< prev index next >

src/hotspot/share/gc/g1/g1ParScanThreadState.cpp

Print this page

180 
181   // Although we never intentionally push references outside of the collection
182   // set, due to (benign) races in the claim mechanism during RSet scanning more
183   // than one thread might claim the same card. So the same card may be
184   // processed multiple times, and so we might get references into old gen here.
185   // So we need to redo this check.
186   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
187   // References pushed onto the work stack should never point to a humongous region
188   // as they are not added to the collection set due to above precondition.
189   assert(!region_attr.is_humongous(),
190          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
191          p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
192 
193   if (!region_attr.is_in_cset()) {
194     // In this case somebody else already did all the work.
195     return;
196   }
197 
198   markWord m = obj->mark();
199   if (m.is_marked()) {
200     obj = cast_to_oop(m.decode_pointer());
201   } else {
202     obj = do_copy_to_survivor_space(region_attr, obj, m);
203   }
204   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
205 
206   write_ref_field_post(p, obj);
207 }
208 
209 MAYBE_INLINE_EVACUATION
210 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
211   oop from_obj = task.to_source_array();
212 
213   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
214   assert(from_obj->is_objArray(), "must be obj array");
215   assert(from_obj->is_forwarded(), "must be forwarded");
216 
217   oop to_obj = from_obj->forwardee();
218   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
219   assert(to_obj->is_objArray(), "must be obj array");
220   objArrayOop to_array = objArrayOop(to_obj);
221 
222   PartialArrayTaskStepper::Step step
223     = _partial_array_stepper.next(objArrayOop(from_obj),
224                                   to_array,
225                                   _partial_objarray_chunk_size);
226   for (uint i = 0; i < step._ncreate; ++i) {
227     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
228   }
229 
230   HeapRegion* hr = _g1h->heap_region_containing(to_array);
231   G1ScanInYoungSetter x(&_scanner, hr->is_young());
232   // Process claimed task.  The length of to_array is not correct, but
233   // fortunately the iteration ignores the length field and just relies
234   // on start/end.
235   to_array->oop_iterate_range(&_scanner,
236                               step._index,
237                               step._index + _partial_objarray_chunk_size);
238 }
239 
240 MAYBE_INLINE_EVACUATION
241 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
242                                                   oop from_obj,
243                                                   oop to_obj) {
244   assert(from_obj->is_objArray(), "precondition");
245   assert(from_obj->is_forwarded(), "precondition");
246   assert(from_obj->forwardee() == to_obj, "precondition");
247   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
248   assert(to_obj->is_objArray(), "precondition");
249 
250   objArrayOop to_array = objArrayOop(to_obj);
251 
252   PartialArrayTaskStepper::Step step
253     = _partial_array_stepper.start(objArrayOop(from_obj),
254                                    to_array,
255                                    _partial_objarray_chunk_size);
256 
257   // Push any needed partial scan tasks.  Pushed before processing the
258   // intitial chunk to allow other workers to steal while we're processing.
259   for (uint i = 0; i < step._ncreate; ++i) {
260     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
261   }
262 
263   G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
264   // Process the initial chunk.  No need to process the type in the

