< prev index next >

src/hotspot/cpu/aarch64/c1_LIRAssembler_aarch64.cpp

Print this page

  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"

  36 #include "ci/ciInstance.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gc_globals.hpp"
  40 #include "nativeInst_aarch64.hpp"
  41 #include "oops/objArrayKlass.hpp"

  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_aarch64.inline.hpp"
  47 
  48 
  49 #ifndef PRODUCT
  50 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  51 #else
  52 #define COMMENT(x)
  53 #endif
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register SYNC_header = r0;   // synchronization header
  57 const Register SHIFT_count = r0;   // where count for shift operations must be
  58 
  59 #define __ _masm->
  60 
  61 

 414     if (LockingMode == LM_MONITOR) {
 415       __ b(*stub->entry());
 416     } else {
 417       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 418     }
 419     __ bind(*stub->continuation());
 420   }
 421 
 422   if (compilation()->env()->dtrace_method_probes()) {
 423     __ mov(c_rarg0, rthread);
 424     __ mov_metadata(c_rarg1, method()->constant_encoding());
 425     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 426   }
 427 
 428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 429     __ mov(r0, r19);  // Restore the exception
 430   }
 431 
 432   // remove the activation and dispatch to the unwind handler
 433   __ block_comment("remove_frame and dispatch to the unwind handler");
 434   __ remove_frame(initial_frame_size_in_bytes());
 435   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 436 
 437   // Emit the slow path assembly
 438   if (stub != nullptr) {
 439     stub->emit_code(this);
 440   }
 441 
 442   return offset;
 443 }
 444 
 445 
 446 int LIR_Assembler::emit_deopt_handler() {
 447   // generate code for exception handler
 448   address handler_base = __ start_a_stub(deopt_handler_size());
 449   if (handler_base == nullptr) {
 450     // not enough space left for the handler
 451     bailout("deopt handler overflow");
 452     return -1;
 453   }
 454 

 458   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 459   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 460   __ end_a_stub();
 461 
 462   return offset;
 463 }
 464 
 465 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 466   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 467   int pc_offset = code_offset();
 468   flush_debug_info(pc_offset);
 469   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 470   if (info->exception_handlers() != nullptr) {
 471     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 472   }
 473 }
 474 
 475 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 476   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 477 




























 478   // Pop the stack before the safepoint code
 479   __ remove_frame(initial_frame_size_in_bytes());
 480 
 481   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 482     __ reserved_stack_check();
 483   }
 484 
 485   code_stub->set_safepoint_offset(__ offset());
 486   __ relocate(relocInfo::poll_return_type);
 487   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 488   __ ret(lr);
 489 }
 490 




 491 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 492   guarantee(info != nullptr, "Shouldn't be null");
 493   __ get_polling_page(rscratch1, relocInfo::poll_type);
 494   add_debug_info_for_branch(info);  // This isn't just debug info:
 495                                     // it's the oop map
 496   __ read_polling_page(rscratch1, relocInfo::poll_type);
 497   return __ offset();
 498 }
 499 
 500 
 501 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 502   if (from_reg == r31_sp)
 503     from_reg = sp;
 504   if (to_reg == r31_sp)
 505     to_reg = sp;
 506   __ mov(to_reg, from_reg);
 507 }
 508 
 509 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 510 

 517   switch (c->type()) {
 518     case T_INT: {
 519       assert(patch_code == lir_patch_none, "no patching handled here");
 520       __ movw(dest->as_register(), c->as_jint());
 521       break;
 522     }
 523 
 524     case T_ADDRESS: {
 525       assert(patch_code == lir_patch_none, "no patching handled here");
 526       __ mov(dest->as_register(), c->as_jint());
 527       break;
 528     }
 529 
 530     case T_LONG: {
 531       assert(patch_code == lir_patch_none, "no patching handled here");
 532       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 533       break;
 534     }
 535 
 536     case T_OBJECT: {
 537         if (patch_code == lir_patch_none) {
 538           jobject2reg(c->as_jobject(), dest->as_register());
 539         } else {
 540           jobject2reg_with_patching(dest->as_register(), info);


 541         }
 542       break;
 543     }
 544 
 545     case T_METADATA: {
 546       if (patch_code != lir_patch_none) {
 547         klass2reg_with_patching(dest->as_register(), info);
 548       } else {
 549         __ mov_metadata(dest->as_register(), c->as_metadata());
 550       }
 551       break;
 552     }
 553 
 554     case T_FLOAT: {
 555       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 556         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 557       } else {
 558         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 559         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 560       }

 630   LIR_Const* c = src->as_constant_ptr();
 631   LIR_Address* to_addr = dest->as_address_ptr();
 632 
 633   void (Assembler::* insn)(Register Rt, const Address &adr);
 634 
 635   switch (type) {
 636   case T_ADDRESS:
 637     assert(c->as_jint() == 0, "should be");
 638     insn = &Assembler::str;
 639     break;
 640   case T_LONG:
 641     assert(c->as_jlong() == 0, "should be");
 642     insn = &Assembler::str;
 643     break;
 644   case T_INT:
 645     assert(c->as_jint() == 0, "should be");
 646     insn = &Assembler::strw;
 647     break;
 648   case T_OBJECT:
 649   case T_ARRAY:


 650     assert(c->as_jobject() == 0, "should be");
 651     if (UseCompressedOops && !wide) {
 652       insn = &Assembler::strw;
 653     } else {
 654       insn = &Assembler::str;
 655     }
 656     break;
 657   case T_CHAR:
 658   case T_SHORT:
 659     assert(c->as_jint() == 0, "should be");
 660     insn = &Assembler::strh;
 661     break;
 662   case T_BOOLEAN:
 663   case T_BYTE:
 664     assert(c->as_jint() == 0, "should be");
 665     insn = &Assembler::strb;
 666     break;
 667   default:
 668     ShouldNotReachHere();
 669     insn = &Assembler::str;  // unreachable

