< prev index next >

src/hotspot/share/gc/parallel/parallelScavengeHeap.cpp

Print this page

 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/parallel/objectStartArray.inline.hpp"
 26 #include "gc/parallel/parallelArguments.hpp"
 27 #include "gc/parallel/parallelInitLogger.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 30 #include "gc/parallel/psMemoryPool.hpp"
 31 #include "gc/parallel/psParallelCompact.inline.hpp"

 32 #include "gc/parallel/psPromotionManager.hpp"
 33 #include "gc/parallel/psScavenge.hpp"
 34 #include "gc/parallel/psVMOperations.hpp"
 35 #include "gc/shared/fullGCForwarding.inline.hpp"
 36 #include "gc/shared/gcHeapSummary.hpp"
 37 #include "gc/shared/gcLocker.inline.hpp"
 38 #include "gc/shared/gcWhen.hpp"
 39 #include "gc/shared/genArguments.hpp"
 40 #include "gc/shared/locationPrinter.inline.hpp"
 41 #include "gc/shared/scavengableNMethods.hpp"
 42 #include "gc/shared/suspendibleThreadSet.hpp"
 43 #include "logging/log.hpp"
 44 #include "memory/iterator.hpp"
 45 #include "memory/metaspaceCounters.hpp"
 46 #include "memory/metaspaceUtils.hpp"
 47 #include "memory/reservedSpace.hpp"
 48 #include "memory/universe.hpp"
 49 #include "oops/oop.inline.hpp"
 50 #include "runtime/cpuTimeCounters.hpp"
 51 #include "runtime/handles.inline.hpp"

102 
103   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
104   const size_t old_capacity = _old_gen->capacity_in_bytes();
105   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
106   _size_policy =
107     new PSAdaptiveSizePolicy(eden_capacity,
108                              initial_promo_size,
109                              young_gen()->to_space()->capacity_in_bytes(),
110                              SpaceAlignment,
111                              max_gc_pause_sec,
112                              GCTimeRatio
113                              );
114 
115   assert((old_gen()->virtual_space()->high_boundary() ==
116           young_gen()->virtual_space()->low_boundary()),
117          "Boundaries must meet");
118   // initialize the policy counters - 2 collectors, 2 generations
119   _gc_policy_counters =
120     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
121 
122   if (!PSParallelCompact::initialize_aux_data()) {
123     return JNI_ENOMEM;






124   }
125 
126   // Create CPU time counter
127   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
128 
129   ParallelInitLogger::print();
130 
131   FullGCForwarding::initialize(_reserved);
132 
133   return JNI_OK;
134 }
135 
136 void ParallelScavengeHeap::initialize_serviceability() {
137 
138   _eden_pool = new EdenMutableSpacePool(_young_gen,
139                                         _young_gen->eden_space(),
140                                         "PS Eden Space",
141                                         false /* support_usage_threshold */);
142 
143   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,

166   }
167 }
168 
169 void ParallelScavengeHeap::safepoint_synchronize_end() {
170   if (UseStringDeduplication) {
171     SuspendibleThreadSet::desynchronize();
172   }
173 }
174 class PSIsScavengable : public BoolObjectClosure {
175   bool do_object_b(oop obj) {
176     return ParallelScavengeHeap::heap()->is_in_young(obj);
177   }
178 };
179 
180 static PSIsScavengable _is_scavengable;
181 
182 void ParallelScavengeHeap::post_initialize() {
183   CollectedHeap::post_initialize();
184   // Need to init the tenuring threshold
185   PSScavenge::initialize();
186   PSParallelCompact::post_initialize();




187   PSPromotionManager::initialize();
188 
189   ScavengableNMethods::initialize(&_is_scavengable);
190   GCLocker::initialize();
191 }
192 
193 void ParallelScavengeHeap::update_counters() {
194   young_gen()->update_counters();
195   old_gen()->update_counters();
196   MetaspaceCounters::update_performance_counters();
197   update_parallel_worker_threads_cpu_time();
198 }
199 
200 size_t ParallelScavengeHeap::capacity() const {
201   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
202   return value;
203 }
204 
205 size_t ParallelScavengeHeap::used() const {
206   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();

