< prev index next >

src/hotspot/share/gc/shenandoah/shenandoahHeap.cpp

Print this page

   1 /*
   2  * Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.

   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/universe.hpp"
  29 
  30 #include "gc/shared/classUnloadingContext.hpp"
  31 #include "gc/shared/gcArguments.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTraceTime.inline.hpp"
  34 #include "gc/shared/locationPrinter.inline.hpp"
  35 #include "gc/shared/memAllocator.hpp"
  36 #include "gc/shared/plab.hpp"
  37 #include "gc/shared/tlab_globals.hpp"
  38 



  39 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  40 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  41 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  42 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  43 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  45 #include "gc/shenandoah/shenandoahControlThread.hpp"
  46 #include "gc/shenandoah/shenandoahFreeSet.hpp"



  47 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  48 #include "gc/shenandoah/shenandoahHeap.inline.hpp"

  49 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  50 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  51 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  52 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  53 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  54 #include "gc/shenandoah/shenandoahMetrics.hpp"
  55 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"

  56 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  57 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  58 #include "gc/shenandoah/shenandoahPadding.hpp"
  59 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  60 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  61 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"

  62 #include "gc/shenandoah/shenandoahSTWMark.hpp"

  63 #include "gc/shenandoah/shenandoahUtils.hpp"
  64 #include "gc/shenandoah/shenandoahVerifier.hpp"
  65 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  66 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  67 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  68 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  69 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"

  70 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  71 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"


  72 #if INCLUDE_JFR
  73 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  74 #endif
  75 
  76 #include "classfile/systemDictionary.hpp"
  77 #include "code/codeCache.hpp"
  78 #include "memory/classLoaderMetaspace.hpp"
  79 #include "memory/metaspaceUtils.hpp"
  80 #include "oops/compressedOops.inline.hpp"
  81 #include "prims/jvmtiTagMap.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/globals.hpp"
  84 #include "runtime/interfaceSupport.inline.hpp"
  85 #include "runtime/java.hpp"
  86 #include "runtime/orderAccess.hpp"
  87 #include "runtime/safepointMechanism.hpp"

  88 #include "runtime/vmThread.hpp"
  89 #include "services/mallocTracker.hpp"
  90 #include "services/memTracker.hpp"
  91 #include "utilities/events.hpp"
  92 #include "utilities/powerOfTwo.hpp"
  93 
  94 class ShenandoahPretouchHeapTask : public WorkerTask {
  95 private:
  96   ShenandoahRegionIterator _regions;
  97   const size_t _page_size;
  98 public:
  99   ShenandoahPretouchHeapTask(size_t page_size) :
 100     WorkerTask("Shenandoah Pretouch Heap"),
 101     _page_size(page_size) {}
 102 
 103   virtual void work(uint worker_id) {
 104     ShenandoahHeapRegion* r = _regions.next();
 105     while (r != nullptr) {
 106       if (r->is_committed()) {
 107         os::pretouch_memory(r->bottom(), r->end(), _page_size);

 143 jint ShenandoahHeap::initialize() {
 144   //
 145   // Figure out heap sizing
 146   //
 147 
 148   size_t init_byte_size = InitialHeapSize;
 149   size_t min_byte_size  = MinHeapSize;
 150   size_t max_byte_size  = MaxHeapSize;
 151   size_t heap_alignment = HeapAlignment;
 152 
 153   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 154 
 155   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 156   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 157 
 158   _num_regions = ShenandoahHeapRegion::region_count();
 159   assert(_num_regions == (max_byte_size / reg_size_bytes),
 160          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 161          _num_regions, max_byte_size, reg_size_bytes);
 162 
 163   // Now we know the number of regions, initialize the heuristics.
 164   initialize_heuristics();
 165 
 166   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 167   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 168   assert(num_committed_regions <= _num_regions, "sanity");
 169   _initial_size = num_committed_regions * reg_size_bytes;
 170 
 171   size_t num_min_regions = min_byte_size / reg_size_bytes;
 172   num_min_regions = MIN2(num_min_regions, _num_regions);
 173   assert(num_min_regions <= _num_regions, "sanity");
 174   _minimum_size = num_min_regions * reg_size_bytes;
 175 
 176   // Default to max heap size.
 177   _soft_max_size = _num_regions * reg_size_bytes;
 178 
 179   _committed = _initial_size;
 180 
 181   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 182   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 183   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 184 
 185   //
 186   // Reserve and commit memory for heap
 187   //
 188 
 189   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 190   initialize_reserved_region(heap_rs);
 191   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 192   _heap_region_special = heap_rs.special();
 193 
 194   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 195          "Misaligned heap: " PTR_FORMAT, p2i(base()));



 196 
 197 #if SHENANDOAH_OPTIMIZED_MARKTASK
 198   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 199   // Fail if we ever attempt to address more than we can.
 200   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 201     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 202                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 203                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 204                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 205     vm_exit_during_initialization("Fatal Error", buf);
 206   }
 207 #endif
 208 
 209   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 210   if (!_heap_region_special) {
 211     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 212                               "Cannot commit heap memory");
 213   }
 214 






















 215   //
 216   // Reserve and commit memory for bitmap(s)
 217   //
 218 
 219   _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 220   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 221 
 222   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 223 
 224   guarantee(bitmap_bytes_per_region != 0,
 225             "Bitmap bytes per region should not be zero");
 226   guarantee(is_power_of_2(bitmap_bytes_per_region),
 227             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 228 
 229   if (bitmap_page_size > bitmap_bytes_per_region) {
 230     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 231     _bitmap_bytes_per_slice = bitmap_page_size;
 232   } else {
 233     _bitmap_regions_per_slice = 1;
 234     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 235   }
 236 
 237   guarantee(_bitmap_regions_per_slice >= 1,
 238             "Should have at least one region per slice: " SIZE_FORMAT,
 239             _bitmap_regions_per_slice);
 240 
 241   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 242             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 243             _bitmap_bytes_per_slice, bitmap_page_size);
 244 
 245   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);




 246   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 247   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 248   _bitmap_region_special = bitmap.special();
 249 
 250   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 251                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 252   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 253   if (!_bitmap_region_special) {
 254     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 255                               "Cannot commit bitmap memory");
 256   }
 257 
 258   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers);
 259 
 260   if (ShenandoahVerify) {
 261     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);




 262     if (!verify_bitmap.special()) {
 263       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 264                                 "Cannot commit verification bitmap memory");
 265     }
 266     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 267     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 268     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 269     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 270   }
 271 
 272   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 273   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);





 274   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 275   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 276   _aux_bitmap_region_special = aux_bitmap.special();
 277   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 278 
 279   //
 280   // Create regions and region sets
 281   //
 282   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 283   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 284   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());

 285 
 286   ReservedSpace region_storage(region_storage_size, region_page_size);



 287   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 288   if (!region_storage.special()) {
 289     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 290                               "Cannot commit region memory");
 291   }
 292 
 293   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 294   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 295   // If not successful, bite a bullet and allocate at whatever address.
 296   {
 297     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 298     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);

 299 
 300     uintptr_t min = round_up_power_of_2(cset_align);
 301     uintptr_t max = (1u << 30u);

 302 
 303     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 304       char* req_addr = (char*)addr;
 305       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 306       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr);
 307       if (cset_rs.is_reserved()) {
 308         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 309         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 310         break;
 311       }
 312     }
 313 
 314     if (_collection_set == nullptr) {
 315       ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size());
 316       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 317     }




 318   }
 319 
 320   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);

 321   _free_set = new ShenandoahFreeSet(this, _num_regions);
 322 
 323   {
 324     ShenandoahHeapLocker locker(lock());
 325 
 326     for (size_t i = 0; i < _num_regions; i++) {
 327       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 328       bool is_committed = i < num_committed_regions;
 329       void* loc = region_storage.base() + i * region_align;
 330 
 331       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 332       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 333 
 334       _marking_context->initialize_top_at_mark_start(r);
 335       _regions[i] = r;
 336       assert(!collection_set()->is_in(i), "New region should not be in collection set");


 337     }
 338 
 339     // Initialize to complete
 340     _marking_context->mark_complete();

 341 
 342     _free_set->rebuild();



 343   }
 344 
 345   if (AlwaysPreTouch) {
 346     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 347     // before initialize() below zeroes it with initializing thread. For any given region,
 348     // we touch the region and the corresponding bitmaps from the same thread.
 349     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 350 
 351     _pretouch_heap_page_size = heap_page_size;
 352     _pretouch_bitmap_page_size = bitmap_page_size;
 353 
 354 #ifdef LINUX
 355     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 356     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 357     // them into huge one. Therefore, we need to pretouch with smaller pages.
 358     if (UseTransparentHugePages) {
 359       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 360       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 361     }
 362 #endif
 363 
 364     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 365     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 366 
 367     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 368     _workers->run_task(&bcl);
 369 
 370     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 371     _workers->run_task(&hcl);
 372   }
 373 
 374   //
 375   // Initialize the rest of GC subsystems
 376   //
 377 
 378   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 379   for (uint worker = 0; worker < _max_workers; worker++) {
 380     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 381     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 382   }
 383 
 384   // There should probably be Shenandoah-specific options for these,
 385   // just as there are G1-specific options.
 386   {
 387     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 388     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 389     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 390   }
 391 
 392   _monitoring_support = new ShenandoahMonitoringSupport(this);
 393   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 394   ShenandoahCodeRoots::initialize();
 395 
 396   if (ShenandoahPacing) {
 397     _pacer = new ShenandoahPacer(this);
 398     _pacer->setup_for_idle();
 399   } else {
 400     _pacer = nullptr;
 401   }
 402 
 403   _control_thread = new ShenandoahControlThread();
 404 
 405   ShenandoahInitLogger::print();




 406 
 407   return JNI_OK;
 408 }
 409 








 410 void ShenandoahHeap::initialize_mode() {
 411   if (ShenandoahGCMode != nullptr) {
 412     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 413       _gc_mode = new ShenandoahSATBMode();
 414     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 415       _gc_mode = new ShenandoahIUMode();
 416     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 417       _gc_mode = new ShenandoahPassiveMode();


 418     } else {
 419       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 420     }
 421   } else {
 422     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 423   }
 424   _gc_mode->initialize_flags();
 425   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 426     vm_exit_during_initialization(
 427             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 428                     _gc_mode->name()));
 429   }
 430   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 431     vm_exit_during_initialization(
 432             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 433                     _gc_mode->name()));
 434   }
 435 }
 436 
 437 void ShenandoahHeap::initialize_heuristics() {
 438   assert(_gc_mode != nullptr, "Must be initialized");
 439   _heuristics = _gc_mode->initialize_heuristics();
 440 
 441   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 442     vm_exit_during_initialization(
 443             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 444                     _heuristics->name()));
 445   }
 446   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 447     vm_exit_during_initialization(
 448             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 449                     _heuristics->name()));
 450   }
 451 }
 452 
 453 #ifdef _MSC_VER
 454 #pragma warning( push )
 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 456 #endif
 457 
 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 459   CollectedHeap(),


 460   _initial_size(0),
 461   _used(0),
 462   _committed(0),
 463   _bytes_allocated_since_gc_start(0),
 464   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 465   _workers(nullptr),
 466   _safepoint_workers(nullptr),
 467   _heap_region_special(false),
 468   _num_regions(0),
 469   _regions(nullptr),
 470   _update_refs_iterator(this),
 471   _gc_state_changed(false),




 472   _control_thread(nullptr),



 473   _shenandoah_policy(policy),
 474   _gc_mode(nullptr),
 475   _heuristics(nullptr),
 476   _free_set(nullptr),
 477   _pacer(nullptr),
 478   _verifier(nullptr),
 479   _phase_timings(nullptr),
 480   _monitoring_support(nullptr),
 481   _memory_pool(nullptr),
 482   _stw_memory_manager("Shenandoah Pauses"),
 483   _cycle_memory_manager("Shenandoah Cycles"),
 484   _gc_timer(new ConcurrentGCTimer()),
 485   _soft_ref_policy(),
 486   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 487   _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))),
 488   _marking_context(nullptr),
 489   _bitmap_size(0),
 490   _bitmap_regions_per_slice(0),
 491   _bitmap_bytes_per_slice(0),
 492   _bitmap_region_special(false),
 493   _aux_bitmap_region_special(false),
 494   _liveness_cache(nullptr),
 495   _collection_set(nullptr)
 496 {
 497   // Initialize GC mode early, so we can adjust barrier support
 498   initialize_mode();
 499   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 500 
 501   _max_workers = MAX2(_max_workers, 1U);
 502   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 503   if (_workers == nullptr) {
 504     vm_exit_during_initialization("Failed necessary allocation.");
 505   } else {
 506     _workers->initialize_workers();
 507   }
 508 
 509   if (ParallelGCThreads > 1) {
 510     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread",
 511                                                 ParallelGCThreads);
 512     _safepoint_workers->initialize_workers();
 513   }
 514 }
 515 
 516 #ifdef _MSC_VER
 517 #pragma warning( pop )
 518 #endif
 519 
 520 class ShenandoahResetBitmapTask : public WorkerTask {
 521 private:
 522   ShenandoahRegionIterator _regions;
 523 
 524 public:
 525   ShenandoahResetBitmapTask() :
 526     WorkerTask("Shenandoah Reset Bitmap") {}
 527 
 528   void work(uint worker_id) {
 529     ShenandoahHeapRegion* region = _regions.next();
 530     ShenandoahHeap* heap = ShenandoahHeap::heap();
 531     ShenandoahMarkingContext* const ctx = heap->marking_context();
 532     while (region != nullptr) {
 533       if (heap->is_bitmap_slice_committed(region)) {
 534         ctx->clear_bitmap(region);
 535       }
 536       region = _regions.next();
 537     }
 538   }
 539 };
 540 
 541 void ShenandoahHeap::reset_mark_bitmap() {
 542   assert_gc_workers(_workers->active_workers());
 543   mark_incomplete_marking_context();
 544 
 545   ShenandoahResetBitmapTask task;
 546   _workers->run_task(&task);
 547 }
 548 
 549 void ShenandoahHeap::print_on(outputStream* st) const {
 550   st->print_cr("Shenandoah Heap");
 551   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 552                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 553                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 554                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 555                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 556   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 557                num_regions(),
 558                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 559                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 560 
 561   st->print("Status: ");
 562   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 563   if (is_concurrent_mark_in_progress())        st->print("marking, ");





 564   if (is_evacuation_in_progress())             st->print("evacuating, ");
 565   if (is_update_refs_in_progress())            st->print("updating refs, ");
 566   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 567   if (is_full_gc_in_progress())                st->print("full gc, ");
 568   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 569   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 570   if (is_concurrent_strong_root_in_progress() &&
 571       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 572 
 573   if (cancelled_gc()) {
 574     st->print("cancelled");
 575   } else {
 576     st->print("not cancelled");
 577   }
 578   st->cr();
 579 
 580   st->print_cr("Reserved region:");
 581   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 582                p2i(reserved_region().start()),
 583                p2i(reserved_region().end()));

 587   if (cset != nullptr) {
 588     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 589     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 590   } else {
 591     st->print_cr(" (null)");
 592   }
 593 
 594   st->cr();
 595   MetaspaceUtils::print_on(st);
 596 
 597   if (Verbose) {
 598     st->cr();
 599     print_heap_regions_on(st);
 600   }
 601 }
 602 
 603 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 604 public:
 605   void do_thread(Thread* thread) {
 606     assert(thread != nullptr, "Sanity");
 607     assert(thread->is_Worker_thread(), "Only worker thread expected");
 608     ShenandoahThreadLocalData::initialize_gclab(thread);
 609   }
 610 };
 611 
 612 void ShenandoahHeap::post_initialize() {
 613   CollectedHeap::post_initialize();




 614   MutexLocker ml(Threads_lock);
 615 
 616   ShenandoahInitWorkerGCLABClosure init_gclabs;
 617   _workers->threads_do(&init_gclabs);
 618 
 619   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 620   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 621   _workers->set_initialize_gclab();



 622   if (_safepoint_workers != nullptr) {
 623     _safepoint_workers->threads_do(&init_gclabs);
 624     _safepoint_workers->set_initialize_gclab();
 625   }
 626 
 627   _heuristics->initialize();
 628 
 629   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 630 }
 631 




 632 size_t ShenandoahHeap::used() const {
 633   return Atomic::load(&_used);
 634 }
 635 
 636 size_t ShenandoahHeap::committed() const {
 637   return Atomic::load(&_committed);
 638 }
 639 
 640 void ShenandoahHeap::increase_committed(size_t bytes) {
 641   shenandoah_assert_heaplocked_or_safepoint();
 642   _committed += bytes;
 643 }
 644 
 645 void ShenandoahHeap::decrease_committed(size_t bytes) {
 646   shenandoah_assert_heaplocked_or_safepoint();
 647   _committed -= bytes;
 648 }
 649 
 650 void ShenandoahHeap::increase_used(size_t bytes) {
 651   Atomic::add(&_used, bytes, memory_order_relaxed);









































 652 }
 653 
 654 void ShenandoahHeap::set_used(size_t bytes) {
 655   Atomic::store(&_used, bytes);



 656 }
 657 
 658 void ShenandoahHeap::decrease_used(size_t bytes) {
 659   assert(used() >= bytes, "never decrease heap size by more than we've left");
 660   Atomic::sub(&_used, bytes, memory_order_relaxed);


