< prev index next >

src/hotspot/share/runtime/objectMonitor.cpp

Print this page

  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/objectMonitor.inline.hpp"
  49 #include "runtime/orderAccess.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfData.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"

  55 #include "services/threadService.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/globalDefinitions.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/preserveException.hpp"
  60 #if INCLUDE_JFR
  61 #include "jfr/support/jfrFlush.hpp"
  62 #endif
  63 
  64 #ifdef DTRACE_ENABLED
  65 
  66 // Only bother with this argument setup if dtrace is available
  67 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  68 
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = nullptr;                                                   \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = obj->klass()->name();                                \

  95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                             \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  99       HOTSPOT_MONITOR_##probe(jtid,                                        \
 100                               (uintptr_t)(monitor), bytes, len);           \
 101     }                                                                      \
 102   }
 103 
 104 #else //  ndef DTRACE_ENABLED
 105 
 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 108 
 109 #endif // ndef DTRACE_ENABLED
 110 
 111 DEBUG_ONLY(static volatile bool InitDone = false;)
 112 
 113 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 114 












 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or

 232     switch (jt->thread_state()) {
 233     case _thread_in_vm:    // the usual case
 234     case _thread_in_Java:  // during deopt
 235       break;
 236     default:
 237       fatal("called from an unsafe thread state");
 238     }
 239     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 240   } else {
 241     // However, ThreadService::get_current_contended_monitor()
 242     // can call here via the VMThread so sanity check it.
 243     assert(self->is_VM_thread(), "must be");
 244   }
 245 #endif // ASSERT
 246 }
 247 
 248 ObjectMonitor::ObjectMonitor(oop object) :
 249   _header(markWord::zero()),
 250   _object(_oop_storage, object),
 251   _owner(nullptr),

 252   _previous_owner_tid(0),
 253   _next_om(nullptr),
 254   _recursions(0),
 255   _EntryList(nullptr),
 256   _cxq(nullptr),
 257   _succ(nullptr),
 258   _Responsible(nullptr),
 259   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 260   _contentions(0),
 261   _WaitSet(nullptr),
 262   _waiters(0),
 263   _WaitSetLock(0)
 264 { }
 265 
 266 ObjectMonitor::~ObjectMonitor() {
 267   _object.release(_oop_storage);
 268 }
 269 
 270 oop ObjectMonitor::object() const {
 271   check_object_context();

 299 
 300 // -----------------------------------------------------------------------------
 301 // Enter support
 302 
 303 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 304   // Used by ObjectSynchronizer::enter_for to enter for another thread.
 305   // The monitor is private to or already owned by locking_thread which must be suspended.
 306   // So this code may only contend with deflation.
 307   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 308 
 309   // Block out deflation as soon as possible.
 310   add_to_contentions(1);
 311 
 312   bool success = false;
 313   if (!is_being_async_deflated()) {
 314     void* prev_owner = try_set_owner_from(nullptr, locking_thread);
 315 
 316     if (prev_owner == nullptr) {
 317       assert(_recursions == 0, "invariant");
 318       success = true;
 319     } else if (prev_owner == locking_thread) {
 320       _recursions++;
 321       success = true;
 322     } else if (prev_owner == DEFLATER_MARKER) {
 323       // Racing with deflation.
 324       prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 325       if (prev_owner == DEFLATER_MARKER) {
 326         // Cancelled deflation. Increment contentions as part of the deflation protocol.
 327         add_to_contentions(1);
 328         success = true;
 329       } else if (prev_owner == nullptr) {
 330         // At this point we cannot race with deflation as we have both incremented
 331         // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 332         // success will only be false if this races with something other than
 333         // deflation.
 334         prev_owner = try_set_owner_from(nullptr, locking_thread);
 335         success = prev_owner == nullptr;
 336       }
 337     } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) {
 338       assert(_recursions == 0, "must be");
 339       _recursions = 1;
 340       set_owner_from_BasicLock(prev_owner, locking_thread);
 341       success = true;
 342     }
 343     assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 344            ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT,
 345            p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner));
 346   } else {
 347     // Async deflation is in progress and our contentions increment
 348     // above lost the race to async deflation. Undo the work and
 349     // force the caller to retry.
 350     const oop l_object = object();
 351     if (l_object != nullptr) {
 352       // Attempt to restore the header/dmw to the object's header so that
 353       // we only retry once if the deflater thread happens to be slow.
 354       install_displaced_markword_in_object(l_object);
 355     }
 356   }
 357 
 358   add_to_contentions(-1);
 359 
 360   assert(!success || owner_raw() == locking_thread, "must be");
 361 
 362   return success;
 363 }
 364 
 365 bool ObjectMonitor::enter(JavaThread* current) {
 366   assert(current == JavaThread::current(), "must be");
 367   // The following code is ordered to check the most common cases first
 368   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 369 
 370   void* cur = try_set_owner_from(nullptr, current);
 371   if (cur == nullptr) {
 372     assert(_recursions == 0, "invariant");
 373     return true;
 374   }
 375 
 376   if (cur == current) {
 377     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 378     _recursions++;
 379     return true;
 380   }
 381 
 382   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
 383     assert(_recursions == 0, "internal state error");
 384     _recursions = 1;
 385     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
 386     return true;
 387   }
 388 
 389   // We've encountered genuine contention.
 390 
 391   // Try one round of spinning *before* enqueueing current
 392   // and before going through the awkward and expensive state
 393   // transitions.  The following spin is strictly optional ...
 394   // Note that if we acquire the monitor from an initial spin
 395   // we forgo posting JVMTI events and firing DTRACE probes.
 396   if (TrySpin(current)) {
 397     assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 398     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 399     assert(object()->mark() == markWord::encode(this),
 400            "object mark must match encoded this: mark=" INTPTR_FORMAT
 401            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 402            markWord::encode(this).value());
 403     return true;
 404   }
 405 
 406   assert(owner_raw() != current, "invariant");
 407   assert(_succ != current, "invariant");
 408   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 409   assert(current->thread_state() != _thread_blocked, "invariant");
 410 
 411   // Keep track of contention for JVM/TI and M&M queries.
 412   add_to_contentions(1);
 413   if (is_being_async_deflated()) {
 414     // Async deflation is in progress and our contentions increment
 415     // above lost the race to async deflation. Undo the work and
 416     // force the caller to retry.
 417     const oop l_object = object();
 418     if (l_object != nullptr) {
 419       // Attempt to restore the header/dmw to the object's header so that
 420       // we only retry once if the deflater thread happens to be slow.
 421       install_displaced_markword_in_object(l_object);
 422     }
 423     add_to_contentions(-1);
 424     return false;
 425   }
 426 

 434     event.set_address((uintptr_t)this);
 435   }
 436 
 437   { // Change java thread status to indicate blocked on monitor enter.
 438     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 439 
 440     assert(current->current_pending_monitor() == nullptr, "invariant");
 441     current->set_current_pending_monitor(this);
 442 
 443     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 444     if (JvmtiExport::should_post_monitor_contended_enter()) {
 445       JvmtiExport::post_monitor_contended_enter(current, this);
 446 
 447       // The current thread does not yet own the monitor and does not
 448       // yet appear on any queues that would get it made the successor.
 449       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 450       // handler cannot accidentally consume an unpark() meant for the
 451       // ParkEvent associated with this ObjectMonitor.
 452     }
 453 


























 454     OSThreadContendState osts(current->osthread());
 455 
 456     assert(current->thread_state() == _thread_in_vm, "invariant");
 457 
 458     for (;;) {
 459       ExitOnSuspend eos(this);
 460       {
 461         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 462         EnterI(current);
 463         current->set_current_pending_monitor(nullptr);
 464         // We can go to a safepoint at the end of this block. If we
 465         // do a thread dump during that safepoint, then this thread will show
 466         // as having "-locked" the monitor, but the OS and java.lang.Thread
 467         // states will still report that the thread is blocked trying to
 468         // acquire it.
 469         // If there is a suspend request, ExitOnSuspend will exit the OM
 470         // and set the OM as pending.
 471       }
 472       if (!eos.exited()) {
 473         // ExitOnSuspend did not exit the OM
 474         assert(owner_raw() == current, "invariant");
 475         break;
 476       }
 477     }
 478 
 479     // We've just gotten past the enter-check-for-suspend dance and we now own
 480     // the monitor free and clear.
 481   }
 482 
 483   add_to_contentions(-1);
 484   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 485 
 486   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 487   assert(_recursions == 0, "invariant");
 488   assert(owner_raw() == current, "invariant");
 489   assert(_succ != current, "invariant");
 490   assert(object()->mark() == markWord::encode(this), "invariant");
 491 
 492   // The thread -- now the owner -- is back in vm mode.
 493   // Report the glorious news via TI,DTrace and jvmstat.
 494   // The probe effect is non-trivial.  All the reportage occurs
 495   // while we hold the monitor, increasing the length of the critical
 496   // section.  Amdahl's parallel speedup law comes vividly into play.
 497   //
 498   // Another option might be to aggregate the events (thread local or
 499   // per-monitor aggregation) and defer reporting until a more opportune
 500   // time -- such as next time some thread encounters contention but has
 501   // yet to acquire the lock.  While spinning that thread could
 502   // spinning we could increment JVMStat counters, etc.
 503 
 504   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 505   if (JvmtiExport::should_post_monitor_contended_entered()) {
 506     JvmtiExport::post_monitor_contended_entered(current, this);
 507 
 508     // The current thread already owns the monitor and is not going to

 543 // makes contentions negative as signals to contending threads that
 544 // an async deflation is in progress. There are a number of checks
 545 // as part of the protocol to make sure that the calling thread has
 546 // not lost the race to a contending thread.
 547 //
 548 // The ObjectMonitor has been successfully async deflated when:
 549 //   (contentions < 0)
 550 // Contending threads that see that condition know to retry their operation.
 551 //
 552 bool ObjectMonitor::deflate_monitor() {
 553   if (is_busy()) {
 554     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 555     return false;
 556   }
 557 
 558   const oop obj = object_peek();
 559 
 560   if (obj == nullptr) {
 561     // If the object died, we can recycle the monitor without racing with
 562     // Java threads. The GC already broke the association with the object.
 563     set_owner_from(nullptr, DEFLATER_MARKER);
 564     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 565     _contentions = INT_MIN; // minimum negative int
 566   } else {
 567     // Attempt async deflation protocol.
 568 
 569     // Set a null owner to DEFLATER_MARKER to force any contending thread
 570     // through the slow path. This is just the first part of the async
 571     // deflation dance.
 572     if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) {
 573       // The owner field is no longer null so we lost the race since the
 574       // ObjectMonitor is now busy.
 575       return false;
 576     }
 577 
 578     if (contentions() > 0 || _waiters != 0) {
 579       // Another thread has raced to enter the ObjectMonitor after
 580       // is_busy() above or has already entered and waited on
 581       // it which makes it busy so no deflation. Restore owner to
 582       // null if it is still DEFLATER_MARKER.
 583       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 584         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 585         add_to_contentions(-1);
 586       }
 587       return false;
 588     }
 589 
 590     // Make a zero contentions field negative to force any contending threads
 591     // to retry. This is the second part of the async deflation dance.
 592     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 593       // Contentions was no longer 0 so we lost the race since the
 594       // ObjectMonitor is now busy. Restore owner to null if it is
 595       // still DEFLATER_MARKER:
 596       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 597         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 598         add_to_contentions(-1);
 599       }
 600       return false;
 601     }
 602   }
 603 
 604   // Sanity checks for the races:
 605   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 606   guarantee(contentions() < 0, "must be negative: contentions=%d",
 607             contentions());
 608   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 609   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 610             INTPTR_FORMAT, p2i(_cxq));
 611   guarantee(_EntryList == nullptr,
 612             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 613             p2i(_EntryList));
 614 
 615   if (obj != nullptr) {
 616     if (log_is_enabled(Trace, monitorinflation)) {

 672     log_info(monitorinflation)("install_displaced_markword_in_object: "
 673                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 674                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 675                                dmw.value(), markWord::encode(this).value(),
 676                                res.value());
 677   }
 678 
 679   // Note: It does not matter which thread restored the header/dmw
 680   // into the object's header. The thread deflating the monitor just
 681   // wanted the object's header restored and it is. The threads that
 682   // detected a race with the deflation process also wanted the
 683   // object's header restored before they retry their operation and
 684   // because it is restored they will only retry once.
 685 }
 686 
 687 // Convert the fields used by is_busy() to a string that can be
 688 // used for diagnostic output.
 689 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 690   ss->print("is_busy: waiters=%d"
 691             ", contentions=%d"
 692             ", owner=" PTR_FORMAT
 693             ", cxq=" PTR_FORMAT
 694             ", EntryList=" PTR_FORMAT,
 695             _waiters,
 696             (contentions() > 0 ? contentions() : 0),
 697             owner_is_DEFLATER_MARKER()
 698                 // We report null instead of DEFLATER_MARKER here because is_busy()
 699                 // ignores DEFLATER_MARKER values.
 700                 ? p2i(nullptr)
 701                 : p2i(owner_raw()),
 702             p2i(_cxq),
 703             p2i(_EntryList));
 704   return ss->base();
 705 }
 706 
 707 #define MAX_RECHECK_INTERVAL 1000
 708 
 709 void ObjectMonitor::EnterI(JavaThread* current) {
 710   assert(current->thread_state() == _thread_blocked, "invariant");
 711 
 712   // Try the lock - TATAS
 713   if (TryLock(current) == TryLockResult::Success) {
 714     assert(_succ != current, "invariant");
 715     assert(owner_raw() == current, "invariant");
 716     assert(_Responsible != current, "invariant");
 717     return;
 718   }
 719 
 720   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 721     // Cancelled the in-progress async deflation by changing owner from
 722     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 723     // contentions was incremented to a positive value before EnterI()
 724     // was called and that prevents the deflater thread from winning the
 725     // last part of the 2-part async deflation protocol. After EnterI()
 726     // returns to enter(), contentions is decremented because the caller
 727     // now owns the monitor. We bump contentions an extra time here to
 728     // prevent the deflater thread from winning the last part of the
 729     // 2-part async deflation protocol after the regular decrement
 730     // occurs in enter(). The deflater thread will decrement contentions
 731     // after it recognizes that the async deflation was cancelled.
 732     add_to_contentions(1);
 733     assert(_succ != current, "invariant");
 734     assert(_Responsible != current, "invariant");
 735     return;
 736   }
 737 
 738   assert(InitDone, "Unexpectedly not initialized");
 739 
 740   // We try one round of spinning *before* enqueueing current.
 741   //
 742   // If the _owner is ready but OFFPROC we could use a YieldTo()
 743   // operation to donate the remainder of this thread's quantum
 744   // to the owner.  This has subtle but beneficial affinity
 745   // effects.
 746 
 747   if (TrySpin(current)) {
 748     assert(owner_raw() == current, "invariant");
 749     assert(_succ != current, "invariant");
 750     assert(_Responsible != current, "invariant");
 751     return;
 752   }
 753 
 754   // The Spin failed -- Enqueue and park the thread ...
 755   assert(_succ != current, "invariant");
 756   assert(owner_raw() != current, "invariant");
 757   assert(_Responsible != current, "invariant");
 758 
 759   // Enqueue "current" on ObjectMonitor's _cxq.
 760   //
 761   // Node acts as a proxy for current.
 762   // As an aside, if were to ever rewrite the synchronization code mostly
 763   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 764   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 765   // as well as eliminate a subset of ABA issues.
 766   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 767 
 768   ObjectWaiter node(current);
 769   current->_ParkEvent->reset();
 770   node._prev   = (ObjectWaiter*) 0xBAD;
 771   node.TState  = ObjectWaiter::TS_CXQ;
 772 
 773   // Push "current" onto the front of the _cxq.
 774   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 775   // Note that spinning tends to reduce the rate at which threads
 776   // enqueue and dequeue on EntryList|cxq.
 777   ObjectWaiter* nxt;
 778   for (;;) {
 779     node._next = nxt = _cxq;
 780     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 781 
 782     // Interference - the CAS failed because _cxq changed.  Just retry.
 783     // As an optional optimization we retry the lock.
 784     if (TryLock(current) == TryLockResult::Success) {
 785       assert(_succ != current, "invariant");
 786       assert(owner_raw() == current, "invariant");
 787       assert(_Responsible != current, "invariant");
 788       return;
 789     }
 790   }
 791 
 792   // Check for cxq|EntryList edge transition to non-null.  This indicates
 793   // the onset of contention.  While contention persists exiting threads
 794   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 795   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 796   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 797   // arrange for one of the contending thread to use a timed park() operations
 798   // to detect and recover from the race.  (Stranding is form of progress failure
 799   // where the monitor is unlocked but all the contending threads remain parked).
 800   // That is, at least one of the contended threads will periodically poll _owner.
 801   // One of the contending threads will become the designated "Responsible" thread.
 802   // The Responsible thread uses a timed park instead of a normal indefinite park
 803   // operation -- it periodically wakes and checks for and recovers from potential
 804   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 805   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 806   // be responsible for a monitor.

