);
1962         }
1963         endFinalizerGaps(env, targetEnv);
1964         code.endScopes(limit);
1965     }
1966 
1967     public void visitThrow(JCThrow tree) {
1968         Assert.check(code.isStatementStart());
1969         genExpr(tree.expr, tree.expr.type).load();
1970         code.emitop0(athrow);
1971         Assert.check(code.isStatementStart());
1972     }
1973 
1974 /* ************************************************************************
1975  * Visitor methods for expressions
1976  *************************************************************************/
1977 
1978     public void visitApply(JCMethodInvocation tree) {
1979         setTypeAnnotationPositions(tree.pos);
1980         // Generate code for method.
1981         Item m = genExpr(tree.meth, methodType);
1982         // Generate code for all arguments, where the expected types are
1983         // the parameters of the method's external type (that is, any implicit
1984         // outer instance of a super(...) call appears as first parameter).
1985         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1986         genArgs(tree.args,
1987                 msym.externalType(types).getParameterTypes());
1988         if (!msym.isDynamic()) {
1989             code.statBegin(tree.pos);
1990         }
1991         if (invocationsWithPatternMatchingCatch.contains(tree)) {
1992             int start = code.curCP();
1993             result = m.invoke();
1994             patternMatchingInvocationRanges.add(new int[] {start, code.curCP()});
1995         } else {
1996             result = m.invoke();
1997         }
1998     }
1999 
2000     public void visitConditional(JCConditional tree) {
2001         Chain thenExit = null;
2002         code.statBegin(tree.cond.pos);
2003         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
2004         Chain elseChain = c.jumpFalse();
2005         if (!c.isFalse()) {
2006             code.resolve(c.trueJumps);
2007             int startpc = genCrt ? code.curCP() : 0;
2008             code.statBegin(tree.truepart.pos);
2009             genExpr(tree.truepart, pt).load();
2010             code.state.forceStackTop(tree.type);
2011             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
2012                                      startpc, code.curCP());
2013             thenExit = code.branch(goto_);
2014         }
2015         if (elseChain != null) {
2016             code.resolve(elseChain);
2017             int startpc = genCrt ? code.curCP() : 0;
2018             code.statBegin(tree.falsepart.pos);
2019             genExpr(tree.falsepart, pt).load();
2020             code.state.forceStackTop(tree.type);
2021             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
2022                                      startpc, code.curCP());
2023         }
2024         code.resolve(thenExit);
2025         result = items.makeStackItem(pt);
2026     }
2027 
2028     private void setTypeAnnotationPositions(int treePos) {
2029         MethodSymbol meth = code.meth;
2030         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
2031                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
2032 
2033         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
2034             if (ta.hasUnknownPosition())
2035                 ta.tryFixPosition();
2036 
2037             if (ta.position.matchesPos(treePos))
2038                 ta.position.updatePosOffset(code.cp);
2039         }
2040 
2041         if (!initOrClinit)
2042             return;
2043 
2044         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
2045             if (ta.hasUnknownPosition())
2046                 ta.tryFixPosition();
2047 
2048             if (ta.position.matchesPos(treePos))
2049                 ta.position.updatePosOffset(code.cp);
2050         }
2051 
2052         ClassSymbol clazz = meth.enclClass();
2053         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
2054             if (!s.getKind().isField())
2055                 continue;
2056 
2057             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
2058                 if (ta.hasUnknownPosition())
2059                     ta.tryFixPosition();
2060 
2061                 if (ta.position.matchesPos(treePos))
2062                     ta.position.updatePosOffset(code.cp);
2063             }
2064         }
2065     }
2066 
2067     public void visitNewClass(JCNewClass tree) {
2068         // Enclosing instances or anonymous classes should have been eliminated
2069         // by now.
2070         Assert.check(tree.encl == null && tree.def == null);
2071         setTypeAnnotationPositions(tree.pos);
2072 
2073         code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2074         code.emitop0(dup);
2075 
2076         // Generate code for all arguments, where the expected types are
2077         // the parameters of the constructor's external type (that is,
2078         // any implicit outer instance appears as first parameter).
