1 /*
   2  * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.misc;
  27 
  28 import jdk.internal.vm.annotation.ForceInline;
  29 import jdk.internal.misc.VM;
  30 import jdk.internal.reflect.CallerSensitive;
  31 import jdk.internal.reflect.Reflection;
  32 
  33 import java.lang.invoke.MethodHandles;
  34 import java.lang.reflect.Field;
  35 import java.util.Set;
  36 
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * <em>Note:</em> It is the responsibility of the caller to make sure
  44  * arguments are checked before methods of this class are
  45  * called. While some rudimentary checks are performed on the input,
  46  * the checks are best effort and when performance is an overriding
  47  * priority, as when methods of this class are optimized by the
  48  * runtime compiler, some or all checks (if any) may be elided. Hence,
  49  * the caller must not rely on the checks and corresponding
  50  * exceptions!
  51  *
  52  * @author John R. Rose
  53  * @see #getUnsafe
  54  */
  55 
  56 public final class Unsafe {
  57 
  58     static {
  59         Reflection.registerMethodsToFilter(Unsafe.class, Set.of("getUnsafe"));
  60     }
  61 
  62     private Unsafe() {}
  63 
  64     private static final Unsafe theUnsafe = new Unsafe();
  65     private static final jdk.internal.misc.Unsafe theInternalUnsafe = jdk.internal.misc.Unsafe.getUnsafe();
  66 
  67     /**
  68      * Provides the caller with the capability of performing unsafe
  69      * operations.
  70      *
  71      * <p>The returned {@code Unsafe} object should be carefully guarded
  72      * by the caller, since it can be used to read and write data at arbitrary
  73      * memory addresses.  It must never be passed to untrusted code.
  74      *
  75      * <p>Most methods in this class are very low-level, and correspond to a
  76      * small number of hardware instructions (on typical machines).  Compilers
  77      * are encouraged to optimize these methods accordingly.
  78      *
  79      * <p>Here is a suggested idiom for using unsafe operations:
  80      *
  81      * <pre> {@code
  82      * class MyTrustedClass {
  83      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  84      *   ...
  85      *   private long myCountAddress = ...;
  86      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  87      * }}</pre>
  88      *
  89      * (It may assist compilers to make the local variable {@code final}.)
  90      *
  91      * @throws  SecurityException if the class loader of the caller
  92      *          class is not in the system domain in which all permissions
  93      *          are granted.
  94      */
  95     @CallerSensitive
  96     public static Unsafe getUnsafe() {
  97         Class<?> caller = Reflection.getCallerClass();
  98         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  99             throw new SecurityException("Unsafe");
 100         return theUnsafe;
 101     }
 102 
 103     /// peek and poke operations
 104     /// (compilers should optimize these to memory ops)
 105 
 106     // These work on object fields in the Java heap.
 107     // They will not work on elements of packed arrays.
 108 
 109     /**
 110      * Fetches a value from a given Java variable.
 111      * More specifically, fetches a field or array element within the given
 112      * object {@code o} at the given offset, or (if {@code o} is null)
 113      * from the memory address whose numerical value is the given offset.
 114      * <p>
 115      * The results are undefined unless one of the following cases is true:
 116      * <ul>
 117      * <li>The offset was obtained from {@link #objectFieldOffset} on
 118      * the {@link java.lang.reflect.Field} of some Java field and the object
 119      * referred to by {@code o} is of a class compatible with that
 120      * field's class.
 121      *
 122      * <li>The offset and object reference {@code o} (either null or
 123      * non-null) were both obtained via {@link #staticFieldOffset}
 124      * and {@link #staticFieldBase} (respectively) from the
 125      * reflective {@link Field} representation of some Java field.
 126      *
 127      * <li>The object referred to by {@code o} is an array, and the offset
 128      * is an integer of the form {@code B+N*S}, where {@code N} is
 129      * a valid index into the array, and {@code B} and {@code S} are
 130      * the values obtained by {@link #arrayBaseOffset} and {@link
 131      * #arrayIndexScale} (respectively) from the array's class.  The value
 132      * referred to is the {@code N}<em>th</em> element of the array.
 133      *
 134      * </ul>
 135      * <p>
 136      * If one of the above cases is true, the call references a specific Java
 137      * variable (field or array element).  However, the results are undefined
 138      * if that variable is not in fact of the type returned by this method.
 139      * <p>
 140      * This method refers to a variable by means of two parameters, and so
 141      * it provides (in effect) a <em>double-register</em> addressing mode
 142      * for Java variables.  When the object reference is null, this method
 143      * uses its offset as an absolute address.  This is similar in operation
 144      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 145      * <em>single-register</em> addressing mode for non-Java variables.
 146      * However, because Java variables may have a different layout in memory
 147      * from non-Java variables, programmers should not assume that these
 148      * two addressing modes are ever equivalent.  Also, programmers should
 149      * remember that offsets from the double-register addressing mode cannot
 150      * be portably confused with longs used in the single-register addressing
 151      * mode.
 152      *
 153      * @param o Java heap object in which the variable resides, if any, else
 154      *        null
 155      * @param offset indication of where the variable resides in a Java heap
 156      *        object, if any, else a memory address locating the variable
 157      *        statically
 158      * @return the value fetched from the indicated Java variable
 159      * @throws RuntimeException No defined exceptions are thrown, not even
 160      *         {@link NullPointerException}
 161      */
 162     @ForceInline
 163     public int getInt(Object o, long offset) {
 164         return theInternalUnsafe.getInt(o, offset);
 165     }
 166 
 167     /**
 168      * Stores a value into a given Java variable.
 169      * <p>
 170      * The first two parameters are interpreted exactly as with
 171      * {@link #getInt(Object, long)} to refer to a specific
 172      * Java variable (field or array element).  The given value
 173      * is stored into that variable.
 174      * <p>
 175      * The variable must be of the same type as the method
 176      * parameter {@code x}.