 813   // -- the checker -- parked on a timer.
 814 
 815   if (nxt == nullptr && _EntryList == nullptr) {
 816     // Try to assume the role of responsible thread for the monitor.
 817     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 818     Atomic::replace_if_null(&_Responsible, current);
 819   }
 820 
 821   // The lock might have been released while this thread was occupied queueing
 822   // itself onto _cxq.  To close the race and avoid "stranding" and
 823   // progress-liveness failure we must resample-retry _owner before parking.
 824   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 825   // In this case the ST-MEMBAR is accomplished with CAS().
 826   //
 827   // TODO: Defer all thread state transitions until park-time.
 828   // Since state transitions are heavy and inefficient we'd like
 829   // to defer the state transitions until absolutely necessary,
 830   // and in doing so avoid some transitions ...
 831 
 832   int recheckInterval = 1;






 833 
 834   for (;;) {
 835 
 836     if (TryLock(current) == TryLockResult::Success) {
 837       break;
 838     }
 839     assert(owner_raw() != current, "invariant");
 840 
 841     // park self
 842     if (_Responsible == current) {
 843       current->_ParkEvent->park((jlong) recheckInterval);
 844       // Increase the recheckInterval, but clamp the value.
 845       recheckInterval *= 8;
 846       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 847         recheckInterval = MAX_RECHECK_INTERVAL;
 848       }
 849     } else {
 850       current->_ParkEvent->park();
 851     }
 852 
 853     if (TryLock(current) == TryLockResult::Success) {
 854       break;
 855     }
 856 
 857     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 858       // Cancelled the in-progress async deflation by changing owner from
 859       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 860       // contentions was incremented to a positive value before EnterI()
 861       // was called and that prevents the deflater thread from winning the
 862       // last part of the 2-part async deflation protocol. After EnterI()

 891     // We can find that we were unpark()ed and redesignated _succ while
 892     // we were spinning.  That's harmless.  If we iterate and call park(),
 893     // park() will consume the event and return immediately and we'll
 894     // just spin again.  This pattern can repeat, leaving _succ to simply
 895     // spin on a CPU.
 896 
 897     if (_succ == current) _succ = nullptr;
 898 
 899     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 900     OrderAccess::fence();
 901   }
 902 
 903   // Egress :
 904   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 905   // Normally we'll find current on the EntryList .
 906   // From the perspective of the lock owner (this thread), the
 907   // EntryList is stable and cxq is prepend-only.
 908   // The head of cxq is volatile but the interior is stable.
 909   // In addition, current.TState is stable.
 910 
 911   assert(owner_raw() == current, "invariant");
 912 
 913   UnlinkAfterAcquire(current, &node);
 914   if (_succ == current) _succ = nullptr;
 915 
 916   assert(_succ != current, "invariant");
 917   if (_Responsible == current) {
 918     _Responsible = nullptr;
 919     OrderAccess::fence(); // Dekker pivot-point
 920 
 921     // We may leave threads on cxq|EntryList without a designated
 922     // "Responsible" thread.  This is benign.  When this thread subsequently
 923     // exits the monitor it can "see" such preexisting "old" threads --
 924     // threads that arrived on the cxq|EntryList before the fence, above --
 925     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 926     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 927     // non-null and elect a new "Responsible" timer thread.
 928     //
 929     // This thread executes:
 930     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 931     //    LD cxq|EntryList               (in subsequent exit)

 963 
 964   return;
 965 }
 966 
 967 // ReenterI() is a specialized inline form of the latter half of the
 968 // contended slow-path from EnterI().  We use ReenterI() only for
 969 // monitor reentry in wait().
 970 //
 971 // In the future we should reconcile EnterI() and ReenterI().
 972 
 973 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
 974   assert(current != nullptr, "invariant");
 975   assert(currentNode != nullptr, "invariant");
 976   assert(currentNode->_thread == current, "invariant");
 977   assert(_waiters > 0, "invariant");
 978   assert(object()->mark() == markWord::encode(this), "invariant");
 979 
 980   assert(current->thread_state() != _thread_blocked, "invariant");
 981 
 982   for (;;) {
 983     ObjectWaiter::TStates v = currentNode->TState;
 984     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 985     assert(owner_raw() != current, "invariant");
 986 
 987     // This thread has been notified so try to reacquire the lock.
 988     if (TryLock(current) == TryLockResult::Success) {
 989       break;
 990     }
 991 
 992     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
 993     // is necessary.
 994     if (TrySpin(current)) {
 995         break;
 996     }
 997 
 998     {
 999       OSThreadContendState osts(current->osthread());
1000 
1001       assert(current->thread_state() == _thread_in_vm, "invariant");
1002 
1003       {
1004         ClearSuccOnSuspend csos(this);
1005         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);

1024     // *must* retry  _owner before parking.
1025     OrderAccess::fence();
1026 
1027     // Keep a tally of the # of futile wakeups.
1028     // Note that the counter is not protected by a lock or updated by atomics.
1029     // That is by design - we trade "lossy" counters which are exposed to
1030     // races during updates for a lower probe effect.
1031     // This PerfData object can be used in parallel with a safepoint.
1032     // See the work around in PerfDataManager::destroy().
1033     OM_PERFDATA_OP(FutileWakeups, inc());
1034   }
1035 
1036   // current has acquired the lock -- Unlink current from the cxq or EntryList .
1037   // Normally we'll find current on the EntryList.
1038   // Unlinking from the EntryList is constant-time and atomic-free.
1039   // From the perspective of the lock owner (this thread), the
1040   // EntryList is stable and cxq is prepend-only.
1041   // The head of cxq is volatile but the interior is stable.
1042   // In addition, current.TState is stable.
1043 
1044   assert(owner_raw() == current, "invariant");
1045   assert(object()->mark() == markWord::encode(this), "invariant");
1046   UnlinkAfterAcquire(current, currentNode);
1047   if (_succ == current) _succ = nullptr;
1048   assert(_succ != current, "invariant");
1049   currentNode->TState = ObjectWaiter::TS_RUN;
1050   OrderAccess::fence();      // see comments at the end of EnterI()
1051 }
1052 



















































































































































































1053 // By convention we unlink a contending thread from EntryList|cxq immediately
1054 // after the thread acquires the lock in ::enter().  Equally, we could defer
1055 // unlinking the thread until ::exit()-time.
1056 
1057 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1058   assert(owner_raw() == current, "invariant");
1059   assert(currentNode->_thread == current, "invariant");

1060 
1061   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1062     // Normal case: remove current from the DLL EntryList .
1063     // This is a constant-time operation.
1064     ObjectWaiter* nxt = currentNode->_next;
1065     ObjectWaiter* prv = currentNode->_prev;
1066     if (nxt != nullptr) nxt->_prev = prv;
1067     if (prv != nullptr) prv->_next = nxt;
1068     if (currentNode == _EntryList) _EntryList = nxt;
1069     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1070     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1071   } else {
1072     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1073     // Inopportune interleaving -- current is still on the cxq.
1074     // This usually means the enqueue of self raced an exiting thread.
1075     // Normally we'll find current near the front of the cxq, so
1076     // dequeueing is typically fast.  If needbe we can accelerate
1077     // this with some MCS/CHL-like bidirectional list hints and advisory
1078     // back-links so dequeueing from the interior will normally operate
1079     // in constant-time.

1158 // exiting thread will notice and unpark the stranded thread, or, (b)
1159 // the timer expires.  If the lock is high traffic then the stranding latency
1160 // will be low due to (a).  If the lock is low traffic then the odds of
1161 // stranding are lower, although the worst-case stranding latency
1162 // is longer.  Critically, we don't want to put excessive load in the
1163 // platform's timer subsystem.  We want to minimize both the timer injection
1164 // rate (timers created/sec) as well as the number of timers active at
1165 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1166 // the integral of the # of active timers at any instant over time).
1167 // Both impinge on OS scalability.  Given that, at most one thread parked on
1168 // a monitor will use a timer.
1169 //
1170 // There is also the risk of a futile wake-up. If we drop the lock
1171 // another thread can reacquire the lock immediately, and we can
1172 // then wake a thread unnecessarily. This is benign, and we've
1173 // structured the code so the windows are short and the frequency
1174 // of such futile wakups is low.
1175 
1176 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1177   void* cur = owner_raw();
1178   if (current != cur) {
1179     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1180       assert(_recursions == 0, "invariant");
1181       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1182       _recursions = 0;
1183     } else {
1184       // Apparent unbalanced locking ...
1185       // Naively we'd like to throw IllegalMonitorStateException.
1186       // As a practical matter we can neither allocate nor throw an
1187       // exception as ::exit() can be called from leaf routines.
1188       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1189       // Upon deeper reflection, however, in a properly run JVM the only
1190       // way we should encounter this situation is in the presence of
1191       // unbalanced JNI locking. TODO: CheckJNICalls.
1192       // See also: CR4414101
1193 #ifdef ASSERT
1194       LogStreamHandle(Error, monitorinflation) lsh;
1195       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1196                     " is exiting an ObjectMonitor it does not own.", p2i(current));
1197       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1198       print_debug_style_on(&lsh);
1199       assert(false, "Non-balanced monitor enter/exit!");
1200 #endif
1201       return;
1202     }
1203   }
1204 
1205   if (_recursions != 0) {
1206     _recursions--;        // this is simple recursive enter
1207     return;
1208   }
1209 
1210   // Invariant: after setting Responsible=null an thread must execute
1211   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1212   _Responsible = nullptr;
1213 
1214 #if INCLUDE_JFR
1215   // get the owner's thread id for the MonitorEnter event
1216   // if it is enabled and the thread isn't suspended
1217   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1218     _previous_owner_tid = JFR_THREAD_ID(current);
1219   }
1220 #endif
1221 
1222   for (;;) {
1223     assert(current == owner_raw(), "invariant");
1224 
1225     // Drop the lock.
1226     // release semantics: prior loads and stores from within the critical section
1227     // must not float (reorder) past the following store that drops the lock.
1228     // Uses a storeload to separate release_store(owner) from the
1229     // successor check. The try_set_owner() below uses cmpxchg() so
1230     // we get the fence down there.
1231     release_clear_owner(current);
1232     OrderAccess::storeload();
1233 
1234     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1235       return;
1236     }
1237     // Other threads are blocked trying to acquire the lock.
1238 
1239     // Normally the exiting thread is responsible for ensuring succession,
1240     // but if other successors are ready or other entering threads are spinning
1241     // then this thread can simply store null into _owner and exit without
1242     // waking a successor.  The existence of spinners or ready successors
1243     // guarantees proper succession (liveness).  Responsibility passes to the
1244     // ready or running successors.  The exiting thread delegates the duty.
1245     // More precisely, if a successor already exists this thread is absolved
1246     // of the responsibility of waking (unparking) one.
1247     //
1248     // The _succ variable is critical to reducing futile wakeup frequency.
1249     // _succ identifies the "heir presumptive" thread that has been made

1259     // to drop the lock and then spin briefly to see if a spinner managed
1260     // to acquire the lock.  If so, the exiting thread could exit
1261     // immediately without waking a successor, otherwise the exiting
1262     // thread would need to dequeue and wake a successor.
1263     // (Note that we'd need to make the post-drop spin short, but no
1264     // shorter than the worst-case round-trip cache-line migration time.
1265     // The dropped lock needs to become visible to the spinner, and then
1266     // the acquisition of the lock by the spinner must become visible to
1267     // the exiting thread).
1268 
1269     // It appears that an heir-presumptive (successor) must be made ready.
1270     // Only the current lock owner can manipulate the EntryList or
1271     // drain _cxq, so we need to reacquire the lock.  If we fail
1272     // to reacquire the lock the responsibility for ensuring succession
1273     // falls to the new owner.
1274     //
1275     if (try_set_owner_from(nullptr, current) != nullptr) {
1276       return;
1277     }
1278 
1279     guarantee(owner_raw() == current, "invariant");
1280 
1281     ObjectWaiter* w = nullptr;
1282 
1283     w = _EntryList;
1284     if (w != nullptr) {
1285       // I'd like to write: guarantee (w->_thread != current).
1286       // But in practice an exiting thread may find itself on the EntryList.
1287       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1288       // then calls exit().  Exit release the lock by setting O._owner to null.
1289       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1290       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1291       // release the lock "O".  T2 resumes immediately after the ST of null into
1292       // _owner, above.  T2 notices that the EntryList is populated, so it
1293       // reacquires the lock and then finds itself on the EntryList.
1294       // Given all that, we have to tolerate the circumstance where "w" is
1295       // associated with current.
1296       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1297       ExitEpilog(current, w);
1298       return;
1299     }

1336     }
1337 
1338     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1339     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1340 
1341     // See if we can abdicate to a spinner instead of waking a thread.
1342     // A primary goal of the implementation is to reduce the
1343     // context-switch rate.
1344     if (_succ != nullptr) continue;
1345 
1346     w = _EntryList;
1347     if (w != nullptr) {
1348       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1349       ExitEpilog(current, w);
1350       return;
1351     }
1352   }
1353 }
1354 
1355 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1356   assert(owner_raw() == current, "invariant");
1357 
1358   // Exit protocol:
1359   // 1. ST _succ = wakee
1360   // 2. membar #loadstore|#storestore;
1361   // 2. ST _owner = nullptr
1362   // 3. unpark(wakee)
1363 
1364   _succ = Wakee->_thread;
1365   ParkEvent * Trigger = Wakee->_event;











1366 
1367   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1368   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1369   // out-of-scope (non-extant).
1370   Wakee  = nullptr;
1371 
1372   // Drop the lock.
1373   // Uses a fence to separate release_store(owner) from the LD in unpark().
1374   release_clear_owner(current);
1375   OrderAccess::fence();
1376 
1377   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1378   Trigger->unpark();






