1 /*
   2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.jvm;
  27 
  28 import java.util.HashMap;
  29 import java.util.Map;
  30 import java.util.Set;
  31 
  32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant;
  33 import com.sun.tools.javac.tree.TreeInfo.PosKind;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 import com.sun.tools.javac.code.*;
  38 import com.sun.tools.javac.code.Attribute.TypeCompound;
  39 import com.sun.tools.javac.code.Symbol.VarSymbol;
  40 import com.sun.tools.javac.comp.*;
  41 import com.sun.tools.javac.tree.*;
  42 
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.code.Type.*;
  45 import com.sun.tools.javac.jvm.Code.*;
  46 import com.sun.tools.javac.jvm.Items.*;
  47 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  48 import com.sun.tools.javac.tree.EndPosTable;
  49 import com.sun.tools.javac.tree.JCTree.*;
  50 
  51 import static com.sun.tools.javac.code.Flags.*;
  52 import static com.sun.tools.javac.code.Kinds.Kind.*;
  53 import static com.sun.tools.javac.code.TypeTag.*;
  54 import static com.sun.tools.javac.jvm.ByteCodes.*;
  55 import static com.sun.tools.javac.jvm.CRTFlags.*;
  56 import static com.sun.tools.javac.main.Option.*;
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Gen extends JCTree.Visitor {
  67     private static final Object[] NO_STATIC_ARGS = new Object[0];
  68     protected static final Context.Key<Gen> genKey = new Context.Key<>();
  69 
  70     private final Log log;
  71     private final Symtab syms;
  72     private final Check chk;
  73     private final Resolve rs;
  74     private final TreeMaker make;
  75     private final Names names;
  76     private final Target target;
  77     private final String accessDollar;
  78     private final Types types;
  79     private final Lower lower;
  80     private final Annotate annotate;
  81     private final StringConcat concat;
  82     private final TransValues transValues;
  83 
  84     /** Format of stackmap tables to be generated. */
  85     private final Code.StackMapFormat stackMap;
  86 
  87     /** A type that serves as the expected type for all method expressions.
  88      */
  89     private final Type methodType;
  90 
  91     public static Gen instance(Context context) {
  92         Gen instance = context.get(genKey);
  93         if (instance == null)
  94             instance = new Gen(context);
  95         return instance;
  96     }
  97 
  98     /** Constant pool writer, set by genClass.
  99      */
 100     final PoolWriter poolWriter;
 101 
 102     @SuppressWarnings("this-escape")
 103     protected Gen(Context context) {
 104         context.put(genKey, this);
 105 
 106         names = Names.instance(context);
 107         log = Log.instance(context);
 108         syms = Symtab.instance(context);
 109         chk = Check.instance(context);
 110         rs = Resolve.instance(context);
 111         make = TreeMaker.instance(context);
 112         target = Target.instance(context);
 113         types = Types.instance(context);
 114         concat = StringConcat.instance(context);
 115 
 116         methodType = new MethodType(null, null, null, syms.methodClass);
 117         accessDollar = "access" + target.syntheticNameChar();
 118         lower = Lower.instance(context);
 119         transValues = TransValues.instance(context);
 120 
 121         Options options = Options.instance(context);
 122         lineDebugInfo =
 123             options.isUnset(G_CUSTOM) ||
 124             options.isSet(G_CUSTOM, "lines");
 125         varDebugInfo =
 126             options.isUnset(G_CUSTOM)
 127             ? options.isSet(G)
 128             : options.isSet(G_CUSTOM, "vars");
 129         genCrt = options.isSet(XJCOV);
 130         debugCode = options.isSet("debug.code");
 131         disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke");
 132         poolWriter = new PoolWriter(types, names);
 133 
 134         // ignore cldc because we cannot have both stackmap formats
 135         this.stackMap = StackMapFormat.JSR202;
 136         annotate = Annotate.instance(context);
 137         Source source = Source.instance(context);
 138         allowPrimitiveClasses = Source.Feature.PRIMITIVE_CLASSES.allowedInSource(source) && options.isSet("enablePrimitiveClasses");
 139         qualifiedSymbolCache = new HashMap<>();
 140     }
 141 
 142     /** Switches
 143      */
 144     private final boolean lineDebugInfo;
 145     private final boolean varDebugInfo;
 146     private final boolean genCrt;
 147     private final boolean debugCode;
 148     private boolean disableVirtualizedPrivateInvoke;
 149 
 150     /** Code buffer, set by genMethod.
 151      */
 152     private Code code;
 153 
 154     /** Items structure, set by genMethod.
 155      */
 156     private Items items;
 157 
 158     /** Environment for symbol lookup, set by genClass
 159      */
 160     private Env<AttrContext> attrEnv;
 161 
 162     /** The top level tree.
 163      */
 164     private JCCompilationUnit toplevel;
 165 
 166     /** The number of code-gen errors in this class.
 167      */
 168     private int nerrs = 0;
 169 
 170     /** An object containing mappings of syntax trees to their
 171      *  ending source positions.
 172      */
 173     EndPosTable endPosTable;
 174 
 175     boolean inCondSwitchExpression;
 176     Chain switchExpressionTrueChain;
 177     Chain switchExpressionFalseChain;
 178     List<LocalItem> stackBeforeSwitchExpression;
 179     LocalItem switchResult;
 180     Set<JCMethodInvocation> invocationsWithPatternMatchingCatch = Set.of();
 181     ListBuffer<int[]> patternMatchingInvocationRanges;
 182 
 183     boolean allowPrimitiveClasses;
 184 
 185     /** Cache the symbol to reflect the qualifying type.
 186      *  key: corresponding type
 187      *  value: qualified symbol
 188      */
 189     Map<Type, Symbol> qualifiedSymbolCache;
 190 
 191     /** Generate code to load an integer constant.
 192      *  @param n     The integer to be loaded.
 193      */
 194     void loadIntConst(int n) {
 195         items.makeImmediateItem(syms.intType, n).load();
 196     }
 197 
 198     /** The opcode that loads a zero constant of a given type code.
 199      *  @param tc   The given type code (@see ByteCode).
 200      */
 201     public static int zero(int tc) {
 202         switch(tc) {
 203         case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
 204             return iconst_0;
 205         case LONGcode:
 206             return lconst_0;
 207         case FLOATcode:
 208             return fconst_0;
 209         case DOUBLEcode:
 210             return dconst_0;
 211         default:
 212             throw new AssertionError("zero");
 213         }
 214     }
 215 
 216     /** The opcode that loads a one constant of a given type code.
 217      *  @param tc   The given type code (@see ByteCode).
 218      */
 219     public static int one(int tc) {
 220         return zero(tc) + 1;
 221     }
 222 
 223     /** Generate code to load -1 of the given type code (either int or long).
 224      *  @param tc   The given type code (@see ByteCode).
 225      */
 226     void emitMinusOne(int tc) {
 227         if (tc == LONGcode) {
 228             items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load();
 229         } else {
 230             code.emitop0(iconst_m1);
 231         }
 232     }
 233 
 234     /** Construct a symbol to reflect the qualifying type that should
 235      *  appear in the byte code as per JLS 13.1.
 236      *
 237      *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
 238      *  for those cases where we need to work around VM bugs).
 239      *
 240      *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
 241      *  non-accessible class, clone it with the qualifier class as owner.
 242      *
 243      *  @param sym    The accessed symbol
 244      *  @param site   The qualifier's type.
 245      */
 246     Symbol binaryQualifier(Symbol sym, Type site) {
 247 
 248         if (site.hasTag(ARRAY)) {
 249             if (sym == syms.lengthVar ||
 250                 sym.owner != syms.arrayClass)
 251                 return sym;
 252             // array clone can be qualified by the array type in later targets
 253             Symbol qualifier;
 254             if ((qualifier = qualifiedSymbolCache.get(site)) == null) {
 255                 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol);
 256                 qualifiedSymbolCache.put(site, qualifier);
 257             }
 258             return sym.clone(qualifier);
 259         }
 260 
 261         if (sym.owner == site.tsym ||
 262             (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
 263             return sym;
 264         }
 265 
 266         // leave alone methods inherited from Object
 267         // JLS 13.1.
 268         if (sym.owner == syms.objectType.tsym)
 269             return sym;
 270 
 271         return sym.clone(site.tsym);
 272     }
 273 
 274     /** Insert a reference to given type in the constant pool,
 275      *  checking for an array with too many dimensions;
 276      *  return the reference's index.
 277      *  @param type   The type for which a reference is inserted.
 278      */
 279     int makeRef(DiagnosticPosition pos, Type type, boolean emitQtype) {
 280         checkDimension(pos, type);
 281         if (emitQtype) {
 282             return poolWriter.putClass(new ConstantPoolQType(type, types));
 283         } else {
 284             return poolWriter.putClass(type);
 285         }
 286     }
 287 
 288     /** Insert a reference to given type in the constant pool,
 289      *  checking for an array with too many dimensions;
 290      *  return the reference's index.
 291      *  @param type   The type for which a reference is inserted.
 292      */
 293     int makeRef(DiagnosticPosition pos, Type type) {
 294         return makeRef(pos, type, false);
 295     }
 296 
 297     /** Check if the given type is an array with too many dimensions.
 298      */
 299     private Type checkDimension(DiagnosticPosition pos, Type t) {
 300         checkDimensionInternal(pos, t);
 301         return t;
 302     }
 303 
 304     private void checkDimensionInternal(DiagnosticPosition pos, Type t) {
 305         switch (t.getTag()) {
 306         case METHOD:
 307             checkDimension(pos, t.getReturnType());
 308             for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
 309                 checkDimension(pos, args.head);
 310             break;
 311         case ARRAY:
 312             if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
 313                 log.error(pos, Errors.LimitDimensions);
 314                 nerrs++;
 315             }
 316             break;
 317         default:
 318             break;
 319         }
 320     }
 321 
 322     /** Create a temporary variable.
 323      *  @param type   The variable's type.
 324      */
 325     LocalItem makeTemp(Type type) {
 326         VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
 327                                     names.empty,
 328                                     type,
 329                                     env.enclMethod.sym);
 330         code.newLocal(v);
 331         return items.makeLocalItem(v);
 332     }
 333 
 334     /** Generate code to call a non-private method or constructor.
 335      *  @param pos         Position to be used for error reporting.
 336      *  @param site        The type of which the method is a member.
 337      *  @param name        The method's name.
 338      *  @param argtypes    The method's argument types.
 339      *  @param isStatic    A flag that indicates whether we call a
 340      *                     static or instance method.
 341      */
 342     void callMethod(DiagnosticPosition pos,
 343                     Type site, Name name, List<Type> argtypes,
 344                     boolean isStatic) {
 345         Symbol msym = rs.
 346             resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
 347         if (isStatic) items.makeStaticItem(msym).invoke();
 348         else items.makeMemberItem(msym, names.isInitOrVNew(name)).invoke();
 349     }
 350 
 351     /** Is the given method definition an access method
 352      *  resulting from a qualified super? This is signified by an odd
 353      *  access code.
 354      */
 355     private boolean isAccessSuper(JCMethodDecl enclMethod) {
 356         return
 357             (enclMethod.mods.flags & SYNTHETIC) != 0 &&
 358             isOddAccessName(enclMethod.name);
 359     }
 360 
 361     /** Does given name start with "access$" and end in an odd digit?
 362      */
 363     private boolean isOddAccessName(Name name) {
 364         final String string = name.toString();
 365         return
 366             string.startsWith(accessDollar) &&
 367             (string.charAt(string.length() - 1) & 1) != 0;
 368     }
 369 
 370 /* ************************************************************************
 371  * Non-local exits
 372  *************************************************************************/
 373 
 374     /** Generate code to invoke the finalizer associated with given
 375      *  environment.
 376      *  Any calls to finalizers are appended to the environments `cont' chain.
 377      *  Mark beginning of gap in catch all range for finalizer.