 177      *
 178      * @param o Java heap object in which the variable resides, if any, else
 179      *        null
 180      * @param offset indication of where the variable resides in a Java heap
 181      *        object, if any, else a memory address locating the variable
 182      *        statically
 183      * @param x the value to store into the indicated Java variable
 184      * @throws RuntimeException No defined exceptions are thrown, not even
 185      *         {@link NullPointerException}
 186      */
 187     @ForceInline
 188     public void putInt(Object o, long offset, int x) {
 189         theInternalUnsafe.putInt(o, offset, x);
 190     }
 191 
 192     /**
 193      * Fetches a reference value from a given Java variable.
 194      * @see #getInt(Object, long)
 195      */
 196     @ForceInline
 197     public Object getObject(Object o, long offset) {
 198         return theInternalUnsafe.getReference(o, offset);
 199     }
 200 
 201     /**
 202      * Stores a reference value into a given Java variable.
 203      * <p>
 204      * Unless the reference {@code x} being stored is either null
 205      * or matches the field type, the results are undefined.
 206      * If the reference {@code o} is non-null, card marks or
 207      * other store barriers for that object (if the VM requires them)
 208      * are updated.
 209      * @see #putInt(Object, long, int)
 210      */
 211     @ForceInline
 212     public void putObject(Object o, long offset, Object x) {
 213         theInternalUnsafe.putReference(o, offset, x);
 214     }
 215 
 216     /** @see #getInt(Object, long) */
 217     @ForceInline
 218     public boolean getBoolean(Object o, long offset) {
 219         return theInternalUnsafe.getBoolean(o, offset);
 220     }
 221 
 222     /** @see #putInt(Object, long, int) */
 223     @ForceInline
 224     public void putBoolean(Object o, long offset, boolean x) {
 225         theInternalUnsafe.putBoolean(o, offset, x);
 226     }
 227 
 228     /** @see #getInt(Object, long) */
 229     @ForceInline
 230     public byte getByte(Object o, long offset) {
 231         return theInternalUnsafe.getByte(o, offset);
 232     }
 233 
 234     /** @see #putInt(Object, long, int) */
 235     @ForceInline
 236     public void putByte(Object o, long offset, byte x) {
 237         theInternalUnsafe.putByte(o, offset, x);
 238     }
 239 
 240     /** @see #getInt(Object, long) */
 241     @ForceInline
 242     public short getShort(Object o, long offset) {
 243         return theInternalUnsafe.getShort(o, offset);
 244     }
 245 
 246     /** @see #putInt(Object, long, int) */
 247     @ForceInline
 248     public void putShort(Object o, long offset, short x) {
 249         theInternalUnsafe.putShort(o, offset, x);
 250     }
 251 
 252     /** @see #getInt(Object, long) */
 253     @ForceInline
 254     public char getChar(Object o, long offset) {
 255         return theInternalUnsafe.getChar(o, offset);
 256     }
 257 
 258     /** @see #putInt(Object, long, int) */
 259     @ForceInline
 260     public void putChar(Object o, long offset, char x) {
 261         theInternalUnsafe.putChar(o, offset, x);
 262     }
 263 
 264     /** @see #getInt(Object, long) */
 265     @ForceInline
 266     public long getLong(Object o, long offset) {
 267         return theInternalUnsafe.getLong(o, offset);
 268     }
 269 
 270     /** @see #putInt(Object, long, int) */
 271     @ForceInline
 272     public void putLong(Object o, long offset, long x) {
 273         theInternalUnsafe.putLong(o, offset, x);
 274     }
 275 
 276     /** @see #getInt(Object, long) */
 277     @ForceInline
 278     public float getFloat(Object o, long offset) {
 279         return theInternalUnsafe.getFloat(o, offset);
 280     }
 281 
 282     /** @see #putInt(Object, long, int) */
 283     @ForceInline
 284     public void putFloat(Object o, long offset, float x) {
 285         theInternalUnsafe.putFloat(o, offset, x);
 286     }
 287 
 288     /** @see #getInt(Object, long) */
 289     @ForceInline
 290     public double getDouble(Object o, long offset) {
 291         return theInternalUnsafe.getDouble(o, offset);
 292     }
 293 
 294     /** @see #putInt(Object, long, int) */
 295     @ForceInline
 296     public void putDouble(Object o, long offset, double x) {
 297         theInternalUnsafe.putDouble(o, offset, x);
 298     }
 299 
 300     // These work on values in the C heap.
 301 
 302     /**
 303      * Fetches a value from a given memory address.  If the address is zero, or
 304      * does not point into a block obtained from {@link #allocateMemory}, the
 305      * results are undefined.
 306      *
 307      * @see #allocateMemory
 308      */
 309     @ForceInline
 310     public byte getByte(long address) {
 311         return theInternalUnsafe.getByte(address);
 312     }
 313 
 314     /**
 315      * Stores a value into a given memory address.  If the address is zero, or
 316      * does not point into a block obtained from {@link #allocateMemory}, the
 317      * results are undefined.