1379 
1380   // Maintain stats and report events to JVMTI
1381   OM_PERFDATA_OP(Parks, inc());
1382 }
1383 
1384 // complete_exit exits a lock returning recursion count
1385 // complete_exit requires an inflated monitor
1386 // The _owner field is not always the Thread addr even with an
1387 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1388 // thread due to contention.
1389 intx ObjectMonitor::complete_exit(JavaThread* current) {
1390   assert(InitDone, "Unexpectedly not initialized");
1391 
1392   void* cur = owner_raw();
1393   if (current != cur) {
1394     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1395       assert(_recursions == 0, "internal state error");
1396       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1397       _recursions = 0;
1398     }
1399   }
1400 
1401   guarantee(current == owner_raw(), "complete_exit not owner");
1402   intx save = _recursions; // record the old recursion count
1403   _recursions = 0;         // set the recursion level to be 0
1404   exit(current);           // exit the monitor
1405   guarantee(owner_raw() != current, "invariant");
1406   return save;
1407 }
1408 
1409 // Checks that the current THREAD owns this monitor and causes an
1410 // immediate return if it doesn't. We don't use the CHECK macro
1411 // because we want the IMSE to be the only exception that is thrown
1412 // from the call site when false is returned. Any other pending
1413 // exception is ignored.
1414 #define CHECK_OWNER()                                                  \
1415   do {                                                                 \
1416     if (!check_owner(THREAD)) {                                        \
1417        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1418        return;                                                         \
1419      }                                                                 \
1420   } while (false)
1421 
1422 // Returns true if the specified thread owns the ObjectMonitor.
1423 // Otherwise returns false and throws IllegalMonitorStateException
1424 // (IMSE). If there is a pending exception and the specified thread
1425 // is not the owner, that exception will be replaced by the IMSE.
1426 bool ObjectMonitor::check_owner(TRAPS) {
1427   JavaThread* current = THREAD;
1428   void* cur = owner_raw();
1429   assert(cur != anon_owner_ptr(), "no anon owner here");
1430   if (cur == current) {
1431     return true;
1432   }
1433   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1434     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1435     _recursions = 0;
1436     return true;
1437   }
1438   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1439              "current thread is not owner", false);
1440 }
1441 
1442 static inline bool is_excluded(const Klass* monitor_klass) {
1443   assert(monitor_klass != nullptr, "invariant");
1444   NOT_JFR_RETURN_(false);
1445   JFR_ONLY(return vmSymbols::jdk_jfr_internal_management_HiddenWait() == monitor_klass->name();)
1446 }
1447 
1448 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1449                                     ObjectMonitor* monitor,
1450                                     uint64_t notifier_tid,
1451                                     jlong timeout,
1452                                     bool timedout) {
1453   assert(event != nullptr, "invariant");
1454   assert(monitor != nullptr, "invariant");
1455   const Klass* monitor_klass = monitor->object()->klass();
1456   if (is_excluded(monitor_klass)) {
1457     return;
1458   }
1459   event->set_monitorClass(monitor_klass);
1460   event->set_timeout(timeout);
1461   // Set an address that is 'unique enough', such that events close in
1462   // time and with the same address are likely (but not guaranteed) to
1463   // belong to the same object.
1464   event->set_address((uintptr_t)monitor);
1465   event->set_notifier(notifier_tid);
1466   event->set_timedOut(timedout);
1467   event->commit();
1468 }
1469 



















1470 // -----------------------------------------------------------------------------
1471 // Wait/Notify/NotifyAll
1472 //
1473 // Note: a subset of changes to ObjectMonitor::wait()
1474 // will need to be replicated in complete_exit
1475 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1476   JavaThread* current = THREAD;
1477 
1478   assert(InitDone, "Unexpectedly not initialized");
1479 
1480   CHECK_OWNER();  // Throws IMSE if not owner.
1481 
1482   EventJavaMonitorWait event;
1483 
1484   // check for a pending interrupt
1485   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1486     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1487     if (JvmtiExport::should_post_monitor_waited()) {
1488       // Note: 'false' parameter is passed here because the
1489       // wait was not timed out due to thread interrupt.
1490       JvmtiExport::post_monitor_waited(current, this, false);
1491 
1492       // In this short circuit of the monitor wait protocol, the
1493       // current thread never drops ownership of the monitor and
1494       // never gets added to the wait queue so the current thread
1495       // cannot be made the successor. This means that the
1496       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1497       // consume an unpark() meant for the ParkEvent associated with
1498       // this ObjectMonitor.
1499     }
1500     if (event.should_commit()) {
1501       post_monitor_wait_event(&event, this, 0, millis, false);
1502     }
1503     THROW(vmSymbols::java_lang_InterruptedException());
1504     return;
1505   }
1506 
1507   current->set_current_waiting_monitor(this);
1508 


















1509   // create a node to be put into the queue
1510   // Critically, after we reset() the event but prior to park(), we must check
1511   // for a pending interrupt.
1512   ObjectWaiter node(current);
1513   node.TState = ObjectWaiter::TS_WAIT;
1514   current->_ParkEvent->reset();
1515   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1516 
1517   // Enter the waiting queue, which is a circular doubly linked list in this case
1518   // but it could be a priority queue or any data structure.
1519   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1520   // by the owner of the monitor *except* in the case where park()
1521   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1522   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1523 
1524   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1525   AddWaiter(&node);
1526   Thread::SpinRelease(&_WaitSetLock);
1527 
1528   _Responsible = nullptr;
1529 
1530   intx save = _recursions;     // record the old recursion count
1531   _waiters++;                  // increment the number of waiters
1532   _recursions = 0;             // set the recursion level to be 1
1533   exit(current);               // exit the monitor
1534   guarantee(owner_raw() != current, "invariant");
1535 
1536   // The thread is on the WaitSet list - now park() it.
1537   // On MP systems it's conceivable that a brief spin before we park
1538   // could be profitable.
1539   //
1540   // TODO-FIXME: change the following logic to a loop of the form
1541   //   while (!timeout && !interrupted && _notified == 0) park()
1542 
1543   int ret = OS_OK;
1544   int WasNotified = 0;
1545 
1546   // Need to check interrupt state whilst still _thread_in_vm
1547   bool interrupted = interruptible && current->is_interrupted(false);
1548 
1549   { // State transition wrappers
1550     OSThread* osthread = current->osthread();
1551     OSThreadWaitState osts(osthread, true);
1552 
1553     assert(current->thread_state() == _thread_in_vm, "invariant");
1554 
1555     {
1556       ClearSuccOnSuspend csos(this);
1557       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1558       if (interrupted || HAS_PENDING_EXCEPTION) {
1559         // Intentionally empty
1560       } else if (node._notified == 0) {
1561         if (millis <= 0) {
1562           current->_ParkEvent->park();
1563         } else {
1564           ret = current->_ParkEvent->park(millis);
1565         }
1566       }
1567     }
1568 
1569     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1570     // from the WaitSet to the EntryList.
1571     // See if we need to remove Node from the WaitSet.
1572     // We use double-checked locking to avoid grabbing _WaitSetLock
1573     // if the thread is not on the wait queue.
1574     //
1575     // Note that we don't need a fence before the fetch of TState.
1576     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1577     // written by the is thread. (perhaps the fetch might even be satisfied
1578     // by a look-aside into the processor's own store buffer, although given
1579     // the length of the code path between the prior ST and this load that's
1580     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1581     // then we'll acquire the lock and then re-fetch a fresh TState value.
1582     // That is, we fail toward safety.
1583 
1584     if (node.TState == ObjectWaiter::TS_WAIT) {
1585       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1586       if (node.TState == ObjectWaiter::TS_WAIT) {
1587         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1588         assert(node._notified == 0, "invariant");
1589         node.TState = ObjectWaiter::TS_RUN;
1590       }
1591       Thread::SpinRelease(&_WaitSetLock);
1592     }
1593 
1594     // The thread is now either on off-list (TS_RUN),
1595     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1596     // The Node's TState variable is stable from the perspective of this thread.
1597     // No other threads will asynchronously modify TState.
1598     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1599     OrderAccess::loadload();
1600     if (_succ == current) _succ = nullptr;
1601     WasNotified = node._notified;
1602 
1603     // Reentry phase -- reacquire the monitor.
1604     // re-enter contended monitor after object.wait().
1605     // retain OBJECT_WAIT state until re-enter successfully completes
1606     // Thread state is thread_in_vm and oop access is again safe,
1607     // although the raw address of the object may have changed.
1608     // (Don't cache naked oops over safepoints, of course).
1609 
1610     // post monitor waited event. Note that this is past-tense, we are done waiting.
1611     if (JvmtiExport::should_post_monitor_waited()) {
1612       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1613 
1614       if (node._notified != 0 && _succ == current) {
1615         // In this part of the monitor wait-notify-reenter protocol it
1616         // is possible (and normal) for another thread to do a fastpath
1617         // monitor enter-exit while this thread is still trying to get
1618         // to the reenter portion of the protocol.
1619         //
1620         // The ObjectMonitor was notified and the current thread is
1621         // the successor which also means that an unpark() has already
1622         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1623         // consume the unpark() that was done when the successor was
1624         // set because the same ParkEvent is shared between Java
1625         // monitors and JVM/TI RawMonitors (for now).
1626         //
1627         // We redo the unpark() to ensure forward progress, i.e., we
1628         // don't want all pending threads hanging (parked) with none
1629         // entering the unlocked monitor.
1630         node._event->unpark();
1631       }
1632     }
1633 
1634     if (event.should_commit()) {
1635       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1636     }
1637 
1638     OrderAccess::fence();
1639 
1640     assert(owner_raw() != current, "invariant");
1641     ObjectWaiter::TStates v = node.TState;
1642     if (v == ObjectWaiter::TS_RUN) {
1643       enter(current);
1644     } else {
1645       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1646       ReenterI(current, &node);
1647       node.wait_reenter_end(this);
1648     }
1649 
1650     // current has reacquired the lock.
1651     // Lifecycle - the node representing current must not appear on any queues.
1652     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1653     // want residual elements associated with this thread left on any lists.
1654     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1655     assert(owner_raw() == current, "invariant");
1656     assert(_succ != current, "invariant");
1657   } // OSThreadWaitState()
1658 
1659   current->set_current_waiting_monitor(nullptr);
1660 
1661   guarantee(_recursions == 0, "invariant");
1662   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1663   _recursions =   save          // restore the old recursion count
1664                 + relock_count; //  increased by the deferred relock count
1665   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1666   _waiters--;             // decrement the number of waiters
1667 
1668   // Verify a few postconditions
1669   assert(owner_raw() == current, "invariant");
1670   assert(_succ != current, "invariant");
1671   assert(object()->mark() == markWord::encode(this), "invariant");
1672 
1673   // check if the notification happened
1674   if (!WasNotified) {
1675     // no, it could be timeout or Thread.interrupt() or both
1676     // check for interrupt event, otherwise it is timeout
1677     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1678       THROW(vmSymbols::java_lang_InterruptedException());
1679     }
1680   }
1681 
1682   // NOTE: Spurious wake up will be consider as timeout.
1683   // Monitor notify has precedence over thread interrupt.
1684 }
1685 
1686 
1687 // Consider:
1688 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1689 // then instead of transferring a thread from the WaitSet to the EntryList
1690 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1691 
1692 void ObjectMonitor::INotify(JavaThread* current) {
1693   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1694   ObjectWaiter* iterator = DequeueWaiter();
1695   if (iterator != nullptr) {
1696     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1697     guarantee(iterator->_notified == 0, "invariant");
1698     // Disposition - what might we do with iterator ?
1699     // a.  add it directly to the EntryList - either tail (policy == 1)
1700     //     or head (policy == 0).
1701     // b.  push it onto the front of the _cxq (policy == 2).
1702     // For now we use (b).
1703 
















1704     iterator->TState = ObjectWaiter::TS_ENTER;
1705 
1706     iterator->_notified = 1;
1707     iterator->_notifier_tid = JFR_THREAD_ID(current);
1708 
1709     ObjectWaiter* list = _EntryList;
1710     if (list != nullptr) {
1711       assert(list->_prev == nullptr, "invariant");
1712       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1713       assert(list != iterator, "invariant");
1714     }
1715 
1716     // prepend to cxq
1717     if (list == nullptr) {
1718       iterator->_next = iterator->_prev = nullptr;
1719       _EntryList = iterator;
1720     } else {
1721       iterator->TState = ObjectWaiter::TS_CXQ;
1722       for (;;) {
1723         ObjectWaiter* front = _cxq;
1724         iterator->_next = front;
1725         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1726           break;
1727         }
1728       }
1729     }
1730 
1731     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1732     // move the add-to-EntryList operation, above, outside the critical section
1733     // protected by _WaitSetLock.  In practice that's not useful.  With the
1734     // exception of  wait() timeouts and interrupts the monitor owner
1735     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1736     // on _WaitSetLock so it's not profitable to reduce the length of the
1737     // critical section.
1738 
1739     iterator->wait_reenter_begin(this);

1740   }
1741   Thread::SpinRelease(&_WaitSetLock);
1742 }
1743 
1744 // Consider: a not-uncommon synchronization bug is to use notify() when
1745 // notifyAll() is more appropriate, potentially resulting in stranded
1746 // threads; this is one example of a lost wakeup. A useful diagnostic
1747 // option is to force all notify() operations to behave as notifyAll().
1748 //
1749 // Note: We can also detect many such problems with a "minimum wait".
1750 // When the "minimum wait" is set to a small non-zero timeout value
1751 // and the program does not hang whereas it did absent "minimum wait",
1752 // that suggests a lost wakeup bug.
1753 
1754 void ObjectMonitor::notify(TRAPS) {
1755   JavaThread* current = THREAD;
1756   CHECK_OWNER();  // Throws IMSE if not owner.
1757   if (_WaitSet == nullptr) {
1758     return;
1759   }

1770 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1771 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1772 
1773 void ObjectMonitor::notifyAll(TRAPS) {
1774   JavaThread* current = THREAD;
1775   CHECK_OWNER();  // Throws IMSE if not owner.
1776   if (_WaitSet == nullptr) {
1777     return;
1778   }
1779 
1780   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1781   int tally = 0;
1782   while (_WaitSet != nullptr) {
1783     tally++;
1784     INotify(current);
1785   }
1786 
1787   OM_PERFDATA_OP(Notifications, inc(tally));
1788 }
1789 




























































































1790 // -----------------------------------------------------------------------------
1791 // Adaptive Spinning Support
1792 //
1793 // Adaptive spin-then-block - rational spinning
1794 //
1795 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1796 // algorithm.  On high order SMP systems it would be better to start with
1797 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1798 // a contending thread could enqueue itself on the cxq and then spin locally
1799 // on a thread-specific variable such as its ParkEvent._Event flag.
1800 // That's left as an exercise for the reader.  Note that global spinning is
1801 // not problematic on Niagara, as the L2 cache serves the interconnect and
1802 // has both low latency and massive bandwidth.
1803 //
1804 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1805 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1806 // (duration) or we can fix the count at approximately the duration of
1807 // a context switch and vary the frequency.   Of course we could also
1808 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1809 // For a description of 'Adaptive spin-then-block mutual exclusion in