343   } else {
344     _old_gen_is_full = previous_plab_refill_failed;
345     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
346     // no other space to try.
347     return NULL;
348   }
349 }
350 
351 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
352   if (region_attr.is_young()) {
353     age = !m.has_displaced_mark_helper() ? m.age()
354                                          : m.displaced_mark_helper().age();
355     if (age < _tenuring_threshold) {
356       return region_attr;
357     }
358   }
359   return dest(region_attr);
360 }
361 
362 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
363                                                   oop const old, size_t word_sz, uint age,
364                                                   HeapWord * const obj_ptr, uint node_index) const {
365   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
366   if (alloc_buf->contains(obj_ptr)) {
367     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
368                                                              dest_attr.type() == G1HeapRegionAttr::Old,
369                                                              alloc_buf->word_sz() * HeapWordSize);
370   } else {
371     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
372                                                               dest_attr.type() == G1HeapRegionAttr::Old);
373   }
374 }
375 
376 NOINLINE
377 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
378                                                    oop old,
379                                                    size_t word_sz,
380                                                    uint age,
381                                                    uint node_index) {
382   HeapWord* obj_ptr = NULL;
383   // Try slow-path allocation unless we're allocating old and old is already full.
384   if (!(dest_attr->is_old() && _old_gen_is_full)) {
385     bool plab_refill_failed = false;
386     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
387                                                            word_sz,
388                                                            &plab_refill_failed,
389                                                            node_index);
390     if (obj_ptr == NULL) {
391       obj_ptr = allocate_in_next_plab(dest_attr,
392                                       word_sz,
393                                       plab_refill_failed,
394                                       node_index);
395     }
396   }
397   if (obj_ptr != NULL) {
398     update_numa_stats(node_index);
399     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
400       // The events are checked individually as part of the actual commit
401       report_promotion_event(*dest_attr, old, word_sz, age, obj_ptr, node_index);
402     }
403   }
404   return obj_ptr;
405 }
406 
407 NOINLINE
408 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
409                                            HeapWord* obj_ptr,
410                                            size_t word_sz,
411                                            uint node_index) {
412   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
413 }
414 
415 // Private inline function, for direct internal use and providing the
416 // implementation of the public not-inline function.
417 MAYBE_INLINE_EVACUATION
418 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
419                                                     oop const old,
420                                                     markWord const old_mark) {
421   assert(region_attr.is_in_cset(),
422          "Unexpected region attr type: %s", region_attr.get_type_str());
423 
424   // Get the klass once.  We'll need it again later, and this avoids
425   // re-decoding when it's compressed.
426   Klass* klass = old->klass();






427   const size_t word_sz = old->size_given_klass(klass);
428 
429   uint age = 0;
430   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
431   HeapRegion* const from_region = _g1h->heap_region_containing(old);
432   uint node_index = from_region->node_index();
433 
434   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
435 
436   // PLAB allocations should succeed most of the time, so we'll
437   // normally check against NULL once and that's it.
438   if (obj_ptr == NULL) {
439     obj_ptr = allocate_copy_slow(&dest_attr, old, word_sz, age, node_index);
440     if (obj_ptr == NULL) {
441       // This will either forward-to-self, or detect that someone else has
442       // installed a forwarding pointer.
443       return handle_evacuation_failure_par(old, old_mark);
444     }
445   }
446 
447   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
448   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
449 
450 #ifndef PRODUCT
451   // Should this evacuation fail?
452   if (_g1h->evacuation_should_fail()) {
453     // Doing this after all the allocation attempts also tests the
454     // undo_allocation() method too.
455     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
456     return handle_evacuation_failure_par(old, old_mark);
457   }
458 #endif // !PRODUCT
459 

576   _flushed = true;
577 }
578 
579 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
580   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
581     G1ParScanThreadState* pss = _states[worker_index];
582 
583     if (pss == NULL) {
584       continue;
585     }
586 
587     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
588     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
589   }
590 }
591 
592 NOINLINE
593 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
594   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
595 
596   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
597   if (forward_ptr == NULL) {
598     // Forward-to-self succeeded. We are the "owner" of the object.
599     HeapRegion* r = _g1h->heap_region_containing(old);
600 
601     if (_g1h->notify_region_failed_evacuation(r->hrm_index())) {
602       _g1h->hr_printer()->evac_failure(r);
603     }
604 
605     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
606 
607     G1ScanInYoungSetter x(&_scanner, r->is_young());
608     old->oop_iterate_backwards(&_scanner);
609 
610     return old;
611   } else {
612     // Forward-to-self failed. Either someone else managed to allocate
613     // space for this object (old != forward_ptr) or they beat us in
614     // self-forwarding it (old == forward_ptr).
615     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
616            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "

180 
181   // Although we never intentionally push references outside of the collection
182   // set, due to (benign) races in the claim mechanism during RSet scanning more
183   // than one thread might claim the same card. So the same card may be
184   // processed multiple times, and so we might get references into old gen here.
185   // So we need to redo this check.
186   const G1HeapRegionAttr region_attr = _g1h->region_attr(obj);
187   // References pushed onto the work stack should never point to a humongous region
188   // as they are not added to the collection set due to above precondition.
189   assert(!region_attr.is_humongous(),
190          "Obj " PTR_FORMAT " should not refer to humongous region %u from " PTR_FORMAT,
191          p2i(obj), _g1h->addr_to_region(cast_from_oop<HeapWord*>(obj)), p2i(p));
192 
193   if (!region_attr.is_in_cset()) {
194     // In this case somebody else already did all the work.
195     return;
196   }
197 
198   markWord m = obj->mark();
199   if (m.is_marked()) {
200     obj = obj->forwardee(m);
201   } else {
202     obj = do_copy_to_survivor_space(region_attr, obj, m);
203   }
204   RawAccess<IS_NOT_NULL>::oop_store(p, obj);
205 
206   write_ref_field_post(p, obj);
207 }
208 
209 MAYBE_INLINE_EVACUATION
210 void G1ParScanThreadState::do_partial_array(PartialArrayScanTask task) {
211   oop from_obj = task.to_source_array();
212 
213   assert(_g1h->is_in_reserved(from_obj), "must be in heap.");
214   assert(UseCompactObjectHeaders || from_obj->is_objArray(), "must be obj array");
215   assert(from_obj->is_forwarded(), "must be forwarded");
216 
217   oop to_obj = from_obj->forwardee();
218   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
219   assert(to_obj->is_objArray(), "must be obj array");
220   objArrayOop to_array = objArrayOop(to_obj);
221 
222   PartialArrayTaskStepper::Step step
223     = _partial_array_stepper.next(objArrayOop(from_obj),
224                                   to_array,
225                                   _partial_objarray_chunk_size);
226   for (uint i = 0; i < step._ncreate; ++i) {
227     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
228   }
229 
230   HeapRegion* hr = _g1h->heap_region_containing(to_array);
231   G1ScanInYoungSetter x(&_scanner, hr->is_young());
232   // Process claimed task.  The length of to_array is not correct, but
233   // fortunately the iteration ignores the length field and just relies
234   // on start/end.
235   to_array->oop_iterate_range(&_scanner,
236                               step._index,
237                               step._index + _partial_objarray_chunk_size);
238 }
239 
240 MAYBE_INLINE_EVACUATION
241 void G1ParScanThreadState::start_partial_objarray(G1HeapRegionAttr dest_attr,
242                                                   oop from_obj,
243                                                   oop to_obj) {
244   assert(UseCompactObjectHeaders || from_obj->is_objArray(), "precondition");
245   assert(from_obj->is_forwarded(), "precondition");
246   assert(from_obj->forwardee() == to_obj, "precondition");
247   assert(from_obj != to_obj, "should not be scanning self-forwarded objects");
248   assert(to_obj->is_objArray(), "precondition");
249 
250   objArrayOop to_array = objArrayOop(to_obj);
251 
252   PartialArrayTaskStepper::Step step
253     = _partial_array_stepper.start(objArrayOop(from_obj),
254                                    to_array,
255                                    _partial_objarray_chunk_size);
256 
257   // Push any needed partial scan tasks.  Pushed before processing the
258   // intitial chunk to allow other workers to steal while we're processing.
259   for (uint i = 0; i < step._ncreate; ++i) {
260     push_on_queue(ScannerTask(PartialArrayScanTask(from_obj)));
261   }
262 
263   G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
264   // Process the initial chunk.  No need to process the type in the

