< prev index next > src/hotspot/share/interpreter/interpreterRuntime.cpp
Print this page
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/jfieldIDWorkaround.hpp"
#include "runtime/osThread.hpp"
+ #include "runtime/perfData.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stackWatermarkSet.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.inline.hpp"
#include "runtime/threadCritical.hpp"
+ #include "services/management.hpp"
#include "utilities/align.hpp"
#include "utilities/checkedCast.hpp"
#include "utilities/copy.hpp"
#include "utilities/events.hpp"
#ifdef COMPILER2
}
frame& get_frame() { return _last_frame; }
};
+ static bool is_resolved(JavaThread* current) {
+ LastFrameAccessor last_frame(current);
+ ConstantPool* constants = last_frame.method()->constants();
+ Bytecodes::Code bc = last_frame.code();
+
+ if (bc == Bytecodes::_ldc || bc == Bytecodes::_ldc_w || bc == Bytecodes::_ldc2_w ||
+ bc == Bytecodes::_fast_aldc || bc == Bytecodes::_fast_aldc_w) {
+ bool is_wide = (bc != Bytecodes::_ldc) && (bc != Bytecodes::_fast_aldc);
+ int index = (is_wide ? last_frame.get_index_u1(bc) : last_frame.get_index_u2(bc));
+ constantTag tag = constants->tag_at(index);
+ assert(tag.is_klass_or_reference(), "unknown tag: %s", tag.internal_name());
+ return constants->tag_at(index).is_klass();
+ } else if (bc == Bytecodes::_invokedynamic) {
+ int index = last_frame.get_index_u4(bc);
+ int indy_index = index;
+ ResolvedIndyEntry* indy_entry = constants->resolved_indy_entry_at(indy_index);
+ return indy_entry->is_resolved();
+ } else if (Bytecodes::is_invoke(bc)) {
+ int index = last_frame.get_index_u2(bc);
+ ResolvedMethodEntry* rme = constants->resolved_method_entry_at(index);
+ return rme->is_resolved(bc);
+ } else if (Bytecodes::is_field_code(bc) || bc == Bytecodes::_nofast_getfield || bc == Bytecodes::_nofast_putfield) {
+ if (bc == Bytecodes::_nofast_getfield) {
+ bc = Bytecodes::_getfield;
+ } else if (bc == Bytecodes::_nofast_putfield) {
+ bc = Bytecodes::_putfield;
+ }
+ int index = last_frame.get_index_u2(bc);
+ ResolvedFieldEntry* field_entry = constants->cache()->resolved_field_entry_at(index);
+ return field_entry->is_resolved(bc);
+ } else if (bc == Bytecodes::_new) {
+ int index = last_frame.get_index_u2(bc);
+ constantTag tag = constants->tag_at(index);
+ assert(tag.is_klass_or_reference(), "unknown tag: %s", tag.internal_name());
+ return constants->tag_at(index).is_klass();
+ }
+ return false;
+ }
+
+ static void trace_current_location(JavaThread* current) {
+ LogStreamHandle(Debug, init, interpreter) log;
+ if (current->profile_rt_calls() && log.is_enabled()) {
+ ResourceMark rm(current);
+ LastFrameAccessor last_frame(current);
+ Method* caller = last_frame.method();
+ ConstantPool* constants = caller->constants();
+ Bytecodes::Code bc = last_frame.code();
+ log.print("InterpreterRuntime: " INTPTR_FORMAT ": %s: " INTPTR_FORMAT,
+ p2i(current), Bytecodes::name(bc), p2i(caller));
+ if (caller->is_shared()) {
+ log.print(" shared");
+ }
+ if (is_resolved(current)) {
+ log.print(" resolved");
+ }
+ log.print(" ");
+ caller->print_short_name(&log);
+ log.print(" @ %d:", last_frame.bci());
+ int instruction_size = last_frame.bytecode().instruction_size();
+
+ if (Bytecodes::is_invoke(bc) && bc != Bytecodes::_invokedynamic) {
+ int index = last_frame.get_index_u2(bc);
+ ResolvedMethodEntry* rme = constants->resolved_method_entry_at(index);
+ if (rme->is_resolved(bc)) {
+ Method* m = rme->method();
+ if (m != nullptr) {
+ log.print(" %s", m->method_holder()->init_state_name());
+ } else {
+ log.print(" null");
+ }
+ }
+ } else if (Bytecodes::is_field_code(bc) || bc == Bytecodes::_nofast_getfield || bc == Bytecodes::_nofast_putfield) {
+ if (bc == Bytecodes::_nofast_getfield) {
+ bc = Bytecodes::_getfield;
+ } else if (bc == Bytecodes::_nofast_putfield) {
+ bc = Bytecodes::_putfield;
+ }
+ int index = last_frame.get_index_u2(bc);
+ ResolvedFieldEntry* field_entry = constants->cache()->resolved_field_entry_at(index);
+
+ if (field_entry->is_resolved(bc)) {
+ log.print(" %s", field_entry->field_holder()->init_state_name());
+ }
+ } else if (bc == Bytecodes::_new) {
+ int index = last_frame.get_index_u2(bc);
+ constantTag tag = constants->tag_at(index);
+ assert(tag.is_klass_or_reference(), "unknown tag: %s", tag.internal_name());
+ if (constants->tag_at(index).is_klass()) {
+ CPKlassSlot kslot = constants->klass_slot_at(index);
+ int resolved_klass_index = kslot.resolved_klass_index();
+ Klass* k = constants->resolved_klasses()->at(resolved_klass_index);
+ log.print(": %s", InstanceKlass::cast(k)->init_state_name());
+ }
+ }
+ log.print(" ");
+ caller->print_codes_on(last_frame.bci(), last_frame.bci() + instruction_size, &log, /*flags*/ 0);
+
+ LogStreamHandle(Trace, init, interpreter) log1;
+ if (log1.is_enabled()) {
+ if (bc == Bytecodes::_invokedynamic) {
+ int index = last_frame.get_index_u4(bc);
+ int indy_index = index;
+ ResolvedIndyEntry* indy_entry = constants->resolved_indy_entry_at(indy_index);
+ indy_entry->print_on(&log1);
+ } else if (Bytecodes::is_invoke(bc)) {
+ int index = last_frame.get_index_u2(bc);
+ ResolvedMethodEntry* rme = constants->resolved_method_entry_at(index);
+ rme->print_on(&log1);
+ } else if (Bytecodes::is_field_code(bc) || bc == Bytecodes::_nofast_getfield || bc == Bytecodes::_nofast_putfield) {
+ int index = last_frame.get_index_u2(bc);
+ ResolvedFieldEntry* field_entry = constants->cache()->resolved_field_entry_at(index);
+ field_entry->print_on(&log1);
+ }
+ }
+ }
+ }
+
//------------------------------------------------------------------------------------------------------------------------