 378      */
 379     void genFinalizer(Env<GenContext> env) {
 380         if (code.isAlive() && env.info.finalize != null)
 381             env.info.finalize.gen();
 382     }
 383 
 384     /** Generate code to call all finalizers of structures aborted by
 385      *  a non-local
 386      *  exit.  Return target environment of the non-local exit.
 387      *  @param target      The tree representing the structure that's aborted
 388      *  @param env         The environment current at the non-local exit.
 389      */
 390     Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
 391         Env<GenContext> env1 = env;
 392         while (true) {
 393             genFinalizer(env1);
 394             if (env1.tree == target) break;
 395             env1 = env1.next;
 396         }
 397         return env1;
 398     }
 399 
 400     /** Mark end of gap in catch-all range for finalizer.
 401      *  @param env   the environment which might contain the finalizer
 402      *               (if it does, env.info.gaps != null).
 403      */
 404     void endFinalizerGap(Env<GenContext> env) {
 405         if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
 406             env.info.gaps.append(code.curCP());
 407     }
 408 
 409     /** Mark end of all gaps in catch-all ranges for finalizers of environments
 410      *  lying between, and including to two environments.
 411      *  @param from    the most deeply nested environment to mark
 412      *  @param to      the least deeply nested environment to mark
 413      */
 414     void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
 415         Env<GenContext> last = null;
 416         while (last != to) {
 417             endFinalizerGap(from);
 418             last = from;
 419             from = from.next;
 420         }
 421     }
 422 
 423     /** Do any of the structures aborted by a non-local exit have
 424      *  finalizers that require an empty stack?
 425      *  @param target      The tree representing the structure that's aborted
 426      *  @param env         The environment current at the non-local exit.
 427      */
 428     boolean hasFinally(JCTree target, Env<GenContext> env) {
 429         while (env.tree != target) {
 430             if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
 431                 return true;
 432             env = env.next;
 433         }
 434         return false;
 435     }
 436 
 437 /* ************************************************************************
 438  * Normalizing class-members.
 439  *************************************************************************/
 440 
 441     /** Distribute member initializer code into constructors and {@code <clinit>}
 442      *  method.
 443      *  @param defs         The list of class member declarations.
 444      *  @param c            The enclosing class.
 445      */
 446     List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
 447         ListBuffer<JCStatement> initCode = new ListBuffer<>();
 448         ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
 449         ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
 450         ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
 451         ListBuffer<JCTree> methodDefs = new ListBuffer<>();
 452         // Sort definitions into three listbuffers:
 453         //  - initCode for instance initializers
 454         //  - clinitCode for class initializers
 455         //  - methodDefs for method definitions
 456         for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
 457             JCTree def = l.head;
 458             switch (def.getTag()) {
 459             case BLOCK:
 460                 JCBlock block = (JCBlock)def;
 461                 if ((block.flags & STATIC) != 0)
 462                     clinitCode.append(block);
 463                 else if ((block.flags & SYNTHETIC) == 0)
 464                     initCode.append(block);
 465                 break;
 466             case METHODDEF:
 467                 methodDefs.append(def);
 468                 break;
 469             case VARDEF:
 470                 JCVariableDecl vdef = (JCVariableDecl) def;
 471                 VarSymbol sym = vdef.sym;
 472                 checkDimension(vdef.pos(), sym.type);
 473                 if (vdef.init != null) {
 474                     if ((sym.flags() & STATIC) == 0) {
 475                         // Always initialize instance variables.
 476                         JCStatement init = make.at(vdef.pos()).
 477                             Assignment(sym, vdef.init);
 478                         initCode.append(init);
 479                         endPosTable.replaceTree(vdef, init);
 480                         initTAs.addAll(getAndRemoveNonFieldTAs(sym));
 481                     } else if (sym.getConstValue() == null) {
 482                         // Initialize class (static) variables only if
 483                         // they are not compile-time constants.
 484                         JCStatement init = make.at(vdef.pos).
 485                             Assignment(sym, vdef.init);
 486                         clinitCode.append(init);
 487                         endPosTable.replaceTree(vdef, init);
 488                         clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
 489                     } else {
 490                         checkStringConstant(vdef.init.pos(), sym.getConstValue());
 491                         /* if the init contains a reference to an external class, add it to the
 492                          * constant's pool
 493                          */
 494                         vdef.init.accept(classReferenceVisitor);
 495                     }
 496                 }
 497                 break;
 498             default:
 499                 Assert.error();
 500             }
 501         }
 502         // Insert any instance initializers into all constructors.
 503         if (initCode.length() != 0) {
 504             List<JCStatement> inits = initCode.toList();
 505             initTAs.addAll(c.getInitTypeAttributes());
 506             List<Attribute.TypeCompound> initTAlist = initTAs.toList();
 507             for (JCTree t : methodDefs) {
 508                 normalizeMethod((JCMethodDecl)t, inits, initTAlist);
 509             }
 510         }
 511         // If there are class initializers, create a <clinit> method
 512         // that contains them as its body.
 513         if (clinitCode.length() != 0) {
 514             MethodSymbol clinit = new MethodSymbol(
 515                 STATIC | (c.flags() & STRICTFP),
 516                 names.clinit,
 517                 new MethodType(
 518                     List.nil(), syms.voidType,
 519                     List.nil(), syms.methodClass),
 520                 c);
 521             c.members().enter(clinit);
 522             List<JCStatement> clinitStats = clinitCode.toList();
 523             JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
 524             block.endpos = TreeInfo.endPos(clinitStats.last());
 525             methodDefs.append(make.MethodDef(clinit, block));
 526 
 527             if (!clinitTAs.isEmpty())
 528                 clinit.appendUniqueTypeAttributes(clinitTAs.toList());
 529             if (!c.getClassInitTypeAttributes().isEmpty())
 530                 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
 531         }
 532         // Return all method definitions.
 533         return methodDefs.toList();
 534     }
 535 
 536     private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
 537         List<TypeCompound> tas = sym.getRawTypeAttributes();
 538         ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
 539         ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
 540         for (TypeCompound ta : tas) {
 541             Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
 542             if (ta.getPosition().type == TargetType.FIELD) {
 543                 fieldTAs.add(ta);
 544             } else {
 545                 nonfieldTAs.add(ta);
 546             }
 547         }
 548         sym.setTypeAttributes(fieldTAs.toList());
 549         return nonfieldTAs.toList();
 550     }
 551 
 552     /** Check a constant value and report if it is a string that is
 553      *  too large.
 554      */
 555     private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
 556         if (nerrs != 0 || // only complain about a long string once
 557             constValue == null ||
 558             !(constValue instanceof String str) ||
 559             str.length() < PoolWriter.MAX_STRING_LENGTH)
 560             return;
 561         log.error(pos, Errors.LimitString);
 562         nerrs++;
 563     }
 564 
 565     /** Insert instance initializer code into initial constructor.
 566      *  @param md        The tree potentially representing a
 567      *                   constructor's definition.
 568      *  @param initCode  The list of instance initializer statements.
 569      *  @param initTAs  Type annotations from the initializer expression.
 570      */
 571     void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
 572         if (names.isInitOrVNew(md.name) && TreeInfo.isInitialConstructor(md)) {
 573             // We are seeing a constructor that does not call another
 574             // constructor of the same class.
 575             List<JCStatement> stats = md.body.stats;
 576             ListBuffer<JCStatement> newstats = new ListBuffer<>();
 577 
 578             if (stats.nonEmpty()) {
 579                 // Copy initializers of synthetic variables generated in
 580                 // the translation of inner classes.
 581                 while (TreeInfo.isSyntheticInit(stats.head)) {
 582                     newstats.append(stats.head);
 583                     stats = stats.tail;
 584                 }
 585                 // Copy superclass constructor call
 586                 newstats.append(stats.head);
 587                 stats = stats.tail;
 588                 // Copy remaining synthetic initializers.
 589                 while (stats.nonEmpty() &&
 590                        TreeInfo.isSyntheticInit(stats.head)) {
 591                     newstats.append(stats.head);
 592                     stats = stats.tail;
 593                 }
 594                 // Now insert the initializer code.
 595                 newstats.appendList(initCode);
 596                 // And copy all remaining statements.
 597                 while (stats.nonEmpty()) {
 598                     newstats.append(stats.head);
 599                     stats = stats.tail;
 600                 }
 601             }
 602             md.body.stats = newstats.toList();
 603             if (md.body.endpos == Position.NOPOS)
 604                 md.body.endpos = TreeInfo.endPos(md.body.stats.last());
 605 
 606             md.sym.appendUniqueTypeAttributes(initTAs);
 607         }
 608     }
 609 
 610 /* ************************************************************************
 611  * Traversal methods
 612  *************************************************************************/
 613 
 614     /** Visitor argument: The current environment.
 615      */
 616     Env<GenContext> env;
 617 
 618     /** Visitor argument: The expected type (prototype).
 619      */
 620     Type pt;
 621 
 622     /** Visitor result: The item representing the computed value.
 623      */
 624     Item result;
 625 
 626     /** Visitor method: generate code for a definition, catching and reporting
 627      *  any completion failures.
 628      *  @param tree    The definition to be visited.
 629      *  @param env     The environment current at the definition.
 630      */
 631     public void genDef(JCTree tree, Env<GenContext> env) {
 632         Env<GenContext> prevEnv = this.env;
 633         try {
 634             this.env = env;
 635             tree.accept(this);
 636         } catch (CompletionFailure ex) {
 637             chk.completionError(tree.pos(), ex);
 638         } finally {
 639             this.env = prevEnv;
 640         }
 641     }
 642 
 643     /** Derived visitor method: check whether CharacterRangeTable
 644      *  should be emitted, if so, put a new entry into CRTable
 645      *  and call method to generate bytecode.
 646      *  If not, just call method to generate bytecode.
 647      *  @see    #genStat(JCTree, Env)
 648      *
 649      *  @param  tree     The tree to be visited.
 650      *  @param  env      The environment to use.
 651      *  @param  crtFlags The CharacterRangeTable flags
 652      *                   indicating type of the entry.
 653      */
 654     public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
 655         if (!genCrt) {
 656             genStat(tree, env);
 657             return;
 658         }
 659         int startpc = code.curCP();
 660         genStat(tree, env);
 661         if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
 662         code.crt.put(tree, crtFlags, startpc, code.curCP());
 663     }
 664 
 665     /** Derived visitor method: generate code for a statement.
 666      */
 667     public void genStat(JCTree tree, Env<GenContext> env) {
 668         if (code.isAlive()) {
 669             code.statBegin(tree.pos);
 670             genDef(tree, env);
 671         } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
 672             // variables whose declarations are in a switch
 673             // can be used even if the decl is unreachable.
 674             code.newLocal(((JCVariableDecl) tree).sym);
 675         }
 676     }
 677 
 678     /** Derived visitor method: check whether CharacterRangeTable
 679      *  should be emitted, if so, put a new entry into CRTable
 680      *  and call method to generate bytecode.
 681      *  If not, just call method to generate bytecode.
 682      *  @see    #genStats(List, Env)
 683      *
 684      *  @param  trees    The list of trees to be visited.
 685      *  @param  env      The environment to use.
 686      *  @param  crtFlags The CharacterRangeTable flags
 687      *                   indicating type of the entry.
 688      */
 689     public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
 690         if (!genCrt) {
 691             genStats(trees, env);
 692             return;
 693         }
 694         if (trees.length() == 1) {        // mark one statement with the flags
 695             genStat(trees.head, env, crtFlags | CRT_STATEMENT);
 696         } else {
 697             int startpc = code.curCP();
 698             genStats(trees, env);
 699             code.crt.put(trees, crtFlags, startpc, code.curCP());
 700         }
 701     }
 702 
 703     /** Derived visitor method: generate code for a list of statements.
 704      */
 705     public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
 706         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 707             genStat(l.head, env, CRT_STATEMENT);
 708     }
 709 
 710     /** Derived visitor method: check whether CharacterRangeTable
 711      *  should be emitted, if so, put a new entry into CRTable
 712      *  and call method to generate bytecode.
