< prev index next > src/hotspot/share/compiler/compilationPolicy.cpp
Print this page
* questions.
*
*/
#include "precompiled.hpp"
+ #include "cds/aotLinkedClassBulkLoader.hpp"
#include "code/scopeDesc.hpp"
+ #include "code/SCCache.hpp"
#include "compiler/compilationPolicy.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compilerDefinitions.inline.hpp"
#include "compiler/compilerOracle.hpp"
+ #include "compiler/recompilationPolicy.hpp"
#include "memory/resourceArea.hpp"
#include "oops/methodData.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
+ #include "oops/trainingData.hpp"
#include "prims/jvmtiExport.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.hpp"
#include "runtime/frame.inline.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmci.hpp"
#endif
! jlong CompilationPolicy::_start_time = 0;
int CompilationPolicy::_c1_count = 0;
int CompilationPolicy::_c2_count = 0;
double CompilationPolicy::_increase_threshold_at_ratio = 0;
void compilationPolicy_init() {
CompilationPolicy::initialize();
}
int CompilationPolicy::compiler_count(CompLevel comp_level) {
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmci.hpp"
#endif
! int64_t CompilationPolicy::_start_time = 0;
int CompilationPolicy::_c1_count = 0;
int CompilationPolicy::_c2_count = 0;
+ int CompilationPolicy::_c3_count = 0;
+ int CompilationPolicy::_sc_count = 0;
double CompilationPolicy::_increase_threshold_at_ratio = 0;
+ CompilationPolicy::TrainingReplayQueue CompilationPolicy::_training_replay_queue;
+
void compilationPolicy_init() {
CompilationPolicy::initialize();
}
int CompilationPolicy::compiler_count(CompLevel comp_level) {
if (ReplayCompiles) return false;
if (m->has_compiled_code()) return false; // already compiled
if (!can_be_compiled(m, comp_level)) return false;
! return !UseInterpreter || // must compile all methods
(AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
}
void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
if (must_be_compiled(m)) {
// This path is unusual, mostly used by the '-Xcomp' stress test mode.
! if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
! // don't force compilation, resolve was on behalf of compiler
! return;
}
! if (m->method_holder()->is_not_initialized()) {
! // 'is_not_initialized' means not only '!is_initialized', but also that
! // initialization has not been started yet ('!being_initialized')
! // Do not force compilation of methods in uninitialized classes.
- // Note that doing this would throw an assert later,
- // in CompileBroker::compile_method.
- // We sometimes use the link resolver to do reflective lookups
- // even before classes are initialized.
- return;
}
! CompLevel level = initial_compile_level(m);
! if (PrintTieredEvents) {
! print_event(COMPILE, m(), m(), InvocationEntryBci, level);
}
! CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, CompileTask::Reason_MustBeCompiled, THREAD);
}
}
static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
if (comp_level == CompLevel_any) {
if (ReplayCompiles) return false;
if (m->has_compiled_code()) return false; // already compiled
if (!can_be_compiled(m, comp_level)) return false;
! return !UseInterpreter || // must compile all methods
(AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods
}
+ void CompilationPolicy::maybe_compile_early(const methodHandle& m, TRAPS) {
+ if (m->method_holder()->is_not_initialized()) {
+ // 'is_not_initialized' means not only '!is_initialized', but also that
+ // initialization has not been started yet ('!being_initialized')
+ // Do not force compilation of methods in uninitialized classes.
+ return;
+ }
+ if (!m->is_native() && MethodTrainingData::have_data()) {
+ MethodTrainingData* mtd = MethodTrainingData::find(m);
+ if (mtd == nullptr) {
+ return; // there is no training data recorded for m
+ }
+ bool recompile = m->code_has_clinit_barriers();
+ CompLevel cur_level = static_cast<CompLevel>(m->highest_comp_level());
+ CompLevel next_level = trained_transition(m, cur_level, mtd, THREAD);
+ if ((next_level != cur_level || recompile) && can_be_compiled(m, next_level) && !CompileBroker::compilation_is_in_queue(m)) {
+ bool requires_online_compilation = false;
+ CompileTrainingData* ctd = mtd->last_toplevel_compile(next_level);
+ if (ctd != nullptr) {
+ requires_online_compilation = (ctd->init_deps_left() > 0);
+ }
+ if (requires_online_compilation && recompile) {
+ return;
+ }
+ if (PrintTieredEvents) {
+ print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, next_level);
+ }
+ CompileBroker::compile_method(m, InvocationEntryBci, next_level, methodHandle(), 0, requires_online_compilation, CompileTask::Reason_MustBeCompiled, THREAD);
+ if (HAS_PENDING_EXCEPTION) {
+ CLEAR_PENDING_EXCEPTION;
+ }
+ }
+ }
+ }
+
+ void CompilationPolicy::maybe_compile_early_after_init(const methodHandle& m, TRAPS) {
+ assert(m->method_holder()->is_initialized(), "Should be called after class initialization");
+ maybe_compile_early(m, THREAD);
+ }
+
void CompilationPolicy::compile_if_required(const methodHandle& m, TRAPS) {
+ if (!THREAD->can_call_java() || THREAD->is_Compiler_thread()) {
+ // don't force compilation, resolve was on behalf of compiler
+ return;
+ }
+ if (m->method_holder()->is_not_initialized()) {
+ // 'is_not_initialized' means not only '!is_initialized', but also that
+ // initialization has not been started yet ('!being_initialized')
+ // Do not force compilation of methods in uninitialized classes.
