1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package org.openjdk.bench.valhalla.sandbox.corelibs.corelibs.mapprotos;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.PrintStream;
  31 import java.io.Serializable;
  32 import java.lang.reflect.InvocationTargetException;
  33 import java.lang.reflect.Method;
  34 import java.lang.reflect.ParameterizedType;
  35 import java.lang.reflect.Type;
  36 import java.util.AbstractCollection;
  37 //import java.util.AbstractMap;
  38 import java.util.AbstractSet;
  39 import java.util.Arrays;
  40 import java.util.Collection;
  41 import java.util.Collections;
  42 import java.util.ConcurrentModificationException;
  43 import java.util.Hashtable;
  44 import java.util.Iterator;
  45 import java.util.Map;
  46 import java.util.Objects;
  47 import java.util.Optional;
  48 import java.util.TreeMap;
  49 import java.util.NoSuchElementException;
  50 import java.util.Set;
  51 import java.util.function.BiConsumer;
  52 import java.util.function.BiFunction;
  53 import java.util.function.Consumer;
  54 import java.util.function.Function;
  55 
  56 /**
  57  * Hash map implementation that uses inline class entries in the initial table
  58  * and maintains a link list of separate Node entries for key/value pairs
  59  * that have the same hash value.  The handling of the link list is the same
  60  * as the original java.util.HashMap.
  61  * The primary entry array is larger than in HashMap due to the inline storage
  62  * of the entries but since it replaces the separate Node instance for the first
  63  * Node, the overall memory usage is less for a reasonably full table.
  64  * The TreeNode organization is not yet implemented.
  65  * <p>
  66  * Hash table based implementation of the {@code Map} interface.  This
  67  * implementation provides all of the optional map operations, and permits
  68  * {@code null} values and the {@code null} key.  (The {@code HashMap}
  69  * class is roughly equivalent to {@code Hashtable}, except that it is
  70  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  71  * the order of the map; in particular, it does not guarantee that the order
  72  * will remain constant over time.
  73  *
  74  * <p>This implementation provides constant-time performance for the basic
  75  * operations ({@code get} and {@code put}), assuming the hash function
  76  * disperses the elements properly among the buckets.  Iteration over
  77  * collection views requires time proportional to the "capacity" of the
  78  * {@code HashMap} instance (the number of buckets) plus its size (the number
  79  * of key-value mappings).  Thus, it's very important not to set the initial
  80  * capacity too high (or the load factor too low) if iteration performance is
  81  * important.
  82  *
  83  * <p>An instance of {@code HashMap} has two parameters that affect its
  84  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  85  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  86  * capacity is simply the capacity at the time the hash table is created.  The
  87  * <i>load factor</i> is a measure of how full the hash table is allowed to
  88  * get before its capacity is automatically increased.  When the number of
  89  * entries in the hash table exceeds the product of the load factor and the
  90  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  91  * structures are rebuilt) so that the hash table has approximately twice the
  92  * number of buckets.
  93  *
  94  * <p>As a general rule, the default load factor (.75) offers a good
  95  * tradeoff between time and space costs.  Higher values decrease the
  96  * space overhead but increase the lookup cost (reflected in most of
  97  * the operations of the {@code HashMap} class, including
  98  * {@code get} and {@code put}).  The expected number of entries in
  99  * the map and its load factor should be taken into account when
 100  * setting its initial capacity, so as to minimize the number of
 101  * rehash operations.  If the initial capacity is greater than the
 102  * maximum number of entries divided by the load factor, no rehash
 103  * operations will ever occur.
 104  *
 105  * <p>If many mappings are to be stored in a {@code HashMap}
 106  * instance, creating it with a sufficiently large capacity will allow
 107  * the mappings to be stored more efficiently than letting it perform
 108  * automatic rehashing as needed to grow the table.  Note that using
 109  * many keys with the same {@code hashCode()} is a sure way to slow
 110  * down performance of any hash table. To ameliorate impact, when keys
 111  * are {@link Comparable}, this class may use comparison order among
 112  * keys to help break ties.
 113  *
 114  * <p><strong>Note that this implementation is not synchronized.</strong>
 115  * If multiple threads access a hash map concurrently, and at least one of
 116  * the threads modifies the map structurally, it <i>must</i> be
 117  * synchronized externally.  (A structural modification is any operation
 118  * that adds or deletes one or more mappings; merely changing the value
 119  * associated with a key that an instance already contains is not a
 120  * structural modification.)  This is typically accomplished by
 121  * synchronizing on some object that naturally encapsulates the map.
 122  *
 123  * If no such object exists, the map should be "wrapped" using the
 124  * {@link Collections#synchronizedMap Collections.synchronizedMap}
 125  * method.  This is best done at creation time, to prevent accidental
 126  * unsynchronized access to the map:<pre>
 127  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 128  *
 129  * <p>The iterators returned by all of this class's "collection view methods"
 130  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 131  * the iterator is created, in any way except through the iterator's own
 132  * {@code remove} method, the iterator will throw a
 133  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 134  * modification, the iterator fails quickly and cleanly, rather than risking
 135  * arbitrary, non-deterministic behavior at an undetermined time in the
 136  * future.
 137  *
 138  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 139  * as it is, generally speaking, impossible to make any hard guarantees in the
 140  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 141  * throw {@code ConcurrentModificationException} on a best-effort basis.
 142  * Therefore, it would be wrong to write a program that depended on this
 143  * exception for its correctness: <i>the fail-fast behavior of iterators
 144  * should be used only to detect bugs.</i>
 145  *
 146  * <p>This class is a member of the
 147  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
 148  * Java Collections Framework</a>.
 149  *
 150  * @param <K> the type of keys maintained by this map
 151  * @param <V> the type of mapped values
 152  *
 153  * @author  Doug Lea
 154  * @author  Josh Bloch
 155  * @author  Arthur van Hoff
 156  * @author  Neal Gafter
 157  * @see     Object#hashCode()
 158  * @see     Collection
 159  * @see     Map
 160  * @see     TreeMap
 161  * @see     Hashtable
 162  * @since   1.2
 163  */
 164 public class XHashMap<K,V> extends XAbstractMap<K,V>
 165     implements Map<K,V>, Cloneable, Serializable {
 166 
 167     private static final long serialVersionUID = 362498820763181265L;
 168 
 169     /*
 170      * Implementation notes.
 171      *
 172      * This map usually acts as a binned (bucketed) hash table, but
 173      * when bins get too large, they are transformed into bins of
 174      * TreeNodes, each structured similarly to those in
 175      * java.util.TreeMap. Most methods try to use normal bins, but
 176      * relay to TreeNode methods when applicable (simply by checking
 177      * instanceof a node).  Bins of TreeNodes may be traversed and
 178      * used like any others, but additionally support faster lookup
 179      * when overpopulated. However, since the vast majority of bins in
 180      * normal use are not overpopulated, checking for existence of
 181      * tree bins may be delayed in the course of table methods.
 182      *
 183      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 184      * ordered primarily by hashCode, but in the case of ties, if two
 185      * elements are of the same "class C implements Comparable<C>",
 186      * type then their compareTo method is used for ordering. (We
 187      * conservatively check generic types via reflection to validate
 188      * this -- see method comparableClassFor).  The added complexity
 189      * of tree bins is worthwhile in providing worst-case O(log n)
 190      * operations when keys either have distinct hashes or are
 191      * orderable, Thus, performance degrades gracefully under
 192      * accidental or malicious usages in which hashCode() methods
 193      * return values that are poorly distributed, as well as those in
 194      * which many keys share a hashCode, so long as they are also
 195      * Comparable. (If neither of these apply, we may waste about a
 196      * factor of two in time and space compared to taking no
 197      * precautions. But the only known cases stem from poor user
 198      * programming practices that are already so slow that this makes
 199      * little difference.)
 200      *
 201      * Because TreeNodes are about twice the size of regular nodes, we
 202      * use them only when bins contain enough nodes to warrant use
 203      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 204      * removal or resizing) they are converted back to plain bins.  In
 205      * usages with well-distributed user hashCodes, tree bins are
 206      * rarely used.  Ideally, under random hashCodes, the frequency of
 207      * nodes in bins follows a Poisson distribution
 208      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 209      * parameter of about 0.5 on average for the default resizing
 210      * threshold of 0.75, although with a large variance because of
 211      * resizing granularity. Ignoring variance, the expected
 212      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 213      * factorial(k)). The first values are:
 214      *
 215      * 0:    0.60653066
 216      * 1:    0.30326533
 217      * 2:    0.07581633
 218      * 3:    0.01263606
 219      * 4:    0.00157952
 220      * 5:    0.00015795
 221      * 6:    0.00001316
 222      * 7:    0.00000094
 223      * 8:    0.00000006
 224      * more: less than 1 in ten million
 225      *
 226      * The root of a tree bin is normally its first node.  However,
 227      * sometimes (currently only upon Iterator.remove), the root might
 228      * be elsewhere, but can be recovered following parent links
 229      * (method TreeNode.root()).
 230      *
 231      * All applicable internal methods accept a hash code as an
 232      * argument (as normally supplied from a public method), allowing
 233      * them to call each other without recomputing user hashCodes.
 234      * Most internal methods also accept a "tab" argument, that is
 235      * normally the current table, but may be a new or old one when
 236      * resizing or converting.
 237      *
 238      * When bin lists are treeified, split, or untreeified, we keep
 239      * them in the same relative access/traversal order (i.e., field
 240      * Node.next) to better preserve locality, and to slightly
 241      * simplify handling of splits and traversals that invoke
 242      * iterator.remove. When using comparators on insertion, to keep a
 243      * total ordering (or as close as is required here) across
 244      * rebalancings, we compare classes and identityHashCodes as
 245      * tie-breakers.
 246      *
 247      * The use and transitions among plain vs tree modes is
 248      * complicated by the existence of subclass LinkedHashMap. See
 249      * below for hook methods defined to be invoked upon insertion,
 250      * removal and access that allow LinkedHashMap internals to
 251      * otherwise remain independent of these mechanics. (This also
 252      * requires that a map instance be passed to some utility methods
 253      * that may create new nodes.)
 254      *
 255      * The concurrent-programming-like SSA-based coding style helps
 256      * avoid aliasing errors amid all of the twisty pointer operations.
 257      */
 258 
 259     /**
 260      * The default initial capacity - MUST be a power of two.
 261      */
 262     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 263 
 264     /**
 265      * The maximum capacity, used if a higher value is implicitly specified
 266      * by either of the constructors with arguments.