 318      *
 319      * @see #getByte(long)
 320      */
 321     @ForceInline
 322     public void putByte(long address, byte x) {
 323         theInternalUnsafe.putByte(address, x);
 324     }
 325 
 326     /** @see #getByte(long) */
 327     @ForceInline
 328     public short getShort(long address) {
 329         return theInternalUnsafe.getShort(address);
 330     }
 331 
 332     /** @see #putByte(long, byte) */
 333     @ForceInline
 334     public void putShort(long address, short x) {
 335         theInternalUnsafe.putShort(address, x);
 336     }
 337 
 338     /** @see #getByte(long) */
 339     @ForceInline
 340     public char getChar(long address) {
 341         return theInternalUnsafe.getChar(address);
 342     }
 343 
 344     /** @see #putByte(long, byte) */
 345     @ForceInline
 346     public void putChar(long address, char x) {
 347         theInternalUnsafe.putChar(address, x);
 348     }
 349 
 350     /** @see #getByte(long) */
 351     @ForceInline
 352     public int getInt(long address) {
 353         return theInternalUnsafe.getInt(address);
 354     }
 355 
 356     /** @see #putByte(long, byte) */
 357     @ForceInline
 358     public void putInt(long address, int x) {
 359         theInternalUnsafe.putInt(address, x);
 360     }
 361 
 362     /** @see #getByte(long) */
 363     @ForceInline
 364     public long getLong(long address) {
 365         return theInternalUnsafe.getLong(address);
 366     }
 367 
 368     /** @see #putByte(long, byte) */
 369     @ForceInline
 370     public void putLong(long address, long x) {
 371         theInternalUnsafe.putLong(address, x);
 372     }
 373 
 374     /** @see #getByte(long) */
 375     @ForceInline
 376     public float getFloat(long address) {
 377         return theInternalUnsafe.getFloat(address);
 378     }
 379 
 380     /** @see #putByte(long, byte) */
 381     @ForceInline
 382     public void putFloat(long address, float x) {
 383         theInternalUnsafe.putFloat(address, x);
 384     }
 385 
 386     /** @see #getByte(long) */
 387     @ForceInline
 388     public double getDouble(long address) {
 389         return theInternalUnsafe.getDouble(address);
 390     }
 391 
 392     /** @see #putByte(long, byte) */
 393     @ForceInline
 394     public void putDouble(long address, double x) {
 395         theInternalUnsafe.putDouble(address, x);
 396     }
 397 
 398 
 399     /**
 400      * Fetches a native pointer from a given memory address.  If the address is
 401      * zero, or does not point into a block obtained from {@link
 402      * #allocateMemory}, the results are undefined.
 403      *
 404      * <p>If the native pointer is less than 64 bits wide, it is extended as
 405      * an unsigned number to a Java long.  The pointer may be indexed by any
 406      * given byte offset, simply by adding that offset (as a simple integer) to
 407      * the long representing the pointer.  The number of bytes actually read
 408      * from the target address may be determined by consulting {@link
 409      * #addressSize}.
 410      *
 411      * @see #allocateMemory
 412      */
 413     @ForceInline
 414     public long getAddress(long address) {
 415         return theInternalUnsafe.getAddress(address);
 416     }
 417 
 418     /**
 419      * Stores a native pointer into a given memory address.  If the address is
 420      * zero, or does not point into a block obtained from {@link
 421      * #allocateMemory}, the results are undefined.
 422      *
 423      * <p>The number of bytes actually written at the target address may be
 424      * determined by consulting {@link #addressSize}.
 425      *
 426      * @see #getAddress(long)
 427      */
 428     @ForceInline
 429     public void putAddress(long address, long x) {
 430         theInternalUnsafe.putAddress(address, x);
 431     }
 432 
 433 
 434     /// wrappers for malloc, realloc, free:
 435 
 436     /**
 437      * Allocates a new block of native memory, of the given size in bytes.  The
 438      * contents of the memory are uninitialized; they will generally be
 439      * garbage.  The resulting native pointer will be zero if and only if the
 440      * requested size is zero.  The resulting native pointer will be aligned for
 441      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 442      * or resize it with {@link #reallocateMemory}.
 443      *
 444      * <em>Note:</em> It is the responsibility of the caller to make
 445      * sure arguments are checked before the methods are called. While
 446      * some rudimentary checks are performed on the input, the checks
 447      * are best effort and when performance is an overriding priority,
 448      * as when methods of this class are optimized by the runtime
 449      * compiler, some or all checks (if any) may be elided. Hence, the
 450      * caller must not rely on the checks and corresponding
 451      * exceptions!
 452      *
 453      * @throws RuntimeException if the size is negative or too large
 454      *         for the native size_t type
 455      *
 456      * @throws OutOfMemoryError if the allocation is refused by the system
 457      *
 458      * @see #getByte(long)
 459      * @see #putByte(long, byte)
 460      */
 461     @ForceInline
 462     public long allocateMemory(long bytes) {
 463         return theInternalUnsafe.allocateMemory(bytes);
 464     }
 465 
 466     /**
 467      * Resizes a new block of native memory, to the given size in bytes.  The
 468      * contents of the new block past the size of the old block are
 469      * uninitialized; they will generally be garbage.  The resulting native
 470      * pointer will be zero if and only if the requested size is zero.  The
 471      * resulting native pointer will be aligned for all value types.  Dispose
 472      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 473      * #reallocateMemory}.  The address passed to this method may be null, in
 474      * which case an allocation will be performed.
 475      *
 476      * <em>Note:</em> It is the responsibility of the caller to make
 477      * sure arguments are checked before the methods are called. While
 478      * some rudimentary checks are performed on the input, the checks
 479      * are best effort and when performance is an overriding priority,
 480      * as when methods of this class are optimized by the runtime
 481      * compiler, some or all checks (if any) may be elided. Hence, the
 482      * caller must not rely on the checks and corresponding
 483      * exceptions!
 484      *
 485      * @throws RuntimeException if the size is negative or too large
 486      *         for the native size_t type
 487      *
 488      * @throws OutOfMemoryError if the allocation is refused by the system
 489      *
 490      * @see #allocateMemory
 491      */
 492     @ForceInline
 493     public long reallocateMemory(long address, long bytes) {
 494         return theInternalUnsafe.reallocateMemory(address, bytes);
 495     }
 496 
 497     /**
 498      * Sets all bytes in a given block of memory to a fixed value
 499      * (usually zero).
 500      *
 501      * <p>This method determines a block's base address by means of two parameters,
 502      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 503      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 504      * the offset supplies an absolute base address.
 505      *
 506      * <p>The stores are in coherent (atomic) units of a size determined
 507      * by the address and length parameters.  If the effective address and
 508      * length are all even modulo 8, the stores take place in 'long' units.