2079         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
2080 
2081         items.makeMemberItem(tree.constructor, true).invoke();
2082         result = items.makeStackItem(tree.type);
2083     }
2084 
2085     public void visitNewArray(JCNewArray tree) {
2086         setTypeAnnotationPositions(tree.pos);
2087 
2088         if (tree.elems != null) {
2089             Type elemtype = types.elemtype(tree.type);
2090             loadIntConst(tree.elems.length());
2091             Item arr = makeNewArray(tree.pos(), tree.type, 1);
2092             int i = 0;
2093             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
2094                 arr.duplicate();
2095                 loadIntConst(i);
2096                 i++;
2097                 genExpr(l.head, elemtype).load();
2098                 items.makeIndexedItem(elemtype).store();
2099             }
2100             result = arr;
2101         } else {
2102             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2103                 genExpr(l.head, syms.intType).load();
2104             }
2105             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
2106         }
2107     }
2108 //where
2109         /** Generate code to create an array with given element type and number
2110          *  of dimensions.
2111          */
2112         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
2113             Type elemtype = types.elemtype(type);
2114             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
2115                 log.error(pos, Errors.LimitDimensions);
2116                 nerrs++;
2117             }
2118             int elemcode = Code.arraycode(elemtype);
2119             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
2120                 code.emitAnewarray(makeRef(pos, elemtype, elemtype.isPrimitiveClass()), type);
2121             } else if (elemcode == 1) {
2122                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
2123             } else {
2124                 code.emitNewarray(elemcode, type);
2125             }
2126             return items.makeStackItem(type);
2127         }
2128 
2129     public void visitParens(JCParens tree) {
2130         result = genExpr(tree.expr, tree.expr.type);
2131     }
2132 
2133     public void visitAssign(JCAssign tree) {
2134         Item l = genExpr(tree.lhs, tree.lhs.type);
2135         genExpr(tree.rhs, tree.lhs.type).load();
2136         if (tree.rhs.type.hasTag(BOT)) {
2137             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
2138                for "regarding a reference as having some other type in a manner that can be proved
2139                correct at compile time."
2140             */
2141             code.state.forceStackTop(tree.lhs.type);
2142         }
2143         result = items.makeAssignItem(l);
2144     }
2145 
2146     public void visitAssignop(JCAssignOp tree) {
2147         OperatorSymbol operator = tree.operator;
2148         Item l;
2149         if (operator.opcode == string_add) {
2150             l = concat.makeConcat(tree);
2151         } else {
2152             // Generate code for first expression
2153             l = genExpr(tree.lhs, tree.lhs.type);
2154 
2155             // If we have an increment of -32768 to +32767 of a local
2156             // int variable we can use an incr instruction instead of
2157             // proceeding further.
2158             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2159                 l instanceof LocalItem localItem &&
2160                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2161                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2162                 tree.rhs.type.constValue() != null) {
2163                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2164                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2165                 localItem.incr(ival);
2166                 result = l;
2167                 return;
2168             }
2169             // Otherwise, duplicate expression, load one copy
2170             // and complete binary operation.
2171             l.duplicate();
2172             l.coerce(operator.type.getParameterTypes().head).load();
2173             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2174         }
2175         result = items.makeAssignItem(l);
2176     }
2177 
2178     public void visitUnary(JCUnary tree) {
2179         OperatorSymbol operator = tree.operator;
2180         if (tree.hasTag(NOT)) {
2181             CondItem od = genCond(tree.arg, false);
2182             result = od.negate();
2183         } else {
2184             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2185             switch (tree.getTag()) {
2186             case POS:
2187                 result = od.load();
2188                 break;
2189             case NEG:
2190                 result = od.load();
2191                 code.emitop0(operator.opcode);
2192                 break;
2193             case COMPL:
2194                 result = od.load();
2195                 emitMinusOne(od.typecode);
2196                 code.emitop0(operator.opcode);
2197                 break;
2198             case PREINC: case PREDEC:
2199                 od.duplicate();
2200                 if (od instanceof LocalItem localItem &&
2201                     (operator.opcode == iadd || operator.opcode == isub)) {
2202                     localItem.incr(tree.hasTag(PREINC) ? 1 : -1);
2203                     result = od;
2204                 } else {
2205                     od.load();
2206                     code.emitop0(one(od.typecode));
2207                     code.emitop0(operator.opcode);
2208                     // Perform narrowing primitive conversion if byte,
2209                     // char, or short.  Fix for 4304655.
