1 /* 2 * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.jvm; 27 28 import java.util.HashMap; 29 import java.util.Map; 30 import java.util.Set; 31 32 import com.sun.tools.javac.jvm.PoolConstant.LoadableConstant; 33 import com.sun.tools.javac.tree.TreeInfo.PosKind; 34 import com.sun.tools.javac.util.*; 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 36 import com.sun.tools.javac.util.List; 37 import com.sun.tools.javac.code.*; 38 import com.sun.tools.javac.code.Attribute.TypeCompound; 39 import com.sun.tools.javac.code.Symbol.VarSymbol; 40 import com.sun.tools.javac.comp.*; 41 import com.sun.tools.javac.tree.*; 42 43 import com.sun.tools.javac.code.Symbol.*; 44 import com.sun.tools.javac.code.Type.*; 45 import com.sun.tools.javac.jvm.Code.*; 46 import com.sun.tools.javac.jvm.Items.*; 47 import com.sun.tools.javac.resources.CompilerProperties.Errors; 48 import com.sun.tools.javac.tree.EndPosTable; 49 import com.sun.tools.javac.tree.JCTree.*; 50 51 import static com.sun.tools.javac.code.Flags.*; 52 import static com.sun.tools.javac.code.Kinds.Kind.*; 53 import static com.sun.tools.javac.code.TypeTag.*; 54 import static com.sun.tools.javac.jvm.ByteCodes.*; 55 import static com.sun.tools.javac.jvm.CRTFlags.*; 56 import static com.sun.tools.javac.main.Option.*; 57 import static com.sun.tools.javac.tree.JCTree.Tag.*; 58 59 /** This pass maps flat Java (i.e. without inner classes) to bytecodes. 60 * 61 * <p><b>This is NOT part of any supported API. 62 * If you write code that depends on this, you do so at your own risk. 63 * This code and its internal interfaces are subject to change or 64 * deletion without notice.</b> 65 */ 66 public class Gen extends JCTree.Visitor { 67 protected static final Context.Key<Gen> genKey = new Context.Key<>(); 68 69 private final Log log; 70 private final Symtab syms; 71 private final Check chk; 72 private final Resolve rs; 73 private final TreeMaker make; 74 private final Names names; 75 private final Target target; 76 private final String accessDollar; 77 private final Types types; 78 private final Lower lower; 79 private final Annotate annotate; 80 private final StringConcat concat; 81 82 /** Format of stackmap tables to be generated. */ 83 private final Code.StackMapFormat stackMap; 84 85 /** A type that serves as the expected type for all method expressions. 86 */ 87 private final Type methodType; 88 89 public static Gen instance(Context context) { 90 Gen instance = context.get(genKey); 91 if (instance == null) 92 instance = new Gen(context); 93 return instance; 94 } 95 96 /** Constant pool writer, set by genClass. 97 */ 98 final PoolWriter poolWriter; 99 100 @SuppressWarnings("this-escape") 101 protected Gen(Context context) { 102 context.put(genKey, this); 103 104 names = Names.instance(context); 105 log = Log.instance(context); 106 syms = Symtab.instance(context); 107 chk = Check.instance(context); 108 rs = Resolve.instance(context); 109 make = TreeMaker.instance(context); 110 target = Target.instance(context); 111 types = Types.instance(context); 112 concat = StringConcat.instance(context); 113 114 methodType = new MethodType(null, null, null, syms.methodClass); 115 accessDollar = "access" + target.syntheticNameChar(); 116 lower = Lower.instance(context); 117 118 Options options = Options.instance(context); 119 lineDebugInfo = 120 options.isUnset(G_CUSTOM) || 121 options.isSet(G_CUSTOM, "lines"); 122 varDebugInfo = 123 options.isUnset(G_CUSTOM) 124 ? options.isSet(G) 125 : options.isSet(G_CUSTOM, "vars"); 126 genCrt = options.isSet(XJCOV); 127 debugCode = options.isSet("debug.code"); 128 disableVirtualizedPrivateInvoke = options.isSet("disableVirtualizedPrivateInvoke"); 129 poolWriter = new PoolWriter(types, names); 130 131 // ignore cldc because we cannot have both stackmap formats 132 this.stackMap = StackMapFormat.JSR202; 133 annotate = Annotate.instance(context); 134 qualifiedSymbolCache = new HashMap<>(); 135 } 136 137 /** Switches 138 */ 139 private final boolean lineDebugInfo; 140 private final boolean varDebugInfo; 141 private final boolean genCrt; 142 private final boolean debugCode; 143 private boolean disableVirtualizedPrivateInvoke; 144 145 /** Code buffer, set by genMethod. 146 */ 147 private Code code; 148 149 /** Items structure, set by genMethod. 150 */ 151 private Items items; 152 153 /** Environment for symbol lookup, set by genClass 154 */ 155 private Env<AttrContext> attrEnv; 156 157 /** The top level tree. 158 */ 159 private JCCompilationUnit toplevel; 160 161 /** The number of code-gen errors in this class. 162 */ 163 private int nerrs = 0; 164 165 /** An object containing mappings of syntax trees to their 166 * ending source positions. 167 */ 168 EndPosTable endPosTable; 169 170 boolean inCondSwitchExpression; 171 Chain switchExpressionTrueChain; 172 Chain switchExpressionFalseChain; 173 List<LocalItem> stackBeforeSwitchExpression; 174 LocalItem switchResult; 175 Set<JCMethodInvocation> invocationsWithPatternMatchingCatch = Set.of(); 176 ListBuffer<int[]> patternMatchingInvocationRanges; 177 178 /** Cache the symbol to reflect the qualifying type. 179 * key: corresponding type 180 * value: qualified symbol 181 */ 182 Map<Type, Symbol> qualifiedSymbolCache; 183 184 /** Generate code to load an integer constant. 185 * @param n The integer to be loaded. 186 */ 187 void loadIntConst(int n) { 188 items.makeImmediateItem(syms.intType, n).load(); 189 } 190 191 /** The opcode that loads a zero constant of a given type code. 192 * @param tc The given type code (@see ByteCode). 193 */ 194 public static int zero(int tc) { 195 switch(tc) { 196 case INTcode: case BYTEcode: case SHORTcode: case CHARcode: 197 return iconst_0; 198 case LONGcode: 199 return lconst_0; 200 case FLOATcode: 201 return fconst_0; 202 case DOUBLEcode: 203 return dconst_0; 204 default: 205 throw new AssertionError("zero"); 206 } 207 } 208 209 /** The opcode that loads a one constant of a given type code. 210 * @param tc The given type code (@see ByteCode). 211 */ 212 public static int one(int tc) { 213 return zero(tc) + 1; 214 } 215 216 /** Generate code to load -1 of the given type code (either int or long). 217 * @param tc The given type code (@see ByteCode). 218 */ 219 void emitMinusOne(int tc) { 220 if (tc == LONGcode) { 221 items.makeImmediateItem(syms.longType, Long.valueOf(-1)).load(); 222 } else { 223 code.emitop0(iconst_m1); 224 } 225 } 226 227 /** Construct a symbol to reflect the qualifying type that should 228 * appear in the byte code as per JLS 13.1. 229 * 230 * For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except 231 * for those cases where we need to work around VM bugs). 232 * 233 * For {@literal target <= 1.1}: If qualified variable or method is defined in a 234 * non-accessible class, clone it with the qualifier class as owner. 235 * 236 * @param sym The accessed symbol 237 * @param site The qualifier's type. 238 */ 239 Symbol binaryQualifier(Symbol sym, Type site) { 240 241 if (site.hasTag(ARRAY)) { 242 if (sym == syms.lengthVar || 243 sym.owner != syms.arrayClass) 244 return sym; 245 // array clone can be qualified by the array type in later targets 246 Symbol qualifier; 247 if ((qualifier = qualifiedSymbolCache.get(site)) == null) { 248 qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name, site, syms.noSymbol); 249 qualifiedSymbolCache.put(site, qualifier); 250 } 251 return sym.clone(qualifier); 252 } 253 254 if (sym.owner == site.tsym || 255 (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) { 256 return sym; 257 } 258 259 // leave alone methods inherited from Object 260 // JLS 13.1. 261 if (sym.owner == syms.objectType.tsym) 262 return sym; 263 264 return sym.clone(site.tsym); 265 } 266 267 /** Insert a reference to given type in the constant pool, 268 * checking for an array with too many dimensions; 269 * return the reference's index. 270 * @param type The type for which a reference is inserted. 271 */ 272 int makeRef(DiagnosticPosition pos, Type type) { 273 return poolWriter.putClass(checkDimension(pos, type)); 274 } 275 276 /** Check if the given type is an array with too many dimensions. 277 */ 278 private Type checkDimension(DiagnosticPosition pos, Type t) { 279 checkDimensionInternal(pos, t); 280 return t; 281 } 282 283 private void checkDimensionInternal(DiagnosticPosition pos, Type t) { 284 switch (t.getTag()) { 285 case METHOD: 286 checkDimension(pos, t.getReturnType()); 287 for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail) 288 checkDimension(pos, args.head); 289 break; 290 case ARRAY: 291 if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) { 292 log.error(pos, Errors.LimitDimensions); 293 nerrs++; 294 } 295 break; 296 default: 297 break; 298 } 299 } 300 301 /** Create a temporary variable. 302 * @param type The variable's type. 303 */ 304 LocalItem makeTemp(Type type) { 305 VarSymbol v = new VarSymbol(Flags.SYNTHETIC, 306 names.empty, 307 type, 308 env.enclMethod.sym); 309 code.newLocal(v); 310 return items.makeLocalItem(v); 311 } 312 313 /** Generate code to call a non-private method or constructor. 314 * @param pos Position to be used for error reporting. 315 * @param site The type of which the method is a member. 316 * @param name The method's name. 317 * @param argtypes The method's argument types. 318 * @param isStatic A flag that indicates whether we call a 319 * static or instance method. 320 */ 321 void callMethod(DiagnosticPosition pos, 322 Type site, Name name, List<Type> argtypes, 323 boolean isStatic) { 324 Symbol msym = rs. 325 resolveInternalMethod(pos, attrEnv, site, name, argtypes, null); 326 if (isStatic) items.makeStaticItem(msym).invoke(); 327 else items.makeMemberItem(msym, name == names.init).invoke(); 328 } 329 330 /** Is the given method definition an access method 331 * resulting from a qualified super? This is signified by an odd 332 * access code. 333 */ 334 private boolean isAccessSuper(JCMethodDecl enclMethod) { 335 return 336 (enclMethod.mods.flags & SYNTHETIC) != 0 && 337 isOddAccessName(enclMethod.name); 338 } 339 340 /** Does given name start with "access$" and end in an odd digit? 341 */ 342 private boolean isOddAccessName(Name name) { 343 final String string = name.toString(); 344 return 345 string.startsWith(accessDollar) && 346 (string.charAt(string.length() - 1) & 1) != 0; 347 } 348 349 /* ************************************************************************ 350 * Non-local exits 351 *************************************************************************/ 352 353 /** Generate code to invoke the finalizer associated with given 354 * environment. 