+ // Note that doing this would throw an assert later,
+ // in CompileBroker::compile_method.
+ // We sometimes use the link resolver to do reflective lookups
+ // even before classes are initialized.
+ return;
+ }
+
if (must_be_compiled(m)) {
// This path is unusual, mostly used by the '-Xcomp' stress test mode.
+ CompLevel level = initial_compile_level(m);
+ if (PrintTieredEvents) {
+ print_event(FORCE_COMPILE, m(), m(), InvocationEntryBci, level);
+ }
+ CompileBroker::compile_method(m, InvocationEntryBci, level, methodHandle(), 0, false, CompileTask::Reason_MustBeCompiled, THREAD);
+ }
+ }
! void CompilationPolicy::replay_training_at_init_impl(InstanceKlass* klass, TRAPS) {
! if (!klass->has_init_deps_processed()) {
! ResourceMark rm;
+ log_debug(training)("Replay training: %s", klass->external_name());
+
+ KlassTrainingData* ktd = KlassTrainingData::find(klass);
+ if (ktd != nullptr) {
+ guarantee(ktd->has_holder(), "");
+ ktd->notice_fully_initialized(); // sets klass->has_init_deps_processed bit
+ assert(klass->has_init_deps_processed(), "");
+
+ ktd->iterate_all_comp_deps([&](CompileTrainingData* ctd) {
+ if (ctd->init_deps_left() == 0) {
+ MethodTrainingData* mtd = ctd->method();
+ if (mtd->has_holder()) {
+ const methodHandle mh(THREAD, const_cast<Method*>(mtd->holder()));
+ CompilationPolicy::maybe_compile_early(mh, THREAD);
+ }
+ }
+ });
}
! Array<Method*>* methods = klass->methods();
! for (int i = 0; i < methods->length(); i++) {
! const methodHandle mh(THREAD, methods->at(i));
! CompilationPolicy::maybe_compile_early_after_init(mh, THREAD);
}
! }
! }
!
+ void CompilationPolicy::replay_training_at_init(bool is_on_shutdown, TRAPS) {
+ // Drain pending queue when no concurrent processing thread is present.
+ if (UseConcurrentTrainingReplay) {
+ if (VerifyTrainingData) {
+ MonitorLocker locker(THREAD, TrainingReplayQueue_lock);
+ while (!_training_replay_queue.is_empty_unlocked()) {
+ locker.wait(); // let the replay training thread drain the queue
+ }
+ }
+ } else {
+ do {
+ InstanceKlass* pending = _training_replay_queue.try_pop(TrainingReplayQueue_lock, THREAD);
+ if (pending == nullptr) {
+ break; // drained the queue
+ }
+ if (is_on_shutdown) {
+ LogStreamHandle(Warning, training) log;
+ if (log.is_enabled()) {
+ ResourceMark rm;
+ log.print("pending training replay request: %s%s",
+ pending->external_name(), (pending->has_aot_initialized_mirror() ? " (preinitialized)" : ""));
+ }
+ }
+ replay_training_at_init_impl(pending, THREAD);
+ } while (true);
+ }
+
+ if (VerifyTrainingData) {
+ TrainingData::verify();
+ }
+ }
+
+ void CompilationPolicy::replay_training_at_init(InstanceKlass* klass, TRAPS) {
+ assert(klass->is_initialized(), "");
+ if (TrainingData::have_data() && klass->is_shared() &&
+ (CompileBroker::replay_initialized() || !klass->has_aot_initialized_mirror())) { // ignore preloaded classes during early startup
+ if (UseConcurrentTrainingReplay || !CompileBroker::replay_initialized()) {
+ _training_replay_queue.push(klass, TrainingReplayQueue_lock, THREAD);
+ } else {
+ replay_training_at_init_impl(klass, THREAD);
}
! assert(!HAS_PENDING_EXCEPTION, "");
+ }
+ }
+
+ // For TrainingReplayQueue
+ template<>
+ void CompilationPolicyUtils::Queue<InstanceKlass>::print_on(outputStream* st) {
+ int pos = 0;
+ for (QueueNode* cur = _head; cur != nullptr; cur = cur->next()) {
+ ResourceMark rm;
+ InstanceKlass* ik = cur->value();
+ st->print_cr("%3d: " INTPTR_FORMAT " %s", ++pos, p2i(ik), ik->external_name());
+ }
+ }
+
+ void CompilationPolicy::replay_training_at_init_loop(TRAPS) {
+ precond(UseConcurrentTrainingReplay);
+
+ while (!CompileBroker::is_compilation_disabled_forever() || VerifyTrainingData) {
+ InstanceKlass* ik = _training_replay_queue.pop(TrainingReplayQueue_lock, THREAD);
+ replay_training_at_init_impl(ik, THREAD);
}
}
static inline CompLevel adjust_level_for_compilability_query(CompLevel comp_level) {
if (comp_level == CompLevel_any) {
}
// Returns true if m is allowed to be compiled
bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
// allow any levels for WhiteBox
! assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level");
if (m->is_abstract()) return false;
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
// Math intrinsics should never be compiled as this can lead to
}
// Returns true if m is allowed to be compiled
bool CompilationPolicy::can_be_compiled(const methodHandle& m, int comp_level) {
// allow any levels for WhiteBox
! assert(WhiteBoxAPI || comp_level == CompLevel_any || is_compile(comp_level), "illegal compilation level %d", comp_level);
if (m->is_abstract()) return false;
if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false;
// Math intrinsics should never be compiled as this can lead to
if (CompilationModeFlag::quick_internal()) {
#if INCLUDE_JVMCI