 661 }
 662 
 663 void ShenandoahHeap::increase_allocated(size_t bytes) {
 664   Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed);



 665 }
 666 
 667 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 668   size_t bytes = words * HeapWordSize;
 669   if (!waste) {
 670     increase_used(bytes);
 671   }
 672   increase_allocated(bytes);


 673   if (ShenandoahPacing) {
 674     control_thread()->pacing_notify_alloc(words);
 675     if (waste) {
 676       pacer()->claim_for_alloc(words, true);
 677     }
 678   }
 679 }
 680 
 681 size_t ShenandoahHeap::capacity() const {
 682   return committed();
 683 }
 684 
 685 size_t ShenandoahHeap::max_capacity() const {
 686   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 687 }
 688 
 689 size_t ShenandoahHeap::soft_max_capacity() const {
 690   size_t v = Atomic::load(&_soft_max_size);
 691   assert(min_capacity() <= v && v <= max_capacity(),
 692          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 693          min_capacity(), v, max_capacity());
 694   return v;
 695 }
 696 
 697 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 698   assert(min_capacity() <= v && v <= max_capacity(),
 699          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 700          min_capacity(), v, max_capacity());
 701   Atomic::store(&_soft_max_size, v);
 702 }
 703 
 704 size_t ShenandoahHeap::min_capacity() const {
 705   return _minimum_size;
 706 }
 707 
 708 size_t ShenandoahHeap::initial_capacity() const {
 709   return _initial_size;
 710 }
 711 
 712 bool ShenandoahHeap::is_in(const void* p) const {
 713   HeapWord* heap_base = (HeapWord*) base();
 714   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 715   return p >= heap_base && p < last_region_end;
 716 }
 717 
 718 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) {
 719   assert (ShenandoahUncommit, "should be enabled");
 720 
 721   // Application allocates from the beginning of the heap, and GC allocates at
 722   // the end of it. It is more efficient to uncommit from the end, so that applications
 723   // could enjoy the near committed regions. GC allocations are much less frequent,
 724   // and therefore can accept the committing costs.
 725 
 726   size_t count = 0;
 727   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 728     ShenandoahHeapRegion* r = get_region(i - 1);
 729     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 730       ShenandoahHeapLocker locker(lock());
 731       if (r->is_empty_committed()) {
 732         if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) {
 733           break;
 734         }
 735 
 736         r->make_uncommitted();
 737         count++;
 738       }
 739     }
 740     SpinPause(); // allow allocators to take the lock
 741   }
 742 
 743   if (count > 0) {
 744     control_thread()->notify_heap_changed();






 745   }



















































 746 }
 747 
 748 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 749   // New object should fit the GCLAB size
 750   size_t min_size = MAX2(size, PLAB::min_size());
 751 
 752   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 753   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;

 754   new_size = MIN2(new_size, PLAB::max_size());
 755   new_size = MAX2(new_size, PLAB::min_size());
 756 
 757   // Record new heuristic value even if we take any shortcut. This captures
 758   // the case when moderately-sized objects always take a shortcut. At some point,
 759   // heuristics should catch up with them.

 760   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 761 
 762   if (new_size < size) {
 763     // New size still does not fit the object. Fall back to shared allocation.
 764     // This avoids retiring perfectly good GCLABs, when we encounter a large object.

 765     return nullptr;
 766   }
 767 
 768   // Retire current GCLAB, and allocate a new one.
 769   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 770   gclab->retire();
 771 
 772   size_t actual_size = 0;
 773   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 774   if (gclab_buf == nullptr) {
 775     return nullptr;
 776   }
 777 
 778   assert (size <= actual_size, "allocation should fit");
 779 
 780   // ...and clear or zap just allocated TLAB, if needed.
 781   if (ZeroTLAB) {
 782     Copy::zero_to_words(gclab_buf, actual_size);
 783   } else if (ZapTLAB) {
 784     // Skip mangling the space corresponding to the object header to
 785     // ensure that the returned space is not considered parsable by
 786     // any concurrent GC thread.
 787     size_t hdr_size = oopDesc::header_size();
 788     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 789   }
 790   gclab->set_buf(gclab_buf, actual_size);
 791   return gclab->allocate(size);
 792 }
 793 

 794 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 795                                             size_t requested_size,
 796                                             size_t* actual_size) {
 797   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 798   HeapWord* res = allocate_memory(req);
 799   if (res != nullptr) {
 800     *actual_size = req.actual_size();
 801   } else {
 802     *actual_size = 0;
 803   }
 804   return res;
 805 }
 806 
 807 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 808                                              size_t word_size,
 809                                              size_t* actual_size) {
 810   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 811   HeapWord* res = allocate_memory(req);
 812   if (res != nullptr) {
 813     *actual_size = req.actual_size();

 815     *actual_size = 0;
 816   }
 817   return res;
 818 }
 819 
 820 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 821   intptr_t pacer_epoch = 0;
 822   bool in_new_region = false;
 823   HeapWord* result = nullptr;
 824 
 825   if (req.is_mutator_alloc()) {
 826     if (ShenandoahPacing) {
 827       pacer()->pace_for_alloc(req.size());
 828       pacer_epoch = pacer()->epoch();
 829     }
 830 
 831     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 832       result = allocate_memory_under_lock(req, in_new_region);
 833     }
 834 
 835     // Allocation failed, block until control thread reacted, then retry allocation.
 836     //
 837     // It might happen that one of the threads requesting allocation would unblock
 838     // way later after GC happened, only to fail the second allocation, because
 839     // other threads have already depleted the free storage. In this case, a better
 840     // strategy is to try again, as long as GC makes progress (or until at least
 841     // one full GC has completed).
 842     size_t original_count = shenandoah_policy()->full_gc_count();
 843     while (result == nullptr
 844         && (_progress_last_gc.is_set() || original_count == shenandoah_policy()->full_gc_count())) {
 845       control_thread()->handle_alloc_failure(req);
 846       result = allocate_memory_under_lock(req, in_new_region);






























 847     }
 848   } else {
 849     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 850     result = allocate_memory_under_lock(req, in_new_region);
 851     // Do not call handle_alloc_failure() here, because we cannot block.
 852     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 853   }
 854 
 855   if (in_new_region) {
 856     control_thread()->notify_heap_changed();
 857   }
 858 








 859   if (result != nullptr) {
 860     size_t requested = req.size();
 861     size_t actual = req.actual_size();
 862 
 863     assert (req.is_lab_alloc() || (requested == actual),
 864             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 865             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 866 
 867     if (req.is_mutator_alloc()) {
 868       notify_mutator_alloc_words(actual, false);
 869 
 870       // If we requested more than we were granted, give the rest back to pacer.
 871       // This only matters if we are in the same pacing epoch: do not try to unpace
 872       // over the budget for the other phase.
 873       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 874         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 875       }
 876     } else {
 877       increase_used(actual*HeapWordSize);
 878     }
 879   }
 880 
 881   return result;
 882 }
 883 





 884 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 885   // If we are dealing with mutator allocation, then we may need to block for safepoint.
 886   // We cannot block for safepoint for GC allocations, because there is a high chance
 887   // we are already running at safepoint or from stack watermark machinery, and we cannot
 888   // block again.
 889   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
 890   return _free_set->allocate(req, in_new_region);




































 891 }
 892 
 893 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 894                                         bool*  gc_overhead_limit_was_exceeded) {
 895   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 896   return allocate_memory(req);
 897 }
 898 
 899 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 900                                                              size_t size,
 901                                                              Metaspace::MetadataType mdtype) {
 902   MetaWord* result;
 903 
 904   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 905   if (heuristics()->can_unload_classes()) {
 906     ShenandoahHeuristics* h = heuristics();
 907     h->record_metaspace_oom();
 908   }
 909 
 910   // Expand and retry allocation
 911   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 912   if (result != nullptr) {
 913     return result;
 914   }
 915 
 916   // Start full GC
 917   collect(GCCause::_metadata_GC_clear_soft_refs);
 918 
 919   // Retry allocation
 920   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 921   if (result != nullptr) {
 922     return result;
 923   }
 924 
 925   // Expand and retry allocation
 926   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);

 978 
 979 private:
 980   void do_work() {
 981     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 982     ShenandoahHeapRegion* r;
 983     while ((r =_cs->claim_next()) != nullptr) {
 984       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 985       _sh->marked_object_iterate(r, &cl);
 986 
 987       if (ShenandoahPacing) {
 988         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 989       }
 990 
 991       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
 992         break;
 993       }
 994     }
 995   }
 996 };
 997 


























































 998 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
 999   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1000   workers()->run_task(&task);
1001 }
1002 

















































































































































1003 void ShenandoahHeap::trash_cset_regions() {
1004   ShenandoahHeapLocker locker(lock());
1005 
1006   ShenandoahCollectionSet* set = collection_set();
1007   ShenandoahHeapRegion* r;
1008   set->clear_current_index();
1009   while ((r = set->next()) != nullptr) {
1010     r->make_trash();
1011   }
1012   collection_set()->clear();
1013 }
1014 
1015 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1016   st->print_cr("Heap Regions:");
1017   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1018   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1019   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1020   st->print_cr("UWM=update watermark, U=used");
1021   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1022   st->print_cr("S=shared allocs, L=live data");
1023   st->print_cr("CP=critical pins");
1024 
1025   for (size_t i = 0; i < num_regions(); i++) {
1026     get_region(i)->print_on(st);
1027   }
1028 }
1029 
1030 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1031   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1032 
1033   oop humongous_obj = cast_to_oop(start->bottom());
1034   size_t size = humongous_obj->size();
1035   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1036   size_t index = start->index() + required_regions - 1;
1037 
1038   assert(!start->has_live(), "liveness must be zero");
1039 
1040   for(size_t i = 0; i < required_regions; i++) {
1041     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1042     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1043     ShenandoahHeapRegion* region = get_region(index --);
1044 
1045     assert(region->is_humongous(), "expect correct humongous start or continuation");
1046     assert(!region->is_cset(), "Humongous region should not be in collection set");
1047 
1048     region->make_trash_immediate();
1049   }

1050 }
1051 
1052 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1053 public:
1054   ShenandoahCheckCleanGCLABClosure() {}
1055   void do_thread(Thread* thread) {
1056     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1057     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1058     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1059   }
1060 };
1061 
1062 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1063 private:
1064   bool const _resize;
1065 public:
1066   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1067   void do_thread(Thread* thread) {
1068     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1069     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1070     gclab->retire();
1071     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1072       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1073     }
1074   }
1075 };
1076 
1077 void ShenandoahHeap::labs_make_parsable() {
1078   assert(UseTLAB, "Only call with UseTLAB");
1079 
1080   ShenandoahRetireGCLABClosure cl(false);
1081 
1082   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1083     ThreadLocalAllocBuffer& tlab = t->tlab();
1084     tlab.make_parsable();
1085     cl.do_thread(t);
1086   }
1087 
1088   workers()->threads_do(&cl);




1089 }
1090 
1091 void ShenandoahHeap::tlabs_retire(bool resize) {
1092   assert(UseTLAB, "Only call with UseTLAB");
1093   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1094 
1095   ThreadLocalAllocStats stats;
1096 
1097   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1098     ThreadLocalAllocBuffer& tlab = t->tlab();
1099     tlab.retire(&stats);
1100     if (resize) {
1101       tlab.resize();
1102     }
1103   }
1104 
1105   stats.publish();
1106 
1107 #ifdef ASSERT
1108   ShenandoahCheckCleanGCLABClosure cl;
1109   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1110     cl.do_thread(t);
1111   }
1112   workers()->threads_do(&cl);
1113 #endif
1114 }
1115 
1116 void ShenandoahHeap::gclabs_retire(bool resize) {
1117   assert(UseTLAB, "Only call with UseTLAB");
1118   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1119 
1120   ShenandoahRetireGCLABClosure cl(resize);
1121   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1122     cl.do_thread(t);
1123   }

1124   workers()->threads_do(&cl);
1125 
1126   if (safepoint_workers() != nullptr) {
1127     safepoint_workers()->threads_do(&cl);
1128   }
1129 }
1130 
1131 // Returns size in bytes
1132 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1133   // Return the max allowed size, and let the allocation path
1134   // figure out the safe size for current allocation.
1135   return ShenandoahHeapRegion::max_tlab_size_bytes();
1136 }
1137 
1138 size_t ShenandoahHeap::max_tlab_size() const {
1139   // Returns size in words
1140   return ShenandoahHeapRegion::max_tlab_size_words();
1141 }
1142 
1143 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {

1167   }
1168   return nullptr;
1169 }
1170 
1171 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1172   ShenandoahHeapRegion* r = heap_region_containing(addr);
1173   return r->block_is_obj(addr);
1174 }
1175 
1176 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1177   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1178 }
1179 
1180 void ShenandoahHeap::prepare_for_verify() {
1181   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1182     labs_make_parsable();
1183   }
1184 }
1185 
1186 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1187   tcl->do_thread(_control_thread);











1188   workers()->threads_do(tcl);
1189   if (_safepoint_workers != nullptr) {
1190     _safepoint_workers->threads_do(tcl);
1191   }
1192 }
1193 
1194 void ShenandoahHeap::print_tracing_info() const {
1195   LogTarget(Info, gc, stats) lt;
1196   if (lt.is_enabled()) {
1197     ResourceMark rm;
1198     LogStream ls(lt);
1199 
1200     phase_timings()->print_global_on(&ls);
1201 
1202     ls.cr();
1203     ls.cr();
1204 
1205     shenandoah_policy()->print_gc_stats(&ls);
1206 
1207     ls.cr();
1208     ls.cr();
1209   }
1210 }
1211 










































1212 void ShenandoahHeap::verify(VerifyOption vo) {
1213   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1214     if (ShenandoahVerify) {
1215       verifier()->verify_generic(vo);
1216     } else {
1217       // TODO: Consider allocating verification bitmaps on demand,
1218       // and turn this on unconditionally.
1219     }
1220   }
1221 }
1222 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1223   return _free_set->capacity();
1224 }
1225 
1226 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1227 private:
1228   MarkBitMap* _bitmap;
1229   ShenandoahScanObjectStack* _oop_stack;
1230   ShenandoahHeap* const _heap;
1231   ShenandoahMarkingContext* const _marking_context;

1526   const uint active_workers = workers()->active_workers();
1527   const size_t n_regions = num_regions();
1528   size_t stride = ShenandoahParallelRegionStride;
1529   if (stride == 0 && active_workers > 1) {
1530     // Automatically derive the stride to balance the work between threads
1531     // evenly. Do not try to split work if below the reasonable threshold.
1532     constexpr size_t threshold = 4096;
1533     stride = n_regions <= threshold ?
1534             threshold :
1535             (n_regions + active_workers - 1) / active_workers;
1536   }
1537 
1538   if (n_regions > stride && active_workers > 1) {
1539     ShenandoahParallelHeapRegionTask task(blk, stride);
1540     workers()->run_task(&task);
1541   } else {
1542     heap_region_iterate(blk);
1543   }
1544 }
1545 
1546 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1547 private:
1548   ShenandoahMarkingContext* const _ctx;
1549 public:
1550   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1551 
1552   void heap_region_do(ShenandoahHeapRegion* r) {
1553     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1554     if (r->is_active()) {
1555       // Check if region needs updating its TAMS. We have updated it already during concurrent
1556       // reset, so it is very likely we don't need to do another write here.
1557       if (_ctx->top_at_mark_start(r) != r->top()) {
1558         _ctx->capture_top_at_mark_start(r);
1559       }
1560     } else {
1561       assert(_ctx->top_at_mark_start(r) == r->top(),
1562              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1563     }
1564   }
1565 
1566   bool is_thread_safe() { return true; }
1567 };
1568 
1569 class ShenandoahRendezvousClosure : public HandshakeClosure {
1570 public:
1571   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1572   inline void do_thread(Thread* thread) {}
1573 };
1574 
1575 void ShenandoahHeap::rendezvous_threads() {
1576   ShenandoahRendezvousClosure cl;
1577   Handshake::execute(&cl);
1578 }
1579 
1580 void ShenandoahHeap::recycle_trash() {
1581   free_set()->recycle_trash();
1582 }
1583 
1584 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1585 private:
1586   ShenandoahMarkingContext* const _ctx;
1587 public:
1588   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1589 
1590   void heap_region_do(ShenandoahHeapRegion* r) {
1591     if (r->is_active()) {
1592       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1593       // anyway to capture any updates that happened since now.
1594       r->clear_live_data();
1595       _ctx->capture_top_at_mark_start(r);
1596     }
1597   }
1598 
1599   bool is_thread_safe() { return true; }
1600 };
1601 
1602 void ShenandoahHeap::prepare_gc() {
1603   reset_mark_bitmap();
1604 
1605   ShenandoahResetUpdateRegionStateClosure cl;
1606   parallel_heap_region_iterate(&cl);
1607 }
1608 
1609 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1610 private:
1611   ShenandoahMarkingContext* const _ctx;
1612   ShenandoahHeapLock* const _lock;
1613 
1614 public:
1615   ShenandoahFinalMarkUpdateRegionStateClosure() :
1616     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1617 
1618   void heap_region_do(ShenandoahHeapRegion* r) {
1619     if (r->is_active()) {
1620       // All allocations past TAMS are implicitly live, adjust the region data.
1621       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1622       HeapWord *tams = _ctx->top_at_mark_start(r);
1623       HeapWord *top = r->top();
1624       if (top > tams) {
1625         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1626       }
1627 
1628       // We are about to select the collection set, make sure it knows about
1629       // current pinning status. Also, this allows trashing more regions that
1630       // now have their pinning status dropped.
1631       if (r->is_pinned()) {
1632         if (r->pin_count() == 0) {
1633           ShenandoahHeapLocker locker(_lock);
1634           r->make_unpinned();
1635         }
1636       } else {
1637         if (r->pin_count() > 0) {
1638           ShenandoahHeapLocker locker(_lock);
1639           r->make_pinned();
1640         }
1641       }
1642 
1643       // Remember limit for updating refs. It's guaranteed that we get no
1644       // from-space-refs written from here on.
1645       r->set_update_watermark_at_safepoint(r->top());
1646     } else {
1647       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1648       assert(_ctx->top_at_mark_start(r) == r->top(),
1649              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1650     }
1651   }
1652 
1653   bool is_thread_safe() { return true; }
1654 };
1655 
1656 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) {
1657   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
1658   {
1659     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states :
1660                                          ShenandoahPhaseTimings::degen_gc_final_update_region_states);
1661     ShenandoahFinalMarkUpdateRegionStateClosure cl;
1662     parallel_heap_region_iterate(&cl);
1663 
1664     assert_pinned_region_status();
1665   }
1666 
1667   {
1668     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset :
1669                                          ShenandoahPhaseTimings::degen_gc_choose_cset);
1670     ShenandoahHeapLocker locker(lock());
1671     _collection_set->clear();
1672     heuristics()->choose_collection_set(_collection_set);
1673   }
1674 
1675   {
1676     ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset :
1677                                          ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset);
1678     ShenandoahHeapLocker locker(lock());
1679     _free_set->rebuild();
1680   }
1681 }
1682 
1683 void ShenandoahHeap::do_class_unloading() {
1684   _unloader.unload();