 980     case T_SHORT:
 981       __ ldrsh(dest->as_register(), as_Address(from_addr));
 982       break;
 983 
 984     default:
 985       ShouldNotReachHere();
 986   }
 987 
 988   if (is_reference_type(type)) {
 989     if (UseCompressedOops && !wide) {
 990       __ decode_heap_oop(dest->as_register());
 991     }
 992 
 993     if (!(UseZGC && !ZGenerational)) {
 994       // Load barrier has not yet been applied, so ZGC can't verify the oop here
 995       __ verify_oop(dest->as_register());
 996     }
 997   }
 998 }
 999 














1000 
1001 int LIR_Assembler::array_element_size(BasicType type) const {
1002   int elem_size = type2aelembytes(type);
1003   return exact_log2(elem_size);
1004 }
1005 
1006 
1007 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1008   switch (op->code()) {
1009   case lir_idiv:
1010   case lir_irem:
1011     arithmetic_idiv(op->code(),
1012                     op->in_opr1(),
1013                     op->in_opr2(),
1014                     op->in_opr3(),
1015                     op->result_opr(),
1016                     op->info());
1017     break;
1018   case lir_fmad:
1019     __ fmaddd(op->result_opr()->as_double_reg(),

1171     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1172                                InstanceKlass::init_state_offset()));
1173     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1174     add_debug_info_for_null_check_here(op->stub()->info());
1175     __ br(Assembler::NE, *op->stub()->entry());
1176   }
1177   __ allocate_object(op->obj()->as_register(),
1178                      op->tmp1()->as_register(),
1179                      op->tmp2()->as_register(),
1180                      op->header_size(),
1181                      op->object_size(),
1182                      op->klass()->as_register(),
1183                      *op->stub()->entry());
1184   __ bind(*op->stub()->continuation());
1185 }
1186 
1187 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1188   Register len =  op->len()->as_register();
1189   __ uxtw(len, len);
1190 
1191   if (UseSlowPath ||
1192       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1193       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1194     __ b(*op->stub()->entry());
1195   } else {
1196     Register tmp1 = op->tmp1()->as_register();
1197     Register tmp2 = op->tmp2()->as_register();
1198     Register tmp3 = op->tmp3()->as_register();
1199     if (len == tmp1) {
1200       tmp1 = tmp3;
1201     } else if (len == tmp2) {
1202       tmp2 = tmp3;
1203     } else if (len == tmp3) {
1204       // everything is ok
1205     } else {
1206       __ mov(tmp3, len);
1207     }
1208     __ allocate_array(op->obj()->as_register(),
1209                       len,
1210                       tmp1,
1211                       tmp2,

1276     assert(data != nullptr,                "need data for type check");
1277     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1278   }
1279   Label* success_target = success;
1280   Label* failure_target = failure;
1281 
1282   if (obj == k_RInfo) {
1283     k_RInfo = dst;
1284   } else if (obj == klass_RInfo) {
1285     klass_RInfo = dst;
1286   }
1287   if (k->is_loaded() && !UseCompressedClassPointers) {
1288     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1289   } else {
1290     Rtmp1 = op->tmp3()->as_register();
1291     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1292   }
1293 
1294   assert_different_registers(obj, k_RInfo, klass_RInfo);
1295 
1296   if (should_profile) {
1297     Register mdo  = klass_RInfo;
1298     __ mov_metadata(mdo, md->constant_encoding());
1299     Label not_null;
1300     __ cbnz(obj, not_null);
1301     // Object is null; update MDO and exit
1302     Address data_addr
1303       = __ form_address(rscratch2, mdo,
1304                         md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1305                         0);
1306     __ ldrb(rscratch1, data_addr);
1307     __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1308     __ strb(rscratch1, data_addr);
1309     __ b(*obj_is_null);
1310     __ bind(not_null);
1311 
1312     Label update_done;
1313     Register recv = k_RInfo;
1314     __ load_klass(recv, obj);
1315     type_profile_helper(mdo, md, data, recv, &update_done);
1316     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1317     __ addptr(counter_addr, DataLayout::counter_increment);
1318 
1319     __ bind(update_done);
1320   } else {
1321     __ cbz(obj, *obj_is_null);








1322   }
1323 
1324   if (!k->is_loaded()) {
1325     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1326   } else {
1327     __ mov_metadata(k_RInfo, k->constant_encoding());
1328   }
1329   __ verify_oop(obj);
1330 
1331   if (op->fast_check()) {
1332     // get object class
1333     // not a safepoint as obj null check happens earlier
1334     __ load_klass(rscratch1, obj);
1335     __ cmp( rscratch1, k_RInfo);
1336 
1337     __ br(Assembler::NE, *failure_target);
1338     // successful cast, fall through to profile or jump
1339   } else {
1340     // get object class
1341     // not a safepoint as obj null check happens earlier

1460     __ bind(success);
1461     if (dst != obj) {
1462       __ mov(dst, obj);
1463     }
1464   } else if (code == lir_instanceof) {
1465     Register obj = op->object()->as_register();
1466     Register dst = op->result_opr()->as_register();
1467     Label success, failure, done;
1468     emit_typecheck_helper(op, &success, &failure, &failure);
1469     __ bind(failure);
1470     __ mov(dst, zr);
1471     __ b(done);
1472     __ bind(success);
1473     __ mov(dst, 1);
1474     __ bind(done);
1475   } else {
1476     ShouldNotReachHere();
1477   }
1478 }
1479 










































































































1480 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1481   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1482   __ cset(rscratch1, Assembler::NE);
1483   __ membar(__ AnyAny);
1484 }
1485 
1486 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1487   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1488   __ cset(rscratch1, Assembler::NE);
1489   __ membar(__ AnyAny);
1490 }
1491 
1492 
1493 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1494   Register addr;
1495   if (op->addr()->is_register()) {
1496     addr = as_reg(op->addr());
1497   } else {
1498     assert(op->addr()->is_address(), "what else?");
1499     LIR_Address* addr_ptr = op->addr()->as_address_ptr();