367 
368 HeapWord* ParallelScavengeHeap::allocate_old_gen_and_record(size_t size) {
369   assert_locked_or_safepoint(Heap_lock);
370   HeapWord* res = old_gen()->allocate(size);
371   if (res != nullptr) {
372     _size_policy->tenured_allocation(size * HeapWordSize);
373   }
374   return res;
375 }
376 
377 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
378   if (!should_alloc_in_eden(size)) {
379     // Size is too big for eden.
380     return allocate_old_gen_and_record(size);
381   }
382 
383   return nullptr;
384 }
385 
386 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
387   PSParallelCompact::invoke(clear_all_soft_refs);




388 }
389 
390 HeapWord* ParallelScavengeHeap::expand_heap_and_allocate(size_t size, bool is_tlab) {
391   HeapWord* result = nullptr;
392 
393   result = young_gen()->allocate(size);
394   if (result == nullptr && !is_tlab) {
395     result = old_gen()->expand_and_allocate(size);
396   }
397   return result;   // Could be null if we are out of space.
398 }
399 
400 HeapWord* ParallelScavengeHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
401   assert(size != 0, "precondition");
402 
403   HeapWord* result = nullptr;
404 
405   // If young-gen can handle this allocation, attempt young-gc firstly.
406   bool should_run_young_gc = is_tlab || should_alloc_in_eden(size);
407   collect_at_safepoint(!should_run_young_gc);
408 
409   result = expand_heap_and_allocate(size, is_tlab);
410   if (result != nullptr) {
411     return result;
412   }
413 
414   // If we reach this point, we're really out of memory. Try every trick
415   // we can to reclaim memory. Force collection of soft references. Force
416   // a complete compaction of the heap. Any additional methods for finding
417   // free memory should be here, especially if they are expensive. If this
418   // attempt fails, an OOM exception will be thrown.
419   {
420     // Make sure the heap is fully compacted
421     uintx old_interval = HeapMaximumCompactionInterval;
422     HeapMaximumCompactionInterval = 0;
423 
424     const bool clear_all_soft_refs = true;
425     PSParallelCompact::invoke(clear_all_soft_refs);




426 
427     // Restore
428     HeapMaximumCompactionInterval = old_interval;
429   }
430 
431   result = expand_heap_and_allocate(size, is_tlab);
432   if (result != nullptr) {
433     return result;
434   }
435 









436   // What else?  We might try synchronous finalization later.  If the total
437   // space available is large enough for the allocation, then a more
438   // complete compaction phase than we've tried so far might be
439   // appropriate.
440   return nullptr;
441 }
442 
443 
444 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
445   CollectedHeap::ensure_parsability(retire_tlabs);
446   young_gen()->eden_space()->ensure_parsability();
447 }
448 
449 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
450   return young_gen()->eden_space()->tlab_capacity(thr);
451 }
452 
453 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
454   return young_gen()->eden_space()->tlab_used(thr);
455 }

498   VM_ParallelGCCollect op(gc_count, full_gc_count, cause);
499   VMThread::execute(&op);
500 }
501 
502 bool ParallelScavengeHeap::must_clear_all_soft_refs() {
503   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
504          _gc_cause == GCCause::_wb_full_gc;
505 }
506 
507 void ParallelScavengeHeap::collect_at_safepoint(bool full) {
508   assert(!GCLocker::is_active(), "precondition");
509   bool clear_soft_refs = must_clear_all_soft_refs();
510 
511   if (!full) {
512     bool success = PSScavenge::invoke(clear_soft_refs);
513     if (success) {
514       return;
515     }
516     // Upgrade to Full-GC if young-gc fails
517   }
518   PSParallelCompact::invoke(clear_soft_refs);




519 }
520 
521 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
522   young_gen()->object_iterate(cl);
523   old_gen()->object_iterate(cl);
524 }
525 
526 // The HeapBlockClaimer is used during parallel iteration over the heap,
527 // allowing workers to claim heap areas ("blocks"), gaining exclusive rights to these.
528 // The eden and survivor spaces are treated as single blocks as it is hard to divide
529 // these spaces.
530 // The old space is divided into fixed-size blocks.
531 class HeapBlockClaimer : public StackObj {
532   size_t _claimed_index;
533 
534 public:
535   static const size_t InvalidIndex = SIZE_MAX;
536   static const size_t EdenIndex = 0;
537   static const size_t SurvivorIndex = 1;
538   static const size_t NumNonOldGenClaims = 2;