if (UseJVMCICompiler) {
AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
! return true;
}
}
#endif
}
return false;
if (CompilationModeFlag::quick_internal()) {
#if INCLUDE_JVMCI
if (UseJVMCICompiler) {
AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
if (comp != nullptr && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
! return !SCCache::is_C3_on();
}
}
#endif
}
return false;
return k;
}
return 1;
}
! void CompilationPolicy::print_counters(const char* prefix, const Method* m) {
int invocation_count = m->invocation_count();
int backedge_count = m->backedge_count();
MethodData* mdh = m->method_data();
int mdo_invocations = 0, mdo_backedges = 0;
int mdo_invocations_start = 0, mdo_backedges_start = 0;
return k;
}
return 1;
}
! void CompilationPolicy::print_counters(const char* prefix, Method* m) {
int invocation_count = m->invocation_count();
int backedge_count = m->backedge_count();
MethodData* mdh = m->method_data();
int mdo_invocations = 0, mdo_backedges = 0;
int mdo_invocations_start = 0, mdo_backedges_start = 0;
mdo_backedges, mdo_backedges_start);
tty->print(" %smax levels=%d,%d", prefix,
m->highest_comp_level(), m->highest_osr_comp_level());
}
// Print an event.
! void CompilationPolicy::print_event(EventType type, const Method* m, const Method* im, int bci, CompLevel level) {
bool inlinee_event = m != im;
ttyLocker tty_lock;
tty->print("%lf: [", os::elapsedTime());
mdo_backedges, mdo_backedges_start);
tty->print(" %smax levels=%d,%d", prefix,
m->highest_comp_level(), m->highest_osr_comp_level());
}
+ void CompilationPolicy::print_training_data(const char* prefix, Method* method) {
+ methodHandle m(Thread::current(), method);
+ tty->print(" %smtd: ", prefix);
+ MethodTrainingData* mtd = MethodTrainingData::find(m);
+ if (mtd == nullptr) {
+ tty->print("null");
+ } else {
+ MethodData* md = mtd->final_profile();
+ tty->print("mdo=");
+ if (md == nullptr) {
+ tty->print("null");
+ } else {
+ int mdo_invocations = md->invocation_count();
+ int mdo_backedges = md->backedge_count();
+ int mdo_invocations_start = md->invocation_count_start();
+ int mdo_backedges_start = md->backedge_count_start();
+ tty->print("%d(%d), %d(%d)", mdo_invocations, mdo_invocations_start, mdo_backedges, mdo_backedges_start);
+ }
+ CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
+ tty->print(", deps=");
+ if (ctd == nullptr) {
+ tty->print("null");
+ } else {
+ tty->print("%d", ctd->init_deps_left());
+ }
+ }
+ }
+
// Print an event.
! void CompilationPolicy::print_event(EventType type, Method* m, Method* im, int bci, CompLevel level) {
bool inlinee_event = m != im;
ttyLocker tty_lock;
tty->print("%lf: [", os::elapsedTime());
tty->print("loop");
break;
case COMPILE:
tty->print("compile");
break;
+ case FORCE_COMPILE:
+ tty->print("force-compile");
+ break;
+ case FORCE_RECOMPILE:
+ tty->print("force-recompile");
+ break;
case REMOVE_FROM_QUEUE:
tty->print("remove-from-queue");
break;
case UPDATE_IN_QUEUE:
tty->print("update-in-queue");
tty->print(" rate=");
if (m->prev_time() == 0) tty->print("n/a");
else tty->print("%f", m->rate());
+ RecompilationPolicy::print_load_average();
+
tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
if (type != COMPILE) {
print_counters("", m);
}
tty->print(" status=");
if (m->queued_for_compilation()) {
tty->print("in-queue");
} else tty->print("idle");
+ print_training_data("", m);
+ if (inlinee_event) {
+ print_training_data("inlinee ", im);
+ }
}
tty->print_cr("]");
}
void CompilationPolicy::initialize() {
if (UseJVMCICompiler && UseJVMCINativeLibrary) {
int libjvmci_count = MAX2((int) (count * JVMCINativeLibraryThreadFraction), 1);
int c1_count = MAX2(count - libjvmci_count, 1);
set_c2_count(libjvmci_count);
set_c1_count(c1_count);
+ } else if (SCCache::is_C3_on()) {
+ set_c1_count(MAX2(count / 3, 1));
+ set_c2_count(MAX2(count - c1_count(), 1));
+ set_c3_count(1);
} else
#endif
{
set_c1_count(MAX2(count / 3, 1));
set_c2_count(MAX2(count - c1_count(), 1));
}
}
+ if (SCCache::is_code_load_thread_on()) {
+ set_sc_count((c1_only || c2_only) ? 1 : 2); // At minimum we need 2 threads to load C1 and C2 cached code in parallel
+ }
assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
set_increase_threshold_at_ratio();
}
+
set_start_time(nanos_to_millis(os::javaTimeNanos()));
}
+
+
#ifdef ASSERT
bool CompilationPolicy::verify_level(CompLevel level) {
if (TieredCompilation && level > TieredStopAtLevel) {
return false;
}
mdo->backedge_counter()->set_carry_on_overflow();
}
}
// Called with the queue locked and with at least one element
! CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue) {
CompileTask *max_blocking_task = nullptr;
CompileTask *max_task = nullptr;
Method* max_method = nullptr;
! jlong t = nanos_to_millis(os::javaTimeNanos());
// Iterate through the queue and find a method with a maximum rate.