// State accessors
void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread* current) {
LastFrameAccessor last_frame(current);
//------------------------------------------------------------------------------------------------------------------------
// Constants
! JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* current, bool wide))
// access constant pool
LastFrameAccessor last_frame(current);
ConstantPool* pool = last_frame.method()->constants();
int cp_index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
constantTag tag = pool->tag_at(cp_index);
//------------------------------------------------------------------------------------------------------------------------
// Constants
! JRT_ENTRY_PROF(void, InterpreterRuntime, ldc, InterpreterRuntime::ldc(JavaThread* current, bool wide))
// access constant pool
LastFrameAccessor last_frame(current);
ConstantPool* pool = last_frame.method()->constants();
int cp_index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc);
constantTag tag = pool->tag_at(cp_index);
Klass* klass = pool->klass_at(cp_index, CHECK);
oop java_class = klass->java_mirror();
current->set_vm_result(java_class);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) {
assert(bytecode == Bytecodes::_ldc ||
bytecode == Bytecodes::_ldc_w ||
bytecode == Bytecodes::_ldc2_w ||
bytecode == Bytecodes::_fast_aldc ||
bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
Klass* klass = pool->klass_at(cp_index, CHECK);
oop java_class = klass->java_mirror();
current->set_vm_result(java_class);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, resolve_ldc, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) {
assert(bytecode == Bytecodes::_ldc ||
bytecode == Bytecodes::_ldc_w ||
bytecode == Bytecodes::_ldc2_w ||
bytecode == Bytecodes::_fast_aldc ||
bytecode == Bytecodes::_fast_aldc_w, "wrong bc");
//------------------------------------------------------------------------------------------------------------------------
// Allocation
! JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index))
Klass* k = pool->klass_at(index, CHECK);
InstanceKlass* klass = InstanceKlass::cast(k);
// Make sure we are not instantiating an abstract klass
klass->check_valid_for_instantiation(true, CHECK);
//------------------------------------------------------------------------------------------------------------------------
// Allocation
! JRT_ENTRY_PROF(void, InterpreterRuntime, new, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index))
Klass* k = pool->klass_at(index, CHECK);
InstanceKlass* klass = InstanceKlass::cast(k);
// Make sure we are not instantiating an abstract klass
klass->check_valid_for_instantiation(true, CHECK);
oop obj = klass->allocate_instance(CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size))
oop obj = oopFactory::new_typeArray(type, size, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size))
Klass* klass = pool->klass_at(index, CHECK);
objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address))
// We may want to pass in more arguments - could make this slightly faster
LastFrameAccessor last_frame(current);
ConstantPool* constants = last_frame.method()->constants();
int i = last_frame.get_index_u2(Bytecodes::_multianewarray);
Klass* klass = constants->klass_at(i, CHECK);
oop obj = klass->allocate_instance(CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, newarray, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size))
oop obj = oopFactory::new_typeArray(type, size, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, anewarray, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size))
Klass* klass = pool->klass_at(index, CHECK);
objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, multianewarray, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address))
// We may want to pass in more arguments - could make this slightly faster
LastFrameAccessor last_frame(current);
ConstantPool* constants = last_frame.method()->constants();
int i = last_frame.get_index_u2(Bytecodes::_multianewarray);
Klass* klass = constants->klass_at(i, CHECK);
oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
assert(oopDesc::is_oop(obj), "must be a valid oop");
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END
// Quicken instance-of and check-cast bytecodes
! JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* current))
// Force resolving; quicken the bytecode
LastFrameAccessor last_frame(current);
int which = last_frame.get_index_u2(Bytecodes::_checkcast);
ConstantPool* cpool = last_frame.method()->constants();
// We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
current->set_vm_result(obj);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, register_finalizer, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
assert(oopDesc::is_oop(obj), "must be a valid oop");
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END
// Quicken instance-of and check-cast bytecodes
! JRT_ENTRY_PROF(void, InterpreterRuntime, quicken_io_cc, InterpreterRuntime::quicken_io_cc(JavaThread* current))
// Force resolving; quicken the bytecode
LastFrameAccessor last_frame(current);
int which = last_frame.get_index_u2(Bytecodes::_checkcast);
ConstantPool* cpool = last_frame.method()->constants();
// We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
// Special handling for stack overflow: since we don't have any (java) stack
// space left we use the pre-allocated & pre-initialized StackOverflowError
// klass to create an stack overflow error instance. We do not call its
// constructor for the same reason (it is empty, anyway).
! JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* current))
Handle exception = get_preinitialized_exception(
vmClasses::StackOverflowError_klass(),
CHECK);
// Increment counter for hs_err file reporting
Atomic::inc(&Exceptions::_stack_overflow_errors);
// Special handling for stack overflow: since we don't have any (java) stack
// space left we use the pre-allocated & pre-initialized StackOverflowError
// klass to create an stack overflow error instance. We do not call its
// constructor for the same reason (it is empty, anyway).
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_StackOverflowError,
+ InterpreterRuntime::throw_StackOverflowError(JavaThread* current))
Handle exception = get_preinitialized_exception(
vmClasses::StackOverflowError_klass(),
CHECK);
// Increment counter for hs_err file reporting
Atomic::inc(&Exceptions::_stack_overflow_errors);
// while we were trying to manipulate ScopedValue bindings.
current->clear_scopedValueBindings();
THROW_HANDLE(exception);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current))
Handle exception = get_preinitialized_exception(
vmClasses::StackOverflowError_klass(),
CHECK);
java_lang_Throwable::set_message(exception(),
Universe::delayed_stack_overflow_error_message());
// while we were trying to manipulate ScopedValue bindings.
current->clear_scopedValueBindings();
THROW_HANDLE(exception);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_delayed_StackOverflowError,
+ InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current))
Handle exception = get_preinitialized_exception(
vmClasses::StackOverflowError_klass(),
CHECK);
java_lang_Throwable::set_message(exception(),
Universe::delayed_stack_overflow_error_message());
// while we were trying to manipulate ScopedValue bindings.
current->clear_scopedValueBindings();
THROW_HANDLE(exception);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message))
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name);
if (ProfileTraps) {
if (s == vmSymbols::java_lang_ArithmeticException()) {
note_trap(current, Deoptimization::Reason_div0_check);
// while we were trying to manipulate ScopedValue bindings.
current->clear_scopedValueBindings();
THROW_HANDLE(exception);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, create_exception,
+ InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message))
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name);
if (ProfileTraps) {
if (s == vmSymbols::java_lang_ArithmeticException()) {
note_trap(current, Deoptimization::Reason_div0_check);
Handle exception = Exceptions::new_exception(current, s, message);
current->set_vm_result(exception());
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
const char* klass_name = obj->klass()->external_name();
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name);
Handle exception = Exceptions::new_exception(current, s, message);
current->set_vm_result(exception());
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, create_klass_exception,
+ InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
const char* klass_name = obj->klass()->external_name();
// lookup exception klass
TempNewSymbol s = SymbolTable::new_symbol(name);
// create exception, with klass name as detail message
Handle exception = Exceptions::new_exception(current, s, klass_name);
current->set_vm_result(exception());
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
stringStream ss;
ss.print("Index %d out of bounds for length %d", index, a->length());
// create exception, with klass name as detail message
Handle exception = Exceptions::new_exception(current, s, klass_name);
current->set_vm_result(exception());
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_ArrayIndexOutOfBoundsException,
+ InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
stringStream ss;
ss.print("Index %d out of bounds for length %d", index, a->length());
}
THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
JavaThread* current, oopDesc* obj))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
char* message = SharedRuntime::generate_class_cast_message(
}
THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string());
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_ClassCastException,
+ InterpreterRuntime::throw_ClassCastException(
JavaThread* current, oopDesc* obj))
// Produce the error message first because note_trap can safepoint
ResourceMark rm(current);
char* message = SharedRuntime::generate_class_cast_message(
// During this operation, the expression stack contains the values for the
// bci where the exception happened. If the exception was propagated back
// from a call, the expression stack contains the values for the bci at the
// invoke w/o arguments (i.e., as if one were inside the call).
// Note that the implementation of this method assumes it's only called when an exception has actually occured
! JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception))
// We get here after we have unwound from a callee throwing an exception
// into the interpreter. Any deferred stack processing is notified of
// the event via the StackWatermarkSet.
StackWatermarkSet::after_unwind(current);
// During this operation, the expression stack contains the values for the
// bci where the exception happened. If the exception was propagated back
// from a call, the expression stack contains the values for the bci at the
// invoke w/o arguments (i.e., as if one were inside the call).
// Note that the implementation of this method assumes it's only called when an exception has actually occured
! JRT_ENTRY_PROF(address, InterpreterRuntime, exception_handler_for_exception,
+ InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception))
// We get here after we have unwound from a callee throwing an exception
// into the interpreter. Any deferred stack processing is notified of
// the event via the StackWatermarkSet.
StackWatermarkSet::after_unwind(current);
current->set_vm_result(h_exception());
return continuation;
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* current))
assert(current->has_pending_exception(), "must only be called if there's an exception pending");
// nothing to do - eventually we should remove this code entirely (see comments @ call sites)
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current))
THROW(vmSymbols::java_lang_AbstractMethodError());
JRT_END
// This method is called from the "abstract_entry" of the interpreter.
// At that point, the arguments have already been removed from the stack
// and therefore we don't have the receiver object at our fingertips. (Though,
// on some platforms the receiver still resides in a register...). Thus,
// we have no choice but print an error message not containing the receiver
// type.
! JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current,
! Method* missingMethod))
ResourceMark rm(current);
assert(missingMethod != nullptr, "sanity");
methodHandle m(current, missingMethod);
LinkResolver::throw_abstract_method_error(m, THREAD);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current,
! Klass* recvKlass,
! Method* missingMethod))
ResourceMark rm(current);
methodHandle mh = methodHandle(current, missingMethod);
LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current,
! Klass* recvKlass,
! Klass* interfaceKlass))
ResourceMark rm(current);
char buf[1000];
buf[0] = '\0';
jio_snprintf(buf, sizeof(buf),
"Class %s does not implement the requested interface %s",
recvKlass ? recvKlass->external_name() : "nullptr",
interfaceKlass ? interfaceKlass->external_name() : "nullptr");
THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_NullPointerException(JavaThread* current))
THROW(vmSymbols::java_lang_NullPointerException());
JRT_END
//------------------------------------------------------------------------------------------------------------------------
// Fields
//
void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) {
LastFrameAccessor last_frame(current);
constantPoolHandle pool(current, last_frame.method()->constants());
methodHandle m(current, last_frame.method());
current->set_vm_result(h_exception());
return continuation;
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_pending_exception, InterpreterRuntime::throw_pending_exception(JavaThread* current))
assert(current->has_pending_exception(), "must only be called if there's an exception pending");
// nothing to do - eventually we should remove this code entirely (see comments @ call sites)
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_AbstractMethodError, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current))
THROW(vmSymbols::java_lang_AbstractMethodError());
JRT_END
// This method is called from the "abstract_entry" of the interpreter.
// At that point, the arguments have already been removed from the stack
// and therefore we don't have the receiver object at our fingertips. (Though,
// on some platforms the receiver still resides in a register...). Thus,
// we have no choice but print an error message not containing the receiver
// type.
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_AbstractMethodErrorWithMethod,
! InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current,
+ Method* missingMethod))
ResourceMark rm(current);
assert(missingMethod != nullptr, "sanity");
methodHandle m(current, missingMethod);
LinkResolver::throw_abstract_method_error(m, THREAD);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_AbstractMethodErrorVerbose,
! InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current,
! Klass* recvKlass,
+ Method* missingMethod))
ResourceMark rm(current);
methodHandle mh = methodHandle(current, missingMethod);
LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_IncompatibleClassChangeError,
+ InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_IncompatibleClassChangeErrorVerbose,
! InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current,
! Klass* recvKlass,
+ Klass* interfaceKlass))
ResourceMark rm(current);
char buf[1000];
buf[0] = '\0';
jio_snprintf(buf, sizeof(buf),
"Class %s does not implement the requested interface %s",
recvKlass ? recvKlass->external_name() : "nullptr",
interfaceKlass ? interfaceKlass->external_name() : "nullptr");
THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_NullPointerException,
+ InterpreterRuntime::throw_NullPointerException(JavaThread* current))
THROW(vmSymbols::java_lang_NullPointerException());
JRT_END
//------------------------------------------------------------------------------------------------------------------------
// Fields
//
+ PROF_ENTRY(void, InterpreterRuntime, resolve_getfield, InterpreterRuntime::resolve_getfield(JavaThread* current))
+ resolve_get_put(current, Bytecodes::_getfield);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_putfield, InterpreterRuntime::resolve_putfield(JavaThread* current))
+ resolve_get_put(current, Bytecodes::_putfield);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_getstatic, InterpreterRuntime::resolve_getstatic(JavaThread* current))
+ resolve_get_put(current, Bytecodes::_getstatic);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_putstatic, InterpreterRuntime::resolve_putstatic(JavaThread* current))
+ resolve_get_put(current, Bytecodes::_putstatic);
+ PROF_END
+
void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) {
LastFrameAccessor last_frame(current);
constantPoolHandle pool(current, last_frame.method()->constants());
methodHandle m(current, last_frame.method());
info.has_initialized_final_update();
assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
Bytecodes::Code get_code = (Bytecodes::Code)0;
Bytecodes::Code put_code = (Bytecodes::Code)0;
! if (!uninitialized_static) {
get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
}
}
info.has_initialized_final_update();
assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final");
Bytecodes::Code get_code = (Bytecodes::Code)0;
Bytecodes::Code put_code = (Bytecodes::Code)0;
! if (!uninitialized_static || VM_Version::supports_fast_class_init_checks()) {
+ #if !defined(X86) && !defined(AARCH64)
+ guarantee(!uninitialized_static, "fast class init checks missing in interpreter"); // FIXME
+ #endif // !X86 && !AARCH64
get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) {
put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
}
}
// The interpreter's synchronization code is factored out so that it can
// be shared by method invocation and synchronized blocks.
//%note synchronization_3
//%note monitor_1
! JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem))
#ifdef ASSERT
current->last_frame().interpreter_frame_verify_monitor(elem);
#endif
Handle h_obj(current, elem->obj());
assert(Universe::heap()->is_in_or_null(h_obj()),
// The interpreter's synchronization code is factored out so that it can
// be shared by method invocation and synchronized blocks.
//%note synchronization_3
//%note monitor_1
! JRT_ENTRY_NO_ASYNC_PROF(void, InterpreterRuntime, monitorenter, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem))
#ifdef ASSERT
current->last_frame().interpreter_frame_verify_monitor(elem);
#endif
Handle h_obj(current, elem->obj());
assert(Universe::heap()->is_in_or_null(h_obj()),
#ifdef ASSERT
if (!current->preempting()) current->last_frame().interpreter_frame_verify_monitor(elem);
#endif
JRT_END
! JRT_LEAF(void, InterpreterRuntime::monitorexit(BasicObjectLock* elem))
oop obj = elem->obj();
assert(Universe::heap()->is_in(obj), "must be an object");
// The object could become unlocked through a JNI call, which we have no other checks for.
// Give a fatal message if CheckJNICalls. Otherwise we ignore it.
if (obj->is_unlocked()) {
#ifdef ASSERT
if (!current->preempting()) current->last_frame().interpreter_frame_verify_monitor(elem);
#endif
JRT_END
! JRT_LEAF_PROF_NO_THREAD(void, InterpreterRuntime, monitorexit, InterpreterRuntime::monitorexit(BasicObjectLock* elem))
oop obj = elem->obj();
assert(Universe::heap()->is_in(obj), "must be an object");
// The object could become unlocked through a JNI call, which we have no other checks for.