 713      *  If not, just call method to generate bytecode.
 714      *  @see    #genCond(JCTree,boolean)
 715      *
 716      *  @param  tree     The tree to be visited.
 717      *  @param  crtFlags The CharacterRangeTable flags
 718      *                   indicating type of the entry.
 719      */
 720     public CondItem genCond(JCTree tree, int crtFlags) {
 721         if (!genCrt) return genCond(tree, false);
 722         int startpc = code.curCP();
 723         CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
 724         code.crt.put(tree, crtFlags, startpc, code.curCP());
 725         return item;
 726     }
 727 
 728     /** Derived visitor method: generate code for a boolean
 729      *  expression in a control-flow context.
 730      *  @param _tree         The expression to be visited.
 731      *  @param markBranches The flag to indicate that the condition is
 732      *                      a flow controller so produced conditions
 733      *                      should contain a proper tree to generate
 734      *                      CharacterRangeTable branches for them.
 735      */
 736     public CondItem genCond(JCTree _tree, boolean markBranches) {
 737         JCTree inner_tree = TreeInfo.skipParens(_tree);
 738         if (inner_tree.hasTag(CONDEXPR)) {
 739             JCConditional tree = (JCConditional)inner_tree;
 740             CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
 741             if (cond.isTrue()) {
 742                 code.resolve(cond.trueJumps);
 743                 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
 744                 if (markBranches) result.tree = tree.truepart;
 745                 return result;
 746             }
 747             if (cond.isFalse()) {
 748                 code.resolve(cond.falseJumps);
 749                 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
 750                 if (markBranches) result.tree = tree.falsepart;
 751                 return result;
 752             }
 753             Chain secondJumps = cond.jumpFalse();
 754             code.resolve(cond.trueJumps);
 755             CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
 756             if (markBranches) first.tree = tree.truepart;
 757             Chain falseJumps = first.jumpFalse();
 758             code.resolve(first.trueJumps);
 759             Chain trueJumps = code.branch(goto_);
 760             code.resolve(secondJumps);
 761             CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
 762             CondItem result = items.makeCondItem(second.opcode,
 763                                       Code.mergeChains(trueJumps, second.trueJumps),
 764                                       Code.mergeChains(falseJumps, second.falseJumps));
 765             if (markBranches) result.tree = tree.falsepart;
 766             return result;
 767         } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) {
 768             code.resolvePending();
 769 
 770             boolean prevInCondSwitchExpression = inCondSwitchExpression;
 771             Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain;
 772             Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain;
 773             try {
 774                 inCondSwitchExpression = true;
 775                 switchExpressionTrueChain = null;
 776                 switchExpressionFalseChain = null;
 777                 try {
 778                     doHandleSwitchExpression((JCSwitchExpression) inner_tree);
 779                 } catch (CompletionFailure ex) {
 780                     chk.completionError(_tree.pos(), ex);
 781                     code.state.stacksize = 1;
 782                 }
 783                 CondItem result = items.makeCondItem(goto_,
 784                                                      switchExpressionTrueChain,
 785                                                      switchExpressionFalseChain);
 786                 if (markBranches) result.tree = _tree;
 787                 return result;
 788             } finally {
 789                 inCondSwitchExpression = prevInCondSwitchExpression;
 790                 switchExpressionTrueChain = prevSwitchExpressionTrueChain;
 791                 switchExpressionFalseChain = prevSwitchExpressionFalseChain;
 792             }
 793         } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) {
 794             code.resolvePending();
 795 
 796             LetExpr tree = (LetExpr) inner_tree;
 797             int limit = code.nextreg;
 798             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
 799             try {
 800                 genStats(tree.defs, env);
 801             } finally {
 802                 code.setLetExprStackPos(prevLetExprStart);
 803             }
 804             CondItem result = genCond(tree.expr, markBranches);
 805             code.endScopes(limit);
 806             return result;
 807         } else {
 808             CondItem result = genExpr(_tree, syms.booleanType).mkCond();
 809             if (markBranches) result.tree = _tree;
 810             return result;
 811         }
 812     }
 813 
 814     public Code getCode() {
 815         return code;
 816     }
 817 
 818     public Items getItems() {
 819         return items;
 820     }
 821 
 822     public Env<AttrContext> getAttrEnv() {
 823         return attrEnv;
 824     }
 825 
 826     /** Visitor class for expressions which might be constant expressions.
 827      *  This class is a subset of TreeScanner. Intended to visit trees pruned by
 828      *  Lower as long as constant expressions looking for references to any
 829      *  ClassSymbol. Any such reference will be added to the constant pool so
 830      *  automated tools can detect class dependencies better.
 831      */
 832     class ClassReferenceVisitor extends JCTree.Visitor {
 833 
 834         @Override
 835         public void visitTree(JCTree tree) {}
 836 
 837         @Override
 838         public void visitBinary(JCBinary tree) {
 839             tree.lhs.accept(this);
 840             tree.rhs.accept(this);
 841         }
 842 
 843         @Override
 844         public void visitSelect(JCFieldAccess tree) {
 845             if (tree.selected.type.hasTag(CLASS)) {
 846                 makeRef(tree.selected.pos(), tree.selected.type);
 847             }
 848         }
 849 
 850         @Override
 851         public void visitIdent(JCIdent tree) {
 852             if (tree.sym.owner instanceof ClassSymbol classSymbol) {
 853                 poolWriter.putClass(classSymbol);
 854             }
 855         }
 856 
 857         @Override
 858         public void visitConditional(JCConditional tree) {
 859             tree.cond.accept(this);
 860             tree.truepart.accept(this);
 861             tree.falsepart.accept(this);
 862         }
 863 
 864         @Override
 865         public void visitUnary(JCUnary tree) {
 866             tree.arg.accept(this);
 867         }
 868 
 869         @Override
 870         public void visitParens(JCParens tree) {
 871             tree.expr.accept(this);
 872         }
 873 
 874         @Override
 875         public void visitTypeCast(JCTypeCast tree) {
 876             tree.expr.accept(this);
 877         }
 878     }
 879 
 880     private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
 881 
 882     /** Visitor method: generate code for an expression, catching and reporting
 883      *  any completion failures.
 884      *  @param tree    The expression to be visited.
 885      *  @param pt      The expression's expected type (proto-type).
 886      */
 887     public Item genExpr(JCTree tree, Type pt) {
 888         if (!code.isAlive()) {
 889             return items.makeStackItem(pt);
 890         }
 891 
 892         Type prevPt = this.pt;
 893         try {
 894             if (tree.type.constValue() != null) {
 895                 // Short circuit any expressions which are constants
 896                 tree.accept(classReferenceVisitor);
 897                 checkStringConstant(tree.pos(), tree.type.constValue());
 898                 Symbol sym = TreeInfo.symbol(tree);
 899                 if (sym != null && isConstantDynamic(sym)) {
 900                     result = items.makeDynamicItem(sym);
 901                 } else {
 902                     result = items.makeImmediateItem(tree.type, tree.type.constValue());
 903                 }
 904             } else {
 905                 this.pt = pt;
 906                 tree.accept(this);
 907             }
 908             return result.coerce(pt);
 909         } catch (CompletionFailure ex) {
 910             chk.completionError(tree.pos(), ex);
 911             code.state.stacksize = 1;
 912             return items.makeStackItem(pt);
 913         } finally {
 914             this.pt = prevPt;
 915         }
 916     }
 917 
 918     public boolean isConstantDynamic(Symbol sym) {
 919         return sym.kind == VAR &&
 920                 sym instanceof DynamicVarSymbol dynamicVarSymbol &&
 921                 dynamicVarSymbol.isDynamic();
 922     }
 923 
 924     /** Derived visitor method: generate code for a list of method arguments.
 925      *  @param trees    The argument expressions to be visited.
 926      *  @param pts      The expression's expected types (i.e. the formal parameter
 927      *                  types of the invoked method).
 928      */
 929     public void genArgs(List<JCExpression> trees, List<Type> pts) {
 930         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
 931             genExpr(l.head, pts.head).load();
 932             pts = pts.tail;
 933         }
 934         // require lists be of same length
 935         Assert.check(pts.isEmpty());
 936     }
 937 
 938 /* ************************************************************************
 939  * Visitor methods for statements and definitions
 940  *************************************************************************/
 941 
 942     /** Thrown when the byte code size exceeds limit.
 943      */
 944     public static class CodeSizeOverflow extends RuntimeException {
 945         private static final long serialVersionUID = 0;
 946         public CodeSizeOverflow() {}
 947     }
 948 
 949     public void visitMethodDef(JCMethodDecl tree) {
 950         // Create a new local environment that points pack at method
 951         // definition.
 952         Env<GenContext> localEnv = env.dup(tree);
 953         localEnv.enclMethod = tree;
 954         // The expected type of every return statement in this method
 955         // is the method's return type.
 956         this.pt = tree.sym.erasure(types).getReturnType();
 957 
 958         checkDimension(tree.pos(), tree.sym.erasure(types));
 959         genMethod(tree, localEnv, false);
 960     }
 961 //where
 962         /** Generate code for a method.
 963          *  @param tree     The tree representing the method definition.
 964          *  @param env      The environment current for the method body.
 965          *  @param fatcode  A flag that indicates whether all jumps are
 966          *                  within 32K.  We first invoke this method under
 967          *                  the assumption that fatcode == false, i.e. all
 968          *                  jumps are within 32K.  If this fails, fatcode
 969          *                  is set to true and we try again.
 970          */
 971         void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
 972             MethodSymbol meth = tree.sym;
 973             int extras = 0;
 974             // Count up extra parameters
 975             if (meth.isInitOrVNew()) {
 976                 extras++;
 977                 if (meth.enclClass().isInner() &&
 978                     !meth.enclClass().isStatic()) {
 979                     extras++;
 980                 }
 981             } else if ((tree.mods.flags & STATIC) == 0) {
 982                 extras++;
 983             }
 984             //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
 985             if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
 986                 ClassFile.MAX_PARAMETERS) {
 987                 log.error(tree.pos(), Errors.LimitParameters);
 988                 nerrs++;
 989             }
 990 
 991             else if (tree.body != null) {
 992                 // Create a new code structure and initialize it.
 993                 int startpcCrt = initCode(tree, env, fatcode);
 994 
 995                 try {
 996                     genStat(tree.body, env);
 997                 } catch (CodeSizeOverflow e) {
 998                     // Failed due to code limit, try again with jsr/ret
 999                     startpcCrt = initCode(tree, env, fatcode);
1000                     genStat(tree.body, env);
1001                 }
1002 
1003                 if (code.state.stacksize != 0) {
1004                     log.error(tree.body.pos(), Errors.StackSimError(tree.sym));
1005                     throw new AssertionError();
1006                 }
1007 
1008                 // If last statement could complete normally, insert a
1009                 // return at the end.
1010                 if (code.isAlive()) {
1011                     code.statBegin(TreeInfo.endPos(tree.body));
1012                     if (env.enclMethod == null ||
1013                         env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
1014                         code.emitop0(return_);
1015                     } else if (env.enclMethod.sym.isValueObjectFactory()) {
1016                         items.makeLocalItem(env.enclMethod.factoryProduct).load();
1017                         code.emitop0(areturn);
1018                     } else {
1019                         // sometime dead code seems alive (4415991);
1020                         // generate a small loop instead
1021                         int startpc = code.entryPoint();
1022                         CondItem c = items.makeCondItem(goto_);
1023                         code.resolve(c.jumpTrue(), startpc);
1024                     }
1025                 }
1026                 if (genCrt)
1027                     code.crt.put(tree.body,
1028                                  CRT_BLOCK,
1029                                  startpcCrt,
1030                                  code.curCP());
1031 
1032                 code.endScopes(0);
1033 
1034                 // If we exceeded limits, panic
1035                 if (code.checkLimits(tree.pos(), log)) {
1036                     nerrs++;
1037                     return;
1038                 }
1039 
1040                 // If we generated short code but got a long jump, do it again
1041                 // with fatCode = true.