1685 }
1686 
1687 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
1688   // Weak refs processing
1689   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
1690                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
1691   ShenandoahTimingsTracker t(phase);
1692   ShenandoahGCWorkerPhase worker_phase(phase);
1693   ref_processor()->process_references(phase, workers(), false /* concurrent */);

1694 }
1695 
1696 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) {
1697   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
1698 
1699   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
1700   // make them parsable for update code to work correctly. Plus, we can compute new sizes
1701   // for future GCLABs here.
1702   if (UseTLAB) {
1703     ShenandoahGCPhase phase(concurrent ?
1704                             ShenandoahPhaseTimings::init_update_refs_manage_gclabs :
1705                             ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);
1706     gclabs_retire(ResizeTLAB);
1707   }
1708 
1709   _update_refs_iterator.reset();
1710 }
1711 
1712 void ShenandoahHeap::propagate_gc_state_to_java_threads() {
1713   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1714   if (_gc_state_changed) {


1715     _gc_state_changed = false;
1716     char state = gc_state();
1717     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1718       ShenandoahThreadLocalData::set_gc_state(t, state);
1719     }
1720   }
1721 }
1722 
1723 void ShenandoahHeap::set_gc_state(uint mask, bool value) {
1724   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
1725   _gc_state.set_cond(mask, value);
1726   _gc_state_changed = true;
1727 }
1728 
1729 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1730   assert(!has_forwarded_objects(), "Not expected before/after mark phase");
1731   set_gc_state(MARKING, in_progress);
1732   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);


























































1733 }
1734 
1735 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1736   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1737   set_gc_state(EVACUATION, in_progress);
1738 }
1739 
1740 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
1741   if (in_progress) {
1742     _concurrent_strong_root_in_progress.set();
1743   } else {
1744     _concurrent_strong_root_in_progress.unset();
1745   }
1746 }
1747 
1748 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
1749   set_gc_state(WEAK_ROOTS, cond);
1750 }
1751 
1752 GCTracer* ShenandoahHeap::tracer() {
1753   return shenandoah_policy()->tracer();
1754 }
1755 
1756 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1757   return _free_set->used();
1758 }
1759 
1760 bool ShenandoahHeap::try_cancel_gc() {
1761   jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
1762   return prev == CANCELLABLE;











1763 }
1764 
1765 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1766   if (try_cancel_gc()) {
1767     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1768     log_info(gc)("%s", msg.buffer());
1769     Events::log(Thread::current(), "%s", msg.buffer());


1770   }

1771 }
1772 
1773 uint ShenandoahHeap::max_workers() {
1774   return _max_workers;
1775 }
1776 
1777 void ShenandoahHeap::stop() {
1778   // The shutdown sequence should be able to terminate when GC is running.
1779 
1780   // Step 0. Notify policy to disable event recording.
1781   _shenandoah_policy->record_shutdown();
1782 
1783   // Step 1. Notify control thread that we are in shutdown.
1784   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1785   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1786   control_thread()->prepare_for_graceful_shutdown();
1787 
1788   // Step 2. Notify GC workers that we are cancelling GC.
1789   cancel_gc(GCCause::_shenandoah_stop_vm);
1790 
1791   // Step 3. Wait until GC worker exits normally.
1792   control_thread()->stop();





1793 }
1794 
1795 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
1796   if (!unload_classes()) return;
1797   ClassUnloadingContext ctx(_workers->active_workers(),
1798                             true /* unregister_nmethods_during_purge */,
1799                             false /* lock_codeblob_free_separately */);
1800 
1801   // Unload classes and purge SystemDictionary.
1802   {
1803     ShenandoahPhaseTimings::Phase phase = full_gc ?
1804                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
1805                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
1806     ShenandoahIsAliveSelector is_alive;
1807     {
1808       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
1809       ShenandoahGCPhase gc_phase(phase);
1810       ShenandoahGCWorkerPhase worker_phase(phase);
1811       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
1812 
1813       uint num_workers = _workers->active_workers();
1814       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
1815       _workers->run_task(&unlink_task);
1816     }
1817     // Release unloaded nmethods's memory.
1818     ClassUnloadingContext::context()->purge_and_free_nmethods();
1819   }
1820 
1821   {
1822     ShenandoahGCPhase phase(full_gc ?
1823                             ShenandoahPhaseTimings::full_gc_purge_cldg :
1824                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
1825     ClassLoaderDataGraph::purge(true /* at_safepoint */);
1826   }
1827   // Resize and verify metaspace
1828   MetaspaceGC::compute_new_size();
1829   DEBUG_ONLY(MetaspaceUtils::verify();)
1830 }
1831 
1832 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
1833 // so they should not have forwarded oops.
1834 // However, we do need to "null" dead oops in the roots, if can not be done
1835 // in concurrent cycles.
1836 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
1837   uint num_workers = _workers->active_workers();
1838   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
1839                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
1840                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
1841   ShenandoahGCPhase phase(timing_phase);
1842   ShenandoahGCWorkerPhase worker_phase(timing_phase);
1843   // Cleanup weak roots
1844   if (has_forwarded_objects()) {
1845     ShenandoahForwardedIsAliveClosure is_alive;
1846     ShenandoahUpdateRefsClosure keep_alive;
1847     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
1848       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
1849     _workers->run_task(&cleaning_task);
1850   } else {
1851     ShenandoahIsAliveClosure is_alive;
1852 #ifdef ASSERT

1856 #else
1857     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
1858       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
1859 #endif
1860     _workers->run_task(&cleaning_task);
1861   }
1862 }
1863 
1864 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
1865   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1866   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
1867   ShenandoahGCPhase phase(full_gc ?
1868                           ShenandoahPhaseTimings::full_gc_purge :
1869                           ShenandoahPhaseTimings::degen_gc_purge);
1870   stw_weak_refs(full_gc);
1871   stw_process_weak_roots(full_gc);
1872   stw_unload_classes(full_gc);
1873 }
1874 
1875 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1876   set_gc_state(HAS_FORWARDED, cond);
1877 }
1878 
1879 void ShenandoahHeap::set_unload_classes(bool uc) {
1880   _unload_classes.set_cond(uc);
1881 }
1882 
1883 bool ShenandoahHeap::unload_classes() const {
1884   return _unload_classes.is_set();
1885 }
1886 
1887 address ShenandoahHeap::in_cset_fast_test_addr() {
1888   ShenandoahHeap* heap = ShenandoahHeap::heap();
1889   assert(heap->collection_set() != nullptr, "Sanity");
1890   return (address) heap->collection_set()->biased_map_address();
1891 }
1892 
1893 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
1894   return Atomic::load(&_bytes_allocated_since_gc_start);
1895 }
1896 
1897 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
1898   Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0);





1899 }
1900 
1901 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
1902   _degenerated_gc_in_progress.set_cond(in_progress);
1903 }
1904 
1905 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
1906   _full_gc_in_progress.set_cond(in_progress);
1907 }
1908 
1909 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
1910   assert (is_full_gc_in_progress(), "should be");
1911   _full_gc_move_in_progress.set_cond(in_progress);
1912 }
1913 
1914 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
1915   set_gc_state(UPDATEREFS, in_progress);
1916 }
1917 
1918 void ShenandoahHeap::register_nmethod(nmethod* nm) {
1919   ShenandoahCodeRoots::register_nmethod(nm);
1920 }
1921 
1922 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
1923   ShenandoahCodeRoots::unregister_nmethod(nm);
1924 }
1925 
1926 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
1927   heap_region_containing(o)->record_pin();
1928 }
1929 
1930 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
1931   ShenandoahHeapRegion* r = heap_region_containing(o);
1932   assert(r != nullptr, "Sanity");
1933   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
1934   r->record_unpin();
1935 }

1942     if (r->is_active()) {
1943       if (r->is_pinned()) {
1944         if (r->pin_count() == 0) {
1945           r->make_unpinned();
1946         }
1947       } else {
1948         if (r->pin_count() > 0) {
1949           r->make_pinned();
1950         }
1951       }
1952     }
1953   }
1954 
1955   assert_pinned_region_status();
1956 }
1957 
1958 #ifdef ASSERT
1959 void ShenandoahHeap::assert_pinned_region_status() {
1960   for (size_t i = 0; i < num_regions(); i++) {
1961     ShenandoahHeapRegion* r = get_region(i);
1962     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
1963            "Region " SIZE_FORMAT " pinning status is inconsistent", i);



1964   }
1965 }
1966 #endif
1967 
1968 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
1969   return _gc_timer;
1970 }
1971 
1972 void ShenandoahHeap::prepare_concurrent_roots() {
1973   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1974   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1975   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
1976   set_concurrent_weak_root_in_progress(true);
1977   if (unload_classes()) {
1978     _unloader.prepare();
1979   }
1980 }
1981 
1982 void ShenandoahHeap::finish_concurrent_roots() {
1983   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
1984   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
1985   if (unload_classes()) {
1986     _unloader.finish();
1987   }
1988 }
1989 
1990 #ifdef ASSERT
1991 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
1992   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
1993 
1994   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1995     if (UseDynamicNumberOfGCThreads) {
1996       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
1997     } else {
1998       // Use ParallelGCThreads inside safepoints
1999       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
2000     }
2001   } else {
2002     if (UseDynamicNumberOfGCThreads) {
2003       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2004     } else {
2005       // Use ConcGCThreads outside safepoints
2006       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2007     }
2008   }
2009 }
2010 #endif
2011 
2012 ShenandoahVerifier* ShenandoahHeap::verifier() {
2013   guarantee(ShenandoahVerify, "Should be enabled");
2014   assert (_verifier != nullptr, "sanity");
2015   return _verifier;
2016 }
2017 
2018 template<bool CONCURRENT>
2019 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2020 private:
2021   ShenandoahHeap* _heap;
2022   ShenandoahRegionIterator* _regions;
2023 public:
2024   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2025     WorkerTask("Shenandoah Update References"),
2026     _heap(ShenandoahHeap::heap()),
2027     _regions(regions) {
2028   }
2029 
2030   void work(uint worker_id) {
2031     if (CONCURRENT) {
2032       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2033       ShenandoahSuspendibleThreadSetJoiner stsj;
2034       do_work<ShenandoahConcUpdateRefsClosure>();
2035     } else {
2036       ShenandoahParallelWorkerSession worker_session(worker_id);
2037       do_work<ShenandoahSTWUpdateRefsClosure>();
2038     }
2039   }
2040 
2041 private:
2042   template<class T>
2043   void do_work() {












2044     T cl;
2045     ShenandoahHeapRegion* r = _regions->next();
2046     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2047     while (r != nullptr) {
2048       HeapWord* update_watermark = r->get_update_watermark();
2049       assert (update_watermark >= r->bottom(), "sanity");
2050       if (r->is_active() && !r->is_cset()) {
2051         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2052       }
2053       if (ShenandoahPacing) {
2054         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2055       }
2056       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2057         return;
2058       }
2059       r = _regions->next();
2060     }
2061   }
2062 };
2063 
2064 void ShenandoahHeap::update_heap_references(bool concurrent) {
2065   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2066 
2067   if (concurrent) {
2068     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2069     workers()->run_task(&task);
2070   } else {
2071     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2072     workers()->run_task(&task);
2073   }
2074 }
2075 
2076 
2077 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2078 private:
2079   ShenandoahHeapLock* const _lock;
2080 
2081 public:
2082   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2083 
2084   void heap_region_do(ShenandoahHeapRegion* r) {
2085     // Drop unnecessary "pinned" state from regions that does not have CP marks
2086     // anymore, as this would allow trashing them.
2087 
2088     if (r->is_active()) {
2089       if (r->is_pinned()) {
2090         if (r->pin_count() == 0) {
2091           ShenandoahHeapLocker locker(_lock);
2092           r->make_unpinned();
2093         }
2094       } else {
2095         if (r->pin_count() > 0) {
2096           ShenandoahHeapLocker locker(_lock);
2097           r->make_pinned();
2098         }
2099       }
2100     }
2101   }
2102 
2103   bool is_thread_safe() { return true; }
2104 };
2105 
2106 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2107   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2108   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2109 
2110   {
2111     ShenandoahGCPhase phase(concurrent ?
2112                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2113                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2114     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2115     parallel_heap_region_iterate(&cl);
2116 
2117     assert_pinned_region_status();
2118   }
2119 
2120   {
2121     ShenandoahGCPhase phase(concurrent ?
2122                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2123                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2124     trash_cset_regions();
2125   }
2126 }
2127 





2128 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2129   {
2130     ShenandoahGCPhase phase(concurrent ?
2131                             ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2132                             ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2133     ShenandoahHeapLocker locker(lock());
2134     _free_set->rebuild();




































2135   }
2136 }
2137 
2138 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2139   print_on(st);
2140   st->cr();
2141   print_heap_regions_on(st);
2142 }
2143 
2144 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2145   size_t slice = r->index() / _bitmap_regions_per_slice;
2146 
2147   size_t regions_from = _bitmap_regions_per_slice * slice;
2148   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2149   for (size_t g = regions_from; g < regions_to; g++) {
2150     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2151     if (skip_self && g == r->index()) continue;
2152     if (get_region(g)->is_committed()) {
2153       return true;
2154     }

2180     return false;
2181   }
2182 
2183   if (AlwaysPreTouch) {
2184     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2185   }
2186 
2187   return true;
2188 }
2189 
2190 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2191   shenandoah_assert_heaplocked();
2192 
2193   // Bitmaps in special regions do not need uncommits
2194   if (_bitmap_region_special) {
2195     return true;
2196   }
2197 
2198   if (is_bitmap_slice_committed(r, true)) {
2199     // Some other region from the group is still committed, meaning the bitmap
2200     // slice is should stay committed, exit right away.
2201     return true;
2202   }
2203 
2204   // Uncommit the bitmap slice:
2205   size_t slice = r->index() / _bitmap_regions_per_slice;
2206   size_t off = _bitmap_bytes_per_slice * slice;
2207   size_t len = _bitmap_bytes_per_slice;
2208   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2209     return false;
2210   }
2211   return true;
2212 }
2213 





















2214 void ShenandoahHeap::safepoint_synchronize_begin() {
2215   SuspendibleThreadSet::synchronize();
2216 }
2217 
2218 void ShenandoahHeap::safepoint_synchronize_end() {
2219   SuspendibleThreadSet::desynchronize();
2220 }
2221 
2222 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) {
2223   static const char *msg = "Concurrent uncommit";
2224   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2225   EventMark em("%s", msg);
2226 
2227   op_uncommit(shrink_before, shrink_until);
2228 }
2229 
2230 void ShenandoahHeap::try_inject_alloc_failure() {
2231   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2232     _inject_alloc_failure.set();
2233     os::naked_short_sleep(1);
2234     if (cancelled_gc()) {
2235       log_info(gc)("Allocation failure was successfully injected");
2236     }
2237   }
2238 }
2239 
2240 bool ShenandoahHeap::should_inject_alloc_failure() {
2241   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2242 }
2243 
2244 void ShenandoahHeap::initialize_serviceability() {
2245   _memory_pool = new ShenandoahMemoryPool(this);
2246   _cycle_memory_manager.add_pool(_memory_pool);
2247   _stw_memory_manager.add_pool(_memory_pool);
2248 }
2249 
2250 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2251   GrowableArray<GCMemoryManager*> memory_managers(2);
2252   memory_managers.append(&_cycle_memory_manager);
2253   memory_managers.append(&_stw_memory_manager);
2254   return memory_managers;
2255 }
2256 
2257 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2258   GrowableArray<MemoryPool*> memory_pools(1);
2259   memory_pools.append(_memory_pool);
2260   return memory_pools;
2261 }
2262 
2263 MemoryUsage ShenandoahHeap::memory_usage() {
2264   return _memory_pool->get_memory_usage();
2265 }
2266 
2267 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2268   _heap(ShenandoahHeap::heap()),
2269   _index(0) {}
2270 
2271 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2272   _heap(heap),
2273   _index(0) {}
2274 
2275 void ShenandoahRegionIterator::reset() {
2276   _index = 0;
2277 }
2278 
2279 bool ShenandoahRegionIterator::has_next() const {
2280   return _index < _heap->num_regions();
2281 }
2282 
2283 char ShenandoahHeap::gc_state() const {
2284   return _gc_state.raw_value();
2285 }
2286 