// Give a fatal message if CheckJNICalls. Otherwise we ignore it.
if (obj->is_unlocked()) {
// again at method exit or in the case of an exception.
elem->set_obj(nullptr);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current))
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current))
// Returns an illegal exception to install into the current thread. The
// pending_exception flag is cleared so normal exception handling does not
// trigger. Any current installed exception will be overwritten. This
// method will be called during an exception unwind.
// again at method exit or in the case of an exception.
elem->set_obj(nullptr);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, throw_illegal_monitor_state_exception,
+ InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current))
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, new_illegal_monitor_state_exception,
+ InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current))
// Returns an illegal exception to install into the current thread. The
// pending_exception flag is cleared so normal exception handling does not
// trigger. Any current installed exception will be overwritten. This
// method will be called during an exception unwind.
//------------------------------------------------------------------------------------------------------------------------
// Invokes
! JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp))
return method->orig_bytecode_at(method->bci_from(bcp));
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code))
method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp))
JvmtiExport::post_raw_breakpoint(current, method, bcp);
JRT_END
void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) {
LastFrameAccessor last_frame(current);
// extract receiver from the outgoing argument list if necessary
Handle receiver(current, nullptr);
if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
//------------------------------------------------------------------------------------------------------------------------
// Invokes
! JRT_ENTRY_PROF(Bytecodes::Code, InterpreterRuntime, get_original_bytecode_at, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp))
return method->orig_bytecode_at(method->bci_from(bcp));
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, set_original_bytecode_at, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code))
method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, breakpoint, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp))
JvmtiExport::post_raw_breakpoint(current, method, bcp);
JRT_END
+ PROF_ENTRY(void, InterpreterRuntime, resolve_invokevirtual, InterpreterRuntime::resolve_invokevirtual(JavaThread* current))
+ resolve_invoke(current, Bytecodes::_invokevirtual);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_invokespecial, InterpreterRuntime::resolve_invokespecial(JavaThread* current))
+ resolve_invoke(current, Bytecodes::_invokespecial);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_invokestatic, InterpreterRuntime::resolve_invokestatic(JavaThread* current))
+ resolve_invoke(current, Bytecodes::_invokestatic);
+ PROF_END
+
+ PROF_ENTRY(void, InterpreterRuntime, resolve_invokeinterface, InterpreterRuntime::resolve_invokeinterface(JavaThread* current))
+ resolve_invoke(current, Bytecodes::_invokeinterface);
+ PROF_END
+
void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) {
LastFrameAccessor last_frame(current);
// extract receiver from the outgoing argument list if necessary
Handle receiver(current, nullptr);
if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface ||
if (!link_info.resolved_klass()->is_instance_klass() || InstanceKlass::cast(link_info.resolved_klass())->is_linked()) {
CallInfo call_info;
switch (bytecode) {
case Bytecodes::_invokevirtual: LinkResolver::cds_resolve_virtual_call (call_info, link_info, CHECK); break;
case Bytecodes::_invokeinterface: LinkResolver::cds_resolve_interface_call(call_info, link_info, CHECK); break;
+ case Bytecodes::_invokestatic: LinkResolver::cds_resolve_static_call (call_info, link_info, CHECK); break;
case Bytecodes::_invokespecial: LinkResolver::cds_resolve_special_call (call_info, link_info, CHECK); break;
default: fatal("Unimplemented: %s", Bytecodes::name(bytecode));
}
methodHandle resolved_method(THREAD, call_info.resolved_method());
resolved_iklass->external_name());
}
}
// First time execution: Resolve symbols, create a permanent MethodType object.
! void InterpreterRuntime::resolve_invokehandle(JavaThread* current) {
const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
LastFrameAccessor last_frame(current);
// resolve method
CallInfo info;
resolved_iklass->external_name());
}
}
// First time execution: Resolve symbols, create a permanent MethodType object.
! PROF_ENTRY(void, InterpreterRuntime, resolve_invokehandle, InterpreterRuntime::resolve_invokehandle(JavaThread* current))
const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
LastFrameAccessor last_frame(current);
// resolve method
CallInfo info;
method_index, bytecode,
CHECK);
} // end JvmtiHideSingleStepping
pool->cache()->set_method_handle(method_index, info);
! }
void InterpreterRuntime::cds_resolve_invokehandle(int raw_index,
constantPoolHandle& pool, TRAPS) {
const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
CallInfo info;
method_index, bytecode,
CHECK);
} // end JvmtiHideSingleStepping
pool->cache()->set_method_handle(method_index, info);
! PROF_END
void InterpreterRuntime::cds_resolve_invokehandle(int raw_index,
constantPoolHandle& pool, TRAPS) {
const Bytecodes::Code bytecode = Bytecodes::_invokehandle;
CallInfo info;
pool->cache()->set_method_handle(raw_index, info);
}
// First time execution: Resolve symbols, create a permanent CallSite object.
! void InterpreterRuntime::resolve_invokedynamic(JavaThread* current) {
LastFrameAccessor last_frame(current);
const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
// resolve method
CallInfo info;
pool->cache()->set_method_handle(raw_index, info);
}
// First time execution: Resolve symbols, create a permanent CallSite object.