355 * Any calls to finalizers are appended to the environments `cont' chain. 356 * Mark beginning of gap in catch all range for finalizer. 357 */ 358 void genFinalizer(Env<GenContext> env) { 359 if (code.isAlive() && env.info.finalize != null) 360 env.info.finalize.gen(); 361 } 362 363 /** Generate code to call all finalizers of structures aborted by 364 * a non-local 365 * exit. Return target environment of the non-local exit. 366 * @param target The tree representing the structure that's aborted 367 * @param env The environment current at the non-local exit. 368 */ 369 Env<GenContext> unwind(JCTree target, Env<GenContext> env) { 370 Env<GenContext> env1 = env; 371 while (true) { 372 genFinalizer(env1); 373 if (env1.tree == target) break; 374 env1 = env1.next; 375 } 376 return env1; 377 } 378 379 /** Mark end of gap in catch-all range for finalizer. 380 * @param env the environment which might contain the finalizer 381 * (if it does, env.info.gaps != null). 382 */ 383 void endFinalizerGap(Env<GenContext> env) { 384 if (env.info.gaps != null && env.info.gaps.length() % 2 == 1) 385 env.info.gaps.append(code.curCP()); 386 } 387 388 /** Mark end of all gaps in catch-all ranges for finalizers of environments 389 * lying between, and including to two environments. 390 * @param from the most deeply nested environment to mark 391 * @param to the least deeply nested environment to mark 392 */ 393 void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) { 394 Env<GenContext> last = null; 395 while (last != to) { 396 endFinalizerGap(from); 397 last = from; 398 from = from.next; 399 } 400 } 401 402 /** Do any of the structures aborted by a non-local exit have 403 * finalizers that require an empty stack? 404 * @param target The tree representing the structure that's aborted 405 * @param env The environment current at the non-local exit. 406 */ 407 boolean hasFinally(JCTree target, Env<GenContext> env) { 408 while (env.tree != target) { 409 if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer()) 410 return true; 411 env = env.next; 412 } 413 return false; 414 } 415 416 /* ************************************************************************ 417 * Normalizing class-members. 418 *************************************************************************/ 419 420 /** Distribute member initializer code into constructors and {@code <clinit>} 421 * method. 422 * @param defs The list of class member declarations. 423 * @param c The enclosing class. 424 */ 425 List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) { 426 ListBuffer<JCStatement> initCode = new ListBuffer<>(); 427 // only used for value classes 428 ListBuffer<JCStatement> initBlocks = new ListBuffer<>(); 429 ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>(); 430 ListBuffer<JCStatement> clinitCode = new ListBuffer<>(); 431 ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>(); 432 ListBuffer<JCTree> methodDefs = new ListBuffer<>(); 433 // Sort definitions into three listbuffers: 434 // - initCode for instance initializers 435 // - clinitCode for class initializers 436 // - methodDefs for method definitions 437 for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) { 438 JCTree def = l.head; 439 switch (def.getTag()) { 440 case BLOCK: 441 JCBlock block = (JCBlock)def; 442 if ((block.flags & STATIC) != 0) 443 clinitCode.append(block); 444 else if ((block.flags & SYNTHETIC) == 0) { 445 if (c.isValueClass()) { 446 initBlocks.append(block); 447 } else { 448 initCode.append(block); 449 } 450 } 451 break; 452 case METHODDEF: 453 methodDefs.append(def); 454 break; 455 case VARDEF: 456 JCVariableDecl vdef = (JCVariableDecl) def; 457 VarSymbol sym = vdef.sym; 458 checkDimension(vdef.pos(), sym.type); 459 if (vdef.init != null) { 460 if ((sym.flags() & STATIC) == 0) { 461 // Always initialize instance variables. 462 JCStatement init = make.at(vdef.pos()). 463 Assignment(sym, vdef.init); 464 initCode.append(init); 465 endPosTable.replaceTree(vdef, init); 466 initTAs.addAll(getAndRemoveNonFieldTAs(sym)); 467 } else if (sym.getConstValue() == null) { 468 // Initialize class (static) variables only if 469 // they are not compile-time constants. 470 JCStatement init = make.at(vdef.pos). 471 Assignment(sym, vdef.init); 472 clinitCode.append(init); 473 endPosTable.replaceTree(vdef, init); 474 clinitTAs.addAll(getAndRemoveNonFieldTAs(sym)); 475 } else { 476 checkStringConstant(vdef.init.pos(), sym.getConstValue()); 477 /* if the init contains a reference to an external class, add it to the 478 * constant's pool 479 */ 480 vdef.init.accept(classReferenceVisitor); 481 } 482 } 483 break; 484 default: 485 Assert.error(); 486 } 487 } 488 // Insert any instance initializers into all constructors. 489 if (initCode.length() != 0 || initBlocks.length() != 0) { 490 initTAs.addAll(c.getInitTypeAttributes()); 491 List<Attribute.TypeCompound> initTAlist = initTAs.toList(); 492 for (JCTree t : methodDefs) { 493 normalizeMethod((JCMethodDecl)t, initCode.toList(), initBlocks.toList(), initTAlist); 494 } 495 } 496 // If there are class initializers, create a <clinit> method 497 // that contains them as its body. 498 if (clinitCode.length() != 0) { 499 MethodSymbol clinit = new MethodSymbol( 500 STATIC | (c.flags() & STRICTFP), 501 names.clinit, 502 new MethodType( 503 List.nil(), syms.voidType, 504 List.nil(), syms.methodClass), 505 c); 506 c.members().enter(clinit); 507 List<JCStatement> clinitStats = clinitCode.toList(); 508 JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats); 509 block.endpos = TreeInfo.endPos(clinitStats.last()); 510 methodDefs.append(make.MethodDef(clinit, block)); 511 512 if (!clinitTAs.isEmpty()) 513 clinit.appendUniqueTypeAttributes(clinitTAs.toList()); 514 if (!c.getClassInitTypeAttributes().isEmpty()) 515 clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes()); 516 } 517 // Return all method definitions. 518 return methodDefs.toList(); 519 } 520 521 private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) { 522 List<TypeCompound> tas = sym.getRawTypeAttributes(); 523 ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>(); 524 ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>(); 525 for (TypeCompound ta : tas) { 526 Assert.check(ta.getPosition().type != TargetType.UNKNOWN); 527 if (ta.getPosition().type == TargetType.FIELD) { 528 fieldTAs.add(ta); 529 } else { 530 nonfieldTAs.add(ta); 531 } 532 } 533 sym.setTypeAttributes(fieldTAs.toList()); 534 return nonfieldTAs.toList(); 535 } 536 537 /** Check a constant value and report if it is a string that is 538 * too large. 539 */ 540 private void checkStringConstant(DiagnosticPosition pos, Object constValue) { 541 if (nerrs != 0 || // only complain about a long string once 542 constValue == null || 543 !(constValue instanceof String str) || 544 str.length() < PoolWriter.MAX_STRING_LENGTH) 545 return; 546 log.error(pos, Errors.LimitString); 547 nerrs++; 548 } 549 550 /** Insert instance initializer code into constructors prior to the super() call. 551 * @param md The tree potentially representing a 552 * constructor's definition. 553 * @param initCode The list of instance initializer statements. 554 * @param initTAs Type annotations from the initializer expression. 555 */ 556 void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<JCStatement> initBlocks, List<TypeCompound> initTAs) { 557 if (TreeInfo.isConstructor(md) && TreeInfo.hasConstructorCall(md, names._super)) { 558 // We are seeing a constructor that has a super() call. 559 // Find the super() invocation and append the given initializer code. 560 if (md.sym.owner.isValueClass()) { 561 rewriteInitializersIfNeeded(md, initCode); 562 TreeInfo.mapSuperCalls(md.body, supercall -> make.Block(0, initCode.append(supercall).appendList(initBlocks))); 563 } else { 564 TreeInfo.mapSuperCalls(md.body, supercall -> make.Block(0, initCode.prepend(supercall))); 565 } 566 567 if (md.body.endpos == Position.NOPOS) 568 md.body.endpos = TreeInfo.endPos(md.body.stats.last()); 569 570 md.sym.appendUniqueTypeAttributes(initTAs); 571 } 572 } 573 574 void rewriteInitializersIfNeeded(JCMethodDecl md, List<JCStatement> initCode) { 575 if (lower.initializerOuterThis.containsKey(md.sym.owner)) { 576 InitializerVisitor initializerVisitor = new InitializerVisitor(md, lower.initializerOuterThis.get(md.sym.owner)); 577 for (JCStatement init : initCode) { 578 initializerVisitor.scan(init); 579 } 580 } 581 } 582 583 class InitializerVisitor extends TreeScanner { 584 JCMethodDecl md; 585 Set<JCExpression> exprSet; 586 587 InitializerVisitor(JCMethodDecl md, Set<JCExpression> exprSet) { 588 this.md = md; 589 this.exprSet = exprSet; 590 } 591 592 @Override 593 public void visitTree(JCTree tree) {} 594 595 @Override 596 public void visitIdent(JCIdent tree) { 597 if (exprSet.contains(tree)) { 598 for (JCVariableDecl param: md.params) { 599 if (param.name == tree.name && 600 ((param.sym.flags_field & (MANDATED | NOOUTERTHIS)) == (MANDATED | NOOUTERTHIS))) { 601 tree.sym = param.sym; 602 } 603 } 604 } 605 } 606 } 607 608 /* ************************************************************************ 609 * Traversal methods 610 *************************************************************************/ 611 612 /** Visitor argument: The current environment. 613 */ 614 Env<GenContext> env; 615 616 /** Visitor argument: The expected type (prototype). 617 */ 618 Type pt; 619 620 /** Visitor result: The item representing the computed value. 621 */ 622 Item result; 623 624 /** Visitor method: generate code for a definition, catching and reporting 625 * any completion failures. 626 * @param tree The definition to be visited. 627 * @param env The environment current at the definition. 628 */ 629 public void genDef(JCTree tree, Env<GenContext> env) { 630 Env<GenContext> prevEnv = this.env; 631 try { 632 this.env = env; 633 tree.accept(this); 634 } catch (CompletionFailure ex) { 635 chk.completionError(tree.pos(), ex); 636 } finally { 637 this.env = prevEnv; 638 } 639 } 640 641 /** Derived visitor method: check whether CharacterRangeTable 642 * should be emitted, if so, put a new entry into CRTable 643 * and call method to generate bytecode. 644 * If not, just call method to generate bytecode. 645 * @see #genStat(JCTree, Env) 646 * 647 * @param tree The tree to be visited. 648 * @param env The environment to use. 649 * @param crtFlags The CharacterRangeTable flags 650 * indicating type of the entry. 651 */ 652 public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) { 653 if (!genCrt) { 654 genStat(tree, env); 655 return; 656 } 657 int startpc = code.curCP(); 658 genStat(tree, env); 659 if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK; 660 code.crt.put(tree, crtFlags, startpc, code.curCP()); 661 } 662 663 /** Derived visitor method: generate code for a statement. 