 509      * If the effective address and length are (resp.) even modulo 4 or 2,
 510      * the stores take place in units of 'int' or 'short'.
 511      *
 512      * <em>Note:</em> It is the responsibility of the caller to make
 513      * sure arguments are checked before the methods are called. While
 514      * some rudimentary checks are performed on the input, the checks
 515      * are best effort and when performance is an overriding priority,
 516      * as when methods of this class are optimized by the runtime
 517      * compiler, some or all checks (if any) may be elided. Hence, the
 518      * caller must not rely on the checks and corresponding
 519      * exceptions!
 520      *
 521      * @throws RuntimeException if any of the arguments is invalid
 522      *
 523      * @since 1.7
 524      */
 525     @ForceInline
 526     public void setMemory(Object o, long offset, long bytes, byte value) {
 527         theInternalUnsafe.setMemory(o, offset, bytes, value);
 528     }
 529 
 530     /**
 531      * Sets all bytes in a given block of memory to a fixed value
 532      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 533      * as discussed in {@link #getInt(Object,long)}.
 534      *
 535      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 536      */
 537     @ForceInline
 538     public void setMemory(long address, long bytes, byte value) {
 539         theInternalUnsafe.setMemory(address, bytes, value);
 540     }
 541 
 542     /**
 543      * Sets all bytes in a given block of memory to a copy of another
 544      * block.
 545      *
 546      * <p>This method determines each block's base address by means of two parameters,
 547      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 548      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 549      * the offset supplies an absolute base address.
 550      *
 551      * <p>The transfers are in coherent (atomic) units of a size determined
 552      * by the address and length parameters.  If the effective addresses and
 553      * length are all even modulo 8, the transfer takes place in 'long' units.
 554      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 555      * the transfer takes place in units of 'int' or 'short'.
 556      *
 557      * <em>Note:</em> It is the responsibility of the caller to make
 558      * sure arguments are checked before the methods are called. While
 559      * some rudimentary checks are performed on the input, the checks
 560      * are best effort and when performance is an overriding priority,
 561      * as when methods of this class are optimized by the runtime
 562      * compiler, some or all checks (if any) may be elided. Hence, the
 563      * caller must not rely on the checks and corresponding
 564      * exceptions!
 565      *
 566      * @throws RuntimeException if any of the arguments is invalid
 567      *
 568      * @since 1.7
 569      */
 570     @ForceInline
 571     public void copyMemory(Object srcBase, long srcOffset,
 572                            Object destBase, long destOffset,
 573                            long bytes) {
 574         theInternalUnsafe.copyMemory(srcBase, srcOffset, destBase, destOffset, bytes);
 575     }
 576 
 577     /**
 578      * Sets all bytes in a given block of memory to a copy of another
 579      * block.  This provides a <em>single-register</em> addressing mode,
 580      * as discussed in {@link #getInt(Object,long)}.
 581      *
 582      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 583      */
 584     @ForceInline
 585     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 586         theInternalUnsafe.copyMemory(srcAddress, destAddress, bytes);
 587     }
 588 
 589     /**
 590      * Disposes of a block of native memory, as obtained from {@link
 591      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 592      * this method may be null, in which case no action is taken.
 593      *
 594      * <em>Note:</em> It is the responsibility of the caller to make
 595      * sure arguments are checked before the methods are called. While
 596      * some rudimentary checks are performed on the input, the checks
 597      * are best effort and when performance is an overriding priority,
 598      * as when methods of this class are optimized by the runtime
 599      * compiler, some or all checks (if any) may be elided. Hence, the
 600      * caller must not rely on the checks and corresponding
 601      * exceptions!
 602      *
 603      * @throws RuntimeException if any of the arguments is invalid
 604      *
 605      * @see #allocateMemory
 606      */
 607     @ForceInline
 608     public void freeMemory(long address) {
 609         theInternalUnsafe.freeMemory(address);
 610     }
 611 
 612     /// random queries
 613 
 614     /**
 615      * This constant differs from all results that will ever be returned from
 616      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 617      * or {@link #arrayBaseOffset}.
 618      */
 619     public static final int INVALID_FIELD_OFFSET = jdk.internal.misc.Unsafe.INVALID_FIELD_OFFSET;
 620 
 621     /**
 622      * Reports the location of a given field in the storage allocation of its
 623      * class.  Do not expect to perform any sort of arithmetic on this offset;
 624      * it is just a cookie which is passed to the unsafe heap memory accessors.
 625      *
 626      * <p>Any given field will always have the same offset and base, and no
 627      * two distinct fields of the same class will ever have the same offset
 628      * and base.
 629      *
 630      * <p>As of 1.4.1, offsets for fields are represented as long values,
 631      * although the Sun JVM does not use the most significant 32 bits.
 632      * However, JVM implementations which store static fields at absolute
 633      * addresses can use long offsets and null base pointers to express
 634      * the field locations in a form usable by {@link #getInt(Object,long)}.
 635      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 636      * must preserve all bits of static field offsets.
 637      *
 638      * @deprecated The guarantee that a field will always have the same offset
 639      * and base may not be true in a future release. The ability to provide an
 640      * offset and object reference to a heap memory accessor will be removed
 641      * in a future release. Use {@link java.lang.invoke.VarHandle} instead.
 642      *
 643      * @see #getInt(Object, long)
 644      */
 645     @Deprecated(since="18")
 646     @ForceInline
 647     public long objectFieldOffset(Field f) {
 648         if (f == null) {
 649             throw new NullPointerException();
 650         }
 651         Class<?> declaringClass = f.getDeclaringClass();
 652         if (declaringClass.isHidden()) {
 653             throw new UnsupportedOperationException("can't get field offset on a hidden class: " + f);
 654         }
 655         if (declaringClass.isRecord()) {
 656             throw new UnsupportedOperationException("can't get field offset on a record class: " + f);
 657         }
 658         return theInternalUnsafe.objectFieldOffset(f);
 659     }
 660 
 661     /**
 662      * Reports the location of a given static field, in conjunction with {@link
 663      * #staticFieldBase}.