1926   }
1927 
1928   //
1929   // Consider the following alternative:
1930   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1931   // spin attempt.  "Periodically" might mean after a tally of
1932   // the # of failed spin attempts (or iterations) reaches some threshold.
1933   // This takes us into the realm of 1-out-of-N spinning, where we
1934   // hold the duration constant but vary the frequency.
1935 
1936   int ctr = _SpinDuration;
1937   if (ctr <= 0) return false;
1938 
1939   // We're good to spin ... spin ingress.
1940   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1941   // when preparing to LD...CAS _owner, etc and the CAS is likely
1942   // to succeed.
1943   if (_succ == nullptr) {
1944     _succ = current;
1945   }
1946   Thread* prv = nullptr;
1947 
1948   // There are three ways to exit the following loop:
1949   // 1.  A successful spin where this thread has acquired the lock.
1950   // 2.  Spin failure with prejudice
1951   // 3.  Spin failure without prejudice
1952 
1953   while (--ctr >= 0) {
1954 
1955     // Periodic polling -- Check for pending GC
1956     // Threads may spin while they're unsafe.
1957     // We don't want spinning threads to delay the JVM from reaching
1958     // a stop-the-world safepoint or to steal cycles from GC.
1959     // If we detect a pending safepoint we abort in order that
1960     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1961     // this thread, if safe, doesn't steal cycles from GC.
1962     // This is in keeping with the "no loitering in runtime" rule.
1963     // We periodically check to see if there's a safepoint pending.
1964     if ((ctr & 0xFF) == 0) {
1965       // Can't call SafepointMechanism::should_process() since that
1966       // might update the poll values and we could be in a thread_blocked
1967       // state here which is not allowed so just check the poll.
1968       if (SafepointMechanism::local_poll_armed(current)) {
1969         break;
1970       }
1971       SpinPause();
1972     }
1973 
1974     // Probe _owner with TATAS
1975     // If this thread observes the monitor transition or flicker
1976     // from locked to unlocked to locked, then the odds that this
1977     // thread will acquire the lock in this spin attempt go down
1978     // considerably.  The same argument applies if the CAS fails
1979     // or if we observe _owner change from one non-null value to
1980     // another non-null value.   In such cases we might abort
1981     // the spin without prejudice or apply a "penalty" to the
1982     // spin count-down variable "ctr", reducing it by 100, say.
1983 
1984     JavaThread* ox = static_cast<JavaThread*>(owner_raw());
1985     if (ox == nullptr) {
1986       ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current));
1987       if (ox == nullptr) {
1988         // The CAS succeeded -- this thread acquired ownership
1989         // Take care of some bookkeeping to exit spin state.
1990         if (_succ == current) {
1991           _succ = nullptr;
1992         }
1993 
1994         // Increase _SpinDuration :
1995         // The spin was successful (profitable) so we tend toward
1996         // longer spin attempts in the future.
1997         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1998         // If we acquired the lock early in the spin cycle it
1999         // makes sense to increase _SpinDuration proportionally.
2000         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2001         _SpinDuration = adjust_up(_SpinDuration);
2002         return true;
2003       }
2004 
2005       // The CAS failed ... we can take any of the following actions:
2006       // * penalize: ctr -= CASPenalty

2031     // Invariant: after setting succ=null a contending thread
2032     // must recheck-retry _owner before parking.  This usually happens
2033     // in the normal usage of TrySpin(), but it's safest
2034     // to make TrySpin() as foolproof as possible.
2035     OrderAccess::fence();
2036     if (TryLock(current) == TryLockResult::Success) {
2037       return true;
2038     }
2039   }
2040 
2041   return false;
2042 }
2043 
2044 
2045 // -----------------------------------------------------------------------------
2046 // WaitSet management ...
2047 
2048 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2049   _next     = nullptr;
2050   _prev     = nullptr;
2051   _notified = 0;

2052   _notifier_tid = 0;

2053   TState    = TS_RUN;
2054   _thread   = current;
2055   _event    = _thread->_ParkEvent;


2056   _active   = false;
2057   assert(_event != nullptr, "invariant");
















2058 }
2059 
2060 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2061   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2062 }
2063 
2064 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2065   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2066 }
2067 
2068 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2069   assert(node != nullptr, "should not add null node");
2070   assert(node->_prev == nullptr, "node already in list");
2071   assert(node->_next == nullptr, "node already in list");
2072   // put node at end of queue (circular doubly linked list)
2073   if (_WaitSet == nullptr) {
2074     _WaitSet = node;
2075     node->_prev = node;
2076     node->_next = node;
2077   } else {

2155   {                                                                       \
2156     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2157                                          CHECK);                          \
2158   }
2159     NEWPERFCOUNTER(_sync_Inflations);
2160     NEWPERFCOUNTER(_sync_Deflations);
2161     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2162     NEWPERFCOUNTER(_sync_FutileWakeups);
2163     NEWPERFCOUNTER(_sync_Parks);
2164     NEWPERFCOUNTER(_sync_Notifications);
2165     NEWPERFVARIABLE(_sync_MonExtant);
2166 #undef NEWPERFCOUNTER
2167 #undef NEWPERFVARIABLE
2168   }
2169 
2170   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2171 
2172   DEBUG_ONLY(InitDone = true;)
2173 }
2174 





2175 void ObjectMonitor::print_on(outputStream* st) const {
2176   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2177   st->print("{contentions=0x%08x,waiters=0x%08x"
2178             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2179             contentions(), waiters(), recursions(),
2180             p2i(owner()));
2181 }
2182 void ObjectMonitor::print() const { print_on(tty); }
2183 
2184 #ifdef ASSERT
2185 // Print the ObjectMonitor like a debugger would:
2186 //
2187 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2188 //   _header = 0x0000000000000001
2189 //   _object = 0x000000070ff45fd0
2190 //   _pad_buf0 = {
2191 //     [0] = '\0'
2192 //     ...
2193 //     [43] = '\0'
2194 //   }

  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/objectMonitor.inline.hpp"
  49 #include "runtime/orderAccess.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfData.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threads.hpp"
  56 #include "services/threadService.hpp"
  57 #include "utilities/dtrace.hpp"
  58 #include "utilities/globalDefinitions.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/preserveException.hpp"
  61 #if INCLUDE_JFR
  62 #include "jfr/support/jfrFlush.hpp"
  63 #endif
  64 
  65 #ifdef DTRACE_ENABLED
  66 
  67 // Only bother with this argument setup if dtrace is available
  68 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  69 
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = nullptr;                                                   \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = obj->klass()->name();                                \

  96 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  97   {                                                                        \
  98     if (DTraceMonitorProbes) {                                             \
  99       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 100       HOTSPOT_MONITOR_##probe(jtid,                                        \
 101                               (uintptr_t)(monitor), bytes, len);           \
 102     }                                                                      \
 103   }
 104 
 105 #else //  ndef DTRACE_ENABLED
 106 
 107 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 108 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 109 
 110 #endif // ndef DTRACE_ENABLED
 111 
 112 DEBUG_ONLY(static volatile bool InitDone = false;)
 113 
 114 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 115 
 116 OopHandle ObjectMonitor::_vthread_cxq_head;
 117 ParkEvent* ObjectMonitor::_vthread_unparker_ParkEvent = nullptr;
 118 
 119 static void post_virtual_thread_pinned_event(JavaThread* current, const char* reason) {
 120   EventVirtualThreadPinned e;
 121   if (e.should_commit()) {
 122     e.set_pinnedReason(reason);
 123     e.set_carrierThread(JFR_JVM_THREAD_ID(current));
 124     e.commit();
 125   }
 126 }
 127 
 128 // -----------------------------------------------------------------------------
 129 // Theory of operations -- Monitors lists, thread residency, etc:
 130 //
 131 // * A thread acquires ownership of a monitor by successfully
 132 //   CAS()ing the _owner field from null to non-null.
 133 //
 134 // * Invariant: A thread appears on at most one monitor list --
 135 //   cxq, EntryList or WaitSet -- at any one time.
 136 //
 137 // * Contending threads "push" themselves onto the cxq with CAS
 138 //   and then spin/park.
 139 //
 140 // * After a contending thread eventually acquires the lock it must
 141 //   dequeue itself from either the EntryList or the cxq.
 142 //
 143 // * The exiting thread identifies and unparks an "heir presumptive"
 144 //   tentative successor thread on the EntryList.  Critically, the
 145 //   exiting thread doesn't unlink the successor thread from the EntryList.
 146 //   After having been unparked, the wakee will recontend for ownership of
 147 //   the monitor.   The successor (wakee) will either acquire the lock or

 245     switch (jt->thread_state()) {
 246     case _thread_in_vm:    // the usual case
 247     case _thread_in_Java:  // during deopt
 248       break;
 249     default:
 250       fatal("called from an unsafe thread state");
 251     }
 252     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 253   } else {
 254     // However, ThreadService::get_current_contended_monitor()
 255     // can call here via the VMThread so sanity check it.
 256     assert(self->is_VM_thread(), "must be");
 257   }
 258 #endif // ASSERT
 259 }
 260 
 261 ObjectMonitor::ObjectMonitor(oop object) :
 262   _header(markWord::zero()),
 263   _object(_oop_storage, object),
 264   _owner(nullptr),
 265   _stack_locker(nullptr),
 266   _previous_owner_tid(0),
 267   _next_om(nullptr),
 268   _recursions(0),
 269   _EntryList(nullptr),
 270   _cxq(nullptr),
 271   _succ(nullptr),
 272   _Responsible(nullptr),
 273   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 274   _contentions(0),
 275   _WaitSet(nullptr),
 276   _waiters(0),
 277   _WaitSetLock(0)
 278 { }
 279 
 280 ObjectMonitor::~ObjectMonitor() {
 281   _object.release(_oop_storage);
 282 }
 283 
 284 oop ObjectMonitor::object() const {
 285   check_object_context();

 313 
 314 // -----------------------------------------------------------------------------
 315 // Enter support
 316 
 317 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 318   // Used by ObjectSynchronizer::enter_for to enter for another thread.
 319   // The monitor is private to or already owned by locking_thread which must be suspended.
 320   // So this code may only contend with deflation.
 321   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 322 
 323   // Block out deflation as soon as possible.
 324   add_to_contentions(1);
 325 
 326   bool success = false;
 327   if (!is_being_async_deflated()) {
 328     void* prev_owner = try_set_owner_from(nullptr, locking_thread);
 329 
 330     if (prev_owner == nullptr) {
 331       assert(_recursions == 0, "invariant");
 332       success = true;
 333     } else if (prev_owner == owner_for(locking_thread)) {
 334       _recursions++;
 335       success = true;
 336     } else if (prev_owner == DEFLATER_MARKER) {
 337       // Racing with deflation.
 338       prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 339       if (prev_owner == DEFLATER_MARKER) {
 340         // Cancelled deflation. Increment contentions as part of the deflation protocol.
 341         add_to_contentions(1);
 342         success = true;
 343       } else if (prev_owner == nullptr) {
 344         // At this point we cannot race with deflation as we have both incremented
 345         // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 346         // success will only be false if this races with something other than
 347         // deflation.
 348         prev_owner = try_set_owner_from(nullptr, locking_thread);
 349         success = prev_owner == nullptr;
 350       }





 351     }
 352     assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 353            ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT,
 354            p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner));
 355   } else {
 356     // Async deflation is in progress and our contentions increment
 357     // above lost the race to async deflation. Undo the work and
 358     // force the caller to retry.
 359     const oop l_object = object();
 360     if (l_object != nullptr) {
 361       // Attempt to restore the header/dmw to the object's header so that
 362       // we only retry once if the deflater thread happens to be slow.
 363       install_displaced_markword_in_object(l_object);
 364     }
 365   }
 366 
 367   add_to_contentions(-1);
 368 
 369   assert(!success || is_owner(locking_thread), "must be");
 370 
 371   return success;
 372 }
 373 
 374 bool ObjectMonitor::enter(JavaThread* current) {
 375   assert(current == JavaThread::current(), "must be");
 376   // The following code is ordered to check the most common cases first
 377   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 378 
 379   void* cur = try_set_owner_from(nullptr, current);
 380   if (cur == nullptr) {
 381     assert(_recursions == 0, "invariant");
 382     return true;
 383   }
 384 
 385   if (cur == owner_for(current)) {
 386     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 387     _recursions++;
 388     return true;
 389   }
 390 







 391   // We've encountered genuine contention.
 392 
 393   // Try one round of spinning *before* enqueueing current
 394   // and before going through the awkward and expensive state
 395   // transitions.  The following spin is strictly optional ...
 396   // Note that if we acquire the monitor from an initial spin
 397   // we forgo posting JVMTI events and firing DTRACE probes.
 398   if (TrySpin(current)) {
 399     assert(owner_raw() == owner_for(current), "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 400     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 401     assert(object()->mark() == markWord::encode(this),
 402            "object mark must match encoded this: mark=" INTPTR_FORMAT
 403            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 404            markWord::encode(this).value());
 405     return true;
 406   }
 407 
 408   assert(owner_raw() != owner_for(current), "invariant");
 409   assert(_succ != current, "invariant");
 410   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 411   assert(current->thread_state() != _thread_blocked, "invariant");
 412 
 413   // Keep track of contention for JVM/TI and M&M queries.
 414   add_to_contentions(1);
 415   if (is_being_async_deflated()) {
 416     // Async deflation is in progress and our contentions increment
 417     // above lost the race to async deflation. Undo the work and
 418     // force the caller to retry.
 419     const oop l_object = object();
 420     if (l_object != nullptr) {
 421       // Attempt to restore the header/dmw to the object's header so that
 422       // we only retry once if the deflater thread happens to be slow.
 423       install_displaced_markword_in_object(l_object);
 424     }
 425     add_to_contentions(-1);
 426     return false;
 427   }
 428 

 436     event.set_address((uintptr_t)this);
 437   }
 438 
 439   { // Change java thread status to indicate blocked on monitor enter.
 440     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 441 
 442     assert(current->current_pending_monitor() == nullptr, "invariant");
 443     current->set_current_pending_monitor(this);
 444 
 445     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 446     if (JvmtiExport::should_post_monitor_contended_enter()) {
 447       JvmtiExport::post_monitor_contended_enter(current, this);
 448 
 449       // The current thread does not yet own the monitor and does not
 450       // yet appear on any queues that would get it made the successor.
 451       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 452       // handler cannot accidentally consume an unpark() meant for the
 453       // ParkEvent associated with this ObjectMonitor.
 454     }
 455 
 456 #ifdef LOOM_MONITOR_SUPPORT
 457     ContinuationEntry* ce = current->last_continuation();
 458     if (ce != nullptr && ce->is_virtual_thread() && current->is_on_monitorenter()) {
 459       int result = Continuation::try_preempt(current, ce->cont_oop(current), freeze_on_monitorenter);
 460       if (result == freeze_ok) {
 461         bool acquired = VThreadMonitorEnter(current);
 462         if (acquired) {
 463           current->set_preemption_cancelled(true);
 464           if (JvmtiExport::should_post_monitor_contended_entered()) {
 465             // We are going to call thaw again after this and finish the VMTS
 466             // transition so no need to do it here. We will post the event there.
 467             current->set_contended_entered_monitor(this);
 468           }
 469         }
 470         current->set_current_pending_monitor(nullptr);
 471         DEBUG_ONLY(int state = java_lang_VirtualThread::state(current->vthread()));
 472         assert((acquired && current->preemption_cancelled() && state == java_lang_VirtualThread::RUNNING) ||
 473                (!acquired && !current->preemption_cancelled() && state == java_lang_VirtualThread::BLOCKING), "invariant");
 474         return true;
 475       }
 476       if (result == freeze_pinned_native) {
 477         post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack");
 478       }
 479     }
 480 #endif
 481 
 482     OSThreadContendState osts(current->osthread());
 483 
 484     assert(current->thread_state() == _thread_in_vm, "invariant");
 485 
 486     for (;;) {
 487       ExitOnSuspend eos(this);
 488       {
 489         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 490         EnterI(current);
 491         current->set_current_pending_monitor(nullptr);
 492         // We can go to a safepoint at the end of this block. If we
 493         // do a thread dump during that safepoint, then this thread will show
 494         // as having "-locked" the monitor, but the OS and java.lang.Thread
 495         // states will still report that the thread is blocked trying to
 496         // acquire it.
 497         // If there is a suspend request, ExitOnSuspend will exit the OM
 498         // and set the OM as pending.
 499       }
 500       if (!eos.exited()) {
 501         // ExitOnSuspend did not exit the OM
 502         assert(owner_raw() == owner_for(current), "invariant");
 503         break;
 504       }
 505     }
 506 
 507     // We've just gotten past the enter-check-for-suspend dance and we now own
 508     // the monitor free and clear.
 509   }
 510 
 511   add_to_contentions(-1);
 512   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 513 
 514   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 515   assert(_recursions == 0, "invariant");
 516   assert(owner_raw() == owner_for(current), "invariant");
 517   assert(_succ != current, "invariant");
 518   assert(object()->mark() == markWord::encode(this), "invariant");
 519 
 520   // The thread -- now the owner -- is back in vm mode.
 521   // Report the glorious news via TI,DTrace and jvmstat.
 522   // The probe effect is non-trivial.  All the reportage occurs
 523   // while we hold the monitor, increasing the length of the critical
 524   // section.  Amdahl's parallel speedup law comes vividly into play.
 525   //
 526   // Another option might be to aggregate the events (thread local or
 527   // per-monitor aggregation) and defer reporting until a more opportune
 528   // time -- such as next time some thread encounters contention but has
 529   // yet to acquire the lock.  While spinning that thread could
 530   // spinning we could increment JVMStat counters, etc.
 531 
 532   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 533   if (JvmtiExport::should_post_monitor_contended_entered()) {
 534     JvmtiExport::post_monitor_contended_entered(current, this);
 535 
 536     // The current thread already owns the monitor and is not going to