1976     __ cmp(left->as_register_lo(), right->as_register_lo());
1977     __ mov(dst->as_register(), (uint64_t)-1L);
1978     __ br(Assembler::LT, done);
1979     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1980     __ bind(done);
1981   } else {
1982     ShouldNotReachHere();
1983   }
1984 }
1985 
1986 
1987 void LIR_Assembler::align_call(LIR_Code code) {  }
1988 
1989 
1990 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
1991   address call = __ trampoline_call(Address(op->addr(), rtype));
1992   if (call == nullptr) {
1993     bailout("trampoline stub overflow");
1994     return;
1995   }
1996   add_call_info(code_offset(), op->info());
1997   __ post_call_nop();
1998 }
1999 
2000 
2001 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2002   address call = __ ic_call(op->addr());
2003   if (call == nullptr) {
2004     bailout("trampoline stub overflow");
2005     return;
2006   }
2007   add_call_info(code_offset(), op->info());
2008   __ post_call_nop();
2009 }
2010 
2011 void LIR_Assembler::emit_static_call_stub() {
2012   address call_pc = __ pc();
2013   address stub = __ start_a_stub(call_stub_size());
2014   if (stub == nullptr) {
2015     bailout("static call stub overflow");
2016     return;
2017   }
2018 
2019   int start = __ offset();
2020 
2021   __ relocate(static_stub_Relocation::spec(call_pc));
2022   __ emit_static_call_stub();
2023 
2024   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2025         <= call_stub_size(), "stub too big");
2026   __ end_a_stub();
2027 }

2150 
2151 
2152 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2153   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2154   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2155   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2156   __ mov (rscratch1, c);
2157   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2158 }
2159 
2160 
2161 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2162   ShouldNotReachHere();
2163   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2164   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2165   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2166   __ lea(rscratch1, __ constant_oop_address(o));
2167   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2168 }
2169 










2170 
2171 // This code replaces a call to arraycopy; no exception may
2172 // be thrown in this code, they must be thrown in the System.arraycopy
2173 // activation frame; we could save some checks if this would not be the case
2174 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2175   ciArrayKlass* default_type = op->expected_type();
2176   Register src = op->src()->as_register();
2177   Register dst = op->dst()->as_register();
2178   Register src_pos = op->src_pos()->as_register();
2179   Register dst_pos = op->dst_pos()->as_register();
2180   Register length  = op->length()->as_register();
2181   Register tmp = op->tmp()->as_register();
2182 
2183   CodeStub* stub = op->stub();
2184   int flags = op->flags();
2185   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2186   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2187 






2188   // if we don't know anything, just go through the generic arraycopy
2189   if (default_type == nullptr // || basic_type == T_OBJECT
2190       ) {
2191     Label done;
2192     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2193 
2194     // Save the arguments in case the generic arraycopy fails and we
2195     // have to fall back to the JNI stub
2196     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2197     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2198     __ str(src,              Address(sp, 4*BytesPerWord));
2199 
2200     address copyfunc_addr = StubRoutines::generic_arraycopy();
2201     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2202 
2203     // The arguments are in java calling convention so we shift them
2204     // to C convention
2205     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2206     __ mov(c_rarg0, j_rarg0);
2207     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);

2221     __ cbz(r0, *stub->continuation());
2222 
2223     // Reload values from the stack so they are where the stub
2224     // expects them.
2225     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2226     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2227     __ ldr(src,              Address(sp, 4*BytesPerWord));
2228 
2229     // r0 is -1^K where K == partial copied count
2230     __ eonw(rscratch1, r0, zr);
2231     // adjust length down and src/end pos up by partial copied count
2232     __ subw(length, length, rscratch1);
2233     __ addw(src_pos, src_pos, rscratch1);
2234     __ addw(dst_pos, dst_pos, rscratch1);
2235     __ b(*stub->entry());
2236 
2237     __ bind(*stub->continuation());
2238     return;
2239   }
2240 









2241   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2242 
2243   int elem_size = type2aelembytes(basic_type);
2244   int scale = exact_log2(elem_size);
2245 
2246   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2247   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2248   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2249   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2250 
2251   // test for null
2252   if (flags & LIR_OpArrayCopy::src_null_check) {
2253     __ cbz(src, *stub->entry());
2254   }
2255   if (flags & LIR_OpArrayCopy::dst_null_check) {
2256     __ cbz(dst, *stub->entry());
2257   }
2258 
2259   // If the compiler was not able to prove that exact type of the source or the destination
2260   // of the arraycopy is an array type, check at runtime if the source or the destination is

2808         __ verify_klass_ptr(tmp);
2809 #endif
2810       } else {
2811         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2812                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2813 
2814         __ ldr(tmp, mdo_addr);
2815         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2816 
2817         __ orr(tmp, tmp, TypeEntries::type_unknown);
2818         __ str(tmp, mdo_addr);
2819         // FIXME: Write barrier needed here?
2820       }
2821     }
2822 
2823     __ bind(next);
2824   }
2825   COMMENT("} emit_profile_type");
2826 }
2827 




















2828 
2829 void LIR_Assembler::align_backward_branch_target() {
2830 }
2831 
2832 
2833 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2834   // tmp must be unused
2835   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2836 
2837   if (left->is_single_cpu()) {
2838     assert(dest->is_single_cpu(), "expect single result reg");
2839     __ negw(dest->as_register(), left->as_register());
2840   } else if (left->is_double_cpu()) {
2841     assert(dest->is_double_cpu(), "expect double result reg");
2842     __ neg(dest->as_register_lo(), left->as_register_lo());
2843   } else if (left->is_single_fpu()) {
2844     assert(dest->is_single_fpu(), "expect single float result reg");
2845     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2846   } else {
2847     assert(left->is_double_fpu(), "expect double float operand reg");

2948 void LIR_Assembler::membar_loadload() {
2949   __ membar(Assembler::LoadLoad);
2950 }
2951 
2952 void LIR_Assembler::membar_storestore() {
2953   __ membar(MacroAssembler::StoreStore);
2954 }
2955 
2956 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2957 
2958 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2959 
2960 void LIR_Assembler::on_spin_wait() {
2961   __ spin_wait();
2962 }
2963 
2964 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2965   __ mov(result_reg->as_register(), rthread);
2966 }
2967 