1042                 if (!fatcode && code.fatcode) genMethod(tree, env, true);
1043 
1044                 // Clean up
1045                 if(stackMap == StackMapFormat.JSR202) {
1046                     code.lastFrame = null;
1047                     code.frameBeforeLast = null;
1048                 }
1049 
1050                 // Compress exception table
1051                 code.compressCatchTable();
1052 
1053                 // Fill in type annotation positions for exception parameters
1054                 code.fillExceptionParameterPositions();
1055             }
1056         }
1057 
1058         private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
1059             MethodSymbol meth = tree.sym;
1060 
1061             // Create a new code structure.
1062             meth.code = code = new Code(meth,
1063                                         fatcode,
1064                                         lineDebugInfo ? toplevel.lineMap : null,
1065                                         varDebugInfo,
1066                                         stackMap,
1067                                         debugCode,
1068                                         genCrt ? new CRTable(tree, env.toplevel.endPositions)
1069                                                : null,
1070                                         syms,
1071                                         types,
1072                                         poolWriter,
1073                                         allowPrimitiveClasses);
1074             items = new Items(poolWriter, code, syms, types);
1075             if (code.debugCode) {
1076                 System.err.println(meth + " for body " + tree);
1077             }
1078 
1079             // If method is not static, create a new local variable address
1080             // for `this'.
1081             if ((tree.mods.flags & STATIC) == 0) {
1082                 Type selfType = meth.owner.type;
1083                 if (meth.isInitOrVNew() && selfType != syms.objectType)
1084                     selfType = UninitializedType.uninitializedThis(selfType);
1085                 code.setDefined(
1086                         code.newLocal(
1087                             new VarSymbol(FINAL, names._this, selfType, meth.owner)));
1088             }
1089 
1090             // Mark all parameters as defined from the beginning of
1091             // the method.
1092             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1093                 checkDimension(l.head.pos(), l.head.sym.type);
1094                 code.setDefined(code.newLocal(l.head.sym));
1095             }
1096 
1097             // Get ready to generate code for method body.
1098             int startpcCrt = genCrt ? code.curCP() : 0;
1099             code.entryPoint();
1100 
1101             // Suppress initial stackmap
1102             code.pendingStackMap = false;
1103 
1104             return startpcCrt;
1105         }
1106 
1107     public void visitVarDef(JCVariableDecl tree) {
1108         VarSymbol v = tree.sym;
1109         if (tree.init != null) {
1110             checkStringConstant(tree.init.pos(), v.getConstValue());
1111             if (v.getConstValue() == null || varDebugInfo) {
1112                 Assert.check(code.isStatementStart());
1113                 code.newLocal(v);
1114                 genExpr(tree.init, v.erasure(types)).load();
1115                 items.makeLocalItem(v).store();
1116                 Assert.check(code.isStatementStart());
1117             }
1118         } else {
1119             code.newLocal(v);
1120         }
1121         checkDimension(tree.pos(), v.type);
1122         Type localType = v.erasure(types);
1123         if (localType.requiresPreload(env.enclClass.sym)) {
1124             poolWriter.enterPreloadClass((ClassSymbol) localType.tsym);
1125         }
1126     }
1127 
1128     public void visitSkip(JCSkip tree) {
1129     }
1130 
1131     public void visitBlock(JCBlock tree) {
1132         if (tree.patternMatchingCatch != null) {
1133             Set<JCMethodInvocation> prevInvocationsWithPatternMatchingCatch = invocationsWithPatternMatchingCatch;
1134             ListBuffer<int[]> prevRanges = patternMatchingInvocationRanges;
1135             State startState = code.state.dup();
1136             try {
1137                 invocationsWithPatternMatchingCatch = tree.patternMatchingCatch.calls2Handle();
1138                 patternMatchingInvocationRanges = new ListBuffer<>();
1139                 doVisitBlock(tree);
1140             } finally {
1141                 Chain skipCatch = code.branch(goto_);
1142                 JCCatch handler = tree.patternMatchingCatch.handler();
1143                 code.entryPoint(startState, handler.param.sym.type);
1144                 genPatternMatchingCatch(handler, env, patternMatchingInvocationRanges.toList());
1145                 code.resolve(skipCatch);
1146                 invocationsWithPatternMatchingCatch = prevInvocationsWithPatternMatchingCatch;
1147                 patternMatchingInvocationRanges = prevRanges;
1148             }
1149         } else {
1150             doVisitBlock(tree);
1151         }
1152     }
1153 
1154     private void doVisitBlock(JCBlock tree) {
1155         int limit = code.nextreg;
1156         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1157         genStats(tree.stats, localEnv);
1158         // End the scope of all block-local variables in variable info.
1159         if (!env.tree.hasTag(METHODDEF)) {
1160             code.statBegin(tree.endpos);
1161             code.endScopes(limit);
1162             code.pendingStatPos = Position.NOPOS;
1163         }
1164     }
1165 
1166     public void visitDoLoop(JCDoWhileLoop tree) {
1167         genLoop(tree, tree.body, tree.cond, List.nil(), false);
1168     }
1169 
1170     public void visitWhileLoop(JCWhileLoop tree) {
1171         genLoop(tree, tree.body, tree.cond, List.nil(), true);
1172     }
1173 
1174     public void visitWithField(JCWithField tree) {
1175         switch(tree.field.getTag()) {
1176             case IDENT:
1177                 Symbol sym = ((JCIdent) tree.field).sym;
1178                 items.makeThisItem().load();
1179                 genExpr(tree.value, tree.field.type).load();
1180                 sym = binaryQualifier(sym, env.enclClass.type);
1181                 code.emitop2(withfield, sym, PoolWriter::putMember);
1182                 result = items.makeStackItem(tree.type);
1183                 break;
1184             case SELECT:
1185                 JCFieldAccess fieldAccess = (JCFieldAccess) tree.field;
1186                 sym = TreeInfo.symbol(fieldAccess);
1187                 // JDK-8207332: To maintain the order of side effects, must compute value ahead of field
1188                 genExpr(tree.value, tree.field.type).load();
1189                 genExpr(fieldAccess.selected, fieldAccess.selected.type).load();
1190                 if (Code.width(tree.field.type) == 2) {
1191                     code.emitop0(dup_x2);
1192                     code.emitop0(pop);
1193                 } else {
1194                     code.emitop0(swap);
1195                 }
1196                 sym = binaryQualifier(sym, fieldAccess.selected.type);
1197                 code.emitop2(withfield, sym, PoolWriter::putMember);
1198                 result = items.makeStackItem(tree.type);
1199                 break;
1200             default:
1201                 Assert.check(false);
1202         }
1203     }
1204 
1205     public void visitForLoop(JCForLoop tree) {
1206         int limit = code.nextreg;
1207         genStats(tree.init, env);
1208         genLoop(tree, tree.body, tree.cond, tree.step, true);
1209         code.endScopes(limit);
1210     }
1211     //where
1212         /** Generate code for a loop.
1213          *  @param loop       The tree representing the loop.
1214          *  @param body       The loop's body.
1215          *  @param cond       The loop's controlling condition.
1216          *  @param step       "Step" statements to be inserted at end of
1217          *                    each iteration.
1218          *  @param testFirst  True if the loop test belongs before the body.
1219          */
1220         private void genLoop(JCStatement loop,
1221                              JCStatement body,
1222                              JCExpression cond,
1223                              List<JCExpressionStatement> step,
1224                              boolean testFirst) {
1225             Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1226             int startpc = code.entryPoint();
1227             if (testFirst) { //while or for loop
1228                 CondItem c;
1229                 if (cond != null) {
1230                     code.statBegin(cond.pos);
1231                     Assert.check(code.isStatementStart());
1232                     c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1233                 } else {
1234                     c = items.makeCondItem(goto_);
1235                 }
1236                 Chain loopDone = c.jumpFalse();
1237                 code.resolve(c.trueJumps);
1238                 Assert.check(code.isStatementStart());
1239                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1240                 code.resolve(loopEnv.info.cont);
1241                 genStats(step, loopEnv);
1242                 code.resolve(code.branch(goto_), startpc);
1243                 code.resolve(loopDone);
1244             } else {
1245                 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1246                 code.resolve(loopEnv.info.cont);
1247                 genStats(step, loopEnv);
1248                 if (code.isAlive()) {
1249                     CondItem c;
1250                     if (cond != null) {
1251                         code.statBegin(cond.pos);
1252                         Assert.check(code.isStatementStart());
1253                         c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1254                     } else {
1255                         c = items.makeCondItem(goto_);
1256                     }
1257                     code.resolve(c.jumpTrue(), startpc);
1258                     Assert.check(code.isStatementStart());
1259                     code.resolve(c.falseJumps);
1260                 }
1261             }
1262             Chain exit = loopEnv.info.exit;
1263             if (exit != null) {
1264                 code.resolve(exit);
1265                 exit.state.defined.excludeFrom(code.nextreg);
1266             }
1267         }
1268 
1269     public void visitForeachLoop(JCEnhancedForLoop tree) {
1270         throw new AssertionError(); // should have been removed by Lower.
1271     }
1272 
1273     public void visitLabelled(JCLabeledStatement tree) {
1274         Env<GenContext> localEnv = env.dup(tree, new GenContext());
1275         genStat(tree.body, localEnv, CRT_STATEMENT);
1276         Chain exit = localEnv.info.exit;
1277         if (exit != null) {
1278             code.resolve(exit);
1279             exit.state.defined.excludeFrom(code.nextreg);
1280         }
1281     }
1282 
1283     public void visitSwitch(JCSwitch tree) {
1284         handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1285     }
1286 
1287     @Override
1288     public void visitSwitchExpression(JCSwitchExpression tree) {
1289         code.resolvePending();
1290         boolean prevInCondSwitchExpression = inCondSwitchExpression;
1291         try {
1292             inCondSwitchExpression = false;
1293             doHandleSwitchExpression(tree);
1294         } finally {
1295             inCondSwitchExpression = prevInCondSwitchExpression;
1296         }
1297         result = items.makeStackItem(pt);
1298     }
1299 
1300     private void doHandleSwitchExpression(JCSwitchExpression tree) {
1301         List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression;
1302         LocalItem prevSwitchResult = switchResult;
1303         int limit = code.nextreg;
1304         try {
1305             stackBeforeSwitchExpression = List.nil();
1306             switchResult = null;
1307             if (hasTry(tree)) {
1308                 //if the switch expression contains try-catch, the catch handlers need to have
1309                 //an empty stack. So stash whole stack to local variables, and restore it before
1310                 //breaks:
1311                 while (code.state.stacksize > 0) {
1312                     Type type = code.state.peek();
1313                     Name varName = names.fromString(target.syntheticNameChar() +
1314                                                     "stack" +
1315                                                     target.syntheticNameChar() +
1316                                                     tree.pos +
1317                                                     target.syntheticNameChar() +
1318                                                     code.state.stacksize);
1319                     VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type,
1320                                                   this.env.enclMethod.sym);
1321                     LocalItem item = items.new LocalItem(type, code.newLocal(var));
1322                     stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item);
1323                     item.store();
1324                 }
1325                 switchResult = makeTemp(tree.type);
1326             }
1327             int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
1328             try {
1329                 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch);
1330             } finally {
1331                 code.setLetExprStackPos(prevLetExprStart);
1332             }
1333         } finally {
1334             stackBeforeSwitchExpression = prevStackBeforeSwitchExpression;
1335             switchResult = prevSwitchResult;
1336             code.endScopes(limit);
1337         }
1338     }
1339     //where:
1340         private boolean hasTry(JCSwitchExpression tree) {
1341             class HasTryScanner extends TreeScanner {
1342                 private boolean hasTry;
1343 
1344                 @Override
1345                 public void visitTry(JCTry tree) {
1346                     hasTry = true;
1347                 }
1348 
1349                 @Override
1350                 public void visitSynchronized(JCSynchronized tree) {
1351                     hasTry = true;
1352                 }
1353 
1354                 @Override
1355                 public void visitClassDef(JCClassDecl tree) {
1356                 }
1357 
1358                 @Override
1359                 public void visitLambda(JCLambda tree) {
1360                 }
1361             };
1362 
1363             HasTryScanner hasTryScanner = new HasTryScanner();
1364 
1365             hasTryScanner.scan(tree);
1366             return hasTryScanner.hasTry;
1367         }
1368 
1369     private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases,
1370                               boolean patternSwitch) {
1371         int limit = code.nextreg;
1372         Assert.check(!selector.type.hasTag(CLASS));
1373         int switchStart = patternSwitch ? code.entryPoint() : -1;
1374         int startpcCrt = genCrt ? code.curCP() : 0;
1375         Assert.check(code.isStatementStart());
1376         Item sel = genExpr(selector, syms.intType);
1377         if (cases.isEmpty()) {
1378             // We are seeing:  switch <sel> {}
1379             sel.load().drop();
1380             if (genCrt)
1381                 code.crt.put(TreeInfo.skipParens(selector),
1382                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1383         } else {
1384             // We are seeing a nonempty switch.