 664      * <p>Do not expect to perform any sort of arithmetic on this offset;
 665      * it is just a cookie which is passed to the unsafe heap memory accessors.
 666      *
 667      * <p>Any given field will always have the same offset, and no two distinct
 668      * fields of the same class will ever have the same offset.
 669      *
 670      * <p>As of 1.4.1, offsets for fields are represented as long values,
 671      * although the Sun JVM does not use the most significant 32 bits.
 672      * It is hard to imagine a JVM technology which needs more than
 673      * a few bits to encode an offset within a non-array object,
 674      * However, for consistency with other methods in this class,
 675      * this method reports its result as a long value.
 676      *
 677      * @deprecated The guarantee that a field will always have the same offset
 678      * and base may not be true in a future release. The ability to provide an
 679      * offset and object reference to a heap memory accessor will be removed
 680      * in a future release. Use {@link java.lang.invoke.VarHandle} instead.
 681      *
 682      * @see #getInt(Object, long)
 683      */
 684     @Deprecated(since="18")
 685     @ForceInline
 686     public long staticFieldOffset(Field f) {
 687         if (f == null) {
 688             throw new NullPointerException();
 689         }
 690         Class<?> declaringClass = f.getDeclaringClass();
 691         if (declaringClass.isHidden()) {
 692             throw new UnsupportedOperationException("can't get field offset on a hidden class: " + f);
 693         }
 694         if (declaringClass.isRecord()) {
 695             throw new UnsupportedOperationException("can't get field offset on a record class: " + f);
 696         }
 697         return theInternalUnsafe.staticFieldOffset(f);
 698     }
 699 
 700     /**
 701      * Reports the location of a given static field, in conjunction with {@link
 702      * #staticFieldOffset}.
 703      * <p>Fetch the base "Object", if any, with which static fields of the
 704      * given class can be accessed via methods like {@link #getInt(Object,
 705      * long)}.  This value may be null.  This value may refer to an object
 706      * which is a "cookie", not guaranteed to be a real Object, and it should
 707      * not be used in any way except as argument to the get and put routines in
 708      * this class.
 709      *
 710      * @deprecated The guarantee that a field will always have the same offset
 711      * and base may not be true in a future release. The ability to provide an
 712      * offset and object reference to a heap memory accessor will be removed
 713      * in a future release. Use {@link java.lang.invoke.VarHandle} instead.
 714      */
 715     @Deprecated(since="18")
 716     @ForceInline
 717     public Object staticFieldBase(Field f) {
 718         if (f == null) {
 719             throw new NullPointerException();
 720         }
 721         Class<?> declaringClass = f.getDeclaringClass();
 722         if (declaringClass.isHidden()) {
 723             throw new UnsupportedOperationException("can't get base address on a hidden class: " + f);
 724         }
 725         if (declaringClass.isRecord()) {
 726             throw new UnsupportedOperationException("can't get base address on a record class: " + f);
 727         }
 728         return theInternalUnsafe.staticFieldBase(f);
 729     }
 730 
 731     /**
 732      * Reports the offset of the first element in the storage allocation of a
 733      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 734      * for the same class, you may use that scale factor, together with this
 735      * base offset, to form new offsets to access elements of arrays of the
 736      * given class.
 737      *
 738      * @see #getInt(Object, long)
 739      * @see #putInt(Object, long, int)
 740      */
 741     @ForceInline
 742     public int arrayBaseOffset(Class<?> arrayClass) {
 743         return theInternalUnsafe.arrayBaseOffset(arrayClass);
 744     }
 745 
 746     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 747     public static final int ARRAY_BOOLEAN_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_BASE_OFFSET;
 748 
 749     /** The value of {@code arrayBaseOffset(byte[].class)} */
 750     public static final int ARRAY_BYTE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
 751 
 752     /** The value of {@code arrayBaseOffset(short[].class)} */
 753     public static final int ARRAY_SHORT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_SHORT_BASE_OFFSET;
 754 
 755     /** The value of {@code arrayBaseOffset(char[].class)} */
 756     public static final int ARRAY_CHAR_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_CHAR_BASE_OFFSET;
 757 
 758     /** The value of {@code arrayBaseOffset(int[].class)} */
 759     public static final int ARRAY_INT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_INT_BASE_OFFSET;
 760 
 761     /** The value of {@code arrayBaseOffset(long[].class)} */
 762     public static final int ARRAY_LONG_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_LONG_BASE_OFFSET;
 763 
 764     /** The value of {@code arrayBaseOffset(float[].class)} */
 765     public static final int ARRAY_FLOAT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_FLOAT_BASE_OFFSET;
 766 
 767     /** The value of {@code arrayBaseOffset(double[].class)} */
 768     public static final int ARRAY_DOUBLE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_BASE_OFFSET;
 769 
 770     /** The value of {@code arrayBaseOffset(Object[].class)} */
 771     public static final int ARRAY_OBJECT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_OBJECT_BASE_OFFSET;
 772 
 773     /**
 774      * Reports the scale factor for addressing elements in the storage
 775      * allocation of a given array class.  However, arrays of "narrow" types
 776      * will generally not work properly with accessors like {@link
 777      * #getByte(Object, long)}, so the scale factor for such classes is reported
 778      * as zero.