! PROF_ENTRY(void, InterpreterRuntime, resolve_invokedynamic, InterpreterRuntime::resolve_invokedynamic(JavaThread* current))
LastFrameAccessor last_frame(current);
const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
// resolve method
CallInfo info;
LinkResolver::resolve_invoke(info, Handle(), pool,
index, bytecode, CHECK);
} // end JvmtiHideSingleStepping
pool->cache()->set_dynamic_call(info, index);
! }
void InterpreterRuntime::cds_resolve_invokedynamic(int raw_index,
constantPoolHandle& pool, TRAPS) {
const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
CallInfo info;
LinkResolver::resolve_invoke(info, Handle(), pool,
index, bytecode, CHECK);
} // end JvmtiHideSingleStepping
pool->cache()->set_dynamic_call(info, index);
! PROF_END
void InterpreterRuntime::cds_resolve_invokedynamic(int raw_index,
constantPoolHandle& pool, TRAPS) {
const Bytecodes::Code bytecode = Bytecodes::_invokedynamic;
CallInfo info;
// This function is the interface to the assembly code. It returns the resolved
// cpCache entry. This doesn't safepoint, but the helper routines safepoint.
// This function will check for redefinition!
JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) {
switch (bytecode) {
! case Bytecodes::_getstatic:
! case Bytecodes::_putstatic:
! case Bytecodes::_getfield:
! case Bytecodes::_putfield:
! resolve_get_put(current, bytecode);
! break;
! case Bytecodes::_invokevirtual:
! case Bytecodes::_invokespecial:
! case Bytecodes::_invokestatic:
! case Bytecodes::_invokeinterface:
! resolve_invoke(current, bytecode);
! break;
- case Bytecodes::_invokehandle:
- resolve_invokehandle(current);
- break;
- case Bytecodes::_invokedynamic:
- resolve_invokedynamic(current);
- break;
default:
fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
break;
}
}
// This function is the interface to the assembly code. It returns the resolved
// cpCache entry. This doesn't safepoint, but the helper routines safepoint.
// This function will check for redefinition!
JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) {
+ trace_current_location(current);
+
switch (bytecode) {
! case Bytecodes::_getstatic: resolve_getstatic(current); break;
! case Bytecodes::_putstatic: resolve_putstatic(current); break;
! case Bytecodes::_getfield: resolve_getfield(current); break;
! case Bytecodes::_putfield: resolve_putfield(current); break;
!
! case Bytecodes::_invokevirtual: resolve_invokevirtual(current); break;
! case Bytecodes::_invokespecial: resolve_invokespecial(current); break;
! case Bytecodes::_invokestatic: resolve_invokestatic(current); break;
! case Bytecodes::_invokeinterface: resolve_invokeinterface(current); break;
! case Bytecodes::_invokehandle: resolve_invokehandle(current); break;
! case Bytecodes::_invokedynamic: resolve_invokedynamic(current); break;
!
default:
fatal("unexpected bytecode: %s", Bytecodes::name(bytecode));
break;
}
}
}
#endif
return nm;
}
! JRT_ENTRY(nmethod*,
InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(current);
}
#endif
return nm;
}
! JRT_ENTRY_PROF(nmethod*, InterpreterRuntime, frequency_counter_overflow,
InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp))
// use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
// flag, in case this method triggers classloading which will call into Java.
UnlockFlagSaver fs(current);
}
}
return osr_nm;
JRT_END
! JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
assert(ProfileInterpreter, "must be profiling interpreter");
int bci = method->bci_from(cur_bcp);
MethodData* mdo = method->method_data();
if (mdo == nullptr) return 0;
return mdo->bci_to_di(bci);
}
}
return osr_nm;
JRT_END
! JRT_LEAF_PROF_NO_THREAD(jint, InterpreterRuntime, bcp_to_di, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp))
assert(ProfileInterpreter, "must be profiling interpreter");
int bci = method->bci_from(cur_bcp);
MethodData* mdo = method->method_data();
if (mdo == nullptr) return 0;
return mdo->bci_to_di(bci);
}
assert(mdp == mdp2, "wrong mdp");
JRT_END
#endif // ASSERT
! JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci))
assert(ProfileInterpreter, "must be profiling interpreter");
ResourceMark rm(current);
LastFrameAccessor last_frame(current);
assert(last_frame.is_interpreted_frame(), "must come from interpreter");
MethodData* h_mdo = last_frame.method()->method_data();
}
assert(mdp == mdp2, "wrong mdp");
JRT_END
#endif // ASSERT
! JRT_ENTRY_PROF(void, InterpreterRuntime, update_mdp_for_ret, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci))
assert(ProfileInterpreter, "must be profiling interpreter");
ResourceMark rm(current);
LastFrameAccessor last_frame(current);
assert(last_frame.is_interpreted_frame(), "must come from interpreter");
MethodData* h_mdo = last_frame.method()->method_data();
RetData* rdata = data->as_RetData();
address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
last_frame.set_mdp(new_mdp);
JRT_END
! JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m))
return Method::build_method_counters(current, m);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* current))
// We used to need an explicit preserve_arguments here for invoke bytecodes. However,
// stack traversal automatically takes care of preserving arguments for invoke, so
// this is no longer needed.
// JRT_END does an implicit safepoint check, hence we are guaranteed to block
RetData* rdata = data->as_RetData();
address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
last_frame.set_mdp(new_mdp);
JRT_END
! JRT_ENTRY_PROF(MethodCounters*, InterpreterRuntime, build_method_counters, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m))
return Method::build_method_counters(current, m);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, at_safepoint, InterpreterRuntime::at_safepoint(JavaThread* current))
// We used to need an explicit preserve_arguments here for invoke bytecodes. However,
// stack traversal automatically takes care of preserving arguments for invoke, so
// this is no longer needed.
// JRT_END does an implicit safepoint check, hence we are guaranteed to block
LastFrameAccessor last_frame(current);
JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp());
}
JRT_END
! JRT_LEAF(void, InterpreterRuntime::at_unwind(JavaThread* current))
assert(current == JavaThread::current(), "pre-condition");
// This function is called by the interpreter when the return poll found a reason
// to call the VM. The reason could be that we are returning into a not yet safe
// to access frame. We handle that below.