2210                     if (od.typecode != INTcode &&
2211                         Code.truncate(od.typecode) == INTcode)
2212                       code.emitop0(int2byte + od.typecode - BYTEcode);
2213                     result = items.makeAssignItem(od);
2214                 }
2215                 break;
2216             case POSTINC: case POSTDEC:
2217                 od.duplicate();
2218                 if (od instanceof LocalItem localItem &&
2219                     (operator.opcode == iadd || operator.opcode == isub)) {
2220                     Item res = od.load();
2221                     localItem.incr(tree.hasTag(POSTINC) ? 1 : -1);
2222                     result = res;
2223                 } else {
2224                     Item res = od.load();
2225                     od.stash(od.typecode);
2226                     code.emitop0(one(od.typecode));
2227                     code.emitop0(operator.opcode);
2228                     // Perform narrowing primitive conversion if byte,
2229                     // char, or short.  Fix for 4304655.
2230                     if (od.typecode != INTcode &&
2231                         Code.truncate(od.typecode) == INTcode)
2232                       code.emitop0(int2byte + od.typecode - BYTEcode);
2233                     od.store();
2234                     result = res;
2235                 }
2236                 break;
2237             case NULLCHK:
2238                 result = od.load();
2239                 code.emitop0(dup);
2240                 genNullCheck(tree);
2241                 break;
2242             default:
2243                 Assert.error();
2244             }
2245         }
2246     }
2247 
2248     /** Generate a null check from the object value at stack top. */
2249     private void genNullCheck(JCTree tree) {
2250         code.statBegin(tree.pos);
2251         callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
2252                    List.of(syms.objectType), true);
2253         code.emitop0(pop);
2254     }
2255 
2256     public void visitBinary(JCBinary tree) {
2257         OperatorSymbol operator = tree.operator;
2258         if (operator.opcode == string_add) {
2259             result = concat.makeConcat(tree);
2260         } else if (tree.hasTag(AND)) {
2261             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2262             if (!lcond.isFalse()) {
2263                 Chain falseJumps = lcond.jumpFalse();
2264                 code.resolve(lcond.trueJumps);
2265                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2266                 result = items.
2267                     makeCondItem(rcond.opcode,
2268                                  rcond.trueJumps,
2269                                  Code.mergeChains(falseJumps,
2270                                                   rcond.falseJumps));
2271             } else {
2272                 result = lcond;
2273             }
2274         } else if (tree.hasTag(OR)) {
2275             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2276             if (!lcond.isTrue()) {
2277                 Chain trueJumps = lcond.jumpTrue();
2278                 code.resolve(lcond.falseJumps);
2279                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2280                 result = items.
2281                     makeCondItem(rcond.opcode,
2282                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2283                                  rcond.falseJumps);
2284             } else {
2285                 result = lcond;
2286             }
2287         } else {
2288             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2289             od.load();
2290             result = completeBinop(tree.lhs, tree.rhs, operator);
2291         }
2292     }
2293 
2294 
2295         /** Complete generating code for operation, with left operand
2296          *  already on stack.
2297          *  @param lhs       The tree representing the left operand.
2298          *  @param rhs       The tree representing the right operand.
2299          *  @param operator  The operator symbol.