 779      *
 780      * @see #arrayBaseOffset
 781      * @see #getInt(Object, long)
 782      * @see #putInt(Object, long, int)
 783      */
 784     @ForceInline
 785     public int arrayIndexScale(Class<?> arrayClass) {
 786         return theInternalUnsafe.arrayIndexScale(arrayClass);
 787     }
 788 
 789     /** The value of {@code arrayIndexScale(boolean[].class)} */
 790     public static final int ARRAY_BOOLEAN_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_INDEX_SCALE;
 791 
 792     /** The value of {@code arrayIndexScale(byte[].class)} */
 793     public static final int ARRAY_BYTE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BYTE_INDEX_SCALE;
 794 
 795     /** The value of {@code arrayIndexScale(short[].class)} */
 796     public static final int ARRAY_SHORT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_SHORT_INDEX_SCALE;
 797 
 798     /** The value of {@code arrayIndexScale(char[].class)} */
 799     public static final int ARRAY_CHAR_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_CHAR_INDEX_SCALE;
 800 
 801     /** The value of {@code arrayIndexScale(int[].class)} */
 802     public static final int ARRAY_INT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_INT_INDEX_SCALE;
 803 
 804     /** The value of {@code arrayIndexScale(long[].class)} */
 805     public static final int ARRAY_LONG_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_LONG_INDEX_SCALE;
 806 
 807     /** The value of {@code arrayIndexScale(float[].class)} */
 808     public static final int ARRAY_FLOAT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_FLOAT_INDEX_SCALE;
 809 
 810     /** The value of {@code arrayIndexScale(double[].class)} */
 811     public static final int ARRAY_DOUBLE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_INDEX_SCALE;
 812 
 813     /** The value of {@code arrayIndexScale(Object[].class)} */
 814     public static final int ARRAY_OBJECT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_OBJECT_INDEX_SCALE;
 815 
 816     /**
 817      * Reports the size in bytes of a native pointer, as stored via {@link
 818      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 819      * other primitive types (as stored in native memory blocks) is determined
 820      * fully by their information content.
 821      */
 822     @ForceInline
 823     public int addressSize() {
 824         return theInternalUnsafe.addressSize();
 825     }
 826 
 827     /** The value of {@code addressSize()} */
 828     public static final int ADDRESS_SIZE = theInternalUnsafe.addressSize();
 829 
 830     /**
 831      * Reports the size in bytes of a native memory page (whatever that is).
 832      * This value will always be a power of two.
 833      */
 834     @ForceInline
 835     public int pageSize() {
 836         return theInternalUnsafe.pageSize();
 837     }
 838 
 839 
 840     /// random trusted operations from JNI:
 841 
 842     /**
 843      * Allocates an instance but does not run any constructor.
 844      * Initializes the class if it has not yet been.
 845      */
 846     @ForceInline
 847     public Object allocateInstance(Class<?> cls)
 848         throws InstantiationException {
 849         return theInternalUnsafe.allocateInstance(cls);
 850     }
 851 
 852     /** Throws the exception without telling the verifier. */
 853     @ForceInline
 854     public void throwException(Throwable ee) {
 855         theInternalUnsafe.throwException(ee);
 856     }
 857 
 858     /**
 859      * Atomically updates Java variable to {@code x} if it is currently
 860      * holding {@code expected}.
 861      *
 862      * <p>This operation has memory semantics of a {@code volatile} read
 863      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 864      *
 865      * @return {@code true} if successful
 866      */
 867     @ForceInline
 868     public final boolean compareAndSwapObject(Object o, long offset,
 869                                               Object expected,
 870                                               Object x) {
 871         return theInternalUnsafe.compareAndSetReference(o, offset, expected, x);
 872     }
 873 
 874     /**
 875      * Atomically updates Java variable to {@code x} if it is currently
 876      * holding {@code expected}.
 877      *
 878      * <p>This operation has memory semantics of a {@code volatile} read
 879      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 880      *
 881      * @return {@code true} if successful
 882      */
 883     @ForceInline
 884     public final boolean compareAndSwapInt(Object o, long offset,
 885                                            int expected,
 886                                            int x) {
 887         return theInternalUnsafe.compareAndSetInt(o, offset, expected, x);
 888     }
 889 
 890     /**
 891      * Atomically updates Java variable to {@code x} if it is currently
 892      * holding {@code expected}.
 893      *
 894      * <p>This operation has memory semantics of a {@code volatile} read
 895      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 896      *
 897      * @return {@code true} if successful
 898      */
 899     @ForceInline
 900     public final boolean compareAndSwapLong(Object o, long offset,
 901                                             long expected,
 902                                             long x) {
 903         return theInternalUnsafe.compareAndSetLong(o, offset, expected, x);
 904     }
 905 
 906     /**
 907      * Fetches a reference value from a given Java variable, with volatile
 908      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 909      */
 910     @ForceInline
 911     public Object getObjectVolatile(Object o, long offset) {
 912         return theInternalUnsafe.getReferenceVolatile(o, offset);
 913     }
 914 
 915     /**
 916      * Stores a reference value into a given Java variable, with
 917      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 918      */
 919     @ForceInline
 920     public void putObjectVolatile(Object o, long offset, Object x) {
 921         theInternalUnsafe.putReferenceVolatile(o, offset, x);
 922     }
 923 
 924     /** Volatile version of {@link #getInt(Object, long)}  */
 925     @ForceInline
 926     public int getIntVolatile(Object o, long offset) {
 927         return theInternalUnsafe.getIntVolatile(o, offset);
 928     }
 929 
 930     /** Volatile version of {@link #putInt(Object, long, int)}  */
 931     @ForceInline
 932     public void putIntVolatile(Object o, long offset, int x) {
 933         theInternalUnsafe.putIntVolatile(o, offset, x);
 934     }
 935 
 936     /** Volatile version of {@link #getBoolean(Object, long)}  */
 937     @ForceInline