 571 // makes contentions negative as signals to contending threads that
 572 // an async deflation is in progress. There are a number of checks
 573 // as part of the protocol to make sure that the calling thread has
 574 // not lost the race to a contending thread.
 575 //
 576 // The ObjectMonitor has been successfully async deflated when:
 577 //   (contentions < 0)
 578 // Contending threads that see that condition know to retry their operation.
 579 //
 580 bool ObjectMonitor::deflate_monitor() {
 581   if (is_busy()) {
 582     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 583     return false;
 584   }
 585 
 586   const oop obj = object_peek();
 587 
 588   if (obj == nullptr) {
 589     // If the object died, we can recycle the monitor without racing with
 590     // Java threads. The GC already broke the association with the object.
 591     set_owner_from_raw(nullptr, DEFLATER_MARKER);
 592     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 593     _contentions = INT_MIN; // minimum negative int
 594   } else {
 595     // Attempt async deflation protocol.
 596 
 597     // Set a null owner to DEFLATER_MARKER to force any contending thread
 598     // through the slow path. This is just the first part of the async
 599     // deflation dance.
 600     if (try_set_owner_from_raw(nullptr, DEFLATER_MARKER) != nullptr) {
 601       // The owner field is no longer null so we lost the race since the
 602       // ObjectMonitor is now busy.
 603       return false;
 604     }
 605 
 606     if (contentions() > 0 || _waiters != 0) {
 607       // Another thread has raced to enter the ObjectMonitor after
 608       // is_busy() above or has already entered and waited on
 609       // it which makes it busy so no deflation. Restore owner to
 610       // null if it is still DEFLATER_MARKER.
 611       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 612         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 613         add_to_contentions(-1);
 614       }
 615       return false;
 616     }
 617 
 618     // Make a zero contentions field negative to force any contending threads
 619     // to retry. This is the second part of the async deflation dance.
 620     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 621       // Contentions was no longer 0 so we lost the race since the
 622       // ObjectMonitor is now busy. Restore owner to null if it is
 623       // still DEFLATER_MARKER:
 624       if (try_set_owner_from_raw(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 625         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 626         add_to_contentions(-1);
 627       }
 628       return false;
 629     }
 630   }
 631 
 632   // Sanity checks for the races:
 633   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 634   guarantee(contentions() < 0, "must be negative: contentions=%d",
 635             contentions());
 636   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 637   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 638             INTPTR_FORMAT, p2i(_cxq));
 639   guarantee(_EntryList == nullptr,
 640             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 641             p2i(_EntryList));
 642 
 643   if (obj != nullptr) {
 644     if (log_is_enabled(Trace, monitorinflation)) {

 700     log_info(monitorinflation)("install_displaced_markword_in_object: "
 701                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 702                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 703                                dmw.value(), markWord::encode(this).value(),
 704                                res.value());
 705   }
 706 
 707   // Note: It does not matter which thread restored the header/dmw
 708   // into the object's header. The thread deflating the monitor just
 709   // wanted the object's header restored and it is. The threads that
 710   // detected a race with the deflation process also wanted the
 711   // object's header restored before they retry their operation and
 712   // because it is restored they will only retry once.
 713 }
 714 
 715 // Convert the fields used by is_busy() to a string that can be
 716 // used for diagnostic output.
 717 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 718   ss->print("is_busy: waiters=%d"
 719             ", contentions=%d"
 720             ", owner=" INTPTR_FORMAT
 721             ", cxq=" PTR_FORMAT
 722             ", EntryList=" PTR_FORMAT,
 723             _waiters,
 724             (contentions() > 0 ? contentions() : 0),
 725             owner_is_DEFLATER_MARKER()
 726                 // We report null instead of DEFLATER_MARKER here because is_busy()
 727                 // ignores DEFLATER_MARKER values.
 728                 ? p2i(nullptr)
 729                 : p2i(owner_raw()),
 730             p2i(_cxq),
 731             p2i(_EntryList));
 732   return ss->base();
 733 }
 734 
 735 #define MAX_RECHECK_INTERVAL 1000
 736 
 737 void ObjectMonitor::EnterI(JavaThread* current) {
 738   assert(current->thread_state() == _thread_blocked, "invariant");
 739 
 740   // Try the lock - TATAS
 741   if (TryLock(current) == TryLockResult::Success) {
 742     assert(_succ != current, "invariant");
 743     assert(owner_raw() == owner_for(current), "invariant");
 744     assert(_Responsible != current, "invariant");
 745     return;
 746   }
 747 
 748   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 749     // Cancelled the in-progress async deflation by changing owner from
 750     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 751     // contentions was incremented to a positive value before EnterI()
 752     // was called and that prevents the deflater thread from winning the
 753     // last part of the 2-part async deflation protocol. After EnterI()
 754     // returns to enter(), contentions is decremented because the caller
 755     // now owns the monitor. We bump contentions an extra time here to
 756     // prevent the deflater thread from winning the last part of the
 757     // 2-part async deflation protocol after the regular decrement
 758     // occurs in enter(). The deflater thread will decrement contentions
 759     // after it recognizes that the async deflation was cancelled.
 760     add_to_contentions(1);
 761     assert(_succ != current, "invariant");
 762     assert(_Responsible != current, "invariant");
 763     return;
 764   }
 765 
 766   assert(InitDone, "Unexpectedly not initialized");
 767 
 768   // We try one round of spinning *before* enqueueing current.
 769   //
 770   // If the _owner is ready but OFFPROC we could use a YieldTo()
 771   // operation to donate the remainder of this thread's quantum
 772   // to the owner.  This has subtle but beneficial affinity
 773   // effects.
 774 
 775   if (TrySpin(current)) {
 776     assert(owner_raw() == owner_for(current), "invariant");
 777     assert(_succ != current, "invariant");
 778     assert(_Responsible != current, "invariant");
 779     return;
 780   }
 781 
 782   // The Spin failed -- Enqueue and park the thread ...
 783   assert(_succ != current, "invariant");
 784   assert(owner_raw() != owner_for(current), "invariant");
 785   assert(_Responsible != current, "invariant");
 786 
 787   // Enqueue "current" on ObjectMonitor's _cxq.
 788   //
 789   // Node acts as a proxy for current.
 790   // As an aside, if were to ever rewrite the synchronization code mostly
 791   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 792   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 793   // as well as eliminate a subset of ABA issues.
 794   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 795 
 796   ObjectWaiter node(current);
 797   current->_ParkEvent->reset();
 798   node._prev   = (ObjectWaiter*) 0xBAD;
 799   node.TState  = ObjectWaiter::TS_CXQ;
 800 
 801   // Push "current" onto the front of the _cxq.
 802   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 803   // Note that spinning tends to reduce the rate at which threads
 804   // enqueue and dequeue on EntryList|cxq.
 805   ObjectWaiter* nxt;
 806   for (;;) {
 807     node._next = nxt = _cxq;
 808     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 809 
 810     // Interference - the CAS failed because _cxq changed.  Just retry.
 811     // As an optional optimization we retry the lock.
 812     if (TryLock(current) == TryLockResult::Success) {
 813       assert(_succ != current, "invariant");
 814       assert(owner_raw() == owner_for(current), "invariant");
 815       assert(_Responsible != current, "invariant");
 816       return;
 817     }
 818   }
 819 
 820   // Check for cxq|EntryList edge transition to non-null.  This indicates
 821   // the onset of contention.  While contention persists exiting threads
 822   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 823   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 824   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 825   // arrange for one of the contending thread to use a timed park() operations
 826   // to detect and recover from the race.  (Stranding is form of progress failure
 827   // where the monitor is unlocked but all the contending threads remain parked).
 828   // That is, at least one of the contended threads will periodically poll _owner.
 829   // One of the contending threads will become the designated "Responsible" thread.
 830   // The Responsible thread uses a timed park instead of a normal indefinite park
 831   // operation -- it periodically wakes and checks for and recovers from potential
 832   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 833   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 834   // be responsible for a monitor.

 841   // -- the checker -- parked on a timer.
 842 
 843   if (nxt == nullptr && _EntryList == nullptr) {
 844     // Try to assume the role of responsible thread for the monitor.
 845     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 846     Atomic::replace_if_null(&_Responsible, current);
 847   }
 848 
 849   // The lock might have been released while this thread was occupied queueing
 850   // itself onto _cxq.  To close the race and avoid "stranding" and
 851   // progress-liveness failure we must resample-retry _owner before parking.
 852   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 853   // In this case the ST-MEMBAR is accomplished with CAS().
 854   //
 855   // TODO: Defer all thread state transitions until park-time.
 856   // Since state transitions are heavy and inefficient we'd like
 857   // to defer the state transitions until absolutely necessary,
 858   // and in doing so avoid some transitions ...
 859 
 860   int recheckInterval = 1;
 861   bool do_timed_parked = false;
 862 
 863   ContinuationEntry* ce = current->last_continuation();
 864   if (ce != nullptr && ce->is_virtual_thread()) {
 865     do_timed_parked = true;
 866   }
 867 
 868   for (;;) {
 869 
 870     if (TryLock(current) == TryLockResult::Success) {
 871       break;
 872     }
 873     assert(owner_raw() != owner_for(current), "invariant");
 874 
 875     // park self
 876     if (_Responsible == current || do_timed_parked) {
 877       current->_ParkEvent->park((jlong) recheckInterval);
 878       // Increase the recheckInterval, but clamp the value.
 879       recheckInterval *= 8;
 880       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 881         recheckInterval = MAX_RECHECK_INTERVAL;
 882       }
 883     } else {
 884       current->_ParkEvent->park();
 885     }
 886 
 887     if (TryLock(current) == TryLockResult::Success) {
 888       break;
 889     }
 890 
 891     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 892       // Cancelled the in-progress async deflation by changing owner from
 893       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 894       // contentions was incremented to a positive value before EnterI()
 895       // was called and that prevents the deflater thread from winning the
 896       // last part of the 2-part async deflation protocol. After EnterI()

 925     // We can find that we were unpark()ed and redesignated _succ while
 926     // we were spinning.  That's harmless.  If we iterate and call park(),
 927     // park() will consume the event and return immediately and we'll
 928     // just spin again.  This pattern can repeat, leaving _succ to simply
 929     // spin on a CPU.
 930 
 931     if (_succ == current) _succ = nullptr;
 932 
 933     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 934     OrderAccess::fence();
 935   }
 936 
 937   // Egress :
 938   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 939   // Normally we'll find current on the EntryList .
 940   // From the perspective of the lock owner (this thread), the
 941   // EntryList is stable and cxq is prepend-only.
 942   // The head of cxq is volatile but the interior is stable.
 943   // In addition, current.TState is stable.
 944 
 945   assert(owner_raw() == owner_for(current), "invariant");
 946 
 947   UnlinkAfterAcquire(current, &node);
 948   if (_succ == current) _succ = nullptr;
 949 
 950   assert(_succ != current, "invariant");
 951   if (_Responsible == current) {
 952     _Responsible = nullptr;
 953     OrderAccess::fence(); // Dekker pivot-point
 954 
 955     // We may leave threads on cxq|EntryList without a designated
 956     // "Responsible" thread.  This is benign.  When this thread subsequently
 957     // exits the monitor it can "see" such preexisting "old" threads --
 958     // threads that arrived on the cxq|EntryList before the fence, above --
 959     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 960     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 961     // non-null and elect a new "Responsible" timer thread.
 962     //
 963     // This thread executes:
 964     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 965     //    LD cxq|EntryList               (in subsequent exit)

 997 
 998   return;
 999 }
1000 
1001 // ReenterI() is a specialized inline form of the latter half of the
1002 // contended slow-path from EnterI().  We use ReenterI() only for
1003 // monitor reentry in wait().
1004 //
1005 // In the future we should reconcile EnterI() and ReenterI().
1006 
1007 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
1008   assert(current != nullptr, "invariant");
1009   assert(currentNode != nullptr, "invariant");
1010   assert(currentNode->_thread == current, "invariant");
1011   assert(_waiters > 0, "invariant");
1012   assert(object()->mark() == markWord::encode(this), "invariant");
1013 
1014   assert(current->thread_state() != _thread_blocked, "invariant");
1015 
1016   for (;;) {
1017     uint8_t v = currentNode->TState;
1018     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1019     assert(owner_raw() != owner_for(current), "invariant");
1020 
1021     // This thread has been notified so try to reacquire the lock.
1022     if (TryLock(current) == TryLockResult::Success) {
1023       break;
1024     }
1025 
1026     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
1027     // is necessary.
1028     if (TrySpin(current)) {
1029         break;
1030     }
1031 
1032     {
1033       OSThreadContendState osts(current->osthread());
1034 
1035       assert(current->thread_state() == _thread_in_vm, "invariant");
1036 
1037       {
1038         ClearSuccOnSuspend csos(this);
1039         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);