2968 
2969 void LIR_Assembler::peephole(LIR_List *lir) {
2970 #if 0
2971   if (tableswitch_count >= max_tableswitches)
2972     return;
2973 
2974   /*
2975     This finite-state automaton recognizes sequences of compare-and-
2976     branch instructions.  We will turn them into a tableswitch.  You
2977     could argue that C1 really shouldn't be doing this sort of
2978     optimization, but without it the code is really horrible.
2979   */
2980 
2981   enum { start_s, cmp1_s, beq_s, cmp_s } state;
2982   int first_key, last_key = -2147483648;
2983   int next_key = 0;
2984   int start_insn = -1;
2985   int last_insn = -1;
2986   Register reg = noreg;
2987   LIR_Opr reg_opr;

  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "c1/c1_CodeStubs.hpp"
  30 #include "c1/c1_Compilation.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_MacroAssembler.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArrayKlass.hpp"
  36 #include "ci/ciInlineKlass.hpp"
  37 #include "ci/ciInstance.hpp"
  38 #include "code/compiledIC.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gc_globals.hpp"
  41 #include "nativeInst_aarch64.hpp"
  42 #include "oops/objArrayKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "vmreg_aarch64.inline.hpp"
  49 
  50 
  51 #ifndef PRODUCT
  52 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  53 #else
  54 #define COMMENT(x)
  55 #endif
  56 
  57 NEEDS_CLEANUP // remove this definitions ?
  58 const Register SYNC_header = r0;   // synchronization header
  59 const Register SHIFT_count = r0;   // where count for shift operations must be
  60 
  61 #define __ _masm->
  62 
  63 

 416     if (LockingMode == LM_MONITOR) {
 417       __ b(*stub->entry());
 418     } else {
 419       __ unlock_object(r5, r4, r0, r6, *stub->entry());
 420     }
 421     __ bind(*stub->continuation());
 422   }
 423 
 424   if (compilation()->env()->dtrace_method_probes()) {
 425     __ mov(c_rarg0, rthread);
 426     __ mov_metadata(c_rarg1, method()->constant_encoding());
 427     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
 428   }
 429 
 430   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 431     __ mov(r0, r19);  // Restore the exception
 432   }
 433 
 434   // remove the activation and dispatch to the unwind handler
 435   __ block_comment("remove_frame and dispatch to the unwind handler");
 436   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 437   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 438 
 439   // Emit the slow path assembly
 440   if (stub != nullptr) {
 441     stub->emit_code(this);
 442   }
 443 
 444   return offset;
 445 }
 446 
 447 
 448 int LIR_Assembler::emit_deopt_handler() {
 449   // generate code for exception handler
 450   address handler_base = __ start_a_stub(deopt_handler_size());
 451   if (handler_base == nullptr) {
 452     // not enough space left for the handler
 453     bailout("deopt handler overflow");
 454     return -1;
 455   }
 456 

 460   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 461   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 462   __ end_a_stub();
 463 
 464   return offset;
 465 }
 466 
 467 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 468   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 469   int pc_offset = code_offset();
 470   flush_debug_info(pc_offset);
 471   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 472   if (info->exception_handlers() != nullptr) {
 473     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 474   }
 475 }
 476 
 477 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 478   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 479 
 480   if (InlineTypeReturnedAsFields) {
 481     // Check if we are returning an non-null inline type and load its fields into registers
 482     ciType* return_type = compilation()->method()->return_type();
 483     if (return_type->is_inlinetype()) {
 484       ciInlineKlass* vk = return_type->as_inline_klass();
 485       if (vk->can_be_returned_as_fields()) {
 486         address unpack_handler = vk->unpack_handler();
 487         assert(unpack_handler != nullptr, "must be");
 488         __ far_call(RuntimeAddress(unpack_handler));
 489       }
 490     } else if (return_type->is_instance_klass() && (!return_type->is_loaded() || StressCallingConvention)) {
 491       Label skip;
 492       __ test_oop_is_not_inline_type(r0, rscratch2, skip);
 493 
 494       // Load fields from a buffered value with an inline class specific handler
 495       __ load_klass(rscratch1 /*dst*/, r0 /*src*/);
 496       __ ldr(rscratch1, Address(rscratch1, InstanceKlass::adr_inlineklass_fixed_block_offset()));
 497       __ ldr(rscratch1, Address(rscratch1, InlineKlass::unpack_handler_offset()));
 498       // Unpack handler can be null if inline type is not scalarizable in returns
 499       __ cbz(rscratch1, skip);
 500       __ blr(rscratch1);
 501 
 502       __ bind(skip);
 503     }
 504     // At this point, r0 points to the value object (for interpreter or C1 caller).
 505     // The fields of the object are copied into registers (for C2 caller).
 506   }
 507 
 508   // Pop the stack before the safepoint code
 509   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 510 
 511   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 512     __ reserved_stack_check();
 513   }
 514 
 515   code_stub->set_safepoint_offset(__ offset());
 516   __ relocate(relocInfo::poll_return_type);
 517   __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
 518   __ ret(lr);
 519 }
 520 
 521 int LIR_Assembler::store_inline_type_fields_to_buf(ciInlineKlass* vk) {
 522   return (__ store_inline_type_fields_to_buf(vk, false));
 523 }
 524 
 525 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 526   guarantee(info != nullptr, "Shouldn't be null");
 527   __ get_polling_page(rscratch1, relocInfo::poll_type);
 528   add_debug_info_for_branch(info);  // This isn't just debug info:
 529                                     // it's the oop map
 530   __ read_polling_page(rscratch1, relocInfo::poll_type);
 531   return __ offset();
 532 }
 533 
 534 
 535 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 536   if (from_reg == r31_sp)
 537     from_reg = sp;
 538   if (to_reg == r31_sp)
 539     to_reg = sp;
 540   __ mov(to_reg, from_reg);
 541 }
 542 
 543 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 544 