 938     public boolean getBooleanVolatile(Object o, long offset) {
 939         return theInternalUnsafe.getBooleanVolatile(o, offset);
 940     }
 941 
 942     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 943     @ForceInline
 944     public void putBooleanVolatile(Object o, long offset, boolean x) {
 945         theInternalUnsafe.putBooleanVolatile(o, offset, x);
 946     }
 947 
 948     /** Volatile version of {@link #getByte(Object, long)}  */
 949     @ForceInline
 950     public byte getByteVolatile(Object o, long offset) {
 951         return theInternalUnsafe.getByteVolatile(o, offset);
 952     }
 953 
 954     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 955     @ForceInline
 956     public void putByteVolatile(Object o, long offset, byte x) {
 957         theInternalUnsafe.putByteVolatile(o, offset, x);
 958     }
 959 
 960     /** Volatile version of {@link #getShort(Object, long)}  */
 961     @ForceInline
 962     public short getShortVolatile(Object o, long offset) {
 963         return theInternalUnsafe.getShortVolatile(o, offset);
 964     }
 965 
 966     /** Volatile version of {@link #putShort(Object, long, short)}  */
 967     @ForceInline
 968     public void putShortVolatile(Object o, long offset, short x) {
 969         theInternalUnsafe.putShortVolatile(o, offset, x);
 970     }
 971 
 972     /** Volatile version of {@link #getChar(Object, long)}  */
 973     @ForceInline
 974     public char getCharVolatile(Object o, long offset) {
 975         return theInternalUnsafe.getCharVolatile(o, offset);
 976     }
 977 
 978     /** Volatile version of {@link #putChar(Object, long, char)}  */
 979     @ForceInline
 980     public void putCharVolatile(Object o, long offset, char x) {
 981         theInternalUnsafe.putCharVolatile(o, offset, x);
 982     }
 983 
 984     /** Volatile version of {@link #getLong(Object, long)}  */
 985     @ForceInline
 986     public long getLongVolatile(Object o, long offset) {
 987         return theInternalUnsafe.getLongVolatile(o, offset);
 988     }
 989 
 990     /** Volatile version of {@link #putLong(Object, long, long)}  */
 991     @ForceInline
 992     public void putLongVolatile(Object o, long offset, long x) {
 993         theInternalUnsafe.putLongVolatile(o, offset, x);
 994     }
 995 
 996     /** Volatile version of {@link #getFloat(Object, long)}  */
 997     @ForceInline
 998     public float getFloatVolatile(Object o, long offset) {
 999         return theInternalUnsafe.getFloatVolatile(o, offset);
1000     }
1001 
1002     /** Volatile version of {@link #putFloat(Object, long, float)}  */
1003     @ForceInline
1004     public void putFloatVolatile(Object o, long offset, float x) {
1005         theInternalUnsafe.putFloatVolatile(o, offset, x);
1006     }
1007 
1008     /** Volatile version of {@link #getDouble(Object, long)}  */
1009     @ForceInline
1010     public double getDoubleVolatile(Object o, long offset) {
1011         return theInternalUnsafe.getDoubleVolatile(o, offset);
1012     }
1013 
1014     /** Volatile version of {@link #putDouble(Object, long, double)}  */
1015     @ForceInline
1016     public void putDoubleVolatile(Object o, long offset, double x) {
1017         theInternalUnsafe.putDoubleVolatile(o, offset, x);
1018     }
1019 
1020     /**
1021      * Version of {@link #putObjectVolatile(Object, long, Object)}
1022      * that does not guarantee immediate visibility of the store to
1023      * other threads. This method is generally only useful if the
1024      * underlying field is a Java volatile (or if an array cell, one
1025      * that is otherwise only accessed using volatile accesses).
1026      *
1027      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
1028      */
1029     @ForceInline
1030     public void putOrderedObject(Object o, long offset, Object x) {
1031         theInternalUnsafe.putReferenceRelease(o, offset, x);
1032     }
1033 
1034     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
1035     @ForceInline
1036     public void putOrderedInt(Object o, long offset, int x) {
1037         theInternalUnsafe.putIntRelease(o, offset, x);
1038     }
1039 
1040     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
1041     @ForceInline
1042     public void putOrderedLong(Object o, long offset, long x) {
1043         theInternalUnsafe.putLongRelease(o, offset, x);
1044     }
1045 
1046     /**
1047      * Unblocks the given thread blocked on {@code park}, or, if it is
1048      * not blocked, causes the subsequent call to {@code park} not to
1049      * block.  Note: this operation is "unsafe" solely because the
1050      * caller must somehow ensure that the thread has not been
1051      * destroyed. Nothing special is usually required to ensure this
1052      * when called from Java (in which there will ordinarily be a live
1053      * reference to the thread) but this is not nearly-automatically
1054      * so when calling from native code.
1055      *
1056      * @param thread the thread to unpark.
1057      *
1058      * @deprecated Use {@link java.util.concurrent.locks.LockSupport#unpark(Thread)} instead.
1059      */
1060     @Deprecated(since="22", forRemoval=true)
1061     @ForceInline
1062     public void unpark(Object thread) {
1063         theInternalUnsafe.unpark(thread);
1064     }
1065 
1066     /**
1067      * Blocks current thread, returning when a balancing
1068      * {@code unpark} occurs, or a balancing {@code unpark} has
1069      * already occurred, or the thread is interrupted, or, if not
1070      * absolute and time is not zero, the given time nanoseconds have
1071      * elapsed, or if absolute, the given deadline in milliseconds
1072      * since Epoch has passed, or spuriously (i.e., returning for no
1073      * "reason"). Note: This operation is in the Unsafe class only
1074      * because {@code unpark} is, so it would be strange to place it
1075      * elsewhere.
1076      *
1077      * @deprecated Use {@link java.util.concurrent.locks.LockSupport#parkNanos(long)} or
1078      * {@link java.util.concurrent.locks.LockSupport#parkUntil(long)} instead.
1079      */
1080     @Deprecated(since="22", forRemoval=true)
1081     @ForceInline
1082     public void park(boolean isAbsolute, long time) {
1083         theInternalUnsafe.park(isAbsolute, time);
1084     }
1085 
1086     /**
1087      * Gets the load average in the system run queue assigned
1088      * to the available processors averaged over various periods of time.
1089      * This method retrieves the given {@code nelem} samples and
1090      * assigns to the elements of the given {@code loadavg} array.
1091      * The system imposes a maximum of 3 samples, representing
1092      * averages over the last 1,  5,  and  15 minutes, respectively.