1058     // *must* retry  _owner before parking.
1059     OrderAccess::fence();
1060 
1061     // Keep a tally of the # of futile wakeups.
1062     // Note that the counter is not protected by a lock or updated by atomics.
1063     // That is by design - we trade "lossy" counters which are exposed to
1064     // races during updates for a lower probe effect.
1065     // This PerfData object can be used in parallel with a safepoint.
1066     // See the work around in PerfDataManager::destroy().
1067     OM_PERFDATA_OP(FutileWakeups, inc());
1068   }
1069 
1070   // current has acquired the lock -- Unlink current from the cxq or EntryList .
1071   // Normally we'll find current on the EntryList.
1072   // Unlinking from the EntryList is constant-time and atomic-free.
1073   // From the perspective of the lock owner (this thread), the
1074   // EntryList is stable and cxq is prepend-only.
1075   // The head of cxq is volatile but the interior is stable.
1076   // In addition, current.TState is stable.
1077 
1078   assert(owner_raw() == owner_for(current), "invariant");
1079   assert(object()->mark() == markWord::encode(this), "invariant");
1080   UnlinkAfterAcquire(current, currentNode);
1081   if (_succ == current) _succ = nullptr;
1082   assert(_succ != current, "invariant");
1083   currentNode->TState = ObjectWaiter::TS_RUN;
1084   OrderAccess::fence();      // see comments at the end of EnterI()
1085 }
1086 
1087 // This method is called from two places:
1088 // - On monitorenter contention with a null waiter.
1089 // - After Object.wait() times out or the target is interrupted to reenter the
1090 //   monitor, with the existing waiter.
1091 // For the Object.wait() case we do not delete the ObjectWaiter in case we
1092 // succesfully acquire the monitor since we are going to need it on return.
1093 bool ObjectMonitor::VThreadMonitorEnter(JavaThread* current, ObjectWaiter* waiter) {
1094   if (TryLock(current) == TryLockResult::Success) {
1095     assert(owner_raw() == owner_for(current), "invariant");
1096     assert(_succ != current, "invariant");
1097     assert(_Responsible != current, "invariant");
1098     add_to_contentions(-1);
1099     return true;
1100   }
1101 
1102   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
1103     // Cancelled the in-progress async deflation by changing owner from
1104     // DEFLATER_MARKER to current. As part of the contended enter protocol,
1105     // contentions was incremented to a positive value before this call to
1106     // VThreadMonitorEnter(). We avoid decrementing contentions to prevent
1107     // the deflater thread from winning the last part of the 2-part async
1108     // deflation protocol. The deflater thread will decrement contentions
1109     // after it recognizes that the async deflation was cancelled.
1110     assert(_succ != current, "invariant");
1111     assert(_Responsible != current, "invariant");
1112     assert(waiter != nullptr, "monitor currently in used marked for deflation??");
1113     return true;
1114   }
1115 
1116   oop vthread = current->vthread();
1117   ObjectWaiter* node = waiter != nullptr ? waiter : new ObjectWaiter(vthread, this);
1118   node->_prev   = (ObjectWaiter*) 0xBAD;
1119   node->TState  = ObjectWaiter::TS_CXQ;
1120 
1121   // Push node associated with vthread onto the front of the _cxq.
1122   ObjectWaiter* nxt;
1123   for (;;) {
1124     node->_next = nxt = _cxq;
1125     if (Atomic::cmpxchg(&_cxq, nxt, node) == nxt) break;
1126 
1127     // Interference - the CAS failed because _cxq changed.  Just retry.
1128     // As an optional optimization we retry the lock.
1129     if (TryLock(current) == TryLockResult::Success) {
1130       assert(owner_raw() == owner_for(current), "invariant");
1131       assert(_succ != current, "invariant");
1132       assert(_Responsible != current, "invariant");
1133       add_to_contentions(-1);
1134       if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1135       return true;
1136     }
1137   }
1138 
1139   // We have to try once more since owner could have exited monitor and checked
1140   // _cxq before we added the node to the queue.
1141   if (TryLock(current) == TryLockResult::Success) {
1142     assert(owner_raw() == owner_for(current), "invariant");
1143     assert(_Responsible != current, "invariant");
1144     UnlinkAfterAcquire(current, node);
1145     if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1146     add_to_contentions(-1);
1147     if (waiter == nullptr) delete node;  // for Object.wait() don't delete yet
1148     return true;
1149   }
1150 
1151   if (nxt == nullptr && _EntryList == nullptr) {
1152     // The C2 unlock() fast path first checks if _cxq and _EntryList are empty and
1153     // if they are it just clears the _owner field. Since we always run the risk of
1154     // having that check happening before we added the node to _cxq and the release
1155     // of the monitor happening after the last TryLock attempt we need to do something
1156     // to avoid stranding. We set the _Responsible field which results in a timed-wait.
1157     if (Atomic::replace_if_null(&_Responsible, (JavaThread*)java_lang_Thread::thread_id(vthread))) {
1158       java_lang_VirtualThread::set_recheckInterval(vthread, 1);
1159     }
1160   }
1161 
1162   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1163   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1164 
1165   // We didn't succeed in acquiring the monitor so save ObjectWaiter*
1166   // in the chunk since we will need it when resuming execution.
1167   oop cont = java_lang_VirtualThread::continuation(vthread);
1168   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
1169   chunk->set_object_waiter(node);
1170   return false;
1171 }
1172 
1173 void ObjectMonitor::resume_operation(JavaThread* current, ObjectWaiter* node) {
1174   assert(java_lang_VirtualThread::state(current->vthread()) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
1175   assert(current->is_in_VTMS_transition(), "must be");
1176 
1177   if (node->is_wait() && !node->at_reenter()) {
1178     bool notified = VThreadWaitReenter(current, node);
1179     if (!notified) return;
1180     // Notified case. We were already added to CXQ or TS_ENTER
1181     // by the notifier so just try to reenter the monitor.
1182   }
1183 
1184   // Retry acquiring monitor...
1185 
1186   int state = node->TState;
1187   guarantee(state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ, "invariant");
1188 
1189   if (TryLock(current) == TryLockResult::Success) {
1190     VThreadEpilog(current, node);
1191     return;
1192   }
1193 
1194   oop vthread = current->vthread();
1195   if (_succ == (JavaThread*)java_lang_Thread::thread_id(vthread)) _succ = nullptr;
1196 
1197   // Invariant: after clearing _succ a thread *must* retry _owner before parking.
1198   OrderAccess::fence();
1199 
1200   if (TryLock(current) == TryLockResult::Success) {
1201     VThreadEpilog(current, node);
1202     return;
1203   }
1204 
1205   // Update recheck interval in case we are the _Responsible.
1206   if (_Responsible == (JavaThread*)java_lang_Thread::thread_id(vthread)) {
1207     int recheckInterval = java_lang_VirtualThread::recheckInterval(vthread);
1208     assert(recheckInterval >= 1 && recheckInterval <= 6, "invariant");
1209     if (recheckInterval < 6) {
1210       recheckInterval++;
1211       java_lang_VirtualThread::set_recheckInterval(vthread, recheckInterval);
1212     }
1213   } else if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1214     // No need to do timed park anymore
1215     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1216   }
1217 
1218   // The JT will read this variable on return to the resume_monitor_operation stub
1219   // and will unmount (enterSpecial frame removed and return to Continuation.run()).
1220   current->set_preempting(true);
1221   java_lang_VirtualThread::set_state(vthread, java_lang_VirtualThread::BLOCKING);
1222 }
1223 
1224 void ObjectMonitor::VThreadEpilog(JavaThread* current, ObjectWaiter* node) {
1225   assert(owner_raw() == owner_for(current), "invariant");
1226   add_to_contentions(-1);
1227 
1228   oop vthread = current->vthread();
1229   if (java_lang_VirtualThread::recheckInterval(vthread) > 0) {
1230     java_lang_VirtualThread::set_recheckInterval(vthread, 0);
1231   }
1232   int64_t threadid = java_lang_Thread::thread_id(vthread);
1233   if (_succ == (JavaThread*)threadid) _succ = nullptr;
1234   if (_Responsible == (JavaThread*)threadid) {
1235     _Responsible = nullptr;
1236     OrderAccess::fence(); // Dekker pivot-point
1237   }
1238 
1239   guarantee(_recursions == 0, "invariant");
1240 
1241   if (node->is_wait()) {
1242     _recursions = node->_recursions;   // restore the old recursion count
1243     _waiters--;                        // decrement the number of waiters
1244 
1245     if (node->_interrupted) {
1246       // We will throw at thaw end after finishing the mount transition.
1247       current->set_pending_interrupted_exception(true);
1248     }
1249   }
1250 
1251   assert(node->TState == ObjectWaiter::TS_ENTER || node->TState == ObjectWaiter::TS_CXQ, "");
1252   UnlinkAfterAcquire(current, node);
1253   delete node;
1254 
1255   oop cont = java_lang_VirtualThread::continuation(vthread);
1256   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
1257   chunk->set_object_waiter(nullptr);
1258 
1259   if (JvmtiExport::should_post_monitor_contended_entered()) {
1260     // We are going to call thaw again after this and finish the VMTS
1261     // transition so no need to do it here. We will post the event there.
1262     current->set_contended_entered_monitor(this);
1263   }
1264 }
1265 
1266 // By convention we unlink a contending thread from EntryList|cxq immediately
1267 // after the thread acquires the lock in ::enter().  Equally, we could defer
1268 // unlinking the thread until ::exit()-time.
1269 
1270 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1271   assert(owner_raw() == owner_for(current), "invariant");
1272   assert((!currentNode->is_vthread() && currentNode->thread() == current) ||
1273          (currentNode->is_vthread() && currentNode->vthread() == current->vthread()), "invariant");
1274 
1275   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1276     // Normal case: remove current from the DLL EntryList .
1277     // This is a constant-time operation.
1278     ObjectWaiter* nxt = currentNode->_next;
1279     ObjectWaiter* prv = currentNode->_prev;
1280     if (nxt != nullptr) nxt->_prev = prv;
1281     if (prv != nullptr) prv->_next = nxt;
1282     if (currentNode == _EntryList) _EntryList = nxt;
1283     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1284     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1285   } else {
1286     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1287     // Inopportune interleaving -- current is still on the cxq.
1288     // This usually means the enqueue of self raced an exiting thread.
1289     // Normally we'll find current near the front of the cxq, so
1290     // dequeueing is typically fast.  If needbe we can accelerate
1291     // this with some MCS/CHL-like bidirectional list hints and advisory
1292     // back-links so dequeueing from the interior will normally operate
1293     // in constant-time.

1372 // exiting thread will notice and unpark the stranded thread, or, (b)
1373 // the timer expires.  If the lock is high traffic then the stranding latency
1374 // will be low due to (a).  If the lock is low traffic then the odds of
1375 // stranding are lower, although the worst-case stranding latency
1376 // is longer.  Critically, we don't want to put excessive load in the
1377 // platform's timer subsystem.  We want to minimize both the timer injection
1378 // rate (timers created/sec) as well as the number of timers active at
1379 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1380 // the integral of the # of active timers at any instant over time).
1381 // Both impinge on OS scalability.  Given that, at most one thread parked on
1382 // a monitor will use a timer.
1383 //
1384 // There is also the risk of a futile wake-up. If we drop the lock
1385 // another thread can reacquire the lock immediately, and we can
1386 // then wake a thread unnecessarily. This is benign, and we've
1387 // structured the code so the windows are short and the frequency
1388 // of such futile wakups is low.
1389 
1390 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1391   void* cur = owner_raw();
1392   if (owner_for(current) != cur) {
1393     // Apparent unbalanced locking ...
1394     // Naively we'd like to throw IllegalMonitorStateException.
1395     // As a practical matter we can neither allocate nor throw an
1396     // exception as ::exit() can be called from leaf routines.
1397     // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1398     // Upon deeper reflection, however, in a properly run JVM the only
1399     // way we should encounter this situation is in the presence of
1400     // unbalanced JNI locking. TODO: CheckJNICalls.
1401     // See also: CR4414101





1402 #ifdef ASSERT
1403     LogStreamHandle(Error, monitorinflation) lsh;
1404     lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1405                   " is exiting an ObjectMonitor it does not own.", p2i(current));
1406     lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1407     print_debug_style_on(&lsh);
1408     assert(false, "Non-balanced monitor enter/exit!");
1409 #endif
1410     return;

1411   }
1412 
1413   if (_recursions != 0) {
1414     _recursions--;        // this is simple recursive enter
1415     return;
1416   }
1417 
1418   // Invariant: after setting Responsible=null an thread must execute
1419   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1420   _Responsible = nullptr;
1421 
1422 #if INCLUDE_JFR
1423   // get the owner's thread id for the MonitorEnter event
1424   // if it is enabled and the thread isn't suspended
1425   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1426     _previous_owner_tid = JFR_THREAD_ID(current);
1427   }
1428 #endif
1429 
1430   for (;;) {
1431     assert(owner_for(current) == owner_raw(), "invariant");
1432 
1433     // Drop the lock.
1434     // release semantics: prior loads and stores from within the critical section
1435     // must not float (reorder) past the following store that drops the lock.
1436     // Uses a storeload to separate release_store(owner) from the
1437     // successor check. The try_set_owner_from() below uses cmpxchg() so
1438     // we get the fence down there.
1439     release_clear_owner(current);
1440     OrderAccess::storeload();
1441 
1442     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1443       return;
1444     }
1445     // Other threads are blocked trying to acquire the lock.
1446 
1447     // Normally the exiting thread is responsible for ensuring succession,
1448     // but if other successors are ready or other entering threads are spinning
1449     // then this thread can simply store null into _owner and exit without
1450     // waking a successor.  The existence of spinners or ready successors
1451     // guarantees proper succession (liveness).  Responsibility passes to the
1452     // ready or running successors.  The exiting thread delegates the duty.
1453     // More precisely, if a successor already exists this thread is absolved
1454     // of the responsibility of waking (unparking) one.
1455     //
1456     // The _succ variable is critical to reducing futile wakeup frequency.
1457     // _succ identifies the "heir presumptive" thread that has been made

1467     // to drop the lock and then spin briefly to see if a spinner managed
1468     // to acquire the lock.  If so, the exiting thread could exit
1469     // immediately without waking a successor, otherwise the exiting
1470     // thread would need to dequeue and wake a successor.
1471     // (Note that we'd need to make the post-drop spin short, but no
1472     // shorter than the worst-case round-trip cache-line migration time.
1473     // The dropped lock needs to become visible to the spinner, and then
1474     // the acquisition of the lock by the spinner must become visible to
1475     // the exiting thread).
1476 
1477     // It appears that an heir-presumptive (successor) must be made ready.
1478     // Only the current lock owner can manipulate the EntryList or
1479     // drain _cxq, so we need to reacquire the lock.  If we fail
1480     // to reacquire the lock the responsibility for ensuring succession
1481     // falls to the new owner.
1482     //
1483     if (try_set_owner_from(nullptr, current) != nullptr) {
1484       return;
1485     }
1486 
1487     guarantee(owner_raw() == owner_for(current), "invariant");
1488 
1489     ObjectWaiter* w = nullptr;
1490 
1491     w = _EntryList;
1492     if (w != nullptr) {
1493       // I'd like to write: guarantee (w->_thread != current).
1494       // But in practice an exiting thread may find itself on the EntryList.
1495       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1496       // then calls exit().  Exit release the lock by setting O._owner to null.
1497       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1498       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1499       // release the lock "O".  T2 resumes immediately after the ST of null into
1500       // _owner, above.  T2 notices that the EntryList is populated, so it
1501       // reacquires the lock and then finds itself on the EntryList.
1502       // Given all that, we have to tolerate the circumstance where "w" is
1503       // associated with current.
1504       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1505       ExitEpilog(current, w);
1506       return;
1507     }