641 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
642   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
643 }
644 
645 void ParallelScavengeHeap::print_heap_on(outputStream* st) const {
646   if (young_gen() != nullptr) {
647     young_gen()->print_on(st);
648   }
649   if (old_gen() != nullptr) {
650     old_gen()->print_on(st);
651   }
652 }
653 
654 void ParallelScavengeHeap::print_gc_on(outputStream* st) const {
655   BarrierSet* bs = BarrierSet::barrier_set();
656   if (bs != nullptr) {
657     bs->print_on(st);
658   }
659   st->cr();
660 
661   PSParallelCompact::print_on(st);




662 }
663 
664 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
665   ParallelScavengeHeap::heap()->workers().threads_do(tc);
666 }
667 
668 void ParallelScavengeHeap::print_tracing_info() const {
669   AdaptiveSizePolicyOutput::print();
670   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
671   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds());




672 }
673 
674 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
675   const PSYoungGen* const young = young_gen();
676   const MutableSpace* const eden = young->eden_space();
677   const MutableSpace* const from = young->from_space();
678   const PSOldGen* const old = old_gen();
679 
680   return PreGenGCValues(young->used_in_bytes(),
681                         young->capacity_in_bytes(),
682                         eden->used_in_bytes(),
683                         eden->capacity_in_bytes(),
684                         from->used_in_bytes(),
685                         from->capacity_in_bytes(),
686                         old->used_in_bytes(),
687                         old->capacity_in_bytes());
688 }
689 
690 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
691   const PSYoungGen* const young = young_gen();

 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "gc/parallel/objectStartArray.inline.hpp"
 26 #include "gc/parallel/parallelArguments.hpp"
 27 #include "gc/parallel/parallelInitLogger.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
 30 #include "gc/parallel/psMemoryPool.hpp"
 31 #include "gc/parallel/psParallelCompact.inline.hpp"
 32 #include "gc/parallel/psParallelCompactNew.inline.hpp"
 33 #include "gc/parallel/psPromotionManager.hpp"
 34 #include "gc/parallel/psScavenge.hpp"
 35 #include "gc/parallel/psVMOperations.hpp"
 36 #include "gc/shared/fullGCForwarding.inline.hpp"
 37 #include "gc/shared/gcHeapSummary.hpp"
 38 #include "gc/shared/gcLocker.inline.hpp"
 39 #include "gc/shared/gcWhen.hpp"
 40 #include "gc/shared/genArguments.hpp"
 41 #include "gc/shared/locationPrinter.inline.hpp"
 42 #include "gc/shared/scavengableNMethods.hpp"
 43 #include "gc/shared/suspendibleThreadSet.hpp"
 44 #include "logging/log.hpp"
 45 #include "memory/iterator.hpp"
 46 #include "memory/metaspaceCounters.hpp"
 47 #include "memory/metaspaceUtils.hpp"
 48 #include "memory/reservedSpace.hpp"
 49 #include "memory/universe.hpp"
 50 #include "oops/oop.inline.hpp"
 51 #include "runtime/cpuTimeCounters.hpp"
 52 #include "runtime/handles.inline.hpp"

103 
104   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
105   const size_t old_capacity = _old_gen->capacity_in_bytes();
106   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
107   _size_policy =
108     new PSAdaptiveSizePolicy(eden_capacity,
109                              initial_promo_size,
110                              young_gen()->to_space()->capacity_in_bytes(),
111                              SpaceAlignment,
112                              max_gc_pause_sec,
113                              GCTimeRatio
114                              );
115 
116   assert((old_gen()->virtual_space()->high_boundary() ==
117           young_gen()->virtual_space()->low_boundary()),
118          "Boundaries must meet");
119   // initialize the policy counters - 2 collectors, 2 generations
120   _gc_policy_counters =
121     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
122 
123   if (UseCompactObjectHeaders) {
124     if (!PSParallelCompactNew::initialize_aux_data()) {
125       return JNI_ENOMEM;
126     }
127   } else {
128     if (!PSParallelCompact::initialize_aux_data()) {
129       return JNI_ENOMEM;
130     }
131   }
132 
133   // Create CPU time counter
134   CPUTimeCounters::create_counter(CPUTimeGroups::CPUTimeType::gc_parallel_workers);
135 
136   ParallelInitLogger::print();
137 
138   FullGCForwarding::initialize(_reserved);
139 
140   return JNI_OK;
141 }
142 
143 void ParallelScavengeHeap::initialize_serviceability() {
144 
145   _eden_pool = new EdenMutableSpacePool(_young_gen,
146                                         _young_gen->eden_space(),
147                                         "PS Eden Space",
148                                         false /* support_usage_threshold */);
149 
150   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,