1093      *
1094      * @param loadavg an array of double of size nelems
1095      * @param nelems the number of samples to be retrieved and
1096      *        must be 1 to 3.
1097      *
1098      * @return the number of samples actually retrieved; or -1
1099      *         if the load average is unobtainable.
1100      *
1101      * @deprecated Use {@link java.lang.management.OperatingSystemMXBean#getSystemLoadAverage()}
1102      * instead.
1103      */
1104     @Deprecated(since="22", forRemoval=true)
1105     @ForceInline
1106     public int getLoadAverage(double[] loadavg, int nelems) {
1107         return theInternalUnsafe.getLoadAverage(loadavg, nelems);
1108     }
1109 
1110     // The following contain CAS-based Java implementations used on
1111     // platforms not supporting native instructions
1112 
1113     /**
1114      * Atomically adds the given value to the current value of a field
1115      * or array element within the given object {@code o}
1116      * at the given {@code offset}.
1117      *
1118      * @param o object/array to update the field/element in
1119      * @param offset field/element offset
1120      * @param delta the value to add
1121      * @return the previous value
1122      * @since 1.8
1123      */
1124     @ForceInline
1125     public final int getAndAddInt(Object o, long offset, int delta) {
1126         return theInternalUnsafe.getAndAddInt(o, offset, delta);
1127     }
1128 
1129     /**
1130      * Atomically adds the given value to the current value of a field
1131      * or array element within the given object {@code o}
1132      * at the given {@code offset}.
1133      *
1134      * @param o object/array to update the field/element in
1135      * @param offset field/element offset
1136      * @param delta the value to add
1137      * @return the previous value
1138      * @since 1.8
1139      */
1140     @ForceInline
1141     public final long getAndAddLong(Object o, long offset, long delta) {
1142         return theInternalUnsafe.getAndAddLong(o, offset, delta);
1143     }
1144 
1145     /**
1146      * Atomically exchanges the given value with the current value of
1147      * a field or array element within the given object {@code o}
1148      * at the given {@code offset}.
1149      *
1150      * @param o object/array to update the field/element in
1151      * @param offset field/element offset
1152      * @param newValue new value
1153      * @return the previous value
1154      * @since 1.8
1155      */
1156     @ForceInline
1157     public final int getAndSetInt(Object o, long offset, int newValue) {
1158         return theInternalUnsafe.getAndSetInt(o, offset, newValue);
1159     }
1160 
1161     /**
1162      * Atomically exchanges the given value with the current value of
1163      * a field or array element within the given object {@code o}
1164      * at the given {@code offset}.
1165      *
1166      * @param o object/array to update the field/element in
1167      * @param offset field/element offset
1168      * @param newValue new value
1169      * @return the previous value
1170      * @since 1.8
1171      */
1172     @ForceInline
1173     public final long getAndSetLong(Object o, long offset, long newValue) {
1174         return theInternalUnsafe.getAndSetLong(o, offset, newValue);
1175     }
1176 
1177     /**
1178      * Atomically exchanges the given reference value with the current
1179      * reference value of a field or array element within the given
1180      * object {@code o} at the given {@code offset}.
1181      *
1182      * @param o object/array to update the field/element in
1183      * @param offset field/element offset
1184      * @param newValue new value
1185      * @return the previous value
1186      * @since 1.8
1187      */
1188     @ForceInline
1189     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1190         return theInternalUnsafe.getAndSetReference(o, offset, newValue);
1191     }
1192 
1193     /**
1194      * Ensures that loads before the fence will not be reordered with loads and
1195      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1196      *
1197      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1198      * (an "acquire fence").
1199      *
1200      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1201      * is almost always desired, and most current hardware instructions that
1202      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1203      *
1204      * @deprecated Use {@link java.lang.invoke.VarHandle#acquireFence()} instead.
1205      * @since 1.8
1206      */
1207     @Deprecated(since="22", forRemoval=true)
1208     @ForceInline
1209     public void loadFence() {
1210         theInternalUnsafe.loadFence();
1211     }
1212 
1213     /**
1214      * Ensures that loads and stores before the fence will not be reordered with
1215      * stores after the fence; a "StoreStore plus LoadStore barrier".
1216      *
1217      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1218      * (a "release fence").
1219      *
1220      * A pure StoreStore fence is not provided, since the addition of LoadStore
1221      * is almost always desired, and most current hardware instructions that
1222      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1223      *
1224      * @deprecated Use {@link java.lang.invoke.VarHandle#releaseFence()} instead.
1225      * @since 1.8
1226      */
1227     @Deprecated(since="22", forRemoval=true)
1228     @ForceInline
1229     public void storeFence() {
1230         theInternalUnsafe.storeFence();
1231     }
1232 
1233     /**
1234      * Ensures that loads and stores before the fence will not be reordered
1235      * with loads and stores after the fence.  Implies the effects of both
1236      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1237      * barrier.
1238      *
1239      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1240      *
1241      * @deprecated Use {@link java.lang.invoke.VarHandle#fullFence()} instead.
1242      * @since 1.8
1243      */
1244     @Deprecated(since="22", forRemoval=true)
1245     @ForceInline
1246     public void fullFence() {
1247         theInternalUnsafe.fullFence();
1248     }
1249 
1250     /**
1251      * Invokes the given direct byte buffer's cleaner, if any.
1252      *
1253      * @param directBuffer a direct byte buffer
1254      * @throws NullPointerException if {@code directBuffer} is null
1255      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
1256      * or is a {@link java.nio.Buffer#slice slice}, or is a
1257      * {@link java.nio.Buffer#duplicate duplicate}
1258      * @since 9
1259      */
1260     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
1261         if (!directBuffer.isDirect())
1262             throw new IllegalArgumentException("buffer is non-direct");
1263 
1264         theInternalUnsafe.invokeCleaner(directBuffer);
1265     }
1266 }