1544     }
1545 
1546     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1547     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1548 
1549     // See if we can abdicate to a spinner instead of waking a thread.
1550     // A primary goal of the implementation is to reduce the
1551     // context-switch rate.
1552     if (_succ != nullptr) continue;
1553 
1554     w = _EntryList;
1555     if (w != nullptr) {
1556       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1557       ExitEpilog(current, w);
1558       return;
1559     }
1560   }
1561 }
1562 
1563 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1564   assert(owner_raw() == owner_for(current), "invariant");
1565 
1566   // Exit protocol:
1567   // 1. ST _succ = wakee
1568   // 2. membar #loadstore|#storestore;
1569   // 2. ST _owner = nullptr
1570   // 3. unpark(wakee)
1571 
1572   oop vthread = nullptr;
1573   ParkEvent * Trigger;
1574   if (!Wakee->is_vthread()) {
1575     JavaThread* t = Wakee->thread();
1576     assert(t != nullptr, "");
1577     Trigger = t->_ParkEvent;
1578     _succ = t;
1579   } else {
1580     vthread = Wakee->vthread();
1581     assert(vthread != nullptr, "");
1582     Trigger = ObjectMonitor::vthread_unparker_ParkEvent();
1583     _succ = (JavaThread*)java_lang_Thread::thread_id(vthread);
1584   }
1585 
1586   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1587   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1588   // out-of-scope (non-extant).
1589   Wakee  = nullptr;
1590 
1591   // Drop the lock.
1592   // Uses a fence to separate release_store(owner) from the LD in unpark().
1593   release_clear_owner(current);
1594   OrderAccess::fence();
1595 
1596   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1597 
1598   if (vthread == nullptr) {
1599     // Platform thread case
1600     Trigger->unpark();
1601   } else if (java_lang_VirtualThread::set_onWaitingList(vthread, _vthread_cxq_head)) {
1602     Trigger->unpark();
1603   }
1604 
1605   // Maintain stats and report events to JVMTI
1606   OM_PERFDATA_OP(Parks, inc());
1607 }
1608 
1609 // complete_exit exits a lock returning recursion count
1610 // complete_exit requires an inflated monitor
1611 // The _owner field is not always the Thread addr even with an
1612 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1613 // thread due to contention.
1614 intx ObjectMonitor::complete_exit(JavaThread* current) {
1615   assert(InitDone, "Unexpectedly not initialized");
1616 
1617   void* cur = owner_raw();
1618   if (owner_for(current) != cur) {
1619     if (LockingMode == LM_LEGACY && is_stack_locker(current)) {
1620       assert(_recursions == 0, "internal state error");
1621       set_owner_from_BasicLock(current);  // Convert from BasicLock* to Thread*.
1622       _recursions = 0;
1623     }
1624   }
1625 
1626   guarantee(owner_for(current) == owner_raw(), "complete_exit not owner");
1627   intx save = _recursions; // record the old recursion count
1628   _recursions = 0;         // set the recursion level to be 0
1629   exit(current);           // exit the monitor
1630   guarantee(owner_raw() != owner_for(current), "invariant");
1631   return save;
1632 }
1633 
1634 // Checks that the current THREAD owns this monitor and causes an
1635 // immediate return if it doesn't. We don't use the CHECK macro
1636 // because we want the IMSE to be the only exception that is thrown
1637 // from the call site when false is returned. Any other pending
1638 // exception is ignored.
1639 #define CHECK_OWNER()                                                  \
1640   do {                                                                 \
1641     if (!check_owner(THREAD)) {                                        \
1642        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1643        return;                                                         \
1644      }                                                                 \
1645   } while (false)
1646 
1647 // Returns true if the specified thread owns the ObjectMonitor.
1648 // Otherwise returns false and throws IllegalMonitorStateException
1649 // (IMSE). If there is a pending exception and the specified thread
1650 // is not the owner, that exception will be replaced by the IMSE.
1651 bool ObjectMonitor::check_owner(TRAPS) {
1652   JavaThread* current = THREAD;
1653   void* cur = owner_raw();
1654   if (cur == owner_for(current)) {






1655     return true;
1656   }
1657   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1658              "current thread is not owner", false);
1659 }
1660 
1661 static inline bool is_excluded(const Klass* monitor_klass) {
1662   assert(monitor_klass != nullptr, "invariant");
1663   NOT_JFR_RETURN_(false);
1664   JFR_ONLY(return vmSymbols::jdk_jfr_internal_management_HiddenWait() == monitor_klass->name();)
1665 }
1666 
1667 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1668                                     ObjectMonitor* monitor,
1669                                     uint64_t notifier_tid,
1670                                     jlong timeout,
1671                                     bool timedout) {
1672   assert(event != nullptr, "invariant");
1673   assert(monitor != nullptr, "invariant");
1674   const Klass* monitor_klass = monitor->object()->klass();
1675   if (is_excluded(monitor_klass)) {
1676     return;
1677   }
1678   event->set_monitorClass(monitor_klass);
1679   event->set_timeout(timeout);
1680   // Set an address that is 'unique enough', such that events close in
1681   // time and with the same address are likely (but not guaranteed) to
1682   // belong to the same object.
1683   event->set_address((uintptr_t)monitor);
1684   event->set_notifier(notifier_tid);
1685   event->set_timedOut(timedout);
1686   event->commit();
1687 }
1688 
1689 static void vthread_monitor_waited_event(JavaThread *current, ObjectWaiter* node, EventJavaMonitorWait* event, jboolean timed_out) {
1690   // Since we might safepoint set the anchor so that the stack can we walked.
1691   assert(current->last_continuation() != nullptr, "");
1692   JavaFrameAnchor* anchor = current->frame_anchor();
1693   anchor->set_last_Java_sp(current->last_continuation()->entry_sp());
1694   anchor->set_last_Java_pc(current->last_continuation()->entry_pc());
1695 
1696   JRT_BLOCK
1697     if (event->should_commit()) {
1698       long timeout = java_lang_VirtualThread::waitTimeout(current->vthread());
1699       post_monitor_wait_event(event, node->_monitor, node->_notifier_tid, timeout, timed_out);
1700     }
1701     if (JvmtiExport::should_post_monitor_waited()) {
1702       JvmtiExport::vthread_post_monitor_waited(current, node->_monitor, timed_out);
1703     }
1704   JRT_BLOCK_END
1705   current->frame_anchor()->clear();
1706 }
1707 
1708 // -----------------------------------------------------------------------------
1709 // Wait/Notify/NotifyAll
1710 //
1711 // Note: a subset of changes to ObjectMonitor::wait()
1712 // will need to be replicated in complete_exit
1713 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1714   JavaThread* current = THREAD;
1715 
1716   assert(InitDone, "Unexpectedly not initialized");
1717 
1718   CHECK_OWNER();  // Throws IMSE if not owner.
1719 
1720   EventJavaMonitorWait event;
1721 
1722   // check for a pending interrupt
1723   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1724     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1725     if (JvmtiExport::should_post_monitor_waited()) {
1726       // Note: 'false' parameter is passed here because the
1727       // wait was not timed out due to thread interrupt.
1728       JvmtiExport::post_monitor_waited(current, this, false);
1729 
1730       // In this short circuit of the monitor wait protocol, the
1731       // current thread never drops ownership of the monitor and
1732       // never gets added to the wait queue so the current thread
1733       // cannot be made the successor. This means that the
1734       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1735       // consume an unpark() meant for the ParkEvent associated with
1736       // this ObjectMonitor.
1737     }
1738     if (event.should_commit()) {
1739       post_monitor_wait_event(&event, this, 0, millis, false);
1740     }
1741     THROW(vmSymbols::java_lang_InterruptedException());
1742     return;
1743   }
1744 
1745   current->set_current_waiting_monitor(this);
1746 
1747 #ifdef LOOM_MONITOR_SUPPORT
1748   ContinuationEntry* ce = current->last_continuation();
1749   if (interruptible && ce != nullptr && ce->is_virtual_thread()) {
1750     int result = Continuation::try_preempt(current, ce->cont_oop(current), freeze_on_wait);
1751     if (result == freeze_ok) {
1752       VThreadWait(current, millis);
1753       current->set_current_waiting_monitor(nullptr);
1754       return;
1755     }
1756     if (result == freeze_pinned_native) {
1757       const Klass* monitor_klass = object()->klass();
1758       if (!is_excluded(monitor_klass)) {
1759         post_virtual_thread_pinned_event(current, "Native frame or <clinit> on stack");
1760       }
1761     }
1762   }
1763 #endif
1764 
1765   // create a node to be put into the queue
1766   // Critically, after we reset() the event but prior to park(), we must check
1767   // for a pending interrupt.
1768   ObjectWaiter node(current);
1769   node.TState = ObjectWaiter::TS_WAIT;
1770   current->_ParkEvent->reset();
1771   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1772 
1773   // Enter the waiting queue, which is a circular doubly linked list in this case
1774   // but it could be a priority queue or any data structure.
1775   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1776   // by the owner of the monitor *except* in the case where park()
1777   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1778   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1779 
1780   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1781   AddWaiter(&node);
1782   Thread::SpinRelease(&_WaitSetLock);
1783 
1784   _Responsible = nullptr;
1785 
1786   intx save = _recursions;     // record the old recursion count
1787   _waiters++;                  // increment the number of waiters
1788   _recursions = 0;             // set the recursion level to be 1
1789   exit(current);               // exit the monitor
1790   guarantee(owner_raw() != owner_for(current), "invariant");
1791 
1792   // The thread is on the WaitSet list - now park() it.
1793   // On MP systems it's conceivable that a brief spin before we park
1794   // could be profitable.
1795   //
1796   // TODO-FIXME: change the following logic to a loop of the form
1797   //   while (!timeout && !interrupted && _notified == 0) park()
1798 
1799   int ret = OS_OK;
1800   int WasNotified = 0;
1801 
1802   // Need to check interrupt state whilst still _thread_in_vm
1803   bool interrupted = interruptible && current->is_interrupted(false);
1804 
1805   { // State transition wrappers
1806     OSThread* osthread = current->osthread();
1807     OSThreadWaitState osts(osthread, true);
1808 
1809     assert(current->thread_state() == _thread_in_vm, "invariant");
1810 
1811     {
1812       ClearSuccOnSuspend csos(this);
1813       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1814       if (interrupted || HAS_PENDING_EXCEPTION) {
1815         // Intentionally empty
1816       } else if (!node._notified) {
1817         if (millis <= 0) {
1818           current->_ParkEvent->park();
1819         } else {
1820           ret = current->_ParkEvent->park(millis);
1821         }
1822       }
1823     }
1824 
1825     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1826     // from the WaitSet to the EntryList.
1827     // See if we need to remove Node from the WaitSet.
1828     // We use double-checked locking to avoid grabbing _WaitSetLock
1829     // if the thread is not on the wait queue.
1830     //
1831     // Note that we don't need a fence before the fetch of TState.
1832     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1833     // written by the is thread. (perhaps the fetch might even be satisfied
1834     // by a look-aside into the processor's own store buffer, although given
1835     // the length of the code path between the prior ST and this load that's
1836     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1837     // then we'll acquire the lock and then re-fetch a fresh TState value.
1838     // That is, we fail toward safety.
1839 
1840     if (node.TState == ObjectWaiter::TS_WAIT) {
1841       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1842       if (node.TState == ObjectWaiter::TS_WAIT) {
1843         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1844         assert(!node._notified, "invariant");
1845         node.TState = ObjectWaiter::TS_RUN;
1846       }
1847       Thread::SpinRelease(&_WaitSetLock);
1848     }
1849 
1850     // The thread is now either on off-list (TS_RUN),
1851     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1852     // The Node's TState variable is stable from the perspective of this thread.
1853     // No other threads will asynchronously modify TState.
1854     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1855     OrderAccess::loadload();
1856     if (_succ == current) _succ = nullptr;
1857     WasNotified = node._notified;
1858 
1859     // Reentry phase -- reacquire the monitor.
1860     // re-enter contended monitor after object.wait().
1861     // retain OBJECT_WAIT state until re-enter successfully completes
1862     // Thread state is thread_in_vm and oop access is again safe,
1863     // although the raw address of the object may have changed.
1864     // (Don't cache naked oops over safepoints, of course).
1865 
1866     // post monitor waited event. Note that this is past-tense, we are done waiting.
1867     if (JvmtiExport::should_post_monitor_waited()) {
1868       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1869 
1870       if (node._notified && _succ == current) {
1871         // In this part of the monitor wait-notify-reenter protocol it
1872         // is possible (and normal) for another thread to do a fastpath
1873         // monitor enter-exit while this thread is still trying to get
1874         // to the reenter portion of the protocol.
1875         //
1876         // The ObjectMonitor was notified and the current thread is
1877         // the successor which also means that an unpark() has already
1878         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1879         // consume the unpark() that was done when the successor was
1880         // set because the same ParkEvent is shared between Java
1881         // monitors and JVM/TI RawMonitors (for now).
1882         //
1883         // We redo the unpark() to ensure forward progress, i.e., we
1884         // don't want all pending threads hanging (parked) with none
1885         // entering the unlocked monitor.
1886         current->_ParkEvent->unpark();
1887       }
1888     }
1889 
1890     if (event.should_commit()) {
1891       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1892     }
1893 
1894     OrderAccess::fence();
1895 
1896     assert(owner_raw() != owner_for(current), "invariant");
1897     ObjectWaiter::TStates v = node.TState;
1898     if (v == ObjectWaiter::TS_RUN) {
1899       enter(current);
1900     } else {
1901       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1902       ReenterI(current, &node);
1903       node.wait_reenter_end(this);
1904     }
1905 
1906     // current has reacquired the lock.
1907     // Lifecycle - the node representing current must not appear on any queues.
1908     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1909     // want residual elements associated with this thread left on any lists.
1910     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1911     assert(owner_raw() == owner_for(current), "invariant");
1912     assert(_succ != current, "invariant");
1913   } // OSThreadWaitState()
1914 
1915   current->set_current_waiting_monitor(nullptr);
1916 
1917   guarantee(_recursions == 0, "invariant");
1918   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1919   _recursions =   save          // restore the old recursion count
1920                 + relock_count; //  increased by the deferred relock count
1921   NOT_LOOM_MONITOR_SUPPORT(current->inc_held_monitor_count(relock_count);) // Deopt never entered these counts.
1922   _waiters--;             // decrement the number of waiters
1923 
1924   // Verify a few postconditions
1925   assert(owner_raw() == owner_for(current), "invariant");
1926   assert(_succ != current, "invariant");
1927   assert(object()->mark() == markWord::encode(this), "invariant");
1928 
1929   // check if the notification happened
1930   if (!WasNotified) {
1931     // no, it could be timeout or Thread.interrupt() or both
1932     // check for interrupt event, otherwise it is timeout
1933     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1934       THROW(vmSymbols::java_lang_InterruptedException());
1935     }
1936   }
1937 
1938   // NOTE: Spurious wake up will be consider as timeout.
1939   // Monitor notify has precedence over thread interrupt.
1940 }
1941 