2287 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2288 #ifdef ASSERT
2289   assert(_liveness_cache != nullptr, "sanity");
2290   assert(worker_id < _max_workers, "sanity");
2291   for (uint i = 0; i < num_regions(); i++) {
2292     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2293   }
2294 #endif
2295   return _liveness_cache[worker_id];
2296 }
2297 
2298 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2299   assert(worker_id < _max_workers, "sanity");
2300   assert(_liveness_cache != nullptr, "sanity");
2301   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2302   for (uint i = 0; i < num_regions(); i++) {
2303     ShenandoahLiveData live = ld[i];
2304     if (live > 0) {
2305       ShenandoahHeapRegion* r = get_region(i);
2306       r->increase_live_data_gc_words(live);

2309   }
2310 }
2311 
2312 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2313   if (is_idle()) return false;
2314 
2315   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2316   // marking phase.
2317   if (is_concurrent_mark_in_progress() &&
2318      !marking_context()->allocated_after_mark_start(obj)) {
2319     return true;
2320   }
2321 
2322   // Can not guarantee obj is deeply good.
2323   if (has_forwarded_objects()) {
2324     return true;
2325   }
2326 
2327   return false;
2328 }























   1 /*
   2  * Copyright (c) 2023, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2013, 2022, Red Hat, Inc. All rights reserved.
   4  * Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "memory/allocation.hpp"
  29 #include "memory/universe.hpp"
  30 
  31 #include "gc/shared/classUnloadingContext.hpp"
  32 #include "gc/shared/gcArguments.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/locationPrinter.inline.hpp"
  36 #include "gc/shared/memAllocator.hpp"
  37 #include "gc/shared/plab.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 
  40 #include "gc/shenandoah/heuristics/shenandoahOldHeuristics.hpp"
  41 #include "gc/shenandoah/heuristics/shenandoahYoungHeuristics.hpp"
  42 #include "gc/shenandoah/shenandoahAllocRequest.hpp"
  43 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  44 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  45 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  46 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  47 #include "gc/shenandoah/shenandoahConcurrentMark.hpp"
  48 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  49 #include "gc/shenandoah/shenandoahControlThread.hpp"
  50 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  51 #include "gc/shenandoah/shenandoahGenerationalEvacuationTask.hpp"
  52 #include "gc/shenandoah/shenandoahGenerationalHeap.hpp"
  53 #include "gc/shenandoah/shenandoahGlobalGeneration.hpp"
  54 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  55 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  56 #include "gc/shenandoah/shenandoahHeapRegionClosures.hpp"
  57 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  58 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  59 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  60 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  61 #include "gc/shenandoah/shenandoahMemoryPool.hpp"

  62 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  63 #include "gc/shenandoah/shenandoahOldGeneration.hpp"
  64 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  65 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  66 #include "gc/shenandoah/shenandoahPadding.hpp"
  67 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  68 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp"
  69 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  70 #include "gc/shenandoah/shenandoahScanRemembered.inline.hpp"
  71 #include "gc/shenandoah/shenandoahSTWMark.hpp"
  72 #include "gc/shenandoah/shenandoahUncommitThread.hpp"
  73 #include "gc/shenandoah/shenandoahUtils.hpp"
  74 #include "gc/shenandoah/shenandoahVerifier.hpp"
  75 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  76 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  77 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  78 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  79 #include "gc/shenandoah/shenandoahYoungGeneration.hpp"
  80 #include "gc/shenandoah/mode/shenandoahGenerationalMode.hpp"
  81 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  82 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  83 #include "utilities/globalDefinitions.hpp"
  84 
  85 #if INCLUDE_JFR
  86 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  87 #endif
  88 
  89 #include "classfile/systemDictionary.hpp"
  90 #include "code/codeCache.hpp"
  91 #include "memory/classLoaderMetaspace.hpp"
  92 #include "memory/metaspaceUtils.hpp"
  93 #include "oops/compressedOops.inline.hpp"
  94 #include "prims/jvmtiTagMap.hpp"
  95 #include "runtime/atomic.hpp"
  96 #include "runtime/globals.hpp"
  97 #include "runtime/interfaceSupport.inline.hpp"
  98 #include "runtime/java.hpp"
  99 #include "runtime/orderAccess.hpp"
 100 #include "runtime/safepointMechanism.hpp"
 101 #include "runtime/threads.hpp"
 102 #include "runtime/vmThread.hpp"
 103 #include "services/mallocTracker.hpp"
 104 #include "services/memTracker.hpp"
 105 #include "utilities/events.hpp"
 106 #include "utilities/powerOfTwo.hpp"
 107 
 108 class ShenandoahPretouchHeapTask : public WorkerTask {
 109 private:
 110   ShenandoahRegionIterator _regions;
 111   const size_t _page_size;
 112 public:
 113   ShenandoahPretouchHeapTask(size_t page_size) :
 114     WorkerTask("Shenandoah Pretouch Heap"),
 115     _page_size(page_size) {}
 116 
 117   virtual void work(uint worker_id) {
 118     ShenandoahHeapRegion* r = _regions.next();
 119     while (r != nullptr) {
 120       if (r->is_committed()) {
 121         os::pretouch_memory(r->bottom(), r->end(), _page_size);

 157 jint ShenandoahHeap::initialize() {
 158   //
 159   // Figure out heap sizing
 160   //
 161 
 162   size_t init_byte_size = InitialHeapSize;
 163   size_t min_byte_size  = MinHeapSize;
 164   size_t max_byte_size  = MaxHeapSize;
 165   size_t heap_alignment = HeapAlignment;
 166 
 167   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 168 
 169   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 170   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 171 
 172   _num_regions = ShenandoahHeapRegion::region_count();
 173   assert(_num_regions == (max_byte_size / reg_size_bytes),
 174          "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT,
 175          _num_regions, max_byte_size, reg_size_bytes);
 176 



 177   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 178   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 179   assert(num_committed_regions <= _num_regions, "sanity");
 180   _initial_size = num_committed_regions * reg_size_bytes;
 181 
 182   size_t num_min_regions = min_byte_size / reg_size_bytes;
 183   num_min_regions = MIN2(num_min_regions, _num_regions);
 184   assert(num_min_regions <= _num_regions, "sanity");
 185   _minimum_size = num_min_regions * reg_size_bytes;
 186 
 187   // Default to max heap size.
 188   _soft_max_size = _num_regions * reg_size_bytes;
 189 
 190   _committed = _initial_size;
 191 
 192   size_t heap_page_size   = UseLargePages ? os::large_page_size() : os::vm_page_size();
 193   size_t bitmap_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 194   size_t region_page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 195 
 196   //
 197   // Reserve and commit memory for heap
 198   //
 199 
 200   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 201   initialize_reserved_region(heap_rs);
 202   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 203   _heap_region_special = heap_rs.special();
 204 
 205   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 206          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 207   os::trace_page_sizes_for_requested_size("Heap",
 208                                           max_byte_size, heap_rs.page_size(), heap_alignment,
 209                                           heap_rs.base(), heap_rs.size());
 210 
 211 #if SHENANDOAH_OPTIMIZED_MARKTASK
 212   // The optimized ShenandoahMarkTask takes some bits away from the full object bits.
 213   // Fail if we ever attempt to address more than we can.
 214   if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) {
 215     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 216                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 217                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 218                 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable());
 219     vm_exit_during_initialization("Fatal Error", buf);
 220   }
 221 #endif
 222 
 223   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 224   if (!_heap_region_special) {
 225     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 226                               "Cannot commit heap memory");
 227   }
 228 
 229   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this, _heap_region));
 230 
 231   // Now we know the number of regions and heap sizes, initialize the heuristics.
 232   initialize_heuristics();
 233 
 234   assert(_heap_region.byte_size() == heap_rs.size(), "Need to know reserved size for card table");
 235 
 236   //
 237   // Worker threads must be initialized after the barrier is configured
 238   //
 239   _workers = new ShenandoahWorkerThreads("Shenandoah GC Threads", _max_workers);
 240   if (_workers == nullptr) {
 241     vm_exit_during_initialization("Failed necessary allocation.");
 242   } else {
 243     _workers->initialize_workers();
 244   }
 245 
 246   if (ParallelGCThreads > 1) {
 247     _safepoint_workers = new ShenandoahWorkerThreads("Safepoint Cleanup Thread", ParallelGCThreads);
 248     _safepoint_workers->initialize_workers();
 249   }
 250 
 251   //
 252   // Reserve and commit memory for bitmap(s)
 253   //
 254 
 255   size_t bitmap_size_orig = ShenandoahMarkBitMap::compute_size(heap_rs.size());
 256   _bitmap_size = align_up(bitmap_size_orig, bitmap_page_size);
 257 
 258   size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor();
 259 
 260   guarantee(bitmap_bytes_per_region != 0,
 261             "Bitmap bytes per region should not be zero");
 262   guarantee(is_power_of_2(bitmap_bytes_per_region),
 263             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 264 
 265   if (bitmap_page_size > bitmap_bytes_per_region) {
 266     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 267     _bitmap_bytes_per_slice = bitmap_page_size;
 268   } else {
 269     _bitmap_regions_per_slice = 1;
 270     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 271   }
 272 
 273   guarantee(_bitmap_regions_per_slice >= 1,
 274             "Should have at least one region per slice: " SIZE_FORMAT,
 275             _bitmap_regions_per_slice);
 276 
 277   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 278             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 279             _bitmap_bytes_per_slice, bitmap_page_size);
 280 
 281   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 282   os::trace_page_sizes_for_requested_size("Mark Bitmap",
 283                                           bitmap_size_orig, bitmap.page_size(), bitmap_page_size,
 284                                           bitmap.base(),
 285                                           bitmap.size());
 286   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 287   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 288   _bitmap_region_special = bitmap.special();
 289 
 290   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 291     align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 292   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 293   if (!_bitmap_region_special) {
 294     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 295                               "Cannot commit bitmap memory");
 296   }
 297 
 298   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 299 
 300   if (ShenandoahVerify) {
 301     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 302     os::trace_page_sizes_for_requested_size("Verify Bitmap",
 303                                             bitmap_size_orig, verify_bitmap.page_size(), bitmap_page_size,
 304                                             verify_bitmap.base(),
 305                                             verify_bitmap.size());
 306     if (!verify_bitmap.special()) {
 307       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 308                                 "Cannot commit verification bitmap memory");
 309     }
 310     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 311     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 312     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 313     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 314   }
 315 
 316   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 317   size_t aux_bitmap_page_size = bitmap_page_size;
 318 
 319   ReservedSpace aux_bitmap(_bitmap_size, aux_bitmap_page_size);
 320   os::trace_page_sizes_for_requested_size("Aux Bitmap",
 321                                           bitmap_size_orig, aux_bitmap.page_size(), aux_bitmap_page_size,
 322                                           aux_bitmap.base(), aux_bitmap.size());
 323   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 324   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 325   _aux_bitmap_region_special = aux_bitmap.special();
 326   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 327 
 328   //
 329   // Create regions and region sets
 330   //
 331   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 332   size_t region_storage_size_orig = region_align * _num_regions;
 333   size_t region_storage_size = align_up(region_storage_size_orig,
 334                                         MAX2(region_page_size, os::vm_allocation_granularity()));
 335 
 336   ReservedSpace region_storage(region_storage_size, region_page_size);
 337   os::trace_page_sizes_for_requested_size("Region Storage",
 338                                           region_storage_size_orig, region_storage.page_size(), region_page_size,
 339                                           region_storage.base(), region_storage.size());
 340   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 341   if (!region_storage.special()) {
 342     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 343                               "Cannot commit region memory");
 344   }
 345 
 346   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 347   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 348   // If not successful, bite a bullet and allocate at whatever address.
 349   {
 350     const size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 351     const size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 352     const size_t cset_page_size = os::vm_page_size();
 353 
 354     uintptr_t min = round_up_power_of_2(cset_align);
 355     uintptr_t max = (1u << 30u);
 356     ReservedSpace cset_rs;
 357 
 358     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 359       char* req_addr = (char*)addr;
 360       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 361       cset_rs = ReservedSpace(cset_size, cset_align, cset_page_size, req_addr);
 362       if (cset_rs.is_reserved()) {
 363         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 364         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 365         break;
 366       }
 367     }
 368 
 369     if (_collection_set == nullptr) {
 370       cset_rs = ReservedSpace(cset_size, cset_align, os::vm_page_size());
 371       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 372     }
 373     os::trace_page_sizes_for_requested_size("Collection Set",
 374                                             cset_size, cset_rs.page_size(), cset_page_size,
 375                                             cset_rs.base(),
 376                                             cset_rs.size());
 377   }
 378 
 379   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 380   _affiliations = NEW_C_HEAP_ARRAY(uint8_t, _num_regions, mtGC);
 381   _free_set = new ShenandoahFreeSet(this, _num_regions);
 382 
 383   {
 384     ShenandoahHeapLocker locker(lock());
 385 
 386     for (size_t i = 0; i < _num_regions; i++) {
 387       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 388       bool is_committed = i < num_committed_regions;
 389       void* loc = region_storage.base() + i * region_align;
 390 
 391       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 392       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 393 
 394       _marking_context->initialize_top_at_mark_start(r);
 395       _regions[i] = r;
 396       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 397 
 398       _affiliations[i] = ShenandoahAffiliation::FREE;
 399     }
 400 
 401     // Initialize to complete
 402     _marking_context->mark_complete();
 403     size_t young_cset_regions, old_cset_regions;
 404 
 405     // We are initializing free set.  We ignore cset region tallies.
 406     size_t first_old, last_old, num_old;
 407     _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old, last_old, num_old);
 408     _free_set->finish_rebuild(young_cset_regions, old_cset_regions, num_old);
 409   }
 410 
 411   if (AlwaysPreTouch) {
 412     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 413     // before initialize() below zeroes it with initializing thread. For any given region,
 414     // we touch the region and the corresponding bitmaps from the same thread.
 415     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 416 
 417     _pretouch_heap_page_size = heap_page_size;
 418     _pretouch_bitmap_page_size = bitmap_page_size;
 419 










 420     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 421     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 422 
 423     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 424     _workers->run_task(&bcl);
 425 
 426     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 427     _workers->run_task(&hcl);
 428   }
 429 
 430   //
 431   // Initialize the rest of GC subsystems
 432   //
 433 
 434   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 435   for (uint worker = 0; worker < _max_workers; worker++) {
 436     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 437     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 438   }
 439 
 440   // There should probably be Shenandoah-specific options for these,
 441   // just as there are G1-specific options.
 442   {
 443     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 444     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 445     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 446   }
 447 
 448   _monitoring_support = new ShenandoahMonitoringSupport(this);
 449   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 450   ShenandoahCodeRoots::initialize();
 451 
 452   if (ShenandoahPacing) {
 453     _pacer = new ShenandoahPacer(this);
 454     _pacer->setup_for_idle();


 455   }
 456 
 457   initialize_controller();
 458 
 459   if (ShenandoahUncommit) {
 460     _uncommit_thread = new ShenandoahUncommitThread(this);
 461   }
 462 
 463   print_init_logger();
 464 
 465   return JNI_OK;
 466 }
 467 
 468 void ShenandoahHeap::initialize_controller() {
 469   _control_thread = new ShenandoahControlThread();
 470 }
 471 
 472 void ShenandoahHeap::print_init_logger() const {
 473   ShenandoahInitLogger::print();
 474 }
 475 
 476 void ShenandoahHeap::initialize_mode() {
 477   if (ShenandoahGCMode != nullptr) {
 478     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 479       _gc_mode = new ShenandoahSATBMode();


 480     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 481       _gc_mode = new ShenandoahPassiveMode();
 482     } else if (strcmp(ShenandoahGCMode, "generational") == 0) {
 483       _gc_mode = new ShenandoahGenerationalMode();
 484     } else {
 485       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 486     }
 487   } else {
 488     vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)");
 489   }
 490   _gc_mode->initialize_flags();
 491   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 492     vm_exit_during_initialization(
 493             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 494                     _gc_mode->name()));
 495   }
 496   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 497     vm_exit_during_initialization(
 498             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 499                     _gc_mode->name()));
 500   }
 501 }
 502 
 503 void ShenandoahHeap::initialize_heuristics() {
 504   _global_generation = new ShenandoahGlobalGeneration(mode()->is_generational(), max_workers(), max_capacity(), max_capacity());
 505   _global_generation->initialize_heuristics(mode());