2300          */
2301         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2302             MethodType optype = (MethodType)operator.type;
2303             int opcode = operator.opcode;
2304             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2305                     rhs.type.constValue() instanceof Number number &&
2306                     number.intValue() == 0) {
2307                 opcode = opcode + (ifeq - if_icmpeq);
2308             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2309                        TreeInfo.isNull(rhs)) {
2310                 opcode = opcode + (if_acmp_null - if_acmpeq);
2311             } else {
2312                 // The expected type of the right operand is
2313                 // the second parameter type of the operator, except for
2314                 // shifts with long shiftcount, where we convert the opcode
2315                 // to a short shift and the expected type to int.
2316                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2317                 if (opcode >= ishll && opcode <= lushrl) {
2318                     opcode = opcode + (ishl - ishll);
2319                     rtype = syms.intType;
2320                 }
2321                 // Generate code for right operand and load.
2322                 genExpr(rhs, rtype).load();
2323                 // If there are two consecutive opcode instructions,
2324                 // emit the first now.
2325                 if (opcode >= (1 << preShift)) {
2326                     code.emitop0(opcode >> preShift);
2327                     opcode = opcode & 0xFF;
2328                 }
2329             }
2330             if (opcode >= ifeq && opcode <= if_acmpne ||
2331                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2332                 return items.makeCondItem(opcode);
2333             } else {
2334                 code.emitop0(opcode);
2335                 return items.makeStackItem(optype.restype);
2336             }
2337         }
2338 
2339     public void visitTypeCast(JCTypeCast tree) {
2340         result = genExpr(tree.expr, tree.clazz.type).load();
2341         setTypeAnnotationPositions(tree.pos);
2342         // Additional code is only needed if we cast to a reference type
2343         // which is not statically a supertype of the expression's type.
2344         // For basic types, the coerce(...) in genExpr(...) will do
2345         // the conversion.
2346         // primitive reference conversion is a nop when we bifurcate the primitive class, as the VM sees a subtyping relationship.
2347         if (!tree.clazz.type.isPrimitive() &&
2348            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2349             (!tree.clazz.type.isReferenceProjection() || !types.isSameType(tree.clazz.type.valueProjection(), tree.expr.type) || true) &&
2350            !types.isSubtype(tree.expr.type, tree.clazz.type)) {
2351             checkDimension(tree.pos(), tree.clazz.type);
2352             if (tree.clazz.type.isPrimitiveClass()) {
2353                 code.emitop2(checkcast, new ConstantPoolQType(tree.clazz.type, types), PoolWriter::putClass);
2354             } else {
2355                 code.emitop2(checkcast, tree.clazz.type, PoolWriter::putClass);
2356             }
2357 
2358         }
2359     }
2360 
2361     public void visitWildcard(JCWildcard tree) {
2362         throw new AssertionError(this.getClass().getName());
2363     }
2364 
2365     public void visitTypeTest(JCInstanceOf tree) {
2366         genExpr(tree.expr, tree.expr.type).load();
2367         setTypeAnnotationPositions(tree.pos);
2368         code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type));
2369         result = items.makeStackItem(syms.booleanType);
2370     }
2371 
2372     public void visitIndexed(JCArrayAccess tree) {
2373         genExpr(tree.indexed, tree.indexed.type).load();
2374         genExpr(tree.index, syms.intType).load();
2375         result = items.makeIndexedItem(tree.type);
2376     }
2377 
2378     public void visitIdent(JCIdent tree) {
2379         Symbol sym = tree.sym;
2380         if (tree.name == names._this || tree.name == names._super) {
2381             Item res = tree.name == names._this
2382                 ? items.makeThisItem()
2383                 : items.makeSuperItem();
2384             if (sym.kind == MTH) {
2385                 // Generate code to address the constructor.