 267      * MUST be a power of two <= 1<<30.
 268      */
 269     static final int MAXIMUM_CAPACITY = 1 << 30;
 270 
 271     /**
 272      * The load factor used when none specified in constructor.
 273      */
 274     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 275 
 276     /**
 277      * The bin count threshold for using a tree rather than list for a
 278      * bin.  Bins are converted to trees when adding an element to a
 279      * bin with at least this many nodes. The value must be greater
 280      * than 2 and should be at least 8 to mesh with assumptions in
 281      * tree removal about conversion back to plain bins upon
 282      * shrinkage.
 283      */
 284     static final int TREEIFY_THRESHOLD = 8;
 285 
 286     /**
 287      * The bin count threshold for untreeifying a (split) bin during a
 288      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 289      * most 6 to mesh with shrinkage detection under removal.
 290      */
 291     static final int UNTREEIFY_THRESHOLD = 6;
 292 
 293     /**
 294      * The smallest table capacity for which bins may be treeified.
 295      * (Otherwise the table is resized if too many nodes in a bin.)
 296      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 297      * between resizing and treeification thresholds.
 298      */
 299     static final int MIN_TREEIFY_CAPACITY = 64;
 300 
 301     private XNode<K,V> emptyXNode() {
 302         return new XNode();
 303     }
 304     /**
 305      * Basic hash bin node, used for most entries.  (See below for
 306      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 307      */
 308     static value class XNode<K,V> implements Map.Entry<K,V> {
 309         final int hash;
 310         final K key;
 311         V value;
 312         Node<K,V> next;
 313 
 314         XNode() {
 315             this.hash = 0;
 316             this.key = null;
 317             this.value = null;
 318             this.next = null;
 319         }
 320 
 321         XNode(int hash, K key, V value, Node<K,V> next) {
 322             this.hash = hash;
 323             this.key = key;
 324             this.value = value;
 325             this.next = next;
 326         }
 327 
 328         boolean isEmpty() {
 329             return hash == 0 && key == null && value == null;
 330         }
 331         public final K getKey()        { return key; }
 332         public final V getValue()      { return value; }
 333         public final String toString() { return key + "=" + value; }
 334 
 335         public final int hashCode() {
 336             return Objects.hashCode(key) ^ Objects.hashCode(value);
 337         }
 338 
 339         public final V setValue(V newValue) {
 340             throw new IllegalStateException("XNode cannot set a value");
 341 //            V oldValue = value;
 342 //            value = newValue;
 343 //            return oldValue;
 344         }
 345 
 346         public final boolean equals(Object o) {
 347             if (o instanceof Map.Entry) {
 348                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 349                 if (Objects.equals(key, e.getKey()) &&
 350                     Objects.equals(value, e.getValue()))
 351                     return true;
 352             }
 353             return false;
 354         }
 355     }
 356 
 357     /**
 358      * Basic hash bin node, used for overflow entries.  (See below for
 359      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 360      */
 361     static class Node<K,V> implements Map.Entry<K,V> {
 362         final int hash;
 363         final K key;
 364         V value;
 365         Node<K,V> next;
 366 
 367         Node(int hash, K key, V value, Node<K,V> next) {
 368             this.hash = hash;
 369             this.key = key;
 370             this.value = value;
 371             this.next = next;
 372         }
 373 
 374         public final K getKey()        { return key; }
 375         public final V getValue()      { return value; }
 376         public final String toString() { return key + "=" + value; }
 377         public final int hashCode() {
 378             return Objects.hashCode(key) ^ Objects.hashCode(value);
 379         }
 380 
 381         public final V setValue(V newValue) {
 382             V oldValue = value;
 383             value = newValue;
 384             return oldValue;
 385         }
 386 
 387         public final boolean equals(Object o) {
 388             if (o == this)
 389                 return true;
 390             if (o instanceof Map.Entry) {
 391                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 392                 if (Objects.equals(key, e.getKey()) &&
 393                     Objects.equals(value, e.getValue()))
 394                     return true;
 395             }
 396             return false;
 397         }
 398     }
 399 
 400     value class XNodeWrapper implements Map.Entry<K,V> {
 401         int index;
 402 
 403         XNodeWrapper(int index) {
 404             this.index = index;
 405         }
 406 
 407         public K getKey() {
 408             XNode<K,V> e = table[index];
 409             return e.isEmpty() ? null : e.key;
 410         }
 411 
 412         public V getValue() {
 413             XNode<K,V> e = table[index];
 414             return e.isEmpty() ? null : e.value;
 415         }
 416 
 417         /**
 418          * Replaces the value corresponding to this entry with the specified
 419          * value (optional operation).  (Writes through to the map.)  The
 420          * behavior of this call is undefined if the mapping has already been
 421          * removed from the map (by the iterator's {@code remove} operation).
 422          *
 423          * @param value new value to be stored in this entry
 424          * @return old value corresponding to the entry
 425          * @throws UnsupportedOperationException if the {@code put} operation
 426          *         is not supported by the backing map
 427          * @throws ClassCastException if the class of the specified value
 428          *         prevents it from being stored in the backing map
 429          * @throws NullPointerException if the backing map does not permit
 430          *         null values, and the specified value is null
 431          * @throws IllegalArgumentException if some property of this value
 432          *         prevents it from being stored in the backing map
 433          * @throws IllegalStateException implementations may, but are not
 434          *         required to, throw this exception if the entry has been
 435          *         removed from the backing map.
 436          */
 437         public V setValue(V value) {
 438             XNode<K,V> e = table[index];
 439             assert !e.isEmpty();
 440             table[index] = new XNode(e.hash, e.key, value, e.next);
 441             return e.value;
 442         }
 443     }
 444     /* ---------------- Static utilities -------------- */
 445 
 446     /**
 447      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 448      * to lower.  Because the table uses power-of-two masking, sets of
 449      * hashes that vary only in bits above the current mask will
 450      * always collide. (Among known examples are sets of Float keys
 451      * holding consecutive whole numbers in small tables.)  So we
 452      * apply a transform that spreads the impact of higher bits
 453      * downward. There is a tradeoff between speed, utility, and
 454      * quality of bit-spreading. Because many common sets of hashes
 455      * are already reasonably distributed (so don't benefit from
 456      * spreading), and because we use trees to handle large sets of
 457      * collisions in bins, we just XOR some shifted bits in the
 458      * cheapest possible way to reduce systematic lossage, as well as
 459      * to incorporate impact of the highest bits that would otherwise
 460      * never be used in index calculations because of table bounds.
 461      */
 462     static final int hash(Object key) {
 463         int h;
 464         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 465     }
 466 
 467     /**
 468      * Returns x's Class if it is of the form "class C implements
 469      * Comparable<C>", else null.
 470      */
 471     static Class<?> comparableClassFor(Object x) {
 472         if (x instanceof Comparable) {
 473             Class<?> c; Type[] ts, as; ParameterizedType p;
 474             if ((c = x.getClass()) == String.class) // bypass checks
 475                 return c;
 476             if ((ts = c.getGenericInterfaces()) != null) {
 477                 for (Type t : ts) {
 478                     if ((t instanceof ParameterizedType) &&
 479                         ((p = (ParameterizedType) t).getRawType() ==
 480                          Comparable.class) &&
 481                         (as = p.getActualTypeArguments()) != null &&
 482                         as.length == 1 && as[0] == c) // type arg is c
 483                         return c;
 484                 }
 485             }
 486         }
 487         return null;
 488     }
 489 
 490     /**
 491      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 492      * class), else 0.
 493      */
 494     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 495     static int compareComparables(Class<?> kc, Object k, Object x) {
 496         return (x == null || x.getClass() != kc ? 0 :
 497                 ((Comparable)k).compareTo(x));
 498     }
 499 
 500     /**
 501      * Returns a power of two size for the given target capacity.
 502      */
 503     static final int tableSizeFor(int cap) {
 504         int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
 505         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 506     }
 507 
 508     /* ---------------- Fields -------------- */
 509 
 510     /**
 511      * The table, initialized on first use, and resized as
 512      * necessary. When allocated, length is always a power of two.
 513      * (We also tolerate length zero in some operations to allow
 514      * bootstrapping mechanics that are currently not needed.)
 515      */
 516     transient XNode<K,V>[] table;
 517 
 518     /**
 519      * Holds cached entrySet(). Note that AbstractMap fields are used
 520      * for keySet() and values().
 521      */
 522     transient Set<Map.Entry<K,V>> entrySet;
 523 
 524     /**
 525      * The number of key-value mappings contained in this map.
 526      */
 527     transient int size;
 528 
 529     /**
 530      * The number of times this HashMap has been structurally modified
 531      * Structural modifications are those that change the number of mappings in
 532      * the HashMap or otherwise modify its internal structure (e.g.,
 533      * rehash).  This field is used to make iterators on Collection-views of
 534      * the HashMap fail-fast.  (See ConcurrentModificationException).
 535      */
 536     transient int modCount;
 537 
 538     /**
 539      * The next size value at which to resize (capacity * load factor).
 540      *
 541      * @serial
 542      */
 543     // (The javadoc description is true upon serialization.
 544     // Additionally, if the table array has not been allocated, this
 545     // field holds the initial array capacity, or zero signifying
 546     // DEFAULT_INITIAL_CAPACITY.)
 547     int threshold;
 548 
 549     /**
 550      * The load factor for the hash table.
 551      *
 552      * @serial
 553      */
 554     final float loadFactor;
 555 
 556     /* ---------------- Public operations -------------- */
 557 
 558     /**
 559      * Constructs an empty {@code HashMap} with the specified initial
 560      * capacity and load factor.
 561      *
 562      * @param  initialCapacity the initial capacity
 563      * @param  loadFactor      the load factor
 564      * @throws IllegalArgumentException if the initial capacity is negative
 565      *         or the load factor is nonpositive
 566      */
 567     public XHashMap(int initialCapacity, float loadFactor) {
 568         if (initialCapacity < 0)
 569             throw new IllegalArgumentException("Illegal initial capacity: " +
 570                                                initialCapacity);
 571         if (initialCapacity > MAXIMUM_CAPACITY)
 572             initialCapacity = MAXIMUM_CAPACITY;
 573         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 574             throw new IllegalArgumentException("Illegal load factor: " +
 575                                                loadFactor);
 576         this.loadFactor = loadFactor;
 577         this.threshold = tableSizeFor(initialCapacity);
 578     }
 579 
 580     /**
 581      * Constructs an empty {@code HashMap} with the specified initial
 582      * capacity and the default load factor (0.75).