664 */ 665 public void genStat(JCTree tree, Env<GenContext> env) { 666 if (code.isAlive()) { 667 code.statBegin(tree.pos); 668 genDef(tree, env); 669 } else if (env.info.isSwitch && tree.hasTag(VARDEF)) { 670 // variables whose declarations are in a switch 671 // can be used even if the decl is unreachable. 672 code.newLocal(((JCVariableDecl) tree).sym); 673 } 674 } 675 676 /** Derived visitor method: check whether CharacterRangeTable 677 * should be emitted, if so, put a new entry into CRTable 678 * and call method to generate bytecode. 679 * If not, just call method to generate bytecode. 680 * @see #genStats(List, Env) 681 * 682 * @param trees The list of trees to be visited. 683 * @param env The environment to use. 684 * @param crtFlags The CharacterRangeTable flags 685 * indicating type of the entry. 686 */ 687 public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) { 688 if (!genCrt) { 689 genStats(trees, env); 690 return; 691 } 692 if (trees.length() == 1) { // mark one statement with the flags 693 genStat(trees.head, env, crtFlags | CRT_STATEMENT); 694 } else { 695 int startpc = code.curCP(); 696 genStats(trees, env); 697 code.crt.put(trees, crtFlags, startpc, code.curCP()); 698 } 699 } 700 701 /** Derived visitor method: generate code for a list of statements. 702 */ 703 public void genStats(List<? extends JCTree> trees, Env<GenContext> env) { 704 for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail) 705 genStat(l.head, env, CRT_STATEMENT); 706 } 707 708 /** Derived visitor method: check whether CharacterRangeTable 709 * should be emitted, if so, put a new entry into CRTable 710 * and call method to generate bytecode. 711 * If not, just call method to generate bytecode. 712 * @see #genCond(JCTree,boolean) 713 * 714 * @param tree The tree to be visited. 715 * @param crtFlags The CharacterRangeTable flags 716 * indicating type of the entry. 717 */ 718 public CondItem genCond(JCTree tree, int crtFlags) { 719 if (!genCrt) return genCond(tree, false); 720 int startpc = code.curCP(); 721 CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0); 722 code.crt.put(tree, crtFlags, startpc, code.curCP()); 723 return item; 724 } 725 726 /** Derived visitor method: generate code for a boolean 727 * expression in a control-flow context. 728 * @param _tree The expression to be visited. 729 * @param markBranches The flag to indicate that the condition is 730 * a flow controller so produced conditions 731 * should contain a proper tree to generate 732 * CharacterRangeTable branches for them. 733 */ 734 public CondItem genCond(JCTree _tree, boolean markBranches) { 735 JCTree inner_tree = TreeInfo.skipParens(_tree); 736 if (inner_tree.hasTag(CONDEXPR)) { 737 JCConditional tree = (JCConditional)inner_tree; 738 CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER); 739 if (cond.isTrue()) { 740 code.resolve(cond.trueJumps); 741 CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET); 742 if (markBranches) result.tree = tree.truepart; 743 return result; 744 } 745 if (cond.isFalse()) { 746 code.resolve(cond.falseJumps); 747 CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET); 748 if (markBranches) result.tree = tree.falsepart; 749 return result; 750 } 751 Chain secondJumps = cond.jumpFalse(); 752 code.resolve(cond.trueJumps); 753 CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET); 754 if (markBranches) first.tree = tree.truepart; 755 Chain falseJumps = first.jumpFalse(); 756 code.resolve(first.trueJumps); 757 Chain trueJumps = code.branch(goto_); 758 code.resolve(secondJumps); 759 CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET); 760 CondItem result = items.makeCondItem(second.opcode, 761 Code.mergeChains(trueJumps, second.trueJumps), 762 Code.mergeChains(falseJumps, second.falseJumps)); 763 if (markBranches) result.tree = tree.falsepart; 764 return result; 765 } else if (inner_tree.hasTag(SWITCH_EXPRESSION)) { 766 code.resolvePending(); 767 768 boolean prevInCondSwitchExpression = inCondSwitchExpression; 769 Chain prevSwitchExpressionTrueChain = switchExpressionTrueChain; 770 Chain prevSwitchExpressionFalseChain = switchExpressionFalseChain; 771 try { 772 inCondSwitchExpression = true; 773 switchExpressionTrueChain = null; 774 switchExpressionFalseChain = null; 775 try { 776 doHandleSwitchExpression((JCSwitchExpression) inner_tree); 777 } catch (CompletionFailure ex) { 778 chk.completionError(_tree.pos(), ex); 779 code.state.stacksize = 1; 780 } 781 CondItem result = items.makeCondItem(goto_, 782 switchExpressionTrueChain, 783 switchExpressionFalseChain); 784 if (markBranches) result.tree = _tree; 785 return result; 786 } finally { 787 inCondSwitchExpression = prevInCondSwitchExpression; 788 switchExpressionTrueChain = prevSwitchExpressionTrueChain; 789 switchExpressionFalseChain = prevSwitchExpressionFalseChain; 790 } 791 } else if (inner_tree.hasTag(LETEXPR) && ((LetExpr) inner_tree).needsCond) { 792 code.resolvePending(); 793 794 LetExpr tree = (LetExpr) inner_tree; 795 int limit = code.nextreg; 796 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize); 797 try { 798 genStats(tree.defs, env); 799 } finally { 800 code.setLetExprStackPos(prevLetExprStart); 801 } 802 CondItem result = genCond(tree.expr, markBranches); 803 code.endScopes(limit); 804 return result; 805 } else { 806 CondItem result = genExpr(_tree, syms.booleanType).mkCond(); 807 if (markBranches) result.tree = _tree; 808 return result; 809 } 810 } 811 812 public Code getCode() { 813 return code; 814 } 815 816 public Items getItems() { 817 return items; 818 } 819 820 public Env<AttrContext> getAttrEnv() { 821 return attrEnv; 822 } 823 824 /** Visitor class for expressions which might be constant expressions. 825 * This class is a subset of TreeScanner. Intended to visit trees pruned by 826 * Lower as long as constant expressions looking for references to any 827 * ClassSymbol. Any such reference will be added to the constant pool so 828 * automated tools can detect class dependencies better. 829 */ 830 class ClassReferenceVisitor extends JCTree.Visitor { 831 832 @Override 833 public void visitTree(JCTree tree) {} 834 835 @Override 836 public void visitBinary(JCBinary tree) { 837 tree.lhs.accept(this); 838 tree.rhs.accept(this); 839 } 840 841 @Override 842 public void visitSelect(JCFieldAccess tree) { 843 if (tree.selected.type.hasTag(CLASS)) { 844 makeRef(tree.selected.pos(), tree.selected.type); 845 } 846 } 847 848 @Override 849 public void visitIdent(JCIdent tree) { 850 if (tree.sym.owner instanceof ClassSymbol classSymbol) { 851 poolWriter.putClass(classSymbol); 852 } 853 } 854 855 @Override 856 public void visitConditional(JCConditional tree) { 857 tree.cond.accept(this); 858 tree.truepart.accept(this); 859 tree.falsepart.accept(this); 860 } 861 862 @Override 863 public void visitUnary(JCUnary tree) { 864 tree.arg.accept(this); 865 } 866 867 @Override 868 public void visitParens(JCParens tree) { 869 tree.expr.accept(this); 870 } 871 872 @Override 873 public void visitTypeCast(JCTypeCast tree) { 874 tree.expr.accept(this); 875 } 876 } 877 878 private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor(); 879 880 /** Visitor method: generate code for an expression, catching and reporting 881 * any completion failures. 882 * @param tree The expression to be visited. 883 * @param pt The expression's expected type (proto-type). 884 */ 885 public Item genExpr(JCTree tree, Type pt) { 886 if (!code.isAlive()) { 887 return items.makeStackItem(pt); 888 } 889 890 Type prevPt = this.pt; 891 try { 892 if (tree.type.constValue() != null) { 893 // Short circuit any expressions which are constants 894 tree.accept(classReferenceVisitor); 895 checkStringConstant(tree.pos(), tree.type.constValue()); 896 Symbol sym = TreeInfo.symbol(tree); 897 if (sym != null && isConstantDynamic(sym)) { 898 result = items.makeDynamicItem(sym); 899 } else { 900 result = items.makeImmediateItem(tree.type, tree.type.constValue()); 901 } 902 } else { 903 this.pt = pt; 904 tree.accept(this); 905 } 906 return result.coerce(pt); 907 } catch (CompletionFailure ex) { 908 chk.completionError(tree.pos(), ex); 909 code.state.stacksize = 1; 910 return items.makeStackItem(pt); 911 } finally { 912 this.pt = prevPt; 913 } 914 } 915 916 public boolean isConstantDynamic(Symbol sym) { 917 return sym.kind == VAR && 918 sym instanceof DynamicVarSymbol dynamicVarSymbol && 919 dynamicVarSymbol.isDynamic(); 920 } 921 922 /** Derived visitor method: generate code for a list of method arguments. 923 * @param trees The argument expressions to be visited. 924 * @param pts The expression's expected types (i.e. the formal parameter 925 * types of the invoked method). 926 */ 927 public void genArgs(List<JCExpression> trees, List<Type> pts) { 928 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) { 929 genExpr(l.head, pts.head).load(); 930 pts = pts.tail; 931 } 932 // require lists be of same length 933 Assert.check(pts.isEmpty()); 934 } 935 936 /* ************************************************************************ 937 * Visitor methods for statements and definitions 938 *************************************************************************/ 939 940 /** Thrown when the byte code size exceeds limit. 941 */ 942 public static class CodeSizeOverflow extends RuntimeException { 943 private static final long serialVersionUID = 0; 944 public CodeSizeOverflow() {} 945 } 946 947 public void visitMethodDef(JCMethodDecl tree) { 948 // Create a new local environment that points pack at method 949 // definition. 950 Env<GenContext> localEnv = env.dup(tree); 951 localEnv.enclMethod = tree; 952 // The expected type of every return statement in this method 953 // is the method's return type. 954 this.pt = tree.sym.erasure(types).getReturnType(); 955 956 checkDimension(tree.pos(), tree.sym.erasure(types)); 957 genMethod(tree, localEnv, false); 958 } 959 //where 960 /** Generate code for a method. 961 * @param tree The tree representing the method definition. 962 * @param env The environment current for the method body. 963 * @param fatcode A flag that indicates whether all jumps are 964 * within 32K. We first invoke this method under 965 * the assumption that fatcode == false, i.e. all 966 * jumps are within 32K. If this fails, fatcode 967 * is set to true and we try again. 