for (CompileTask* task = compile_queue->first(); task != nullptr;) {
CompileTask* next_task = task->next();
// If a method was unloaded or has been stale for some time, remove it from the queue.
// Blocking tasks and tasks submitted from whitebox API don't become stale
if (task->is_unloaded()) {
compile_queue->remove_and_mark_stale(task);
task = next_task;
continue;
}
Method* method = task->method();
! methodHandle mh(Thread::current(), method);
if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
if (PrintTieredEvents) {
print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
}
method->clear_queued_for_compilation();
compile_queue->remove_and_mark_stale(task);
task = next_task;
continue;
}
update_rate(t, mh);
! if (max_task == nullptr || compare_methods(method, max_method)) {
// Select a method with the highest rate
max_task = task;
max_method = method;
}
mdo->backedge_counter()->set_carry_on_overflow();
}
}
// Called with the queue locked and with at least one element
! CompileTask* CompilationPolicy::select_task(CompileQueue* compile_queue, JavaThread* THREAD) {
CompileTask *max_blocking_task = nullptr;
CompileTask *max_task = nullptr;
Method* max_method = nullptr;
! int64_t t = nanos_to_millis(os::javaTimeNanos());
// Iterate through the queue and find a method with a maximum rate.
for (CompileTask* task = compile_queue->first(); task != nullptr;) {
CompileTask* next_task = task->next();
// If a method was unloaded or has been stale for some time, remove it from the queue.
// Blocking tasks and tasks submitted from whitebox API don't become stale
if (task->is_unloaded()) {
compile_queue->remove_and_mark_stale(task);
task = next_task;
continue;
}
+ if (task->is_scc()) {
+ // SCC tasks are on separate queue, and they should load fast. There is no need to walk
+ // the rest of the queue, just take the task and go.
+ return task;
+ }
Method* method = task->method();
! methodHandle mh(THREAD, method);
if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, mh) && !is_old(mh)) {
if (PrintTieredEvents) {
print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
}
method->clear_queued_for_compilation();
+ method->set_pending_queue_processed(false);
compile_queue->remove_and_mark_stale(task);
task = next_task;
continue;
}
update_rate(t, mh);
! if (max_task == nullptr || compare_methods(method, max_method) || compare_tasks(task, max_task)) {
// Select a method with the highest rate
max_task = task;
max_method = method;
}
// chance of such compilations timing out.
max_task = max_blocking_task;
max_method = max_task->method();
}
! methodHandle max_method_h(Thread::current(), max_method);
if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
max_task->set_comp_level(CompLevel_limited_profile);
! if (CompileBroker::compilation_is_complete(max_method_h, max_task->osr_bci(), CompLevel_limited_profile)) {
if (PrintTieredEvents) {
print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
}
compile_queue->remove_and_mark_stale(max_task);
max_method->clear_queued_for_compilation();
// chance of such compilations timing out.
max_task = max_blocking_task;
max_method = max_task->method();
}
! methodHandle max_method_h(THREAD, max_method);
if (max_task != nullptr && max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile &&
max_method != nullptr && is_method_profiled(max_method_h) && !Arguments::is_compiler_only()) {
max_task->set_comp_level(CompLevel_limited_profile);
! if (CompileBroker::compilation_is_complete(max_method_h(), max_task->osr_bci(), CompLevel_limited_profile,
+ false /* requires_online_compilation */,
+ CompileTask::Reason_None)) {
if (PrintTieredEvents) {
print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
}
compile_queue->remove_and_mark_stale(max_task);
max_method->clear_queued_for_compilation();
if (PrintTieredEvents) {
print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
}
}
-
return max_task;
}
void CompilationPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
int branch_bci, int bci, CompLevel comp_level, nmethod* nm, TRAPS) {
if (PrintTieredEvents) {
print_event(bci == InvocationEntryBci ? CALL : LOOP, method(), inlinee(), bci, comp_level);
}
+ #if INCLUDE_JVMCI
+ if (EnableJVMCI && UseJVMCICompiler &&
+ comp_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) {
+ return nullptr;
+ }
+ #endif
+
if (comp_level == CompLevel_none &&
JvmtiExport::can_post_interpreter_events() &&
THREAD->is_interp_only_mode()) {
return nullptr;
}
if (PrintTieredEvents) {
print_event(COMPILE, mh(), mh(), bci, level);
}
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
! CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, THREAD);
}
}
// update_rate() is called from select_task() while holding a compile queue lock.
! void CompilationPolicy::update_rate(jlong t, const methodHandle& method) {
// Skip update if counters are absent.