 583      *
 584      * @param  initialCapacity the initial capacity.
 585      * @throws IllegalArgumentException if the initial capacity is negative.
 586      */
 587     public XHashMap(int initialCapacity) {
 588         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 589     }
 590 
 591     /**
 592      * Constructs an empty {@code HashMap} with the default initial capacity
 593      * (16) and the default load factor (0.75).
 594      */
 595     public XHashMap() {
 596         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 597     }
 598 
 599     /**
 600      * Constructs a new {@code HashMap} with the same mappings as the
 601      * specified {@code Map}.  The {@code HashMap} is created with
 602      * default load factor (0.75) and an initial capacity sufficient to
 603      * hold the mappings in the specified {@code Map}.
 604      *
 605      * @param   m the map whose mappings are to be placed in this map
 606      * @throws  NullPointerException if the specified map is null
 607      */
 608     public XHashMap(Map<? extends K, ? extends V> m) {
 609         this.loadFactor = DEFAULT_LOAD_FACTOR;
 610         putMapEntries(m, false);
 611     }
 612 
 613     /**
 614      * Implements Map.putAll and Map constructor.
 615      *
 616      * @param m the map
 617      * @param evict false when initially constructing this map, else true.
 618      */
 619     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 620         int s = m.size();
 621         if (s > 0) {
 622             if (table == null) { // pre-size
 623                 float ft = ((float)s / loadFactor) + 1.0F;
 624                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 625                          (int)ft : MAXIMUM_CAPACITY);
 626                 if (t > threshold)
 627                     threshold = tableSizeFor(t);
 628             } else {
 629                 // Because of linked-list bucket constraints, we cannot
 630                 // expand all at once, but can reduce total resize
 631                 // effort by repeated doubling now vs later
 632                 while (s > threshold && table.length < MAXIMUM_CAPACITY)
 633                     resize();
 634             }
 635 
 636             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 637                 K key = e.getKey();
 638                 V value = e.getValue();
 639                 putVal(hash(key), key, value, false, evict);
 640             }
 641         }
 642     }
 643 
 644     /**
 645      * Returns the number of key-value mappings in this map.
 646      *
 647      * @return the number of key-value mappings in this map
 648      */
 649     public int size() {
 650         return size;
 651     }
 652 
 653     /**
 654      * Returns {@code true} if this map contains no key-value mappings.
 655      *
 656      * @return {@code true} if this map contains no key-value mappings
 657      */
 658     public boolean isEmpty() {
 659         return size == 0;
 660     }
 661 
 662     /**
 663      * Returns the value to which the specified key is mapped,
 664      * or {@code null} if this map contains no mapping for the key.
 665      *
 666      * <p>More formally, if this map contains a mapping from a key
 667      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 668      * key.equals(k))}, then this method returns {@code v}; otherwise
 669      * it returns {@code null}.  (There can be at most one such mapping.)
 670      *
 671      * <p>A return value of {@code null} does not <i>necessarily</i>
 672      * indicate that the map contains no mapping for the key; it's also
 673      * possible that the map explicitly maps the key to {@code null}.
 674      * The {@link #containsKey containsKey} operation may be used to
 675      * distinguish these two cases.
 676      *
 677      * @see #put(Object, Object)
 678      */
 679     public V get(Object key) {
 680         int hash = hash(key);
 681         Node<K,V> e;
 682         XNode<K,V> n = getXNode(hash, key);
 683         return (!n.isEmpty()) ? n.value
 684                 : (e = getNode(hash, key)) == null ? null : e.value;
 685     }
 686 
 687     /**
 688      * Implements Map.get and related methods.
 689      *
 690      * @param hash hash for key
 691      * @param key the key
 692      * @return the node, or emptyXNode() if not at top level.
 693      */
 694     final XNode<K,V> getXNode(int hash, Object key) {
 695         XNode<K, V>[] tab;
 696         XNode<K, V> first;
 697         int n;
 698         K k;
 699         if ((tab = table) != null && (n = tab.length) > 0 &&
 700                 !(first = tab[(n - 1) & hash]).isEmpty()) {
 701             if (first.hash == hash && // always check first node
 702                     ((k = first.key) == key || (key != null && key.equals(k))))
 703                 return first;
 704         }
 705         return emptyXNode();
 706     }
 707 
 708      /**
 709      * Implements Map.get and related methods when the key is not found in the primary entry.
 710      *
 711      * @param hash hash for key
 712      * @param key the key
 713      * @return the node, or null if none
 714      */
 715     final Node<K,V> getNode(int hash, Object key) {
 716         XNode<K,V>[] tab; XNode<K,V> first; Node<K,V> e; int n; K k;
 717         if ((tab = table) != null && (n = tab.length) > 0 &&
 718             !(first = tab[(n - 1) & hash]).isEmpty()) {
 719             if ((e = first.next) != null) {
 720                 if (e instanceof TreeNode)
 721                     return ((TreeNode<K,V>)e).getTreeNode(hash, key);
 722                 do {
 723                     if (e.hash == hash &&
 724                         ((k = e.key) == key || (key != null && key.equals(k))))
 725                         return e;
 726                 } while ((e = e.next) != null);
 727             }
 728         }
 729         return null;
 730     }
 731 
 732     /**
 733      * Returns {@code true} if this map contains a mapping for the
 734      * specified key.
 735      *
 736      * @param   key   The key whose presence in this map is to be tested
 737      * @return {@code true} if this map contains a mapping for the specified
 738      * key.
 739      */
 740     public boolean containsKey(Object key) {
 741         int hash = hash(key);
 742         Node<K,V> e;
 743         XNode<K,V> n = getXNode(hash, key);
 744         return !n.isEmpty() || (e = getNode(hash, key)) != null;
 745     }
 746 
 747     /**
 748      * Associates the specified value with the specified key in this map.
 749      * If the map previously contained a mapping for the key, the old
 750      * value is replaced.
 751      *
 752      * @param key key with which the specified value is to be associated
 753      * @param value value to be associated with the specified key
 754      * @return the previous value associated with {@code key}, or
 755      *         {@code null} if there was no mapping for {@code key}.
 756      *         (A {@code null} return can also indicate that the map
 757      *         previously associated {@code null} with {@code key}.)
 758      */
 759     public V put(K key, V value) {
 760         return putVal(hash(key), key, value, false, true);
 761     }
 762 
 763     /**
 764      * Implements Map.put and related methods.
 765      *
 766      * @param hash hash for key
 767      * @param key the key
 768      * @param value the value to put
 769      * @param onlyIfAbsent if true, don't change existing value
 770      * @param evict if false, the table is in creation mode.
 771      * @return previous value, or null if none
 772      */
 773     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 774                    boolean evict) {
 775         XNode<K,V>[] tab; XNode<K,V> tp; int n, i;
 776         if ((tab = table) == null || (n = tab.length) == 0)
 777             n = (tab = resize()).length;
 778         if ((tp = tab[i = (n - 1) & hash]).isEmpty()) {
 779             tab[i] = new XNode(hash, key, value, null);
 780         } else {
 781             Node<K,V> e; K k;
 782             if (tp.hash == hash &&
 783                 ((k = tp.key) == key || (key != null && key.equals(k)))) {
 784                 if (!onlyIfAbsent || tp.value == null) {
 785                     tab[i] = new XNode(hash, k, value, tp.next);
 786                 }
 787                 return tp.value;
 788             } else if ((e = tp.next) == null) {
 789                 Node<K,V> x = newNode(hash, key, value, null);
 790                 tab[i] = new XNode(tp.hash, tp.key, tp.value, x);
 791             } else if (e instanceof TreeNode) {
 792                 e = ((TreeNode<K, V>) e).putTreeVal(this, tab, hash, key, value);
 793             } else {
 794                 for (int binCount = 0; ; ++binCount) {
 795                     if (e.hash == hash &&
 796                             ((k = e.key) == key || (key != null && key.equals(k))))
 797                         break;
 798                     Node<K,V> p = e;
 799                     if ((e = p.next) == null) {
 800                         p.next = newNode(hash, key, value, null);
 801                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 802                             treeifyBin(tab, hash);
 803                         break;
 804                     }
 805                 }
 806             }
 807             if (e != null) { // existing mapping for key
 808                 V oldValue = e.value;
 809                 if (!onlyIfAbsent || oldValue == null)
 810                     e.value = value;
 811                 return oldValue;
 812             }
 813         }
 814 
 815         ++modCount;
 816         if (++size > threshold)
 817             resize();
 818         return null;
 819     }
 820 
 821     /**
 822      * Initializes or doubles table size.  If null, allocates in
 823      * accord with initial capacity target held in field threshold.
 824      * Otherwise, because we are using power-of-two expansion, the
 825      * elements from each bin must either stay at same index, or move
 826      * with a power of two offset in the new table.
 827      *
 828      * @return the table
 829      */
 830     final XNode<K,V>[] resize() {
 831         XNode<K,V>[] oldTab = table;
 832         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 833         int oldThr = threshold;
 834         int newCap, newThr = 0;
 835         if (oldCap > 0) {
 836             if (oldCap >= MAXIMUM_CAPACITY) {
 837                 threshold = Integer.MAX_VALUE;
 838                 return oldTab;
 839             }
 840             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 841                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 842                 newThr = oldThr << 1; // double threshold
 843         }
 844         else if (oldThr > 0) // initial capacity was placed in threshold
 845             newCap = oldThr;
 846         else {               // zero initial threshold signifies using defaults
 847             newCap = DEFAULT_INITIAL_CAPACITY;
 848             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 849         }
 850         if (newThr == 0) {
 851             float ft = (float)newCap * loadFactor;
 852             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 853                       (int)ft : Integer.MAX_VALUE);
 854         }
 855         threshold = newThr;
 856         @SuppressWarnings({"rawtypes","unchecked"})
 857         XNode<K,V>[] newTab = (XNode<K,V>[])new XNode[newCap];
 858         table = newTab;
 859         if (oldTab != null) {
 860             for (int j = 0; j < oldCap; ++j) {
 861                 XNode<K,V> x;
 862                 Node<K,V> e;
 863                 if (!(x = oldTab[j]).isEmpty()) {
 864                     oldTab[j] = emptyXNode();
 865                     if ((e = x.next) == null)
 866                         newTab[x.hash & (newCap - 1)] = new XNode(x.hash, x.key, x.value, null);
 867                     else if (e instanceof TreeNode)
 868                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 869                     else { // preserve order
 870                         Node<K,V> loHead = null, loTail = null;
 871                         Node<K,V> hiHead = null, hiTail = null;
 872                         Node<K,V> next;
 873                         do {
 874                             next = e.next;
 875                             if ((e.hash & oldCap) == 0) {
 876                                 if (loTail == null)
 877                                     loHead = e;
 878                                 else
 879                                     loTail.next = e;
 880                                 loTail = e;
 881                             }
 882                             else {
 883                                 if (hiTail == null)
 884                                     hiHead = e;
 885                                 else
 886                                     hiTail.next = e;
 887                                 hiTail = e;
 888                             }
 889                         } while ((e = next) != null);
 890                         if (loTail != null)
 891                             loTail.next = null;
 892                         if (hiTail != null)
 893                             hiTail.next = null;
 894 
 895                         newTab[j] = (j == (x.hash & (newCap - 1)))
 896                                 ? new XNode(x.hash, x.key, x.value, loHead)
 897                                 : ((loHead != null)
 898                                 ? new XNode(loHead.hash, loHead.key, loHead.value, loHead.next) :
 899                                 emptyXNode());
 900 
 901                         newTab[j + oldCap] = ((j + oldCap) == (x.hash & (newCap - 1)))
 902                                 ? new XNode(x.hash, x.key, x.value, hiHead)
 903                                 : ((hiHead != null)
 904                                 ? new XNode(hiHead.hash, hiHead.key, hiHead.value, hiHead.next) :
 905                                 emptyXNode());
 906                     }
 907                 }
 908             }
 909         }
 910         return newTab;
 911     }
 912 
 913     /**
 914      * Replaces all linked nodes in bin at index for given hash unless
 915      * table is too small, in which case resizes instead.