 506 }
 507 
 508 #ifdef _MSC_VER
 509 #pragma warning( push )
 510 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 511 #endif
 512 
 513 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 514   CollectedHeap(),
 515   _gc_generation(nullptr),
 516   _active_generation(nullptr),
 517   _initial_size(0),

 518   _committed(0),
 519   _max_workers(MAX3(ConcGCThreads, ParallelGCThreads, 1U)),

 520   _workers(nullptr),
 521   _safepoint_workers(nullptr),
 522   _heap_region_special(false),
 523   _num_regions(0),
 524   _regions(nullptr),
 525   _affiliations(nullptr),
 526   _gc_state_changed(false),
 527   _gc_no_progress_count(0),
 528   _cancel_requested_time(0),
 529   _update_refs_iterator(this),
 530   _global_generation(nullptr),
 531   _control_thread(nullptr),
 532   _uncommit_thread(nullptr),
 533   _young_generation(nullptr),
 534   _old_generation(nullptr),
 535   _shenandoah_policy(policy),
 536   _gc_mode(nullptr),

 537   _free_set(nullptr),
 538   _pacer(nullptr),
 539   _verifier(nullptr),
 540   _phase_timings(nullptr),
 541   _monitoring_support(nullptr),
 542   _memory_pool(nullptr),
 543   _stw_memory_manager("Shenandoah Pauses"),
 544   _cycle_memory_manager("Shenandoah Cycles"),
 545   _gc_timer(new ConcurrentGCTimer()),
 546   _soft_ref_policy(),
 547   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),

 548   _marking_context(nullptr),
 549   _bitmap_size(0),
 550   _bitmap_regions_per_slice(0),
 551   _bitmap_bytes_per_slice(0),
 552   _bitmap_region_special(false),
 553   _aux_bitmap_region_special(false),
 554   _liveness_cache(nullptr),
 555   _collection_set(nullptr)
 556 {
 557   // Initialize GC mode early, many subsequent initialization procedures depend on it
 558   initialize_mode();
 559   _cancelled_gc.set(GCCause::_no_gc);














 560 }
 561 
 562 #ifdef _MSC_VER
 563 #pragma warning( pop )
 564 #endif
 565 





























 566 void ShenandoahHeap::print_on(outputStream* st) const {
 567   st->print_cr("Shenandoah Heap");
 568   st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 569                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 570                byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()),
 571                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 572                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 573   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 574                num_regions(),
 575                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 576                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 577 
 578   st->print("Status: ");
 579   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 580   if (!mode()->is_generational()) {
 581     if (is_concurrent_mark_in_progress())      st->print("marking,");
 582   } else {
 583     if (is_concurrent_old_mark_in_progress())    st->print("old marking, ");
 584     if (is_concurrent_young_mark_in_progress())  st->print("young marking, ");
 585   }
 586   if (is_evacuation_in_progress())             st->print("evacuating, ");
 587   if (is_update_refs_in_progress())            st->print("updating refs, ");
 588   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 589   if (is_full_gc_in_progress())                st->print("full gc, ");
 590   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 591   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 592   if (is_concurrent_strong_root_in_progress() &&
 593       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 594 
 595   if (cancelled_gc()) {
 596     st->print("cancelled");
 597   } else {
 598     st->print("not cancelled");
 599   }
 600   st->cr();
 601 
 602   st->print_cr("Reserved region:");
 603   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 604                p2i(reserved_region().start()),
 605                p2i(reserved_region().end()));

 609   if (cset != nullptr) {
 610     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 611     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 612   } else {
 613     st->print_cr(" (null)");
 614   }
 615 
 616   st->cr();
 617   MetaspaceUtils::print_on(st);
 618 
 619   if (Verbose) {
 620     st->cr();
 621     print_heap_regions_on(st);
 622   }
 623 }
 624 
 625 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 626 public:
 627   void do_thread(Thread* thread) {
 628     assert(thread != nullptr, "Sanity");

 629     ShenandoahThreadLocalData::initialize_gclab(thread);
 630   }
 631 };
 632 
 633 void ShenandoahHeap::post_initialize() {
 634   CollectedHeap::post_initialize();
 635 
 636   // Schedule periodic task to report on gc thread CPU utilization
 637   _mmu_tracker.initialize();
 638 
 639   MutexLocker ml(Threads_lock);
 640 
 641   ShenandoahInitWorkerGCLABClosure init_gclabs;
 642   _workers->threads_do(&init_gclabs);
 643 
 644   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 645   // Now, we will let WorkerThreads to initialize gclab when new worker is created.
 646   _workers->set_initialize_gclab();
 647 
 648   // Note that the safepoint workers may require gclabs if the threads are used to create a heap dump
 649   // during a concurrent evacuation phase.
 650   if (_safepoint_workers != nullptr) {
 651     _safepoint_workers->threads_do(&init_gclabs);
 652     _safepoint_workers->set_initialize_gclab();
 653   }
 654 


 655   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 656 }
 657 
 658 ShenandoahHeuristics* ShenandoahHeap::heuristics() {
 659   return _global_generation->heuristics();
 660 }
 661 
 662 size_t ShenandoahHeap::used() const {
 663   return global_generation()->used();
 664 }
 665 
 666 size_t ShenandoahHeap::committed() const {
 667   return Atomic::load(&_committed);
 668 }
 669 
 670 void ShenandoahHeap::increase_committed(size_t bytes) {
 671   shenandoah_assert_heaplocked_or_safepoint();
 672   _committed += bytes;
 673 }
 674 
 675 void ShenandoahHeap::decrease_committed(size_t bytes) {
 676   shenandoah_assert_heaplocked_or_safepoint();
 677   _committed -= bytes;
 678 }
 679 
 680 // For tracking usage based on allocations, it should be the case that:
 681 // * The sum of regions::used == heap::used
 682 // * The sum of a generation's regions::used == generation::used
 683 // * The sum of a generation's humongous regions::free == generation::humongous_waste
 684 // These invariants are checked by the verifier on GC safepoints.
 685 //
 686 // Additional notes:
 687 // * When a mutator's allocation request causes a region to be retired, the
 688 //   free memory left in that region is considered waste. It does not contribute
 689 //   to the usage, but it _does_ contribute to allocation rate.
 690 // * The bottom of a PLAB must be aligned on card size. In some cases this will
 691 //   require padding in front of the PLAB (a filler object). Because this padding
 692 //   is included in the region's used memory we include the padding in the usage
 693 //   accounting as waste.
 694 // * Mutator allocations are used to compute an allocation rate. They are also
 695 //   sent to the Pacer for those purposes.
 696 // * There are three sources of waste:
 697 //  1. The padding used to align a PLAB on card size
 698 //  2. Region's free is less than minimum TLAB size and is retired
 699 //  3. The unused portion of memory in the last region of a humongous object
 700 void ShenandoahHeap::increase_used(const ShenandoahAllocRequest& req) {
 701   size_t actual_bytes = req.actual_size() * HeapWordSize;
 702   size_t wasted_bytes = req.waste() * HeapWordSize;
 703   ShenandoahGeneration* generation = generation_for(req.affiliation());
 704 
 705   if (req.is_gc_alloc()) {
 706     assert(wasted_bytes == 0 || req.type() == ShenandoahAllocRequest::_alloc_plab, "Only PLABs have waste");
 707     increase_used(generation, actual_bytes + wasted_bytes);
 708   } else {
 709     assert(req.is_mutator_alloc(), "Expected mutator alloc here");
 710     // padding and actual size both count towards allocation counter
 711     generation->increase_allocated(actual_bytes + wasted_bytes);
 712 
 713     // only actual size counts toward usage for mutator allocations
 714     increase_used(generation, actual_bytes);
 715 
 716     // notify pacer of both actual size and waste
 717     notify_mutator_alloc_words(req.actual_size(), req.waste());
 718 
 719     if (wasted_bytes > 0 && ShenandoahHeapRegion::requires_humongous(req.actual_size())) {
 720       increase_humongous_waste(generation,wasted_bytes);
 721     }
 722   }
 723 }
 724 
 725 void ShenandoahHeap::increase_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 726   generation->increase_humongous_waste(bytes);
 727   if (!generation->is_global()) {
 728     global_generation()->increase_humongous_waste(bytes);
 729   }
 730 }
 731 
 732 void ShenandoahHeap::decrease_humongous_waste(ShenandoahGeneration* generation, size_t bytes) {
 733   generation->decrease_humongous_waste(bytes);
 734   if (!generation->is_global()) {
 735     global_generation()->decrease_humongous_waste(bytes);
 736   }
 737 }
 738 
 739 void ShenandoahHeap::increase_used(ShenandoahGeneration* generation, size_t bytes) {
 740   generation->increase_used(bytes);
 741   if (!generation->is_global()) {
 742     global_generation()->increase_used(bytes);
 743   }
 744 }
 745 
 746 void ShenandoahHeap::decrease_used(ShenandoahGeneration* generation, size_t bytes) {
 747   generation->decrease_used(bytes);
 748   if (!generation->is_global()) {
 749     global_generation()->decrease_used(bytes);
 750   }
 751 }
 752 
 753 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, size_t waste) {
 754   if (ShenandoahPacing) {
 755     control_thread()->pacing_notify_alloc(words);
 756     if (waste > 0) {
 757       pacer()->claim_for_alloc<true>(waste);
 758     }
 759   }
 760 }
 761 
 762 size_t ShenandoahHeap::capacity() const {
 763   return committed();
 764 }
 765 
 766 size_t ShenandoahHeap::max_capacity() const {
 767   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 768 }
 769 
 770 size_t ShenandoahHeap::soft_max_capacity() const {
 771   size_t v = Atomic::load(&_soft_max_size);
 772   assert(min_capacity() <= v && v <= max_capacity(),
 773          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 774          min_capacity(), v, max_capacity());
 775   return v;
 776 }
 777 
 778 void ShenandoahHeap::set_soft_max_capacity(size_t v) {
 779   assert(min_capacity() <= v && v <= max_capacity(),
 780          "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT,
 781          min_capacity(), v, max_capacity());
 782   Atomic::store(&_soft_max_size, v);
 783 }
 784 
 785 size_t ShenandoahHeap::min_capacity() const {
 786   return _minimum_size;
 787 }
 788 
 789 size_t ShenandoahHeap::initial_capacity() const {
 790   return _initial_size;
 791 }
 792 
 793 bool ShenandoahHeap::is_in(const void* p) const {
 794   if (!is_in_reserved(p)) {
 795     return false;
 796   }



















 797 
 798   if (is_full_gc_move_in_progress()) {
 799     // Full GC move is running, we do not have a consistent region
 800     // information yet. But we know the pointer is in heap.
 801     return true;

 802   }
 803 
 804   // Now check if we point to a live section in active region.
 805   const ShenandoahHeapRegion* r = heap_region_containing(p);
 806   if (p >= r->top()) {
 807     return false;
 808   }
 809 
 810   if (r->is_active()) {
 811     return true;
 812   }
 813 
 814   // The region is trash, but won't be recycled until after concurrent weak
 815   // roots. We also don't allow mutators to allocate from trash regions
 816   // during weak roots. Concurrent class unloading may access unmarked oops
 817   // in trash regions.
 818   return r->is_trash() && is_concurrent_weak_root_in_progress();
 819 }
 820 
 821 void ShenandoahHeap::notify_soft_max_changed() {
 822   if (_uncommit_thread != nullptr) {
 823     _uncommit_thread->notify_soft_max_changed();
 824   }
 825 }
 826 
 827 void ShenandoahHeap::notify_explicit_gc_requested() {
 828   if (_uncommit_thread != nullptr) {
 829     _uncommit_thread->notify_explicit_gc_requested();
 830   }
 831 }
 832 
 833 bool ShenandoahHeap::check_soft_max_changed() {
 834   size_t new_soft_max = Atomic::load(&SoftMaxHeapSize);
 835   size_t old_soft_max = soft_max_capacity();
 836   if (new_soft_max != old_soft_max) {
 837     new_soft_max = MAX2(min_capacity(), new_soft_max);
 838     new_soft_max = MIN2(max_capacity(), new_soft_max);
 839     if (new_soft_max != old_soft_max) {
 840       log_info(gc)("Soft Max Heap Size: " SIZE_FORMAT "%s -> " SIZE_FORMAT "%s",
 841                    byte_size_in_proper_unit(old_soft_max), proper_unit_for_byte_size(old_soft_max),
 842                    byte_size_in_proper_unit(new_soft_max), proper_unit_for_byte_size(new_soft_max)
 843       );
 844       set_soft_max_capacity(new_soft_max);
 845       return true;
 846     }
 847   }
 848   return false;
 849 }
 850 
 851 void ShenandoahHeap::notify_heap_changed() {
 852   // Update monitoring counters when we took a new region. This amortizes the
 853   // update costs on slow path.
 854   monitoring_support()->notify_heap_changed();
 855   _heap_changed.try_set();
 856 }
 857 
 858 void ShenandoahHeap::set_forced_counters_update(bool value) {
 859   monitoring_support()->set_forced_counters_update(value);
 860 }
 861 
 862 void ShenandoahHeap::handle_force_counters_update() {
 863   monitoring_support()->handle_force_counters_update();
 864 }
 865 
 866 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 867   // New object should fit the GCLAB size
 868   size_t min_size = MAX2(size, PLAB::min_size());
 869 
 870   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 871   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 872 
 873   new_size = MIN2(new_size, PLAB::max_size());
 874   new_size = MAX2(new_size, PLAB::min_size());
 875 
 876   // Record new heuristic value even if we take any shortcut. This captures
 877   // the case when moderately-sized objects always take a shortcut. At some point,
 878   // heuristics should catch up with them.
 879   log_debug(gc, free)("Set new GCLAB size: " SIZE_FORMAT, new_size);
 880   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 881 
 882   if (new_size < size) {
 883     // New size still does not fit the object. Fall back to shared allocation.
 884     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 885     log_debug(gc, free)("New gclab size (" SIZE_FORMAT ") is too small for " SIZE_FORMAT, new_size, size);
 886     return nullptr;
 887   }
 888 
 889   // Retire current GCLAB, and allocate a new one.
 890   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 891   gclab->retire();
 892 
 893   size_t actual_size = 0;
 894   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 895   if (gclab_buf == nullptr) {
 896     return nullptr;
 897   }
 898 
 899   assert (size <= actual_size, "allocation should fit");
 900 
 901   // ...and clear or zap just allocated TLAB, if needed.
 902   if (ZeroTLAB) {
 903     Copy::zero_to_words(gclab_buf, actual_size);
 904   } else if (ZapTLAB) {
 905     // Skip mangling the space corresponding to the object header to
 906     // ensure that the returned space is not considered parsable by
 907     // any concurrent GC thread.
 908     size_t hdr_size = oopDesc::header_size();
 909     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 910   }
 911   gclab->set_buf(gclab_buf, actual_size);
 912   return gclab->allocate(size);
 913 }
 914 
 915 // Called from stubs in JIT code or interpreter
 916 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 917                                             size_t requested_size,
 918                                             size_t* actual_size) {
 919   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 920   HeapWord* res = allocate_memory(req);
 921   if (res != nullptr) {
 922     *actual_size = req.actual_size();
 923   } else {
 924     *actual_size = 0;
 925   }
 926   return res;
 927 }
 928 
 929 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 930                                              size_t word_size,
 931                                              size_t* actual_size) {
 932   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 933   HeapWord* res = allocate_memory(req);
 934   if (res != nullptr) {
 935     *actual_size = req.actual_size();