968 */ 969 void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) { 970 MethodSymbol meth = tree.sym; 971 int extras = 0; 972 // Count up extra parameters 973 if (meth.isConstructor()) { 974 extras++; 975 if (meth.enclClass().isInner() && 976 !meth.enclClass().isStatic()) { 977 extras++; 978 } 979 } else if ((tree.mods.flags & STATIC) == 0) { 980 extras++; 981 } 982 // System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG 983 if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras > 984 ClassFile.MAX_PARAMETERS) { 985 log.error(tree.pos(), Errors.LimitParameters); 986 nerrs++; 987 } 988 989 else if (tree.body != null) { 990 // Create a new code structure and initialize it. 991 int startpcCrt = initCode(tree, env, fatcode); 992 993 try { 994 genStat(tree.body, env); 995 } catch (CodeSizeOverflow e) { 996 // Failed due to code limit, try again with jsr/ret 997 startpcCrt = initCode(tree, env, fatcode); 998 genStat(tree.body, env); 999 } 1000 1001 if (code.state.stacksize != 0) { 1002 log.error(tree.body.pos(), Errors.StackSimError(tree.sym)); 1003 throw new AssertionError(); 1004 } 1005 1006 // If last statement could complete normally, insert a 1007 // return at the end. 1008 if (code.isAlive()) { 1009 code.statBegin(TreeInfo.endPos(tree.body)); 1010 if (env.enclMethod == null || 1011 env.enclMethod.sym.type.getReturnType().hasTag(VOID)) { 1012 code.emitop0(return_); 1013 } else { 1014 // sometime dead code seems alive (4415991); 1015 // generate a small loop instead 1016 int startpc = code.entryPoint(); 1017 CondItem c = items.makeCondItem(goto_); 1018 code.resolve(c.jumpTrue(), startpc); 1019 } 1020 } 1021 if (genCrt) 1022 code.crt.put(tree.body, 1023 CRT_BLOCK, 1024 startpcCrt, 1025 code.curCP()); 1026 1027 code.endScopes(0); 1028 1029 // If we exceeded limits, panic 1030 if (code.checkLimits(tree.pos(), log)) { 1031 nerrs++; 1032 return; 1033 } 1034 1035 // If we generated short code but got a long jump, do it again 1036 // with fatCode = true. 1037 if (!fatcode && code.fatcode) genMethod(tree, env, true); 1038 1039 // Clean up 1040 if(stackMap == StackMapFormat.JSR202) { 1041 code.lastFrame = null; 1042 code.frameBeforeLast = null; 1043 } 1044 1045 // Compress exception table 1046 code.compressCatchTable(); 1047 1048 // Fill in type annotation positions for exception parameters 1049 code.fillExceptionParameterPositions(); 1050 } 1051 } 1052 1053 private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) { 1054 MethodSymbol meth = tree.sym; 1055 1056 // Create a new code structure. 1057 meth.code = code = new Code(meth, 1058 fatcode, 1059 lineDebugInfo ? toplevel.lineMap : null, 1060 varDebugInfo, 1061 stackMap, 1062 debugCode, 1063 genCrt ? new CRTable(tree, env.toplevel.endPositions) 1064 : null, 1065 syms, 1066 types, 1067 poolWriter); 1068 items = new Items(poolWriter, code, syms, types); 1069 if (code.debugCode) { 1070 System.err.println(meth + " for body " + tree); 1071 } 1072 1073 // If method is not static, create a new local variable address 1074 // for `this'. 1075 if ((tree.mods.flags & STATIC) == 0) { 1076 Type selfType = meth.owner.type; 1077 if (meth.isConstructor() && selfType != syms.objectType) 1078 selfType = UninitializedType.uninitializedThis(selfType); 1079 code.setDefined( 1080 code.newLocal( 1081 new VarSymbol(FINAL, names._this, selfType, meth.owner))); 1082 } 1083 1084 // Mark all parameters as defined from the beginning of 1085 // the method. 1086 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1087 checkDimension(l.head.pos(), l.head.sym.type); 1088 code.setDefined(code.newLocal(l.head.sym)); 1089 } 1090 1091 // Get ready to generate code for method body. 1092 int startpcCrt = genCrt ? code.curCP() : 0; 1093 code.entryPoint(); 1094 1095 // Suppress initial stackmap 1096 code.pendingStackMap = false; 1097 1098 return startpcCrt; 1099 } 1100 1101 public void visitVarDef(JCVariableDecl tree) { 1102 VarSymbol v = tree.sym; 1103 if (tree.init != null) { 1104 checkStringConstant(tree.init.pos(), v.getConstValue()); 1105 if (v.getConstValue() == null || varDebugInfo) { 1106 Assert.check(code.isStatementStart()); 1107 code.newLocal(v); 1108 genExpr(tree.init, v.erasure(types)).load(); 1109 items.makeLocalItem(v).store(); 1110 Assert.check(code.isStatementStart()); 1111 } 1112 } else { 1113 code.newLocal(v); 1114 } 1115 checkDimension(tree.pos(), v.type); 1116 } 1117 1118 public void visitSkip(JCSkip tree) { 1119 } 1120 1121 public void visitBlock(JCBlock tree) { 1122 if (tree.patternMatchingCatch != null) { 1123 Set<JCMethodInvocation> prevInvocationsWithPatternMatchingCatch = invocationsWithPatternMatchingCatch; 1124 ListBuffer<int[]> prevRanges = patternMatchingInvocationRanges; 1125 State startState = code.state.dup(); 1126 try { 1127 invocationsWithPatternMatchingCatch = tree.patternMatchingCatch.calls2Handle(); 1128 patternMatchingInvocationRanges = new ListBuffer<>(); 1129 doVisitBlock(tree); 1130 } finally { 1131 Chain skipCatch = code.branch(goto_); 1132 JCCatch handler = tree.patternMatchingCatch.handler(); 1133 code.entryPoint(startState, handler.param.sym.type); 1134 genPatternMatchingCatch(handler, env, patternMatchingInvocationRanges.toList()); 1135 code.resolve(skipCatch); 1136 invocationsWithPatternMatchingCatch = prevInvocationsWithPatternMatchingCatch; 1137 patternMatchingInvocationRanges = prevRanges; 1138 } 1139 } else { 1140 doVisitBlock(tree); 1141 } 1142 } 1143 1144 private void doVisitBlock(JCBlock tree) { 1145 int limit = code.nextreg; 1146 Env<GenContext> localEnv = env.dup(tree, new GenContext()); 1147 genStats(tree.stats, localEnv); 1148 // End the scope of all block-local variables in variable info. 1149 if (!env.tree.hasTag(METHODDEF)) { 1150 code.statBegin(tree.endpos); 1151 code.endScopes(limit); 1152 code.pendingStatPos = Position.NOPOS; 1153 } 1154 } 1155 1156 public void visitDoLoop(JCDoWhileLoop tree) { 1157 genLoop(tree, tree.body, tree.cond, List.nil(), false); 1158 } 1159 1160 public void visitWhileLoop(JCWhileLoop tree) { 1161 genLoop(tree, tree.body, tree.cond, List.nil(), true); 1162 } 1163 1164 public void visitForLoop(JCForLoop tree) { 1165 int limit = code.nextreg; 1166 genStats(tree.init, env); 1167 genLoop(tree, tree.body, tree.cond, tree.step, true); 1168 code.endScopes(limit); 1169 } 1170 //where 1171 /** Generate code for a loop. 1172 * @param loop The tree representing the loop. 1173 * @param body The loop's body. 1174 * @param cond The loop's controlling condition. 1175 * @param step "Step" statements to be inserted at end of 1176 * each iteration. 1177 * @param testFirst True if the loop test belongs before the body. 1178 */ 1179 private void genLoop(JCStatement loop, 1180 JCStatement body, 1181 JCExpression cond, 1182 List<JCExpressionStatement> step, 1183 boolean testFirst) { 1184 Env<GenContext> loopEnv = env.dup(loop, new GenContext()); 1185 int startpc = code.entryPoint(); 1186 if (testFirst) { //while or for loop 1187 CondItem c; 1188 if (cond != null) { 1189 code.statBegin(cond.pos); 1190 Assert.check(code.isStatementStart()); 1191 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER); 1192 } else { 1193 c = items.makeCondItem(goto_); 1194 } 1195 Chain loopDone = c.jumpFalse(); 1196 code.resolve(c.trueJumps); 1197 Assert.check(code.isStatementStart()); 1198 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET); 1199 code.resolve(loopEnv.info.cont); 1200 genStats(step, loopEnv); 1201 code.resolve(code.branch(goto_), startpc); 1202 code.resolve(loopDone); 1203 } else { 1204 genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET); 1205 code.resolve(loopEnv.info.cont); 1206 genStats(step, loopEnv); 1207 if (code.isAlive()) { 1208 CondItem c; 1209 if (cond != null) { 1210 code.statBegin(cond.pos); 1211 Assert.check(code.isStatementStart()); 1212 c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER); 1213 } else { 1214 c = items.makeCondItem(goto_); 1215 } 1216 code.resolve(c.jumpTrue(), startpc); 1217 Assert.check(code.isStatementStart()); 1218 code.resolve(c.falseJumps); 1219 } 1220 } 1221 Chain exit = loopEnv.info.exit; 1222 if (exit != null) { 1223 code.resolve(exit); 1224 exit.state.defined.excludeFrom(code.nextreg); 1225 } 1226 } 1227 1228 public void visitForeachLoop(JCEnhancedForLoop tree) { 1229 throw new AssertionError(); // should have been removed by Lower. 1230 } 1231 1232 public void visitLabelled(JCLabeledStatement tree) { 1233 Env<GenContext> localEnv = env.dup(tree, new GenContext()); 1234 genStat(tree.body, localEnv, CRT_STATEMENT); 1235 Chain exit = localEnv.info.exit; 1236 if (exit != null) { 1237 code.resolve(exit); 1238 exit.state.defined.excludeFrom(code.nextreg); 1239 } 1240 } 1241 1242 public void visitSwitch(JCSwitch tree) { 1243 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch); 1244 } 1245 1246 @Override 1247 public void visitSwitchExpression(JCSwitchExpression tree) { 1248 code.resolvePending(); 1249 boolean prevInCondSwitchExpression = inCondSwitchExpression; 1250 try { 1251 inCondSwitchExpression = false; 1252 doHandleSwitchExpression(tree); 1253 } finally { 1254 inCondSwitchExpression = prevInCondSwitchExpression; 1255 } 1256 result = items.makeStackItem(pt); 1257 } 1258 1259 private void doHandleSwitchExpression(JCSwitchExpression tree) { 1260 List<LocalItem> prevStackBeforeSwitchExpression = stackBeforeSwitchExpression; 1261 LocalItem prevSwitchResult = switchResult; 1262 int limit = code.nextreg; 1263 try { 1264 stackBeforeSwitchExpression = List.nil(); 1265 switchResult = null; 1266 if (hasTry(tree)) { 1267 //if the switch expression contains try-catch, the catch handlers need to have 1268 //an empty stack. So stash whole stack to local variables, and restore it before 1269 //breaks: 1270 while (code.state.stacksize > 0) { 1271 Type type = code.state.peek(); 1272 Name varName = names.fromString(target.syntheticNameChar() + 1273 "stack" + 1274 target.syntheticNameChar() + 1275 tree.pos + 1276 target.syntheticNameChar() + 1277 code.state.stacksize); 1278 VarSymbol var = new VarSymbol(Flags.SYNTHETIC, varName, type, 1279 this.env.enclMethod.sym); 1280 LocalItem item = items.new LocalItem(type, code.newLocal(var)); 1281 stackBeforeSwitchExpression = stackBeforeSwitchExpression.prepend(item); 1282 item.store(); 1283 } 1284 switchResult = makeTemp(tree.type); 1285 } 1286 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize); 1287 try { 1288 handleSwitch(tree, tree.selector, tree.cases, tree.patternSwitch); 1289 } finally { 1290 code.setLetExprStackPos(prevLetExprStart); 1291 } 1292 } finally { 1293 stackBeforeSwitchExpression = prevStackBeforeSwitchExpression; 1294 switchResult = prevSwitchResult; 1295 code.endScopes(limit); 1296 } 1297 } 1298 //where: 1299 private boolean hasTry(JCSwitchExpression tree) { 1300 class HasTryScanner extends TreeScanner { 1301 private boolean hasTry; 1302 1303 @Override 1304 public void visitTry(JCTry tree) { 1305 hasTry = true; 1306 } 1307 1308 @Override 1309 public void visitSynchronized(JCSynchronized tree) { 1310 hasTry = true; 1311 } 1312 1313 @Override 1314 public void visitClassDef(JCClassDecl tree) { 1315 } 1316 1317 @Override 1318 public void visitLambda(JCLambda tree) { 1319 } 1320 }; 1321 1322 HasTryScanner hasTryScanner = new HasTryScanner(); 1323 1324 hasTryScanner.scan(tree); 1325 return hasTryScanner.hasTry; 1326 } 1327 1328 private void handleSwitch(JCTree swtch, JCExpression selector, List<JCCase> cases, 1329 boolean patternSwitch) { 1330 int limit = code.nextreg; 1331 Assert.check(!selector.type.hasTag(CLASS)); 1332 int switchStart = patternSwitch ? code.entryPoint() : -1; 1333 int startpcCrt = genCrt ? code.curCP() : 0; 1334 Assert.check(code.isStatementStart()); 1335 Item sel = genExpr(selector, syms.intType); 1336 if (cases.isEmpty()) { 1337 // We are seeing: switch <sel> {} 1338 sel.load().drop(); 1339 if (genCrt) 1340 code.crt.put(TreeInfo.skipParens(selector), 1341 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP()); 1342 } else { 1343 // We are seeing a nonempty switch. 