 916      */
 917     final void treeifyBin(XNode<K,V>[] tab, int hash) {
 918 //        int n, index; Node<K,V> e;
 919 //        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 920 //            resize();
 921 //        else if ((e = tab[index = (n - 1) & hash]) != null) {
 922 //            TreeNode<K,V> hd = null, tl = null;
 923 //            do {
 924 //                TreeNode<K,V> p = replacementTreeNode(e, null);
 925 //                if (tl == null)
 926 //                    hd = p;
 927 //                else {
 928 //                    p.prev = tl;
 929 //                    tl.next = p;
 930 //                }
 931 //                tl = p;
 932 //            } while ((e = e.next) != null);
 933 //            if ((tab[index] = hd) != null)
 934 //                hd.treeify(tab);
 935 //        }
 936     }
 937 
 938     /**
 939      * Copies all of the mappings from the specified map to this map.
 940      * These mappings will replace any mappings that this map had for
 941      * any of the keys currently in the specified map.
 942      *
 943      * @param m mappings to be stored in this map
 944      * @throws NullPointerException if the specified map is null
 945      */
 946     public void putAll(Map<? extends K, ? extends V> m) {
 947         putMapEntries(m, true);
 948     }
 949 
 950     /**
 951      * Removes the mapping for the specified key from this map if present.
 952      *
 953      * @param  key key whose mapping is to be removed from the map
 954      * @return the previous value associated with {@code key}, or
 955      *         {@code null} if there was no mapping for {@code key}.
 956      *         (A {@code null} return can also indicate that the map
 957      *         previously associated {@code null} with {@code key}.)
 958      */
 959     public V remove(Object key) {
 960         Optional<V> o = removeNode(hash(key), key, null, false, true);
 961         return o.orElse(null);
 962     }
 963 
 964     /**
 965      * Implements Map.remove and related methods.
 966      *
 967      * @param hash hash for key
 968      * @param key the key
 969      * @param value the value to match if matchValue, else ignored
 970      * @param matchValue if true only remove if value is equal
 971      * @param movable if false do not move other nodes while removing
 972      * @return the node, or null if none
 973      */
 974     final Optional<V> removeNode(int hash, Object key, Object value,
 975                                boolean matchValue, boolean movable) {
 976         XNode<K,V>[] tab; XNode<K,V> te; int n, index;
 977         if ((tab = table) != null && (n = tab.length) > 0 &&
 978             !(te = tab[index = (n - 1) & hash]).isEmpty()) {
 979             Node<K,V> node = null, e; K k; V v = null;
 980             if (te.hash == hash &&
 981                 ((k = te.key) == key || (key != null && key.equals(k)))) {
 982                 if ((!matchValue || (v = te.value) == value ||
 983                         (value != null && value.equals(v)))) {
 984                     tab[index] = ((e = te.next) == null)
 985                             ? emptyXNode()
 986                             : new XNode(hash, e.key, e.value, e.next);
 987                     ++modCount;
 988                     --size;
 989                     return Optional.ofNullable(v);
 990                 }
 991             } else if ((e = te.next) != null) {
 992                 Node<K,V> p = null;
 993                 if (e instanceof TreeNode)
 994                     node = ((TreeNode<K,V>)e).getTreeNode(hash, key);
 995                 else {
 996                     do {
 997                         if (e.hash == hash &&
 998                             ((k = e.key) == key ||
 999                              (key != null && key.equals(k)))) {
1000                             node = e;
1001                             break;
1002                         }
1003                         p = e;
1004                     } while ((e = e.next) != null);
1005                 }
1006 
1007                 if (node != null && (!matchValue || (v = node.value) == value ||
1008                                      (value != null && value.equals(v)))) {
1009                     if (node instanceof TreeNode)
1010                         ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
1011                     else if (p == null)
1012                         tab[index] = new XNode(hash, node.key, node.value, node.next);
1013                     else
1014                         p.next = node.next;
1015                     ++modCount;
1016                     --size;
1017                     return Optional.of(node.value);
1018                 }
1019             }
1020         }
1021         return Optional.empty();
1022     }
1023 
1024     /**
1025      * Removes all of the mappings from this map.
1026      * The map will be empty after this call returns.
1027      */
1028     public void clear() {
1029         modCount++;
1030         if (table != null && size > 0) {
1031             size = 0;
1032             table = null;
1033             threshold = 0;
1034         }
1035     }
1036 
1037     /**
1038      * Returns {@code true} if this map maps one or more keys to the
1039      * specified value.
1040      *
1041      * @param value value whose presence in this map is to be tested
1042      * @return {@code true} if this map maps one or more keys to the
1043      *         specified value
1044      */
1045     public boolean containsValue(Object value) {
1046         XNode<K,V>[] tab; V v;
1047         if ((tab = table) != null && size > 0) {
1048             for (XNode<K,V> te : tab) {
1049                 if (!te.isEmpty()) {
1050                     if ((v = te.value) == value ||
1051                             (value != null && value.equals(v)))
1052                         return true;
1053                     for (Node<K, V> e = te.next; e != null; e = e.next) {
1054                         if ((v = e.value) == value ||
1055                                 (value != null && value.equals(v)))
1056                             return true;
1057                     }
1058                 }
1059             }
1060         }
1061         return false;
1062     }
1063 
1064     /**
1065      * Returns a {@link Set} view of the keys contained in this map.
1066      * The set is backed by the map, so changes to the map are
1067      * reflected in the set, and vice-versa.  If the map is modified
1068      * while an iteration over the set is in progress (except through
1069      * the iterator's own {@code remove} operation), the results of
1070      * the iteration are undefined.  The set supports element removal,
1071      * which removes the corresponding mapping from the map, via the
1072      * {@code Iterator.remove}, {@code Set.remove},
1073      * {@code removeAll}, {@code retainAll}, and {@code clear}
1074      * operations.  It does not support the {@code add} or {@code addAll}
1075      * operations.
1076      *
1077      * @return a set view of the keys contained in this map
1078      */
1079     public Set<K> keySet() {
1080         Set<K> ks = keySet;
1081         if (ks == null) {
1082             ks = new KeySet();
1083             keySet = ks;
1084         }
1085         return ks;
1086     }
1087 
1088     /**
1089      * Prepares the array for {@link Collection#toArray(Object[])} implementation.
1090      * If supplied array is smaller than this map size, a new array is allocated.
1091      * If supplied array is bigger than this map size, a null is written at size index.
1092      *
1093      * @param a an original array passed to {@code toArray()} method
1094      * @param <T> type of array elements
1095      * @return an array ready to be filled and returned from {@code toArray()} method.
1096      */
1097     @SuppressWarnings("unchecked")
1098     final <T> T[] prepareArray(T[] a) {
1099         int size = this.size;
1100         if (a.length < size) {
1101             return (T[]) java.lang.reflect.Array
1102                     .newInstance(a.getClass().getComponentType(), size);
1103         }
1104         if (a.length > size) {
1105             a[size] = null;
1106         }
1107         return a;
1108     }
1109 
1110     /**
1111      * Fills an array with this map keys and returns it. This method assumes
1112      * that input array is big enough to fit all the keys. Use
1113      * {@link #prepareArray(Object[])} to ensure this.
1114      *
1115      * @param a an array to fill
1116      * @param <T> type of array elements
1117      * @return supplied array
1118      */
1119     <T> T[] keysToArray(T[] a) {
1120         Object[] r = a;
1121         XNode<K,V>[] tab;
1122         int idx = 0;
1123         int i = 0;
1124         if (size > 0 && (tab = table) != null) {
1125             for (XNode<K,V> te : tab) {
1126                 if (!te.isEmpty()) {
1127                     r[idx++] = te.key;
1128                     for (Node<K, V> e = te.next; e != null; e = e.next) {
1129                         r[idx++] = e.key;
1130                     }
1131                 }
1132             }
1133         }
1134         return a;
1135     }
1136 
1137     /**
1138      * Fills an array with this map values and returns it. This method assumes
1139      * that input array is big enough to fit all the values. Use
1140      * {@link #prepareArray(Object[])} to ensure this.