 551   switch (c->type()) {
 552     case T_INT: {
 553       assert(patch_code == lir_patch_none, "no patching handled here");
 554       __ movw(dest->as_register(), c->as_jint());
 555       break;
 556     }
 557 
 558     case T_ADDRESS: {
 559       assert(patch_code == lir_patch_none, "no patching handled here");
 560       __ mov(dest->as_register(), c->as_jint());
 561       break;
 562     }
 563 
 564     case T_LONG: {
 565       assert(patch_code == lir_patch_none, "no patching handled here");
 566       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 567       break;
 568     }
 569 
 570     case T_OBJECT: {
 571         if (patch_code != lir_patch_none) {


 572           jobject2reg_with_patching(dest->as_register(), info);
 573         } else {
 574           jobject2reg(c->as_jobject(), dest->as_register());
 575         }
 576       break;
 577     }
 578 
 579     case T_METADATA: {
 580       if (patch_code != lir_patch_none) {
 581         klass2reg_with_patching(dest->as_register(), info);
 582       } else {
 583         __ mov_metadata(dest->as_register(), c->as_metadata());
 584       }
 585       break;
 586     }
 587 
 588     case T_FLOAT: {
 589       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 590         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 591       } else {
 592         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 593         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 594       }

 664   LIR_Const* c = src->as_constant_ptr();
 665   LIR_Address* to_addr = dest->as_address_ptr();
 666 
 667   void (Assembler::* insn)(Register Rt, const Address &adr);
 668 
 669   switch (type) {
 670   case T_ADDRESS:
 671     assert(c->as_jint() == 0, "should be");
 672     insn = &Assembler::str;
 673     break;
 674   case T_LONG:
 675     assert(c->as_jlong() == 0, "should be");
 676     insn = &Assembler::str;
 677     break;
 678   case T_INT:
 679     assert(c->as_jint() == 0, "should be");
 680     insn = &Assembler::strw;
 681     break;
 682   case T_OBJECT:
 683   case T_ARRAY:
 684     // Non-null case is not handled on aarch64 but handled on x86
 685     // FIXME: do we need to add it here?
 686     assert(c->as_jobject() == 0, "should be");
 687     if (UseCompressedOops && !wide) {
 688       insn = &Assembler::strw;
 689     } else {
 690       insn = &Assembler::str;
 691     }
 692     break;
 693   case T_CHAR:
 694   case T_SHORT:
 695     assert(c->as_jint() == 0, "should be");
 696     insn = &Assembler::strh;
 697     break;
 698   case T_BOOLEAN:
 699   case T_BYTE:
 700     assert(c->as_jint() == 0, "should be");
 701     insn = &Assembler::strb;
 702     break;
 703   default:
 704     ShouldNotReachHere();
 705     insn = &Assembler::str;  // unreachable

1016     case T_SHORT:
1017       __ ldrsh(dest->as_register(), as_Address(from_addr));
1018       break;
1019 
1020     default:
1021       ShouldNotReachHere();
1022   }
1023 
1024   if (is_reference_type(type)) {
1025     if (UseCompressedOops && !wide) {
1026       __ decode_heap_oop(dest->as_register());
1027     }
1028 
1029     if (!(UseZGC && !ZGenerational)) {
1030       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1031       __ verify_oop(dest->as_register());
1032     }
1033   }
1034 }
1035 
1036 void LIR_Assembler::move(LIR_Opr src, LIR_Opr dst) {
1037   assert(dst->is_cpu_register(), "must be");
1038   assert(dst->type() == src->type(), "must be");
1039 
1040   if (src->is_cpu_register()) {
1041     reg2reg(src, dst);
1042   } else if (src->is_stack()) {
1043     stack2reg(src, dst, dst->type());
1044   } else if (src->is_constant()) {
1045     const2reg(src, dst, lir_patch_none, nullptr);
1046   } else {
1047     ShouldNotReachHere();
1048   }
1049 }
1050 
1051 int LIR_Assembler::array_element_size(BasicType type) const {
1052   int elem_size = type2aelembytes(type);
1053   return exact_log2(elem_size);
1054 }
1055 
1056 
1057 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1058   switch (op->code()) {
1059   case lir_idiv:
1060   case lir_irem:
1061     arithmetic_idiv(op->code(),
1062                     op->in_opr1(),
1063                     op->in_opr2(),
1064                     op->in_opr3(),
1065                     op->result_opr(),
1066                     op->info());
1067     break;
1068   case lir_fmad:
1069     __ fmaddd(op->result_opr()->as_double_reg(),

1221     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1222                                InstanceKlass::init_state_offset()));
1223     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1224     add_debug_info_for_null_check_here(op->stub()->info());
1225     __ br(Assembler::NE, *op->stub()->entry());
1226   }
1227   __ allocate_object(op->obj()->as_register(),
1228                      op->tmp1()->as_register(),
1229                      op->tmp2()->as_register(),
1230                      op->header_size(),
1231                      op->object_size(),
1232                      op->klass()->as_register(),
1233                      *op->stub()->entry());
1234   __ bind(*op->stub()->continuation());
1235 }
1236 
1237 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1238   Register len =  op->len()->as_register();
1239   __ uxtw(len, len);
1240 
1241   if (UseSlowPath || op->is_null_free() ||
1242       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1243       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1244     __ b(*op->stub()->entry());
1245   } else {
1246     Register tmp1 = op->tmp1()->as_register();
1247     Register tmp2 = op->tmp2()->as_register();
1248     Register tmp3 = op->tmp3()->as_register();
1249     if (len == tmp1) {
1250       tmp1 = tmp3;
1251     } else if (len == tmp2) {
1252       tmp2 = tmp3;
1253     } else if (len == tmp3) {
1254       // everything is ok
1255     } else {
1256       __ mov(tmp3, len);
1257     }
1258     __ allocate_array(op->obj()->as_register(),
1259                       len,
1260                       tmp1,
1261                       tmp2,