1344 sel.load(); 1345 if (genCrt) 1346 code.crt.put(TreeInfo.skipParens(selector), 1347 CRT_FLOW_CONTROLLER, startpcCrt, code.curCP()); 1348 Env<GenContext> switchEnv = env.dup(swtch, new GenContext()); 1349 switchEnv.info.isSwitch = true; 1350 1351 // Compute number of labels and minimum and maximum label values. 1352 // For each case, store its label in an array. 1353 int lo = Integer.MAX_VALUE; // minimum label. 1354 int hi = Integer.MIN_VALUE; // maximum label. 1355 int nlabels = 0; // number of labels. 1356 1357 int[] labels = new int[cases.length()]; // the label array. 1358 int defaultIndex = -1; // the index of the default clause. 1359 1360 List<JCCase> l = cases; 1361 for (int i = 0; i < labels.length; i++) { 1362 if (l.head.labels.head instanceof JCConstantCaseLabel constLabel) { 1363 Assert.check(l.head.labels.size() == 1); 1364 int val = ((Number) constLabel.expr.type.constValue()).intValue(); 1365 labels[i] = val; 1366 if (val < lo) lo = val; 1367 if (hi < val) hi = val; 1368 nlabels++; 1369 } else { 1370 Assert.check(defaultIndex == -1); 1371 defaultIndex = i; 1372 } 1373 l = l.tail; 1374 } 1375 1376 // Determine whether to issue a tableswitch or a lookupswitch 1377 // instruction. 1378 long table_space_cost = 4 + ((long) hi - lo + 1); // words 1379 long table_time_cost = 3; // comparisons 1380 long lookup_space_cost = 3 + 2 * (long) nlabels; 1381 long lookup_time_cost = nlabels; 1382 int opcode = 1383 nlabels > 0 && 1384 table_space_cost + 3 * table_time_cost <= 1385 lookup_space_cost + 3 * lookup_time_cost 1386 ? 1387 tableswitch : lookupswitch; 1388 1389 int startpc = code.curCP(); // the position of the selector operation 1390 code.emitop0(opcode); 1391 code.align(4); 1392 int tableBase = code.curCP(); // the start of the jump table 1393 int[] offsets = null; // a table of offsets for a lookupswitch 1394 code.emit4(-1); // leave space for default offset 1395 if (opcode == tableswitch) { 1396 code.emit4(lo); // minimum label 1397 code.emit4(hi); // maximum label 1398 for (long i = lo; i <= hi; i++) { // leave space for jump table 1399 code.emit4(-1); 1400 } 1401 } else { 1402 code.emit4(nlabels); // number of labels 1403 for (int i = 0; i < nlabels; i++) { 1404 code.emit4(-1); code.emit4(-1); // leave space for lookup table 1405 } 1406 offsets = new int[labels.length]; 1407 } 1408 Code.State stateSwitch = code.state.dup(); 1409 code.markDead(); 1410 1411 // For each case do: 1412 l = cases; 1413 for (int i = 0; i < labels.length; i++) { 1414 JCCase c = l.head; 1415 l = l.tail; 1416 1417 int pc = code.entryPoint(stateSwitch); 1418 // Insert offset directly into code or else into the 1419 // offsets table. 1420 if (i != defaultIndex) { 1421 if (opcode == tableswitch) { 1422 code.put4( 1423 tableBase + 4 * (labels[i] - lo + 3), 1424 pc - startpc); 1425 } else { 1426 offsets[i] = pc - startpc; 1427 } 1428 } else { 1429 code.put4(tableBase, pc - startpc); 1430 } 1431 1432 // Generate code for the statements in this case. 1433 genStats(c.stats, switchEnv, CRT_FLOW_TARGET); 1434 } 1435 1436 if (switchEnv.info.cont != null) { 1437 Assert.check(patternSwitch); 1438 code.resolve(switchEnv.info.cont, switchStart); 1439 } 1440 1441 // Resolve all breaks. 1442 Chain exit = switchEnv.info.exit; 1443 if (exit != null) { 1444 code.resolve(exit); 1445 exit.state.defined.excludeFrom(limit); 1446 } 1447 1448 // If we have not set the default offset, we do so now. 1449 if (code.get4(tableBase) == -1) { 1450 code.put4(tableBase, code.entryPoint(stateSwitch) - startpc); 1451 } 1452 1453 if (opcode == tableswitch) { 1454 // Let any unfilled slots point to the default case. 1455 int defaultOffset = code.get4(tableBase); 1456 for (long i = lo; i <= hi; i++) { 1457 int t = (int)(tableBase + 4 * (i - lo + 3)); 1458 if (code.get4(t) == -1) 1459 code.put4(t, defaultOffset); 1460 } 1461 } else { 1462 // Sort non-default offsets and copy into lookup table. 1463 if (defaultIndex >= 0) 1464 for (int i = defaultIndex; i < labels.length - 1; i++) { 1465 labels[i] = labels[i+1]; 1466 offsets[i] = offsets[i+1]; 1467 } 1468 if (nlabels > 0) 1469 qsort2(labels, offsets, 0, nlabels - 1); 1470 for (int i = 0; i < nlabels; i++) { 1471 int caseidx = tableBase + 8 * (i + 1); 1472 code.put4(caseidx, labels[i]); 1473 code.put4(caseidx + 4, offsets[i]); 1474 } 1475 } 1476 1477 if (swtch instanceof JCSwitchExpression) { 1478 // Emit line position for the end of a switch expression 1479 code.statBegin(TreeInfo.endPos(swtch)); 1480 } 1481 } 1482 code.endScopes(limit); 1483 } 1484 //where 1485 /** Sort (int) arrays of keys and values 1486 */ 1487 static void qsort2(int[] keys, int[] values, int lo, int hi) { 1488 int i = lo; 1489 int j = hi; 1490 int pivot = keys[(i+j)/2]; 1491 do { 1492 while (keys[i] < pivot) i++; 1493 while (pivot < keys[j]) j--; 1494 if (i <= j) { 1495 int temp1 = keys[i]; 1496 keys[i] = keys[j]; 1497 keys[j] = temp1; 1498 int temp2 = values[i]; 1499 values[i] = values[j]; 1500 values[j] = temp2; 1501 i++; 1502 j--; 1503 } 1504 } while (i <= j); 1505 if (lo < j) qsort2(keys, values, lo, j); 1506 if (i < hi) qsort2(keys, values, i, hi); 1507 } 1508 1509 public void visitSynchronized(JCSynchronized tree) { 1510 int limit = code.nextreg; 1511 // Generate code to evaluate lock and save in temporary variable. 1512 final LocalItem lockVar = makeTemp(syms.objectType); 1513 Assert.check(code.isStatementStart()); 1514 genExpr(tree.lock, tree.lock.type).load().duplicate(); 1515 lockVar.store(); 1516 1517 // Generate code to enter monitor. 1518 code.emitop0(monitorenter); 1519 code.state.lock(lockVar.reg); 1520 1521 // Generate code for a try statement with given body, no catch clauses 1522 // in a new environment with the "exit-monitor" operation as finalizer. 1523 final Env<GenContext> syncEnv = env.dup(tree, new GenContext()); 1524 syncEnv.info.finalize = new GenFinalizer() { 1525 void gen() { 1526 genLast(); 1527 Assert.check(syncEnv.info.gaps.length() % 2 == 0); 1528 syncEnv.info.gaps.append(code.curCP()); 1529 } 1530 void genLast() { 1531 if (code.isAlive()) { 1532 lockVar.load(); 1533 code.emitop0(monitorexit); 1534 code.state.unlock(lockVar.reg); 1535 } 1536 } 1537 }; 1538 syncEnv.info.gaps = new ListBuffer<>(); 1539 genTry(tree.body, List.nil(), syncEnv); 1540 code.endScopes(limit); 1541 } 1542 1543 public void visitTry(final JCTry tree) { 1544 // Generate code for a try statement with given body and catch clauses, 1545 // in a new environment which calls the finally block if there is one. 1546 final Env<GenContext> tryEnv = env.dup(tree, new GenContext()); 1547 final Env<GenContext> oldEnv = env; 1548 tryEnv.info.finalize = new GenFinalizer() { 1549 void gen() { 1550 Assert.check(tryEnv.info.gaps.length() % 2 == 0); 1551 tryEnv.info.gaps.append(code.curCP()); 1552 genLast(); 1553 } 1554 void genLast() { 1555 if (tree.finalizer != null) 1556 genStat(tree.finalizer, oldEnv, CRT_BLOCK); 1557 } 1558 boolean hasFinalizer() { 1559 return tree.finalizer != null; 1560 } 1561 1562 @Override 1563 void afterBody() { 1564 if (tree.finalizer != null && (tree.finalizer.flags & BODY_ONLY_FINALIZE) != 0) { 1565 //for body-only finally, remove the GenFinalizer after try body 1566 //so that the finally is not generated to catch bodies: 1567 tryEnv.info.finalize = null; 1568 } 1569 } 1570 1571 }; 1572 tryEnv.info.gaps = new ListBuffer<>(); 1573 genTry(tree.body, tree.catchers, tryEnv); 1574 } 1575 //where 1576 /** Generate code for a try or synchronized statement 1577 * @param body The body of the try or synchronized statement. 1578 * @param catchers The list of catch clauses. 1579 * @param env The current environment of the body. 1580 */ 1581 void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) { 1582 int limit = code.nextreg; 1583 int startpc = code.curCP(); 1584 Code.State stateTry = code.state.dup(); 1585 genStat(body, env, CRT_BLOCK); 1586 int endpc = code.curCP(); 1587 List<Integer> gaps = env.info.gaps.toList(); 1588 code.statBegin(TreeInfo.endPos(body)); 1589 genFinalizer(env); 1590 code.statBegin(TreeInfo.endPos(env.tree)); 1591 Chain exitChain; 1592 boolean actualTry = env.tree.hasTag(TRY); 1593 if (startpc == endpc && actualTry) { 1594 exitChain = code.branch(dontgoto); 1595 } else { 1596 exitChain = code.branch(goto_); 1597 } 1598 endFinalizerGap(env); 1599 env.info.finalize.afterBody(); 1600 boolean hasFinalizer = 1601 env.info.finalize != null && 1602 env.info.finalize.hasFinalizer(); 1603 if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) { 1604 // start off with exception on stack 1605 code.entryPoint(stateTry, l.head.param.sym.type); 1606 genCatch(l.head, env, startpc, endpc, gaps); 1607 genFinalizer(env); 1608 if (hasFinalizer || l.tail.nonEmpty()) { 1609 code.statBegin(TreeInfo.endPos(env.tree)); 1610 exitChain = Code.mergeChains(exitChain, 1611 code.branch(goto_)); 1612 } 1613 endFinalizerGap(env); 1614 } 1615 if (hasFinalizer && (startpc != endpc || !actualTry)) { 1616 // Create a new register segment to avoid allocating 1617 // the same variables in finalizers and other statements. 1618 code.newRegSegment(); 1619 1620 // Add a catch-all clause. 1621 1622 // start off with exception on stack 1623 int catchallpc = code.entryPoint(stateTry, syms.throwableType); 1624 1625 // Register all exception ranges for catch all clause. 