 937     *actual_size = 0;
 938   }
 939   return res;
 940 }
 941 
 942 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 943   intptr_t pacer_epoch = 0;
 944   bool in_new_region = false;
 945   HeapWord* result = nullptr;
 946 
 947   if (req.is_mutator_alloc()) {
 948     if (ShenandoahPacing) {
 949       pacer()->pace_for_alloc(req.size());
 950       pacer_epoch = pacer()->epoch();
 951     }
 952 
 953     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 954       result = allocate_memory_under_lock(req, in_new_region);
 955     }
 956 
 957     // Check that gc overhead is not exceeded.
 958     //
 959     // Shenandoah will grind along for quite a while allocating one
 960     // object at a time using shared (non-tlab) allocations. This check
 961     // is testing that the GC overhead limit has not been exceeded.
 962     // This will notify the collector to start a cycle, but will raise
 963     // an OOME to the mutator if the last Full GCs have not made progress.
 964     // gc_no_progress_count is incremented following each degen or full GC that fails to achieve is_good_progress().
 965     if ((result == nullptr) && !req.is_lab_alloc() && (get_gc_no_progress_count() > ShenandoahNoProgressThreshold)) {
 966       control_thread()->handle_alloc_failure(req, false);
 967       req.set_actual_size(0);
 968       return nullptr;
 969     }
 970 
 971     if (result == nullptr) {
 972       // Block until control thread reacted, then retry allocation.
 973       //
 974       // It might happen that one of the threads requesting allocation would unblock
 975       // way later after GC happened, only to fail the second allocation, because
 976       // other threads have already depleted the free storage. In this case, a better
 977       // strategy is to try again, until at least one full GC has completed.
 978       //
 979       // Stop retrying and return nullptr to cause OOMError exception if our allocation failed even after:
 980       //   a) We experienced a GC that had good progress, or
 981       //   b) We experienced at least one Full GC (whether or not it had good progress)
 982 
 983       const size_t original_count = shenandoah_policy()->full_gc_count();
 984       while (result == nullptr && should_retry_allocation(original_count)) {
 985         control_thread()->handle_alloc_failure(req, true);
 986         result = allocate_memory_under_lock(req, in_new_region);
 987       }
 988       if (result != nullptr) {
 989         // If our allocation request has been satisfied after it initially failed, we count this as good gc progress
 990         notify_gc_progress();
 991       }
 992       if (log_develop_is_enabled(Debug, gc, alloc)) {
 993         ResourceMark rm;
 994         log_debug(gc, alloc)("Thread: %s, Result: " PTR_FORMAT ", Request: %s, Size: " SIZE_FORMAT
 995                              ", Original: " SIZE_FORMAT ", Latest: " SIZE_FORMAT,
 996                              Thread::current()->name(), p2i(result), req.type_string(), req.size(),
 997                              original_count, get_gc_no_progress_count());
 998       }
 999     }
1000   } else {
1001     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
1002     result = allocate_memory_under_lock(req, in_new_region);
1003     // Do not call handle_alloc_failure() here, because we cannot block.
1004     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
1005   }
1006 
1007   if (in_new_region) {
1008     notify_heap_changed();
1009   }
1010 
1011   if (result == nullptr) {
1012     req.set_actual_size(0);
1013   }
1014 
1015   // This is called regardless of the outcome of the allocation to account
1016   // for any waste created by retiring regions with this request.
1017   increase_used(req);
1018 
1019   if (result != nullptr) {
1020     size_t requested = req.size();
1021     size_t actual = req.actual_size();
1022 
1023     assert (req.is_lab_alloc() || (requested == actual),
1024             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
1025             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
1026 
1027     if (req.is_mutator_alloc()) {


1028       // If we requested more than we were granted, give the rest back to pacer.
1029       // This only matters if we are in the same pacing epoch: do not try to unpace
1030       // over the budget for the other phase.
1031       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
1032         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
1033       }


1034     }
1035   }
1036 
1037   return result;
1038 }
1039 
1040 inline bool ShenandoahHeap::should_retry_allocation(size_t original_full_gc_count) const {
1041   return shenandoah_policy()->full_gc_count() == original_full_gc_count
1042       && !shenandoah_policy()->is_at_shutdown();
1043 }
1044 
1045 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
1046   // If we are dealing with mutator allocation, then we may need to block for safepoint.
1047   // We cannot block for safepoint for GC allocations, because there is a high chance
1048   // we are already running at safepoint or from stack watermark machinery, and we cannot
1049   // block again.
1050   ShenandoahHeapLocker locker(lock(), req.is_mutator_alloc());
1051 
1052   // Make sure the old generation has room for either evacuations or promotions before trying to allocate.
1053   if (req.is_old() && !old_generation()->can_allocate(req)) {
1054     return nullptr;
1055   }
1056 
1057   // If TLAB request size is greater than available, allocate() will attempt to downsize request to fit within available
1058   // memory.
1059   HeapWord* result = _free_set->allocate(req, in_new_region);
1060 
1061   // Record the plab configuration for this result and register the object.
1062   if (result != nullptr && req.is_old()) {
1063     old_generation()->configure_plab_for_current_thread(req);
1064     if (req.type() == ShenandoahAllocRequest::_alloc_shared_gc) {
1065       // Register the newly allocated object while we're holding the global lock since there's no synchronization
1066       // built in to the implementation of register_object().  There are potential races when multiple independent
1067       // threads are allocating objects, some of which might span the same card region.  For example, consider
1068       // a card table's memory region within which three objects are being allocated by three different threads:
1069       //
1070       // objects being "concurrently" allocated:
1071       //    [-----a------][-----b-----][--------------c------------------]
1072       //            [---- card table memory range --------------]
1073       //
1074       // Before any objects are allocated, this card's memory range holds no objects.  Note that allocation of object a
1075       // wants to set the starts-object, first-start, and last-start attributes of the preceding card region.
1076       // Allocation of object b wants to set the starts-object, first-start, and last-start attributes of this card region.
1077       // Allocation of object c also wants to set the starts-object, first-start, and last-start attributes of this
1078       // card region.
1079       //
1080       // The thread allocating b and the thread allocating c can "race" in various ways, resulting in confusion, such as
1081       // last-start representing object b while first-start represents object c.  This is why we need to require all
1082       // register_object() invocations to be "mutually exclusive" with respect to each card's memory range.
1083       old_generation()->card_scan()->register_object(result);
1084     }
1085   }
1086 
1087   return result;
1088 }
1089 
1090 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
1091                                         bool*  gc_overhead_limit_was_exceeded) {
1092   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
1093   return allocate_memory(req);
1094 }
1095 
1096 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
1097                                                              size_t size,
1098                                                              Metaspace::MetadataType mdtype) {
1099   MetaWord* result;
1100 
1101   // Inform metaspace OOM to GC heuristics if class unloading is possible.
1102   ShenandoahHeuristics* h = global_generation()->heuristics();
1103   if (h->can_unload_classes()) {
1104     h->record_metaspace_oom();
1105   }
1106 
1107   // Expand and retry allocation
1108   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
1109   if (result != nullptr) {
1110     return result;
1111   }
1112 
1113   // Start full GC
1114   collect(GCCause::_metadata_GC_clear_soft_refs);
1115 
1116   // Retry allocation
1117   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
1118   if (result != nullptr) {
1119     return result;
1120   }
1121 
1122   // Expand and retry allocation
1123   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);

1175 
1176 private:
1177   void do_work() {
1178     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1179     ShenandoahHeapRegion* r;
1180     while ((r =_cs->claim_next()) != nullptr) {
1181       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
1182       _sh->marked_object_iterate(r, &cl);
1183 
1184       if (ShenandoahPacing) {
1185         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1186       }
1187 
1188       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1189         break;
1190       }
1191     }
1192   }
1193 };
1194 
1195 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1196 private:
1197   bool const _resize;
1198 public:
1199   explicit ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1200   void do_thread(Thread* thread) override {
1201     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1202     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1203     gclab->retire();
1204     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1205       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1206     }
1207 
1208     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1209       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1210       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1211 
1212       // There are two reasons to retire all plabs between old-gen evacuation passes.
1213       //  1. We need to make the plab memory parsable by remembered-set scanning.
1214       //  2. We need to establish a trustworthy UpdateWaterMark value within each old-gen heap region
1215       ShenandoahGenerationalHeap::heap()->retire_plab(plab, thread);
1216       if (_resize && ShenandoahThreadLocalData::plab_size(thread) > 0) {
1217         ShenandoahThreadLocalData::set_plab_size(thread, 0);
1218       }
1219     }
1220   }
1221 };
1222 
1223 class ShenandoahGCStatePropagator : public HandshakeClosure {
1224 public:
1225   explicit ShenandoahGCStatePropagator(char gc_state) :
1226     HandshakeClosure("Shenandoah GC State Change"),
1227     _gc_state(gc_state) {}
1228 
1229   void do_thread(Thread* thread) override {
1230     ShenandoahThreadLocalData::set_gc_state(thread, _gc_state);
1231   }
1232 private:
1233   char _gc_state;
1234 };
1235 
1236 class ShenandoahPrepareForUpdateRefs : public HandshakeClosure {
1237 public:
1238   explicit ShenandoahPrepareForUpdateRefs(char gc_state) :
1239     HandshakeClosure("Shenandoah Prepare for Update Refs"),
1240     _retire(ResizeTLAB), _propagator(gc_state) {}
1241 
1242   void do_thread(Thread* thread) override {
1243     _propagator.do_thread(thread);
1244     if (ShenandoahThreadLocalData::gclab(thread) != nullptr) {
1245       _retire.do_thread(thread);
1246     }
1247   }
1248 private:
1249   ShenandoahRetireGCLABClosure _retire;
1250   ShenandoahGCStatePropagator _propagator;
1251 };
1252 
1253 void ShenandoahHeap::evacuate_collection_set(bool concurrent) {
1254   ShenandoahEvacuationTask task(this, _collection_set, concurrent);
1255   workers()->run_task(&task);
1256 }
1257 
1258 void ShenandoahHeap::concurrent_prepare_for_update_refs() {
1259   {
1260     // Java threads take this lock while they are being attached and added to the list of thread.
1261     // If another thread holds this lock before we update the gc state, it will receive a stale
1262     // gc state, but they will have been added to the list of java threads and so will be corrected
1263     // by the following handshake.
1264     MutexLocker lock(Threads_lock);
1265 
1266     // A cancellation at this point means the degenerated cycle must resume from update-refs.
1267     set_gc_state_concurrent(EVACUATION, false);
1268     set_gc_state_concurrent(WEAK_ROOTS, false);
1269     set_gc_state_concurrent(UPDATE_REFS, true);
1270   }
1271 
1272   // This will propagate the gc state and retire gclabs and plabs for threads that require it.
1273   ShenandoahPrepareForUpdateRefs prepare_for_update_refs(_gc_state.raw_value());
1274 
1275   // The handshake won't touch worker threads (or control thread, or VM thread), so do those separately.
1276   Threads::non_java_threads_do(&prepare_for_update_refs);
1277 
1278   // Now retire gclabs and plabs and propagate gc_state for mutator threads
1279   Handshake::execute(&prepare_for_update_refs);
1280 
1281   _update_refs_iterator.reset();
1282 }
1283 
1284 class ShenandoahCompositeHandshakeClosure : public HandshakeClosure {
1285   HandshakeClosure* _handshake_1;
1286   HandshakeClosure* _handshake_2;
1287   public:
1288     ShenandoahCompositeHandshakeClosure(HandshakeClosure* handshake_1, HandshakeClosure* handshake_2) :
1289       HandshakeClosure(handshake_2->name()),
1290       _handshake_1(handshake_1), _handshake_2(handshake_2) {}
1291 
1292   void do_thread(Thread* thread) override {
1293       _handshake_1->do_thread(thread);
1294       _handshake_2->do_thread(thread);
1295     }
1296 };
1297 
1298 void ShenandoahHeap::concurrent_final_roots(HandshakeClosure* handshake_closure) {
1299   {
1300     assert(!is_evacuation_in_progress(), "Should not evacuate for abbreviated or old cycles");
1301     MutexLocker lock(Threads_lock);
1302     set_gc_state_concurrent(WEAK_ROOTS, false);
1303   }
1304 
1305   ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
1306   Threads::non_java_threads_do(&propagator);
1307   if (handshake_closure == nullptr) {
1308     Handshake::execute(&propagator);
1309   } else {
1310     ShenandoahCompositeHandshakeClosure composite(&propagator, handshake_closure);
1311     Handshake::execute(&composite);
1312   }
1313 }
1314 
1315 oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
1316   assert(thread == Thread::current(), "Expected thread parameter to be current thread.");
1317   if (ShenandoahThreadLocalData::is_oom_during_evac(thread)) {
1318     // This thread went through the OOM during evac protocol. It is safe to return
1319     // the forward pointer. It must not attempt to evacuate any other objects.
1320     return ShenandoahBarrierSet::resolve_forwarded(p);
1321   }
1322 
1323   assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope");
1324 
1325   ShenandoahHeapRegion* r = heap_region_containing(p);
1326   assert(!r->is_humongous(), "never evacuate humongous objects");
1327 
1328   ShenandoahAffiliation target_gen = r->affiliation();
1329   return try_evacuate_object(p, thread, r, target_gen);
1330 }
1331 
1332 oop ShenandoahHeap::try_evacuate_object(oop p, Thread* thread, ShenandoahHeapRegion* from_region,
1333                                                ShenandoahAffiliation target_gen) {
1334   assert(target_gen == YOUNG_GENERATION, "Only expect evacuations to young in this mode");
1335   assert(from_region->is_young(), "Only expect evacuations from young in this mode");
1336   bool alloc_from_lab = true;
1337   HeapWord* copy = nullptr;
1338   size_t size = p->size();
1339 
1340 #ifdef ASSERT
1341   if (ShenandoahOOMDuringEvacALot &&
1342       (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
1343     copy = nullptr;
1344   } else {
1345 #endif
1346     if (UseTLAB) {
1347       copy = allocate_from_gclab(thread, size);
1348     }
1349     if (copy == nullptr) {
1350       // If we failed to allocate in LAB, we'll try a shared allocation.
1351       ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size, target_gen);
1352       copy = allocate_memory(req);
1353       alloc_from_lab = false;
1354     }
1355 #ifdef ASSERT
1356   }
1357 #endif
1358 
1359   if (copy == nullptr) {
1360     control_thread()->handle_alloc_failure_evac(size);
1361 
1362     _oom_evac_handler.handle_out_of_memory_during_evacuation();
1363 
1364     return ShenandoahBarrierSet::resolve_forwarded(p);
1365   }
1366 
1367   // Copy the object:
1368   Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size);
1369 
1370   // Try to install the new forwarding pointer.
1371   oop copy_val = cast_to_oop(copy);
1372   oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
1373   if (result == copy_val) {
1374     // Successfully evacuated. Our copy is now the public one!
1375     ContinuationGCSupport::relativize_stack_chunk(copy_val);
1376     shenandoah_assert_correct(nullptr, copy_val);
1377     return copy_val;
1378   }  else {
1379     // Failed to evacuate. We need to deal with the object that is left behind. Since this
1380     // new allocation is certainly after TAMS, it will be considered live in the next cycle.
1381     // But if it happens to contain references to evacuated regions, those references would
1382     // not get updated for this stale copy during this cycle, and we will crash while scanning
1383     // it the next cycle.
1384     if (alloc_from_lab) {
1385       // For LAB allocations, it is enough to rollback the allocation ptr. Either the next
1386       // object will overwrite this stale copy, or the filler object on LAB retirement will
1387       // do this.
1388       ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size);
1389     } else {
1390       // For non-LAB allocations, we have no way to retract the allocation, and
1391       // have to explicitly overwrite the copy with the filler object. With that overwrite,
1392       // we have to keep the fwdptr initialized and pointing to our (stale) copy.
1393       assert(size >= ShenandoahHeap::min_fill_size(), "previously allocated object known to be larger than min_size");
1394       fill_with_object(copy, size);
1395       shenandoah_assert_correct(nullptr, copy_val);
1396       // For non-LAB allocations, the object has already been registered
1397     }
1398     shenandoah_assert_correct(nullptr, result);
1399     return result;
1400   }
1401 }
1402 
1403 void ShenandoahHeap::trash_cset_regions() {
1404   ShenandoahHeapLocker locker(lock());
1405 
1406   ShenandoahCollectionSet* set = collection_set();
1407   ShenandoahHeapRegion* r;
1408   set->clear_current_index();
1409   while ((r = set->next()) != nullptr) {
1410     r->make_trash();
1411   }
1412   collection_set()->clear();
1413 }
1414 
1415 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1416   st->print_cr("Heap Regions:");
1417   st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start");
1418   st->print_cr("              HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set");
1419   st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start");
1420   st->print_cr("UWM=update watermark, U=used");
1421   st->print_cr("T=TLAB allocs, G=GCLAB allocs");
1422   st->print_cr("S=shared allocs, L=live data");
1423   st->print_cr("CP=critical pins");
1424 
1425   for (size_t i = 0; i < num_regions(); i++) {
1426     get_region(i)->print_on(st);
1427   }
1428 }
1429 
1430 size_t ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1431   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1432 
1433   oop humongous_obj = cast_to_oop(start->bottom());
1434   size_t size = humongous_obj->size();
1435   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1436   size_t index = start->index() + required_regions - 1;
1437 
1438   assert(!start->has_live(), "liveness must be zero");
1439 
1440   for(size_t i = 0; i < required_regions; i++) {
1441     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1442     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1443     ShenandoahHeapRegion* region = get_region(index --);
1444 
1445     assert(region->is_humongous(), "expect correct humongous start or continuation");
1446     assert(!region->is_cset(), "Humongous region should not be in collection set");
1447 
1448     region->make_trash_immediate();
1449   }
1450   return required_regions;
1451 }
1452 
1453 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1454 public:
1455   ShenandoahCheckCleanGCLABClosure() {}
1456   void do_thread(Thread* thread) {
1457     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1458     assert(gclab != nullptr, "GCLAB should be initialized for %s", thread->name());
1459     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");


1460 
1461     if (ShenandoahHeap::heap()->mode()->is_generational()) {
1462       PLAB* plab = ShenandoahThreadLocalData::plab(thread);
1463       assert(plab != nullptr, "PLAB should be initialized for %s", thread->name());
1464       assert(plab->words_remaining() == 0, "PLAB should not need retirement");