343   } else {
344     _old_gen_is_full = previous_plab_refill_failed;
345     assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
346     // no other space to try.
347     return NULL;
348   }
349 }
350 
351 G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markWord const m, uint& age) {
352   if (region_attr.is_young()) {
353     age = !m.has_displaced_mark_helper() ? m.age()
354                                          : m.displaced_mark_helper().age();
355     if (age < _tenuring_threshold) {
356       return region_attr;
357     }
358   }
359   return dest(region_attr);
360 }
361 
362 void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
363                                                   Klass* klass, size_t word_sz, uint age,
364                                                   HeapWord * const obj_ptr, uint node_index) const {
365   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr, node_index);
366   if (alloc_buf->contains(obj_ptr)) {
367     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(klass, word_sz * HeapWordSize, age,
368                                                              dest_attr.type() == G1HeapRegionAttr::Old,
369                                                              alloc_buf->word_sz() * HeapWordSize);
370   } else {
371     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(klass, word_sz * HeapWordSize, age,
372                                                               dest_attr.type() == G1HeapRegionAttr::Old);
373   }
374 }
375 
376 NOINLINE
377 HeapWord* G1ParScanThreadState::allocate_copy_slow(G1HeapRegionAttr* dest_attr,
378                                                    Klass* klass,
379                                                    size_t word_sz,
380                                                    uint age,
381                                                    uint node_index) {
382   HeapWord* obj_ptr = NULL;
383   // Try slow-path allocation unless we're allocating old and old is already full.
384   if (!(dest_attr->is_old() && _old_gen_is_full)) {
385     bool plab_refill_failed = false;
386     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(*dest_attr,
387                                                            word_sz,
388                                                            &plab_refill_failed,
389                                                            node_index);
390     if (obj_ptr == NULL) {
391       obj_ptr = allocate_in_next_plab(dest_attr,
392                                       word_sz,
393                                       plab_refill_failed,
394                                       node_index);
395     }
396   }
397   if (obj_ptr != NULL) {
398     update_numa_stats(node_index);
399     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
400       // The events are checked individually as part of the actual commit
401       report_promotion_event(*dest_attr, klass, word_sz, age, obj_ptr, node_index);
402     }
403   }
404   return obj_ptr;
405 }
406 
407 NOINLINE
408 void G1ParScanThreadState::undo_allocation(G1HeapRegionAttr dest_attr,
409                                            HeapWord* obj_ptr,
410                                            size_t word_sz,
411                                            uint node_index) {
412   _plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
413 }
414 
415 // Private inline function, for direct internal use and providing the
416 // implementation of the public not-inline function.
417 MAYBE_INLINE_EVACUATION
418 oop G1ParScanThreadState::do_copy_to_survivor_space(G1HeapRegionAttr const region_attr,
419                                                     oop const old,
420                                                     markWord const old_mark) {
421   assert(region_attr.is_in_cset(),
422          "Unexpected region attr type: %s", region_attr.get_type_str());
423 
424   // Get the klass once.  We'll need it again later, and this avoids
425   // re-decoding when it's compressed.
426   // NOTE: With compact headers, it is not safe to load the Klass* from o, because
427   // that would access the mark-word, and the mark-word might change at any time by
428   // concurrent promotion. The promoted mark-word would point to the forwardee, which
429   // may not yet have completed copying. Therefore we must load the Klass* from
430   // the mark-word that we have already loaded. This is safe, because we have checked
431   // that this is not yet forwarded in the caller.
432   Klass* klass = old->forward_safe_klass(old_mark);
433   const size_t word_sz = old->size_given_klass(klass);
434 
435   uint age = 0;
436   G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
437   HeapRegion* const from_region = _g1h->heap_region_containing(old);
438   uint node_index = from_region->node_index();
439 
440   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz, node_index);
441 
442   // PLAB allocations should succeed most of the time, so we'll
443   // normally check against NULL once and that's it.
444   if (obj_ptr == NULL) {
445     obj_ptr = allocate_copy_slow(&dest_attr, klass, word_sz, age, node_index);
446     if (obj_ptr == NULL) {
447       // This will either forward-to-self, or detect that someone else has
448       // installed a forwarding pointer.
449       return handle_evacuation_failure_par(old, old_mark);
450     }
451   }
452 
453   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
454   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
455 
456 #ifndef PRODUCT
457   // Should this evacuation fail?
458   if (_g1h->evacuation_should_fail()) {
459     // Doing this after all the allocation attempts also tests the
460     // undo_allocation() method too.
461     undo_allocation(dest_attr, obj_ptr, word_sz, node_index);
462     return handle_evacuation_failure_par(old, old_mark);
463   }
464 #endif // !PRODUCT
465 

582   _flushed = true;
583 }
584 
585 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
586   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
587     G1ParScanThreadState* pss = _states[worker_index];
588 
589     if (pss == NULL) {
590       continue;
591     }
592 
593     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
594     _g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
595   }
596 }
597 
598 NOINLINE
599 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markWord m) {
600   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
601 
602   oop forward_ptr = old->forward_to_self_atomic(m, memory_order_relaxed);
603   if (forward_ptr == NULL) {
604     // Forward-to-self succeeded. We are the "owner" of the object.
605     HeapRegion* r = _g1h->heap_region_containing(old);
606 
607     if (_g1h->notify_region_failed_evacuation(r->hrm_index())) {
608       _g1h->hr_printer()->evac_failure(r);
609     }
610 
611     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
612 
613     G1ScanInYoungSetter x(&_scanner, r->is_young());
614     old->oop_iterate_backwards(&_scanner);
615 
616     return old;
617   } else {
618     // Forward-to-self failed. Either someone else managed to allocate
619     // space for this object (old != forward_ptr) or they beat us in
620     // self-forwarding it (old == forward_ptr).
621     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
622            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
< prev index next >