// Note that this path does not check for single stepping, because we do not want
LastFrameAccessor last_frame(current);
JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp());
}
JRT_END
! JRT_LEAF_PROF(void, InterpreterRuntime, at_unwind, InterpreterRuntime::at_unwind(JavaThread* current))
assert(current == JavaThread::current(), "pre-condition");
// This function is called by the interpreter when the return poll found a reason
// to call the VM. The reason could be that we are returning into a not yet safe
// to access frame. We handle that below.
// Note that this path does not check for single stepping, because we do not want
// such single stepping code will use the safepoint table, which will use the
// InterpreterRuntime::at_safepoint callback.
StackWatermarkSet::before_unwind(current);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj,
! ResolvedFieldEntry *entry))
// check the access_flags for the field in the klass
InstanceKlass* ik = entry->field_holder();
int index = entry->field_index();
// such single stepping code will use the safepoint table, which will use the
// InterpreterRuntime::at_safepoint callback.
StackWatermarkSet::before_unwind(current);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, post_field_access, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj,
! ResolvedFieldEntry *entry))
// check the access_flags for the field in the klass
InstanceKlass* ik = entry->field_holder();
int index = entry->field_index();
jfieldID fid = jfieldIDWorkaround::to_jfieldID(field_holder, entry->field_offset(), is_static);
LastFrameAccessor last_frame(current);
JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), field_holder, h_obj, fid);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj,
! ResolvedFieldEntry *entry, jvalue *value))
InstanceKlass* ik = entry->field_holder();
// check the access_flags for the field in the klass
int index = entry->field_index();
jfieldID fid = jfieldIDWorkaround::to_jfieldID(field_holder, entry->field_offset(), is_static);
LastFrameAccessor last_frame(current);
JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), field_holder, h_obj, fid);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, post_field_modification, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj,
! ResolvedFieldEntry *entry, jvalue *value))
InstanceKlass* ik = entry->field_holder();
// check the access_flags for the field in the klass
int index = entry->field_index();
LastFrameAccessor last_frame(current);
JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj,
fid, sig_type, &fvalue);
JRT_END
! JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread* current))
LastFrameAccessor last_frame(current);
JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame());
JRT_END
// This is a JRT_BLOCK_ENTRY because we have to stash away the return oop
// before transitioning to VM, and restore it after transitioning back
// to Java. The return oop at the top-of-stack, is not walked by the GC.
! JRT_BLOCK_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread* current))
LastFrameAccessor last_frame(current);
JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame());
JRT_END
! JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
{
return (Interpreter::contains(Continuation::get_top_return_pc_post_barrier(JavaThread::current(), pc)) ? 1 : 0);
}
JRT_END
LastFrameAccessor last_frame(current);
JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj,
fid, sig_type, &fvalue);
JRT_END
! JRT_ENTRY_PROF(void, InterpreterRuntime, post_method_entry, InterpreterRuntime::post_method_entry(JavaThread* current))
LastFrameAccessor last_frame(current);
JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame());
JRT_END
// This is a JRT_BLOCK_ENTRY because we have to stash away the return oop
// before transitioning to VM, and restore it after transitioning back
// to Java. The return oop at the top-of-stack, is not walked by the GC.
! JRT_BLOCK_ENTRY_PROF(void, InterpreterRuntime, post_method_exit, InterpreterRuntime::post_method_exit(JavaThread* current))
LastFrameAccessor last_frame(current);
JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame());
JRT_END
! JRT_LEAF_PROF_NO_THREAD(int, InterpreterRuntime, interpreter_contains, InterpreterRuntime::interpreter_contains(address pc))
{
return (Interpreter::contains(Continuation::get_top_return_pc_post_barrier(JavaThread::current(), pc)) ? 1 : 0);
}
JRT_END
GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = nullptr;
GrowableArray<address>* SignatureHandlerLibrary::_handlers = nullptr;
address SignatureHandlerLibrary::_buffer = nullptr;
! JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method))
methodHandle m(current, method);
assert(m->is_native(), "sanity check");
// lookup native function entry point if it doesn't exist
if (!m->has_native_function()) {
NativeLookup::lookup(m, CHECK);
GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = nullptr;
GrowableArray<address>* SignatureHandlerLibrary::_handlers = nullptr;
address SignatureHandlerLibrary::_buffer = nullptr;
! JRT_ENTRY_PROF(void, InterpreterRuntime, prepare_native_call, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method))
methodHandle m(current, method);
assert(m->is_native(), "sanity check");
// lookup native function entry point if it doesn't exist
if (!m->has_native_function()) {
NativeLookup::lookup(m, CHECK);
// Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
// and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
// The member_name argument is a saved reference (in local#0) to the member_name.
// For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
// FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
! JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name,
! Method* method, address bcp))
Bytecodes::Code code = Bytecodes::code_at(method, bcp);
if (code != Bytecodes::_invokestatic) {
return;
}
ConstantPool* cpool = method->constants();
// Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument
// and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters.
// The member_name argument is a saved reference (in local#0) to the member_name.
// For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle.
// FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated.