1326     assert(data != nullptr,                "need data for type check");
1327     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1328   }
1329   Label* success_target = success;
1330   Label* failure_target = failure;
1331 
1332   if (obj == k_RInfo) {
1333     k_RInfo = dst;
1334   } else if (obj == klass_RInfo) {
1335     klass_RInfo = dst;
1336   }
1337   if (k->is_loaded() && !UseCompressedClassPointers) {
1338     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1339   } else {
1340     Rtmp1 = op->tmp3()->as_register();
1341     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1342   }
1343 
1344   assert_different_registers(obj, k_RInfo, klass_RInfo);
1345 
1346   if (op->need_null_check()) {
1347     if (should_profile) {
1348       Register mdo  = klass_RInfo;
1349       __ mov_metadata(mdo, md->constant_encoding());
1350       Label not_null;
1351       __ cbnz(obj, not_null);
1352       // Object is null; update MDO and exit
1353       Address data_addr
1354         = __ form_address(rscratch2, mdo,
1355                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1356                           0);
1357       __ ldrb(rscratch1, data_addr);
1358       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1359       __ strb(rscratch1, data_addr);
1360       __ b(*obj_is_null);
1361       __ bind(not_null);






1362 
1363       Label update_done;
1364       Register recv = k_RInfo;
1365       __ load_klass(recv, obj);
1366       type_profile_helper(mdo, md, data, recv, &update_done);
1367       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1368       __ addptr(counter_addr, DataLayout::counter_increment);
1369 
1370       __ bind(update_done);
1371     } else {
1372       __ cbz(obj, *obj_is_null);
1373     }
1374   }
1375 
1376   if (!k->is_loaded()) {
1377     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1378   } else {
1379     __ mov_metadata(k_RInfo, k->constant_encoding());
1380   }
1381   __ verify_oop(obj);
1382 
1383   if (op->fast_check()) {
1384     // get object class
1385     // not a safepoint as obj null check happens earlier
1386     __ load_klass(rscratch1, obj);
1387     __ cmp( rscratch1, k_RInfo);
1388 
1389     __ br(Assembler::NE, *failure_target);
1390     // successful cast, fall through to profile or jump
1391   } else {
1392     // get object class
1393     // not a safepoint as obj null check happens earlier

1512     __ bind(success);
1513     if (dst != obj) {
1514       __ mov(dst, obj);
1515     }
1516   } else if (code == lir_instanceof) {
1517     Register obj = op->object()->as_register();
1518     Register dst = op->result_opr()->as_register();
1519     Label success, failure, done;
1520     emit_typecheck_helper(op, &success, &failure, &failure);
1521     __ bind(failure);
1522     __ mov(dst, zr);
1523     __ b(done);
1524     __ bind(success);
1525     __ mov(dst, 1);
1526     __ bind(done);
1527   } else {
1528     ShouldNotReachHere();
1529   }
1530 }
1531 
1532 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) {
1533   // We are loading/storing from/to an array that *may* be a flat array (the
1534   // declared type is Object[], abstract[], interface[] or VT.ref[]).
1535   // If this array is a flat array, take the slow path.
1536   __ test_flat_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1537   if (!op->value()->is_illegal()) {
1538     // The array is not a flat array, but it might be null-free. If we are storing
1539     // a null into a null-free array, take the slow path (which will throw NPE).
1540     Label skip;
1541     __ cbnz(op->value()->as_register(), skip);
1542     __ test_null_free_array_oop(op->array()->as_register(), op->tmp()->as_register(), *op->stub()->entry());
1543     __ bind(skip);
1544   }
1545 }
1546 
1547 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) {
1548   // We are storing into an array that *may* be null-free (the declared type is
1549   // Object[], abstract[], interface[] or VT.ref[]).
1550   Label test_mark_word;
1551   Register tmp = op->tmp()->as_register();
1552   __ ldr(tmp, Address(op->array()->as_register(), oopDesc::mark_offset_in_bytes()));
1553   __ tst(tmp, markWord::unlocked_value);
1554   __ br(Assembler::NE, test_mark_word);
1555   __ load_prototype_header(tmp, op->array()->as_register());
1556   __ bind(test_mark_word);
1557   __ tst(tmp, markWord::null_free_array_bit_in_place);
1558 }
1559 
1560 void LIR_Assembler::emit_opSubstitutabilityCheck(LIR_OpSubstitutabilityCheck* op) {
1561   Label L_oops_equal;
1562   Label L_oops_not_equal;
1563   Label L_end;
1564 
1565   Register left  = op->left()->as_register();
1566   Register right = op->right()->as_register();
1567 
1568   __ cmp(left, right);
1569   __ br(Assembler::EQ, L_oops_equal);
1570 
1571   // (1) Null check -- if one of the operands is null, the other must not be null (because
1572   //     the two references are not equal), so they are not substitutable,
1573   //     FIXME: do null check only if the operand is nullable
1574   {
1575     __ cbz(left, L_oops_not_equal);
1576     __ cbz(right, L_oops_not_equal);
1577   }
1578 
1579   ciKlass* left_klass = op->left_klass();
1580   ciKlass* right_klass = op->right_klass();
1581 
1582   // (2) Inline type check -- if either of the operands is not a inline type,
1583   //     they are not substitutable. We do this only if we are not sure that the
1584   //     operands are inline type
1585   if ((left_klass == nullptr || right_klass == nullptr) ||// The klass is still unloaded, or came from a Phi node.
1586       !left_klass->is_inlinetype() || !right_klass->is_inlinetype()) {
1587     Register tmp1  = op->tmp1()->as_register();
1588     __ mov(tmp1, markWord::inline_type_pattern);
1589     __ ldr(rscratch1, Address(left, oopDesc::mark_offset_in_bytes()));
1590     __ andr(tmp1, tmp1, rscratch1);
1591     __ ldr(rscratch1, Address(right, oopDesc::mark_offset_in_bytes()));
1592     __ andr(tmp1, tmp1, rscratch1);
1593     __ cmp(tmp1, (u1)markWord::inline_type_pattern);
1594     __ br(Assembler::NE, L_oops_not_equal);
1595   }
1596 
1597   // (3) Same klass check: if the operands are of different klasses, they are not substitutable.
1598   if (left_klass != nullptr && left_klass->is_inlinetype() && left_klass == right_klass) {
1599     // No need to load klass -- the operands are statically known to be the same inline klass.
1600     __ b(*op->stub()->entry());
1601   } else {
1602     Register left_klass_op = op->left_klass_op()->as_register();
1603     Register right_klass_op = op->right_klass_op()->as_register();
1604 
1605     if (UseCompressedClassPointers) {
1606       __ ldrw(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
1607       __ ldrw(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
1608       __ cmpw(left_klass_op, right_klass_op);
1609     } else {
1610       __ ldr(left_klass_op,  Address(left,  oopDesc::klass_offset_in_bytes()));
1611       __ ldr(right_klass_op, Address(right, oopDesc::klass_offset_in_bytes()));
1612       __ cmp(left_klass_op, right_klass_op);
1613     }
1614 
1615     __ br(Assembler::EQ, *op->stub()->entry()); // same klass -> do slow check
1616     // fall through to L_oops_not_equal
1617   }
1618 
1619   __ bind(L_oops_not_equal);
1620   move(op->not_equal_result(), op->result_opr());
1621   __ b(L_end);
1622 
1623   __ bind(L_oops_equal);
1624   move(op->equal_result(), op->result_opr());
1625   __ b(L_end);
1626 
1627   // We've returned from the stub. R0 contains 0x0 IFF the two
1628   // operands are not substitutable. (Don't compare against 0x1 in case the
1629   // C compiler is naughty)
1630   __ bind(*op->stub()->continuation());
1631   __ cbz(r0, L_oops_not_equal); // (call_stub() == 0x0) -> not_equal
1632   move(op->equal_result(), op->result_opr()); // (call_stub() != 0x0) -> equal
1633   // fall-through
1634   __ bind(L_end);
1635 }
1636 
1637 
1638 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1639   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1640   __ cset(rscratch1, Assembler::NE);
1641   __ membar(__ AnyAny);
1642 }
1643 
1644 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1645   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1646   __ cset(rscratch1, Assembler::NE);
1647   __ membar(__ AnyAny);
1648 }
1649 
1650 
1651 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1652   Register addr;
1653   if (op->addr()->is_register()) {
1654     addr = as_reg(op->addr());
1655   } else {
1656     assert(op->addr()->is_address(), "what else?");
1657     LIR_Address* addr_ptr = op->addr()->as_address_ptr();