1626 // The range of the catch all clause is from the beginning 1627 // of the try or synchronized block until the present 1628 // code pointer excluding all gaps in the current 1629 // environment's GenContext. 1630 int startseg = startpc; 1631 while (env.info.gaps.nonEmpty()) { 1632 int endseg = env.info.gaps.next().intValue(); 1633 registerCatch(body.pos(), startseg, endseg, 1634 catchallpc, 0); 1635 startseg = env.info.gaps.next().intValue(); 1636 } 1637 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS)); 1638 code.markStatBegin(); 1639 1640 Item excVar = makeTemp(syms.throwableType); 1641 excVar.store(); 1642 genFinalizer(env); 1643 code.resolvePending(); 1644 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.END_POS)); 1645 code.markStatBegin(); 1646 1647 excVar.load(); 1648 registerCatch(body.pos(), startseg, 1649 env.info.gaps.next().intValue(), 1650 catchallpc, 0); 1651 code.emitop0(athrow); 1652 code.markDead(); 1653 1654 // If there are jsr's to this finalizer, ... 1655 if (env.info.cont != null) { 1656 // Resolve all jsr's. 1657 code.resolve(env.info.cont); 1658 1659 // Mark statement line number 1660 code.statBegin(TreeInfo.finalizerPos(env.tree, PosKind.FIRST_STAT_POS)); 1661 code.markStatBegin(); 1662 1663 // Save return address. 1664 LocalItem retVar = makeTemp(syms.throwableType); 1665 retVar.store(); 1666 1667 // Generate finalizer code. 1668 env.info.finalize.genLast(); 1669 1670 // Return. 1671 code.emitop1w(ret, retVar.reg); 1672 code.markDead(); 1673 } 1674 } 1675 // Resolve all breaks. 1676 code.resolve(exitChain); 1677 1678 code.endScopes(limit); 1679 } 1680 1681 /** Generate code for a catch clause. 1682 * @param tree The catch clause. 1683 * @param env The environment current in the enclosing try. 1684 * @param startpc Start pc of try-block. 1685 * @param endpc End pc of try-block. 1686 */ 1687 void genCatch(JCCatch tree, 1688 Env<GenContext> env, 1689 int startpc, int endpc, 1690 List<Integer> gaps) { 1691 if (startpc != endpc) { 1692 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs 1693 = catchTypesWithAnnotations(tree); 1694 while (gaps.nonEmpty()) { 1695 for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) { 1696 JCExpression subCatch = subCatch1.snd; 1697 int catchType = makeRef(tree.pos(), subCatch.type); 1698 int end = gaps.head.intValue(); 1699 registerCatch(tree.pos(), 1700 startpc, end, code.curCP(), 1701 catchType); 1702 for (Attribute.TypeCompound tc : subCatch1.fst) { 1703 tc.position.setCatchInfo(catchType, startpc); 1704 } 1705 } 1706 gaps = gaps.tail; 1707 startpc = gaps.head.intValue(); 1708 gaps = gaps.tail; 1709 } 1710 if (startpc < endpc) { 1711 for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) { 1712 JCExpression subCatch = subCatch1.snd; 1713 int catchType = makeRef(tree.pos(), subCatch.type); 1714 registerCatch(tree.pos(), 1715 startpc, endpc, code.curCP(), 1716 catchType); 1717 for (Attribute.TypeCompound tc : subCatch1.fst) { 1718 tc.position.setCatchInfo(catchType, startpc); 1719 } 1720 } 1721 } 1722 genCatchBlock(tree, env); 1723 } 1724 } 1725 void genPatternMatchingCatch(JCCatch tree, 1726 Env<GenContext> env, 1727 List<int[]> ranges) { 1728 for (int[] range : ranges) { 1729 JCExpression subCatch = tree.param.vartype; 1730 int catchType = makeRef(tree.pos(), subCatch.type); 1731 registerCatch(tree.pos(), 1732 range[0], range[1], code.curCP(), 1733 catchType); 1734 } 1735 genCatchBlock(tree, env); 1736 } 1737 void genCatchBlock(JCCatch tree, Env<GenContext> env) { 1738 VarSymbol exparam = tree.param.sym; 1739 code.statBegin(tree.pos); 1740 code.markStatBegin(); 1741 int limit = code.nextreg; 1742 code.newLocal(exparam); 1743 items.makeLocalItem(exparam).store(); 1744 code.statBegin(TreeInfo.firstStatPos(tree.body)); 1745 genStat(tree.body, env, CRT_BLOCK); 1746 code.endScopes(limit); 1747 code.statBegin(TreeInfo.endPos(tree.body)); 1748 } 1749 // where 1750 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) { 1751 return TreeInfo.isMultiCatch(tree) ? 1752 catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) : 1753 List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype)); 1754 } 1755 // where 1756 List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) { 1757 List<JCExpression> alts = tree.alternatives; 1758 List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head)); 1759 alts = alts.tail; 1760 1761 while(alts != null && alts.head != null) { 1762 JCExpression alt = alts.head; 1763 if (alt instanceof JCAnnotatedType annotatedType) { 1764 res = res.prepend(new Pair<>(annotate.fromAnnotations(annotatedType.annotations), alt)); 1765 } else { 1766 res = res.prepend(new Pair<>(List.nil(), alt)); 1767 } 1768 alts = alts.tail; 1769 } 1770 return res.reverse(); 1771 } 1772 1773 /** Register a catch clause in the "Exceptions" code-attribute. 1774 */ 1775 void registerCatch(DiagnosticPosition pos, 1776 int startpc, int endpc, 1777 int handler_pc, int catch_type) { 1778 char startpc1 = (char)startpc; 1779 char endpc1 = (char)endpc; 1780 char handler_pc1 = (char)handler_pc; 1781 if (startpc1 == startpc && 1782 endpc1 == endpc && 1783 handler_pc1 == handler_pc) { 1784 code.addCatch(startpc1, endpc1, handler_pc1, 1785 (char)catch_type); 1786 } else { 1787 log.error(pos, Errors.LimitCodeTooLargeForTryStmt); 1788 nerrs++; 1789 } 1790 } 1791 1792 public void visitIf(JCIf tree) { 1793 int limit = code.nextreg; 1794 Chain thenExit = null; 1795 Assert.check(code.isStatementStart()); 1796 CondItem c = genCond(TreeInfo.skipParens(tree.cond), 1797 CRT_FLOW_CONTROLLER); 1798 Chain elseChain = c.jumpFalse(); 1799 Assert.check(code.isStatementStart()); 1800 if (!c.isFalse()) { 1801 code.resolve(c.trueJumps); 1802 genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET); 1803 thenExit = code.branch(goto_); 1804 } 1805 if (elseChain != null) { 1806 code.resolve(elseChain); 1807 if (tree.elsepart != null) { 1808 genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET); 1809 } 1810 } 1811 code.resolve(thenExit); 1812 code.endScopes(limit); 1813 Assert.check(code.isStatementStart()); 1814 } 1815 1816 public void visitExec(JCExpressionStatement tree) { 1817 // Optimize x++ to ++x and x-- to --x. 1818 JCExpression e = tree.expr; 1819 switch (e.getTag()) { 1820 case POSTINC: 1821 ((JCUnary) e).setTag(PREINC); 1822 break; 1823 case POSTDEC: 1824 ((JCUnary) e).setTag(PREDEC); 1825 break; 1826 } 1827 Assert.check(code.isStatementStart()); 1828 genExpr(tree.expr, tree.expr.type).drop(); 1829 Assert.check(code.isStatementStart()); 1830 } 1831 1832 public void visitBreak(JCBreak tree) { 1833 Assert.check(code.isStatementStart()); 1834 final Env<GenContext> targetEnv = unwindBreak(tree.target); 1835 targetEnv.info.addExit(code.branch(goto_)); 1836 endFinalizerGaps(env, targetEnv); 1837 } 1838 1839 public void visitYield(JCYield tree) { 1840 Assert.check(code.isStatementStart()); 1841 final Env<GenContext> targetEnv; 1842 if (inCondSwitchExpression) { 1843 CondItem value = genCond(tree.value, CRT_FLOW_TARGET); 1844 Chain falseJumps = value.jumpFalse(); 1845 1846 code.resolve(value.trueJumps); 1847 Env<GenContext> localEnv = unwindBreak(tree.target); 1848 reloadStackBeforeSwitchExpr(); 1849 Chain trueJumps = code.branch(goto_); 1850 1851 endFinalizerGaps(env, localEnv); 1852 1853 code.resolve(falseJumps); 1854 targetEnv = unwindBreak(tree.target); 1855 reloadStackBeforeSwitchExpr(); 1856 falseJumps = code.branch(goto_); 1857 1858 if (switchExpressionTrueChain == null) { 1859 switchExpressionTrueChain = trueJumps; 1860 } else { 1861 switchExpressionTrueChain = 1862 Code.mergeChains(switchExpressionTrueChain, trueJumps); 1863 } 1864 if (switchExpressionFalseChain == null) { 1865 switchExpressionFalseChain = falseJumps; 1866 } else { 1867 switchExpressionFalseChain = 1868 Code.mergeChains(switchExpressionFalseChain, falseJumps); 1869 } 1870 } else { 1871 genExpr(tree.value, pt).load(); 1872 if (switchResult != null) 1873 switchResult.store(); 1874 1875 targetEnv = unwindBreak(tree.target); 1876 1877 if (code.isAlive()) { 1878 reloadStackBeforeSwitchExpr(); 1879 if (switchResult != null) 1880 switchResult.load(); 1881 1882 code.state.forceStackTop(tree.target.type); 1883 targetEnv.info.addExit(code.branch(goto_)); 1884 code.markDead(); 1885 } 1886 } 1887 endFinalizerGaps(env, targetEnv); 1888 } 1889 //where: 1890 /** As side-effect, might mark code as dead disabling any further emission. 1891 */ 1892 private Env<GenContext> unwindBreak(JCTree target) { 1893 int tmpPos = code.pendingStatPos; 1894 Env<GenContext> targetEnv = unwind(target, env); 1895 code.pendingStatPos = tmpPos; 1896 return targetEnv; 1897 } 1898 1899 private void reloadStackBeforeSwitchExpr() { 1900 for (LocalItem li : stackBeforeSwitchExpression) 1901 li.load(); 1902 } 1903 1904 public void visitContinue(JCContinue tree) { 1905 int tmpPos = code.pendingStatPos; 1906 Env<GenContext> targetEnv = unwind(tree.target, env); 1907 code.pendingStatPos = tmpPos; 1908 Assert.check(code.isStatementStart()); 1909 targetEnv.info.addCont(code.branch(goto_)); 1910 endFinalizerGaps(env, targetEnv); 1911 } 1912 1913 public void visitReturn(JCReturn tree) { 1914 int limit = code.nextreg; 1915 final Env<GenContext> targetEnv; 1916 1917 /* Save and then restore the location of the return in case a finally 1918 * is expanded (with unwind()) in the middle of our bytecodes. 1919 */ 1920 int tmpPos = code.pendingStatPos; 1921 if (tree.expr != null) { 1922 Assert.check(code.isStatementStart()); 1923 Item r = genExpr(tree.expr, pt).load(); 1924 if (hasFinally(env.enclMethod, env)) { 1925 r = makeTemp(pt); 1926 r.store(); 1927 } 1928 targetEnv = unwind(env.enclMethod, env); 1929 code.pendingStatPos = tmpPos; 1930 r.load(); 1931 code.emitop0(ireturn + Code.truncate(Code.typecode(pt))); 1932 } else { 1933 targetEnv = unwind(env.enclMethod, env); 1934 code.pendingStatPos = tmpPos; 1935 code.emitop0(return_); 1936 } 1937 endFinalizerGaps(env, targetEnv); 1938 code.endScopes(limit); 1939 } 1940 1941 public void visitThrow(JCThrow tree) { 1942 Assert.check(code.isStatementStart()); 1943 genExpr(tree.expr, tree.expr.type).load(); 1944 code.emitop0(athrow); 1945 Assert.check(code.isStatementStart()); 1946 } 1947 1948 /* ************************************************************************ 1949 * Visitor methods for expressions 1950 *************************************************************************/ 1951 1952 public void visitApply(JCMethodInvocation tree) { 1953 setTypeAnnotationPositions(tree.pos); 1954 // Generate code for method. 1955 Item m = genExpr(tree.meth, methodType); 1956 // Generate code for all arguments, where the expected types are 1957 // the parameters of the method's external type (that is, any implicit 1958 // outer instance of a super(...) call appears as first parameter). 