1942 // Consider:
1943 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1944 // then instead of transferring a thread from the WaitSet to the EntryList
1945 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1946 
1947 void ObjectMonitor::INotify(JavaThread* current) {
1948   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1949   ObjectWaiter* iterator = DequeueWaiter();
1950   if (iterator != nullptr) {
1951     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1952     guarantee(!iterator->_notified, "invariant");
1953     // Disposition - what might we do with iterator ?
1954     // a.  add it directly to the EntryList - either tail (policy == 1)
1955     //     or head (policy == 0).
1956     // b.  push it onto the front of the _cxq (policy == 2).
1957     // For now we use (b).
1958 
1959     if (iterator->is_vthread()) {
1960       oop vthread = iterator->vthread();
1961       java_lang_VirtualThread::set_notified(vthread, true);
1962       int old_state = java_lang_VirtualThread::state(vthread);
1963       // If state is not WAIT/TIMED_WAIT then target could still be on
1964       // unmount transition, or wait could have already timed-out or target
1965       // could have been interrupted. In the first case, the target itself
1966       // will set the state to BLOCKED at the end of the unmount transition.
1967       // In the other cases the target would have been already unblocked so
1968       // there is nothing to do.
1969       if (old_state == java_lang_VirtualThread::WAIT ||
1970           old_state == java_lang_VirtualThread::TIMED_WAIT) {
1971         java_lang_VirtualThread::cmpxchg_state(vthread, old_state, java_lang_VirtualThread::BLOCKED);
1972       }
1973     }
1974 
1975     iterator->TState = ObjectWaiter::TS_ENTER;
1976 
1977     iterator->_notified = true;
1978     iterator->_notifier_tid = JFR_THREAD_ID(current);
1979 
1980     ObjectWaiter* list = _EntryList;
1981     if (list != nullptr) {
1982       assert(list->_prev == nullptr, "invariant");
1983       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1984       assert(list != iterator, "invariant");
1985     }
1986 
1987     // prepend to cxq
1988     if (list == nullptr) {
1989       iterator->_next = iterator->_prev = nullptr;
1990       _EntryList = iterator;
1991     } else {
1992       iterator->TState = ObjectWaiter::TS_CXQ;
1993       for (;;) {
1994         ObjectWaiter* front = _cxq;
1995         iterator->_next = front;
1996         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1997           break;
1998         }
1999       }
2000     }
2001 
2002     // _WaitSetLock protects the wait queue, not the EntryList.  We could
2003     // move the add-to-EntryList operation, above, outside the critical section
2004     // protected by _WaitSetLock.  In practice that's not useful.  With the
2005     // exception of  wait() timeouts and interrupts the monitor owner
2006     // is the only thread that grabs _WaitSetLock.  There's almost no contention
2007     // on _WaitSetLock so it's not profitable to reduce the length of the
2008     // critical section.
2009     if (!iterator->is_vthread()) {
2010       iterator->wait_reenter_begin(this);
2011     }
2012   }
2013   Thread::SpinRelease(&_WaitSetLock);
2014 }
2015 
2016 // Consider: a not-uncommon synchronization bug is to use notify() when
2017 // notifyAll() is more appropriate, potentially resulting in stranded
2018 // threads; this is one example of a lost wakeup. A useful diagnostic
2019 // option is to force all notify() operations to behave as notifyAll().
2020 //
2021 // Note: We can also detect many such problems with a "minimum wait".
2022 // When the "minimum wait" is set to a small non-zero timeout value
2023 // and the program does not hang whereas it did absent "minimum wait",
2024 // that suggests a lost wakeup bug.
2025 
2026 void ObjectMonitor::notify(TRAPS) {
2027   JavaThread* current = THREAD;
2028   CHECK_OWNER();  // Throws IMSE if not owner.
2029   if (_WaitSet == nullptr) {
2030     return;
2031   }

2042 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
2043 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
2044 
2045 void ObjectMonitor::notifyAll(TRAPS) {
2046   JavaThread* current = THREAD;
2047   CHECK_OWNER();  // Throws IMSE if not owner.
2048   if (_WaitSet == nullptr) {
2049     return;
2050   }
2051 
2052   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
2053   int tally = 0;
2054   while (_WaitSet != nullptr) {
2055     tally++;
2056     INotify(current);
2057   }
2058 
2059   OM_PERFDATA_OP(Notifications, inc(tally));
2060 }
2061 
2062 void ObjectMonitor::VThreadWait(JavaThread* current, jlong millis) {
2063   oop vthread = current->vthread();
2064   ObjectWaiter* node = new ObjectWaiter(vthread, this);
2065   node->_is_wait = true;
2066   node->TState = ObjectWaiter::TS_WAIT;
2067   java_lang_VirtualThread::set_notified(vthread, false);  // Reset notified flag
2068 
2069   // Enter the waiting queue, which is a circular doubly linked list in this case
2070   // but it could be a priority queue or any data structure.
2071   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
2072   // by the owner of the monitor *except* in the case where park()
2073   // returns because of a timeout or interrupt.  Contention is exceptionally rare
2074   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
2075 
2076   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
2077   AddWaiter(node);
2078   Thread::SpinRelease(&_WaitSetLock);
2079 
2080   _Responsible = nullptr;
2081 
2082   node->_recursions = _recursions;   // record the old recursion count
2083   _recursions = 0;                   // set the recursion level to be 1
2084   _waiters++;                        // increment the number of waiters
2085   exit(current);                     // exit the monitor
2086   guarantee(owner_raw() != owner_for(current), "invariant");
2087 
2088   assert(java_lang_VirtualThread::state(vthread) == java_lang_VirtualThread::RUNNING, "wrong state for vthread");
2089   java_lang_VirtualThread::set_state(vthread, millis == 0 ? java_lang_VirtualThread::WAITING : java_lang_VirtualThread::TIMED_WAITING);
2090   java_lang_VirtualThread::set_waitTimeout(vthread, millis);
2091 
2092   // Save the ObjectWaiter* in the chunk since we will need it
2093   // when resuming execution.
2094   oop cont = java_lang_VirtualThread::continuation(vthread);
2095   stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
2096   chunk->set_object_waiter(node);
2097 }
2098 
2099 bool ObjectMonitor::VThreadWaitReenter(JavaThread* current, ObjectWaiter* node) {
2100   // First time we run after being preempted on Object.wait().
2101   // We need to check if we were interrupted or wait() timed-out
2102   // and in that case remove ourselves from the _WaitSet queue.
2103   if (node->TState == ObjectWaiter::TS_WAIT) {
2104     Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
2105     if (node->TState == ObjectWaiter::TS_WAIT) {
2106       DequeueSpecificWaiter(node);       // unlink from WaitSet
2107       assert(!node->_notified, "invariant");
2108       node->TState = ObjectWaiter::TS_RUN;
2109     }
2110     Thread::SpinRelease(&_WaitSetLock);
2111   }
2112 
2113   ObjectWaiter::TStates state = node->TState;
2114   bool was_notified = state == ObjectWaiter::TS_ENTER || state == ObjectWaiter::TS_CXQ;
2115   assert(was_notified || state == ObjectWaiter::TS_RUN, "");
2116 
2117   // save it so that once we re-acquire the monitor we know if we need to throw IE.
2118   node->_interrupted = !was_notified && current->is_interrupted(false);
2119 
2120   EventJavaMonitorWait event;
2121   if (event.should_commit() || JvmtiExport::should_post_monitor_waited()) {
2122     vthread_monitor_waited_event(current, node, &event, !was_notified && !node->_interrupted);
2123   }
2124 
2125   node->_at_reenter = true;
2126   add_to_contentions(1);
2127   assert(owner_raw() != owner_for(current), "invariant");
2128 
2129   if (!was_notified) {
2130     bool acquired = VThreadMonitorEnter(current, node);
2131     if (acquired) {
2132       guarantee(_recursions == 0, "invariant");
2133       _recursions = node->_recursions;   // restore the old recursion count
2134       _waiters--;                        // decrement the number of waiters
2135 
2136       if (node->_interrupted) {
2137         // We will throw at thaw end after finishing the mount transition.
2138         current->set_pending_interrupted_exception(true);
2139       }
2140 
2141       delete node;
2142       oop cont = java_lang_VirtualThread::continuation(current->vthread());
2143       stackChunkOop chunk  = jdk_internal_vm_Continuation::tail(cont);
2144       chunk->set_object_waiter(nullptr);
2145     } else {
2146       // The JT will read this variable on return to the resume_monitor_operation stub
2147       // and will unmount (enterSpecial frame removed and return to Continuation.run()).
2148       current->set_preempting(true);
2149     }
2150   }
2151   return was_notified;
2152 }
2153 
2154 // -----------------------------------------------------------------------------
2155 // Adaptive Spinning Support
2156 //
2157 // Adaptive spin-then-block - rational spinning
2158 //
2159 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
2160 // algorithm.  On high order SMP systems it would be better to start with
2161 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
2162 // a contending thread could enqueue itself on the cxq and then spin locally
2163 // on a thread-specific variable such as its ParkEvent._Event flag.
2164 // That's left as an exercise for the reader.  Note that global spinning is
2165 // not problematic on Niagara, as the L2 cache serves the interconnect and
2166 // has both low latency and massive bandwidth.
2167 //
2168 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
2169 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
2170 // (duration) or we can fix the count at approximately the duration of
2171 // a context switch and vary the frequency.   Of course we could also
2172 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
2173 // For a description of 'Adaptive spin-then-block mutual exclusion in

2290   }
2291 
2292   //
2293   // Consider the following alternative:
2294   // Periodically set _SpinDuration = _SpinLimit and try a long/full
2295   // spin attempt.  "Periodically" might mean after a tally of
2296   // the # of failed spin attempts (or iterations) reaches some threshold.
2297   // This takes us into the realm of 1-out-of-N spinning, where we
2298   // hold the duration constant but vary the frequency.
2299 
2300   int ctr = _SpinDuration;
2301   if (ctr <= 0) return false;
2302 
2303   // We're good to spin ... spin ingress.
2304   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
2305   // when preparing to LD...CAS _owner, etc and the CAS is likely
2306   // to succeed.
2307   if (_succ == nullptr) {
2308     _succ = current;
2309   }
2310   void* prv = nullptr;
2311 
2312   // There are three ways to exit the following loop:
2313   // 1.  A successful spin where this thread has acquired the lock.
2314   // 2.  Spin failure with prejudice
2315   // 3.  Spin failure without prejudice
2316 
2317   while (--ctr >= 0) {
2318 
2319     // Periodic polling -- Check for pending GC
2320     // Threads may spin while they're unsafe.
2321     // We don't want spinning threads to delay the JVM from reaching
2322     // a stop-the-world safepoint or to steal cycles from GC.
2323     // If we detect a pending safepoint we abort in order that
2324     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
2325     // this thread, if safe, doesn't steal cycles from GC.
2326     // This is in keeping with the "no loitering in runtime" rule.
2327     // We periodically check to see if there's a safepoint pending.
2328     if ((ctr & 0xFF) == 0) {
2329       // Can't call SafepointMechanism::should_process() since that
2330       // might update the poll values and we could be in a thread_blocked
2331       // state here which is not allowed so just check the poll.
2332       if (SafepointMechanism::local_poll_armed(current)) {
2333         break;
2334       }
2335       SpinPause();
2336     }
2337 
2338     // Probe _owner with TATAS
2339     // If this thread observes the monitor transition or flicker
2340     // from locked to unlocked to locked, then the odds that this
2341     // thread will acquire the lock in this spin attempt go down
2342     // considerably.  The same argument applies if the CAS fails
2343     // or if we observe _owner change from one non-null value to
2344     // another non-null value.   In such cases we might abort
2345     // the spin without prejudice or apply a "penalty" to the
2346     // spin count-down variable "ctr", reducing it by 100, say.
2347 
2348     void* ox = owner_raw();
2349     if (ox == nullptr) {
2350       ox = try_set_owner_from(nullptr, current);
2351       if (ox == nullptr) {
2352         // The CAS succeeded -- this thread acquired ownership
2353         // Take care of some bookkeeping to exit spin state.
2354         if (_succ == current) {
2355           _succ = nullptr;
2356         }
2357 
2358         // Increase _SpinDuration :
2359         // The spin was successful (profitable) so we tend toward
2360         // longer spin attempts in the future.
2361         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2362         // If we acquired the lock early in the spin cycle it
2363         // makes sense to increase _SpinDuration proportionally.
2364         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2365         _SpinDuration = adjust_up(_SpinDuration);
2366         return true;
2367       }
2368 
2369       // The CAS failed ... we can take any of the following actions:
2370       // * penalize: ctr -= CASPenalty

2395     // Invariant: after setting succ=null a contending thread
2396     // must recheck-retry _owner before parking.  This usually happens
2397     // in the normal usage of TrySpin(), but it's safest
2398     // to make TrySpin() as foolproof as possible.
2399     OrderAccess::fence();
2400     if (TryLock(current) == TryLockResult::Success) {
2401       return true;
2402     }
2403   }
2404 
2405   return false;
2406 }
2407 
2408 
2409 // -----------------------------------------------------------------------------
2410 // WaitSet management ...
2411 
2412 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2413   _next     = nullptr;
2414   _prev     = nullptr;
2415   _thread   = current;
2416   _monitor  = nullptr;
2417   _notifier_tid = 0;
2418   _recursions = 0;
2419   TState    = TS_RUN;
2420   _notified = false;
2421   _is_wait  = false;
2422   _at_reenter = false;
2423   _interrupted = false;
2424   _active   = false;
2425 }
2426 
2427 ObjectWaiter::ObjectWaiter(oop vthread, ObjectMonitor* mon) : ObjectWaiter(nullptr) {
2428   assert(oopDesc::is_oop(vthread), "");
2429   _vthread = OopHandle(JavaThread::thread_oop_storage(), vthread);
2430   _monitor = mon;
2431 }
2432 
2433 ObjectWaiter::~ObjectWaiter() {
2434   if (is_vthread()) {
2435     assert(vthread() != nullptr, "");
2436     _vthread.release(JavaThread::thread_oop_storage());
2437   }
2438 }
2439 
2440 oop ObjectWaiter::vthread() {
2441   return _vthread.resolve();
2442 }
2443 
2444 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2445   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2446 }
2447 
2448 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2449   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2450 }
2451 
2452 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2453   assert(node != nullptr, "should not add null node");
2454   assert(node->_prev == nullptr, "node already in list");
2455   assert(node->_next == nullptr, "node already in list");
2456   // put node at end of queue (circular doubly linked list)
2457   if (_WaitSet == nullptr) {
2458     _WaitSet = node;
2459     node->_prev = node;
2460     node->_next = node;
2461   } else {

2539   {                                                                       \
2540     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2541                                          CHECK);                          \
2542   }
2543     NEWPERFCOUNTER(_sync_Inflations);
2544     NEWPERFCOUNTER(_sync_Deflations);
2545     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2546     NEWPERFCOUNTER(_sync_FutileWakeups);
2547     NEWPERFCOUNTER(_sync_Parks);
2548     NEWPERFCOUNTER(_sync_Notifications);
2549     NEWPERFVARIABLE(_sync_MonExtant);
2550 #undef NEWPERFCOUNTER
2551 #undef NEWPERFVARIABLE
2552   }
2553 
2554   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2555 
2556   DEBUG_ONLY(InitDone = true;)
2557 }
2558 
2559 void ObjectMonitor::Initialize2() {
2560   _vthread_cxq_head = OopHandle(JavaThread::thread_oop_storage(), nullptr);
2561   _vthread_unparker_ParkEvent = ParkEvent::Allocate(nullptr);
2562 }
2563 
2564 void ObjectMonitor::print_on(outputStream* st) const {
2565   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2566   st->print("{contentions=0x%08x,waiters=0x%08x"
2567             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2568             contentions(), waiters(), recursions(),
2569             p2i(owner()));
2570 }
2571 void ObjectMonitor::print() const { print_on(tty); }
2572 
2573 #ifdef ASSERT
2574 // Print the ObjectMonitor like a debugger would:
2575 //
2576 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2577 //   _header = 0x0000000000000001
2578 //   _object = 0x000000070ff45fd0
2579 //   _pad_buf0 = {
2580 //     [0] = '\0'
2581 //     ...
2582 //     [43] = '\0'
2583 //   }
< prev index next >