1465     }
1466   }
1467 };
1468 
1469 void ShenandoahHeap::labs_make_parsable() {
1470   assert(UseTLAB, "Only call with UseTLAB");
1471 
1472   ShenandoahRetireGCLABClosure cl(false);
1473 
1474   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1475     ThreadLocalAllocBuffer& tlab = t->tlab();
1476     tlab.make_parsable();
1477     cl.do_thread(t);
1478   }
1479 
1480   workers()->threads_do(&cl);
1481 
1482   if (safepoint_workers() != nullptr) {
1483     safepoint_workers()->threads_do(&cl);
1484   }
1485 }
1486 
1487 void ShenandoahHeap::tlabs_retire(bool resize) {
1488   assert(UseTLAB, "Only call with UseTLAB");
1489   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1490 
1491   ThreadLocalAllocStats stats;
1492 
1493   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1494     ThreadLocalAllocBuffer& tlab = t->tlab();
1495     tlab.retire(&stats);
1496     if (resize) {
1497       tlab.resize();
1498     }
1499   }
1500 
1501   stats.publish();
1502 
1503 #ifdef ASSERT
1504   ShenandoahCheckCleanGCLABClosure cl;
1505   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1506     cl.do_thread(t);
1507   }
1508   workers()->threads_do(&cl);
1509 #endif
1510 }
1511 
1512 void ShenandoahHeap::gclabs_retire(bool resize) {
1513   assert(UseTLAB, "Only call with UseTLAB");
1514   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1515 
1516   ShenandoahRetireGCLABClosure cl(resize);
1517   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1518     cl.do_thread(t);
1519   }
1520 
1521   workers()->threads_do(&cl);
1522 
1523   if (safepoint_workers() != nullptr) {
1524     safepoint_workers()->threads_do(&cl);
1525   }
1526 }
1527 
1528 // Returns size in bytes
1529 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1530   // Return the max allowed size, and let the allocation path
1531   // figure out the safe size for current allocation.
1532   return ShenandoahHeapRegion::max_tlab_size_bytes();
1533 }
1534 
1535 size_t ShenandoahHeap::max_tlab_size() const {
1536   // Returns size in words
1537   return ShenandoahHeapRegion::max_tlab_size_words();
1538 }
1539 
1540 void ShenandoahHeap::collect_as_vm_thread(GCCause::Cause cause) {

1564   }
1565   return nullptr;
1566 }
1567 
1568 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1569   ShenandoahHeapRegion* r = heap_region_containing(addr);
1570   return r->block_is_obj(addr);
1571 }
1572 
1573 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1574   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1575 }
1576 
1577 void ShenandoahHeap::prepare_for_verify() {
1578   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1579     labs_make_parsable();
1580   }
1581 }
1582 
1583 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1584   if (_shenandoah_policy->is_at_shutdown()) {
1585     return;
1586   }
1587 
1588   if (_control_thread != nullptr) {
1589     tcl->do_thread(_control_thread);
1590   }
1591 
1592   if (_uncommit_thread != nullptr) {
1593     tcl->do_thread(_uncommit_thread);
1594   }
1595 
1596   workers()->threads_do(tcl);
1597   if (_safepoint_workers != nullptr) {
1598     _safepoint_workers->threads_do(tcl);
1599   }
1600 }
1601 
1602 void ShenandoahHeap::print_tracing_info() const {
1603   LogTarget(Info, gc, stats) lt;
1604   if (lt.is_enabled()) {
1605     ResourceMark rm;
1606     LogStream ls(lt);
1607 
1608     phase_timings()->print_global_on(&ls);
1609 
1610     ls.cr();
1611     ls.cr();
1612 
1613     shenandoah_policy()->print_gc_stats(&ls);
1614 
1615     ls.cr();
1616     ls.cr();
1617   }
1618 }
1619 
1620 void ShenandoahHeap::set_gc_generation(ShenandoahGeneration* generation) {
1621   shenandoah_assert_control_or_vm_thread_at_safepoint();
1622   _gc_generation = generation;
1623 }
1624 
1625 // Active generation may only be set by the VM thread at a safepoint.
1626 void ShenandoahHeap::set_active_generation() {
1627   assert(Thread::current()->is_VM_thread(), "Only the VM Thread");
1628   assert(SafepointSynchronize::is_at_safepoint(), "Only at a safepoint!");
1629   assert(_gc_generation != nullptr, "Will set _active_generation to nullptr");
1630   _active_generation = _gc_generation;
1631 }
1632 
1633 void ShenandoahHeap::on_cycle_start(GCCause::Cause cause, ShenandoahGeneration* generation) {
1634   shenandoah_policy()->record_collection_cause(cause);
1635 
1636   const GCCause::Cause current = gc_cause();
1637   assert(current == GCCause::_no_gc, "Over-writing cause: %s, with: %s",
1638          GCCause::to_string(current), GCCause::to_string(cause));
1639   assert(_gc_generation == nullptr, "Over-writing _gc_generation");
1640 
1641   set_gc_cause(cause);
1642   set_gc_generation(generation);
1643 
1644   generation->heuristics()->record_cycle_start();
1645 }
1646 
1647 void ShenandoahHeap::on_cycle_end(ShenandoahGeneration* generation) {
1648   assert(gc_cause() != GCCause::_no_gc, "cause wasn't set");
1649   assert(_gc_generation != nullptr, "_gc_generation wasn't set");
1650 
1651   generation->heuristics()->record_cycle_end();
1652   if (mode()->is_generational() && generation->is_global()) {
1653     // If we just completed a GLOBAL GC, claim credit for completion of young-gen and old-gen GC as well
1654     young_generation()->heuristics()->record_cycle_end();
1655     old_generation()->heuristics()->record_cycle_end();
1656   }
1657 
1658   set_gc_generation(nullptr);
1659   set_gc_cause(GCCause::_no_gc);
1660 }
1661 
1662 void ShenandoahHeap::verify(VerifyOption vo) {
1663   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1664     if (ShenandoahVerify) {
1665       verifier()->verify_generic(vo);
1666     } else {
1667       // TODO: Consider allocating verification bitmaps on demand,
1668       // and turn this on unconditionally.
1669     }
1670   }
1671 }
1672 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1673   return _free_set->capacity();
1674 }
1675 
1676 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1677 private:
1678   MarkBitMap* _bitmap;
1679   ShenandoahScanObjectStack* _oop_stack;
1680   ShenandoahHeap* const _heap;
1681   ShenandoahMarkingContext* const _marking_context;

1976   const uint active_workers = workers()->active_workers();
1977   const size_t n_regions = num_regions();
1978   size_t stride = ShenandoahParallelRegionStride;
1979   if (stride == 0 && active_workers > 1) {
1980     // Automatically derive the stride to balance the work between threads
1981     // evenly. Do not try to split work if below the reasonable threshold.
1982     constexpr size_t threshold = 4096;
1983     stride = n_regions <= threshold ?
1984             threshold :
1985             (n_regions + active_workers - 1) / active_workers;
1986   }
1987 
1988   if (n_regions > stride && active_workers > 1) {
1989     ShenandoahParallelHeapRegionTask task(blk, stride);
1990     workers()->run_task(&task);
1991   } else {
1992     heap_region_iterate(blk);
1993   }
1994 }
1995 























1996 class ShenandoahRendezvousClosure : public HandshakeClosure {
1997 public:
1998   inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {}
1999   inline void do_thread(Thread* thread) {}
2000 };
2001 
2002 void ShenandoahHeap::rendezvous_threads() {
2003   ShenandoahRendezvousClosure cl;
2004   Handshake::execute(&cl);
2005 }
2006 
2007 void ShenandoahHeap::recycle_trash() {
2008   free_set()->recycle_trash();
2009 }
2010 



































































































2011 void ShenandoahHeap::do_class_unloading() {
2012   _unloader.unload();
2013   if (mode()->is_generational()) {
2014     old_generation()->set_parsable(false);
2015   }
2016 }
2017 
2018 void ShenandoahHeap::stw_weak_refs(bool full_gc) {
2019   // Weak refs processing
2020   ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs
2021                                                 : ShenandoahPhaseTimings::degen_gc_weakrefs;
2022   ShenandoahTimingsTracker t(phase);
2023   ShenandoahGCWorkerPhase worker_phase(phase);
2024   shenandoah_assert_generations_reconciled();
2025   gc_generation()->ref_processor()->process_references(phase, workers(), false /* concurrent */);
2026 }
2027 
2028 void ShenandoahHeap::prepare_update_heap_references() {
2029   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2030 
2031   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
2032   // make them parsable for update code to work correctly. Plus, we can compute new sizes
2033   // for future GCLABs here.
2034   if (UseTLAB) {
2035     ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs);


2036     gclabs_retire(ResizeTLAB);
2037   }
2038 
2039   _update_refs_iterator.reset();
2040 }
2041 
2042 void ShenandoahHeap::propagate_gc_state_to_all_threads() {
2043   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2044   if (_gc_state_changed) {
2045     ShenandoahGCStatePropagator propagator(_gc_state.raw_value());
2046     Threads::threads_do(&propagator);
2047     _gc_state_changed = false;




2048   }
2049 }
2050 
2051 void ShenandoahHeap::set_gc_state_at_safepoint(uint mask, bool value) {
2052   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Must be at Shenandoah safepoint");
2053   _gc_state.set_cond(mask, value);
2054   _gc_state_changed = true;
2055 }
2056 
2057 void ShenandoahHeap::set_gc_state_concurrent(uint mask, bool value) {
2058   // Holding the thread lock here assures that any thread created after we change the gc
2059   // state will have the correct state. It also prevents attaching threads from seeing
2060   // an inconsistent state. See ShenandoahBarrierSet::on_thread_attach for reference. Established
2061   // threads will use their thread local copy of the gc state (changed by a handshake, or on a
2062   // safepoint).
2063   assert(Threads_lock->is_locked(), "Must hold thread lock for concurrent gc state change");
2064   _gc_state.set_cond(mask, value);
2065 }
2066 
2067 void ShenandoahHeap::set_concurrent_young_mark_in_progress(bool in_progress) {
2068   uint mask;
2069   assert(!has_forwarded_objects(), "Young marking is not concurrent with evacuation");
2070   if (!in_progress && is_concurrent_old_mark_in_progress()) {
2071     assert(mode()->is_generational(), "Only generational GC has old marking");
2072     assert(_gc_state.is_set(MARKING), "concurrent_old_marking_in_progress implies MARKING");
2073     // If old-marking is in progress when we turn off YOUNG_MARKING, leave MARKING (and OLD_MARKING) on
2074     mask = YOUNG_MARKING;
2075   } else {
2076     mask = MARKING | YOUNG_MARKING;
2077   }
2078   set_gc_state_at_safepoint(mask, in_progress);
2079   manage_satb_barrier(in_progress);
2080 }
2081 
2082 void ShenandoahHeap::set_concurrent_old_mark_in_progress(bool in_progress) {
2083 #ifdef ASSERT
2084   // has_forwarded_objects() iff UPDATE_REFS or EVACUATION
2085   bool has_forwarded = has_forwarded_objects();
2086   bool updating_or_evacuating = _gc_state.is_set(UPDATE_REFS | EVACUATION);
2087   bool evacuating = _gc_state.is_set(EVACUATION);
2088   assert ((has_forwarded == updating_or_evacuating) || (evacuating && !has_forwarded && collection_set()->is_empty()),
2089           "Updating or evacuating iff has forwarded objects, or if evacuation phase is promoting in place without forwarding");
2090 #endif
2091   if (!in_progress && is_concurrent_young_mark_in_progress()) {
2092     // If young-marking is in progress when we turn off OLD_MARKING, leave MARKING (and YOUNG_MARKING) on
2093     assert(_gc_state.is_set(MARKING), "concurrent_young_marking_in_progress implies MARKING");
2094     set_gc_state_at_safepoint(OLD_MARKING, in_progress);
2095   } else {
2096     set_gc_state_at_safepoint(MARKING | OLD_MARKING, in_progress);
2097   }
2098   manage_satb_barrier(in_progress);
2099 }
2100 
2101 bool ShenandoahHeap::is_prepare_for_old_mark_in_progress() const {
2102   return old_generation()->is_preparing_for_mark();
2103 }
2104 
2105 void ShenandoahHeap::manage_satb_barrier(bool active) {
2106   if (is_concurrent_mark_in_progress()) {
2107     // Ignore request to deactivate barrier while concurrent mark is in progress.
2108     // Do not attempt to re-activate the barrier if it is already active.
2109     if (active && !ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2110       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2111     }
2112   } else {
2113     // No concurrent marking is in progress so honor request to deactivate,
2114     // but only if the barrier is already active.
2115     if (!active && ShenandoahBarrierSet::satb_mark_queue_set().is_active()) {
2116       ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(active, !active);
2117     }
2118   }
2119 }
2120 
2121 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2122   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2123   set_gc_state_at_safepoint(EVACUATION, in_progress);
2124 }
2125 
2126 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2127   if (in_progress) {
2128     _concurrent_strong_root_in_progress.set();
2129   } else {
2130     _concurrent_strong_root_in_progress.unset();
2131   }
2132 }
2133 
2134 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) {
2135   set_gc_state_at_safepoint(WEAK_ROOTS, cond);
2136 }
2137 
2138 GCTracer* ShenandoahHeap::tracer() {
2139   return shenandoah_policy()->tracer();
2140 }
2141 
2142 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2143   return _free_set->used();
2144 }
2145 
2146 bool ShenandoahHeap::try_cancel_gc(GCCause::Cause cause) {
2147   const GCCause::Cause prev = _cancelled_gc.xchg(cause);
2148   return prev == GCCause::_no_gc || prev == GCCause::_shenandoah_concurrent_gc;
2149 }
2150 
2151 void ShenandoahHeap::cancel_concurrent_mark() {
2152   if (mode()->is_generational()) {
2153     young_generation()->cancel_marking();
2154     old_generation()->cancel_marking();
2155   }
2156 
2157   global_generation()->cancel_marking();
2158 
2159   ShenandoahBarrierSet::satb_mark_queue_set().abandon_partial_marking();
2160 }
2161 
2162 bool ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2163   if (try_cancel_gc(cause)) {
2164     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2165     log_info(gc,thread)("%s", msg.buffer());
2166     Events::log(Thread::current(), "%s", msg.buffer());
2167     _cancel_requested_time = os::elapsedTime();
2168     return true;
2169   }
2170   return false;
2171 }
2172 
2173 uint ShenandoahHeap::max_workers() {
2174   return _max_workers;
2175 }
2176 
2177 void ShenandoahHeap::stop() {
2178   // The shutdown sequence should be able to terminate when GC is running.
2179 
2180   // Step 0. Notify policy to disable event recording.
2181   _shenandoah_policy->record_shutdown();
2182 
2183   // Step 1. Stop reporting on gc thread cpu utilization
2184   mmu_tracker()->stop();





2185 
2186   // Step 2. Wait until GC worker exits normally (this will cancel any ongoing GC).
2187   control_thread()->stop();
2188 
2189   // Stop 4. Shutdown uncommit thread.
2190   if (_uncommit_thread != nullptr) {
2191     _uncommit_thread->stop();
2192   }
2193 }
2194 
2195 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2196   if (!unload_classes()) return;
2197   ClassUnloadingContext ctx(_workers->active_workers(),
2198                             true /* unregister_nmethods_during_purge */,
2199                             false /* lock_codeblob_free_separately */);
2200 
2201   // Unload classes and purge SystemDictionary.
2202   {
2203     ShenandoahPhaseTimings::Phase phase = full_gc ?
2204                                           ShenandoahPhaseTimings::full_gc_purge_class_unload :
2205                                           ShenandoahPhaseTimings::degen_gc_purge_class_unload;
2206     ShenandoahIsAliveSelector is_alive;
2207     {
2208       CodeCache::UnlinkingScope scope(is_alive.is_alive_closure());
2209       ShenandoahGCPhase gc_phase(phase);
2210       ShenandoahGCWorkerPhase worker_phase(phase);
2211       bool unloading_occurred = SystemDictionary::do_unloading(gc_timer());
2212 
2213       uint num_workers = _workers->active_workers();
2214       ShenandoahClassUnloadingTask unlink_task(phase, num_workers, unloading_occurred);
2215       _workers->run_task(&unlink_task);
2216     }
2217     // Release unloaded nmethods's memory.
2218     ClassUnloadingContext::context()->purge_and_free_nmethods();
2219   }
2220 
2221   {
2222     ShenandoahGCPhase phase(full_gc ?
2223                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2224                             ShenandoahPhaseTimings::degen_gc_purge_cldg);
2225     ClassLoaderDataGraph::purge(true /* at_safepoint */);
2226   }
2227   // Resize and verify metaspace
2228   MetaspaceGC::compute_new_size();
2229   DEBUG_ONLY(MetaspaceUtils::verify();)
2230 }
2231 
2232 // Weak roots are either pre-evacuated (final mark) or updated (final update refs),
2233 // so they should not have forwarded oops.
2234 // However, we do need to "null" dead oops in the roots, if can not be done
2235 // in concurrent cycles.
2236 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2237   uint num_workers = _workers->active_workers();
2238   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2239                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2240                                                ShenandoahPhaseTimings::degen_gc_purge_weak_par;
2241   ShenandoahGCPhase phase(timing_phase);
2242   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2243   // Cleanup weak roots
2244   if (has_forwarded_objects()) {
2245     ShenandoahForwardedIsAliveClosure is_alive;
2246     ShenandoahUpdateRefsClosure keep_alive;
2247     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2248       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers);
2249     _workers->run_task(&cleaning_task);
2250   } else {
2251     ShenandoahIsAliveClosure is_alive;
2252 #ifdef ASSERT