1959 MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth); 1960 genArgs(tree.args, 1961 msym.externalType(types).getParameterTypes()); 1962 if (!msym.isDynamic()) { 1963 code.statBegin(tree.pos); 1964 } 1965 if (invocationsWithPatternMatchingCatch.contains(tree)) { 1966 int start = code.curCP(); 1967 result = m.invoke(); 1968 patternMatchingInvocationRanges.add(new int[] {start, code.curCP()}); 1969 } else { 1970 result = m.invoke(); 1971 } 1972 } 1973 1974 public void visitConditional(JCConditional tree) { 1975 Chain thenExit = null; 1976 code.statBegin(tree.cond.pos); 1977 CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER); 1978 Chain elseChain = c.jumpFalse(); 1979 if (!c.isFalse()) { 1980 code.resolve(c.trueJumps); 1981 int startpc = genCrt ? code.curCP() : 0; 1982 code.statBegin(tree.truepart.pos); 1983 genExpr(tree.truepart, pt).load(); 1984 code.state.forceStackTop(tree.type); 1985 if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET, 1986 startpc, code.curCP()); 1987 thenExit = code.branch(goto_); 1988 } 1989 if (elseChain != null) { 1990 code.resolve(elseChain); 1991 int startpc = genCrt ? code.curCP() : 0; 1992 code.statBegin(tree.falsepart.pos); 1993 genExpr(tree.falsepart, pt).load(); 1994 code.state.forceStackTop(tree.type); 1995 if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET, 1996 startpc, code.curCP()); 1997 } 1998 code.resolve(thenExit); 1999 result = items.makeStackItem(pt); 2000 } 2001 2002 private void setTypeAnnotationPositions(int treePos) { 2003 MethodSymbol meth = code.meth; 2004 boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR 2005 || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT; 2006 2007 for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) { 2008 if (ta.hasUnknownPosition()) 2009 ta.tryFixPosition(); 2010 2011 if (ta.position.matchesPos(treePos)) 2012 ta.position.updatePosOffset(code.cp); 2013 } 2014 2015 if (!initOrClinit) 2016 return; 2017 2018 for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) { 2019 if (ta.hasUnknownPosition()) 2020 ta.tryFixPosition(); 2021 2022 if (ta.position.matchesPos(treePos)) 2023 ta.position.updatePosOffset(code.cp); 2024 } 2025 2026 ClassSymbol clazz = meth.enclClass(); 2027 for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) { 2028 if (!s.getKind().isField()) 2029 continue; 2030 2031 for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) { 2032 if (ta.hasUnknownPosition()) 2033 ta.tryFixPosition(); 2034 2035 if (ta.position.matchesPos(treePos)) 2036 ta.position.updatePosOffset(code.cp); 2037 } 2038 } 2039 } 2040 2041 public void visitNewClass(JCNewClass tree) { 2042 // Enclosing instances or anonymous classes should have been eliminated 2043 // by now. 2044 Assert.check(tree.encl == null && tree.def == null); 2045 setTypeAnnotationPositions(tree.pos); 2046 2047 code.emitop2(new_, checkDimension(tree.pos(), tree.type), PoolWriter::putClass); 2048 code.emitop0(dup); 2049 2050 // Generate code for all arguments, where the expected types are 2051 // the parameters of the constructor's external type (that is, 2052 // any implicit outer instance appears as first parameter). 2053 genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes()); 2054 2055 items.makeMemberItem(tree.constructor, true).invoke(); 2056 result = items.makeStackItem(tree.type); 2057 } 2058 2059 public void visitNewArray(JCNewArray tree) { 2060 setTypeAnnotationPositions(tree.pos); 2061 2062 if (tree.elems != null) { 2063 Type elemtype = types.elemtype(tree.type); 2064 loadIntConst(tree.elems.length()); 2065 Item arr = makeNewArray(tree.pos(), tree.type, 1); 2066 int i = 0; 2067 for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) { 2068 arr.duplicate(); 2069 loadIntConst(i); 2070 i++; 2071 genExpr(l.head, elemtype).load(); 2072 items.makeIndexedItem(elemtype).store(); 2073 } 2074 result = arr; 2075 } else { 2076 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 2077 genExpr(l.head, syms.intType).load(); 2078 } 2079 result = makeNewArray(tree.pos(), tree.type, tree.dims.length()); 2080 } 2081 } 2082 //where 2083 /** Generate code to create an array with given element type and number 2084 * of dimensions. 2085 */ 2086 Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) { 2087 Type elemtype = types.elemtype(type); 2088 if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) { 2089 log.error(pos, Errors.LimitDimensions); 2090 nerrs++; 2091 } 2092 int elemcode = Code.arraycode(elemtype); 2093 if (elemcode == 0 || (elemcode == 1 && ndims == 1)) { 2094 code.emitAnewarray(makeRef(pos, elemtype), type); 2095 } else if (elemcode == 1) { 2096 code.emitMultianewarray(ndims, makeRef(pos, type), type); 2097 } else { 2098 code.emitNewarray(elemcode, type); 2099 } 2100 return items.makeStackItem(type); 2101 } 2102 2103 public void visitParens(JCParens tree) { 2104 result = genExpr(tree.expr, tree.expr.type); 2105 } 2106 2107 public void visitAssign(JCAssign tree) { 2108 Item l = genExpr(tree.lhs, tree.lhs.type); 2109 genExpr(tree.rhs, tree.lhs.type).load(); 2110 if (tree.rhs.type.hasTag(BOT)) { 2111 /* This is just a case of widening reference conversion that per 5.1.5 simply calls 2112 for "regarding a reference as having some other type in a manner that can be proved 2113 correct at compile time." 2114 */ 2115 code.state.forceStackTop(tree.lhs.type); 2116 } 2117 result = items.makeAssignItem(l); 2118 } 2119 2120 public void visitAssignop(JCAssignOp tree) { 2121 OperatorSymbol operator = tree.operator; 2122 Item l; 2123 if (operator.opcode == string_add) { 2124 l = concat.makeConcat(tree); 2125 } else { 2126 // Generate code for first expression 2127 l = genExpr(tree.lhs, tree.lhs.type); 2128 2129 // If we have an increment of -32768 to +32767 of a local 2130 // int variable we can use an incr instruction instead of 2131 // proceeding further. 2132 if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) && 2133 l instanceof LocalItem localItem && 2134 tree.lhs.type.getTag().isSubRangeOf(INT) && 2135 tree.rhs.type.getTag().isSubRangeOf(INT) && 2136 tree.rhs.type.constValue() != null) { 2137 int ival = ((Number) tree.rhs.type.constValue()).intValue(); 2138 if (tree.hasTag(MINUS_ASG)) ival = -ival; 2139 localItem.incr(ival); 2140 result = l; 2141 return; 2142 } 2143 // Otherwise, duplicate expression, load one copy 2144 // and complete binary operation. 2145 l.duplicate(); 2146 l.coerce(operator.type.getParameterTypes().head).load(); 2147 completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type); 2148 } 2149 result = items.makeAssignItem(l); 2150 } 2151 2152 public void visitUnary(JCUnary tree) { 2153 OperatorSymbol operator = tree.operator; 2154 if (tree.hasTag(NOT)) { 2155 CondItem od = genCond(tree.arg, false); 2156 result = od.negate(); 2157 } else { 2158 Item od = genExpr(tree.arg, operator.type.getParameterTypes().head); 2159 switch (tree.getTag()) { 2160 case POS: 2161 result = od.load(); 2162 break; 2163 case NEG: 2164 result = od.load(); 2165 code.emitop0(operator.opcode); 2166 break; 2167 case COMPL: 2168 result = od.load(); 2169 emitMinusOne(od.typecode); 2170 code.emitop0(operator.opcode); 2171 break; 2172 case PREINC: case PREDEC: 2173 od.duplicate(); 2174 if (od instanceof LocalItem localItem && 2175 (operator.opcode == iadd || operator.opcode == isub)) { 2176 localItem.incr(tree.hasTag(PREINC) ? 1 : -1); 2177 result = od; 2178 } else { 2179 od.load(); 2180 code.emitop0(one(od.typecode)); 2181 code.emitop0(operator.opcode); 2182 // Perform narrowing primitive conversion if byte, 2183 // char, or short. Fix for 4304655. 2184 if (od.typecode != INTcode && 2185 Code.truncate(od.typecode) == INTcode) 2186 code.emitop0(int2byte + od.typecode - BYTEcode); 2187 result = items.makeAssignItem(od); 2188 } 2189 break; 2190 case POSTINC: case POSTDEC: 2191 od.duplicate(); 2192 if (od instanceof LocalItem localItem && 2193 (operator.opcode == iadd || operator.opcode == isub)) { 2194 Item res = od.load(); 2195 localItem.incr(tree.hasTag(POSTINC) ? 1 : -1); 2196 result = res; 2197 } else { 2198 Item res = od.load(); 2199 od.stash(od.typecode); 2200 code.emitop0(one(od.typecode)); 2201 code.emitop0(operator.opcode); 2202 // Perform narrowing primitive conversion if byte, 2203 // char, or short. Fix for 4304655. 2204 if (od.typecode != INTcode && 2205 Code.truncate(od.typecode) == INTcode) 2206 code.emitop0(int2byte + od.typecode - BYTEcode); 2207 od.store(); 2208 result = res; 2209 } 2210 break; 2211 case NULLCHK: 2212 result = od.load(); 2213 code.emitop0(dup); 2214 genNullCheck(tree); 2215 break; 2216 default: 2217 Assert.error(); 2218 } 2219 } 2220 } 2221 2222 /** Generate a null check from the object value at stack top. */ 2223 private void genNullCheck(JCTree tree) { 2224 code.statBegin(tree.pos); 2225 callMethod(tree.pos(), syms.objectsType, names.requireNonNull, 2226 List.of(syms.objectType), true); 2227 code.emitop0(pop); 2228 } 2229 2230 public void visitBinary(JCBinary tree) { 2231 OperatorSymbol operator = tree.operator; 2232 if (operator.opcode == string_add) { 2233 result = concat.makeConcat(tree); 2234 } else if (tree.hasTag(AND)) { 2235 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER); 2236 if (!lcond.isFalse()) { 2237 Chain falseJumps = lcond.jumpFalse(); 2238 code.resolve(lcond.trueJumps); 2239 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET); 2240 result = items. 2241 makeCondItem(rcond.opcode, 2242 rcond.trueJumps, 2243 Code.mergeChains(falseJumps, 2244 rcond.falseJumps)); 2245 } else { 2246 result = lcond; 2247 } 2248 } else if (tree.hasTag(OR)) { 2249 CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER); 2250 if (!lcond.isTrue()) { 2251 Chain trueJumps = lcond.jumpTrue(); 2252 code.resolve(lcond.falseJumps); 2253 CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET); 2254 result = items. 2255 makeCondItem(rcond.opcode, 2256 Code.mergeChains(trueJumps, rcond.trueJumps), 2257 rcond.falseJumps); 2258 } else { 2259 result = lcond; 2260 } 2261 } else { 2262 Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head); 2263 od.load(); 2264 result = completeBinop(tree.lhs, tree.rhs, operator); 2265 } 2266 } 2267 2268 2269 /** Complete generating code for operation, with left operand 2270 * already on stack. 2271 * @param lhs The tree representing the left operand. 2272 * @param rhs The tree representing the right operand. 2273 * @param operator The operator symbol. 