1385             sel.load();
1386             if (genCrt)
1387                 code.crt.put(TreeInfo.skipParens(selector),
1388                              CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1389             Env<GenContext> switchEnv = env.dup(swtch, new GenContext());
1390             switchEnv.info.isSwitch = true;
1391 
1392             // Compute number of labels and minimum and maximum label values.
1393             // For each case, store its label in an array.
1394             int lo = Integer.MAX_VALUE;  // minimum label.
1395             int hi = Integer.MIN_VALUE;  // maximum label.
1396             int nlabels = 0;               // number of labels.
1397 
1398             int[] labels = new int[cases.length()];  // the label array.
1399             int defaultIndex = -1;     // the index of the default clause.
1400 
1401             List<JCCase> l = cases;
1402             for (int i = 0; i < labels.length; i++) {
1403                 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) {
1404                     Assert.check(l.head.labels.size() == 1);
1405                     int val = ((Number) constLabel.expr.type.constValue()).intValue();
1406                     labels[i] = val;
1407                     if (val < lo) lo = val;
1408                     if (hi < val) hi = val;
1409                     nlabels++;
1410                 } else {
1411                     Assert.check(defaultIndex == -1);
1412                     defaultIndex = i;
1413                 }
1414                 l = l.tail;
1415             }
1416 
1417             // Determine whether to issue a tableswitch or a lookupswitch
1418             // instruction.
1419             long table_space_cost = 4 + ((long) hi - lo + 1); // words
1420             long table_time_cost = 3; // comparisons
1421             long lookup_space_cost = 3 + 2 * (long) nlabels;
1422             long lookup_time_cost = nlabels;
1423             int opcode =
1424                 nlabels > 0 &&
1425                 table_space_cost + 3 * table_time_cost <=
1426                 lookup_space_cost + 3 * lookup_time_cost
1427                 ?
1428                 tableswitch : lookupswitch;
1429 
1430             int startpc = code.curCP();    // the position of the selector operation
1431             code.emitop0(opcode);
1432             code.align(4);
1433             int tableBase = code.curCP();  // the start of the jump table
1434             int[] offsets = null;          // a table of offsets for a lookupswitch
1435             code.emit4(-1);                // leave space for default offset
1436             if (opcode == tableswitch) {
1437                 code.emit4(lo);            // minimum label
1438                 code.emit4(hi);            // maximum label
1439                 for (long i = lo; i <= hi; i++) {  // leave space for jump table
1440                     code.emit4(-1);
1441                 }
1442             } else {
1443                 code.emit4(nlabels);    // number of labels
1444                 for (int i = 0; i < nlabels; i++) {
1445                     code.emit4(-1); code.emit4(-1); // leave space for lookup table
1446                 }
1447                 offsets = new int[labels.length];
1448             }
1449             Code.State stateSwitch = code.state.dup();
1450             code.markDead();
1451 
1452             // For each case do:
1453             l = cases;
1454             for (int i = 0; i < labels.length; i++) {
1455                 JCCase c = l.head;
1456                 l = l.tail;
1457 
1458                 int pc = code.entryPoint(stateSwitch);
1459                 // Insert offset directly into code or else into the
1460                 // offsets table.
1461                 if (i != defaultIndex) {
1462                     if (opcode == tableswitch) {
1463                         code.put4(
1464                             tableBase + 4 * (labels[i] - lo + 3),
1465                             pc - startpc);
1466                     } else {
1467                         offsets[i] = pc - startpc;
1468                     }
1469                 } else {
1470                     code.put4(tableBase, pc - startpc);
1471                 }
1472 
1473                 // Generate code for the statements in this case.
1474                 genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1475             }
1476 
1477             if (switchEnv.info.cont != null) {
1478                 Assert.check(patternSwitch);
1479                 code.resolve(switchEnv.info.cont, switchStart);
1480             }
1481 
1482             // Resolve all breaks.
1483             Chain exit = switchEnv.info.exit;
1484             if  (exit != null) {
1485                 code.resolve(exit);
1486                 exit.state.defined.excludeFrom(limit);
1487             }
1488 
1489             // If we have not set the default offset, we do so now.
1490             if (code.get4(tableBase) == -1) {
1491                 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1492             }
1493 
1494             if (opcode == tableswitch) {
1495                 // Let any unfilled slots point to the default case.
1496                 int defaultOffset = code.get4(tableBase);
1497                 for (long i = lo; i <= hi; i++) {
1498                     int t = (int)(tableBase + 4 * (i - lo + 3));
1499                     if (code.get4(t) == -1)
1500                         code.put4(t, defaultOffset);
1501                 }
1502             } else {
1503                 // Sort non-default offsets and copy into lookup table.
1504                 if (defaultIndex >= 0)
1505                     for (int i = defaultIndex; i < labels.length - 1; i++) {
1506                         labels[i] = labels[i+1];
1507                         offsets[i] = offsets[i+1];
1508                     }
1509                 if (nlabels > 0)
1510                     qsort2(labels, offsets, 0, nlabels - 1);
1511                 for (int i = 0; i < nlabels; i++) {
1512                     int caseidx = tableBase + 8 * (i + 1);
1513                     code.put4(caseidx, labels[i]);
1514                     code.put4(caseidx + 4, offsets[i]);
1515                 }
1516             }
1517         }
1518         code.endScopes(limit);
1519     }
1520 //where
1521         /** Sort (int) arrays of keys and values
1522          */
1523        static void qsort2(int[] keys, int[] values, int lo, int hi) {
1524             int i = lo;
1525             int j = hi;
1526             int pivot = keys[(i+j)/2];
1527             do {
1528                 while (keys[i] < pivot) i++;
1529                 while (pivot < keys[j]) j--;
1530                 if (i <= j) {
1531                     int temp1 = keys[i];
1532                     keys[i] = keys[j];
1533                     keys[j] = temp1;
1534                     int temp2 = values[i];
1535                     values[i] = values[j];
1536                     values[j] = temp2;
1537                     i++;
1538                     j--;
1539                 }
1540             } while (i <= j);
1541             if (lo < j) qsort2(keys, values, lo, j);
1542             if (i < hi) qsort2(keys, values, i, hi);
1543         }
1544 
1545     public void visitSynchronized(JCSynchronized tree) {
1546         int limit = code.nextreg;
1547         // Generate code to evaluate lock and save in temporary variable.
1548         final LocalItem lockVar = makeTemp(syms.objectType);
1549         Assert.check(code.isStatementStart());
1550         genExpr(tree.lock, tree.lock.type).load().duplicate();
1551         lockVar.store();
1552 
1553         // Generate code to enter monitor.
1554         code.emitop0(monitorenter);
1555         code.state.lock(lockVar.reg);
1556 
1557         // Generate code for a try statement with given body, no catch clauses
1558         // in a new environment with the "exit-monitor" operation as finalizer.
1559         final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1560         syncEnv.info.finalize = new GenFinalizer() {
1561             void gen() {
1562                 genLast();
1563                 Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1564                 syncEnv.info.gaps.append(code.curCP());
1565             }
1566             void genLast() {
1567                 if (code.isAlive()) {
1568                     lockVar.load();
1569                     code.emitop0(monitorexit);
1570                     code.state.unlock(lockVar.reg);
1571                 }
1572             }
1573         };
1574         syncEnv.info.gaps = new ListBuffer<>();
1575         genTry(tree.body, List.nil(), syncEnv);
1576         code.endScopes(limit);
1577     }
1578 
1579     public void visitTry(final JCTry tree) {
1580         // Generate code for a try statement with given body and catch clauses,
1581         // in a new environment which calls the finally block if there is one.
1582         final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1583         final Env<GenContext> oldEnv = env;
1584         tryEnv.info.finalize = new GenFinalizer() {
1585             void gen() {
1586                 Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1587                 tryEnv.info.gaps.append(code.curCP());
1588                 genLast();
1589             }
1590             void genLast() {
1591                 if (tree.finalizer != null)
1592                     genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1593             }
1594             boolean hasFinalizer() {
1595                 return tree.finalizer != null;
1596             }
1597 
1598             @Override
1599             void afterBody() {
1600                 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) {
1601                     //for body-only finally, remove the GenFinalizer after try body
1602                     //so that the finally is not generated to catch bodies:
1603                     tryEnv.info.finalize = null;
1604                 }
1605             }
1606 
1607         };
1608         tryEnv.info.gaps = new ListBuffer<>();
1609         genTry(tree.body, tree.catchers, tryEnv);
1610     }
1611     //where
1612         /** Generate code for a try or synchronized statement
1613          *  @param body      The body of the try or synchronized statement.
1614          *  @param catchers  The list of catch clauses.
1615          *  @param env       The current environment of the body.
1616          */
1617         void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1618             int limit = code.nextreg;
1619             int startpc = code.curCP();
1620             Code.State stateTry = code.state.dup();
1621             genStat(body, env, CRT_BLOCK);
1622             int endpc = code.curCP();
1623             List<Integer> gaps = env.info.gaps.toList();
1624             code.statBegin(TreeInfo.endPos(body));
1625             genFinalizer(env);
1626             code.statBegin(TreeInfo.endPos(env.tree));
1627             Chain exitChain;
1628             boolean actualTry = env.tree.hasTag(TRY);
1629             if (startpc == endpc && actualTry) {
1630                 exitChain = code.branch(dontgoto);
1631             } else {
1632                 exitChain = code.branch(goto_);
1633             }
1634             endFinalizerGap(env);
1635             env.info.finalize.afterBody();
1636             boolean hasFinalizer =
1637                 env.info.finalize != null &&
1638                 env.info.finalize.hasFinalizer();
1639             if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1640                 // start off with exception on stack
1641                 code.entryPoint(stateTry, l.head.param.sym.type);
1642                 genCatch(l.head, env, startpc, endpc, gaps);
1643                 genFinalizer(env);
1644                 if (hasFinalizer || l.tail.nonEmpty()) {
1645                     code.statBegin(TreeInfo.endPos(env.tree));
1646                     exitChain = Code.mergeChains(exitChain,
1647                                                  code.branch(goto_));
1648                 }
1649                 endFinalizerGap(env);
1650             }
1651             if (hasFinalizer && (startpc != endpc || !actualTry)) {
1652                 // Create a new register segment to avoid allocating
1653                 // the same variables in finalizers and other statements.
1654                 code.newRegSegment();
1655 
1656                 // Add a catch-all clause.
1657 
1658                 // start off with exception on stack
1659                 int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1660 
1661                 // Register all exception ranges for catch all clause.
1662                 // The range of the catch all clause is from the beginning
1663                 // of the try or synchronized block until the present
1664                 // code pointer excluding all gaps in the current
1665                 // environment's GenContext.