// Can't allocate them since we are holding compile queue lock.
if (method->method_counters() == nullptr) return;
if (is_old(method)) {
if (PrintTieredEvents) {
print_event(COMPILE, mh(), mh(), bci, level);
}
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
update_rate(nanos_to_millis(os::javaTimeNanos()), mh);
! bool requires_online_compilation = false;
+ if (TrainingData::have_data()) {
+ MethodTrainingData* mtd = MethodTrainingData::find(mh);
+ if (mtd != nullptr) {
+ CompileTrainingData* ctd = mtd->last_toplevel_compile(level);
+ if (ctd != nullptr) {
+ requires_online_compilation = (ctd->init_deps_left() > 0);
+ }
+ }
+ }
+ CompileBroker::compile_method(mh, bci, level, mh, hot_count, requires_online_compilation, CompileTask::Reason_Tiered, THREAD);
}
}
// update_rate() is called from select_task() while holding a compile queue lock.
! void CompilationPolicy::update_rate(int64_t t, const methodHandle& method) {
// Skip update if counters are absent.
// Can't allocate them since we are holding compile queue lock.
if (method->method_counters() == nullptr) return;
if (is_old(method)) {
return;
}
// We don't update the rate if we've just came out of a safepoint.
// delta_s is the time since last safepoint in milliseconds.
! jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
! jlong delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
// How many events were there since the last time?
int event_count = method->invocation_count() + method->backedge_count();
int delta_e = event_count - method->prev_event_count();
// We should be running for at least 1ms.
return;
}
// We don't update the rate if we've just came out of a safepoint.
// delta_s is the time since last safepoint in milliseconds.
! int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
! int64_t delta_t = t - (method->prev_time() != 0 ? method->prev_time() : start_time()); // milliseconds since the last measurement
// How many events were there since the last time?
int event_count = method->invocation_count() + method->backedge_count();
int delta_e = event_count - method->prev_event_count();
// We should be running for at least 1ms.
}
}
// Check if this method has been stale for a given number of milliseconds.
// See select_task().
! bool CompilationPolicy::is_stale(jlong t, jlong timeout, const methodHandle& method) {
! jlong delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
! jlong delta_t = t - method->prev_time();
if (delta_t > timeout && delta_s > timeout) {
int event_count = method->invocation_count() + method->backedge_count();
int delta_e = event_count - method->prev_event_count();
// Return true if there were no events.
return delta_e == 0;
}
}
// Check if this method has been stale for a given number of milliseconds.
// See select_task().
! bool CompilationPolicy::is_stale(int64_t t, int64_t timeout, const methodHandle& method) {
! int64_t delta_s = t - SafepointTracing::end_of_last_safepoint_ms();
! int64_t delta_t = t - method->prev_time();
if (delta_t > timeout && delta_s > timeout) {
int event_count = method->invocation_count() + method->backedge_count();
int delta_e = event_count - method->prev_event_count();
// Return true if there were no events.
return delta_e == 0;
}
}
return false;
}
+ bool CompilationPolicy::compare_tasks(CompileTask* x, CompileTask* y) {
+ assert(!x->is_scc() && !y->is_scc(), "SC tasks are not expected here");
+ if (x->compile_reason() != y->compile_reason() && y->compile_reason() == CompileTask::Reason_MustBeCompiled) {
+ return true;
+ }
+ return false;
+ }
+
// Is method profiled enough?
bool CompilationPolicy::is_method_profiled(const methodHandle& method) {
MethodData* mdo = method->method_data();
if (mdo != nullptr) {
int i = mdo->invocation_count_delta();
return false;
}
// Determine is a method is mature.
! bool CompilationPolicy::is_mature(Method* method) {
if (Arguments::is_compiler_only()) {
// Always report profiles as immature with -Xcomp
return false;
}
! methodHandle mh(Thread::current(), method);
- MethodData* mdo = method->method_data();
if (mdo != nullptr) {
int i = mdo->invocation_count();
int b = mdo->backedge_count();
double k = ProfileMaturityPercentage / 100.0;
return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
return false;
}
// Determine is a method is mature.
! bool CompilationPolicy::is_mature(MethodData* mdo) {
if (Arguments::is_compiler_only()) {
// Always report profiles as immature with -Xcomp
return false;
}
! methodHandle mh(Thread::current(), mdo->method());
if (mdo != nullptr) {
int i = mdo->invocation_count();
int b = mdo->backedge_count();
double k = ProfileMaturityPercentage / 100.0;
return CallPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k) || LoopPredicate::apply_scaled(mh, CompLevel_full_profile, i, b, k);
// We also take the load on compilers into the account.
bool CompilationPolicy::should_create_mdo(const methodHandle& method, CompLevel cur_level) {
if (cur_level != CompLevel_none || force_comp_at_level_simple(method) || CompilationModeFlag::quick_only() || !ProfileInterpreter) {
return false;
}
+
+ if (TrainingData::have_data()) {
+ MethodTrainingData* mtd = MethodTrainingData::find(method);
+ if (mtd != nullptr && mtd->saw_level(CompLevel_full_optimization)) {
+ return true;
+ }
+ return false;
+ }
+
if (is_old(method)) {
return true;
}
+
int i = method->invocation_count();
int b = method->backedge_count();
double k = Tier0ProfilingStartPercentage / 100.0;
// If the top level compiler is not keeping up, delay profiling.