2256 #else
2257     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2258       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers);
2259 #endif
2260     _workers->run_task(&cleaning_task);
2261   }
2262 }
2263 
2264 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2265   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2266   assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC");
2267   ShenandoahGCPhase phase(full_gc ?
2268                           ShenandoahPhaseTimings::full_gc_purge :
2269                           ShenandoahPhaseTimings::degen_gc_purge);
2270   stw_weak_refs(full_gc);
2271   stw_process_weak_roots(full_gc);
2272   stw_unload_classes(full_gc);
2273 }
2274 
2275 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2276   set_gc_state_at_safepoint(HAS_FORWARDED, cond);
2277 }
2278 
2279 void ShenandoahHeap::set_unload_classes(bool uc) {
2280   _unload_classes.set_cond(uc);
2281 }
2282 
2283 bool ShenandoahHeap::unload_classes() const {
2284   return _unload_classes.is_set();
2285 }
2286 
2287 address ShenandoahHeap::in_cset_fast_test_addr() {
2288   ShenandoahHeap* heap = ShenandoahHeap::heap();
2289   assert(heap->collection_set() != nullptr, "Sanity");
2290   return (address) heap->collection_set()->biased_map_address();
2291 }
2292 




2293 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2294   if (mode()->is_generational()) {
2295     young_generation()->reset_bytes_allocated_since_gc_start();
2296     old_generation()->reset_bytes_allocated_since_gc_start();
2297   }
2298 
2299   global_generation()->reset_bytes_allocated_since_gc_start();
2300 }
2301 
2302 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2303   _degenerated_gc_in_progress.set_cond(in_progress);
2304 }
2305 
2306 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2307   _full_gc_in_progress.set_cond(in_progress);
2308 }
2309 
2310 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2311   assert (is_full_gc_in_progress(), "should be");
2312   _full_gc_move_in_progress.set_cond(in_progress);
2313 }
2314 
2315 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2316   set_gc_state_at_safepoint(UPDATE_REFS, in_progress);
2317 }
2318 
2319 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2320   ShenandoahCodeRoots::register_nmethod(nm);
2321 }
2322 
2323 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2324   ShenandoahCodeRoots::unregister_nmethod(nm);
2325 }
2326 
2327 void ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2328   heap_region_containing(o)->record_pin();
2329 }
2330 
2331 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2332   ShenandoahHeapRegion* r = heap_region_containing(o);
2333   assert(r != nullptr, "Sanity");
2334   assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index());
2335   r->record_unpin();
2336 }

2343     if (r->is_active()) {
2344       if (r->is_pinned()) {
2345         if (r->pin_count() == 0) {
2346           r->make_unpinned();
2347         }
2348       } else {
2349         if (r->pin_count() > 0) {
2350           r->make_pinned();
2351         }
2352       }
2353     }
2354   }
2355 
2356   assert_pinned_region_status();
2357 }
2358 
2359 #ifdef ASSERT
2360 void ShenandoahHeap::assert_pinned_region_status() {
2361   for (size_t i = 0; i < num_regions(); i++) {
2362     ShenandoahHeapRegion* r = get_region(i);
2363     shenandoah_assert_generations_reconciled();
2364     if (gc_generation()->contains(r)) {
2365       assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2366              "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2367     }
2368   }
2369 }
2370 #endif
2371 
2372 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2373   return _gc_timer;
2374 }
2375 
2376 void ShenandoahHeap::prepare_concurrent_roots() {
2377   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2378   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2379   set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2380   set_concurrent_weak_root_in_progress(true);
2381   if (unload_classes()) {
2382     _unloader.prepare();
2383   }
2384 }
2385 
2386 void ShenandoahHeap::finish_concurrent_roots() {
2387   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2388   assert(!is_stw_gc_in_progress(), "Only concurrent GC");
2389   if (unload_classes()) {
2390     _unloader.finish();
2391   }
2392 }
2393 
2394 #ifdef ASSERT
2395 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2396   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2397 
2398   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2399     // Use ParallelGCThreads inside safepoints
2400     assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads (%u) within safepoint, not %u",
2401            ParallelGCThreads, nworkers);



2402   } else {
2403     // Use ConcGCThreads outside safepoints
2404     assert(nworkers == ConcGCThreads, "Use ConcGCThreads (%u) outside safepoints, %u",
2405            ConcGCThreads, nworkers);



2406   }
2407 }
2408 #endif
2409 
2410 ShenandoahVerifier* ShenandoahHeap::verifier() {
2411   guarantee(ShenandoahVerify, "Should be enabled");
2412   assert (_verifier != nullptr, "sanity");
2413   return _verifier;
2414 }
2415 
2416 template<bool CONCURRENT>
2417 class ShenandoahUpdateHeapRefsTask : public WorkerTask {
2418 private:
2419   ShenandoahHeap* _heap;
2420   ShenandoahRegionIterator* _regions;
2421 public:
2422   explicit ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) :
2423     WorkerTask("Shenandoah Update References"),
2424     _heap(ShenandoahHeap::heap()),
2425     _regions(regions) {
2426   }
2427 
2428   void work(uint worker_id) {
2429     if (CONCURRENT) {
2430       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2431       ShenandoahSuspendibleThreadSetJoiner stsj;
2432       do_work<ShenandoahConcUpdateRefsClosure>(worker_id);
2433     } else {
2434       ShenandoahParallelWorkerSession worker_session(worker_id);
2435       do_work<ShenandoahSTWUpdateRefsClosure>(worker_id);
2436     }
2437   }
2438 
2439 private:
2440   template<class T>
2441   void do_work(uint worker_id) {
2442     if (CONCURRENT && (worker_id == 0)) {
2443       // We ask the first worker to replenish the Mutator free set by moving regions previously reserved to hold the
2444       // results of evacuation.  These reserves are no longer necessary because evacuation has completed.
2445       size_t cset_regions = _heap->collection_set()->count();
2446 
2447       // Now that evacuation is done, we can reassign any regions that had been reserved to hold the results of evacuation
2448       // to the mutator free set.  At the end of GC, we will have cset_regions newly evacuated fully empty regions from
2449       // which we will be able to replenish the Collector free set and the OldCollector free set in preparation for the
2450       // next GC cycle.
2451       _heap->free_set()->move_regions_from_collector_to_mutator(cset_regions);
2452     }
2453     // If !CONCURRENT, there's no value in expanding Mutator free set
2454     T cl;
2455     ShenandoahHeapRegion* r = _regions->next();

2456     while (r != nullptr) {
2457       HeapWord* update_watermark = r->get_update_watermark();
2458       assert (update_watermark >= r->bottom(), "sanity");
2459       if (r->is_active() && !r->is_cset()) {
2460         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2461         if (ShenandoahPacing) {
2462           _heap->pacer()->report_update_refs(pointer_delta(update_watermark, r->bottom()));
2463         }
2464       }
2465       if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) {
2466         return;
2467       }
2468       r = _regions->next();
2469     }
2470   }
2471 };
2472 
2473 void ShenandoahHeap::update_heap_references(bool concurrent) {
2474   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2475 
2476   if (concurrent) {
2477     ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator);
2478     workers()->run_task(&task);
2479   } else {
2480     ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator);
2481     workers()->run_task(&task);
2482   }
2483 }
2484 






























2485 void ShenandoahHeap::update_heap_region_states(bool concurrent) {
2486   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2487   assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC");
2488 
2489   {
2490     ShenandoahGCPhase phase(concurrent ?
2491                             ShenandoahPhaseTimings::final_update_refs_update_region_states :
2492                             ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states);
2493 
2494     final_update_refs_update_region_states();
2495 
2496     assert_pinned_region_status();
2497   }
2498 
2499   {
2500     ShenandoahGCPhase phase(concurrent ?
2501                             ShenandoahPhaseTimings::final_update_refs_trash_cset :
2502                             ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset);
2503     trash_cset_regions();
2504   }
2505 }
2506 
2507 void ShenandoahHeap::final_update_refs_update_region_states() {
2508   ShenandoahSynchronizePinnedRegionStates cl;
2509   parallel_heap_region_iterate(&cl);
2510 }
2511 
2512 void ShenandoahHeap::rebuild_free_set(bool concurrent) {
2513   ShenandoahGCPhase phase(concurrent ?
2514                           ShenandoahPhaseTimings::final_update_refs_rebuild_freeset :
2515                           ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset);
2516   ShenandoahHeapLocker locker(lock());
2517   size_t young_cset_regions, old_cset_regions;
2518   size_t first_old_region, last_old_region, old_region_count;
2519   _free_set->prepare_to_rebuild(young_cset_regions, old_cset_regions, first_old_region, last_old_region, old_region_count);
2520   // If there are no old regions, first_old_region will be greater than last_old_region
2521   assert((first_old_region > last_old_region) ||
2522          ((last_old_region + 1 - first_old_region >= old_region_count) &&
2523           get_region(first_old_region)->is_old() && get_region(last_old_region)->is_old()),
2524          "sanity: old_region_count: " SIZE_FORMAT ", first_old_region: " SIZE_FORMAT ", last_old_region: " SIZE_FORMAT,
2525          old_region_count, first_old_region, last_old_region);
2526 
2527   if (mode()->is_generational()) {
2528 #ifdef ASSERT
2529     if (ShenandoahVerify) {
2530       verifier()->verify_before_rebuilding_free_set();
2531     }
2532 #endif
2533 
2534     // The computation of bytes_of_allocation_runway_before_gc_trigger is quite conservative so consider all of this
2535     // available for transfer to old. Note that transfer of humongous regions does not impact available.
2536     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2537     size_t allocation_runway = gen_heap->young_generation()->heuristics()->bytes_of_allocation_runway_before_gc_trigger(young_cset_regions);
2538     gen_heap->compute_old_generation_balance(allocation_runway, old_cset_regions);
2539 
2540     // Total old_available may have been expanded to hold anticipated promotions.  We trigger if the fragmented available
2541     // memory represents more than 16 regions worth of data.  Note that fragmentation may increase when we promote regular
2542     // regions in place when many of these regular regions have an abundant amount of available memory within them.  Fragmentation
2543     // will decrease as promote-by-copy consumes the available memory within these partially consumed regions.
2544     //
2545     // We consider old-gen to have excessive fragmentation if more than 12.5% of old-gen is free memory that resides
2546     // within partially consumed regions of memory.
2547   }
2548   // Rebuild free set based on adjusted generation sizes.
2549   _free_set->finish_rebuild(young_cset_regions, old_cset_regions, old_region_count);
2550 
2551   if (mode()->is_generational()) {
2552     ShenandoahGenerationalHeap* gen_heap = ShenandoahGenerationalHeap::heap();
2553     ShenandoahOldGeneration* old_gen = gen_heap->old_generation();
2554     old_gen->heuristics()->evaluate_triggers(first_old_region, last_old_region, old_region_count, num_regions());
2555   }
2556 }
2557 
2558 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2559   print_on(st);
2560   st->cr();
2561   print_heap_regions_on(st);
2562 }
2563 
2564 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2565   size_t slice = r->index() / _bitmap_regions_per_slice;
2566 
2567   size_t regions_from = _bitmap_regions_per_slice * slice;
2568   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2569   for (size_t g = regions_from; g < regions_to; g++) {
2570     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2571     if (skip_self && g == r->index()) continue;
2572     if (get_region(g)->is_committed()) {
2573       return true;
2574     }

2600     return false;
2601   }
2602 
2603   if (AlwaysPreTouch) {
2604     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2605   }
2606 
2607   return true;
2608 }
2609 
2610 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2611   shenandoah_assert_heaplocked();
2612 
2613   // Bitmaps in special regions do not need uncommits
2614   if (_bitmap_region_special) {
2615     return true;
2616   }
2617 
2618   if (is_bitmap_slice_committed(r, true)) {
2619     // Some other region from the group is still committed, meaning the bitmap
2620     // slice should stay committed, exit right away.
2621     return true;
2622   }
2623 
2624   // Uncommit the bitmap slice:
2625   size_t slice = r->index() / _bitmap_regions_per_slice;
2626   size_t off = _bitmap_bytes_per_slice * slice;
2627   size_t len = _bitmap_bytes_per_slice;
2628   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2629     return false;
2630   }
2631   return true;
2632 }
2633 
2634 void ShenandoahHeap::forbid_uncommit() {
2635   if (_uncommit_thread != nullptr) {
2636     _uncommit_thread->forbid_uncommit();
2637   }
2638 }
2639 
2640 void ShenandoahHeap::allow_uncommit() {
2641   if (_uncommit_thread != nullptr) {
2642     _uncommit_thread->allow_uncommit();
2643   }
2644 }
2645 
2646 #ifdef ASSERT
2647 bool ShenandoahHeap::is_uncommit_in_progress() {
2648   if (_uncommit_thread != nullptr) {
2649     return _uncommit_thread->is_uncommit_in_progress();
2650   }
2651   return false;
2652 }
2653 #endif
2654 
2655 void ShenandoahHeap::safepoint_synchronize_begin() {
2656   SuspendibleThreadSet::synchronize();
2657 }
2658 
2659 void ShenandoahHeap::safepoint_synchronize_end() {
2660   SuspendibleThreadSet::desynchronize();
2661 }
2662 








2663 void ShenandoahHeap::try_inject_alloc_failure() {
2664   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2665     _inject_alloc_failure.set();
2666     os::naked_short_sleep(1);
2667     if (cancelled_gc()) {
2668       log_info(gc)("Allocation failure was successfully injected");
2669     }
2670   }
2671 }
2672 
2673 bool ShenandoahHeap::should_inject_alloc_failure() {
2674   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2675 }
2676 
2677 void ShenandoahHeap::initialize_serviceability() {
2678   _memory_pool = new ShenandoahMemoryPool(this);
2679   _cycle_memory_manager.add_pool(_memory_pool);
2680   _stw_memory_manager.add_pool(_memory_pool);
2681 }
2682 
2683 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2684   GrowableArray<GCMemoryManager*> memory_managers(2);
2685   memory_managers.append(&_cycle_memory_manager);
2686   memory_managers.append(&_stw_memory_manager);
2687   return memory_managers;
2688 }
2689 
2690 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2691   GrowableArray<MemoryPool*> memory_pools(1);
2692   memory_pools.append(_memory_pool);
2693   return memory_pools;
2694 }
2695 
2696 MemoryUsage ShenandoahHeap::memory_usage() {
2697   return MemoryUsage(_initial_size, used(), committed(), max_capacity());
2698 }
2699 
2700 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2701   _heap(ShenandoahHeap::heap()),
2702   _index(0) {}
2703 
2704 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2705   _heap(heap),
2706   _index(0) {}
2707 
2708 void ShenandoahRegionIterator::reset() {
2709   _index = 0;
2710 }
2711 
2712 bool ShenandoahRegionIterator::has_next() const {
2713   return _index < _heap->num_regions();
2714 }
2715 
2716 char ShenandoahHeap::gc_state() const {
2717   return _gc_state.raw_value();
2718 }
2719 
2720 bool ShenandoahHeap::is_gc_state(GCState state) const {
2721   // If the global gc state has been changed, but hasn't yet been propagated to all threads, then
2722   // the global gc state is the correct value. Once the gc state has been synchronized with all threads,
2723   // _gc_state_changed will be toggled to false and we need to use the thread local state.
2724   return _gc_state_changed ? _gc_state.is_set(state) : ShenandoahThreadLocalData::is_gc_state(state);
2725 }
2726 
2727 
2728 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2729 #ifdef ASSERT
2730   assert(_liveness_cache != nullptr, "sanity");
2731   assert(worker_id < _max_workers, "sanity");
2732   for (uint i = 0; i < num_regions(); i++) {
2733     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2734   }
2735 #endif
2736   return _liveness_cache[worker_id];
2737 }
2738 
2739 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2740   assert(worker_id < _max_workers, "sanity");
2741   assert(_liveness_cache != nullptr, "sanity");
2742   ShenandoahLiveData* ld = _liveness_cache[worker_id];
2743   for (uint i = 0; i < num_regions(); i++) {
2744     ShenandoahLiveData live = ld[i];
2745     if (live > 0) {
2746       ShenandoahHeapRegion* r = get_region(i);
2747       r->increase_live_data_gc_words(live);

2750   }
2751 }
2752 
2753 bool ShenandoahHeap::requires_barriers(stackChunkOop obj) const {
2754   if (is_idle()) return false;
2755 
2756   // Objects allocated after marking start are implicitly alive, don't need any barriers during
2757   // marking phase.
2758   if (is_concurrent_mark_in_progress() &&
2759      !marking_context()->allocated_after_mark_start(obj)) {
2760     return true;
2761   }
2762 
2763   // Can not guarantee obj is deeply good.
2764   if (has_forwarded_objects()) {
2765     return true;
2766   }
2767 
2768   return false;
2769 }
2770 
2771 ShenandoahGeneration* ShenandoahHeap::generation_for(ShenandoahAffiliation affiliation) const {
2772   if (!mode()->is_generational()) {
2773     return global_generation();
2774   } else if (affiliation == YOUNG_GENERATION) {
2775     return young_generation();
2776   } else if (affiliation == OLD_GENERATION) {
2777     return old_generation();
2778   }
2779 
2780   ShouldNotReachHere();
2781   return nullptr;
2782 }
2783 
2784 void ShenandoahHeap::log_heap_status(const char* msg) const {
2785   if (mode()->is_generational()) {
2786     young_generation()->log_status(msg);
2787     old_generation()->log_status(msg);
2788   } else {
2789     global_generation()->log_status(msg);
2790   }
2791 }
< prev index next >