173   }
174 }
175 
176 void ParallelScavengeHeap::safepoint_synchronize_end() {
177   if (UseStringDeduplication) {
178     SuspendibleThreadSet::desynchronize();
179   }
180 }
181 class PSIsScavengable : public BoolObjectClosure {
182   bool do_object_b(oop obj) {
183     return ParallelScavengeHeap::heap()->is_in_young(obj);
184   }
185 };
186 
187 static PSIsScavengable _is_scavengable;
188 
189 void ParallelScavengeHeap::post_initialize() {
190   CollectedHeap::post_initialize();
191   // Need to init the tenuring threshold
192   PSScavenge::initialize();
193   if (UseCompactObjectHeaders) {
194     PSParallelCompactNew::post_initialize();
195   } else {
196     PSParallelCompact::post_initialize();
197   }
198   PSPromotionManager::initialize();
199 
200   ScavengableNMethods::initialize(&_is_scavengable);
201   GCLocker::initialize();
202 }
203 
204 void ParallelScavengeHeap::update_counters() {
205   young_gen()->update_counters();
206   old_gen()->update_counters();
207   MetaspaceCounters::update_performance_counters();
208   update_parallel_worker_threads_cpu_time();
209 }
210 
211 size_t ParallelScavengeHeap::capacity() const {
212   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
213   return value;
214 }
215 
216 size_t ParallelScavengeHeap::used() const {
217   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();

378 
379 HeapWord* ParallelScavengeHeap::allocate_old_gen_and_record(size_t size) {
380   assert_locked_or_safepoint(Heap_lock);
381   HeapWord* res = old_gen()->allocate(size);
382   if (res != nullptr) {
383     _size_policy->tenured_allocation(size * HeapWordSize);
384   }
385   return res;
386 }
387 
388 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
389   if (!should_alloc_in_eden(size)) {
390     // Size is too big for eden.
391     return allocate_old_gen_and_record(size);
392   }
393 
394   return nullptr;
395 }
396 
397 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
398   if (UseCompactObjectHeaders) {
399     PSParallelCompactNew::invoke(clear_all_soft_refs, false /* serial */);
400   } else {
401     PSParallelCompact::invoke(clear_all_soft_refs);
402   }
403 }
404 
405 HeapWord* ParallelScavengeHeap::expand_heap_and_allocate(size_t size, bool is_tlab) {
406   HeapWord* result = nullptr;
407 
408   result = young_gen()->allocate(size);
409   if (result == nullptr && !is_tlab) {
410     result = old_gen()->expand_and_allocate(size);
411   }
412   return result;   // Could be null if we are out of space.
413 }
414 
415 HeapWord* ParallelScavengeHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
416   assert(size != 0, "precondition");
417 
418   HeapWord* result = nullptr;
419 
420   // If young-gen can handle this allocation, attempt young-gc firstly.
421   bool should_run_young_gc = is_tlab || should_alloc_in_eden(size);
422   collect_at_safepoint(!should_run_young_gc);
423 
424   result = expand_heap_and_allocate(size, is_tlab);
425   if (result != nullptr) {
426     return result;
427   }
428 
429   // If we reach this point, we're really out of memory. Try every trick
430   // we can to reclaim memory. Force collection of soft references. Force
431   // a complete compaction of the heap. Any additional methods for finding
432   // free memory should be here, especially if they are expensive. If this
433   // attempt fails, an OOM exception will be thrown.
434   {
435     // Make sure the heap is fully compacted
436     uintx old_interval = HeapMaximumCompactionInterval;
437     HeapMaximumCompactionInterval = 0;
438 
439     const bool clear_all_soft_refs = true;
440     if (UseCompactObjectHeaders) {
441       PSParallelCompactNew::invoke(clear_all_soft_refs, false /* serial */);
442     } else {
443       PSParallelCompact::invoke(clear_all_soft_refs);
444     }
445 
446     // Restore
447     HeapMaximumCompactionInterval = old_interval;
448   }
449 
450   result = expand_heap_and_allocate(size, is_tlab);
451   if (result != nullptr) {
452     return result;
453   }
454 
455   if (UseCompactObjectHeaders) {
456     PSParallelCompactNew::invoke(true /* clear_soft_refs */, true /* serial */);
457   }
458 
459   result = expand_heap_and_allocate(size, is_tlab);
460   if (result != nullptr) {
461     return result;
462   }
463 
464   // What else?  We might try synchronous finalization later.  If the total
465   // space available is large enough for the allocation, then a more
466   // complete compaction phase than we've tried so far might be
467   // appropriate.
468   return nullptr;
469 }
470 
471 
472 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
473   CollectedHeap::ensure_parsability(retire_tlabs);
474   young_gen()->eden_space()->ensure_parsability();
475 }
476 
477 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
478   return young_gen()->eden_space()->tlab_capacity(thr);
479 }
480 
481 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
482   return young_gen()->eden_space()->tlab_used(thr);
483 }