1141      *
1142      * @param a an array to fill
1143      * @param <T> type of array elements
1144      * @return supplied array
1145      */
1146     <T> T[] valuesToArray(T[] a) {
1147         Object[] r = a;
1148         XNode<K,V>[] tab;
1149         int idx = 0;
1150         if (size > 0 && (tab = table) != null) {
1151             for (XNode<K,V> te : tab) {
1152                 if (!te.isEmpty()) {
1153                     r[idx++] = te.value;
1154                     for (Node<K, V> e = te.next; e != null; e = e.next) {
1155                         r[idx++] = e.value;
1156                     }
1157                 }
1158             }
1159         }
1160         return a;
1161     }
1162 
1163     final class KeySet extends AbstractSet<K> {
1164         public final int size()                 { return size; }
1165         public final void clear()               { XHashMap.this.clear(); }
1166         public final Iterator<K> iterator()     { return new KeyIterator(); }
1167         public final boolean contains(Object o) { return containsKey(o); }
1168         public final boolean remove(Object key) {
1169             return removeNode(hash(key), key, null, false, true).isPresent();
1170         }
1171 
1172         public Object[] toArray() {
1173             return keysToArray(new Object[size]);
1174         }
1175 
1176         public <T> T[] toArray(T[] a) {
1177             return keysToArray(prepareArray(a));
1178         }
1179 
1180         public final void forEach(Consumer<? super K> action) {
1181             XNode<K,V>[] tab;
1182             if (action == null)
1183                 throw new NullPointerException();
1184             if (size > 0 && (tab = table) != null) {
1185                 int mc = modCount;
1186                 for (XNode<K,V> te : tab) {
1187                     if (!te.isEmpty()) {
1188                         action.accept(te.key);
1189                         for (Node<K, V> e = te.next; e != null; e = e.next)
1190                             action.accept(e.key);
1191                     }
1192                 }
1193                 if (modCount != mc)
1194                     throw new ConcurrentModificationException();
1195             }
1196         }
1197     }
1198 
1199     /**
1200      * Returns a {@link Collection} view of the values contained in this map.
1201      * The collection is backed by the map, so changes to the map are
1202      * reflected in the collection, and vice-versa.  If the map is
1203      * modified while an iteration over the collection is in progress
1204      * (except through the iterator's own {@code remove} operation),
1205      * the results of the iteration are undefined.  The collection
1206      * supports element removal, which removes the corresponding
1207      * mapping from the map, via the {@code Iterator.remove},
1208      * {@code Collection.remove}, {@code removeAll},
1209      * {@code retainAll} and {@code clear} operations.  It does not
1210      * support the {@code add} or {@code addAll} operations.
1211      *
1212      * @return a view of the values contained in this map
1213      */
1214     public Collection<V> values() {
1215         Collection<V> vs = values;
1216         if (vs == null) {
1217             vs = new Values();
1218             values = vs;
1219         }
1220         return vs;
1221     }
1222 
1223     final class Values extends AbstractCollection<V> {
1224         public final int size()                 { return size; }
1225         public final void clear()               { XHashMap.this.clear(); }
1226         public final Iterator<V> iterator()     { return new ValueIterator(); }
1227         public final boolean contains(Object o) { return containsValue(o); }
1228 
1229         public Object[] toArray() {
1230             return valuesToArray(new Object[size]);
1231         }
1232 
1233         public <T> T[] toArray(T[] a) {
1234             return valuesToArray(prepareArray(a));
1235         }
1236 
1237         public final void forEach(Consumer<? super V> action) {
1238             XNode<K,V>[] tab;
1239             if (action == null)
1240                 throw new NullPointerException();
1241             if (size > 0 && (tab = table) != null) {
1242                 int mc = modCount;
1243                 for (XNode<K,V> te : tab) {
1244                     if (!te.isEmpty()) {
1245                         action.accept(te.value);
1246                         for (Node<K, V> e = te.next; e != null; e = e.next)
1247                             action.accept(e.value);
1248                     }
1249                 }
1250                 if (modCount != mc)
1251                     throw new ConcurrentModificationException();
1252             }
1253         }
1254     }
1255 
1256     /**
1257      * Returns a {@link Set} view of the mappings contained in this map.
1258      * The set is backed by the map, so changes to the map are
1259      * reflected in the set, and vice-versa.  If the map is modified
1260      * while an iteration over the set is in progress (except through
1261      * the iterator's own {@code remove} operation, or through the
1262      * {@code setValue} operation on a map entry returned by the
1263      * iterator) the results of the iteration are undefined.  The set
1264      * supports element removal, which removes the corresponding
1265      * mapping from the map, via the {@code Iterator.remove},
1266      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
1267      * {@code clear} operations.  It does not support the
1268      * {@code add} or {@code addAll} operations.
1269      *
1270      * @return a set view of the mappings contained in this map
1271      */
1272     public Set<Map.Entry<K,V>> entrySet() {
1273         Set<Map.Entry<K,V>> es;
1274         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1275     }
1276 
1277     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1278         public final int size()                 { return size; }
1279         public final void clear()               { XHashMap.this.clear(); }
1280         public final Iterator<Map.Entry<K,V>> iterator() {
1281             return new EntryIterator();
1282         }
1283         public final boolean contains(Object o) {
1284             if (!(o instanceof Map.Entry))
1285                 return false;
1286             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1287             Object key = e.getKey();
1288             Node<K,V> candidate = getNode(hash(key), key);
1289             return candidate != null && candidate.equals(e);
1290         }
1291         public final boolean remove(Object o) {
1292             if (o instanceof Map.Entry) {
1293                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1294                 Object key = e.getKey();
1295                 Object value = e.getValue();
1296                 return removeNode(hash(key), key, value, true, true).isPresent();
1297             }
1298             return false;
1299         }
1300         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1301             XNode<K,V>[] tab;
1302             if (action == null)
1303                 throw new NullPointerException();
1304             if (size > 0 && (tab = table) != null) {
1305                 int mc = modCount;
1306                 for (XNode<K,V> te : tab) {
1307                     if (!te.isEmpty()) {
1308                         action.accept(new XNodeWrapper(te.hash & (tab.length - 1)));
1309                         for (Node<K, V> e = te.next; e != null; e = e.next)
1310                             action.accept(e);
1311                     }
1312                 }
1313                 if (modCount != mc)
1314                     throw new ConcurrentModificationException();
1315             }
1316         }
1317     }
1318 
1319     // Overrides of JDK8 Map extension methods
1320 
1321     @Override
1322     public V getOrDefault(Object key, V defaultValue) {
1323         Node<K,V> e;
1324         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1325     }
1326 
1327     @Override
1328     public V putIfAbsent(K key, V value) {
1329         return putVal(hash(key), key, value, true, true);
1330     }
1331 
1332     @Override
1333     public boolean remove(Object key, Object value) {
1334         return removeNode(hash(key), key, value, true, true).isPresent();
1335     }
1336 
1337     @Override
1338     public boolean replace(K key, V oldValue, V newValue) {
1339         Node<K,V> e; V v;
1340         if ((e = getNode(hash(key), key)) != null &&
1341             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1342             e.value = newValue;
1343             return true;
1344         }
1345         return false;
1346     }
1347 
1348     @Override
1349     public V replace(K key, V value) {
1350         Node<K,V> e;
1351         if ((e = getNode(hash(key), key)) != null) {
1352             V oldValue = e.value;
1353             e.value = value;
1354             return oldValue;
1355         }
1356         return null;
1357     }
1358 
1359     /**
1360      * {@inheritDoc}
1361      *
1362      * <p>This method will, on a best-effort basis, throw a
1363      * {@link ConcurrentModificationException} if it is detected that the
1364      * mapping function modifies this map during computation.
1365      *
1366      * @throws ConcurrentModificationException if it is detected that the
1367      * mapping function modified this map
1368      */
1369     @Override
1370     public V computeIfAbsent(K key,
1371                              Function<? super K, ? extends V> mappingFunction) {
1372         if (mappingFunction == null)
1373             throw new NullPointerException();
1374         int hash = hash(key);
1375         XNode<K,V>[] tab; XNode<K,V> first; int n, i;
1376         int binCount = 0;
1377         TreeNode<K,V> t = null;
1378         Node<K,V> old = null;
1379         if (size > threshold || (tab = table) == null ||
1380             (n = tab.length) == 0)
1381             n = (tab = resize()).length;
1382         if (!(first = tab[i = (n - 1) & hash]).isEmpty()) {
1383             K k;
1384             if (first.hash == hash &&
1385                     ((k = first.key) == key || (key != null && key.equals(k)))) {
1386                 return first.value;
1387             }
1388             Node<K,V> e = first.next;
1389             if (e instanceof TreeNode)
1390                 old = (t = (TreeNode<K,V>)e).getTreeNode(hash, key);
1391             else {
1392                 do {
1393                     if (e.hash == hash &&
1394                             ((k = e.key) == key || (key != null && key.equals(k)))) {
1395                         old = e;
1396                         break;
1397                     }
1398                     ++binCount;
1399                 } while ((e = e.next) != null);
1400             }
1401 
1402             V oldValue;
1403             if (old != null && (oldValue = old.value) != null) {
1404                 return oldValue;
1405             }
1406         }
1407         int mc = modCount;
1408         V v = mappingFunction.apply(key);
1409         if (mc != modCount) { throw new ConcurrentModificationException(); }
1410         if (v == null) {
1411             return null;
1412         } else if (old != null) {
1413             old.value = v;
1414             return v;
1415         }
1416         else if (t != null)
1417             t.putTreeVal(this, tab, hash, key, v);
1418         else {
1419             Node<K,V> x = (tab[i].isEmpty()) ? null : newNode(hash, key, v, null);
1420             tab[i] = new XNode(hash, key, v, x);
1421             if (binCount >= TREEIFY_THRESHOLD - 1)
1422                 treeifyBin(tab, hash);
1423         }
1424         modCount = mc + 1;
1425         ++size;
1426         return v;
1427     }
1428 
1429     /**
1430      * {@inheritDoc}
1431      *
1432      * <p>This method will, on a best-effort basis, throw a
1433      * {@link ConcurrentModificationException} if it is detected that the
1434      * remapping function modifies this map during computation.
1435      *
1436      * @throws ConcurrentModificationException if it is detected that the
1437      * remapping function modified this map
1438      */
1439     @Override
1440     public V computeIfPresent(K key,
1441                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1442         if (remappingFunction == null)
1443             throw new NullPointerException();
1444         Node<K,V> e; V oldValue;
1445         int hash = hash(key);
1446         if ((e = getNode(hash, key)) != null &&
1447             (oldValue = e.value) != null) {
1448             int mc = modCount;
1449             V v = remappingFunction.apply(key, oldValue);
1450             if (mc != modCount) { throw new ConcurrentModificationException(); }
1451             if (v != null) {
1452                 e.value = v;
1453                 return v;
1454             }
1455             else
1456                 removeNode(hash, key, null, false, true);
1457         }
1458         return null;
1459     }
1460 
1461     /**
1462      * {@inheritDoc}
1463      *
1464      * <p>This method will, on a best-effort basis, throw a
1465      * {@link ConcurrentModificationException} if it is detected that the
1466      * remapping function modifies this map during computation.
