< prev index next >

src/hotspot/cpu/x86/c1_LIRAssembler_x86.cpp

Print this page
*** 31,10 ***
--- 31,12 ---
  #include "c1/c1_MacroAssembler.hpp"
  #include "c1/c1_Runtime1.hpp"
  #include "c1/c1_ValueStack.hpp"
  #include "ci/ciArrayKlass.hpp"
  #include "ci/ciInstance.hpp"
+ #include "ci/ciUtilities.hpp"
+ #include "code/SCCache.hpp"
  #include "compiler/oopMap.hpp"
  #include "gc/shared/collectedHeap.hpp"
  #include "gc/shared/gc_globals.hpp"
  #include "nativeInst_x86.hpp"
  #include "oops/objArrayKlass.hpp"

*** 49,28 ***
  // These masks are used to provide 128-bit aligned bitmasks to the XMM
  // instructions, to allow sign-masking or sign-bit flipping.  They allow
  // fast versions of NegF/NegD and AbsF/AbsD.
  
  // Note: 'double' and 'long long' have 32-bits alignment on x86.
! static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    // of 128-bits operands for SSE instructions.
    jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    // Store the value to a 128-bits operand.
    operand[0] = lo;
    operand[1] = hi;
!   return operand;
  }
  
  // Buffer for 128-bits masks used by SSE instructions.
  static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  
  // Static initialization during VM startup.
! static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
! static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
! static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
! static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  
  
  NEEDS_CLEANUP // remove this definitions ?
  const Register SYNC_header = rax;   // synchronization header
  const Register SHIFT_count = rcx;   // where count for shift operations must be
--- 51,28 ---
  // These masks are used to provide 128-bit aligned bitmasks to the XMM
  // instructions, to allow sign-masking or sign-bit flipping.  They allow
  // fast versions of NegF/NegD and AbsF/AbsD.
  
  // Note: 'double' and 'long long' have 32-bits alignment on x86.
! static address double_quadword(jlong *adr, jlong lo, jlong hi) {
    // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    // of 128-bits operands for SSE instructions.
    jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    // Store the value to a 128-bits operand.
    operand[0] = lo;
    operand[1] = hi;
!   return (address)operand;
  }
  
  // Buffer for 128-bits masks used by SSE instructions.
  static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  
  // Static initialization during VM startup.
! address LIR_Assembler::float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
! address LIR_Assembler::double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
! address LIR_Assembler::float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
! address LIR_Assembler::double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  
  
  NEEDS_CLEANUP // remove this definitions ?
  const Register SYNC_header = rax;   // synchronization header
  const Register SHIFT_count = rcx;   // where count for shift operations must be

*** 573,10 ***
--- 575,18 ---
      }
  
      case T_LONG: {
        assert(patch_code == lir_patch_none, "no patching handled here");
  #ifdef _LP64
+       if (SCCache::is_on_for_write()) {
+         // SCA needs relocation info for card table base
+         address b = c->as_pointer();
+         if (is_card_table_address(b)) {
+           __ lea(dest->as_register_lo(), ExternalAddress(b));
+           break;
+         }
+       }
        __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
  #else
        __ movptr(dest->as_register_lo(), c->as_jint_lo());
        __ movptr(dest->as_register_hi(), c->as_jint_hi());
  #endif // _LP64

*** 2405,11 ***
              if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
                __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
              }
              assert(!tmp->is_valid(), "do not need temporary");
              __ andpd(dest->as_xmm_double_reg(),
!                      ExternalAddress((address)double_signmask_pool),
                       rscratch1);
            }
          }
          break;
  
--- 2415,11 ---
              if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
                __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
              }
              assert(!tmp->is_valid(), "do not need temporary");
              __ andpd(dest->as_xmm_double_reg(),
!                      ExternalAddress(LIR_Assembler::double_signmask_pool),
                       rscratch1);
            }
          }
          break;
  

*** 3828,11 ***
        assert(!tmp->is_valid(), "do not need temporary");
        if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
          __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
        }
        __ xorps(dest->as_xmm_float_reg(),
!                ExternalAddress((address)float_signflip_pool),
                 rscratch1);
      }
    } else if (dest->is_double_xmm()) {
  #ifdef _LP64
      if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
--- 3838,11 ---
        assert(!tmp->is_valid(), "do not need temporary");
        if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
          __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
        }
        __ xorps(dest->as_xmm_float_reg(),
!                ExternalAddress(LIR_Assembler::float_signflip_pool),
                 rscratch1);
      }
    } else if (dest->is_double_xmm()) {
  #ifdef _LP64
      if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {

*** 3846,11 ***
        assert(!tmp->is_valid(), "do not need temporary");
        if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
          __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
        }
        __ xorpd(dest->as_xmm_double_reg(),
!                ExternalAddress((address)double_signflip_pool),
                 rscratch1);
      }
  #ifndef _LP64
    } else if (left->is_single_fpu() || left->is_double_fpu()) {
      assert(left->fpu() == 0, "arg must be on TOS");
--- 3856,11 ---
        assert(!tmp->is_valid(), "do not need temporary");
        if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
          __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
        }
        __ xorpd(dest->as_xmm_double_reg(),
!                ExternalAddress(LIR_Assembler::double_signflip_pool),
                 rscratch1);
      }
  #ifndef _LP64
    } else if (left->is_single_fpu() || left->is_double_fpu()) {
      assert(left->fpu() == 0, "arg must be on TOS");
< prev index next >