2274 */ 2275 Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) { 2276 MethodType optype = (MethodType)operator.type; 2277 int opcode = operator.opcode; 2278 if (opcode >= if_icmpeq && opcode <= if_icmple && 2279 rhs.type.constValue() instanceof Number number && 2280 number.intValue() == 0) { 2281 opcode = opcode + (ifeq - if_icmpeq); 2282 } else if (opcode >= if_acmpeq && opcode <= if_acmpne && 2283 TreeInfo.isNull(rhs)) { 2284 opcode = opcode + (if_acmp_null - if_acmpeq); 2285 } else { 2286 // The expected type of the right operand is 2287 // the second parameter type of the operator, except for 2288 // shifts with long shiftcount, where we convert the opcode 2289 // to a short shift and the expected type to int. 2290 Type rtype = operator.erasure(types).getParameterTypes().tail.head; 2291 if (opcode >= ishll && opcode <= lushrl) { 2292 opcode = opcode + (ishl - ishll); 2293 rtype = syms.intType; 2294 } 2295 // Generate code for right operand and load. 2296 genExpr(rhs, rtype).load(); 2297 // If there are two consecutive opcode instructions, 2298 // emit the first now. 2299 if (opcode >= (1 << preShift)) { 2300 code.emitop0(opcode >> preShift); 2301 opcode = opcode & 0xFF; 2302 } 2303 } 2304 if (opcode >= ifeq && opcode <= if_acmpne || 2305 opcode == if_acmp_null || opcode == if_acmp_nonnull) { 2306 return items.makeCondItem(opcode); 2307 } else { 2308 code.emitop0(opcode); 2309 return items.makeStackItem(optype.restype); 2310 } 2311 } 2312 2313 public void visitTypeCast(JCTypeCast tree) { 2314 result = genExpr(tree.expr, tree.clazz.type).load(); 2315 setTypeAnnotationPositions(tree.pos); 2316 // Additional code is only needed if we cast to a reference type 2317 // which is not statically a supertype of the expression's type. 2318 // For basic types, the coerce(...) in genExpr(...) will do 2319 // the conversion. 2320 if (!tree.clazz.type.isPrimitive() && 2321 !types.isSameType(tree.expr.type, tree.clazz.type) && 2322 types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) { 2323 code.emitop2(checkcast, checkDimension(tree.pos(), tree.clazz.type), PoolWriter::putClass); 2324 } 2325 } 2326 2327 public void visitWildcard(JCWildcard tree) { 2328 throw new AssertionError(this.getClass().getName()); 2329 } 2330 2331 public void visitTypeTest(JCInstanceOf tree) { 2332 genExpr(tree.expr, tree.expr.type).load(); 2333 setTypeAnnotationPositions(tree.pos); 2334 code.emitop2(instanceof_, makeRef(tree.pos(), tree.pattern.type)); 2335 result = items.makeStackItem(syms.booleanType); 2336 } 2337 2338 public void visitIndexed(JCArrayAccess tree) { 2339 genExpr(tree.indexed, tree.indexed.type).load(); 2340 genExpr(tree.index, syms.intType).load(); 2341 result = items.makeIndexedItem(tree.type); 2342 } 2343 2344 public void visitIdent(JCIdent tree) { 2345 Symbol sym = tree.sym; 2346 if (tree.name == names._this || tree.name == names._super) { 2347 Item res = tree.name == names._this 2348 ? items.makeThisItem() 2349 : items.makeSuperItem(); 2350 if (sym.kind == MTH) { 2351 // Generate code to address the constructor. 2352 res.load(); 2353 res = items.makeMemberItem(sym, true); 2354 } 2355 result = res; 2356 } else if (isInvokeDynamic(sym) || isConstantDynamic(sym)) { 2357 if (isConstantDynamic(sym)) { 2358 setTypeAnnotationPositions(tree.pos); 2359 } 2360 result = items.makeDynamicItem(sym); 2361 } else if (sym.kind == VAR && (sym.owner.kind == MTH || sym.owner.kind == VAR)) { 2362 result = items.makeLocalItem((VarSymbol)sym); 2363 } else if ((sym.flags() & STATIC) != 0) { 2364 if (!isAccessSuper(env.enclMethod)) 2365 sym = binaryQualifier(sym, env.enclClass.type); 2366 result = items.makeStaticItem(sym); 2367 } else { 2368 items.makeThisItem().load(); 2369 sym = binaryQualifier(sym, env.enclClass.type); 2370 result = items.makeMemberItem(sym, nonVirtualForPrivateAccess(sym)); 2371 } 2372 } 2373 2374 //where 2375 private boolean nonVirtualForPrivateAccess(Symbol sym) { 2376 boolean useVirtual = target.hasVirtualPrivateInvoke() && 2377 !disableVirtualizedPrivateInvoke; 2378 return !useVirtual && ((sym.flags() & PRIVATE) != 0); 2379 } 2380 2381 public void visitSelect(JCFieldAccess tree) { 2382 Symbol sym = tree.sym; 2383 2384 if (tree.name == names._class) { 2385 code.emitLdc((LoadableConstant)checkDimension(tree.pos(), tree.selected.type)); 2386 result = items.makeStackItem(pt); 2387 return; 2388 } 2389 2390 Symbol ssym = TreeInfo.symbol(tree.selected); 2391 2392 // Are we selecting via super? 2393 boolean selectSuper = 2394 ssym != null && (ssym.kind == TYP || ssym.name == names._super); 2395 2396 // Are we accessing a member of the superclass in an access method 2397 // resulting from a qualified super? 2398 boolean accessSuper = isAccessSuper(env.enclMethod); 2399 2400 Item base = (selectSuper) 2401 ? items.makeSuperItem() 2402 : genExpr(tree.selected, tree.selected.type); 2403 2404 if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) { 2405 // We are seeing a variable that is constant but its selecting 2406 // expression is not. 2407 if ((sym.flags() & STATIC) != 0) { 2408 if (!selectSuper && (ssym == null || ssym.kind != TYP)) 2409 base = base.load(); 2410 base.drop(); 2411 } else { 2412 base.load(); 2413 genNullCheck(tree.selected); 2414 } 2415 result = items. 2416 makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue()); 2417 } else { 2418 if (isInvokeDynamic(sym)) { 2419 result = items.makeDynamicItem(sym); 2420 return; 2421 } else { 2422 sym = binaryQualifier(sym, tree.selected.type); 2423 } 2424 if ((sym.flags() & STATIC) != 0) { 2425 if (!selectSuper && (ssym == null || ssym.kind != TYP)) 2426 base = base.load(); 2427 base.drop(); 2428 result = items.makeStaticItem(sym); 2429 } else { 2430 base.load(); 2431 if (sym == syms.lengthVar) { 2432 code.emitop0(arraylength); 2433 result = items.makeStackItem(syms.intType); 2434 } else { 2435 result = items. 2436 makeMemberItem(sym, 2437 nonVirtualForPrivateAccess(sym) || 2438 selectSuper || accessSuper); 2439 } 2440 } 2441 } 2442 } 2443 2444 public boolean isInvokeDynamic(Symbol sym) { 2445 return sym.kind == MTH && ((MethodSymbol)sym).isDynamic(); 2446 } 2447 2448 public void visitLiteral(JCLiteral tree) { 2449 if (tree.type.hasTag(BOT)) { 2450 code.emitop0(aconst_null); 2451 result = items.makeStackItem(tree.type); 2452 } 2453 else 2454 result = items.makeImmediateItem(tree.type, tree.value); 2455 } 2456 2457 public void visitLetExpr(LetExpr tree) { 2458 code.resolvePending(); 2459 2460 int limit = code.nextreg; 2461 int prevLetExprStart = code.setLetExprStackPos(code.state.stacksize); 2462 try { 2463 genStats(tree.defs, env); 2464 } finally { 2465 code.setLetExprStackPos(prevLetExprStart); 2466 } 2467 result = genExpr(tree.expr, tree.expr.type).load(); 2468 code.endScopes(limit); 2469 } 2470 2471 private void generateReferencesToPrunedTree(ClassSymbol classSymbol) { 2472 List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol); 2473 if (prunedInfo != null) { 2474 for (JCTree prunedTree: prunedInfo) { 2475 prunedTree.accept(classReferenceVisitor); 2476 } 2477 } 2478 } 2479 2480 /* ************************************************************************ 2481 * main method 2482 *************************************************************************/ 2483 2484 /** Generate code for a class definition. 2485 * @param env The attribution environment that belongs to the 2486 * outermost class containing this class definition. 2487 * We need this for resolving some additional symbols. 2488 * @param cdef The tree representing the class definition. 2489 * @return True if code is generated with no errors. 2490 */ 2491 public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) { 2492 try { 2493 attrEnv = env; 2494 ClassSymbol c = cdef.sym; 2495 this.toplevel = env.toplevel; 2496 this.endPosTable = toplevel.endPositions; 2497 /* method normalizeDefs() can add references to external classes into the constant pool 2498 */ 2499 cdef.defs = normalizeDefs(cdef.defs, c); 2500 generateReferencesToPrunedTree(c); 2501 Env<GenContext> localEnv = new Env<>(cdef, new GenContext()); 2502 localEnv.toplevel = env.toplevel; 2503 localEnv.enclClass = cdef; 2504 2505 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) { 2506 genDef(l.head, localEnv); 2507 } 2508 if (poolWriter.size() > PoolWriter.MAX_ENTRIES) { 2509 log.error(cdef.pos(), Errors.LimitPool); 2510 nerrs++; 2511 } 2512 if (nerrs != 0) { 2513 // if errors, discard code 2514 for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) { 2515 if (l.head.hasTag(METHODDEF)) 2516 ((JCMethodDecl) l.head).sym.code = null; 2517 } 2518 } 2519 cdef.defs = List.nil(); // discard trees 2520 return nerrs == 0; 2521 } finally { 2522 // note: this method does NOT support recursion. 2523 attrEnv = null; 2524 this.env = null; 2525 toplevel = null; 2526 endPosTable = null; 2527 nerrs = 0; 2528 qualifiedSymbolCache.clear(); 2529 } 2530 } 2531 2532 /* ************************************************************************ 2533 * Auxiliary classes 2534 *************************************************************************/ 2535 2536 /** An abstract class for finalizer generation. 2537 */ 2538 abstract class GenFinalizer { 2539 /** Generate code to clean up when unwinding. */ 2540 abstract void gen(); 2541 2542 /** Generate code to clean up at last. */ 2543 abstract void genLast(); 2544 2545 /** Does this finalizer have some nontrivial cleanup to perform? */ 2546 boolean hasFinalizer() { return true; } 2547 2548 /** Should be invoked after the try's body has been visited. */ 2549 void afterBody() {} 2550 } 2551 2552 /** code generation contexts, 2553 * to be used as type parameter for environments. 2554 */ 2555 static class GenContext { 2556 2557 /** A chain for all unresolved jumps that exit the current environment. 2558 */ 2559 Chain exit = null; 2560 2561 /** A chain for all unresolved jumps that continue in the 2562 * current environment. 2563 */ 2564 Chain cont = null; 2565 2566 /** A closure that generates the finalizer of the current environment. 2567 * Only set for Synchronized and Try contexts. 2568 */ 2569 GenFinalizer finalize = null; 2570 2571 /** Is this a switch statement? If so, allocate registers 2572 * even when the variable declaration is unreachable. 2573 */ 2574 boolean isSwitch = false; 2575 2576 /** A list buffer containing all gaps in the finalizer range, 2577 * where a catch all exception should not apply. 2578 */ 2579 ListBuffer<Integer> gaps = null; 2580 2581 /** Add given chain to exit chain. 2582 */ 2583 void addExit(Chain c) { 2584 exit = Code.mergeChains(c, exit); 2585 } 2586 2587 /** Add given chain to cont chain. 2588 */ 2589 void addCont(Chain c) { 2590 cont = Code.mergeChains(c, cont); 2591 } 2592 } 2593 2594 } --- EOF ---