1467      *
1468      * @throws ConcurrentModificationException if it is detected that the
1469      * remapping function modified this map
1470      */
1471     @Override
1472     public V compute(K key,
1473                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1474         if (remappingFunction == null)
1475             throw new NullPointerException();
1476         int hash = hash(key);
1477         XNode<K,V>[] tab; XNode<K,V> first; int n, i;
1478         int binCount = 0;
1479         TreeNode<K,V> t = null;
1480         Node<K,V> old = null;
1481         if (size > threshold || (tab = table) == null ||
1482             (n = tab.length) == 0)
1483             n = (tab = resize()).length;
1484         if (!(first = tab[i = (n - 1) & hash]).isEmpty()) {
1485             Node<K,V> e = first.next;K k;
1486             if (first.hash == hash &&
1487                     ((k = first.key) == key || (key != null && key.equals(k)))) {
1488                 V v = remappingFunction.apply(k, first.value);
1489                 tab[i] = new XNode(hash, k, v, e);
1490                 return v;
1491             }
1492             if (e instanceof TreeNode)
1493                 old = (t = (TreeNode<K,V>)e).getTreeNode(hash, key);
1494             else {
1495                 do {
1496                     if (e.hash == hash &&
1497                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1498                         old = e;
1499                         break;
1500                     }
1501                     ++binCount;
1502                 } while ((e = e.next) != null);
1503             }
1504         }
1505         V oldValue = (old == null) ? null : old.value;
1506         int mc = modCount;
1507         V v = remappingFunction.apply(key, oldValue);
1508         if (mc != modCount) { throw new ConcurrentModificationException(); }
1509         if (old != null) {
1510             if (v != null) {
1511                 old.value = v;
1512             }
1513             else
1514                 removeNode(hash, key, null, false, true);
1515         }
1516         else if (v != null) {
1517             if (t != null)
1518                 t.putTreeVal(this, tab, hash, key, v);
1519             else {
1520                 Node<K,V> x = (tab[i].isEmpty()) ? null : newNode(hash, key, v, null);
1521                 tab[i] = new XNode(hash, key, v, x);
1522                 if (binCount >= TREEIFY_THRESHOLD - 1)
1523                     treeifyBin(tab, hash);
1524             }
1525             modCount = mc + 1;
1526             ++size;
1527         }
1528         return v;
1529     }
1530 
1531     /**
1532      * {@inheritDoc}
1533      *
1534      * <p>This method will, on a best-effort basis, throw a
1535      * {@link ConcurrentModificationException} if it is detected that the
1536      * remapping function modifies this map during computation.
1537      *
1538      * @throws ConcurrentModificationException if it is detected that the
1539      * remapping function modified this map
1540      */
1541     @Override
1542     public V merge(K key, V value,
1543                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1544         if (value == null || remappingFunction == null)
1545             throw new NullPointerException();
1546         int hash = hash(key);
1547         XNode<K,V>[] tab; XNode<K,V> first; int n, i;
1548         int binCount = 0;
1549         TreeNode<K,V> t = null;
1550         Node<K,V> old = null;
1551         if (size > threshold || (tab = table) == null ||
1552             (n = tab.length) == 0)
1553             n = (tab = resize()).length;
1554         if (!(first = tab[i = (n - 1) & hash]).isEmpty()) {
1555             Node<K,V> e = first.next;K k;
1556             if (first.hash == hash &&
1557                     ((k = first.key) == key || (key != null && key.equals(k)))) {
1558                 V v = remappingFunction.apply(first.value, value);
1559                 tab[i] = new XNode(hash, k, v, e);
1560                 return v;
1561             }
1562             if (e instanceof TreeNode)
1563                 old = (t = (TreeNode<K,V>)e).getTreeNode(hash, key);
1564             else {
1565                 do {
1566                     if (e.hash == hash &&
1567                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1568                         old = e;
1569                         break;
1570                     }
1571                     ++binCount;
1572                 } while ((e = e.next) != null);
1573             }
1574         }
1575         if (old != null) {
1576             V v;
1577             if (old.value != null) {
1578                 int mc = modCount;
1579                 v = remappingFunction.apply(old.value, value);
1580                 if (mc != modCount) {
1581                     throw new ConcurrentModificationException();
1582                 }
1583             } else {
1584                 v = value;
1585             }
1586             if (v != null) {
1587                 old.value = v;
1588             }
1589             else
1590                 removeNode(hash, key, null, false, true);
1591             return v;
1592         } else {
1593             if (t != null)
1594                 t.putTreeVal(this, tab, hash, key, value);
1595             else {
1596                 Node<K,V> x = (tab[i].isEmpty()) ? null
1597                         : newNode(hash, tab[i].key, tab[i].value, null);
1598                 tab[i] = new XNode(hash, key, value, x);
1599                 if (binCount >= TREEIFY_THRESHOLD - 1)
1600                     treeifyBin(tab, hash);
1601             }
1602             ++modCount;
1603             ++size;
1604             return value;
1605         }
1606     }
1607 
1608     @Override
1609     public void forEach(BiConsumer<? super K, ? super V> action) {
1610         XNode<K,V>[] tab;
1611         if (action == null)
1612             throw new NullPointerException();
1613         if (size > 0 && (tab = table) != null) {
1614             int mc = modCount;
1615             for (XNode<K,V> te : tab) {
1616                 if (!te.isEmpty()) {
1617                     action.accept(te.key, te.value);
1618                     for (Node<K, V> e = te.next; e != null; e = e.next)
1619                         action.accept(e.key, e.value);
1620                 }
1621             }
1622             if (modCount != mc)
1623                 throw new ConcurrentModificationException();
1624         }
1625     }
1626 
1627     @Override
1628     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1629         XNode<K,V>[] tab;
1630         if (function == null)
1631             throw new NullPointerException();
1632         if (size > 0 && (tab = table) != null) {
1633             int mc = modCount;
1634             for (XNode<K,V> te : tab) {
1635                 if (!te.isEmpty()) {
1636                     V v = function.apply(te.key, te.value);
1637                     tab[te.hash & (tab.length -1)] = new XNode(te.hash, te.key, v, te.next);
1638                     for (Node<K, V> e = te.next; e != null; e = e.next)
1639                         e.value = function.apply(e.key, e.value);
1640                 }
1641             }
1642             if (modCount != mc)
1643                 throw new ConcurrentModificationException();
1644         }
1645     }
1646 
1647     /* ------------------------------------------------------------ */
1648     // Cloning and serialization
1649 
1650     /**
1651      * Returns a shallow copy of this {@code HashMap} instance: the keys and
1652      * values themselves are not cloned.
1653      *
1654      * @return a shallow copy of this map
1655      */
1656     @SuppressWarnings("unchecked")
1657     @Override
1658     public Object clone() {
1659         XHashMap<K,V> result;
1660         try {
1661             result = (XHashMap<K,V>)super.clone();
1662         } catch (CloneNotSupportedException e) {
1663             // this shouldn't happen, since we are Cloneable
1664             throw new InternalError(e);
1665         }
1666         result.reinitialize();
1667         result.putMapEntries(this, false);
1668         return result;
1669     }
1670 
1671     // These methods are also used when serializing HashSets
1672     final float loadFactor() { return loadFactor; }
1673     final int capacity() {
1674         return (table != null) ? table.length :
1675             (threshold > 0) ? threshold :
1676             DEFAULT_INITIAL_CAPACITY;
1677     }
1678 
1679     /**
1680      * Saves this map to a stream (that is, serializes it).
1681      *
1682      * @param s the stream
1683      * @throws IOException if an I/O error occurs
1684      * @serialData The <i>capacity</i> of the HashMap (the length of the
1685      *             bucket array) is emitted (int), followed by the
1686      *             <i>size</i> (an int, the number of key-value
1687      *             mappings), followed by the key (Object) and value (Object)
1688      *             for each key-value mapping.  The key-value mappings are
1689      *             emitted in no particular order.
1690      */
1691     private void writeObject(java.io.ObjectOutputStream s)
1692         throws IOException {
1693         int buckets = capacity();
1694         // Write out the threshold, loadfactor, and any hidden stuff
1695         s.defaultWriteObject();
1696         s.writeInt(buckets);
1697         s.writeInt(size);
1698         internalWriteEntries(s);
1699     }
1700 
1701     /**
1702      * Reconstitutes this map from a stream (that is, deserializes it).
1703      * @param s the stream
1704      * @throws ClassNotFoundException if the class of a serialized object
1705      *         could not be found
1706      * @throws IOException if an I/O error occurs
1707      */
1708     private void readObject(java.io.ObjectInputStream s)
1709         throws IOException, ClassNotFoundException {
1710         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1711         s.defaultReadObject();
1712         reinitialize();
1713         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1714             throw new InvalidObjectException("Illegal load factor: " +
1715                                              loadFactor);
1716         s.readInt();                // Read and ignore number of buckets
1717         int mappings = s.readInt(); // Read number of mappings (size)
1718         if (mappings < 0)
1719             throw new InvalidObjectException("Illegal mappings count: " +
1720                                              mappings);
1721         else if (mappings > 0) { // (if zero, use defaults)
1722             // Size the table using given load factor only if within
1723             // range of 0.25...4.0
1724             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1725             float fc = (float)mappings / lf + 1.0f;
1726             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1727                        DEFAULT_INITIAL_CAPACITY :
1728                        (fc >= MAXIMUM_CAPACITY) ?
1729                        MAXIMUM_CAPACITY :
1730                        tableSizeFor((int)fc));
1731             float ft = (float)cap * lf;
1732             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1733                          (int)ft : Integer.MAX_VALUE);
1734 
1735             // Check Map.Entry[].class since it's the nearest public type to
1736             // what we're actually creating.