2134     __ cmp(left->as_register_lo(), right->as_register_lo());
2135     __ mov(dst->as_register(), (uint64_t)-1L);
2136     __ br(Assembler::LT, done);
2137     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
2138     __ bind(done);
2139   } else {
2140     ShouldNotReachHere();
2141   }
2142 }
2143 
2144 
2145 void LIR_Assembler::align_call(LIR_Code code) {  }
2146 
2147 
2148 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2149   address call = __ trampoline_call(Address(op->addr(), rtype));
2150   if (call == nullptr) {
2151     bailout("trampoline stub overflow");
2152     return;
2153   }
2154   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
2155   __ post_call_nop();
2156 }
2157 
2158 
2159 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2160   address call = __ ic_call(op->addr());
2161   if (call == nullptr) {
2162     bailout("trampoline stub overflow");
2163     return;
2164   }
2165   add_call_info(code_offset(), op->info(), op->maybe_return_as_fields());
2166   __ post_call_nop();
2167 }
2168 
2169 void LIR_Assembler::emit_static_call_stub() {
2170   address call_pc = __ pc();
2171   address stub = __ start_a_stub(call_stub_size());
2172   if (stub == nullptr) {
2173     bailout("static call stub overflow");
2174     return;
2175   }
2176 
2177   int start = __ offset();
2178 
2179   __ relocate(static_stub_Relocation::spec(call_pc));
2180   __ emit_static_call_stub();
2181 
2182   assert(__ offset() - start + CompiledDirectCall::to_trampoline_stub_size()
2183         <= call_stub_size(), "stub too big");
2184   __ end_a_stub();
2185 }

2308 
2309 
2310 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2311   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2312   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2313   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2314   __ mov (rscratch1, c);
2315   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2316 }
2317 
2318 
2319 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2320   ShouldNotReachHere();
2321   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2322   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2323   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2324   __ lea(rscratch1, __ constant_oop_address(o));
2325   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2326 }
2327 
2328 void LIR_Assembler::arraycopy_inlinetype_check(Register obj, Register tmp, CodeStub* slow_path, bool is_dest, bool null_check) {
2329   if (null_check) {
2330     __ cbz(obj, *slow_path->entry());
2331   }
2332   if (is_dest) {
2333     __ test_null_free_array_oop(obj, tmp, *slow_path->entry());
2334   } else {
2335     __ test_flat_array_oop(obj, tmp, *slow_path->entry());
2336   }
2337 }
2338 
2339 // This code replaces a call to arraycopy; no exception may
2340 // be thrown in this code, they must be thrown in the System.arraycopy
2341 // activation frame; we could save some checks if this would not be the case
2342 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2343   ciArrayKlass* default_type = op->expected_type();
2344   Register src = op->src()->as_register();
2345   Register dst = op->dst()->as_register();
2346   Register src_pos = op->src_pos()->as_register();
2347   Register dst_pos = op->dst_pos()->as_register();
2348   Register length  = op->length()->as_register();
2349   Register tmp = op->tmp()->as_register();
2350 
2351   CodeStub* stub = op->stub();
2352   int flags = op->flags();
2353   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2354   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2355 
2356   if (flags & LIR_OpArrayCopy::always_slow_path) {
2357     __ b(*stub->entry());
2358     __ bind(*stub->continuation());
2359     return;
2360   }
2361 
2362   // if we don't know anything, just go through the generic arraycopy
2363   if (default_type == nullptr // || basic_type == T_OBJECT
2364       ) {
2365     Label done;
2366     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2367 
2368     // Save the arguments in case the generic arraycopy fails and we
2369     // have to fall back to the JNI stub
2370     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2371     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2372     __ str(src,              Address(sp, 4*BytesPerWord));
2373 
2374     address copyfunc_addr = StubRoutines::generic_arraycopy();
2375     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2376 
2377     // The arguments are in java calling convention so we shift them
2378     // to C convention
2379     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2380     __ mov(c_rarg0, j_rarg0);
2381     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);