return;
}
if (mh->method_data() == nullptr) {
Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
}
! if (ProfileInterpreter) {
MethodData* mdo = mh->method_data();
if (mdo != nullptr) {
frame last_frame = THREAD->last_frame();
if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
int bci = last_frame.interpreter_frame_bci();
return;
}
if (mh->method_data() == nullptr) {
Method::build_profiling_method_data(mh, CHECK_AND_CLEAR);
}
! if (ProfileInterpreter && THREAD->has_last_Java_frame()) {
MethodData* mdo = mh->method_data();
if (mdo != nullptr) {
frame last_frame = THREAD->last_frame();
if (last_frame.is_interpreted_frame() && mh == last_frame.interpreter_frame_method()) {
int bci = last_frame.interpreter_frame_bci();
}
}
}
}
+ CompLevel CompilationPolicy::trained_transition_from_none(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
+ precond(mtd != nullptr);
+ precond(cur_level == CompLevel_none);
+ if (mtd->only_inlined() && !mtd->saw_level(CompLevel_full_optimization)) {
+ return CompLevel_none;
+ }
+
+ bool training_has_profile = (mtd->final_profile() != nullptr);
+ if (mtd->saw_level(CompLevel_full_optimization) && !training_has_profile) {
+ return CompLevel_full_profile;
+ }
+
+ CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
+ switch (highest_training_level) {
+ case CompLevel_limited_profile:
+ case CompLevel_full_profile:
+ return CompLevel_limited_profile;
+ case CompLevel_simple:
+ return CompLevel_simple;
+ case CompLevel_none:
+ return CompLevel_none;
+ default:
+ break;
+ }
+
+ // Now handle the case of level 4.
+ assert(highest_training_level == CompLevel_full_optimization, "Unexpected compilation level: %d", highest_training_level);
+ if (!training_has_profile) {
+ // The method was a part of a level 4 compile, but don't have a stored profile,
+ // we need to profile it.
+ return CompLevel_full_profile;
+ }
+ const bool deopt = (static_cast<CompLevel>(method->highest_comp_level()) == CompLevel_full_optimization);
+ // If we deopted, then we reprofile
+ if (deopt && !is_method_profiled(method)) {
+ return CompLevel_full_profile;
+ }
+
+ CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
+ assert(ctd != nullptr, "Should have CTD for CompLevel_full_optimization");
+ // With SkipTier2IfPossible and all deps satisfied, go to level 4 immediately
+ if (SkipTier2IfPossible && ctd->init_deps_left() == 0) {
+ if (method->method_data() == nullptr) {
+ create_mdo(method, THREAD);
+ }
+ return CompLevel_full_optimization;
+ }
+
+ // Otherwise go to level 2
+ return CompLevel_limited_profile;
+ }
+
+
+ CompLevel CompilationPolicy::trained_transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
+ precond(mtd != nullptr);
+ precond(cur_level == CompLevel_limited_profile);
+
+ // One of the main reasons that we can get here is that we're waiting for the stored C2 code to become ready.
+
+ // But first, check if we have a saved profile
+ bool training_has_profile = (mtd->final_profile() != nullptr);
+ if (!training_has_profile) {
+ return CompLevel_full_profile;
+ }
+
+
+ assert(training_has_profile, "Have to have a profile to be here");
+ // Check if the method is ready
+ CompileTrainingData* ctd = mtd->last_toplevel_compile(CompLevel_full_optimization);
+ if (ctd != nullptr && ctd->init_deps_left() == 0) {
+ if (method->method_data() == nullptr) {
+ create_mdo(method, THREAD);
+ }
+ return CompLevel_full_optimization;
+ }
+
+ // Otherwise stay at the current level
+ return CompLevel_limited_profile;
+ }
+
+
+ CompLevel CompilationPolicy::trained_transition_from_full_profile(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
+ precond(mtd != nullptr);
+ precond(cur_level == CompLevel_full_profile);
+
+ CompLevel highest_training_level = static_cast<CompLevel>(mtd->highest_top_level());
+ // We have method at the full profile level and we also know that it's possibly an important method.
+ if (highest_training_level == CompLevel_full_optimization && !mtd->only_inlined()) {
+ // Check if it is adequately profiled
+ if (is_method_profiled(method)) {
+ return CompLevel_full_optimization;
+ }
+ }
+
+ // Otherwise stay at the current level
+ return CompLevel_full_profile;
+ }
+
+ CompLevel CompilationPolicy::trained_transition(const methodHandle& method, CompLevel cur_level, MethodTrainingData* mtd, JavaThread* THREAD) {
+ precond(MethodTrainingData::have_data());
+
+ // If there is no training data recorded for this method, bail out.
+ if (mtd == nullptr) {
+ return cur_level;
+ }
+
+ CompLevel next_level = cur_level;
+ switch(cur_level) {
+ default: break;
+ case CompLevel_none:
+ next_level = trained_transition_from_none(method, cur_level, mtd, THREAD);
+ break;
+ case CompLevel_limited_profile:
+ next_level = trained_transition_from_limited_profile(method, cur_level, mtd, THREAD);
+ break;
+ case CompLevel_full_profile:
+ next_level = trained_transition_from_full_profile(method, cur_level, mtd, THREAD);
+ break;
+ }
+
+ // We don't have any special strategies for the C2-only compilation modes, so just fix up the levels for now.