1666                 int startseg = startpc;
1667                 while (env.info.gaps.nonEmpty()) {
1668                     int endseg = env.info.gaps.next().intValue();
1669                     registerCatch(body.pos(), startseg, endseg,
1670                                   catchallpc, 0);
1671                     startseg = env.info.gaps.next().intValue();
1672                 }
1673                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1674                 code.markStatBegin();
1675 
1676                 Item excVar = makeTemp(syms.throwableType);
1677                 excVar.store();
1678                 genFinalizer(env);
1679                 code.resolvePending();
1680                 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS));
1681                 code.markStatBegin();
1682 
1683                 excVar.load();
1684                 registerCatch(body.pos(), startseg,
1685                               env.info.gaps.next().intValue(),
1686                               catchallpc, 0);
1687                 code.emitop0(athrow);
1688                 code.markDead();
1689 
1690                 // If there are jsr's to this finalizer, ...
1691                 if (env.info.cont != null) {
1692                     // Resolve all jsr's.
1693                     code.resolve(env.info.cont);
1694 
1695                     // Mark statement line number
1696                     code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS));
1697                     code.markStatBegin();
1698 
1699                     // Save return address.
1700                     LocalItem retVar = makeTemp(syms.throwableType);
1701                     retVar.store();
1702 
1703                     // Generate finalizer code.
1704                     env.info.finalize.genLast();
1705 
1706                     // Return.
1707                     code.emitop1w(ret, retVar.reg);
1708                     code.markDead();
1709                 }
1710             }
1711             // Resolve all breaks.
1712             code.resolve(exitChain);
1713 
1714             code.endScopes(limit);
1715         }
1716 
1717         /** Generate code for a catch clause.
1718          *  @param tree     The catch clause.
1719          *  @param env      The environment current in the enclosing try.
1720          *  @param startpc  Start pc of try-block.
1721          *  @param endpc    End pc of try-block.
1722          */
1723         void genCatch(JCCatch tree,
1724                       Env<GenContext> env,
1725                       int startpc, int endpc,
1726                       List<Integer> gaps) {
1727             if (startpc != endpc) {
1728                 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1729                         = catchTypesWithAnnotations(tree);
1730                 while (gaps.nonEmpty()) {
1731                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1732                         JCExpression subCatch = subCatch1.snd;
1733                         int catchType = makeRef(tree.pos(), subCatch.type);
1734                         int end = gaps.head.intValue();
1735                         registerCatch(tree.pos(),
1736                                       startpc,  end, code.curCP(),
1737                                       catchType);
1738                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1739                                 tc.position.setCatchInfo(catchType, startpc);
1740                         }
1741                     }
1742                     gaps = gaps.tail;
1743                     startpc = gaps.head.intValue();
1744                     gaps = gaps.tail;
1745                 }
1746                 if (startpc < endpc) {
1747                     for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1748                         JCExpression subCatch = subCatch1.snd;
1749                         int catchType = makeRef(tree.pos(), subCatch.type);
1750                         registerCatch(tree.pos(),
1751                                       startpc, endpc, code.curCP(),
1752                                       catchType);
1753                         for (Attribute.TypeCompound tc :  subCatch1.fst) {
1754                             tc.position.setCatchInfo(catchType, startpc);
1755                         }
1756                     }
1757                 }
1758                 genCatchBlock(tree, env);
1759             }
1760         }
1761         void genPatternMatchingCatch(JCCatch tree,
1762                                      Env<GenContext> env,
1763                                      List<int[]> ranges) {
1764             for (int[] range : ranges) {
1765                 JCExpression subCatch = tree.param.vartype;
1766                 int catchType = makeRef(tree.pos(), subCatch.type);
1767                 registerCatch(tree.pos(),
1768                               range[0], range[1], code.curCP(),
1769                               catchType);
1770             }
1771             genCatchBlock(tree, env);
1772         }
1773         void genCatchBlock(JCCatch tree, Env<GenContext> env) {
1774             VarSymbol exparam = tree.param.sym;
1775             code.statBegin(tree.pos);
1776             code.markStatBegin();
1777             int limit = code.nextreg;
1778             code.newLocal(exparam);
1779             items.makeLocalItem(exparam).store();
1780             code.statBegin(TreeInfo.firstStatPos(tree.body));
1781             genStat(tree.body, env, CRT_BLOCK);
1782             code.endScopes(limit);
1783             code.statBegin(TreeInfo.endPos(tree.body));
1784         }
1785         // where
1786         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1787             return TreeInfo.isMultiCatch(tree) ?
1788                     catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1789                     List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1790         }
1791         // where
1792         List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1793             List<JCExpression> alts = tree.alternatives;
1794             List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1795             alts = alts.tail;
1796 
1797             while(alts != null && alts.head != null) {
1798                 JCExpression alt = alts.head;
1799                 if (alt instanceof JCAnnotatedType annotatedType) {
1800                     res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt));
1801                 } else {
1802                     res = res.prepend(new Pair<>(List.nil(), alt));
1803                 }
1804                 alts = alts.tail;
1805             }
1806             return res.reverse();
1807         }
1808 
1809         /** Register a catch clause in the "Exceptions" code-attribute.
1810          */
1811         void registerCatch(DiagnosticPosition pos,
1812                            int startpc, int endpc,
1813                            int handler_pc, int catch_type) {
1814             char startpc1 = (char)startpc;
1815             char endpc1 = (char)endpc;
1816             char handler_pc1 = (char)handler_pc;
1817             if (startpc1 == startpc &&
1818                 endpc1 == endpc &&
1819                 handler_pc1 == handler_pc) {
1820                 code.addCatch(startpc1, endpc1, handler_pc1,
1821                               (char)catch_type);
1822             } else {
1823                 log.error(pos, Errors.LimitCodeTooLargeForTryStmt);
1824                 nerrs++;
1825             }
1826         }
1827 
1828     public void visitIf(JCIf tree) {
1829         int limit = code.nextreg;
1830         Chain thenExit = null;
1831         Assert.check(code.isStatementStart());
1832         CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1833                              CRT_FLOW_CONTROLLER);
1834         Chain elseChain = c.jumpFalse();
1835         Assert.check(code.isStatementStart());
1836         if (!c.isFalse()) {
1837             code.resolve(c.trueJumps);
1838             genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1839             thenExit = code.branch(goto_);
1840         }
1841         if (elseChain != null) {
1842             code.resolve(elseChain);
1843             if (tree.elsepart != null) {
1844                 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1845             }
1846         }
1847         code.resolve(thenExit);
1848         code.endScopes(limit);
1849         Assert.check(code.isStatementStart());
1850     }
1851 
1852     public void visitExec(JCExpressionStatement tree) {
1853         // Optimize x++ to ++x and x-- to --x.
1854         JCExpression e = tree.expr;
1855         switch (e.getTag()) {
1856             case POSTINC:
1857                 ((JCUnary) e).setTag(PREINC);
1858                 break;
1859             case POSTDEC:
1860                 ((JCUnary) e).setTag(PREDEC);
1861                 break;
1862         }
1863         Assert.check(code.isStatementStart());
1864         genExpr(tree.expr, tree.expr.type).drop();
1865         Assert.check(code.isStatementStart());
1866     }
1867 
1868     public void visitBreak(JCBreak tree) {
1869         Assert.check(code.isStatementStart());
1870         final Env<GenContext> targetEnv = unwindBreak(tree.target);
1871         targetEnv.info.addExit(code.branch(goto_));
1872         endFinalizerGaps(env, targetEnv);
1873     }
1874 
1875     public void visitYield(JCYield tree) {
1876         Assert.check(code.isStatementStart());
1877         final Env<GenContext> targetEnv;
1878         if (inCondSwitchExpression) {
1879             CondItem value = genCond(tree.value, CRT_FLOW_TARGET);
1880             Chain falseJumps = value.jumpFalse();
1881 
1882             code.resolve(value.trueJumps);
1883             Env<GenContext> localEnv = unwindBreak(tree.target);
1884             reloadStackBeforeSwitchExpr();
1885             Chain trueJumps = code.branch(goto_);
1886 
1887             endFinalizerGaps(env, localEnv);
1888 
1889             code.resolve(falseJumps);
1890             targetEnv = unwindBreak(tree.target);
1891             reloadStackBeforeSwitchExpr();
1892             falseJumps = code.branch(goto_);
1893 
1894             if (switchExpressionTrueChain == null) {
1895                 switchExpressionTrueChain = trueJumps;
1896             } else {
1897                 switchExpressionTrueChain =
1898                         Code.mergeChains(switchExpressionTrueChain, trueJumps);
1899             }
1900             if (switchExpressionFalseChain == null) {
1901                 switchExpressionFalseChain = falseJumps;
1902             } else {
1903                 switchExpressionFalseChain =
1904                         Code.mergeChains(switchExpressionFalseChain, falseJumps);
1905             }
1906         } else {
1907             genExpr(tree.value, pt).load();
1908             if (switchResult != null)
1909                 switchResult.store();
1910 
1911             targetEnv = unwindBreak(tree.target);
1912 
1913             if (code.isAlive()) {
1914                 reloadStackBeforeSwitchExpr();
1915                 if (switchResult != null)
1916                     switchResult.load();
1917 
1918                 code.state.forceStackTop(tree.target.type);
1919                 targetEnv.info.addExit(code.branch(goto_));
1920                 code.markDead();
1921             }
1922         }
1923         endFinalizerGaps(env, targetEnv);
1924     }
1925     //where:
1926         /** As side-effect, might mark code as dead disabling any further emission.
1927          */
1928         private Env<GenContext> unwindBreak(JCTree target) {
1929             int tmpPos = code.pendingStatPos;
1930             Env<GenContext> targetEnv = unwind(target, env);
1931             code.pendingStatPos = tmpPos;
1932             return targetEnv;
1933         }
1934 
1935         private void reloadStackBeforeSwitchExpr() {
1936             for (LocalItem li : stackBeforeSwitchExpression)
1937                 li.load();
1938         }
1939 
1940     public void visitContinue(JCContinue tree) {
1941         int tmpPos = code.pendingStatPos;
1942         Env<GenContext> targetEnv = unwind(tree.target, env);
1943         code.pendingStatPos = tmpPos;
1944         Assert.check(code.isStatementStart());
1945         targetEnv.info.addCont(code.branch(goto_));
1946         endFinalizerGaps(env, targetEnv);
1947     }
1948 
1949     public void visitReturn(JCReturn tree) {
1950         int limit = code.nextreg;
1951         final Env<GenContext> targetEnv;
1952 
1953         /* Save and then restore the location of the return in case a finally
1954          * is expanded (with unwind()) in the middle of our bytecodes.
1955          */
1956         int tmpPos = code.pendingStatPos;
1957         if (tree.expr != null) {
1958             Assert.check(code.isStatementStart());
1959             Item r = genExpr(tree.expr, pt).load();
1960             if (hasFinally(env.enclMethod, env)) {
1961                 r = makeTemp(pt);
1962                 r.store();
1963             }
1964             targetEnv = unwind(env.enclMethod, env);
1965             code.pendingStatPos = tmpPos;
1966             r.load();
1967             code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1968         } else {
1969             targetEnv = unwind(env.enclMethod, env);
1970             code.pendingStatPos = tmpPos;
1971             code.emitop0(return_);
1972         }
1973         endFinalizerGaps(env, targetEnv);
1974         code.endScopes(limit);
1975     }
1976 
1977     public void visitThrow(JCThrow tree) {
1978         Assert.check(code.isStatementStart());
1979         genExpr(tree.expr, tree.expr.type).load();
1980         code.emitop0(athrow);
1981         Assert.check(code.isStatementStart());
1982     }
1983 
1984 /* ************************************************************************
1985  * Visitor methods for expressions
1986  *************************************************************************/
1987 
1988     public void visitApply(JCMethodInvocation tree) {
1989         setTypeAnnotationPositions(tree.pos);
1990         // Generate code for method.