1737             @SuppressWarnings({"rawtypes","unchecked"})
1738             XNode<K,V>[] tab = (XNode<K,V>[])new XNode[cap];
1739             table = tab;
1740 
1741             // Read the keys and values, and put the mappings in the HashMap
1742             for (int i = 0; i < mappings; i++) {
1743                 @SuppressWarnings("unchecked")
1744                     K key = (K) s.readObject();
1745                 @SuppressWarnings("unchecked")
1746                     V value = (V) s.readObject();
1747                 putVal(hash(key), key, value, false, false);
1748             }
1749         }
1750     }
1751 
1752     /* ------------------------------------------------------------ */
1753     // iterators
1754 
1755     static final Node<?,?> START_INDEX = new Node(0, null, null, null);
1756 
1757     abstract class HashIterator {
1758         Node<K,V> next;        // next entry to return
1759         Node<K,V> current;     // current entry
1760         int expectedModCount;  // for fast-fail
1761         int index;             // current slot
1762 
1763 
1764         HashIterator() {
1765             expectedModCount = modCount;
1766             XNode<K,V>[] t = table;
1767             current = next = null;
1768             index = 0;
1769             if (t != null && size > 0) { // advance to first entry
1770                 XNode<K,V> n = emptyXNode();
1771                 for (; index < t.length && (n = t[index]).isEmpty(); index++) {
1772                 }
1773                 next = (Node<K,V>)START_INDEX;
1774             }
1775         }
1776 
1777         public final boolean hasNext() {
1778             return next != null;
1779         }
1780 
1781         final Entry<K,V> nextNode() {
1782             XNode<K,V>[] t;
1783             Node<K,V> e = next;
1784             if (modCount != expectedModCount)
1785                 throw new ConcurrentModificationException();
1786             if (e == null)
1787                 throw new NoSuchElementException();
1788             if ((next = (current = e).next) == null && (t = table) != null) {
1789                 var ret = (e == START_INDEX) ? new XNodeWrapper(index++) : e;
1790                 for (; index < t.length && (t[index]).isEmpty(); index++) { }
1791                 next = (index < t.length) ? (Node<K, V>) START_INDEX : null;
1792                 return ret;
1793             }
1794             return e;
1795         }
1796 
1797         public final void remove() {
1798             Node<K,V> p = current;
1799             if (p == null)
1800                 throw new IllegalStateException();
1801             if (modCount != expectedModCount)
1802                 throw new ConcurrentModificationException();
1803             current = null;
1804             removeNode(p.hash, p.key, null, false, false);
1805             expectedModCount = modCount;
1806         }
1807     }
1808 
1809     final class KeyIterator extends HashIterator
1810         implements Iterator<K> {
1811         public final K next() { return nextNode().getKey(); }
1812     }
1813 
1814     final class ValueIterator extends HashIterator
1815         implements Iterator<V> {
1816         public final V next() { return nextNode().getValue(); }
1817     }
1818 
1819     final class EntryIterator extends HashIterator
1820         implements Iterator<Map.Entry<K,V>> {
1821         public final Map.Entry<K,V> next() { return nextNode(); }
1822     }
1823 
1824     /*
1825      * The following package-protected methods are designed to be
1826      * overridden by LinkedHashMap, but not by any other subclass.
1827      * Nearly all other internal methods are also package-protected
1828      * but are declared final, so can be used by LinkedHashMap, view
1829      * classes, and HashSet.
1830      */
1831 
1832     // Create a regular (non-tree) node
1833     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1834         return new Node<>(hash, key, value, next);
1835     }
1836 
1837     // For conversion from TreeNodes to plain nodes
1838     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1839         return new Node<>(p.hash, p.key, p.value, next);
1840     }
1841 
1842     // Create a tree bin node
1843     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1844         return new TreeNode<>(hash, key, value, next);
1845     }
1846 
1847     // For treeifyBin
1848     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1849         return new TreeNode<>(p.hash, p.key, p.value, next);
1850     }
1851 
1852     /**
1853      * Reset to initial default state.  Called by clone and readObject.
1854      */
1855     void reinitialize() {
1856         table = null;
1857         entrySet = null;
1858         keySet = null;
1859         values = null;
1860         modCount = 0;
1861         threshold = 0;
1862         size = 0;
1863     }
1864 
1865     // Called only from writeObject, to ensure compatible ordering.
1866     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1867         XNode<K,V>[] tab;
1868         if (size > 0 && (tab = table) != null) {
1869             for (XNode<K,V> te : tab) {
1870                 if (!te.isEmpty()) {
1871                     s.writeObject(te.key);
1872                     s.writeObject(te.value);
1873 
1874                     for (Node<K, V> e = te.next; e != null; e = e.next) {
1875                         s.writeObject(e.key);
1876                         s.writeObject(e.value);
1877                     }
1878                 }
1879             }
1880         }
1881     }
1882 
1883     /* ------------------------------------------------------------ */
1884     // Tree bins
1885 
1886     /**
1887      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1888      * extends Node) so can be used as extension of either regular or
1889      * linked node.
1890      */
1891     static final class TreeNode<K,V> extends Node<K,V> {
1892         TreeNode<K,V> parent;  // red-black tree links
1893         TreeNode<K,V> left;
1894         TreeNode<K,V> right;
1895         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1896         boolean red;
1897         TreeNode(int hash, K key, V val, Node<K,V> next) {
1898             super(hash, key, val, next);
1899         }
1900 
1901         /**
1902          * Returns root of tree containing this node.
1903          */
1904         final TreeNode<K,V> root() {
1905             for (TreeNode<K,V> r = this, p;;) {
1906                 if ((p = r.parent) == null)
1907                     return r;
1908                 r = p;
1909             }
1910         }
1911 
1912         /**
1913          * Ensures that the given root is the first node of its bin.
1914          */
1915         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1916             int n;
1917             if (root != null && tab != null && (n = tab.length) > 0) {
1918                 int index = (n - 1) & root.hash;
1919                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1920                 if (root != first) {
1921                     Node<K,V> rn;
1922                     tab[index] = root;
1923                     TreeNode<K,V> rp = root.prev;
1924                     if ((rn = root.next) != null)
1925                         ((TreeNode<K,V>)rn).prev = rp;
1926                     if (rp != null)
1927                         rp.next = rn;
1928                     if (first != null)
1929                         first.prev = root;
1930                     root.next = first;
1931                     root.prev = null;
1932                 }
1933                 assert checkInvariants(root);
1934             }
1935         }
1936 
1937         /**
1938          * Finds the node starting at root p with the given hash and key.
1939          * The kc argument caches comparableClassFor(key) upon first use
1940          * comparing keys.
1941          */
1942         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1943             TreeNode<K,V> p = this;
1944             do {
1945                 int ph, dir; K pk;
1946                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1947                 if ((ph = p.hash) > h)
1948                     p = pl;
1949                 else if (ph < h)
1950                     p = pr;
1951                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1952                     return p;
1953                 else if (pl == null)
1954                     p = pr;
1955                 else if (pr == null)
1956                     p = pl;
1957                 else if ((kc != null ||
1958                           (kc = comparableClassFor(k)) != null) &&
1959                          (dir = compareComparables(kc, k, pk)) != 0)
1960                     p = (dir < 0) ? pl : pr;
1961                 else if ((q = pr.find(h, k, kc)) != null)
1962                     return q;
1963                 else
1964                     p = pl;
1965             } while (p != null);
1966             return null;
1967         }
1968 
1969         /**
1970          * Calls find for root node.
1971          */
1972         final TreeNode<K,V> getTreeNode(int h, Object k) {
1973             return ((parent != null) ? root() : this).find(h, k, null);
1974         }
1975 
1976         /**
1977          * Tie-breaking utility for ordering insertions when equal
1978          * hashCodes and non-comparable. We don't require a total
1979          * order, just a consistent insertion rule to maintain
1980          * equivalence across rebalancings. Tie-breaking further than
1981          * necessary simplifies testing a bit.
1982          */
1983         static int tieBreakOrder(Object a, Object b) {
1984             int d;
1985             if (a == null || b == null ||
1986                 (d = a.getClass().getName().
1987                  compareTo(b.getClass().getName())) == 0)
1988                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1989                      -1 : 1);
1990             return d;
1991         }
1992 
1993         /**
1994          * Forms tree of the nodes linked from this node.
1995          */
1996         final void treeify(XNode<K,V>[] tab) {
1997 //            TreeNode<K,V> root = null;
1998 //            for (TreeNode<K,V> x = this, next; x != null; x = next) {
1999 //                next = (TreeNode<K,V>)x.next;
2000 //                x.left = x.right = null;
2001 //                if (root == null) {
2002 //                    x.parent = null;
2003 //                    x.red = false;
2004 //                    root = x;
2005 //                }
2006 //                else {
2007 //                    K k = x.key;
2008 //                    int h = x.hash;
2009 //                    Class<?> kc = null;
2010 //                    for (TreeNode<K,V> p = root;;) {
2011 //                        int dir, ph;
2012 //                        K pk = p.key;
2013 //                        if ((ph = p.hash) > h)
2014 //                            dir = -1;
2015 //                        else if (ph < h)
2016 //                            dir = 1;
2017 //                        else if ((kc == null &&
2018 //                                  (kc = comparableClassFor(k)) == null) ||
2019 //                                 (dir = compareComparables(kc, k, pk)) == 0)
2020 //                            dir = tieBreakOrder(k, pk);
2021 //
2022 //                        TreeNode<K,V> xp = p;
2023 //                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2024 //                            x.parent = xp;
2025 //                            if (dir <= 0)
2026 //                                xp.left = x;
2027 //                            else
2028 //                                xp.right = x;
2029 //                            root = balanceInsertion(root, x);
2030 //                            break;
2031 //                        }
2032 //                    }
2033 //                }
2034 //            }
2035 //            moveRootToFront(tab, root);
2036         }
2037 
2038         /**
2039          * Returns a list of non-TreeNodes replacing those linked from
2040          * this node.
2041          */
2042         final Node<K,V> untreeify(XHashMap<K,V> map) {
2043             Node<K,V> hd = null, tl = null;
2044             for (Node<K,V> q = this; q != null; q = q.next) {
2045                 Node<K,V> p = map.replacementNode(q, null);
2046                 if (tl == null)
2047                     hd = p;
2048                 else
2049                     tl.next = p;
2050                 tl = p;
2051             }
2052             return hd;
2053         }
2054 
2055         /**
2056          * Tree version of putVal.
2057          */
2058         final TreeNode<K,V> putTreeVal(XHashMap<K,V> map, XNode<K,V>[] tab,
2059                                        int h, K k, V v) {
2060 //            Class<?> kc = null;
2061 //            boolean searched = false;
2062 //            TreeNode<K,V> root = (parent != null) ? root() : this;
2063 //            for (TreeNode<K,V> p = root;;) {
2064 //                int dir, ph; K pk;
2065 //                if ((ph = p.hash) > h)
2066 //                    dir = -1;
2067 //                else if (ph < h)
2068 //                    dir = 1;
2069 //                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2070 //                    return p;
2071 //                else if ((kc == null &&
2072 //                          (kc = comparableClassFor(k)) == null) ||
2073 //                         (dir = compareComparables(kc, k, pk)) == 0) {
2074 //                    if (!searched) {
2075 //                        TreeNode<K,V> q, ch;
2076 //                        searched = true;
2077 //                        if (((ch = p.left) != null &&
2078 //                             (q = ch.find(h, k, kc)) != null) ||
2079 //                            ((ch = p.right) != null &&
2080 //                             (q = ch.find(h, k, kc)) != null))
2081 //                            return q;
2082 //                    }
2083 //                    dir = tieBreakOrder(k, pk);
2084 //                }
2085 //
2086 //                TreeNode<K,V> xp = p;
2087 //                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2088 //                    Node<K,V> xpn = xp.next;
2089 //                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2090 //                    if (dir <= 0)
2091 //                        xp.left = x;
2092 //                    else
2093 //                        xp.right = x;
2094 //                    xp.next = x;
2095 //                    x.parent = x.prev = xp;
2096 //                    if (xpn != null)
2097 //                        ((TreeNode<K,V>)xpn).prev = x;
2098 //                    moveRootToFront(tab, balanceInsertion(root, x));
2099 //                    return null;
2100 //                }
2101 //            }
2102             return null;
2103         }
2104 
2105         /**
2106          * Removes the given node, that must be present before this call.