+ if (CompilationModeFlag::high_only_quick_internal() && CompLevel_simple < next_level && next_level < CompLevel_full_optimization) {
+ return CompLevel_none;
+ }
+ if (CompilationModeFlag::high_only() && next_level < CompLevel_full_optimization) {
+ return CompLevel_none;
+ }
+ return (cur_level != next_level) ? limit_level(next_level) : cur_level;
+ }
/*
* Method states:
* 0 - interpreter (CompLevel_none)
* 1 - pure C1 (CompLevel_simple)
*
*/
// Common transition function. Given a predicate determines if a method should transition to another level.
template<typename Predicate>
! CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, bool disable_feedback) {
CompLevel next_level = cur_level;
int i = method->invocation_count();
int b = method->backedge_count();
if (force_comp_at_level_simple(method)) {
next_level = CompLevel_simple;
} else {
! if (is_trivial(method) || method->is_native()) {
! next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
! } else {
! switch(cur_level) {
! default: break;
! case CompLevel_none:
! // If we were at full profile level, would we switch to full opt?
! if (common<Predicate>(method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
! next_level = CompLevel_full_optimization;
! } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply(method, cur_level, i, b)) {
! // C1-generated fully profiled code is about 30% slower than the limited profile
! // code that has only invocation and backedge counters. The observation is that
! // if C2 queue is large enough we can spend too much time in the fully profiled code
- // while waiting for C2 to pick the method from the queue. To alleviate this problem
- // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
- // we choose to compile a limited profiled version and then recompile with full profiling
- // when the load on C2 goes down.
- if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
- Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
- next_level = CompLevel_limited_profile;
- } else {
- next_level = CompLevel_full_profile;
- }
- }
- break;
- case CompLevel_limited_profile:
- if (is_method_profiled(method)) {
- // Special case: we got here because this method was fully profiled in the interpreter.
- next_level = CompLevel_full_optimization;
- } else {
- MethodData* mdo = method->method_data();
- if (mdo != nullptr) {
- if (mdo->would_profile()) {
- if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
- Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
- Predicate::apply(method, cur_level, i, b))) {
- next_level = CompLevel_full_profile;
- }
- } else {
- next_level = CompLevel_full_optimization;
- }
- } else {
- // If there is no MDO we need to profile
- if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
- Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
- Predicate::apply(method, cur_level, i, b))) {
- next_level = CompLevel_full_profile;
- }
- }
- }
- break;
- case CompLevel_full_profile:
- {
- MethodData* mdo = method->method_data();
- if (mdo != nullptr) {
- if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
- int mdo_i = mdo->invocation_count_delta();
- int mdo_b = mdo->backedge_count_delta();
- if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
- next_level = CompLevel_full_optimization;
- }
- } else {
- next_level = CompLevel_full_optimization;
- }
- }
}
- break;
}
}
}
return (next_level != cur_level) ? limit_level(next_level) : next_level;
}
// Determine if a method should be compiled with a normal entry point at a different level.
! CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, Thread* thread) {
! CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, true));
! CompLevel next_level = common<CallPredicate>(method, cur_level, is_old(method));
// If OSR method level is greater than the regular method level, the levels should be
// equalized by raising the regular method level in order to avoid OSRs during each
// invocation of the method.
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
*
*/
// Common transition function. Given a predicate determines if a method should transition to another level.
template<typename Predicate>
! CompLevel CompilationPolicy::common(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD, bool disable_feedback) {
CompLevel next_level = cur_level;
int i = method->invocation_count();
int b = method->backedge_count();
if (force_comp_at_level_simple(method)) {
next_level = CompLevel_simple;
} else {
! if (MethodTrainingData::have_data()) {
! MethodTrainingData* mtd = MethodTrainingData::find(method);
! if (mtd == nullptr) {
! // We haven't see compilations of this method in training. It's either very cold or the behavior changed.
! // Feed it to the standard TF with no profiling delay.
! next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
! } else {
! next_level = trained_transition(method, cur_level, mtd, THREAD);
! if (cur_level == next_level) {
! // trained_transtion() is going to return the same level if no startup/warmup optimizations apply.
! // In order to catch possible pathologies due to behavior change we feed the event to the regular
! // TF but with profiling delay.
! next_level = standard_transition<Predicate>(method, cur_level, true /*delay_profiling*/, disable_feedback);
}
}
+ } else if (is_trivial(method) || method->is_native()) {
+ next_level = CompilationModeFlag::disable_intermediate() ? CompLevel_full_optimization : CompLevel_simple;
+ } else {
+ next_level = standard_transition<Predicate>(method, cur_level, false /*delay_profiling*/, disable_feedback);
}
}
return (next_level != cur_level) ? limit_level(next_level) : next_level;
}
+ template<typename Predicate>
+ CompLevel CompilationPolicy::standard_transition(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
+ CompLevel next_level = cur_level;
+ switch(cur_level) {
+ default: break;
+ case CompLevel_none:
+ next_level = transition_from_none<Predicate>(method, cur_level, delay_profiling, disable_feedback);
+ break;
+ case CompLevel_limited_profile:
+ next_level = transition_from_limited_profile<Predicate>(method, cur_level, delay_profiling, disable_feedback);
+ break;
+ case CompLevel_full_profile:
+ next_level = transition_from_full_profile<Predicate>(method, cur_level);
+ break;
+ }
+ return next_level;
+ }
+
+ template<typename Predicate>
+ CompLevel CompilationPolicy::transition_from_none(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
+ precond(cur_level == CompLevel_none);
+ CompLevel next_level = cur_level;
+ int i = method->invocation_count();
+ int b = method->backedge_count();
+ double scale = delay_profiling ? Tier0ProfileDelayFactor : 1.0;
+ // If we were at full profile level, would we switch to full opt?