1991         Item m = genExpr(tree.meth, methodType);
1992         // Generate code for all arguments, where the expected types are
1993         // the parameters of the method's external type (that is, any implicit
1994         // outer instance of a super(...) call appears as first parameter).
1995         MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1996         genArgs(tree.args,
1997                 msym.externalType(types).getParameterTypes());
1998         if (!msym.isDynamic()) {
1999             code.statBegin(tree.pos);
2000         }
2001         if (invocationsWithPatternMatchingCatch.contains(tree)) {
2002             int start = code.curCP();
2003             result = m.invoke();
2004             patternMatchingInvocationRanges.add(new int[] {start, code.curCP()});
2005         } else {
2006             result = m.invoke();
2007         }
2008     }
2009 
2010     public void visitConditional(JCConditional tree) {
2011         Chain thenExit = null;
2012         code.statBegin(tree.cond.pos);
2013         CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
2014         Chain elseChain = c.jumpFalse();
2015         if (!c.isFalse()) {
2016             code.resolve(c.trueJumps);
2017             int startpc = genCrt ? code.curCP() : 0;
2018             code.statBegin(tree.truepart.pos);
2019             genExpr(tree.truepart, pt).load();
2020             code.state.forceStackTop(tree.type);
2021             if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
2022                                      startpc, code.curCP());
2023             thenExit = code.branch(goto_);
2024         }
2025         if (elseChain != null) {
2026             code.resolve(elseChain);
2027             int startpc = genCrt ? code.curCP() : 0;
2028             code.statBegin(tree.falsepart.pos);
2029             genExpr(tree.falsepart, pt).load();
2030             code.state.forceStackTop(tree.type);
2031             if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
2032                                      startpc, code.curCP());
2033         }
2034         code.resolve(thenExit);
2035         result = items.makeStackItem(pt);
2036     }
2037 
2038     private void setTypeAnnotationPositions(int treePos) {
2039         MethodSymbol meth = code.meth;
2040         boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
2041                 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
2042 
2043         for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
2044             if (ta.hasUnknownPosition())
2045                 ta.tryFixPosition();
2046 
2047             if (ta.position.matchesPos(treePos))
2048                 ta.position.updatePosOffset(code.cp);
2049         }
2050 
2051         if (!initOrClinit)
2052             return;
2053 
2054         for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
2055             if (ta.hasUnknownPosition())
2056                 ta.tryFixPosition();
2057 
2058             if (ta.position.matchesPos(treePos))
2059                 ta.position.updatePosOffset(code.cp);
2060         }
2061 
2062         ClassSymbol clazz = meth.enclClass();
2063         for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
2064             if (!s.getKind().isField())
2065                 continue;
2066 
2067             for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
2068                 if (ta.hasUnknownPosition())
2069                     ta.tryFixPosition();
2070 
2071                 if (ta.position.matchesPos(treePos))
2072                     ta.position.updatePosOffset(code.cp);
2073             }
2074         }
2075     }
2076 
2077     public void visitNewClass(JCNewClass tree) {
2078         // Enclosing instances or anonymous classes should have been eliminated
2079         // by now.
2080         Assert.check(tree.encl == null && tree.def == null);
2081         setTypeAnnotationPositions(tree.pos);
2082 
2083         code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2084         code.emitop0(dup);
2085 
2086         // Generate code for all arguments, where the expected types are
2087         // the parameters of the constructor's external type (that is,
2088         // any implicit outer instance appears as first parameter).
2089         genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
2090 
2091         items.makeMemberItem(tree.constructor, true).invoke();
2092         result = items.makeStackItem(tree.type);
2093     }
2094 
2095     public void visitNewArray(JCNewArray tree) {
2096         setTypeAnnotationPositions(tree.pos);
2097 
2098         if (tree.elems != null) {
2099             Type elemtype = types.elemtype(tree.type);
2100             loadIntConst(tree.elems.length());
2101             Item arr = makeNewArray(tree.pos(), tree.type, 1);
2102             int i = 0;
2103             for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
2104                 arr.duplicate();
2105                 loadIntConst(i);
2106                 i++;
2107                 genExpr(l.head, elemtype).load();
2108                 items.makeIndexedItem(elemtype).store();
2109             }
2110             result = arr;
2111         } else {
2112             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2113                 genExpr(l.head, syms.intType).load();
2114             }
2115             result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
2116         }
2117     }
2118 //where
2119         /** Generate code to create an array with given element type and number
2120          *  of dimensions.
2121          */
2122         Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
2123             Type elemtype = types.elemtype(type);
2124             if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
2125                 log.error(pos, Errors.LimitDimensions);
2126                 nerrs++;
2127             }
2128             int elemcode = Code.arraycode(elemtype);
2129             if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
2130                 code.emitAnewarray(makeRef(pos, elemtype, elemtype.isPrimitiveClass()), type);
2131             } else if (elemcode == 1) {
2132                 code.emitMultianewarray(ndims, makeRef(pos, type), type);
2133             } else {
2134                 code.emitNewarray(elemcode, type);
2135             }
2136             return items.makeStackItem(type);
2137         }
2138 
2139     public void visitParens(JCParens tree) {
2140         result = genExpr(tree.expr, tree.expr.type);
2141     }
2142 
2143     public void visitAssign(JCAssign tree) {
2144         Item l = genExpr(tree.lhs, tree.lhs.type);
2145         genExpr(tree.rhs, tree.lhs.type).load();
2146         if (tree.rhs.type.hasTag(BOT)) {
2147             /* This is just a case of widening reference conversion that per 5.1.5 simply calls
2148                for "regarding a reference as having some other type in a manner that can be proved
2149                correct at compile time."
2150             */
2151             code.state.forceStackTop(tree.lhs.type);
2152         }
2153         result = items.makeAssignItem(l);
2154     }
2155 
2156     public void visitAssignop(JCAssignOp tree) {
2157         OperatorSymbol operator = tree.operator;
2158         Item l;
2159         if (operator.opcode == string_add) {
2160             l = concat.makeConcat(tree);
2161         } else {
2162             // Generate code for first expression
2163             l = genExpr(tree.lhs, tree.lhs.type);
2164 
2165             // If we have an increment of -32768 to +32767 of a local
2166             // int variable we can use an incr instruction instead of
2167             // proceeding further.
2168             if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
2169                 l instanceof LocalItem localItem &&
2170                 tree.lhs.type.getTag().isSubRangeOf(INT) &&
2171                 tree.rhs.type.getTag().isSubRangeOf(INT) &&
2172                 tree.rhs.type.constValue() != null) {
2173                 int ival = ((Number) tree.rhs.type.constValue()).intValue();
2174                 if (tree.hasTag(MINUS_ASG)) ival = -ival;
2175                 localItem.incr(ival);
2176                 result = l;
2177                 return;
2178             }
2179             // Otherwise, duplicate expression, load one copy
2180             // and complete binary operation.
2181             l.duplicate();
2182             l.coerce(operator.type.getParameterTypes().head).load();
2183             completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
2184         }
2185         result = items.makeAssignItem(l);
2186     }
2187 
2188     public void visitUnary(JCUnary tree) {
2189         OperatorSymbol operator = tree.operator;
2190         if (tree.hasTag(NOT)) {
2191             CondItem od = genCond(tree.arg, false);
2192             result = od.negate();
2193         } else {
2194             Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
2195             switch (tree.getTag()) {
2196             case POS:
2197                 result = od.load();
2198                 break;
2199             case NEG:
2200                 result = od.load();
2201                 code.emitop0(operator.opcode);
2202                 break;
2203             case COMPL:
2204                 result = od.load();
2205                 emitMinusOne(od.typecode);
2206                 code.emitop0(operator.opcode);
2207                 break;
2208             case PREINC: case PREDEC:
2209                 od.duplicate();
2210                 if (od instanceof LocalItem localItem &&
2211                     (operator.opcode == iadd || operator.opcode == isub)) {
2212                     localItem.incr(tree.hasTag(PREINC) ? 1 : -1);
2213                     result = od;
2214                 } else {
2215                     od.load();
2216                     code.emitop0(one(od.typecode));
2217                     code.emitop0(operator.opcode);
2218                     // Perform narrowing primitive conversion if byte,
2219                     // char, or short.  Fix for 4304655.
2220                     if (od.typecode != INTcode &&
2221                         Code.truncate(od.typecode) == INTcode)
2222                       code.emitop0(int2byte + od.typecode - BYTEcode);
2223                     result = items.makeAssignItem(od);
2224                 }
2225                 break;
2226             case POSTINC: case POSTDEC:
2227                 od.duplicate();
2228                 if (od instanceof LocalItem localItem &&
2229                     (operator.opcode == iadd || operator.opcode == isub)) {
2230                     Item res = od.load();
2231                     localItem.incr(tree.hasTag(POSTINC) ? 1 : -1);
2232                     result = res;
2233                 } else {
2234                     Item res = od.load();
2235                     od.stash(od.typecode);
2236                     code.emitop0(one(od.typecode));
2237                     code.emitop0(operator.opcode);
2238                     // Perform narrowing primitive conversion if byte,
2239                     // char, or short.  Fix for 4304655.
2240                     if (od.typecode != INTcode &&
2241                         Code.truncate(od.typecode) == INTcode)
2242                       code.emitop0(int2byte + od.typecode - BYTEcode);
2243                     od.store();
2244                     result = res;
2245                 }
2246                 break;
2247             case NULLCHK:
2248                 result = od.load();
2249                 code.emitop0(dup);
2250                 genNullCheck(tree);
2251                 break;
2252             default:
2253                 Assert.error();
2254             }
2255         }
2256     }
2257 
2258     /** Generate a null check from the object value at stack top. */
2259     private void genNullCheck(JCTree tree) {
2260         code.statBegin(tree.pos);
2261         callMethod(tree.pos(), syms.objectsType, names.requireNonNull,
2262                    List.of(syms.objectType), true);
2263         code.emitop0(pop);
2264     }
2265 
2266     public void visitBinary(JCBinary tree) {
2267         OperatorSymbol operator = tree.operator;
2268         if (operator.opcode == string_add) {
2269             result = concat.makeConcat(tree);
2270         } else if (tree.hasTag(AND)) {
2271             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2272             if (!lcond.isFalse()) {
2273                 Chain falseJumps = lcond.jumpFalse();
2274                 code.resolve(lcond.trueJumps);
2275                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2276                 result = items.
2277                     makeCondItem(rcond.opcode,
2278                                  rcond.trueJumps,
2279                                  Code.mergeChains(falseJumps,
2280                                                   rcond.falseJumps));
2281             } else {
2282                 result = lcond;
2283             }
2284         } else if (tree.hasTag(OR)) {
2285             CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2286             if (!lcond.isTrue()) {
2287                 Chain trueJumps = lcond.jumpTrue();
2288                 code.resolve(lcond.falseJumps);
2289                 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2290                 result = items.
2291                     makeCondItem(rcond.opcode,
2292                                  Code.mergeChains(trueJumps, rcond.trueJumps),
2293                                  rcond.falseJumps);
2294             } else {
2295                 result = lcond;
2296             }
2297         } else {
2298             Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2299             od.load();
2300             result = completeBinop(tree.lhs, tree.rhs, operator);
2301         }
2302     }
2303 
2304 
2305         /** Complete generating code for operation, with left operand
2306          *  already on stack.
2307          *  @param lhs       The tree representing the left operand.
2308          *  @param rhs       The tree representing the right operand.
2309          *  @param operator  The operator symbol.
2310          */
2311         Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2312             MethodType optype = (MethodType)operator.type;
2313             int opcode = operator.opcode;
2314             if (opcode >= if_icmpeq && opcode <= if_icmple &&
2315                     rhs.type.constValue() instanceof Number number &&
2316                     number.intValue() == 0) {
2317                 opcode = opcode + (ifeq - if_icmpeq);
2318             } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2319                        TreeInfo.isNull(rhs)) {
2320                 opcode = opcode + (if_acmp_null - if_acmpeq);
2321             } else {
2322                 // The expected type of the right operand is
2323                 // the second parameter type of the operator, except for
2324                 // shifts with long shiftcount, where we convert the opcode
2325                 // to a short shift and the expected type to int.