2386                 res.load();
2387                 res = items.makeMemberItem(sym, true);
2388             }
2389             result = res;
2390        } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) {
2391             if (isConstantDynamic(sym)) {
2392                 setTypeAnnotationPositions(tree.pos);
2393             }
2394             result = items.makeDynamicItem(sym);
2395         } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) {
2396             result = items.makeLocalItem((VarSymbol)sym);
2397         } else if ((sym.flags() & STATIC) != 0) {
2398             if (!isAccessSuper(env.enclMethod))
2399                 sym = binaryQualifier(sym, env.enclClass.type);
2400             result = items.makeStaticItem(sym);
2401         } else {
2402             items.makeThisItem().load();
2403             sym = binaryQualifier(sym, env.enclClass.type);
2404             result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2405         }
2406     }
2407 
2408     //where
2409     private boolean nonVirtualForPrivateAccess(Symbol sym) {
2410         boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2411                              !disableVirtualizedPrivateInvoke;
2412         return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2413     }
2414 
2415     public void visitSelect(JCFieldAccess tree) {
2416         Symbol sym = tree.sym;
2417 
2418         if (tree.name == names._class) {
2419             code.emitLdc((LoadableConstant) tree.selected.type, makeRef(tree.pos(), tree.selected.type, tree.selected.type.isPrimitiveClass()));
2420             result = items.makeStackItem(pt);
2421             return;
2422         }
2423 
2424         Symbol ssym = TreeInfo.symbol(tree.selected);
2425 
2426         // Are we selecting via super?
2427         boolean selectSuper =
2428             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2429 
2430         // Are we accessing a member of the superclass in an access method
2431         // resulting from a qualified super?
2432         boolean accessSuper = isAccessSuper(env.enclMethod);
2433 
2434         Item base = (selectSuper)
2435             ? items.makeSuperItem()
2436             : genExpr(tree.selected, tree.selected.type);
2437 
2438         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2439             // We are seeing a variable that is constant but its selecting
2440             // expression is not.
2441             if ((sym.flags() & STATIC) != 0) {
2442                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2443                     base = base.load();
2444                 base.drop();
2445             } else {
2446                 base.load();
2447                 genNullCheck(tree.selected);
2448             }
2449             result = items.
2450                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2451         } else {
2452             if (isInvokeDynamic(sym)) {
2453                 result = items.makeDynamicItem(sym);
2454                 return;
2455             } else {
2456                 sym = binaryQualifier(sym, tree.selected.type);
2457             }
2458             if ((sym.flags() & STATIC) != 0) {
2459                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2460                     base = base.load();
2461                 base.drop();
2462                 result = items.makeStaticItem(sym);
2463             } else {
2464                 base.load();
2465                 if (sym == syms.lengthVar) {
2466                     code.emitop0(arraylength);
2467                     result = items.makeStackItem(syms.intType);
2468                 } else {
2469                     result = items.
2470                         makeMemberItem(sym,
2471                                        nonVirtualForPrivateAccess(sym) ||
2472                                        selectSuper || accessSuper);
2473                 }
2474             }
2475         }
2476     }
2477 
2478     public void visitDefaultValue(JCDefaultValue tree) {
2479         if (tree.type.isValueClass()) {
2480             code.emitop2(aconst_init, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2481         } else if (tree.type.isReference()) {
2482             code.emitop0(aconst_null);
2483         } else {
2484             code.emitop0(zero(Code.typecode(tree.type)));
2485         }
2486         result = items.makeStackItem(tree.type);
2487         return;
2488     }
2489 
2490     public boolean isInvokeDynamic(Symbol sym) {
2491         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2492     }
2493 
2494     public void visitLiteral(JCLiteral tree) {
2495         if (tree.type.hasTag(BOT)) {
2496             code.emitop0(aconst_null);
2497             result = items.makeStackItem(tree.type);
2498         }
2499         else
2500             result = items.makeImmediateItem(tree.type, tree.value);
2501     }
2502 
2503     public void visitLetExpr(LetExpr tree) {
2504         code.resolvePending();
2505 
2506         int limit = code.nextreg;
2507         int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2508         try {
2509             genStats(tree.defs, env);
2510         } finally {
2511             code.setLetExprStackPos(prevLetExprStart);
2512         }
2513         result = genExpr(tree.expr, tree.expr.type).load();
2514         code.endScopes(limit);
2515     }
2516 
2517     private void generateReferencesToPrunedTree(ClassSymbol classSymbol) {
2518         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2519         if (prunedInfo != null) {
2520             for (JCTree prunedTree: prunedInfo) {
2521                 prunedTree.accept(classReferenceVisitor);
2522             }
2523         }
2524     }
2525 
2526 /* ************************************************************************
2527  * main method
2528  *************************************************************************/
2529 
2530     /** Generate code for a class definition.