! JRT_ENTRY_PROF(void, InterpreterRuntime, member_name_arg_or_null,
! InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name,
+ Method* method, address bcp))
Bytecodes::Code code = Bytecodes::code_at(method, bcp);
if (code != Bytecodes::_invokestatic) {
return;
}
ConstantPool* cpool = method->constants();
methodHandle mh(current, last_frame.method());
BytecodeTracer::trace_interpreter(mh, last_frame.bcp(), tos, tos2);
return preserve_this_value;
JRT_END
#endif // !PRODUCT
+
+ #define DO_COUNTERS(macro) \
+ macro(InterpreterRuntime, ldc) \
+ macro(InterpreterRuntime, resolve_ldc) \
+ macro(InterpreterRuntime, new) \
+ macro(InterpreterRuntime, newarray) \
+ macro(InterpreterRuntime, anewarray) \
+ macro(InterpreterRuntime, multianewarray) \
+ macro(InterpreterRuntime, register_finalizer) \
+ macro(InterpreterRuntime, quicken_io_cc) \
+ macro(InterpreterRuntime, throw_StackOverflowError) \
+ macro(InterpreterRuntime, throw_delayed_StackOverflowError) \
+ macro(InterpreterRuntime, create_exception) \
+ macro(InterpreterRuntime, create_klass_exception) \
+ macro(InterpreterRuntime, throw_ArrayIndexOutOfBoundsException) \
+ macro(InterpreterRuntime, throw_ClassCastException) \
+ macro(InterpreterRuntime, exception_handler_for_exception) \
+ macro(InterpreterRuntime, throw_pending_exception) \
+ macro(InterpreterRuntime, throw_AbstractMethodError) \
+ macro(InterpreterRuntime, throw_AbstractMethodErrorWithMethod) \
+ macro(InterpreterRuntime, throw_AbstractMethodErrorVerbose) \
+ macro(InterpreterRuntime, throw_IncompatibleClassChangeError) \
+ macro(InterpreterRuntime, throw_IncompatibleClassChangeErrorVerbose) \
+ macro(InterpreterRuntime, throw_NullPointerException) \
+ macro(InterpreterRuntime, monitorenter) \
+ macro(InterpreterRuntime, monitorexit) \
+ macro(InterpreterRuntime, throw_illegal_monitor_state_exception) \
+ macro(InterpreterRuntime, new_illegal_monitor_state_exception) \
+ macro(InterpreterRuntime, get_original_bytecode_at) \
+ macro(InterpreterRuntime, set_original_bytecode_at) \
+ macro(InterpreterRuntime, breakpoint) \
+ macro(InterpreterRuntime, resolve_getfield) \
+ macro(InterpreterRuntime, resolve_putfield) \
+ macro(InterpreterRuntime, resolve_getstatic) \
+ macro(InterpreterRuntime, resolve_putstatic) \
+ macro(InterpreterRuntime, resolve_invokevirtual) \
+ macro(InterpreterRuntime, resolve_invokespecial) \
+ macro(InterpreterRuntime, resolve_invokestatic) \
+ macro(InterpreterRuntime, resolve_invokeinterface) \
+ macro(InterpreterRuntime, resolve_invokehandle) \
+ macro(InterpreterRuntime, resolve_invokedynamic) \
+ macro(InterpreterRuntime, frequency_counter_overflow) \
+ macro(InterpreterRuntime, bcp_to_di) \
+ macro(InterpreterRuntime, update_mdp_for_ret) \
+ macro(InterpreterRuntime, build_method_counters) \
+ macro(InterpreterRuntime, at_safepoint) \
+ macro(InterpreterRuntime, at_unwind) \
+ macro(InterpreterRuntime, post_field_access) \
+ macro(InterpreterRuntime, post_field_modification) \
+ macro(InterpreterRuntime, post_method_entry) \
+ macro(InterpreterRuntime, post_method_exit) \
+ macro(InterpreterRuntime, interpreter_contains) \
+ macro(InterpreterRuntime, prepare_native_call)
+
+ #if INCLUDE_JVMTI
+ #define DO_JVMTI_COUNTERS(macro) \
+ macro(InterpreterRuntime, member_name_arg_or_null)
+ #else
+ #define DO_JVMTI_COUNTERS(macro)
+ #endif /* INCLUDE_JVMTI */
+
+ #define INIT_COUNTER(sub, name) \
+ NEWPERFTICKCOUNTERS(_perf_##sub##_##name##_timer, SUN_CI, #sub "::" #name); \
+ NEWPERFEVENTCOUNTER(_perf_##sub##_##name##_count, SUN_CI, #sub "::" #name "_count");
+
+ void InterpreterRuntime::init_counters() {
+ if (UsePerfData) {
+ EXCEPTION_MARK;
+
+ DO_COUNTERS(INIT_COUNTER)
+ DO_JVMTI_COUNTERS(INIT_COUNTER)
+
+ if (HAS_PENDING_EXCEPTION) {
+ vm_exit_during_initialization("jvm_perf_init failed unexpectedly");
+ }
+ }
+ }
+ #undef INIT_COUNTER
+
+ #define PRINT_COUNTER(sub, name) { \
+ jlong count = _perf_##sub##_##name##_count->get_value(); \
+ if (count > 0) { \
+ st->print_cr(" %-50s = " JLONG_FORMAT_W(6) "us (elapsed) " JLONG_FORMAT_W(6) "us (thread) (" JLONG_FORMAT_W(5) " events)", \
+ #sub "::" #name, \
+ _perf_##sub##_##name##_timer->elapsed_counter_value_us(), \
+ _perf_##sub##_##name##_timer->thread_counter_value_us(), \
+ count); \
+ }}
+
+ void InterpreterRuntime::print_counters_on(outputStream* st) {
+ if (UsePerfData && ProfileRuntimeCalls) {
+ DO_COUNTERS(PRINT_COUNTER)
+ DO_JVMTI_COUNTERS(PRINT_COUNTER)
+ } else {
+ st->print_cr(" InterpreterRuntime: no info (%s is disabled)", (UsePerfData ? "ProfileRuntimeCalls" : "UsePerfData"));
+ }
+ }
+
+ #undef PRINT_COUNTER
+ #undef DO_JVMTI_COUNTERS
+ #undef DO_COUNTERS
+
< prev index next >