2326                 Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2327                 if (opcode >= ishll && opcode <= lushrl) {
2328                     opcode = opcode + (ishl - ishll);
2329                     rtype = syms.intType;
2330                 }
2331                 // Generate code for right operand and load.
2332                 genExpr(rhs, rtype).load();
2333                 // If there are two consecutive opcode instructions,
2334                 // emit the first now.
2335                 if (opcode >= (1 << preShift)) {
2336                     code.emitop0(opcode >> preShift);
2337                     opcode = opcode & 0xFF;
2338                 }
2339             }
2340             if (opcode >= ifeq && opcode <= if_acmpne ||
2341                 opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2342                 return items.makeCondItem(opcode);
2343             } else {
2344                 code.emitop0(opcode);
2345                 return items.makeStackItem(optype.restype);
2346             }
2347         }
2348 
2349     public void visitTypeCast(JCTypeCast tree) {
2350         result = genExpr(tree.expr, tree.clazz.type).load();
2351         setTypeAnnotationPositions(tree.pos);
2352         // Additional code is only needed if we cast to a reference type
2353         // which is not statically a supertype of the expression's type.
2354         // For basic types, the coerce(...) in genExpr(...) will do
2355         // the conversion.
2356         // primitive reference conversion is a nop when we bifurcate the primitive class, as the VM sees a subtyping relationship.
2357         if (!tree.clazz.type.isPrimitive() &&
2358            !types.isSameType(tree.expr.type, tree.clazz.type) &&
2359             (!tree.clazz.type.isReferenceProjection() || !types.isSameType(tree.clazz.type.valueProjection(), tree.expr.type) || true) &&
2360            !types.isSubtype(tree.expr.type, tree.clazz.type)) {
2361             checkDimension(tree.pos(), tree.clazz.type);
2362             if (tree.clazz.type.isPrimitiveClass()) {
2363                 code.emitop2(checkcast, new ConstantPoolQType(tree.clazz.type, types), PoolWriter::putClass);
2364             } else {
2365                 code.emitop2(checkcast, tree.clazz.type, PoolWriter::putClass);
2366             }
2367 
2368         }
2369     }
2370 
2371     public void visitWildcard(JCWildcard tree) {
2372         throw new AssertionError(this.getClass().getName());
2373     }
2374 
2375     public void visitTypeTest(JCInstanceOf tree) {
2376         genExpr(tree.expr, tree.expr.type).load();
2377         setTypeAnnotationPositions(tree.pos);
2378         code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type));
2379         result = items.makeStackItem(syms.booleanType);
2380     }
2381 
2382     public void visitIndexed(JCArrayAccess tree) {
2383         genExpr(tree.indexed, tree.indexed.type).load();
2384         genExpr(tree.index, syms.intType).load();
2385         result = items.makeIndexedItem(tree.type);
2386     }
2387 
2388     public void visitIdent(JCIdent tree) {
2389         Symbol sym = tree.sym;
2390         if (tree.name == names._this || tree.name == names._super) {
2391             Item res = tree.name == names._this
2392                 ? items.makeThisItem()
2393                 : items.makeSuperItem();
2394             if (sym.kind == MTH) {
2395                 // Generate code to address the constructor.
2396                 res.load();
2397                 res = items.makeMemberItem(sym, true);
2398             }
2399             result = res;
2400        } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) {
2401             if (isConstantDynamic(sym)) {
2402                 setTypeAnnotationPositions(tree.pos);
2403             }
2404             result = items.makeDynamicItem(sym);
2405         } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) {
2406             result = items.makeLocalItem((VarSymbol)sym);
2407         } else if ((sym.flags() & STATIC) != 0) {
2408             if (!isAccessSuper(env.enclMethod))
2409                 sym = binaryQualifier(sym, env.enclClass.type);
2410             result = items.makeStaticItem(sym);
2411         } else {
2412             items.makeThisItem().load();
2413             sym = binaryQualifier(sym, env.enclClass.type);
2414             result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym));
2415         }
2416     }
2417 
2418     //where
2419     private boolean nonVirtualForPrivateAccess(Symbol sym) {
2420         boolean useVirtual = target.hasVirtualPrivateInvoke() &&
2421                              !disableVirtualizedPrivateInvoke;
2422         return !useVirtual && ((sym.flags() & PRIVATE) != 0);
2423     }
2424 
2425     public void visitSelect(JCFieldAccess tree) {
2426         Symbol sym = tree.sym;
2427 
2428         if (tree.name == names._class) {
2429             code.emitLdc((LoadableConstant) tree.selected.type, makeRef(tree.pos(), tree.selected.type, tree.selected.type.isPrimitiveClass()));
2430             result = items.makeStackItem(pt);
2431             return;
2432         }
2433 
2434         Symbol ssym = TreeInfo.symbol(tree.selected);
2435 
2436         // Are we selecting via super?
2437         boolean selectSuper =
2438             ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2439 
2440         // Are we accessing a member of the superclass in an access method
2441         // resulting from a qualified super?
2442         boolean accessSuper = isAccessSuper(env.enclMethod);
2443 
2444         Item base = (selectSuper)
2445             ? items.makeSuperItem()
2446             : genExpr(tree.selected, tree.selected.type);
2447 
2448         if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2449             // We are seeing a variable that is constant but its selecting
2450             // expression is not.
2451             if ((sym.flags() & STATIC) != 0) {
2452                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2453                     base = base.load();
2454                 base.drop();
2455             } else {
2456                 base.load();
2457                 genNullCheck(tree.selected);
2458             }
2459             result = items.
2460                 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2461         } else {
2462             if (isInvokeDynamic(sym)) {
2463                 result = items.makeDynamicItem(sym);
2464                 return;
2465             } else {
2466                 sym = binaryQualifier(sym, tree.selected.type);
2467             }
2468             if ((sym.flags() & STATIC) != 0) {
2469                 if (!selectSuper && (ssym == null || ssym.kind != TYP))
2470                     base = base.load();
2471                 base.drop();
2472                 result = items.makeStaticItem(sym);
2473             } else {
2474                 base.load();
2475                 if (sym == syms.lengthVar) {
2476                     code.emitop0(arraylength);
2477                     result = items.makeStackItem(syms.intType);
2478                 } else {
2479                     result = items.
2480                         makeMemberItem(sym,
2481                                        nonVirtualForPrivateAccess(sym) ||
2482                                        selectSuper || accessSuper);
2483                 }
2484             }
2485         }
2486     }
2487 
2488     public void visitDefaultValue(JCDefaultValue tree) {
2489         if (tree.type.isValueClass()) {
2490             code.emitop2(aconst_init, checkDimension(tree.pos(), tree.type), PoolWriter::putClass);
2491         } else if (tree.type.isReference()) {
2492             code.emitop0(aconst_null);
2493         } else {
2494             code.emitop0(zero(Code.typecode(tree.type)));
2495         }
2496         result = items.makeStackItem(tree.type);
2497         return;
2498     }
2499 
2500     public boolean isInvokeDynamic(Symbol sym) {
2501         return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2502     }
2503 
2504     public void visitLiteral(JCLiteral tree) {
2505         if (tree.type.hasTag(BOT)) {
2506             code.emitop0(aconst_null);
2507             result = items.makeStackItem(tree.type);
2508         }
2509         else
2510             result = items.makeImmediateItem(tree.type, tree.value);
2511     }
2512 
2513     public void visitLetExpr(LetExpr tree) {
2514         code.resolvePending();
2515 
2516         int limit = code.nextreg;
2517         int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize);
2518         try {
2519             genStats(tree.defs, env);
2520         } finally {
2521             code.setLetExprStackPos(prevLetExprStart);
2522         }
2523         result = genExpr(tree.expr, tree.expr.type).load();
2524         code.endScopes(limit);
2525     }
2526 
2527     private void generateReferencesToPrunedTree(ClassSymbol classSymbol) {
2528         List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2529         if (prunedInfo != null) {
2530             for (JCTree prunedTree: prunedInfo) {
2531                 prunedTree.accept(classReferenceVisitor);
2532             }
2533         }
2534     }
2535 
2536 /* ************************************************************************
2537  * main method
2538  *************************************************************************/
2539 
2540     /** Generate code for a class definition.
2541      *  @param env   The attribution environment that belongs to the
2542      *               outermost class containing this class definition.
2543      *               We need this for resolving some additional symbols.
2544      *  @param cdef  The tree representing the class definition.
2545      *  @return      True if code is generated with no errors.
2546      */
2547     public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2548         try {
2549             attrEnv = env;
2550             ClassSymbol c = cdef.sym;
2551             this.toplevel = env.toplevel;
2552             this.endPosTable = toplevel.endPositions;
2553             /* method normalizeDefs() can add references to external classes into the constant pool
2554              */
2555             cdef.defs = normalizeDefs(cdef.defs, c);
2556             cdef = transValues.translateTopLevelClass(cdef, make);
2557             generateReferencesToPrunedTree(c);
2558             Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2559             localEnv.toplevel = env.toplevel;
2560             localEnv.enclClass = cdef;
2561 
2562             for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2563                 genDef(l.head, localEnv);
2564             }
2565             if (poolWriter.size() > PoolWriter.MAX_ENTRIES) {
2566                 log.error(cdef.pos(), Errors.LimitPool);
2567                 nerrs++;
2568             }
2569             if (nerrs != 0) {
2570                 // if errors, discard code
2571                 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2572                     if (l.head.hasTag(METHODDEF))
2573                         ((JCMethodDecl) l.head).sym.code = null;
2574                 }
2575             }
2576             cdef.defs = List.nil(); // discard trees
2577             return nerrs == 0;
2578         } finally {
2579             // note: this method does NOT support recursion.
2580             attrEnv = null;
2581             this.env = null;
2582             toplevel = null;
2583             endPosTable = null;
2584             nerrs = 0;
2585             qualifiedSymbolCache.clear();
2586         }
2587     }
2588 
2589 /* ************************************************************************
2590  * Auxiliary classes
2591  *************************************************************************/
2592 
2593     /** An abstract class for finalizer generation.
2594      */
2595     abstract class GenFinalizer {
2596         /** Generate code to clean up when unwinding. */
2597         abstract void gen();
2598 
2599         /** Generate code to clean up at last. */
2600         abstract void genLast();
2601 
2602         /** Does this finalizer have some nontrivial cleanup to perform? */
2603         boolean hasFinalizer() { return true; }
2604 
2605         /** Should be invoked after the try's body has been visited. */
2606         void afterBody() {}
2607     }
2608 
2609     /** code generation contexts,
2610      *  to be used as type parameter for environments.
2611      */
2612     static class GenContext {
2613 
2614         /** A chain for all unresolved jumps that exit the current environment.
2615          */
2616         Chain exit = null;
2617 
2618         /** A chain for all unresolved jumps that continue in the
2619          *  current environment.
2620          */
2621         Chain cont = null;
2622 
2623         /** A closure that generates the finalizer of the current environment.
2624          *  Only set for Synchronized and Try contexts.
2625          */
2626         GenFinalizer finalize = null;
2627 
2628         /** Is this a switch statement?  If so, allocate registers
2629          * even when the variable declaration is unreachable.
2630          */
2631         boolean isSwitch = false;
2632 
2633         /** A list buffer containing all gaps in the finalizer range,
2634          *  where a catch all exception should not apply.
2635          */
2636         ListBuffer<Integer> gaps = null;
2637 
2638         /** Add given chain to exit chain.
2639          */
2640         void addExit(Chain c)  {
2641             exit = Code.mergeChains(c, exit);
2642         }
2643 
2644         /** Add given chain to cont chain.
2645          */
2646         void addCont(Chain c) {
2647             cont = Code.mergeChains(c, cont);
2648         }
2649     }
2650 
2651 }
--- EOF ---