2395     __ cbz(r0, *stub->continuation());
2396 
2397     // Reload values from the stack so they are where the stub
2398     // expects them.
2399     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2400     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2401     __ ldr(src,              Address(sp, 4*BytesPerWord));
2402 
2403     // r0 is -1^K where K == partial copied count
2404     __ eonw(rscratch1, r0, zr);
2405     // adjust length down and src/end pos up by partial copied count
2406     __ subw(length, length, rscratch1);
2407     __ addw(src_pos, src_pos, rscratch1);
2408     __ addw(dst_pos, dst_pos, rscratch1);
2409     __ b(*stub->entry());
2410 
2411     __ bind(*stub->continuation());
2412     return;
2413   }
2414 
2415   // Handle inline type arrays
2416   if (flags & LIR_OpArrayCopy::src_inlinetype_check) {
2417     arraycopy_inlinetype_check(src, tmp, stub, false, (flags & LIR_OpArrayCopy::src_null_check));
2418   }
2419 
2420   if (flags & LIR_OpArrayCopy::dst_inlinetype_check) {
2421     arraycopy_inlinetype_check(dst, tmp, stub, true, (flags & LIR_OpArrayCopy::dst_null_check));
2422   }
2423 
2424   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2425 
2426   int elem_size = type2aelembytes(basic_type);
2427   int scale = exact_log2(elem_size);
2428 
2429   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2430   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2431   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2432   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2433 
2434   // test for null
2435   if (flags & LIR_OpArrayCopy::src_null_check) {
2436     __ cbz(src, *stub->entry());
2437   }
2438   if (flags & LIR_OpArrayCopy::dst_null_check) {
2439     __ cbz(dst, *stub->entry());
2440   }
2441 
2442   // If the compiler was not able to prove that exact type of the source or the destination
2443   // of the arraycopy is an array type, check at runtime if the source or the destination is

2991         __ verify_klass_ptr(tmp);
2992 #endif
2993       } else {
2994         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2995                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2996 
2997         __ ldr(tmp, mdo_addr);
2998         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2999 
3000         __ orr(tmp, tmp, TypeEntries::type_unknown);
3001         __ str(tmp, mdo_addr);
3002         // FIXME: Write barrier needed here?
3003       }
3004     }
3005 
3006     __ bind(next);
3007   }
3008   COMMENT("} emit_profile_type");
3009 }
3010 
3011 void LIR_Assembler::emit_profile_inline_type(LIR_OpProfileInlineType* op) {
3012   Register obj = op->obj()->as_register();
3013   Register tmp = op->tmp()->as_pointer_register();
3014   bool not_null = op->not_null();
3015   int flag = op->flag();
3016 
3017   Label not_inline_type;
3018   if (!not_null) {
3019     __ cbz(obj, not_inline_type);
3020   }
3021 
3022   __ test_oop_is_not_inline_type(obj, tmp, not_inline_type);
3023 
3024   Address mdo_addr = as_Address(op->mdp()->as_address_ptr(), rscratch2);
3025   __ ldrb(rscratch1, mdo_addr);
3026   __ orr(rscratch1, rscratch1, flag);
3027   __ strb(rscratch1, mdo_addr);
3028 
3029   __ bind(not_inline_type);
3030 }
3031 
3032 void LIR_Assembler::align_backward_branch_target() {
3033 }
3034 
3035 
3036 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3037   // tmp must be unused
3038   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3039 
3040   if (left->is_single_cpu()) {
3041     assert(dest->is_single_cpu(), "expect single result reg");
3042     __ negw(dest->as_register(), left->as_register());
3043   } else if (left->is_double_cpu()) {
3044     assert(dest->is_double_cpu(), "expect double result reg");
3045     __ neg(dest->as_register_lo(), left->as_register_lo());
3046   } else if (left->is_single_fpu()) {
3047     assert(dest->is_single_fpu(), "expect single float result reg");
3048     __ fnegs(dest->as_float_reg(), left->as_float_reg());
3049   } else {
3050     assert(left->is_double_fpu(), "expect double float operand reg");

3151 void LIR_Assembler::membar_loadload() {
3152   __ membar(Assembler::LoadLoad);
3153 }
3154 
3155 void LIR_Assembler::membar_storestore() {
3156   __ membar(MacroAssembler::StoreStore);
3157 }
3158 
3159 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
3160 
3161 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
3162 
3163 void LIR_Assembler::on_spin_wait() {
3164   __ spin_wait();
3165 }
3166 
3167 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3168   __ mov(result_reg->as_register(), rthread);
3169 }
3170 
3171 void LIR_Assembler::check_orig_pc() {
3172   __ ldr(rscratch2, frame_map()->address_for_orig_pc_addr());
3173   __ cmp(rscratch2, (u1)NULL_WORD);
3174 }
3175 
3176 void LIR_Assembler::peephole(LIR_List *lir) {
3177 #if 0
3178   if (tableswitch_count >= max_tableswitches)
3179     return;
3180 
3181   /*
3182     This finite-state automaton recognizes sequences of compare-and-
3183     branch instructions.  We will turn them into a tableswitch.  You
3184     could argue that C1 really shouldn't be doing this sort of
3185     optimization, but without it the code is really horrible.
3186   */
3187 
3188   enum { start_s, cmp1_s, beq_s, cmp_s } state;
3189   int first_key, last_key = -2147483648;
3190   int next_key = 0;
3191   int start_insn = -1;
3192   int last_insn = -1;
3193   Register reg = noreg;
3194   LIR_Opr reg_opr;
< prev index next >