2531      *  @param env   The attribution environment that belongs to the
2532      *               outermost class containing this class definition.
2533      *               We need this for resolving some additional symbols.
2534      *  @param cdef  The tree representing the class definition.
2535      *  @return      True if code is generated with no errors.
2536      */
2537     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2538         try {
2539             attrEnv = env;
2540             ClassSymbol c = cdef.sym;
2541             this.toplevel = env.toplevel;
2542             this.endPosTable = toplevel.endPositions;
2543             /* method normalizeDefs() can add references to external classes into the constant pool
2544              */
2545             cdef.defs = normalizeDefs(cdef.defs, c);
2546             cdef = transValues.translateTopLevelClass(cdef, make);
2547             generateReferencesToPrunedTree(c);
2548             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2549             localEnv.toplevel = env.toplevel;
2550             localEnv.enclClass = cdef;
2551 
2552             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2553                 genDef(l.head, localEnv);
2554             }
2555             if (poolWriter.size() > PoolWriter.MAX_ENTRIES) {
2556                 log.error(cdef.pos(), Errors.LimitPool);
2557                 nerrs++;
2558             }
2559             if (nerrs != 0) {
2560                 // if errors, discard code
2561                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2562                     if (l.head.hasTag(METHODDEF))
2563                         ((JCMethodDecl) l.head).sym.code = null;
2564                 }
2565             }
2566             cdef.defs = List.nil(); // discard trees
2567             return nerrs == 0;
2568         } finally {
2569             // note: this method does NOT support recursion.
2570             attrEnv = null;
2571             this.env = null;
2572             toplevel = null;
2573             endPosTable = null;
2574             nerrs = 0;
2575             qualifiedSymbolCache.clear();
2576         }
2577     }
2578 
2579 /* ************************************************************************
2580  * Auxiliary classes
2581  *************************************************************************/
2582 
2583     /** An abstract class for finalizer generation.
2584      */
2585     abstract class GenFinalizer {
2586         /** Generate code to clean up when unwinding. */
2587         abstract void gen();
2588 
2589         /** Generate code to clean up at last. */
2590         abstract void genLast();
2591 
2592         /** Does this finalizer have some nontrivial cleanup to perform? */
2593         boolean hasFinalizer() { return true; }
2594 
2595         /** Should be invoked after the try's body has been visited. */
2596         void afterBody() {}
2597     }
2598 
2599     /** code generation contexts,
2600      *  to be used as type parameter for environments.
2601      */
2602     static class GenContext {
2603 
2604         /** A chain for all unresolved jumps that exit the current environment.
2605          */
2606         Chain exit = null;
2607 
2608         /** A chain for all unresolved jumps that continue in the
2609          *  current environment.
2610          */
2611         Chain cont = null;
2612 
2613         /** A closure that generates the finalizer of the current environment.
2614          *  Only set for Synchronized and Try contexts.
2615          */
2616         GenFinalizer finalize = null;
2617 
2618         /** Is this a switch statement?  If so, allocate registers
2619          * even when the variable declaration is unreachable.
2620          */
2621         boolean isSwitch = false;
2622 
2623         /** A list buffer containing all gaps in the finalizer range,
2624          *  where a catch all exception should not apply.
2625          */
2626         ListBuffer<Integer> gaps = null;
2627 
2628         /** Add given chain to exit chain.
2629          */
2630         void addExit(Chain c)  {
2631             exit = Code.mergeChains(c, exit);
2632         }
2633 
2634         /** Add given chain to cont chain.
2635          */
2636         void addCont(Chain c) {
2637             cont = Code.mergeChains(c, cont);
2638         }
2639     }
2640 
2641 }