+ if (transition_from_full_profile<Predicate>(method, CompLevel_full_profile) == CompLevel_full_optimization) {
+ next_level = CompLevel_full_optimization;
+ } else if (!CompilationModeFlag::disable_intermediate() && Predicate::apply_scaled(method, cur_level, i, b, scale)) {
+ // C1-generated fully profiled code is about 30% slower than the limited profile
+ // code that has only invocation and backedge counters. The observation is that
+ // if C2 queue is large enough we can spend too much time in the fully profiled code
+ // while waiting for C2 to pick the method from the queue. To alleviate this problem
+ // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
+ // we choose to compile a limited profiled version and then recompile with full profiling
+ // when the load on C2 goes down.
+ if (delay_profiling || (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) > Tier3DelayOn * compiler_count(CompLevel_full_optimization))) {
+ next_level = CompLevel_limited_profile;
+ } else {
+ next_level = CompLevel_full_profile;
+ }
+ }
+ return next_level;
+ }
+
+ template<typename Predicate>
+ CompLevel CompilationPolicy::transition_from_full_profile(const methodHandle& method, CompLevel cur_level) {
+ precond(cur_level == CompLevel_full_profile);
+ CompLevel next_level = cur_level;
+ MethodData* mdo = method->method_data();
+ if (mdo != nullptr) {
+ if (mdo->would_profile() || CompilationModeFlag::disable_intermediate()) {
+ int mdo_i = mdo->invocation_count_delta();
+ int mdo_b = mdo->backedge_count_delta();
+ if (Predicate::apply(method, cur_level, mdo_i, mdo_b)) {
+ next_level = CompLevel_full_optimization;
+ }
+ } else {
+ next_level = CompLevel_full_optimization;
+ }
+ }
+ return next_level;
+ }
+
+ template<typename Predicate>
+ CompLevel CompilationPolicy::transition_from_limited_profile(const methodHandle& method, CompLevel cur_level, bool delay_profiling, bool disable_feedback) {
+ precond(cur_level == CompLevel_limited_profile);
+ CompLevel next_level = cur_level;
+ int i = method->invocation_count();
+ int b = method->backedge_count();
+ double scale = delay_profiling ? Tier2ProfileDelayFactor : 1.0;
+ MethodData* mdo = method->method_data();
+ if (mdo != nullptr) {
+ if (mdo->would_profile()) {
+ if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
+ Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
+ Predicate::apply_scaled(method, cur_level, i, b, scale))) {
+ next_level = CompLevel_full_profile;
+ }
+ } else {
+ next_level = CompLevel_full_optimization;
+ }
+ } else {
+ // If there is no MDO we need to profile
+ if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
+ Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
+ Predicate::apply_scaled(method, cur_level, i, b, scale))) {
+ next_level = CompLevel_full_profile;
+ }
+ }
+ if (next_level == CompLevel_full_profile && is_method_profiled(method)) {
+ next_level = CompLevel_full_optimization;
+ }
+ return next_level;
+ }
+
// Determine if a method should be compiled with a normal entry point at a different level.
! CompLevel CompilationPolicy::call_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
! CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(), common<LoopPredicate>(method, cur_level, THREAD, true));
! CompLevel next_level = common<CallPredicate>(method, cur_level, THREAD, !TrainingData::have_data() && is_old(method));
// If OSR method level is greater than the regular method level, the levels should be
// equalized by raising the regular method level in order to avoid OSRs during each
// invocation of the method.
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
next_level = CompLevel_full_optimization;
}
} else {
next_level = MAX2(osr_level, next_level);
}
return next_level;
}
// Determine if we should do an OSR compilation of a given method.
! CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, Thread* thread) {
! CompLevel next_level = common<LoopPredicate>(method, cur_level, true);
if (cur_level == CompLevel_none) {
// If there is a live OSR method that means that we deopted to the interpreter
// for the transition.
CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
if (osr_level > CompLevel_none) {
next_level = CompLevel_full_optimization;
}
} else {
next_level = MAX2(osr_level, next_level);
}
+ #if INCLUDE_JVMCI
+ if (EnableJVMCI && UseJVMCICompiler &&
+ next_level == CompLevel_full_optimization && !AOTLinkedClassBulkLoader::class_preloading_finished()) {
+ next_level = cur_level;
+ }
+ #endif
return next_level;
}
// Determine if we should do an OSR compilation of a given method.
! CompLevel CompilationPolicy::loop_event(const methodHandle& method, CompLevel cur_level, JavaThread* THREAD) {
! CompLevel next_level = common<LoopPredicate>(method, cur_level, THREAD, true);
if (cur_level == CompLevel_none) {
// If there is a live OSR method that means that we deopted to the interpreter
// for the transition.
CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
if (osr_level > CompLevel_none) {
< prev index next >