526   VM_ParallelGCCollect op(gc_count, full_gc_count, cause);
527   VMThread::execute(&op);
528 }
529 
530 bool ParallelScavengeHeap::must_clear_all_soft_refs() {
531   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
532          _gc_cause == GCCause::_wb_full_gc;
533 }
534 
535 void ParallelScavengeHeap::collect_at_safepoint(bool full) {
536   assert(!GCLocker::is_active(), "precondition");
537   bool clear_soft_refs = must_clear_all_soft_refs();
538 
539   if (!full) {
540     bool success = PSScavenge::invoke(clear_soft_refs);
541     if (success) {
542       return;
543     }
544     // Upgrade to Full-GC if young-gc fails
545   }
546   if (UseCompactObjectHeaders) {
547     PSParallelCompactNew::invoke(clear_soft_refs, false /* serial */);
548   } else {
549     PSParallelCompact::invoke(clear_soft_refs);
550   }
551 }
552 
553 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
554   young_gen()->object_iterate(cl);
555   old_gen()->object_iterate(cl);
556 }
557 
558 // The HeapBlockClaimer is used during parallel iteration over the heap,
559 // allowing workers to claim heap areas ("blocks"), gaining exclusive rights to these.
560 // The eden and survivor spaces are treated as single blocks as it is hard to divide
561 // these spaces.
562 // The old space is divided into fixed-size blocks.
563 class HeapBlockClaimer : public StackObj {
564   size_t _claimed_index;
565 
566 public:
567   static const size_t InvalidIndex = SIZE_MAX;
568   static const size_t EdenIndex = 0;
569   static const size_t SurvivorIndex = 1;
570   static const size_t NumNonOldGenClaims = 2;

673 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
674   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
675 }
676 
677 void ParallelScavengeHeap::print_heap_on(outputStream* st) const {
678   if (young_gen() != nullptr) {
679     young_gen()->print_on(st);
680   }
681   if (old_gen() != nullptr) {
682     old_gen()->print_on(st);
683   }
684 }
685 
686 void ParallelScavengeHeap::print_gc_on(outputStream* st) const {
687   BarrierSet* bs = BarrierSet::barrier_set();
688   if (bs != nullptr) {
689     bs->print_on(st);
690   }
691   st->cr();
692 
693   if (UseCompactObjectHeaders) {
694     PSParallelCompactNew::print_on(st);
695   } else {
696     PSParallelCompact::print_on(st);
697   }
698 }
699 
700 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
701   ParallelScavengeHeap::heap()->workers().threads_do(tc);
702 }
703 
704 void ParallelScavengeHeap::print_tracing_info() const {
705   AdaptiveSizePolicyOutput::print();
706   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
707   if (UseCompactObjectHeaders) {
708     log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompactNew::accumulated_time()->seconds());
709   } else {
710     log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs", PSParallelCompact::accumulated_time()->seconds());
711   }
712 }
713 
714 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
715   const PSYoungGen* const young = young_gen();
716   const MutableSpace* const eden = young->eden_space();
717   const MutableSpace* const from = young->from_space();
718   const PSOldGen* const old = old_gen();
719 
720   return PreGenGCValues(young->used_in_bytes(),
721                         young->capacity_in_bytes(),
722                         eden->used_in_bytes(),
723                         eden->capacity_in_bytes(),
724                         from->used_in_bytes(),
725                         from->capacity_in_bytes(),
726                         old->used_in_bytes(),
727                         old->capacity_in_bytes());
728 }
729 
730 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
731   const PSYoungGen* const young = young_gen();
< prev index next >