2107          * This is messier than typical red-black deletion code because we
2108          * cannot swap the contents of an interior node with a leaf
2109          * successor that is pinned by "next" pointers that are accessible
2110          * independently during traversal. So instead we swap the tree
2111          * linkages. If the current tree appears to have too few nodes,
2112          * the bin is converted back to a plain bin. (The test triggers
2113          * somewhere between 2 and 6 nodes, depending on tree structure).
2114          */
2115         final void removeTreeNode(XHashMap<K,V> map, XNode<K,V>[] tab,
2116                                   boolean movable) {
2117 //            int n;
2118 //            if (tab == null || (n = tab.length) == 0)
2119 //                return;
2120 //            int index = (n - 1) & hash;
2121 //            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2122 //            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2123 //            if (pred == null)
2124 //                tab[index] = first = succ;
2125 //            else
2126 //                pred.next = succ;
2127 //            if (succ != null)
2128 //                succ.prev = pred;
2129 //            if (first == null)
2130 //                return;
2131 //            if (root.parent != null)
2132 //                root = root.root();
2133 //            if (root == null
2134 //                || (movable
2135 //                    && (root.right == null
2136 //                        || (rl = root.left) == null
2137 //                        || rl.left == null))) {
2138 //                tab[index] = first.untreeify(map);  // too small
2139 //                return;
2140 //            }
2141 //            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2142 //            if (pl != null && pr != null) {
2143 //                TreeNode<K,V> s = pr, sl;
2144 //                while ((sl = s.left) != null) // find successor
2145 //                    s = sl;
2146 //                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2147 //                TreeNode<K,V> sr = s.right;
2148 //                TreeNode<K,V> pp = p.parent;
2149 //                if (s == pr) { // p was s's direct parent
2150 //                    p.parent = s;
2151 //                    s.right = p;
2152 //                }
2153 //                else {
2154 //                    TreeNode<K,V> sp = s.parent;
2155 //                    if ((p.parent = sp) != null) {
2156 //                        if (s == sp.left)
2157 //                            sp.left = p;
2158 //                        else
2159 //                            sp.right = p;
2160 //                    }
2161 //                    if ((s.right = pr) != null)
2162 //                        pr.parent = s;
2163 //                }
2164 //                p.left = null;
2165 //                if ((p.right = sr) != null)
2166 //                    sr.parent = p;
2167 //                if ((s.left = pl) != null)
2168 //                    pl.parent = s;
2169 //                if ((s.parent = pp) == null)
2170 //                    root = s;
2171 //                else if (p == pp.left)
2172 //                    pp.left = s;
2173 //                else
2174 //                    pp.right = s;
2175 //                if (sr != null)
2176 //                    replacement = sr;
2177 //                else
2178 //                    replacement = p;
2179 //            }
2180 //            else if (pl != null)
2181 //                replacement = pl;
2182 //            else if (pr != null)
2183 //                replacement = pr;
2184 //            else
2185 //                replacement = p;
2186 //            if (replacement != p) {
2187 //                TreeNode<K,V> pp = replacement.parent = p.parent;
2188 //                if (pp == null)
2189 //                    (root = replacement).red = false;
2190 //                else if (p == pp.left)
2191 //                    pp.left = replacement;
2192 //                else
2193 //                    pp.right = replacement;
2194 //                p.left = p.right = p.parent = null;
2195 //            }
2196 //
2197 //            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2198 //
2199 //            if (replacement == p) {  // detach
2200 //                TreeNode<K,V> pp = p.parent;
2201 //                p.parent = null;
2202 //                if (pp != null) {
2203 //                    if (p == pp.left)
2204 //                        pp.left = null;
2205 //                    else if (p == pp.right)
2206 //                        pp.right = null;
2207 //                }
2208 //            }
2209 //            if (movable)
2210 //                moveRootToFront(tab, r);
2211         }
2212 
2213         /**
2214          * Splits nodes in a tree bin into lower and upper tree bins,
2215          * or untreeifies if now too small. Called only from resize;
2216          * see above discussion about split bits and indices.
2217          *
2218          * @param map the map
2219          * @param tab the table for recording bin heads
2220          * @param index the index of the table being split
2221          * @param bit the bit of hash to split on
2222          */
2223         final void split(XHashMap<K,V> map, XNode<K,V>[] tab, int index, int bit) {
2224 //            TreeNode<K,V> b = this;
2225 //            // Relink into lo and hi lists, preserving order
2226 //            TreeNode<K,V> loHead = null, loTail = null;
2227 //            TreeNode<K,V> hiHead = null, hiTail = null;
2228 //            int lc = 0, hc = 0;
2229 //            for (TreeNode<K,V> e = b, next; e != null; e = next) {
2230 //                next = (TreeNode<K,V>)e.next;
2231 //                e.next = null;
2232 //                if ((e.hash & bit) == 0) {
2233 //                    if ((e.prev = loTail) == null)
2234 //                        loHead = e;
2235 //                    else
2236 //                        loTail.next = e;
2237 //                    loTail = e;
2238 //                    ++lc;
2239 //                }
2240 //                else {
2241 //                    if ((e.prev = hiTail) == null)
2242 //                        hiHead = e;
2243 //                    else
2244 //                        hiTail.next = e;
2245 //                    hiTail = e;
2246 //                    ++hc;
2247 //                }
2248 //            }
2249 //
2250 //            if (loHead != null) {
2251 //                if (lc <= UNTREEIFY_THRESHOLD)
2252 //                    tab[index] = loHead.untreeify(map);
2253 //                else {
2254 //                    tab[index] = loHead;
2255 //                    if (hiHead != null) // (else is already treeified)
2256 //                        loHead.treeify(tab);
2257 //                }
2258 //            }
2259 //            if (hiHead != null) {
2260 //                if (hc <= UNTREEIFY_THRESHOLD)
2261 //                    tab[index + bit] = hiHead.untreeify(map);
2262 //                else {
2263 //                    tab[index + bit] = hiHead;
2264 //                    if (loHead != null)
2265 //                        hiHead.treeify(tab);
2266 //                }
2267 //            }
2268         }
2269 
2270         /**
2271          * Recursive invariant check
2272          */
2273         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2274             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2275                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2276             if (tb != null && tb.next != t)
2277                 return false;
2278             if (tn != null && tn.prev != t)
2279                 return false;
2280             if (tp != null && t != tp.left && t != tp.right)
2281                 return false;
2282             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2283                 return false;
2284             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2285                 return false;
2286             if (t.red && tl != null && tl.red && tr != null && tr.red)
2287                 return false;
2288             if (tl != null && !checkInvariants(tl))
2289                 return false;
2290             if (tr != null && !checkInvariants(tr))
2291                 return false;
2292             return true;
2293         }
2294     }
2295 
2296 
2297     public void dumpStats(PrintStream out) {
2298         out.printf("%s instance: size: %d%n", this.getClass().getName(), this.size());
2299         long size = heapSize();
2300         long bytesPer = size / this.size();
2301         out.printf("    heap size: %d(bytes), avg bytes per entry: %d, table len: %d%n",
2302                 size, bytesPer, table.length);
2303         long[] types = entryTypes();
2304         out.printf("    values: %d, empty: %d%n", types[0], types[1]);
2305         int[] rehashes = entryRehashes();
2306         out.printf("    hash collision histogram: max: %d, %s%n",
2307                 rehashes.length - 1, Arrays.toString(rehashes));
2308     }
2309 
2310     private long[] entryTypes() {
2311         long[] counts = new long[3];
2312         for (XNode<K,V> te : table) {
2313             counts[te.isEmpty() ? 1 : 0]++;
2314         }
2315         return counts;
2316     }
2317 
2318     // Returns a histogram array of the number of rehashs needed to find each key.
2319     private int[] entryRehashes() {
2320         int[] counts = new int[table.length + 1];
2321         XNode<K,V>[] tab = table;
2322         for (XNode<K,V> te : tab) {
2323             if (!te.isEmpty()) {
2324                 int count = 0;
2325                 for (Node<K, V> e = te.next; e != null; e = e.next)
2326                     count++;
2327                 counts[count]++;
2328             }
2329         }
2330 
2331         int i;
2332         for (i = counts.length - 1; i >= 0 && counts[i] == 0; i--) {
2333         }
2334         counts = Arrays.copyOf(counts, i + 1);
2335         return counts;
2336     }
2337 
2338     private long heapSize() {
2339         long acc = objectSizeMaybe(this);
2340         acc += objectSizeMaybe(table);
2341 
2342         XNode<K,V>[] tab = table;
2343         for (XNode<K,V> te : tab) {
2344             if (!te.isEmpty()) {
2345                 for (Node<K, V> e = te.next; e != null; e = e.next)
2346                     acc += objectSizeMaybe(e);
2347             }
2348         }
2349         return acc;
2350     }
2351 
2352     private long objectSizeMaybe(Object o) {
2353         try {
2354             return (mObjectSize != null)
2355                     ? (long)mObjectSize.invoke(null, o)
2356                     : 0L;
2357         } catch (IllegalAccessException | InvocationTargetException e) {
2358             return 0L;
2359         }
2360     }
2361 
2362     private static boolean hasObjectSize = false;
2363     private static Method mObjectSize = getObjectSizeMethod();
2364 
2365     private static Method getObjectSizeMethod() {
2366         try {
2367             Method m = Objects.class.getDeclaredMethod("getObjectSize", Object.class);
2368             hasObjectSize = true;
2369             return m;
2370         } catch (NoSuchMethodException nsme) {
2371             return null;
2372         }
2373     }
2374 
2375 }